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Abstract. Oblivious Pseudorandom Functions (OPRFs) are an elemen-
tary building block in cryptographic and privacy-preserving applications.
While there are numerous pre-quantum secure OPRF constructions, it is
unclear which of the proposed options for post-quantum secure construc-
tions are practical for modern-day applications. In this work, we focus on
isogeny group actions, as the associated low bandwidth leads to efficient
constructions. We introduce OPUS, a novel Naor-Reingold-based OPRF
from isogenies without oblivious transfer, and show efficient evaluations
of the Naor-Reingold PRF using CSIDH and CSI-FiSh. Additionally,
we analyze a previous proposal of a CSIDH-based OPRF and that the
straightforward instantiation of the protocol leaks the server’s private
key. As a result, we propose mitigations to address those shortcomings,
which require additional hardness assumptions. Our results report a very
competitive protocol when combined with lattices for Oblivious Transfer.
Our evaluation shows that OPUS and the repaired, generic construction
are competitive with other proposals in terms of runtime efficiency and
communication size. More concretely, OPUS achieves almost two orders
of magnitude less communication overhead compared to the next-best
lattice-based OPRF at the cost of higher latency and higher computa-
tional cost, and the repaired construction. Finally, we demonstrate the
efficiency of OPUS and the generic NR-OT in two use cases: first, we
instantiate OPAQUE, a protocol for asymmetric authenticated key ex-
change. Compared to classical elliptic curve cryptography, which is con-
sidered insecure in the presence of efficient quantum computers, this re-
sults in less than 100 × longer computation on average and around 1000×
more communication overhead. Second, we perform an unbalanced pri-
vate set intersection and show that the communication overhead can be
roughly the same when using isogenies or elliptic curves, at the cost of
much higher runtime. Conversely, for sets of the size 210, we report a run-
time around 200× slower than the elliptic curve PSI. This concretizes the
overhead of performing PSI and using OPAQUE with isogenies for the
first time.
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1 Introduction

Cloud computing, authenticated key exchange and secure data sharing are ubiq-
uitous in modern-day computation. All of these high-level applications may use
Oblivious Pseudorandom Functions (OPRFs) as an underlying building block to
strengthen security and guarantee privacy. Informally, OPRFs take input from a
client and a key from a server, then return a pseudorandom output to the client.
The OPRF is secure when the client learns nothing about the key, and the server
learns nothing about the output or the client input. This basic functionality gives
rise to various applications.

For example, consider password authentication: To prove the knowledge of a
pre-registered password, the client transmits their password, ideally in a salted
and hashed form. The server checks the transmitted password against a stored
record and authenticates the client if the record matches the password. How-
ever, passwords notoriously lack entropy and may be recovered from a server
record in the event of a breach. In addition, this ideal setting is not always
the case, as attacks leaking cleartext passwords are still common. For example,
PwnedPasswords [Hun] consolidates breaches of passwords and finds over 90
matches when searching for plain text breaches. This attack vector can be miti-
gated by never storing passwords on a server in the first place. A great example
of a protocol solving the password storage problem is OPAQUE, an asymmetric
password-authenticated key agreement protocol for which standardization efforts
are ongoing at the CFRG [DFHSW22].

Use cases of ORPFs expand beyond passwords and include private set inter-
section (PSI), where two parties with respective datasets wish to compute the
overlapping elements in both sets without revealing their non-shared elements.
This can be used for private contact discovery [KRS+19] to protect the highly
sensitive social graph of messenger app users from ever being uploaded to a
server.

While there is a variety of sound and efficient constructions for OPRFs from
classical primitives, efficient and secure OPRFs from post-quantum hardness
assumptions remain an open question. An interesting primitive for quantum-
resistant OPRFs are isogenies, which have small communication complexity
but suffer from slow runtimes. Until now, there was only one OPRF based on
CSIDH [BKW20]. We show that the naïve approach to the implementation is
not sufficient, and subsequently propose a fix using uniform sampling for the
keys as used in the signature scheme CSI-FiSh [BKV19]. We combine the OPRF
with a lattice-based Oblivious Transfer protocol to achieve a relatively fast con-
struction that computes the OPRF in under 100 ms online time. Of independent
interest, we report that the Naor-Reingold PRF is nearly constant-time with re-
spect to the input length when using the lattice reductions of CSI-FiSh. Based
on the work on this OPRF, we introduce OPUS, a novel construction that only
uses CSIDH operations. It efficiently computes the Naor-Reingold OPRF while
only using 60% of the group actions of the previous proposal, without needing a
trusted setup. Furthermore, we present the first post-quantum implementation
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of OPAQUE using two isogeny-based OPRFs. In addition, we implemented and
evaluate private set intersection with both OPRFs.

2 Preliminaries

We recall (Oblivious) Pseudorandom Functions.

Definition 1 (Pseudorandom Function). A pseudorandom function (PRF)
[GGM84,GGM86] is a deterministic and polynomial time function F : {0, 1}k ×
{0, 1}x → {0, 1}n such that F i there is no probabilistic polynomial-time algo-
rithm to distinguish any output N from a randomly chosen element from {0, 1}n.

Definition 2 (Oblivious Pseudorandom Function). An oblivious pseudo-
random function (OPRF) [FIPR05] is a protocol between two parties. One party
holds the secret key K and the other holds their secret input X. The OPRF
privately realizes the joint computation outputting F (K,X) for a PRF F to the
party holding X, and nothing to the party holding K.

2.1 CSIDH

CSIDH [CLM+18], was originally proposed as a quantum-safe replacement for
Diffie-Hellman key exchanges. It builds on the ideas of Couveignes [Cou06] and
Rostovtsev-Stolbunov [RS06](CRS), but restricts the isogeny graph to supersin-
gular curves over Fp. p is a prime in the form p = 4

∏n
i=1 `i − 1 and p ≡ 3

mod 4. For π =
√
−p and O = Z[π], each `i splits the endomorphism ring O

into li isogenies with degree `i. The isogeny φ : E → E′ is a map from an el-
liptic curve E to another curve E′ that preserves the point at infinity and the
algebraic structure [Sil86]. Hence, both curves have the same number of rational
points. The isogeny is unique up to isomorphism. It is computed using Velu’s
formula [Vél71].

The heart of CSIDH is the group action ∗, which iteratively computes the `i
isogenies. It acts on the set of elliptic curves E``p(O, π), denoted as E . To ensure
the group action is efficient, each `i is required to be a small, distinct, odd prime.

Private Key and Public Key The ideal class group Cl(O) acts freely and
transitively on E . The element {le11 · · · l

ek
k } of Cl(O) is represented in CSIDH

as the private exponent vector. This array of k elements (e1, . . . , ek) forms the
private key whereas a single element of the vector is called a key coefficient.
Each key coefficient ei is a random element in the range [−m,m]. m is a bound
obtained from the parameter generation to store approximately log2 p

2 bits. The
sign of the key coefficient describes the direction of the walk: Walking e steps
from some point and then −e steps results in returning to the starting point.
This is a result of the dual isogeny theorem, which states that for each isogeny
E → E′, a corresponding isogeny E′ → E exists. The dual isogeny can be
directly used to invert the key: negating each key coefficient ei 7→ −ei results in
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the inversion of k, which we will denote as k−1. It is also possible to add two
private keys, where their respective coefficient vectors are added, which we will
denote as k + l, with k and l being CSIDH private keys. Following the notation
in [LGD21], we use s ∗E as shorthand to denote the class group action between
s = {ls11 · · · l

sk
k } and E using the vector s = (s1, . . . , sk).

The corresponding CSIDH public key is the Montgomery coefficient A ∈ Fp

of the supersingular curve E : v2 = u3 +Au2 + u and deterministically obtained
by repeatedly applying the private key to the base curve E0 : v2 = u3+0 ·u2+u.
Of p possible public keys, approximately √p of those keys are valid, meaning
that they describe supersingular curves.

Computational Assumptions For the security proof, we recall the key recov-
ery problem [CLM+18, Problem 10] for CSIDH.

Problem 1 (Key Recovery Problem). Given the two different supersingular curves
E,E′ ∈ E , find an s ∈ Cl(O) such that s ∗ E = E′.

[LGD21] give a useful lemma showing that sampling elements of the class
group Cl(O) is statistically close to uniform which follows directly from the Key
Recovery Problem.

Lemma 1 (Computational Hiding in CSIDH). Given a curve E ∈ E and
a distribution D on Cl(O), let D ∗ E be the distribution on E of a ∗ E for
a

$←− D. If D is statistically indistinguishable from the uniform distribution on
Cl(O), D ∗ E is statistically indistinguishable from the uniform distribution on
E. Therefore, we say that D statistically hides E.

We recall the computational CSIDH problem from [CLM+18].

Problem 2 (Computational CSIDH Problem). Given curves E ∈ E , r ∗ E ∈ E ,
and s ∗ E ∈ E where r, s ∈ Cl(O), find E′ ∈ E such that E′ = r ∗ s ∗ E.

Finally, we recall the decisional CSIDH problem from [EKP20]:

Problem 3. Decisional CSIDH Problem Given the set of curves E and the ideal
class group Cl(O), the decisional CSIDH (D-CSIDH) problem asks to distinguish
between the following two distributions:

– (E,H, a ∗ E, a ∗H) with E,H
$←− E and a

$←− Cl(O).
– (E,H,E′,H ′) where E,H,E′,H ′ $←− E .

If for all PPT adversariesA, the advantage in distinguishing the two distributions
is negligible, we say that the C-CSIDH assumption holds.

Parameterization and Security The size of the prime p denotes the se-
curity parameter of CSIDH. There is heavy disagreement in the literature on
the secure parameterization of CSIDH [BLMP19,BS20,Pei20], as several theo-
retical and concrete quantum attacks with subexponential complexity dispute
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that a prime p which is 512 bits long is sufficient for security. Related work
on OPRFs [BKW20] recommends using 2260-bit prime numbers for aggressive
parameterization and 5280-bit primes for a conservative instantiation based on
analysis of these algorithms. Recent work analyzing and implementing CSIDH
with bigger primes concludes that a bitlength of at least 2048 bits, up to 9216
bits is necessary [CSCJR22].

For best comparability with other implementations, we use the 512-bit ref-
erence implementation of CSIDH throughout this paper, but point out that the
prime length may not be sufficient. An additional benefit of this implementation
is the use of hardware instructions, which speed up the computation.

2.2 CSI-FiSh

Building on CSIDH, the signature scheme CSI-FiSh introduces a uniform rep-
resentation of the class group elements. In their paper, this is necessary for
the Fiat-Shamir transformation to obtain a signature scheme, but the use cases
stretch beyond signatures. Intuitively, increasing the bound m of the key coeffi-
cient comes closer to sampling uniformly over the class group. To sample fully
uniform keys, CSI-FiSh computes the class number and class group structure
and reduces the key after the arithmetic operation to avoid leakage. Due to the
different distribution of the class group ideals, the group action is around 15%
slower.

2.3 The Naor-Reingold Pseudorandom Function (NR-PRF)

The Naor-Reingold PRF [NR04] is a generic construction for PRFs from Abelian
group actions that is widely used in the literature and practice. The PRF requires
n + 1 group elements, or keys, for n bits of PRF input. To compute the PRF,
we take the initial group element k0. For each input bit xi for i ∈ [1, n], a group
action is performed if the ith bit xi is set. For a group action denoted as ◦, the
Naor-Reingold PRF is defined as

FNR ((k0, k1, . . . , kn, E0), (x1, . . . , xn)) := k0 ◦ kx1
1 ◦ . . . ◦ kxn

n

where the exponentiation with xi may be read as perform ◦ if input bit is set.

2.4 Oblivious Transfer and Naor-Reingold OPRF

The NR-PRF gives rise to oblivious evaluation using oblivious transfer (OT). OT
takes two messages (m0,m1) from the sender, usually the server, and a choice
bit c from the receiver, usually the client. The protocol functionality returns mc

to the client and is secure when the client learns nothing about m1−c and the
server learns nothing about c.

To compute the NR-PRF obliviously using OT, the input X is bit-decomposed
into X = [x1, . . . , xn] to use as an input for the OT. The server samples n
blinding elements [r1, . . . , rn] and inputs ri, ki ◦ ri to the OT, with ri perfectly
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hiding ki. The client queries the OT with each xi to obtain ki
xi ◦ ri and ag-

gregates all results with the group action to obtain the blinded group element
k1

x1 ◦ r1 ◦ . . . ◦ knxn ◦ rn. To finalize the computation, the server evaluates the
inverse of all blinding elements with the key and sends the result, which we will
call finalization element, fin = k0 ◦ r−1

1 ◦ . . . ◦ r−1
n to the client. The client now

performs a final group action with the finalization element and the blinded group
elements to obtain the result:

k1
x1 ◦ r1 ◦ . . . ◦ knxn ◦ rn ◦ k0 ◦ r−1

1 ◦ . . . ◦ r−1
n = k0 ◦ k1x1 ◦ knxn

2.5 Notation

We write a vector v as a bold, lowercase variable, which is used for private
exponent vectors. For two vectors a and b, a+ b and a− b denote coefficient-
wise addition and substraction.

We denote the sequential application of the group action
csidh(csidh(E,a),b) as b ∗ (a ∗E). Due to the commutativity of CSIDH, this is
also equivalent to (a + b) ∗ E. We denote the zero curve as E0 and any other
curve as E, potentially annotating it to give more context. For example, the
result of applying some key c will be denoted Ec = csidh(c, E0) = c ∗ E0.

We will use an ideal functionality keygen() to sample random, uniform CSIDH
private keys. [k1,k2]

$←− keygen() samples two random, independent and uniform
keys. We will call a curve E randomized after sampling a private key r

$←− keygen()
and computing E′ = r ∗ E. We remove the property after applying r−1 to the
curve E′, therefore removing the randomness.

2.6 Benchmarks

All benchmarks, unless specified otherwise, are averaged over 100 executions
with random input and have been run on a computer with an AMD Ryzen
7 PRO 4750U Processor with a fixed processor speed at 1.7 GHz and 24 GiB
RAM, under the Linux kernel 6.1.44-1-lts. We will refer to this setup as the test
machine. Unless otherwise stated, the input length to the OPRF is 128 bits.

3 Attacking and Repairing the Generic Naor-Reingold
OPRF from CSIDH

Previous work [BKW20] describes the Naor-Reingold (NR) OPRF for CSIDH
to compare against their SIDH-based proposal. While the latter has been bro-
ken [BKM+21] and subsequently repaired [Bas23], the approximations for the
Naor-Reingold OPRF from CSIDH are widely cited in the literature and have
not been studied further. We fill this gap with a thorough investigation of both
NR-PRF and NR-OPRF from CSIDH. More concretely, we show in this section
that the naïve instantiation of the OPRF leads to a full key recovery in a passive
attack and propose a mitigation.
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FNR−CSIDH ((k0,k1, . . . ,kn), (x1, . . . , xn)) :=

k0 ∗ k1
x1 ∗ . . . ∗ kn

xn ∗ E0

Fig. 1. Naor-Reingold PRF from CSIDH using E0 as a starting curve. We use kxi
i as

a shorthand notation for perform the group action with ki if and only if xi is set.

FNR−CSIDH−OPT ((k0,k1, . . . ,kn, E0), (x1, . . . , xn)) :=(
k0 +

n∑
i=1

ki
xi

)
∗ E0

Fig. 2. Optimized two-step Naor-Reingold PRF from CSIDH. The first step is a subset-
sum of the required keys and the second step is the application of the group action to
the base curve E0.

3.1 Instantiating the NR-PRF from CSIDH

To instantiate the NR-PRF with CSIDH, the protocol samples n+1 CSIDH pri-
vate keys and computes the group action as in Section 2.3. The textbook variant
of the PRF outlined in Figure 1 is prohibitively slow, requiring n+ 1 sequential
group actions to compute the PRF for n input bits. A recent paper [ADMP20]
describes an effective way to evaluate the PRF by splitting the evaluation into
two parts: First, a subset-product, in the case of CSIDH addition of all key ele-
ments where xi = 1, is computed. This first step can be parallelized. The group
action is then evaluated using the aggregated key elements in a second step on
the base curve.

The subset-sum computation requires a tiny tweak in the CSIDH implemen-
tation1, from 8-bit to 32-bit key elements to avoid overflows. Other than adding
addition and subtraction subroutines, the implementation is the same. In Fig-
ure 3, we benchmark the PRF computation for input sizes between 1 and 512
bits. We see that the two-step computation approach reduces the evaluation
time. This is due to two factors: one, the key coefficients are in the range [−5, 5]
and will partially cancel out when added, reducing the required steps on the
isogeny graph. Two, the optimization saves n− 1 computations of the first step
of the algorithm, which is computing a point of the correct order. A smaller
value of `i corresponds to a higher cost in computing a point of correct order, as
the probability of sampling a correct point is `i−1

`i
. Therefore, the optimization

is particularly of interest for an aggressive parameter choice in CSIDH.
Additionaly, this PRF is updatable; that is, if parts of the input change,

updating the output requires a single group action to update the PRF. This
is useful for applications requiring to hash multiple inputs, so the individual
inputs differ in less than n

2 bits. In Figure 4, we show that the effort between
recomputing the OPRF and updating a previous result holds fairly clearly to our
1 All CSIDH benchmarks use the reference implementation from https://yx7.cc/

code/csidh/csidh-latest.tar.xz, which is from 27-06-2021.

https://yx7.cc/code/csidh/csidh-latest.tar.xz
https://yx7.cc/code/csidh/csidh-latest.tar.xz
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Fig. 3. Runtime divergence between the traditional Naor-Reingold CSIDH PRF in blue
and the same PRF with our optimization in green for different bit lengths.
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Fig. 4. Runtime divergence between updating x bits of the PRF vs. recomputing the
full 256 bits of the PRF.

expectations: It is cheaper to update the OPRF when less than 128 bits differ
and otherwise recomputation is more efficient. Note that the divergence in the
runtime is due to non-uniform keys in CSIDH.
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FNR−CSIFiSh−OPT ((k0,k1, . . . ,kn, E0), (x1, . . . , xn)) :=

reduce_mod

(
(k0 +

n∑
i=1

ki ∗ xi), cn

)
∗ E0

Fig. 5. Optimized two-step Naor-Reingold PRF from CSIDH. The first step is a subset-
sum of the required keys and the second step is the application of the group action to
the base curve E0.

0 100 200 300 400 500
0

0.2

0.4

0.6

PRF input length in bits

ti
m

e
in

se
co

nd
s

aggregation only
aggregation and reduction

Fig. 6. Comparing PRF runtimes using aggregation only and aggregation and a reduc-
tion modulo the class group number before applying the group action.

Instantiation from CSI-FiSh The PRF is even more efficient with CSI-FiSh,
as the keys can be added and then reduced modulo the class group number
as depicted in Figure 5 The reduction step leads to an almost constant-time
computation. In Figure 6, we show the improvement in runtime when using
a reduction, leading to an almost constant time complexity when computing
the PRF, independent of the input. More concretely, the difference between the
lowest and the highest execution time is 0.0032s for the optimized variant and
0.4377s for the aggregation variant.

3.2 Oblivious NR-PRF from CSIDH

The OPRF in [BKW20] is not rigorously described; they initially give a descrip-
tion of the NR-PRF in Protocol 24 of the same paper. In a later paragraph, they
state instantiating their protocol with CSIDH results in a NR-OPRF similar to
the protocol in Section 2.3. Since the protocol uses OT, we will call it NR-OT
henceforth. Using our addition trick from Section 2.3, a correct intuition to com-
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pute the OPRF is to instantiate the OT with (ri,ki + ri) and finalizing the OT
by sending k0 ∗

∑n
i=1−ri. We sketch this protocol in Figure 14.

Analyzing the Construction While the OPRF above produces a correct
result, due to the non-uniform representation of the CSIDH private key, the
construction leaks the server key. 2 A passive adversary, that is, an adversary
who carries out the protocol faithfully, can observe the distribution of the blinded
keys.

Key Leakage Example Consider the key coefficient ki = y, with y ∈ [m,−m]
(for a discussion on bounds, see Section 2.1). When it is blinded with a random
element ri, the blinded element ri+ki is always within the range [y−m, y+m], as
the blinding coefficient is uniformly sampled within the same range ri ∈ [−m,m].
Over several iterations, ri will change and reveal more and more information
about the key, giving the information outright when the difference between the
blinding results is 2m. To obtain the correct coefficient y, take the largest result
l and compute y := l −m.

3.3 Fixing the NR-OPRF

Signature schemes using the Fiat-Shamir Transformation[FS87] require uniform
keys as well. For CSIDH, the signature scheme SeaSign [DG19] mitigates the
non-uniform mitigation by rejection sampling, concretely using the Fiat-Shamir
transformation with aborts [Lyu09]. To translate the technique to the CSIDH
setting, SeaSign uses somewhat short, long-term secret keys k with coefficients
ki ∈ [−B,B]k for some B and large, ephemeral secret keys r with each coefficient
ri ∈ [−(δ + 1)B, (δ + 1)B]k, rejecting any r where the vector r − k contains a
coefficient is outside of the range [−δB, δB]. In the NR-OT setting, the long-
term sender keys are the short keys s and the ephemeral keys are sampled as r.
While using tactics from SeaSign is a good mitigation, it puts a computational
load on the server and introduces the drawbacks of lattice signatures in the
scheme. Additionally, the large ephemeral keys add communication overhead to
the protocol.

Most of these issues are mitigated by using the sampling algorithm from
the signature scheme CSI-FiSh [BKV19] introduced in Section 2.2. The protocol
in Figure 14 would largely remain the same, with ki+ri being a reduced element
of the class group.

2 In personal communication, authors of [BKW20] confirmed that the specific instan-
tiation of their construction using class groups (or isogenies) blinds the class group
element representing the key by multiplying a random element, but that the non-
uniform key distribution leads to the CSIDH instantiation of protocol [BKW20]
being ”currently broken”.
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Trusted Setup in Oblivious Transfer Another roadblock on the way to
a secure NR-OT instantiation is the underlying OT. The estimations for the
communication complexity of the NR-OT [BKW20] use an isogeny-based OT
protocol [LGD21] that requires a supersingular curve with an unknown endo-
morphism ring. A recent paper [BCC+23] proposes an algorithm for the gener-
ation of supersingular curves with unknown endomorphism over Fp2 . However,
there are no known efficient algorithms for the curves over Fp used by CSIDH,
which is denoted as an open problem in the same paper. Therefore, using the
OPRF protocol requires either an efficient construction of curves with unknown
endomorphism over Fp or a different OT protocol without a trusted setup.

Alternate OT protocols using CSIDH The semi-honest protocol [dSGOPS20]
gives similar performance to the OT protocol of [LGD21], but requiring two
trusted curves for the setup. A good alternative may be the single-bit OT
of [ADMP20], which requires a key distribution closer to uniform than CSIDH
and therefore uses the CSI-FiSh key sampling algorithm for the entire protocol.
The main issue with this protocol is that the number of isogeny computations de-
pends on the length of the client input and the bitlength of the input log2 p = σ.
The overall number of isogeny computations would be γ(5σ + 5). For an input
length of 128 bits and a key size of 256 bits, this would amount to 164480 isogeny
computations, which is prohibitive.

Hence, to instantiate the protocol chose a two-round OT protocol based on
additive homomorphic encryption [BDK+20], as it provides an implementation
and is round-optimal. In addition, the protocol offers batching, making it more
efficient for multiple OT invocations, and expects the input to be given as a
GMP integer, which is how CSI-FiSh encodes the private key. The protocol
is implemented in C++ using Microsoft SEAL [SEA21] for the homomorphic
operations. Using the BFV [Bra12,FV12] scheme, it follows in three steps, with
� denoting homomorphic operations on encrypted messages.

1. The client encrypts their choice bit cb = Enc(pk, b) and sends it to the server.
2. The server computes cmb

= (m0 � (1� cb))� (m1 � cb) and sends cmb
to the

client.
3. The client decrypts the ciphertext to obtain mb = Dec(sk, cmb

)

Using the OT and CSI-FiSh, the full protocol is displayed in Figure 7.

Performance Using the lattice-based OT, the NR-OT OPRF becomes rela-
tively efficient. This is due to two factors: first, the added keys are reduced mod-
ulo the class number, which results in a very fast PRF runtime, see Section 3.1.
This results in a protocol that only requires two group actions to complete.
Second, while the lattice OT requires a lot of communication, it is relatively
fast.

Conclusion The construction repairs the issues from the initial proposal [BKW20],
namely by using an OT protocol that does not require a trusted setup and using
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Server Client
keys K = k0, . . . ,kn input X = [x1, . . . , xn]

R← [0] K← [0]

for i ∈ [1, n] : for i ∈ [1, N ] :

ri
$←− keygen()

kiri ← ri + ki

kiri ← reduce_mod(kiri)

R← R+ ri (
2
1

)
-OT

xiri

kiri xi ∗ ki + ri

K← K+ xi ∗ ki + ri

k← reduce_mod(K)

Efin ← (k0 −R) ∗ E0
Efin E ← k ∗ Efin

return E

Fig. 7. Full protocol of evaluating the NR-OPRF with CSI-FiSh and N OT calls. The
function reduce_mod describes the reduction modulo the class group number.

Table 1. Comparison between PRF and OPRF execution time locally on the test
machine for our NR-OT OPRF. The network traffic is always denoted as sent kilobytes.
OT keygen is a separate column for key generation measuring the client communication
and computation time.

Input- Keygen Comp. Client Server OT keygenlength PRF PRF

128 204ms 43ms 90ms 91ms 429ms
128 kiB 256 kiB 256 kiB

256 378ms 43ms 97ms 97ms 428ms
256 kiB 512 kiB 256 kiB

512 763ms 45ms 101ms 101ms 427ms
384 kiB 768 kiB 256 kiB

the sampling approach from CSI-FiSh for uniform keys. This introduces two new
issues: First, the OT protocol allows the client’s choice bit to be neither 0 nor 1,
which may result in a response that is a superposition of messages. Hence, the
security model is weaker, as a semi-honest client would only be passively secure.
Second, when using uniform sampling, the class group structure is only available
for primes of length 512 [BKV19] or 1024 [DFK+23], which may not provide a
sufficient security margin as discussed in Section 2.1.
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4 OPUS: Oblivious Pseudorandom Function using
CSIDH

While the above construction is relatively efficient, it would be of interest to
build a similar OPRF exclusively from a single type of problem, i.e., isogenies,
without the need for hard lattice problems. To avoid sending any private keys
over the network, we propose OPUS, a novel OPRF that only sends evaluated
curves, that is, CSIDH public keys. In the protocol, both parties iteratively blind
their intermediate results, with the client getting anything useful only in the end,
beforehand computing over randomized curves. This eliminates the need for a
trusted setup, which is the main obstacle hampering other OPRF protocols from
CSIDH. The main operations in OPUS are blinding and key addition. In each
step, the client blinds a curve, starting with E0, with a random class group
element rc,i and sends it to the server, which returns the curve blinded again
with its own, fresh blinding element rs,i and once with the own blinding element
and the key. Now, the client decides based on the ith bit of the input with which
curve the computation should continue, blinding again to ensure the server learns
nothing about their choice. By the hiding Lemma 1, this perfectly protects the
client input and the server keys from malicious parties, see Figure 8.

Server Client

{k0,k1, · · · ,kn}
$←− keygen() input X ← {x1, · · · , xn},

rs ← [0] rc ← [0], Eclient ← E0

foreach i ∈ {1, . . . , n}: foreach i ∈ {1, . . . , n}:

rc,i
$←− keygen()

rs,i
$←− keygen() Eblinded Eblinded ← rc,i ∗ Eclient

Es,i,0 ← rs,i ∗ Eblinded

Es,i,1 ← ki ∗ Es,i,0

rs ← rs − rs,i
Es,i,0, Es,i,1 Eclient ← Es,i,xi

rc ← rc − rc,i

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize and Unblind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rc,0 ∗ Eclient rc,0
$←− keygen()

Es ← (k0 + rs) ∗ rc,0 ∗ Eclient
Es Eclient ← (rc − rc,0) ∗ Es

return Eclient

Fig. 8. The full protocol of our novel OPRF OPUS.
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Table 2. Comparison of OPUS complexity on the test machine. The overall time is
the addition of the time from the client and the server, as the protocol is sequential.

Bit- Keygen Comp. Client Server Overalllength PRF PRF

128 0.11ms 168ms 3.00s 5.73s 8.73s
8.06 kiB 16.06 kiB 24.13 kiB

256 0.26ms 234ms 5.83s 11.30s 17.13s
16.1 kiB 32.1 kiB 48.13 kiB

512 0.51ms 326ms 11.47s 22.42s 33.89s
32.06 kiB 64.06 kiB 96.13 kiB

4.1 Efficiency

Once again, the OPRF is made more efficient with the addition trick from Sec-
tion 2.3, as both client and server aggregate the blinding keys in vector R to
quickly reduce the number of group actions. Overall, OPUS needs 2n+ 1 group
action computations for the server and n+1 for the client. Experimental runtimes
can be found in Table 2, and concrete runtimes in Table 8.

The low communication cost gives lower bandwidth requirements. This is
also of benefit in cloud environments and when data is transmitted over cellu-
lar networks. An additional advantange of OPUS is that the server carries the
highest computational load, while the client only has to perform n + 1 CSIDH
computations.
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Fig. 9. Online runtimes of clients in different cities computing OPUS with a bit length
of 128 with a server in London. All machines run on Debian 11 using the simplest
Google Cloud instance.
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Aside from the isogeny computations, the main performance issue in OPUS is
the large number of rounds. To address this concern, we rented virtual machines
around the world and used them as clients performing OPUS with a server in
London. As clear from Figure 9, the runtime of OPUS directly corresponds to the
round-trip time of the ping. In a real-life setting, this overhead may be mitigated
by running several, distributed instances of a server.

4.2 Verifiability

When the OPRF is used as a building block in a protocol, and the resulting
OPRF output is utilized at a later stage, it is crucial to safeguard user anonymity
by preventing any link between the result and the OPRF evaluation. For in-
stance, a malicious server may tag an individual by using a distinct key for
OPRF evaluation. This discloses the user’s identity when revealing the OPRF
result. For example, the PrivacyPass protocol [DGS+18] hands out tokens to the
user after they completed a CAPTCHA. These tokens can be redeemed instead
of completing a new CAPTCHA. By using a different key for each challenge, the
browser can distinguish tokens handed out for different challenges and track the
user across websites.

To mitigate this attack, some OPRFs are verifiable, which means the func-
tionality ensures a server uses a certain key that it previously committed to for
the evaluation. Adding verifiability to OPUS is difficult as the communication is
entirely over randomized curves, similar to the challenges imposed by the require-
ments for malicious security. Another OPRF based on isogenies over Fp2 [Bas23]
uses a proof of parallel isogeny, which provides a zero-knowledge proof to show
that two curves were computed by applying the same secret key to two starting
curves and torsion points. Unfortunately, this does not carry over to CSIDH’s Fp

and cannot be applied OPUS or the NR-OT. A recent survey [BFGP23] details
strategies and gives an overview of zero-knowledge proofs for isogenies. While it
seems possible, we leave the task of constructing a verifiable OPRF for future
work.

5 Security Analysis

To prove our novel OPRF secure against a semi-honest adversary in the ROM,
we will first show that the OPUS is a PRF. We now show that the protocol
OPUS in Figure 8 generates output in correspondence to the CSIDH NR-PRF
FNR from Section 2.3.

Proposition 1 (OPUS produces correct NR-PRF outputs).
For all keys k ∈ K and inputs x ∈ {0, 1}n, the output of an honest computa-

tion of OPUS is an evaluation of the CSIDH-based FNR. That is P[FOPUS(k,x) =
FNR(k,x)] = 1, with the probability being over the internal randomness of OPUS.

Proof (Correctness of OPUS). Given input X = (x1, . . . , xn) and keys K =
(k0, . . . ,kn), the client C initializes E ← E0. For each i ∈ [1, n], C generates a
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random key rc,i and sends a randomized curve rc,i ∗ E to the server S, which
samples their randomness rs,i and returns Ei,0 ← rs,i ∗E and Ei,1 ← ki ∗rs,i ∗E
to C. If xi = 1, C sets E ← Ei,0 and E ← Ei,1 otherwise. Clearly, repeating this
step n times is equivalent to computing

((
∑n

i=1 rs,i +
∑n

i=1 rc,i +
∑n

i=1 ki
xi) ∗ E0) .

The computation is finalized by C blinding the result again with the term rc,0
and sending it to the server, which applies k0 as well as the sum of the inverse
blinding terms rs such that

(k0 −
∑n

i=1 rs,i) ∗ ((rc,0 +
∑n

i=1 rs,i +
∑n

i=1 rc,i +
∑n

i=1 ki
xi) ∗ E0) ,

which is equivalent to

(
∑n

i=0 rc,i + k0 +
∑n

i=1 ki
xi) ∗ E0.

The client is left to compute the inverse of their respective blinding elements
such that ∑n

i=0−(rc,i) ∗ (
∑n

i=0 rc,i + k0 +
∑n

i=1 ki
xi) ∗ E0,

which is equivalent to computing

(k0 +
∑

i=1 ki
xi) ∗ E0.

Therefore, OPUS correctly evaluates the NR-PRF for honest parties.

Consequently, we obtain the following corollary from [BKW20, Theorem 23]:

Corollary 1. Assuming computational CSIDH holds, then OPUS is a secure
pseudorandom function.

For the security proof, we consider the one-more pseudorandomess security
game of Everspaugh et al. [ECS+15] in the fully oblivious setting.

Definition 3. A OPRF Fk : M → R provides one-more pseudorandomess if
for any PPT adversory A the advantage in the one-more pesudorandomness
experiment defined in Figure 10, |Pr[om-PRF = 1]− 1

2 | is negligible.

This notion, as shown by Everspaugh et al., implies the weaker one-more un-
predictability security notion of OPRFs. Note though, that in Figure 10, the
PRF-Srv oracle is modelled as a single query. In our case, this algorithm takes
part in a multi-round protocol, whereas the output depends on client-provided
random values which on their own depend on previous outputs of PRF-Srv. We
will however keep the notation for simplicity and assume that all the required
information to produce a transcript is passed as part of m. We now show that
OPUS is one-more pseudorandom based on the D-CSIDH assumption:

Theorem 1. If the D-CSIDH assumption holds, then OPUS is one-more pseu-
dorandom.
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Experiment om-PRF:

– (pk, sk)
$←− K, q, c← 0

– (i1, . . . , i`, b
′)← ARoR,PRF-Srv

– If ` > q or c ≥ ` or ∃α 6= β : iα = iβ return 0.
– Return β′ =

⊕`
α=1 biα

RoR(m):

– q ← q + 1, bq
$←− {0, 1} Z0

$←− R, Z1 ← Fk(m)
– Return Zbq

PRF-Srv(m):

– c← c+ 1
– Return PRF-Srvk(m)

Fig. 10. Security game for one-more pseudorandomness.

Proof. The basic idea is to replace the use of the secret key ki step-by-step with
randomly sampled curves.

– Game 0: The initial game.
– Game i: Everything is as before, but compute Es,i,1 by sampling uniformly

at random from E .
– Transition i−1 to i: an adversary that can distinguish between game i−1 and

i, can also solve D-CSIDH. Indeed, let (E,H,E′,H ′) be from a D-CSIDH
challenger. We set Es,i,0 ← H and Es,i,1 ← H ′ which interpolates between
the two games.3

In Game n, the adversary can only guess as none of the k1, . . . kn are used in the
protocol execution.

Proofing the security of OPUS in the universal composability model and in an
adaptive setting, is currently open and future work. To achieve adaptve security,
it would be required at least to produce the output of OPUS via a random oracle,
i.e., by outputting H(m,Eclient), as observed by Jarecki et al. [JKX18].

6 Case Study: OPAQUE

The OPAQUE [JKX18] protocol introduces a Password-Authenticated Key Ex-
change (PAKE) protocol that does not reveal the user’s password to the server.
Instead, it performs an OPRF calculation with the server, using the hash of
the password as the user’s input and a PRF key provided by the server. Hence,
3 We could set E0 ← E and E′ would represent the public key of the server. As we

do not have a public key, though, this step is not required.
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offline dictionary attacks effectively require compromise of the server’s PRF key
and are otherwise rendered impossible. OPAQUE is unable to prevent online at-
tacks, yet they incur additional costs for the attacker as they have to perform the
client’s side of the OPRF evaluation. To make online attacks even more costly,
additional client hardening steps (e.g., memory hard functions) can be employed
as discussed in [JKX18].

OPAQUE consists of two phases: Password Registration and Password Au-
thentication with Key Generation. Authentication and key generation are accom-
plished by either combining the OPRF with an asymmetric PAKE (aPAKE) or
an Authenticated Key Exchange (AKE) protocol. In our implementation, we fo-
cus on the composition using the AKE protocol, since no CSIDH-based aPAKE
protocols are available. During registration, both parties generate a long-term
asymmetric keypair, later used during authentication to perform the AKE pro-
tocol. Using the output of the OPRF, the client derives a symmetric key and
uses it to encrypt its private key. For simplicity, our implementation includes the
client and server public key in the encryption process. The ciphertext is sent and
stored on the server. During authentication the server fetches the ciphertext and
sends it to the client, where it is decrypted after performing the OPRF again,
requiring the user to only remember their password, but not the long-term key-
pair, to authenticate. A shared key is then generated by performing the AKE
protocol.

6.1 Post-Quantum OPAQUE Implementation

Constructing a post-quantum version of the OPAQUE protocol requires the
replacement of the used OPRF and AKE protocols with suitable post-quantum
variants. We instantiate two PQ versions, one using our novel OPRF OPUS and
the other one using our NR-OT OPRF. Both versions use a post-quantum secure
replacement of the X3DH protocol, proposed by Hashimoto et al [HKKP21], as
the AKE. We chose this AKE since it provides security against Key Compromise
Impersonation (KCI) attacks and forward secrecy, as required by the OPAQUE
protocol, and is suitable for implementation using CSIDH-based primitives. The
protocol is based on a Key Encapsulation Mechanism (KEM) scheme and a
signature scheme. We chose the CSIDH-based CSIKE [Qi22] as the KEM, since
it is IND-CCA secure as required by the used AKE. As the signature scheme,
we chose CSI-FiSh [BKV19], as there already is an implementation available.
The full protocol flow for the OPAQUE Password Registration and Password
Authentication is detailed in Figure 11 and Figure 12 respectively. Exts and FK
are PRF using KMAC256 instead of HMAC256, since we require variable length
output. The PRF uses s and K as the respective keys, with different labels to
differentiate between Exts and FK.

Note that the security of PAKE is defined in the UC setting and OPAQUE
is proven secure for UC-secure OPRFs. As this is left open as future work for
OPUS, we consider the evaluation of OPUS with in an OPAQUE as an outlook
for future applications of OPUS.
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Client Server
username, password {k0, . . . , k256}

$←− keygen()

username

OPUS
Hash(password)

out

k

y← Hash(password||out)
rw← HkdfExtract(y||PWHash(y))
(ekC, dkC)← KEM.KeyGen() (ekS, dkS)← KEM.KeyGen()

(vkC, skC)← SIG.KeyGen() (vkS, skS)← SIG.KeyGen()

IpkC ← (ekC, vkC) IpkS ← (ekS, vkS)

IskC ← (dkC, skC) IskS ← (dkS, skS)

IpkS

n
$←− {0, 1}256 s

$←− {0, 1}256

c← AuthEncrw(IpkC||IpkS||IskC, n)

c, n, IpkC User Record: IpkS||IskS||IpkC||c||n||s||k

Store User Record for given username

Fig. 11. Description of PQ OPAQUE Password Registration

Table 3. Comparison between the execution time of libopaque and our two OPAQUE
instantiations. The execution time is averaged over 100 runs. Reg. refers to the regis-
tration and Auth. to the authentication phase of the protocol.

Function libopaque PQ PQ / libopaque
OPUS NR-OT OPUS NR-OT

Reg. Client 119.37ms 39.82s 11.59s × 333.62 × 97.10
Reg. Server 95.63ms 39.84s 11.61s × 416.62 × 121.42
Auth. Client 96.54ms 31.21s 3.25s × 323.27 × 33.69
Auth. Server 120.32ms 32.01s 2.74s × 268.15 × 22.80

6.2 Comparison to Pre-Quantum implementation

To measure the performance difference, we compare our implementation to
libopaque,4 an open-source, pre-quantum implementation of OPAQUE. The
average execution time for the client and the server is shown in Table 3, while
the communication cost is shown in Table 4. Our implementation is the first PQ-
secure instantiation of the OPAQUE protocol. While it leads to a increase in ex-
ecution time and communication cost, this concretizes the overhead of switching
to post-quantum cryptography for advanced protocols.

4 https://github.com/stef/libopaque

https://github.com/stef/libopaque


20 L. Heimberger et. al.

Client Server
username, password

username Retrieve User Record for given username

OPUS
Hash(password)

out

k

y← Hash(password||out) c, n

rw← HkdfExtract(y||PWHash(y))
(ekT, dkT)← KEM.KeyGen()

(IpkC||IpkS||IskC)← AuthDecrw(c, n)

σC ← SIG.SignskC(ekT) SIG.VerifyvkC(ekT, σC)
!
= 1

ekT, σC (K, C, τ)← KEM.EncapekC()

(KT, CT, τT)← KEM.EncapekT()

K← KEM.DecapdkC(C, τ) K1 ← Exts(K); K2 ← Exts(KT)

KT ← KEM.DecapdkT(CT, τT) sid← username||hostname||IpkC||IpkS||ekT||C||CT
K1 ← Exts(K); K2 ← Exts(KT) kS||k← FK1(sid)⊕ FK2(sid)

sid← username||hostname||IpkC||IpkS||ekT||C||CT σ ← SIG.SignskS(sid)

kC||k← FK1(sid)⊕ FK2(sid) b← σ ⊕ k

σ ← b⊕ k C, CT, τ, τT, b, s

SIG.VerifyvkS(sid, σ)
!
= 1

Output kC as shared secret key Output kS as shared secret key

Fig. 12. Description of PQ OPAQUE Password Authentication and Key Generation

Table 4. Comparison between the communication overhead of libopaque and our PQ
OPAQUE instantiations

Function libopaque PQ PQ / libopaque
OPUS NR-OT OPUS NR-OT

Reg. Client 224B 64kiB 817kiB × 294.4 × 3733
Reg. Server 64B 48kiB 144kiB × 770 × 2307.4
Auth. Client 160B 17kiB 769kiB × 106.1 × 4920.2
Auth. Server 320B 65kiB 161kiB × 208.2 × 515.7

7 Case Study: Private Set Intersection

In a private set intersection (PSI), two or more parties, commonly a server and
a client, hold data sets S and C. After performing the PSI protocol, one or both
parties learn S∩C without revealing anything about the other parties set. In the
client-server case, the sets are very often unbalanced, as the server set is much
larger than the client set |S| � |C|. A well-studied application of PSI is Private
Contact Discovery, where clients want to know which of their contacts also use
the same service [KRS+19].

To perform PSI using OPRFs, the holder of the larger set computes the PRF
for each set entry and, optionally, inserts the results in an efficient data structure,
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e.g. a cuckoo filter. Then, the OPRF is computed in the online phase. The client
uses their set entries as input and the server oblivious evaluates them with the
same key as in the keyed PRF and checks whether the result is in the filter.

Performing PSI without a verifiable OPRF may lead to a tagging attack
where a malicious server uses different keys for each client when performing the
OPRF, leading to the identification of the results later (see also Section 4.2).
This is why previous work by [KRS+19] relaxes the security assumption and
assumes a malicious client and a semi-honest server. They also postulate three
goals for unbalanced PSI: The server should perform the computationally most
expensive tasks, all expensive tasks are only performed once and updates are
fast. We now instantiate their PSI framework with both isogeny-based OPRFs
and compare it to our implementation. Of independent interest, we propose a
small optimization for the setup of the elliptic curve Naor-Reingold(ECNR) PSI
protocol in Appendix A. The results can be found in Table 5.

7.1 PSI with ECNR

The ECNR-PSI protocol is divided into three phases: First setup phase, where
a Cuckoo filter is filled with the PRF results of server set entries and sent to
the client. Then, a base phase, where some initial, data-independent Oblivious
Transfer is performed. Using cheap symmetric cryptography, the parties generate
many more OT pairs from this base OT using a technique called OT Extension.
Then, in the online phase, the OPRF is performed using the extended OT pairs.
This is currently the most efficient PSI protocol. [KRS+19]

7.2 PSI with NR-OT

The implementation with the NR-OT is relatively close to the ECNR files. The
setup phase is identical other than replacing the communication interface with
the one provided by the PQ-OT implementation. Since the PQ-OT implemen-
tation does not provide an implementation for OT extensions, we skip the base
phase and only implement an online phase. In the online phase, the OPRF is
performed with all client elements.

The communication overhead may be lower when using OT extensions, which
uses symmetric cryptography to generate more OT pairs from a few base OT
queries. [BDK+20] show that the IKNP protocol [IKNP03] is secure against
quantum adversaries conditional on updating the bit length of both the hash
function and the base OT length, but unfortunately do not integrate the exten-
sions in their implementation.

To perform PSI with OPUS, we use parallel execution to amortize the round
cost. Observe that the protocol is relatively stateless, as a curve is either await-
ing evaluation or in transit. More concretely, on a client side, the client either
awaits a server result or performs a blinding/unblinding evaluation. This can be
parallelized by attaching an ID to the curve to note the element that is eval-
uated. Since we assume that the server is semi-honest, the client can trust the
server that the ID is correct. In Figure 13, the ID is denoted as i. To keep track
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Table 5. PSI comparison using ECNR, NR-OT, and OPUS as the OPRF for set
intersection. The ECNR column combines base and online for better comparability.

parameters setup online
|S| |C| |S| |C| |S| |C|

N
R

-O
T

20 20
0.26s 0.51s 0.06s 0.10s
134 bytes 1 byte 128 kiB 0.75MiB

25 25
1.63s 1.88s 3.11s 3.15s
263 bytes 1 byte 4MiB 8.5 MiB

210 210
45.04s 45.28s 99.66s 99.71s
4.31 MiB 1 byte 128 MiB 256.6 MiB

O
P

U
S

20 20
0.26s 0.26s 15.47s 15.91s
133 bytes 0 bytes 17.07 kiB 9.04 kiB

25 25
8.71s 8.71s 328.46s 329.14s
262 bytes 0 bytes 546.25 kiB 290.26 kiB

210 210
303.38s 303.38s 16367.12s 16367.60s
4.31 kiB 0 bytes 34.14 MiB 18.08 MiB

E
C

N
R

20 20
0.01s 0s 0.23s 0.05s
133 bytes 0 bytes 12.04 kiB 16 bytes

25 25
0.02s 0s 0.21s 0.06s
262 bytes 0 bytes 137.05 kiB 512 bytes

210 210
0.3s 0s 0.64s 0.57s
4.36 kiB 0 bytes 4.04 MiB 16 kiB

of the current index, we attach a state variable j. Then, the only state kept on
the client about an element is the corresponding unblinding key.

7.3 PSI with OPUS

The server pregenerates all blinding keys and computes the unblinding element
at the time an element is first seen. This simplifies the implementation and also
ensures that no intermediate values are leaked when the client decides to finish
the computation prematurely by setting j = n. Using the stateless approach,
we forego the limitation imposed by the required rounds in the protocols, as we
simply evaluate other set elements while an element is in transit.

In our measurements, the client seems to perform badly in the setup phase.
This is a measurement artifact as most of the time is spent waiting for the cuckoo
filter from the server due to the choice of network connection.

Updatable OPRF For very large sets, the probability that several elements are
quite similar is relatively high. It would be thus be beneficial to take an existing
evaluation and update the value where the bits differ. This could yield a runtime
improvement: consider two inputs X1, X2 and the evaluation Y1 = OPUS(X1),
with X1 ⊕ X2 having a low Hamming weight. A potential improvement could
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Server Client

{k0,k1, · · · ,kn}
$←− keygen()

l inputs {S1, · · · , Sl} m inputs {C1, · · · , Cm}
CF = cuckoofilter()

foreach i ∈ {1, . . . , l}:

CF.insert(PRF(Xl)) CF Eclient = []

foreach i ∈ {1, . . . ,m}: foreach i ∈ {1, . . . ,m}:
rs,i ← [0] rc,i ← [0], Eclient,i ← E0

foreach j ∈ {1, . . . , n}: foreach j ∈ {1, . . . , n}:

rc,i,j
$←− keygen()

rs,i,j
$←− keygen() (Eblinded, i, j) Eblinded ← rc,i,j ∗ Eclient

Es,i,0 ← rs,i,j ∗ Eblinded

Es,i,1 ← ki ∗ Es,i,0

rs,i ← rs,i − rs,i,j (Es,i,0, Es,i,1, i, j) Eclient,i ← Es,i,ci,j

rc,i ← rc,i − rc,i,j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Finalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(rc,i,0 ∗ Eclient,i, i,m) rc,i,0
$←− keygen()

Es,i ← (k0 + rs) ∗ rc,i,0 ∗ Eclient,i
(Es,i, i, j) Eclient.append((rc,i − rc,i,0) ∗ Es,i)

return CF.contains(Eclient)

Fig. 13. Amortizing the round cost of OPUS by reducing the state and adding labels.

come from an updatable form of OPUS, where Y1 is updated at the indices.
For example, imagine X1 and X2 only differ at the first bit, which is set in X2

but not X1, and the third bit, which is not set in X2 but is set in X1. Then,
OPUS(X2) can be computed as OPUS(X1) = k1 ∗ k−1

3 ∗OPUS(X2). This results
directly from the commutativity of CSIDH.

The simple realization of this functionality has the client reveal the indices
where two inputs X1, X2 differ. The parties then engage in a reduced execution
of OPUS, where the server responds with (r ∗ ki

−1 ∗E,ki ∗ r ∗E) for the given
indices i. The client iteratively updates the PRF by selecting the correct output.
Note that the finalization step is still necessary for the unblinding to ensure that
no intermediate results are leaked, but without adding k0.

While this produces another PRF result, the simple protocol violates the
OPRF security guarantee of the server learning nothing about the client input,
since the server knows the index where two evaluations differ. An extended
version sends some dummy indices as well and requires the server to respond
with (r∗k−1 ∗E, r∗E,k∗r∗E), with r∗E being used if the index was a dummy
index. This approach would reduce the latency introduced by the rounds and the
group actions, but requires either very similar inputs or extensive preprocessing
by the client to ensure the results are updated ideally.
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Table 6. Comparison with all other post-quantum OPRF proposals. DM denotes the
dark matter PRF [BIP+18,CCKK21]. The instances aim at a security level of roughly
128 bits and use log2 p = 512 for the isogeny protocols. This table is continously
updated on https://heimberger.xyz/oprfs.html.

comm. model no no trusted full impl.
work assumption rounds cost (C-S) preproc. setup available verifiable

[ADDS21] R(LWE)+SIS 2 2MB - Check Check Check Times
[ADDS21] R(LWE)+SIS 2 > 128GB - Check Check Times Check

[SHB23] multivariate 3 γ · 13 kB - Times Check Times Check

[DGH+21] DM 2 308 B - Times Times Times Times

[ADDG23] DM+lattices 2 16.9MB - Check Check Check Check
[Bas23] Isogenies Fp2 2 3.0MB - Check Times Times Times
[Bas23] Isogenies Fp2 2 8.7MB - Check Times Times Check

NR-OT Isogenies Fp + lattices 2 20.54 kB - Check Times Times Times

NR-OT Isogenies Fp + lattices 4 34.88 kB - Check Times Times Times

NR-OT Isogenies Fp + lattices + HE OT 2 640 kB - Check Check Check Times

OPUS CSIDH 258 24.7 kB - Check Check Check Times

7.4 Result and Overhead

We compare against the EC-NR implementation of [KRS+19] as it is the most
performant implementation of OPRFs for set intersection.

While we were able to remedy the round cost of OPUS, the high number of
group action computations still make the protocol less efficient than the NR-OT
protocol. However, OPUS requires less than 14× the bandwidth of the NR-OT
protocol, making it more attractive for use-cases where bandwidth criteria are
of concern.

We point out that recent work [HSW23] optimizes the PSI protocol with
sublinear communication size of the server’s client database, which may make
the ECNR protocol more efficient.

8 Related Work

OPUS and the generic NR-OPRF from isogenies are only two of several recent
proposals. In Table 6 we provide a comparison of these proposals which we
discuss in more detail below. Note that the estimates for the communication
complexity may change drastically as the concrete security of CSIDH remains
an open research question (cf. Section 2.1). We give further estimates and provide
parameter-agnostic approximations in Appendix B, showing that OPUS is still
competitive even with larger parameters.

The CSIDH proposals of this paper only cover Naor-Reingold style OPRFs.
SIDH, which also uses isogenies but operates over Fp2 , uses isogenies of degree
two and three and is not commutative, enables the construction of a Diffie-
Hellman style OPRF [Bas23,BKW20]. The resulting OPRF is round-optimal and
gives rise to a verifiable construction, which the Naor-Reingold Constructions

https://heimberger.xyz/oprfs.html
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(including ours) do not offer, but requires a 9000 bit prime due to the SIDH
attack mitigations [FMP23]. A drawback of the SIDH-based construction is that
an epensive trusted setup is necessary [BCC+23].

On the lattice side, an initial proposal for round-optimal, verifiable OPRFs
[ADDS21] has a very large overhead imposed by heavy zero-knowledge proofs.
A proof-of-concept implementation is available in Sage and takes around one
second for an offline computation, being around nine times faster than OPUS.
However, the implementation is not necessarily complete, as it omits proofs and
samples from a uniform instead of a Gaussian distribution.

A recent lattice OPRF [ADDG23] improves the communication cost in a
malicious setting. The provided implementation in Rust does not include the
non-interactive zero-knowledge proofs needed for a malicious client security and
therefore is only semi-honest, while the communication estimates in Table 6 in-
clude proofs from a malicious client. Comparing the runtime of OPUS to [ADDG23]
is a bit more nuanced. While the former needs ≈ 15s for the key generation, the
NR-OT OPRF is vastly faster, as it only requires 0.14ms for the same operation.
The communication complexity of the lattice OPRF is also largely dominated
by the key generation, which accounts for 108.5 MB of the communication cost.
For the actual OPRF, only 36 kB of communication are necessary, which is
slightly more than OPUS. A big advantage of the construction is the lower
round complexity. The current impelmentation gives around 14.4s of execution
time, making the NR-OPRF with a CSIDH security parameter p = 512 vastly
faster. However, the authors describe an optimization that could lead to both
OPRFs matching in speed.

Dinur et al. [DGH+21] propose a very efficient, semi-honest OPRF using pre-
processing and dedicated symmetric primitives. They also require a trusted third
party to generate correlated randomness. The implementation is unfortunately
not publicly available. A different path is taken by Seres et al.[SHB23], who use
their result that key-recovery of the Legendre PRF is equivalent to solving sparse
multivariate equations over a prime field to construct an OPRF. It requires a
preprocessing step to distribute correlated randomness amongst the participants
of the protocol.

9 Conclusion

In this paper, we have shown that the computational complexity of Naor-Reingold
OPRFs can be significantly reduced by using properties of the CSIDH group ac-
tion. We introduced OPUS, an OPRF that gains its hardness directly from the
underlying CSIDH group action. The new construction explores the generic con-
struction of Naor-Reingold protocols, which traditionally use oblivious trans-
fer to send blinded private keys. In comparison to previous work, OPUS has
three strong advantages: First, it can be used stand-alone without requiring any
trusted setup. The only hardness assumption is CSIDH which improves over
previous propsals [BKW20]. Second, the simple structure also makes it straight-
forward to extend to a threshold and distributed OPRFs. Third, OPUS requires
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40% fewer isogeny computations than the best previous CSIDH-based OPRF
proposals as shown in Table 9. When using no preprocessing, no trusted setup,
and a semi-honest client and server, OPUS requires 83× less communication
than the next-best approach which uses LWR. The main drawback of our con-
struction is the large number of rounds, which can be amortized over several
executions.

We also revisited the previous proposal CSIDH-based OPRF from Boneh
et al. [BKW20] and showed that the implementation is more complex than de-
scribed in the original paper: A straightforward implementation leaks the entire
server key after a few evaluations. To secure the construction, it is necessary
to use CSI-FiSh, which introduces several new hardness assumptions, concretely
lattice assumptions for either rejection sampling or reducing the private key, and
also also adds additional overhead.

Of independent interest, we also discuss the Naor-Reingold PRF in CSIDH
further and give a concrete strategy that gives rise to optimizations in all of our
protocols and also enables somewhat fast offline computation of both our novel
OPRF and the Naor-Reingold OPRF. All the code to obtain our benchmarks
and the CSV files for the figures are available with the submission and will be
made public with the publication of this paper.

To show the real-world impact of our protocols, we benchmarked the OPRFs
for two use-cases: first, asymmetric password authentication using OPAQUE,
where we report an overhead of around 35× for authentication and 123× for
registration. Second, we implement private set intersection with the OPRFs. To
the best of our knowledge, these are the first implementations of a post-quantum
version of OPAQUE and PSI using isogenies.

Future Work While our results are immediately useful for a variety of protocols
requiring OPRFs, the slow group action is still hindering large-scale deployment.
Based on our findings, we envision future studies for the applicability of OPUS
and the NR-OT OPRF, especially in settings with low bandwidth.

The recent call for threshold cryptography by NIST [BDV20] opens a new
avenue for post-quantum threshold schemes which distribute the secret key
amongst several servers but only requires that t out of n honest servers are
required to produce an OPRF result. For CSIDH, a recent paper [DM20] demon-
strates threshold key sharing. Their results should be directly applicable to
OPUS and the NR-OT to obtain a threshold OPRF.

On the implementation side, we point out that the current implementations
are neither optimized nor side-channel free, and that the code is not audited.
We expect a side-channel free implementation to be relatively easy for OPUS,
as it only requires side-channel free key addition and group actions, as well as
the conditional assignment of Eclient. On a theoretical side, elliptic curves with
trusted setup over Fp would greatly add to the current research, as it eases
concretizing the overhead of the OT for the NR-OT proposal over OPUS using
only isogenies.
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A Improving the PSI setup phase for the ECNR PRF

The setup phase of the ECNR-PRF in the PSI protocol in Section 7 is quite
slow, as e.g. a PRF with 128 bits of input requires, on average, 65 point multi-
plications on the elliptic curve. We propose using lookup tables to speed up the
computations.

The lookup table (LUT) contains a set of x bits where all possible combina-
tions of multiplication results per set bit are stored. More concretely, the input
space is split into blocks of size x during a pre-computation phase. Within those
blocks, all possible combinations of input values are precomputed. That means
in the case of x = 4 and a block with {x1, . . . , x4}, the LUT will consider all
possible inputs {0001, . . . , 1111}, and set the table entries to the correspond-
ing intermediate NR values {k4, . . . , k1 ∗ k2 ∗ k3 ∗ k4}. To compute the PRF,
the correct entry for an input block is retrieved from the LUT and multiplied
with the other input blocks. Using this optimization, we can get a performance
improvement for the PRF computation of up to almost 16%.

Note that the lookup table for a specific block grows exponentially in size.
We split the blocks evenly and get the best result at a block size of 16 bits.
After this point, the memory complexity becomes too large. Potential fine-tuning
with unbalanced blocks may yield even faster results (e.g. splitting 128-bit input
in blocks of 20 and a final block of 8 results in seven blocks that need to be
multiplied instead of eight), but we leave this optimization for future work as
we believe the gain to be negligible. The corresponding code can be found in
code/mobile_psi_cpp.

B Performance

To compare the different protocols for computing the Naor-Reingold OPRF from
isogenies, we give a cost overview in Table 8. To approximate communication

https://eprint.iacr.org/2006/145
https://github.com/Microsoft/SEAL
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LUT nr. pre-comp. Time for improv. improv.
size mult. in ms PRF comp. with LUT w/o LUT

20 -1 27 / 599.45s / /
22 -1 26 0.05ms 572.10s 4.78% 4.78%
24 -1 25 0.16ms 538.26s 11.36% 11.37%
28 -1 24 6.24ms 514.61s 16.48 % 16.49%
216-1 23 1.73s 482.11s 17.74 % 18.15%

Table 7. Performance differences when computing 221 ECNR PRFs with lookup tables
of differing size. The performance improvement is given with and without taking LUT
generation into account. Nr.mult. gives the number of required multiplications to obtain
a PRF. The LUT size is computed with −1 as the all-zero entry is disregarded.

cost, we consider the number of bits sent as functions of the security parameters.
To approximate computation costs, we consider the most expensive operation,
the CSIDH group operation. only the total number of class group actions per-
formed, again as functions of the security parameters, and assume all other op-
erations are negligible in relation to these. For conciseness, let us denote log2 p
as σ and let γ be the security parameter (which, in practice, is equal to n). We
point out that the communication cost estimates differ from the original esti-
mate for the Naor-Reingold OPRF using [BKW20]. This is in part due to an
update of the OT protocols used for NR-OT in [LGD21] and partly due to a
small miscalculation in [BKW20], where they give communication complexity as

γ ·
(
3σ + 4

σ

2
+ γ

)
= 5σ · γ + γ2, (1)

where the 4σ
2 term is for the encryptions of class-group elements, which are

private keys of size log2 p
2 , see Section 2.1. The encryptions in question are not of

just class-group elements but these are also appended by a γ-bit random string,
and the final round of the protocol also incurs the sending of an additional elliptic
curve. Therefore the communication complexity of the NR-OT protocol is rather

γ ·
(
3σ + 4

(σ
2
+ γ

)
+ γ

)
+ σ = 5σ · γ + 5γ2 + σ. (2)

The comparison ( Table 8) between the NR-OT protocol from Section 2.3 and
OPUS from Section 4 shows that our novel proposal is more efficient in terms
of computation (and thus also time) and falls probably somewhere in between
the semi-honest and one-sided maliciously secure versions of NR-OT in terms of
communication (dependent on parameter choices).

In Table 9, we show how the communication complexity compares for differ-
ent parameter sets to better illustrate the concrete complexity. From the figure
it is clear that for reasonable parameter regimes such as these, OPUS is cur-
rently the most efficient OPRF that is secure against semi-honest adversaries in
a post-quantum setting.
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Table 8. Cost of the oblivious evaluation of the Naor-Reingold OPRF. σ denotes
the CSIDH/CSI-FiSh security parameter and γ the security parameter. denotes a
semi-honest party, and a malicious party.

protocol rounds comm. cost isog. comp. model (C-S)

NR-OT 2 2σ · γ + 2γ2 + σ 5γ + 2 -
NR-OT 4 5σ · γ + 5γ2 + σ 11γ + 2 -
OPUS 2γ + 2 3σ · γ + 2σ 3γ + 3 -

Table 9. Communication and computation complexity estimates of the protocols with
different concrete parameters.

comm. isog.
parameters protocol rounds cost comp. model (C-S)

γ
=

1
2
8

σ
=

5
1
2 NR-OT 2 21 kB 624 -

NR-OT 4 51 kB 1410 -
OPUS 258 25 kB 386 -

γ
=

2
5
6

σ
=

2
0
4
8 NR-OT 2 148 kB 1282 -

NR-OT 4 369 kB 2818 -
OPUS 514 197 kB 770 -

γ
=

2
5
6

σ
=

5
2
8
0 NR-OT 2 355 kB 1282 -

NR-OT 4 886 kB 2818 -
OPUS 514 508 kB 770 -

C Freely and Transitively Acting Class Group

We revisit the necessary properties of the class group action for our security
proofs. Given a group element g ∈ G and two elements x, y ∈ Cl(O), the group
action acts freely if,

∀x ∈ Cl(O)∃g ∈ G : gx = x =⇒ g = I,

with I being the identity element of the group. This is important to capture all
isomorphic curves. Further, the class group action acts transitively, if

∀(x, y) ∈ Cl(O)2 : gx = y

A group action that acts both freely and transitively has that

∀(x, y) ∈ Cl(O)2∃!g ∈ G : gx = y.

CSIDH samples ideal classes within the bound [−m,m]. Increasing m leads to
distributions closer to uniform. CSIDH only offers statistic indistinguishability
from uniform, as discussed in [LGD21]. For uniform sampling, CSI-FiSh [BKV19]
can be used.
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D Auxilary Figures

Server Client
keys K = k0, . . . ,kn input X = [x1, . . . , xn]

R← [0] K← [0]

for i ∈ [1, n] : for i ∈ [1, N ] :

ri
$←− keygen()

R← R+ ri (
2
1

)
-OT

xiri

ki + ri xi ∗ ki + ri

K← K+ xi ∗ ki + ri

Efin ← (k0 −R) ∗ E0
Efin E ← K ∗ Efin

return E

Fig. 14. Evaluating the NR-OPRF with CSIDH and N OT calls.

E Artifact Description

We provide all benchmark-generating files as well as example instantiations of
OPUS in the artifact under https://github.com/meyira/OIDA/. A Makefile
is provided in the artifact for easy compilation and linking. The code is in the
subdirectory code/ and the corresponding CSV files, if needed, are in csv-
files/.

E.1 Generation of Figure 4

The data used in Figure 3 is in csv-files/prf_opus.csv, and the code is in
code/test/prf.c.

E.2 Generation of Figure 5

The data for Figure 4 is in csv-files/updateable.csv, and the code to gen-
erate it is in code/test/updatable.c. A verification routine is commented out
as it is a bit annoying during benchmarking.

E.3 Generation of Table 1

test_oprf_nrot_server.c and test_oprf_nrot_client.c perform local com-
putations of the NROT. The code was used to generate Table 1.

https://github.com/meyira/OIDA/
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E.4 Generation of Table 2

opus.c performs local computations of OPUS. The code was used to gener-
ate Table 2. The results can be found in csv-files/opus.csv.

E.5 Generation of Figure 10

The online evaluation of OPUS with different servers in London in Figure 9 was
generated with averages over a few runs. The data can be seen in online.csv
in the artifact. The client used single-threaded sockets for evaluation, as visible
in
code/opus/files/simple-client.c. The server is multithreaded, the source is
in code/opus/files/simple-server.c. Due to the high network latency and
multithreading, no effect on concurrent execution was visible, but for clear bench-
marks, we refrained from concurrent execution to have a comparable result.

The server has a KAT functionality built-in but commented out, where for a
fixed message both the client and the server should obtain the same result. This
sanity check may be of use to implementors.

We also benchmarked Sao Paulo, where the online evaluation and ping were
(34.54s, 190ms), respectively, Hongkong with (43.43s, 257ms) and Frankfurt with
(11.91s, 12.6ms). They were omitted as they made the graph unreadable, being
too close to Santiago de Chile, Sydney, and the Netherlands, respectively.

E.6 OPUS-PSI

The files for OPUS are in a seperate folder in code/opus-psi. This is practically
a stripped-down version of the Contact Discovery Impelmentation [KRS+19]

E.7 Approximation for Key Leakage

code/leak_OPRF_key_csidh.py gives a rough approximation on how long it
would take for a simple attack on the NR-OT OPRF as described in Section 3.

E.8 Generic Naor-Reingold OPRF (NR-OT)

We cloned the PQ-MPC implementation from [BDK+20].
In code/nr-ot/test/oprf_server.cpp and

code/nr-ot/test/oprf_client.cpp, we provide the code for the NR-OPRF
using the PQ-OT from [BDK+20] and CSI-FiSh from [BKV19]. The PSI files
code/nr-ot/test/psi_server.cpp and
code/nr-ot/test/psi_client.cpp can be found in the same folder, as well as
the file code/nr-ot/test/prf_opt.cpp used to generate Figure 6. The CSV file
of the measurements is in
csv-files/prf_csifish.csv
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E.9 OPAQUE

The OPAQUE code is in code/opaque and includes both libopaque and our
implementations. There were several changes to the used libraries:

– OPAQUE/X3DH
• Ext_s and FK do not use HMAC256 but instead KMAC256 to allow for

variable length output
• The used KMAC256 function does also not use a domain separator as

described in the X3DH paper but instead uses a different customization
string.

• For the password used for encrypting the payload stored on the server,
we truncate the output of the SHA512 output and only take the first
256 bits

• Identifier for sid used as input to FK functions uses the username and
the hostname instead of the hash of long-term public keys as described
OPAQUE Draft.

– TLS-OPAQUE
• Server requires a certificate to sign key share, changed to accept almost

all ciphers (only PSK should work without certificate).
– SEAL
• src/seal/util/locks.h to add #include <mutex>
• CMakeLists.txt to compile library as SHARED and not STATIC

– emp-tool
• NetIO: add a constructor for an already opened socket.
• NetIO: remove closing of the socket from the destructor.
• CMakeLists.txt to compile library as SHARED

– PQ-MPC
• CMakeLists.txt adapt C++ standard from C++14 to C++17
• CMakeLists.txt to compile library as SHARED
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