
SEC: Symmetric Encrypted Computation via Fast

Look-ups

Debadrita Talapatra
IIT Kharagpur, India

Nimish Mishra
IIT Kharagpur, India

Arnab Bag
IMEC Belgium

Sikhar Patranabis
IBM Research India

Debdeep Mukhopadhyay
IIT Kharagpur, India

February 14, 2025

Abstract

Encrypted computation allows a client to securely outsource the storage and pro-
cessing of sensitive private data to an untrusted third party cloud server. Fully Ho-
momorphic Encryption (FHE) and Garbled Circuit (GC) are state-of-the-art general-
purpose primitives that support encrypted computation. FHE enables arbitrary en-
crypted computation ensuring data-privacy but suffers from huge computation over-
head and poor scalability. GC additionally provides function privacy, but is often not
suitable for practical deployment because its translation tables need to be refreshed
for every evaluation. We extend Searchable Symmetric Encryption (SSE), beyond en-
crypted searches, to perform arbitrary Boolean circuit evaluations over symmetrically
encrypted data via look-ups, while ensuring data privacy.

In this work, we propose Symmetric Encrypted Computation (SEC), the first prac-
tically efficient and provably secure lookup-based construction that supports evaluation
of arbitrary Boolean circuits over symmetrically encrypted data, while ensuring data-
privacy guarantees. With a single setup of encrypted look-up tables, SEC supports
O(n!) re-evaluations of a circuit of size n. This is an improvement on GC that supports
a single evaluation with a single setup. While SEC supports bounded re-evaluations
with a single setup (unlike FHE), it is asymptotically large enough to scale to practical
deployments of realistic circuits. Moreover, SEC completely bypasses bootstrapping
thereby significantly improving on performance efficiency. SEC achieves this by relying
on purely symmetric-key crypto primitives by extending and generalizing the functional
capabilities of SSE, while inheriting its desirable performance benefits. The leakages
incurred by underlying SSE scheme are rendered inconsequential with respect to SEC’s
security guarantees due to its meticulous design choices.

We provide a concrete construction of SEC and analyze its security with respect
to a rigorous leakage profile. We also experimentally validate its practical efficiency.
SEC outperforms state-of-the-art FHE schemes (such as Torus FHE) substantially,
with around 1000× speed-up in basic Boolean gate evaluations. We further showcase
the scalability of SEC for functions with multi-bit inputs via experiments performing
encrypted evaluation of the entire AES-128 circuit, as well as three max-pooling layers
of AlexNet architecture. For both sets of experiments, SEC outperforms state-of-the-
art and accelerated FHE implementations by 1000× in terms of processing time, while
incurring 250× lower storage.

1

Contents

1 Introduction 3

1.1 Our Contributions . 4

1.2 Technical Overview . 6

1.3 Related Work . 13

1.4 How SEC differs from GC and HE . 14

2 Preliminaries and Background 16

2.1 Conjunctive SSE: Syntax and Security Model 16

2.2 Adaptive Security of CSSE . 17

2.3 Oblivious Cross-Tag Protocol (OXT): Overview 18

3 Symmetric Encrypted Computation 19

3.1 Syntax of SEC . 20

3.2 SEC Construction . 21

3.3 Proof of Correctness of SEC . 24

3.4 Correctness . 25

3.5 Practical Instantiation of SEC . 26

3.6 Complexity Analysis of SEC . 26

4 Security and Leakage Profile Analysis of SEC 27

5 Security Analysis and Discussion on Leakage Profile of SECOXT 28

5.1 Leakage Profile of SECOXT . 28

5.2 Analysis of Potential Leakages in SECOXT . 28

5.3 LSEC and Reusability of SEC specific data structures 32

5.4 Statistical Analysis of Leakage Due to Reusability 35

6 Experimental Results 37

7 Discussion 39

2

1 Introduction

Outsourced Storage. The upswing in data production in today’s digitally-driven world
has motivated the concept of outsourcing data to third-party cloud servers for storage. How-
ever, such outsourced storage solutions are often plagued by security breaches that lead to
disclosure of client data [24, 52, 54]. Without specific privacy mechanisms, third-party cloud
servers could gain access to sensitive user data, thus leading to serious privacy concerns.
This establishes the requirement of adopting secure and scalable privacy mechanisms for
protecting sensitive outsourced data from unauthorized access. A straightforward solution
to this problem is to encrypt this data before offloading to the third-party server, thereby
ensuring data privacy and preventing disclosures. However, this leads to the challenge of
securely computing queries (or more generally, executing functions/programs) directly on
the encrypted data without decrypting it first.

“Secure Computation” on Encrypted Outsourced Data. The question of privacy-
preserving computation on encrypted, outsourced data has been studied extensively in the
cryptographic literature. There exist elegant solutions such as Fully Homomorphic En-
cryption (FHE), Functional Encryption (FE), and Multi-party computation (MPC), all of
which vary in terms of adversarial structure, communication models, and security guaran-
tees. Classic FHE [13, 28, 34] works in the single client, single (adversarial) server set-
ting and supports evaluating any (poly-sized) circuit directly over encrypted data, but
the adversary does not learn anything about the data without the knowledge of the se-
cret decryption key. Leveled Homomorphic Encryption (LHE) [12, 14, 37, 39, 41], on the
other hand, allows evaluating circuits of bounded depth without requiring bootstrapping
and provides a balance between efficiency and expressiveness. However, LHE can only
evaluate functions up to a fixed depth (e.g., 10 − 100 multiplicative levels), causing a
decryption failure due to excessive noise if computations exceed this depth. Traditional
FE [10, 44] offers the capability of more fine-grained query evaluation on encrypted data,
while only leaking the output of the computation to an adversarial server. While signif-
icant optimizations have been made to FHE schemes and its implementations in recent
years [1, 2, 3, 9, 11, 20, 21, 22, 26, 29, 30, 31, 32, 33, 40], FHE and FE solutions remain
computationally expensive and do not scale efficiently to large datasets in practice. MPC
operates in a different setting where the client “shares” its data across multiple servers,
with the guarantee that these servers learn nothing about the client’s data apart from the
output of the computation so long as the adversary does not corrupt more than a threshold
number of parties. Certain MPC protocols are based on garbled circuits (GCs) [5, 36, 42],
which allow hiding a circuit/program as long it is evaluated on only a single input. There
exist practically efficient implementations of MPC and GCs [6, 38, 47, 49, 50], particularly
in the setting where the adversary corrupts a minority of the parties (the “honest majority”
setting).

Encrypted Computation via Table Lookups. In this paper, we focus on applications
that adhere to the single server, single client setting of outsourced computation (unlike
MPC). In addition, we consider applications where the program/circuit being evaluated
on the encrypted data does not need to be private (unlike GCs). This is in line with the
traditional FHE setting, where the focus is to maintain the privacy of the plaintext inputs to
the function as well as the privacy of output of the function, against a (semi-honest) corrupt

3

Properties GC LHE SEC (This Work) FHE

Reusability One-time SFE Bounded (10 ∼ 50 levels [39, 41]) Bounded (O(n!)) Unbounded
Bootstrapping ✗ ✗ ✗ ✓

Computation Model Lookup Table Circuit Evaluation Lookup Table Circuit Evaluation
Interaction Round Setup for every evaluation One-time Setup One-time Setup One-time Setup
Privacy Guarantee SFE + Data Privacy Data Privacy Data Privacy Data Privacy
Security Assumption Symmetric-key Encryption Lattice-based Symmetric-key Encryption Lattice-based

Table 1: Comparison between state-of-the-art privacy-preserving encrypted frameworks with
SEC. In the table GC: Garbled Circuit; LHE: Leveled Homomorphic Encryption; SEC:
Symmetric Encrypted Computation; FHE - Fully Homomorphic Encryption; SFE: Secure
Function Evaluation; n: size of the circuit, controlled by client. : gives a tradeoff between
practical efficiency and optimal functionality; : Performance Bottleneck; : Optimal
Functionality. By design, SEC supports O(n!) re-evaluations for a circuit of size n with a
single setup (note that n is client-controlled, since the client offloads the function description
to the server). This allows SEC to completely bypass bootstrapping, thereby offering high
efficiency and scalability making it suitable for large-scale practical deployments.

server1. In this setting, we explore the possibility of providing an accelerated FHE-style
encrypted evaluation of Boolean circuits with a table look-up based approach of evaluating
Boolean gates over encrypted binary inputs. Concretely, we ask the following question:

Can we support arbitrary Boolean circuit evaluation over encrypted data via efficient table
look-ups?

We answer this question in the affirmative in the case of symmetrically encrypted out-
sourced data. We leverage existing approaches for evaluating restricted classes of Boolean
circuits over symmetrically encrypted structured databases (called Searchable Symmetric
Encryption or SSE in short [16, 19, 25]) and show, for the first time, how to use such
look-up based approaches to evaluate arbitrary Boolean circuits over encrypted Boolean in-
puts (with no additional structure whatsoever). We ensure re-usability of the same look-up
table for multiple gate evaluations (via formal security proofs) in a secure manner without
any non-negligible information leakage. By allowing for practically viable fine-grained trade-
offs between leakage and efficiency, we design a novel framework for symmetric encrypted
computation that significantly outperforms its (symmetric-key) FHE-based counterparts in
terms of computational efficiency and storage requirements (we validate this via practical
experiments).

1.1 Our Contributions

We introduce Symmetric Encrypted Computation (SEC) – a novel framework for practi-
cally efficient evaluation of arbitrary Boolean functions over symmetrically encrypted data.
The technical centerpiece of SEC is a mapping of Boolean gate computations over en-
crypted Boolean inputs to look-ups over encrypted tables. We show how to realize such
encrypted lookup computations by leveraging existing practically efficient SSE schemes that

1Verifiable FHE [27] considers malicious servers, but all known constructions are inefficient in practice.
Security against malicious servers is outside the scope of this work.

4

support searching for conjunctive predicates over encrypted structured databases (several
such schemes exist in the SSE literature, e.g., [16, 45]). Since SEC replaces certain algebraic
operations that are inherent to any FHE scheme by table look-ups, it avoids many com-
putationally expensive operations that limit the scalability of existing FHE solutions (most
notably, bootstrapping). SEC supports arbitrary Boolean circuit evaluation of size n (client-
controlled) bounded by O(n!) evaluations with a single setup of the encrypted lookup tables.
We present a rigorous security analysis of SEC in the widely adopted simulation security
paradigm. We also present a prototype implementation of SEC and present experimental
evaluations showcasing its practical efficiency as compared to the most efficient FHE imple-
mentations today. To the best of our knowledge, SEC is the first provably secure framework
capable of arbitrary function evaluation over encrypted data using fast and efficient look-ups.

Structural Overview. SEC relies on “encoding” any arbitrary Boolean circuit as a series
of lookup tables, where each table corresponds to a primitive Boolean gate. It then replaces
explicit circuit computation via encrypted look-up operations by deploying a fast, encrypted
search mechanism. Informally speaking, the design mechanism of SEC relies on the obser-
vation that any Boolean function can be represented by an equivalent logic circuit composed
of Boolean variables and basic Boolean logic gates - {XOR, AND, OR}2. It involves creating
the encrypted lookup tables for these basic gates to facilitate the evaluation of arbitrary
Boolean functions. We then leverage, in a black-box way, existing SSE techniques for fast
conjunctive look-ups over such encrypted lookup tables for the primitive operations (which
we model as “encrypted search indices” as in standard SSE scheme. Refer to Section 2.1
for background on SSE). As it turns out, this enables extremely fast circuit evaluation sur-
passing the performance of the most efficient FHE schemes by several orders of magnitude.
We present two concrete instantiations of the above SEC framework based on two prac-
tically efficient conjunctive SSE constructions: Oblivious Cross Tags (OXT) [17] (Refer to
Section 2.3 for overview of OXT) and ConjFilter [45] (the former was the first practi-
cally efficient conjunctive SSE scheme to be proposed while plugging in non-trivial leakages,
while latter supports particularly fast searches since it is based on purely symmetric-key
cryptoprimitives). We call the resulting schemes SECOXT and SECConjFilter, respectively.

Supporting Arbitrary Boolean Functions. A pivotal feature of SEC is its ability to
evaluate function compositions, which is the key to evaluating arbitrary circuits. An arbi-
trary Boolean function can be decomposed into an expression of function composition with a
lesser number of variables (following Shannon’s theory, for Boolean circuits). Consequently,
a complex function can be easily evaluated systematically using SEC with optimal compu-
tation overhead proportional to the circuit size (See Table 8). For a circuit of size n, SEC
can compute O(n!) evaluations of the circuit with a single setup of the encrypted lookup
tables, without leaking any correlation between multiple evaluations. Additionally, SEC
incurs nominal storage overhead for encrypted lookup tables compared to the substantial
storage required to store the bootstrapping key in FHE schemes (See Table 7). Further-
more, SEC supports arbitrary function evaluations in a single round of communication with
the expense of a small amount of additional storage while minimizing leakages compared
to a multi-round solution. Collectively all these features render SEC practically ideal for
encrypted outsourced computation frameworks.

Security Analysis. SEC relies on an efficient, adaptively secure conjunctive SSE scheme

2{XOR, AND} and {OR, AND} are functionally complete. We provide support for 3 gates for convenience in
computation.

5

for efficient encrypted lookup-based function evaluation. However, the inherent design of
SEC averts the direct extrapolation of several non-trivial leakages of the underlying SSE
scheme. This in turn enables SEC to prevent correlation between multiple circuit evalu-
ations.We emphasize, that the same look-up table can be used for O(n!) evaluations of an
n-size Boolean circuit , while ensuring the adversary can infer no correlation between two
gates in the same circuit, or two isomorphic gates3 in different circuits with same/different
encrypted inputs. The privacy of input/output data bits is ensured by the semantic secu-
rity guarantee of the IND-CPA secure symmetric-key encryption using which the bits are
encrypted. We present a detailed security and leakage profile analysis of SECOXT following
the security properties of the underlying conjunctive SSE scheme OXT. We elucidate the
improvements in leakage due to our improvised construction of the lookup tables in Section 4
and Section 5.2.

Performance And Scalability. We demonstrate the efficacy and scalability of SECOXT

and SECConjFilter by evaluating basic Boolean gates and cascaded gates as function compo-
sition. Section 6 gives a detailed analysis of our experimental evaluations. SEC decomposes
any arbitrary (> 2 number of input-bits) circuit into universal binary gates {XOR, AND, OR}
(similar to state-of-the-art FHE schemes) and reuses this storage across multiple compu-
tations of the same gate, thus preventing exponential storage-blowup. We showcase scal-
ability of SECOXT and SECConjFilter for functions with multi-bit inputs by using it for
encrypted evaluation of the entire AES-128 circuit and three max-pooling layers of AlexNet
architecture4. In Table 2 below, we show a practical use case of the AES SBox5, wherein
SEC outperforms various TFHE [22] backends by orders of magnitude.

Table 2: Time taken (in seconds) and storage overhead (in MB) for evaluation of one byte
AES SBox by SECOXT and SECConjFilter against different TFHE backends.

Scheme Time taken (in seconds) Storage (in MB)

TFHE-Nayuki AVX 14.85 24

TFHE-Nayuki Portable 22.862 24

TFHE-Spqlios AVX 4.21 24

TFHE-Spqlios FMA 2.57 24
SECConjFilter (This work) 0.1013 0.449

SECOXT (This work) 0.96 0.098

1.2 Technical Overview

Efficient “search” over Encrypted Lookup Tables. The first step towards construct-
ing SEC is to create efficient mechanisms for encrypted table lookups, for which we rely
on Searchable Symmetric Encryption (SSE) [16, 25, 45, 46, 48] specifically supporting con-
junctive queries [16, 45]. SSE offers a restricted yet efficient set of capabilities than ar-
bitrary computation frameworks; SSE schemes allow fast and efficient searches over sym-
metrically encrypted data. Although traditionally, SSE schemes have been used exclusively
for searches, we show that SSE data structures are amenable to design modifications such

3Gates at the same level, across multiple evaluations of a given circuit topology.
4KSH17 Imagenet classification with deep convolutional neural networks
5For fair evaluation, we use unparallelized version of the SBox [43], which involves 5 XORs per bit in the

output, thereby totaling 40 XORs for the entire byte.

6

that efficient searches can be used to compute arbitrary Boolean functions on encrypted
data. Any function computation can be modeled into an equivalent logic circuit composed
of Boolean variables and universal basic logic gate set {XOR, AND, OR}. Hence, 1○ creating
encrypted lookup tables for these basic gates and 2○ using efficient search capabilities of
SSE constructions supporting conjuncitve queries over these encrypted tables, is equivalent
to computing the logic gates over encrypted inputs.

Lookup Table Design. We explicate the foundational building blocks of the SEC frame-
work with the help of a concrete example - by explaining the end-to-end evaluation of a XOR

gate (AND and OR follow suit). Given encryptions of two plaintext bits x and y by the client
to the server, SEC uses efficient search capabilities of a generic conjunctive SSE scheme,
CSSE6, (See Section 2 for details) which returns a single encrypted output bit. Upon de-
cryption on the client side, a plaintext bit 0/1 is obtained, that is equal to the actual value
of XOR(x, y). A representative encrypted lookup table corresponding to XOR used by SEC is
illustrated in Table 3.

Table 3: Contents of documents related to the functional evaluation of 2-bit XOR, as well as
mapping of document identifiers to their corresponding keywords. Here, Enck refers to any
generic symmetric encryption scheme with secret key k.

Input bit x Keyword Map of x Input bit y Keyword Map of y XOR(x, y) doc id Doc. content

0 w̄1 0 w̄2 0 D0 Enck(0)
0 w̄1 1 w2 1 D1 Enck(1)
1 w1 0 w̄2 1 D2 Enck(1)
1 w1 1 w2 0 D3 Enck(0)

Using generic SSE notation, every plaintext bit (x or y) is mapped to some keyword (w). For
example, when the plaintext input bit x = 1, it is mapped to keyword w1; conversely, when
x = 0, we map it to keyword w̄1. Likewise, input bit y is mapped to w2 or w̄2 depending on
whether it is 1 or 0 respectively. The actual plaintext output of XOR is encrypted and stored
as the document set indexed by identifiers doc id (Di) : i ∈ {0, 1, 2, 3}. For underlying
SSE-based encrypted lookup in SEC, we populate the inverted search index representation
(as shown in Table 4). The idea is to map a given keyword to the doc ids which are related
to the keyword (as shown in Table 3). The search index (improvised lookup table for XOR)
is encrypted and offloaded to the server as done in a typical SSE scheme.

For computing a function, say, XOR(x, y), keywords corresponding to encrypted inputs x and
y are chosen and sent as a conjunctive query to the server. We note that there is exactly
one common document between any combination of “Keyword Map of x” and “Keyword
Map of y” (in Table 3) which is returned as a response to the underlying conjunctive SSE
query. This design, in conjunction with the “Doc. content” from Table 3, ensures that
only the correct evaluation of XOR is returned as a result of querying on SEC. It is crucial
to note that at no point in this entire process have we performed an explicit computation of
XOR gate (as done in FHE). The entire evaluation is completed by searching over encrypted
lookup tables (search index) which is extremely fast and efficient.

“Dummy” Keywords/Documents. We add n “special” terms w1
d, . . . ,w

n
d (See Table 4)

6Our analysis, proofs, and implementations are based on a CSSE scheme and we will use SSE, conjunctive
SSE and CSSE interchangeably for our explanations henceforth.

7

for a circuit with n gates. “Special” terms are random alphanumeric strings (used as dummy
keywords), that are mapped to all documents (D0, . . . , D3) that are present in the search
index. It is also observed (in Table 4) that some dummy documents (D′

0, D
′
1 . . .) are added

to the search index to ensure that the frequency of “actual” keywords (w1,w2, w̄1, w̄2)
matches that of the “special” terms (w1

d, . . . ,w
n
d), thereby ensuring a uniform frequency of

all keywords in the final encrypted database. These dummy documents comprise encryp-
tions of unique random alphanumeric values. Note that this design choice of adding dummy
keywords/documents does not have any impact on the correctness of the functional evalua-
tion. The significance of this design choice is later reflected in reusing the same look-up table
for computing the same/different circuits more than once without revealing any correlation
for the adversary to infer between the computations.

Table 4: An inverted search index representation of the database (search index) for XOR

function.

Keywords doc id
w̄1 D0, D1, D

′
0, D

′
1

w1 D2, D3, D
′
2, D

′
3

w̄2 D0, D2, D
′
4, D

′
5

w2 D1, D3, D
′
6, D

′
7

w1
d D0, D1, D2, D3

w2
d D0, D1, D2, D3

...
...

wn
d D0, D1, D2, D3

SEC Workflow: Without loss of generality, assume evaluation of XOR(1,1) using SEC.
This translates to a conjunctive query q = w1

d ∧ w1 ∧ w2 (as inferred from Table 3), where
w1

d is randomly chosen from the set of n “special” terms for one gate evaluation (i.e. for one
conjunctive query). We explicate the sequence of operations that are consequently executed
(assuming a black-box conjunctive SSE search), and also draw parallels with conjunctive
SSE terminology used in literature below:

1. Processing “special” Term: Use the first keyword in q (i.e. w1
d), generate an

address, index into the encrypted lookup table, and retrieve an encrypted list of doc id

mapped to w1
d. For consistency, we denote svalw,Dj

as the retrieved output from this
phase for some arbitrary keyword w and document Dj . In our example, this phase
shall return the encrypted list [svalw1

d,D0
, svalw1

d,D1
, svalw1

d,D2
, svalw1

d,D3
] (the

encrypted entries corresponding to w1
d, see Table 4). The choice of the “special”

term is dependent on the underlying SSE scheme; generally in OXT or ConjFilter
the “special” term is selected according to the least frequent keyword/conjunct in
a given conjunctive query for efficiency purposes. In our instantiation of SECOXT

and SECConjFilter, it is set to the first keyword/conjunct (since the frequency of all
keywords is the same).

2. Processing “actual” keywords. In this phase, some auxiliary information depen-
dent on the tuples (w1

d,w1) and (w1
d,w2) is used in conjunction with retrieved sval set

to create a search token. For consistency, we denote Tokenw1
d,wi,Dj

to denote a search
token generated upon combination of svalw1

d,Dj
and auxiliary information dependent

8

on tuple (w1
d,wi) (wi refers to the actual keywords (representing the encrypted input

bits) in q, in this example wi ∈ {w1,w2}). Upon being indexed into SSE specific data
structures, Tokenw1

d,wi,Dj
returns a binary decision on whether keyword wi is present

in document Dj . In our example thus, for every svalw1
d,Dj

in [svalw1
d,D0

, svalw1
d,D1

,

svalw1
d,D2

, svalw1
d,D3

], one token is generated for every keyword of the query other

than w1
d i.e., w1 and w2. We denote them by Tokenw1

d,w1,Dj
and Tokenw1

d,w2,Dj
re-

spectively. These tokens are then indexed into SSE specific data structures to return a
binary decision on whether both keywords (i.e. w1

d and w1/w2) are present in doc id

Dj
7.

3. Query Result. Any document identifier which is included in the output of step 1○,
and for which all search tokens generated in step 2○ give a positive binary result,
is included in the result of the query. Note that, for our example, only document
D3 contains all the keywords w1

d, w1, and w2. Hence, the output of the query q =
(w1

d ∧ w1 ∧ w2), for this example, is svalw1
d,D3

. This result is returned back to the

client, which upon decryption obtains D3. It follows trivially that since D3 = Enck(0)
(see Table 3), query q and associated search over the encrypted lookup table has
effectively computed XOR(1,1).

Functional Correctness. Concretely, we design the encrypted database (search index) in
a way such that for arbitrary encrypted one-bit inputs x and y (their corresponding keyword
mappings), exactly one encrypted document is returned, which upon decryption reveals a
single bit b = XOR(x, y), (thereby allowing SEC to correctly compute the function XOR).

Reusability of Lookup Tables for Multiple Evaluations. SEC enables reusability of
the same lookup table for multiple evaluations of the same/different circuits while ensuring
data privacy guarantees. The client chooses a “special” term for evaluating a particular
gate, hence for evaluating the same/different gate more than once, the client can randomly
choose a unique “special” term for each gate evaluation. Since only the “special” term in
a given conjunctive query is used to index into the encrypted look-up table in the mem-
ory and retrieve respective encrypted documents, choosing random “special” terms for each
query (equivalent to each gate evaluation at same/different depth of the circuit) obfuscates
the access pattern of the memory location accessed by the “special” terms. Thus even if
the client computes the same function, say XOR(x, y), twice on the same encrypted input,
the server (adversary) cannot infer any correlation between the two computations. This
ensures the reusability of the same encrypted look-up table for multiple circuit evalua-
tions without any significant information leakage to the semi-honest server. Such reusabil-
ity amortizes client’s communication overhead, since it sets the “special terms” linear in
the circuit-size once and reuses them for multiple evaluations while preventing exponential
growth in storage/communication. The client does not require prior knowledge of circuit
composition. Concretely, for a publicly-known circuit with n gates, the search-index has
n “special terms”. Reusability is then derived from client-controlled “permutation” of as-
signing unique “special term” to isomorphic gates across multiple runs, ensuring unique
access-pattern across multiple gate evaluations. Concretely, the upper bound on reusability

is the possible derangements, given by n!−Σn
i=0

(−1)i+1

i! (= O(n!) asymptotically). “special

7This flow of token generation is specific to underlying SSE algorithm.

9

terms” are permuted using a Psuedo-Random Permutation primitive, for which the client
maintains O(1) state. More details follow in Section 4.

Composable Function Evaluation. While SEC harbors the capability of efficiently
evaluating a binary Boolean gate, extending this to an n-size circuit is non-trivial. One
way to use SEC in order to evaluate compositions of form fk(fi(·, ·), fj(·, ·)) (where fi, fj ,
fk ∈ {XOR, AND, OR}) is to first evaluate fi(·, ·), fj(·, ·), send the result to the client who
constructs the query for the outer function, and then execute the outer function query.
However, this incurs extra communication rounds that scale linearly with the circuit size.

To circumvent this issue, we augment SEC to perform query construction for the outer
function on the (semi-honest) server itself. That is, instead of the need to decrypt the result
(i.e. svalwi

d,Di
for fi(·) and svalwj

d,Dj
for fj(·)) of the inner function to recover Di and Dj ,

we use mechanisms to directly map svalwi
d,Di

and svalwj
d,Dj

to construct relevant query

used by the outer function fk(·). To do so, we extend Table 3 to allow compositions of
XOR (as shown in Table 5). We note that compositions of AND/OR, as well as intermixing of
XOR/AND/OR follow suit.

Figure 1: Construction of query for fk(·) from the output of fi(·) and fj(·).
There are four possible outcomes for each of the inner XOR evaluation (denoted by plaintext
document identifiers D0, D1, D2, D3), and each outcome can either behave as the first input
(corresponding to bit x) or the second input (corresponding to bit y) for the outer function.
For example, should the inner function output D0 (corresponding to the evaluation of XOR(0,
0); see Table 3), then for the outer function, either x = 0 or y = 0 depending on specific
wiring topology of these gates (See Figure 1).

Therefore, according to Table 5, either keyword w̄1 or w̄2 shall be involved in the outer
function’s query. This mapping hence allows query construction of the outer function eval-
uation on the server side itself. For further compositions, (like the output fk being used in
some outer computation), the same table is reused ; this prevents any exponential blowup in
storage. Concretely, a single mapping of form Table 5 is sufficient for evaluating composed
functions of arbitrary depth. Table 5 appended with “special” keywords and dummy docu-
ments entail the final search index for the XOR function. Similar construction follow for the
search index of AND/OR gates as well.

Illustrative Example 1. Consider a client who wishes to evaluate the circuit in Figure 2,
using SEC without involving communication rounds with the client after inner function

10

Table 5: Mapping between the result of an inner function (say fi(·) here), to keywords (input
bits) used in querying the outer function (fk(·)). Mapping of doc id is directly extrapolated
from Table 4. For ease of exposition, we omit “special” terms and dummy documents from
this illustration; they are added to the search index similarly as explained previously.

Output of fi(·) Input bits of fk(·) Keyword Mapped doc id
D0 x = 0 w̄1 D0, D1

D1 x = 1 w1 D2, D3

D2 x = 1 w1 D2, D3

D3 x = 0 w̄1 D0, D1

D0 y = 0 w̄2 D0, D2

D1 y = 1 w2 D1, D3

D2 y = 1 w2 D1, D3

D3 y = 0 w̄2 D0, D2

Figure 2: Evaluate: fXOR(fXOR(1, 0), fXOR(0, 0))

evaluations and using the same lookup table (Table 5; that is encrypted and offloaded
to the server once at the beginning). The encrypted lookup tables for all three functions
f = {XOR, AND, OR} are generated once and offloaded to the server. We emphasize here that
the size of the lookup table is agnostic of the circuit being evaluated. For ensuring a sin-
gle communication round between the client and server, the query construction for outer
XOR needs to happen solely on the server side. For now, we assume ConstructQuery(wk

d ,
svalwl

d,Dj
, b) to abstract the following mapping: Given that svalwl

d,Dj
is output by the in-

ner function evaluation, ConstructQuery returns the search tokens of the form Tokenwk
d ,wi,Dj

depending on the mapping in Table 5. Bit b denotes whether svalwk
d ,Dj

is first or second
input to the outer function. We defer details of the exact operation of ConstructQuery
to Section 3.2. We also note that since three evaluations of XOR occur, we use a distinct
“special” term for each. We now explain how the evaluation proceeds.

SEC first constructs a query q1 = (w1
d ∧ w1 ∧ w̄2) for fXOR(1, 0), resulting in svalw1

d,D2

(w1
d is a randomly sampled “special” term; D2 occurs in both w1 ∧ w̄2, see Table 5).

Likewise, SEC constructs a query q2 = (w2
d ∧ w̄1 ∧ w̄2) for fXOR(0, 0), resulting in svalw2

d,D0

(w2
d is a randomly sampled “special” term; D0 occurs in both w̄1 ∧ w̄2, see Table 5).

Note that the result of fXOR(1, 0) drives the first input of outer XOR. Thus, SEC invokes
ConstructQuery(w3

d,svalw1
d,D2

, 1) to obtain Tokenw3
d,w1,D2

and Tokenw3
d,w1,D3

(w3
d is a

randomly sampled “special” term; w1 is chosen as the keyword for the first input of outer
XOR because the output of fXOR(1, 0) gives D2, and from the corresponding row entry 3 in
Table 5 we get w1; (D2, D3) are documents corresponding to w1; 1 in ConstructQuery()
denotes this is the first input of the gate). Likewise, since fXOR(0, 0) drives the second input
of outer XOR, SEC invokes ConstructQuery(w3

d,svalw2
d,D0

, 0) to obtain Tokenw3
d,w̄2,D0

and

Tokenw3
d,w̄2,D2

(w3
d is a randomly sampled “special” term; w̄2 is chosen as the keyword

11

for the second input of outer XOR because the output of fXOR(0, 0) gives D0, and from the
corresponding row entry 5 in Table 5 we get w̄2; (D0, D2) are documents corresponding to
w̄2; 0 in ConstructQuery() denotes this is the first second of the gate). Overall, for the
outer XOR, the constructed query is q3 = (w3

d ∧ w1 ∧ w̄2). It is straightforward to see that
the result of the functional composition, by design of Table 5 shall be svalw3

d,D2
(D2 is the

common document between all four Tokens generated by ConstructQuery()). The server
sends this final result to the client. Upon decryption, the client obtains the output plaintext
bit 1 (D2 = Enck(1)), which is the correct evaluation of the circuit. We emphasize that
since the “special” term changes across all gate evaluations (due to the random selection
of “special” terms for each gate by the client), from the server’s perspective, it can not
correlate the underlying computations.

Illustrative Example 2: Reusability. We demonstrate another scenario in this example,
where the client wishes to consecutively evaluate the circuit in Figure 2 twice. Assume that
for Evaluation 1, SEC constructs a query similar to the previous example. For Evaluation 2,
the client assigns a different set of “special” terms and SEC constructs corresponding query
as - q1 = (w3

d ∧w1 ∧ w̄2) for fXOR(1, 0), resulting in svalw3
d,D2

. Likewise, a query q2 = (w1
d ∧

w̄1 ∧ w̄2) for fXOR(0, 0), resulting in svalw1
d,D0

. As the result of fXOR(1, 0) drives the first input

of outer XOR, SEC invokes ConstructQuery(w2
d,svalw3

d,D1
, 1) to obtain Tokenw2

d,w1,D2
and

Tokenw2
d,w1,D3

(corresponding to row entry 3 in Table 5). Likewise, since fXOR(0, 0) drives

the second input of outer XOR, SEC invokes ConstructQuery(w2
d,svalw1

d,D0
, 0) to obtain

Tokenw2
d,w̄2,D0

and Tokenw2
d,w̄2,D2

(corresponding to row 5 in Table 5). Overall, for the

outer XOR, the constructed query is q3 = (w2
d ∧ w1 ∧ w̄2) and the final result is svalw2

d,D2
.

Note that the “special” terms used for q1, q2, q3 are different hence, different sval and
Tokens are generated for the same circuit in Evaluation 2. This obfuscates memory access
pattern. However the result of the final evaluation will be the same (this ensures functional
correctness).

It is to be noted that Table 5 is an abstract overview of the lookup table representation, hence
for ease of explanation, we show that the entries related to a search tokens ({Tokenw3

d,w̄2,D0

and Tokenw3
d,w̄2,D2

} for Evaluation 1 and {Tokenw2
d,w̄2,D0

and Tokenw2
d,w̄2,D2

} for Eval-

uation 2), correspond to the same row of the lookup table (row 5 in Table 5) for both
evaluations. In practice, however, every entry corresponding to a “special” term is stored
separately, hence although the content of the encrypted document is the same, the locations
in memory will vary. This is crucial to prevent the server from correlating between two
(similar/different) circuit evaluations, thereby rendering the reusability of the same lookup
table for multiple evaluations secure, in terms of data privacy.

From the server’s perspective (in Figure 2), for gate 1, the server observes access patterns
related to { svalw1

d,D2
} in Evaluation 1 and { svalw3

d,D2
} in Evaluation 2. Similarly,

for gate 2, access patterns observed are { svalw2
d,D0

} in Evaluation 1 and { svalw1
d,D0

}
in Evaluation 2. Likewise, for gate 3, the server observes access patterns for { Tokenw3

d,w1,D2
,

Tokenw3
d,w1,D3

, Tokenw3
d,w̄2,D0

, Tokenw3
d,w̄2,D2

, svalw3
d,D2
} in Evaluation 1 and { Tokenw2

d,w1,D2
,

Tokenw2
d,w1,D3

, Tokenw2
d,w̄2,D0

, Tokenw2
d,w̄2,D2

, svalw2
d,D2
} in Evaluation 2. Briefly, through

client-controlled permutation, assignment of “special” terms to non-isomorphic gates8 pre-
vents the server from correlating between two (similar/different) circuit evaluations, thereby

8If in Evaluation 2, the client had assigned w2
d to gate 2, then this assignment is isomorphic to that in

12

making the reusability of the same lookup table for multiple evaluations secure, in terms of
data privacy.

Note. It is important to note that, for ease of exposition, we exemplified the working
mechanism of SEC for solving a circuit with XOR gates only. An exactly similar execution
methodology is used for evaluating any arbitrary circuit f with any combination of gates,
f ∈ {XOR, AND, OR}, since both sval and Token are function agnostic.

Communication Complexity. The bulk of communication overhead is a one-time setup9

where the client generates and offloads data structures related to SEC to the server. For a
circuit C, consisting of n gates {G1,G2, ...,Gn}, we assign a unique “special” term sequence to
each circuit and some dummy documents (to maintain a uniform frequency of all keywords
in the encrypted database). This prevents any two gates in C from having the same “special”
terms. The space complexity of SEC thus scales linearly with O(| C |).10

Security in Reusability. We stress that the same look-up tables can be used for evaluation
of multiple circuits. We do this through client-controlled permutation of the pool of “special”
terms available in SEC’s encrypted look-up tables. To exemplify, reconsider the example
circuit fXOR(fXOR(1, 0), fXOR(0, 0)), and assume this needs to be executed twice. For first
evaluation, let’s say the client assigns permutation of “special” termsw1

d,w
2
d,w

3
d to the three

gates respectively. For the second evaluation, let’s say, the client chooses a new permutation:
w3

d,w
1
d,w

2
d. This enables reusability of SEC’s look-up tables across different circuits while

ensuring 1○ no two gates in the same circuit share a common “special” term, and 2○
two isomorphic gates in different circuits also do not share corresponding “special” terms;
thereby preventing the server from inferring any correlation between two computations. We
elaborately discuss and analyze the leakage profile of SEC in Section 4.

1.3 Related Work

Garbled Circuits. It was first introduced by Yao in his groundbreaking work on secure
function evaluation [51]. Due to their versatility, various garbling techniques (for arith-
metic/Boolean circuits) [5, 36, 42, 51] have been developed over the years. GCs typically
provide privacy for the input/output bits and entire circuit that is being computed. How-
ever, such constructions have an inherent disadvantage of not being reusable that makes
it unnameable for practical deployment. As such, there have been attempts to construct
reusable Garbled Circuits [36], but the underlying primitive used is Functional Encryption
(using FHE as a black box) which is computationally expensive.

Fully Homomorphic Encryption (FHE). In practice, computing over encrypted out-
sourced databases has used sophisticated and highly structured primitives, such as Fully
Homomorphic Encryption (FHE) [2, 3, 21, 28, 30, 31, 32, 34] which views generic computa-
tions as either arithmetic or Boolean circuits (hence are typically expensive), and provides

Evaluation 1. Consequently, the server’s leakage profile for gate 2 is { svalw2
d
,D0

} for both evaluations,

hence leaking that both evaluations have the same type of gate. Note that, however, neither the gate
description (i.e. whether it is AND/OR/XOR) nor the exact plaintext bit in { svalw2

d
,D0

} is leaked, since this

information is encrypted, thereby still protecting data privacy.
9Across evaluations of multiple circuits.

10Keywords specific to functional evaluation are O(1); refer Table 4 and Table 5.

13

an all-or-nothing flavor of security. FHE has recently gained traction in the cryptographic
literature for privacy-preserving computation with rich functionalities along with the ideal
notion of privacy. However, as each primitive function evaluation is realized by explicit
circuit evaluation followed by an expensive bootstrapping operation. FHE has prohibitively
high computation costs and storage overheads.

Searchable Symmetric Encryption (SSE). SSE schemes [16, 19, 25, 48] provision users
with search capabilities over symmetrically encrypted data. There exist today efficient SSE
schemes that support conjunctive (and more general Boolean) queries [15, 16, 46]. An
ideal SSE construction using Oblivious RAM (ORAM) promises oblivious memory access
patterns (and hence no leakage) but is hard to actualize in hardware, is closed-source, and
has not been tested against scaled databases [18]. Modern SSE schemes thus trade-off
security for efficiency. These schemes allow the server to learn “some” information during
query execution, detailed by their leakage profile. While SSE schemes are extremely fast
and highly scalable with arbitrarily large real-world datasets, their restricted functionality
(to only search) renders them inapt for practical deployment in an encrypted computation
framework. In this work, we leverage the efficient look-up capabilities of SSE while extending
the limited functionality of existing SSE schemes to supporting encrypted computations of
arbitrary Boolean functions.

1.4 How SEC differs from GC and HE

In its essence, SEC guarantees privacy of input and output bits to and from a Boolean
function. The rationale behind the construction of SEC is to provide an efficient and
accelerated alternative to the existing state-of-the-art general purpose encrypted computing
frameworks while leaking some non-trivial information that is proven to be benign. We
would like to emphasize that the security guarantee of SEC is based on the IND-CPA
security of a symmetric key encryption scheme. It is important to mention that the function
evaluated by SEC is assumed to publicly known. We provide an elaborate comparison of
SEC wrt. the most closely related encrypted computation frameworks in literature.

Garbled Circuits. We emphasize that with a single setup of O(n) special-terms and its
client-controlled permutation, SEC ensures multiple executions of the same circuit without
leaking any equality-correlation to the server. This is the core difference between SEC and
GC. While GC uses two inputs to evaluate a single binary-gate by indexing into its trans-
lation tables, SEC uses three inputs11 to evaluate the same gate. The extra input neither
encodes the actual bit nor participates in the computation, but just randomizes memory
accesses for the same gate across multiple executions. This allows up to O(n!) re-executions
of the same circuit with a single setup, while GC can tolerate just one execution. “Illustra-
tive Example 2” demonstrates how SEC can execute the same circuit (with same inputs)
twice without leaking correlations (unlike GC with a single setup). Footnote 8 gives an
example where an incorrect permutation of “special” terms leaks to leakage in SEC. It is
the client’s responsibility to ensure the same “special” terms are not assigned to isomorphic
gates.

SEC also differs from GCs that use structured encryption underneath. For instance, Kamara

11Two inputs corresponding to gate input wires, and an additional “special” term.

14

et. al. proposed a garbled circuit construction from a structured encryption scheme in [42],
which seems closely related to SEC in terms of its design choice and functionality. We
emphasize, however, SEC is inherently distinct from the construction proposed in [42],
as it relies on the efficient encrypted look-up operation of a conjunctive SSE scheme to
evaluate arbitrary Boolean functions. Essentially [42] reduces the problem of designing
special-purpose garbled circuits to the problem of designing structured encryption schemes.
Whereas, SEC reduces the problem of designing an arbitrary Boolean function evaluation
framework on encrypted input bits to the problem of designing a conjunctive SSE scheme.
As such SEC ensures data-privacy guarantees, while assuming the circuit is publicly known.
SEC entails a single round of setup for O(n!) circuit evaluations (n-size circuit), without
leaking any correlation between the circuit evaluations12. On the contrary [42] requires the
setup phase to run for every evaluation, i.e. for an n-sized circuit, a garbled circuit of size
n needs to be setup every-time for evaluating the circuit without leaking any information.

Fully Homomorphic Encryption. In this work, we provide an encrypted computation
framework that is more efficient than FHE in terms of computation and storage complexity,
while providing similar security guarantees of data-privacy. The construction of SEC funda-
mentally differs from FHE schemes because SEC bypasses explicit circuit evaluation, hence
the consequent need for bootstrapping operation, that essentially contributes to FHE’s com-
putational bottleneck.

We use TFHE as the concrete implementation of FHE for comparison with SEC. Functional
bootstrapping in TFHE enables the evaluation of homomorphic functions, which can be used
to perform encrypted table lookups. The lookup is performed using a homomorphic truth
table representation and lookup table evaluation. It enables arbitrary function computation
over encrypted data. Lookups are performed using blind rotation and GGSW ciphertext [34]
manipulations. The process is computationally expensive because bootstrapping is costly.
The fundamental difference of TFHE with SEC is that the later relies on the efficient
encrypted lookup operations of a conjunctive SSE scheme. The lookup operation in SSE
is simpler and extremely efficient. On the other hand, while TFHE can support arbitrary
number of evaluations with a single setup, SEC can manage bounded evaluations. We argue
however, that such a bound is asymptotically large for practical deployments: for a single
setup of a circuit of size n, SEC bounds the number of re-evaluations it can perform by
O(n!).

With respect of comparison of security, SEC provides data-privacy guarantee by encrypting
the input/output bits to/from a gate, using an IND-CPA secure symmetric-key encryption
scheme. The incorporation of an SSE scheme as a black-box makes it straightforward to see
that the leakages that exist in state-of-the-art SSE schemes will affect the overall security
of SEC. However we prove that the leakages incurred by the underlying SSE does not
transitively reflect in the leakage profile of SEC due to appropriate measures and design
choices made. We claim that the leakages from the underlying SSE are handled in SEC,
which renders them inconsequential and preserves its data-privacy guarantees13. Hence,

12Note, the privacy of input bits to the circuit and output bit after evaluation is guaranteed by the
IND-CPA symmetric-key encryption scheme with which the input and output bits are encrypted

13Informally, SEC uses three inputs to evaluate a binary gate, and ties SSE related leakages to the “special”
term, which does not encode the real gate inputs. In other words, although SEC leaks, its leakages are tied
to the “special” terms and not the real gate inputs. By randomizing the permutation of the “special” terms
across different evaluations, SEC prevents any exploitable leakage.

15

although unlike FHE, SEC is prone to underlying SSE leakages, we underscore that such
leakages are benign and has no adverse affect on the overall security of the scheme. We
provide elaborate details on the security analysis of SEC in Section 4.

Leveled Homomorphic Encryption. As seen from Table 1, Leveled Homomorphic En-
cryption (LHE) [12, 14, 37] allows evaluating circuits of bounded size without requiring
bootstrapping, and provides a balance between efficiency and expressiveness. However,
LHE can only evaluate circuits up to a fixed depth (e.g., 10 ∼ 20 [39], 10 ∼ 50 [41] multi-
plicative levels), causing a decryption failure due to excessive noise if computations exceed
this depth. Whereas SEC supports O(n!) evaluations of a circuit of size n, where n is a
client-controlled parameter and not specific to the design of SEC. This is an important fea-
ture as it accelerates the scalability of SEC and renders it suitable for practical real-world
deployment.

2 Preliminaries and Background

We present preliminary concepts and background in this section. Table 6 lists basic notations
used in this paper. Any other notation used is defined in-place within the context of the
main text.

Table 6: Summary of notations

λ security parameter
id/doc id document identifier

w a keyword
W dictionary of keywords W = {w1, . . . ,wN}
DB database (idj ,wi)

N |DB(w)|
i=1 j=1 ∈ DB

DB(w) all documents containing w
n max. number of keywords per conjunctive query.

x
$←− χ uniformly sampling x from χ

x = A x is output of a deterministic algorithm
x← A′ x is output of a randomized algorithm

2.1 Conjunctive SSE: Syntax and Security Model

A Conjunctive Searchable Symmetric Encryption scheme (CSSE) provisions the client with
conjunctive search capability (i.e. search Boolean queries of the form w1 ∧w2 ∧ . . . ∧wn)
over an encrypted database. A CSSE scheme can be formally defined as an ensemble of four
polynomial-time algorithms {KeyGen, Encrypt, GenToken, Search} 14 such that:

• KeyGen(λ) is a probabilistic algorithm that takes the security parameter λ as input. The
output of this algorithm is the client’s secret key sk.
• Encrypt(sk,DB) is a probabilistic algorithm that takes as input the client secret key sk

14Our syntax for a conjunctive SSE is different from the syntax of traditional conjunctive SSE scheme
{Setup,GenToken,Search}, but the underlying functionality is exactly similar

16

and a plain database DB. The output is an encrypted database EDB.
• GenToken(sk, q = w1∧ . . .∧wn) is a deterministic algorithm executed by the client that
takes as input secret key sk and a conjunctive query q = w1 ∧ . . . ∧wn. It generates search
tokens (stq) corresponding to the conjunctive query q as the output.
• Search(EDB, stq) is a deterministic algorithm executed by the server that takes as
input EDB and the search token stq corresponding to a conjunctive query q. It returns the
encrypted document identifiers DB(stq) corresponding to the conjunction q = w1∧ . . .∧wn

as output.

Correctness. A CSSE scheme is said to be correct if for an EDB generated from a
DB using Encrypt, for a search token stq generated by GenToken from any conjunctive
Boolean query q formed over the keywords wi in W, the Search routine returns a set of
ids as result which is the same as DB(q) with high probability.

Security. The security of a CSSE scheme is parameterized by a leakage function L, which
encapsulates the information that can be learnt (potentially by an adversary) from the
encrypted database and query transcripts. Formally, the security notion says that the
server’s view during an adaptive attack (where the server selects the database and queries)
can be simulated given only the output of L.

Let CSSE = {KeyGen, Encrypt, GenToken, Search} be a CSSE scheme, and let L
be a stateful algorithm. For algorithms A (denoting the adversary) and SIM (denoting a
simulator), we define the experiments (algorithms) RealCSSE

A (λ) and IdealCSSE
A,SIM(λ), as in

Algorithm 1 and Algorithm 2, respectively (see Appendix 2.2). We say that CSSE is L-
semantically-secure against adaptive attacks if for all adversaries A there exists an algorithm
SIM such that

| Pr[Real
CSSE
A (λ) = 1]− Pr[IdealCSSE

A,SIM(λ) = 1] |≤ negl(λ).

In these experiments, the leakage function for CSSE is expressed as

LCSSE = (LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE),

where LEncrypt
CSSE encapsulates the leakage to an adversarial server during the Encrypt phase,

LGenToken
CSSE encapsulates the leakage to an adversarial server during the GenToken phase,

and LSearch
CSSE encapsulates the leakage to an adversarial server during each execution of the

Search protocol.

2.2 Adaptive Security of CSSE

We present the Real and Ideal experiments for the security analysis of a conjunctive SSE
scheme CSSE in this Appendix. In these experiments, the leakage function for CSSE is
expressed as

LCSSE = (LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE),

where LEncrypt
CSSE encapsulates the leakage to an adversarial server during the Encrypt phase,

LGenToken
CSSE encapsulates the leakage to an adversarial server during the GenToken phase,

and LSearch
CSSE encapsulates the leakage to an adversarial server during each execution of the

Search protocol.

17

Algorithm 1 Experiment RealCSSE
A (λ)

1: function RealCSSE
A (λ)

2: N ← A(λ)
3: (sk, s0,EDB0)← CSSE.Encrypt(λ,N)
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (sk,EDBk,DB(qk))←

CSSE.Search(sk, sk−1, qk;EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

Algorithm 2 Experiment IdealCSSE
A,SIM(λ,Q,L)

1: function IdealCSSE
A,SIM(λ,Q,L)

2: Parse the leakage function L as:
L =

(
LEncrypt

CSSE ,LSearch
CSSE

)
.

3: (sSIM,EDB0)← SIMSetup(LEncrypt(λ,N))
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (sSIM,EDBk, τk)← SIMSearch

(sSIM,LSearch
CSSE (qk);EDBk−1)

7: Let τk denote the view of the adversary after
the kth query

8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

2.3 Oblivious Cross-Tag Protocol (OXT): Overview

We provide a brief understanding of the the technical details of the OXT protocol. OXT [17] re-
lies on specially structured pseudo-random functions that can be incorporated using discrete-
log hard groups. The idea is that the client encrypts the data (using symmetric-key encryp-
tion) and offloads it to the server (honest-but-curious). The client queries the server with
a conjunction of keywords to which it returns a set of encrypted pointers that point to
documents containing all the client’s queried keywords. The client decrypts these pointers
locally to obtain the required documents matching the conjunctive query. The server does
not have the ability to perform decryption nor can it learn any information about the queried
keywords. The entire protocol constitutes one-round of interaction/communication between
the client and the server. This is delegated by an oblivious shared computation of cross-tags
between client and server. In order to achieve minimum communication complexity while
ensuring privacy of the client’s queried keywords and corresponding documents, OXT incor-
porates an oblivious cross-tag generation process. The cross-tag is computed using blinded
exponentiation in prime order cyclic groups, analogous to Diffie-Hellman based oblivious
PRF. It pre-computes the blinding part of the oblivious computation and stores them in
encrypted form at the server. During search, the client sends tokens to the server using
which it unlocks these pre-computed values and computes the cross-tag obliviously using

18

which it matches the documents corresponding to the queried keywords.

The core technical idea of OXT is the process of oblivious cross-tag generation, that relies
on public-key computations in a discrete-log hard group. The hardness assumption is based
on the fact that DDH assumption is conjectured to hold in a prime order subgroup of Z∗

p

(p is a large prime). The inherent reliance of OXT on discrete-log hard groups renders
it vulnerable to quantum attacks and can be effectively broken by a scalable quantum
computer. Therefore, although OXT provides security against efficient adaptive adversaries
in classical setting, it is not secure in the post-quantum setting. The motivation of our work
is hence, to develop a post-quantum secure construction of OXT that preserves its asymptotic
search and communication complexity while ensuring its scalability with arbitrary large
datasets.

The Cross-Tag. The most fundamental component of OXT which is incorporated to check
for the presence of a keyword in a particular document without leaking any extra information
to the server, is the cross-tag (denoted as xtag in the paper). The fundamental building
block that makes OXT one of the most efficient, highly scalable and secure conjunctive SSE
scheme is an oblivious computation of the xtag at the server, which is incorporated using
a DH-based oblivious PRF type computation. The idea is, for every keyword and every
document in which it is present, the client pre-computes a xtag (an element in the prime-
order subgroup of Z∗

p) and stores it in a data-structure called XSet which is offloaded to the
server.

xtag← gFp(KX ,w)·Fp(KI ,id)

where, g is the generator of the subgroup of Z∗
p and Fp is a PRF that takes as input a

keyword or a document identifier and outputs an element in Z∗
p .

Along with the queried keywords, the server receives some tokens (xtoken) from the client
(also an element in the prime-order subgroup of Z∗

p) during any conjunctive search. The
beauty of OXT lies in the fact that the whole process of xtag computation by the server
takes place obliviously without revealing the keyword-document pair for which the xtag is
being computed. This is done by raising the xtoken to a blinded value y (an element in Z∗

p)
which is pre-computed by the client and stored at the server.

3 Symmetric Encrypted Computation

We introduce Symmetric Encrypted Computation (SEC) as an efficient framework for
fast outsourced privacy-preserved Boolean circuit evaluation in the symmetric-key setting.
SEC supports circuit evaluation of arbitrary size via encrypted look-up and a single round
of communication between the client and the remote server. We begin by presenting the
high-level syntax of SEC in this section before delving into the elaborate technical details
of the framework subsequently.

19

3.1 Syntax of SEC

We briefly explain a general syntax of our proposed primitive here. It uses a static conjunc-
tive SSE construction CSSE as a black-box (refer to Section 2.1 for details on syntax and
security definitions). We assume a single (honest) client and a (semi-honest) server in SEC.
SEC is abstracted as a tuple of four polynomial-time algorithms {KeyGen, Encrypt,
Evaluate, Decrypt}, as defined below:

• KeyGen(λ): A probabilistic algorithm executed by the client that takes as input the
security parameter λ. It outputs a client secret key sk and a public parameter pp.

• Encrypt(ke, x1, . . . , xp): A probabilistic algorithm executed by the client. It takes
the client’s secret key ke and a p-bit input {x1, . . . , xp}. The output is a ciphertext
c = {c1, . . . , cp}.

• Evaluate(fdesc, c1, . . . , cp, pp): A deterministic algorithm executed by the server that
takes as input a description of a circuit fdesc that is to be evaluated, the encrypted input bits
c = {c1, . . . , cp} and the public parameter pp. The server returns the encrypted evaluation
of the circuit eval to the client.

• Decrypt(ke, eval): A determinisitic algorithm executed by the client with its secret-key
ke and an encrypted evaluation eval as input, which outputs the decrypted result.

Correctness. SEC is said to be functionally correct if for security parameter λ, and for
the following sequence of operations:

sk, pp ← SEC.KeyGen(λ)

{c1, . . . , cp} ← SEC.Encrypt(ke, x1, . . . , xp)

eval = SEC.Evaluate(fdesc, c1, . . . , cp, pp)

result = SEC.Decrypt(ke, eval),

The following holds with certainty:

Pr[result = fdesc(x1, . . . , xp)] = 1,

Security. SEC guarantees privacy of inputs to a function and output of the evaluation by
encrypting them using an IND-CPA secure symmetric-key encryption. Formally, SEC is said
to be adaptively secure with respect to a leakage function LSEC = {LKeyGen

SEC ,LEncrypt
SEC ,LEvaluate

SEC }
if for any PPT adversary A, for a p-bit input x1, . . . , xp, there exists a PPT simulator
SIM = {SIMKeyGen,SIMEncrypt,SIMEvaluate} such that the following holds:

∣∣Pr
[
Real

SEC
A (λ) = 1

]
− Pr

[
Ideal

SEC
A,SIM(λ,L) = 1

]∣∣ ≤ negl(λ),

where the “real” experiment RealSECA and the “ideal” experiment IdealSECA are as de-
scribed in Algorithm 3 and Algorithm 4. LKeyGen

SEC captures the leakage from SEC.KeyGen,

20

LEncrypt
SEC captures the leakage from SEC.Encrypt, and LEvaluate

SEC captures the leakage from
SEC.Evaluate.

Algorithm 3 Experiment RealSECA (λ)

1: function RealSECA (λ)
2: (sk, pp)← KeyGen(λ)
3: for k ← 1 to y ▷ y = poly(λ)

do
4: Let [x1, . . . , xp]k ← A(λ, pp, τ1, . . . , τk−1)
5: Let [c1, . . . , cp]k ← SEC.Encrypt(sk, [x1, . . . , xp]k)
6: Let fdesc([c1, . . . , cp]k)← SEC.Evaluate(fdesc,
7: pp, [c1, . . . , cp]k)

(τk denote A’s view after the kth evaluation)
8: b← A(λ, pp, fdesc, τ1, . . . , τy)
9: return b

Algorithm 4 Experiment IdealSECA,SIM(λ,L)

1: function IdealSECA,SIM(λ,L)
2: Parse the leakage function L as:

L =
(
LKeyGen

SEC ,LEncrypt
SEC ,LEvaluate

SEC

)
.

3: (sSIM, pp)← SIMKeyGen(LKeyGen(λ))
4: for k ← 1 to y ▷ y = poly(λ)

do
5: Let [x1, . . . , xp]k ← A(λ, pp, τ1, . . . , τk−1)
6: Let (sSIM, [c1, . . . , cp]k)← SIMEncrypt(sSIM,

LEncrypt
SEC ([x1, . . . , xp]k); pp)

7: Let fdesc([c1, . . . , cp]k)← SIMEvaluate(sSIM,
LEvaluate

SEC (fdesc, pp, [c1, . . . , cp]k))

(τk denote A’s view after the kth evaluation)
8: b← A(λ, pp, fdesc, τ1, . . . , τy)
9: return b

3.2 SEC Construction

The fundamental goal of SEC is to compute arbitrary sized Boolean circuits using encrypted
lookup tables while ensuring data-privacy, in a single round of communication between
the client and server. The three universal Boolean function set supported by SEC are
f = {fXOR, fAND, fOR}. SEC incorporates a black-box conjunctive SSE construction to compute
Boolean functions on encrypted inputs by performing searches over encrypted lookup tables.
We refer the reader to Section 1.2 for an overview of SEC, and proceed with the construction
here.

SEC.KeyGen. Algorithm 3 formally explains the KeyGen routine. The client executes
it and is responsible for creating the client secret key sk and a public parameter pp. pp
constitutes 1○ encrypted lookup tables (i.e. encrypted search indices) for {fXOR, fAND, fOR}
and 2○ encrypted search tokens st (i.e. the token set). pp is offloaded to the server.

21

Algorithm 5 GenDB

Input: Security parameter λ
Output: DB

1: function GenDB(λ)
2: f = {fXOR, fAND, fOR}
3: Input set = {(x, y) ∈ {0, 1}2}
4: for i ∈ 1 to |f | do
5: for j ∈ 0 to |Input set| − 1 do
6: b = fi(Input set[j])
7: Dj ← Πsym.Encryptke(b)
8: DBfi = DBfi ∪ { MAP(Dj ,Input set[j])}

▷ MAP is used as an abstraction of Table 4
9: DB = DB ∪ {DBfi}

10: return DB

Concretely, first, a helper function GenDB generates DB (see Algorithm 5), which es-
sentially comprises the plaintext mappings between keywords and encrypted documents
(Table 3 and Table 5). DB is then encrypted into SSE specific data structures using
CSSE.Encrypt (See Section 2) to generate the encrypted search index or EDB15, follow-
ing the discussion established in Section 1.2. Thereafter, the specific search tokens st are
generated by invoking CSSE.GenToken (See Section 2). The size of TokenSet is there-
fore O(n), assuming a set of n distinct “special” terms {w1

d,w
2
d, ...,w

n
d} for a circuit with

n gates16. Recall from Section 1.2 that ConstructQuery routine maps the output of one
(inner) SEC evaluation to obtain search tokens for the next query (outer function evalua-
tion). Thus, SEC thereby stores all pairwise mappings in {w1

d,w
2
d, ...,w

n
d} in the table17 for

ConstructQuery. Concretely, any “special” term wk
d (i.e. svalwk

d ,Dj
) can be used to obtain

search tokens belonging to any other “special” term wk′

d : Tokenwk′
d ,wi,Dj

without requiring

exponential storage. Finally, all the SEC specific data structures are then offloaded to the
server.

Note that KeyGen is a one-time routine, executed only once at the beginning. We emphasize
that by trading off storage, SEC achieves the capability of randomizing the order of “special”
terms {w1

d,w
2
d, ...,w

n
d} across different executions of circuits, thereby achieving reusability.

The client-controlled permutation of these “special” occurs during SEC.Evaluate.

SEC.Encrypt. This routine is executed on the client’s end and is responsible for encrypting
and offloading the actual data. As shown in Algorithm 7, the client uses its secret key ke
to encrypt plaintext bits {x1, . . . , xp} using an IND-CPA secure symmetric-key encryption
scheme (Πsym = (KeyGen,Encryptke,Decryptke)), and returns a ciphertext {c1, . . . , cp}.

SEC.Evaluate. SEC.Evaluate is executed by the server and is mainly responsible for
computing a circuit (whose description is provided by the client) on encrypted inputs. This
is summarized in Algorithm 8. We assume the client wants to compute an arbitrary Boolean

15Refer to Appendeix 2.1 for conjunctive SSE syntax and security model.
16The analysis subsumes O(1) number of keywords for input combinations (i.e. w1 and w2), as well as

O(1) number of documents (Dj : j ∈ {0, 1, 2, 3})
17Implemented either as a membership test (thereby allowing use of efficient Bloom Filters), or through

a two-dimensional dictionary, as done in state-of-the-art SSE schemes.

22

Algorithm 6 SEC.KeyGen

Input: Security parameter λ
Output: Client’s secret key sk and a public parameter pp
1: function SEC.KeyGen(λ)
2: Samples a uniformly random key ke for an IND-CPA Symmetric-key Encryption scheme:

Πsym = (KeyGen,Encryptke,Decryptke)
3: DB← GenDB(λ)
4: (EDB, sk)← CSSE.Encrypt(DB)
5: for all conjunctive query q of keywords in DB do
6: {stq} = CSSE.GenToken(sk, q)
7: TokenSet = TokenSet ∪ {stq}
8: return sk, pp = {EDB ∪ TokenSet}

Algorithm 7 SEC.Encrypt

Input: ke, x1, . . . , xp

Output: c1, . . . , cp
1: function SEC.Encrypt(ke, x1, . . . , xp)
2: Encrypt input bits {x1, . . . , xp} using an IND-CPA secure symmetric-key encryption scheme

Πsym with client secret-key ke
3: {c1, . . . , cp} ← Πsym.Encryptke(x1, . . . , xp)
4: return {c1, . . . , cp}

circuit:
fcir depth(fcir depth−1(xcir depth−1, ycir depth−1), . . . , f1(x1, y1))

where fj ∈ {fXOR, fAND, fOR} and (xj , yj) are inputs to the j-th function fj (where 1 ≤ j ≤
cir width; cir width being the maximal width of the circuit) at depth i (for 1 ≤ i ≤ cir depth;
cir depth being the depth of the entire circuit). The server runs the SEC.Evaluate al-
gorithm that takes as input a circuit description fdesc, encrypted inputs {c1, . . . , cp}, and
the public parameter pp (already offloaded to the server at the end of SEC.KeyGen). It
parses pp as {EDB, TokenSet} and then uses the encrypted inputs {c1, . . . , cp} to retrieve
the corresponding search tokens (stqf) for all j functions at depth 1 of the circuit. Next, for
each of the j-th function at depth i (1 ≤ i ≤ cir depth), it invokes the CSSE.Search algo-
rithm using a specific search token, sk and the EDB as input. The output obtained (i.e.
evalj,i) is in turn used to retrieve the search tokens for the functions at depth (i+ 1) of the
circuit by calling ConstructQuery(evalj,i). It is to be noted that evalj,i encapsulates (wk

d ,
svalwl

d,Dj
, b) and retrieves the search token stqf (which is of the form Tokenwk

d ,wi,Dj
). Bit

b is used to determine whether to use the retrieved search token as the first or second input
to the outer function. Again CSSE.Search is called with the new search token query and
EDB as the input. This process continues till the last level of the circuit. Note, that each
call to CSSE.Search can be made in parallel for all j functions at a certain depth of the
circuit, since all functions at depth/level i are pairwise independent wrt. required inputs.
The final encrypted evaluation eval returned by the last level of the circuit contains the
encrypted bit corresponding to the actual output of the entire circuit evaluation. eval is
returned to the client as the final encrypted output of the circuit fdesc.

SEC.Decrypt. The client runs the SEC.Decrypt algorithm to decrypt the encrypted
evaluation eval. The decrypted value result is equal to the evaluation of the circuit fdesc on

23

Algorithm 8 SEC.Evaluate

Input: fdesc, {c1, . . . , cp}, pp
Output: eval

1: function SEC.Evaluate(fdesc, {c1, . . . , cp}, pp)
2: Parse pp = {EDB,TokenSet}
3: Retrieve search tokens stqf from TokenSet using {c1, . . . , cp} ▷ ConstructQuery(TokenSet, {c1, . . . , cn})
4: for i= 1 to cir depth-1 do ▷ cir depth is depth of the circuit fdesc
5: evalj,i = CSSE.Search(sk,EDB, stqf) ▷ for a circuit of width j at depth i, run j in-

stances of CSSE.Search in parallel
6: Retrieve search tokens stqf ← ConstructQuery(evalj,i)
7: eval = CSSE.Search(sk,EDB, stqf)
8: return eval to the client at the end of the protocol

Algorithm 9 SEC.Decrypt

Input: ke, eval
Output: result

1: function SEC.Decrypt(ke, eval)
2: result = Πsym.Decryptke(eval)
3: return result

(x1, . . . , xp).

3.3 Proof of Correctness of SEC

The proof of correctness for SEC follows from the correctness of CSSE. The correctness
of CSSE ensures that a conjunctive query q = w1 ∧ . . . ∧ wn over an encrypted database
satisfies the following relations (we refer to Section 2.1 for generic conjunctive SSE syntax):

sk ← CSSE.KeyGen(λ)

EDB ←− CSSE.Encrypt(sk,DB)

stq = CSSE.GenToken(sk, q)

DB(w1) ∩ . . . ∩ DB(wn) = CSSE.Search(EDB, stq)

Proof. By deploying CSSE as a black-box, SEC generates the encrypted search index
EDB specific to the function set f = {fXOR, fAND, fOR} supported by SEC. The encrypted
search index EDB consists of keywords corresponding to encrypted input bits and docu-
ments that encapsulate the encrypted output of the function evaluation. It also invokes
the CSSE.GenToken algorithm that generates search tokens corresponding to the key-
words (that map to encrypted input bits of a function). The search tokens are stored in
a TokenSet and then pp = {EDB∪ TokenSet} is offloaded to the server. For evaluating
a function f(x, y), the function description fdesc (which is essentially a single binary func-
tion in this case) and encrypted inputs {c1, c2} (corresponding to plaintext bits x and y
respectively) are sent to the server. The server retrieves the search tokens from TokenSet
and invokes CSSE.Search protocol with the search token query stqf and EDB as input.
It retrieves a document from EDB that consists of the encrypted output of the computa-
tion, (denoted as eval) and sends it to the client. The client decrypts eval locally using the

24

SEC.Decrypt function and obtains the output bit result which is equal to f(x, y). Cor-
rectness is hence a combination of correctness of CSSE, along with SEC specific mappings
(Table 4 and Table 5) that ensure exactly one document being returned by CSSE.Search,
which is the correct result of respective gate evaluation.

Following the functionally correct evaluation of a single binary gate f(·, ·), the correct en-
crypted evaluation eval returned by SEC.Evaluate for any arbitrary circuit fdesc over
encrypted inputs {c1, . . . , cp} can be asserted transitively. This is because fdesc is essentially
viewable as a collection of several binary gates f(·, ·) which are functionally correct as es-
tablished above, and thereby ensures that the output eval returned by SEC.Evaluate on
fdesc on decryption is equal to fdesc(x1, . . . , xp) for any circuit fdesc and unencrypted input
set {x1, . . . , xp}. Thereby, we conclude that for a functionally correct and exact conjunctive
SSE scheme CSSE, a set of functions f = {fXOR, fAND, fOR}, and encrypted values {c1, . . . , cp}
of input {x1, . . . , xp}, SEC is functionally correct, since for the following sequence of oper-
ations:

sk, pp ← SEC.KeyGen(λ)

{c1, . . . , cp} ← SEC.Encrypt(ke, x1, . . . , xp)

eval = SEC.Evaluate(fdesc, c1, . . . , cp, pp)

result = SEC.Decrypt(ke, eval)

result is the decrypted output of the evaluation of a circuit as specified by fdesc on encrypted
inputs c1, . . . , cp, such that result = fdesc(x1, . . . , xp) (where, x1, . . . , xp is the unencrypted
input), i.e.,

Pr[result = fdesc(x1, . . . , xp)] = 1,

3.4 Correctness

For a functionally correct and exact conjunctive SSE scheme CSSE, a function description
fdesc derived from a set of functions f = {fXOR, fAND, fOR}, ciphertexts {c1, . . . , cp} of input
{x1, . . . , xp}, SEC is functionally correct for the following sequence of operations:

sk, pp ← SEC.KeyGen(λ)

{c1, . . . , cp} ← SEC.Encrypt(ke, x1, . . . , xp)

eval = SEC.Evaluate(fdesc, c1, . . . , cp, pp)

result = SEC.Decrypt(ke, eval)

if and only if the following holds:

Pr[result = fdesc(x1, . . . , xp)] = 1

25

3.5 Practical Instantiation of SEC

Our generic privacy-preserving computation framework SEC can be practically implemented
by deploying any conjunctive SSE scheme as a black-box. We provide concrete constructions
of SEC using two conjunctive SSE schemes:

SECOXT. We analyze a concrete instantiation of SEC based on the OXT protocol [16] (See
Section 2.3 for a brief overview), abbreviated SECOXT. Our analysis fundamentally covers
the complexity of SECOXT in terms of performance and storage overhead, and a formal
security analysis based on a well-defined leakage profile. We provide a detailed complexity
analysis of SECOXT based on our experimental results in Section 6. The leakage profile and
security proof of SECOXT are elaborated in Section 4.

SECConjFilter. We also demonstrate the scalability and complexity overhead of a second
instantiation of SEC by deploying a purely symmetric-key based (plausibly quantum-safe)
conjunctive SSE, ConjFilter [45]. We provide performance and storage overhead analysis
of SECConjFilter in Section 6.

3.6 Complexity Analysis of SEC

Storage Overhead. The storage requirement of SEC depends upon the number of func-
tions it supports along with the number of search tokens (input combinations) for every
function. The final DB is collectively composed of three sub-databases (search indices)
DB = {DBAND,DBOR,DBXOR} encrypted and offloaded to the server. As discussed in
Section 1.2 and Section 3.2, each function-specific sub-database contains exactly four key-
words18, which are mapped to exactly two documents (out of four possible documents). The
bulk of storage overhead comes from the set of n distinct “special” terms {w1

d,w
2
d, ...,w

n
d}

(for a circuit with n binary gates), for which SSE specific data structures occupy O(n)
space. Some constant number of dummy documents are also added to maintain a uniform
frequency of each keyword in the final encrypted database. Concretely, there are exactly
four keywords for one binary function, four documents (including dummy documents) per
keyword, and n “special” terms. Total storage for three gates can be calculated as -

Total Storage = [(((4 + n)× 4)× 3) · b] bytes = O(n)

where b is a constant.

Computation and Communication Overhead. The evaluation time of SEC for com-
puting arbitrary sized Boolean circuit over encrypted data scales linearly with the search
time complexity of the underlying CSSE scheme, which in turn depends upon the depth of
the circuit. The crux of SEC is to bypass explicit circuit evaluation as done in state-of-the-
art encrypted computation schemes like FHE and leverage the extremely efficient encrypted
search capability of a CSSE scheme to evaluate functions on encrypted inputs.

By constructing the mapping for all pairwise combinations in {w1
d,w

2
d, ...,w

n
d}, multiple

circuits can be executed securely without the need to refresh SEC’s data structures. This
is achieved by ensuring 1○ no two gates in the same circuit share a “special” term, and

18We consider this as O(1) overhead in our analysis.

26

2○ two isomorphic gates in different circuits also do not share corresponding “special”
terms. Hence, the client’s communication overhead is majorly because of the one-time setup,
which is dominated by “special terms” (see storage analysis above; consequently, randomly
client-generated permutations of {w1

d,w
2
d, ...,w

n
d} are used to evaluate subsequent circuits.

Overall, the communication complexity is bounded by O(n).

4 Security and Leakage Profile Analysis of SEC

We analyze the security of SEC in this section. We follow a semi-honest adversarial setting
for our security analysis where the remote server is assumed to be honest-but-curious. This
implies the untrusted server follows the algorithmic specification exactly, but can also ob-
serve and record additional information for analysis. Using the ideal/real world paradigm,
we establish formally that a probabilistic polynomial-time (PPT) simulator can simulate the
view of the adversarial server in an indistinguishable manner given only the leakage profile
of SEC.

CSSE Leakage Profile. We now detail how SEC inherits security properties and leakage
profile from the underlying conjunctive SSE (CSSE) construction (Refer to Section 2.1,2.3
for more details). We note that CSSE is an adaptively secure conjunctive SSE scheme
against a semi-honest adversary A. The leakage of CSSE is characterized by the leakage
function LCSSE which is an ensemble of the leakage functions for Encrypt, GenToken and
Search individually, expressed as:

LCSSE = {LEncrypt
CSSE ,LGenToken

CSSE ,LSearch
CSSE }

SEC Leakage Profile. Given the above CSSE leakage functions, security of SEC can be
analyzed using SEC leakage function LSEC in the same adaptive semi-honest adversarial
model. LSEC is composed of two separate leakage functions for KeyGen and Encrypt
(as expressed below), that capture the leakage from SEC.KeyGen and SEC.Encrypt
execution respectively.

LSEC = {LKeyGen
SEC ,LEncrypt

SEC ,LEvaluate
SEC }

Informally, note that LSEC subsumes LCSSE plus leakages from SEC specific operations.
Our security analysis thereby considers the security of SEC in presence of LCSSE plus any
leakage from any SEC specific operations.

Concrete Security of SECOXT. Note that LCSSE is CSSE specific. For a concrete security
analysis thereby, we provide the security analysis of SECOXT (i.e. SEC instantiated with
OXT as the CSSE (Section 2.3)), which follows from the security notions of generic SEC and
underlying OXT protocol.19

19Analysis for SECConj follows suit, since the leakage profile of SEC is agnostic of the CSSE used.

27

5 Security Analysis and Discussion on Leakage Profile
of SECOXT

We formally explain the leakage profile for the specific instantiation of SEC based on the
OXT scheme, namely SECOXT.

5.1 Leakage Profile of SECOXT

The significance of each component of the leakage function in SECOXT is comparable to
that of OXT. We define each leakage component as follows.

• N =
∑d

i=1 |Wi| - the total number of appearances of keywords in documents. The pa-
rameter N signifies an upper bound which is equivalent to the total size of EDB. Leaking
such a bound is unavoidable and is considered a trivial leakage in the literature of SSE.

• SP - size pattern of the queries i.e., the number of documents matching the sterm in each
query. Formally, SP ∈ [d]n and SP[i] = |DB(sterm[i])|. It leaks the number of documents
satisfying the sterm in a query. In SEC this is always constant (equal to 2), since each
keyword (encrypted input bit) maps to exactly four documents (encrypted output of function
evaluated on the particular encrypted input) in EDB.

• RP - result pattern of the queries or the indices of documents matching the entire con-
junction. Formally, RP is vector of size n with RP[i] = DB(sterm[i])∩DB(xterm[i]) for each
i = 1, . . . , n where xterm refers to all the other keywords in the conjunctive query other than
the sterm. It is the final output of the search query and is not considered a real leakage in
the context of SSE. This is always a single document in SEC.

• IP - conditional intersection pattern, a n× n table defined as -

IP[i, j] =

 DB(s[i]) ∩DB(s[j]),
if i ̸= j and x[i] = x[j]

ϕ, otherwise

IP captures a leakage which occurs due to the specialised computation of xtags and storing
a unique xtag value in the XSet for each (w-id) pair. Fundamentally in SEC IP would
capture the leakage which occurs when two distinct function evaluation have a common
xterm (or second input) but different sterm (or first input) and there exists a document that
satisfies both the sterms. In such a scenario the set of document indices matching both
sterms is leaked (if no document matching both sterms exist then nothing is leaked). This
leaks nothing significant in SEC because in our construction sterms are nothing but dummy
keywords that are mapped to all the documents present in the database.

5.2 Analysis of Potential Leakages in SECOXT

The database (search index) generation process and algorithmic design of SECOXT, renders
certain non-trivial information leakage insignificant or redundant, which is otherwise consid-
ered crucial by the underlying OXT scheme and could lead to potential correlation inference

28

by the server between two encrypted function computation. Due to the uniform keyword
frequency and selection of random “special” term for each query by the client, SECOXT

restricts certain non-trivial leakages like size-pattern, result-pattern, equality-pattern, condi-
tional intersection pattern leakages that analyze the frequency pattern of the “special” terms
and “cross” terms in OXT over multiple conjunctive queries. This makes OXT vulnerable
to certain state-of-the-art leakage-abuse attacks [53, 8].

• Size Pattern Leakage (SP). It leaks the number of documents satisfying the “special” term
in a query. In SECOXT since every keyword (input bit) maps to exactly four documents
(encapsulating encrypted output bits), this leakage reveals no significant information.

• Result Pattern Leakage (RP). It is the final output of the search query i.e. indices of
documents matching the entire conjunction. By the design of SECOXT the result of a
conjunctive query (binary function evaluation) is always a single document (single encrypted
output bit) and hence this does not reveal any significant information to the server.

• Equality pattern (EP). It indicates which queries have the equal “special” terms. This
occurs due to the optimization technique devised in OXT in order to ensure sub-linear search
complexity by filtering out the least frequent term (sterm) during the search. In SECOXT,
since the frequency of all keywords is the same, the client chooses a different “special” term
from a pool of dummy keywords (wk

d : k ∈ {1, . . . , n}) for different queries (gate evaluation).
Hence, the adversary will not be able to infer any correlation for multiple gate evaluation
over multiple (repeated/non-repeated) inputs.

• Conditional Intersection Pattern Leakage (IP). It is a subtle leakage in OXT that occurs
when two distinct queries have a common “cross” term but a different “special” term and
there exists a document that satisfies both the “special” terms. In such a scenario the set of
document indices matching both “special” terms is leaked (if no document matching both
“special” terms exists then nothing is leaked). In SECOXT this leakage will not reveal any
significant information about the underlying input bits to a function or the output of a
function evaluation, since all the input/output bits are encrypted using an IND-CPA secure
symmetric-key encryption scheme. The server cannot gain any high entropy information
from this leakage, as all the sterms are “special” terms in SEC that are mapped to every
documents in the database.

All these leakages except N (total size of EDB) are essentially encapsulated by LSearch
OXT ,

and hence are leaked by the SEC.Evaluate algorithm (encapsulated by LEvaluate
SECOXT

). As ex-
plained above none of these leakages have a significant impact on the data privacy guarantees
of SEC.

Theorem 1 Given that OXT is an adaptively secure CSSE scheme with respect to the leak-
age function LOXT = {LEncrypt

OXT , LGenToken
OXT , LSearch

OXT } against a polynomially-bounded adap-
tive adversary, SECOXT is also an adaptively secure encrypted computation framework with
respect to the leakage function LSECOXT

= {LKeyGen
SECOXT

,LEncrypt
SECOXT

,LEvaluate
SECOXT

}, where the SECOXT

instantiation encrypts an input {x1, . . . , xp} using an IND-CPA secure symmetric-key en-
cryption scheme to obtain corresponding encrypted bits {c1, . . . , cp} over which a (publicly
known) function f is evaluated, where f is composed of functions from {fXOR, fAND, fOR}.

Proof 1 We give an extensive security analysis of SECOXT through formal proof of Theo-

29

rem 1 next.

The security analysis of SECOXT (proof of Theorem 1) stems from the provable security
guarantee of OXT. We first outline the leakage sources of OXT, with respect to which OXT
is simulation secure. Subsequently, we show that adaptive semantic security of OXT implies
adaptive security guarantees of SECOXT.

We resort to the same simulation-based security analysis approach for SECOXT as of OXT.
We show that SECOXT is secure against an adaptive semi-honest adversary A, which has ac-
cess to leakages from LSECOXT

. We build a simulator SIM = {SIMKeyGen, SIMEncrypt,SIMEvaluate}
for SECOXT where the simulator emulates SECOXT execution just from the knowledge of
public information and leakage LSECOXT

.

Leakage Cover. We briefly describe why each of the individual leakage components
(LSECOXT

= {LKeyGen
SECOXT

,LEncrypt
SECOXT

,LEvaluate
SECOXT

}) are necessary for a simulator to produce cor-
rect results. To simulate SECOXT correctly each of the leakage components are critically
analyzed and their significance is justified. N or the total number of appearances of keywords
in the database gives the size of the EDB, which is encapsulated by the public parameter
pp along with the size of search token set |TokenSet|.

Simulating SECOXT KeyGen and Encrypt. In OXT the EDB comprises of two data
structures EDB = {TSet,XSet}. The main crux of our adaptive security proof is that
the simulator for SECOXT initializes the XSet and TokenSet to consist entirely of uni-
formly random elements from a discrete log hard group initially (while relying on the
DDH assumption for indistinguishability of the real and simulated XSet and TokenSet
entries). Additionally, the simulator for SECOXT can directly invoke the simulator for
the adaptively secure TSet to simulate the TSet entries at Encrypt. Overall SIM =
{SIMKeyGen,SIMEncrypt,SIMEvaluate} takes as input the leakage components as defined
by LKeyGen

SECOXT
. N and |TokenSet| is essentially learned from the public parameter pp, hence,

LKeyGen
SECOXT

= ⊥, LEncrypt
SECOXT

that reveals the length n of the ciphertext c1, . . . , cn, and LEvaluate
SECOXT

reveals {SP, RP, EP, CIP}. Using the leakages and the public parameter the SIM then
produces the ciphertext c1, . . . , cn which is indistinguishable from the encrypted output
returned by the original SEC.Encrypt algorithm on an input x1, . . . , xn.

Simulating SECOXT.KeyGen. We observe that, SECOXT.KeyGen comprises of the
GenDB, OXT.Encrypt (CSSE.Encrypt), OXT.GenToken (CSSE.GenToken) (this
phase is encapsulated in the OXT.Search protocol in [16], and is entirely executed by
the client). Without loss of generality, we extract the search token generation phase
(OXT.GenToken) and store all possible search tokens in TokenSet during SECOXT.KeyGen.
A number of values generated by pseudo-random functions (PRF) and group operations, are
inserted into TSet using TSet.Setup [16] and XSet respectively during OXT.Encrypt. Note
that, GenDB routine creates the plain look-up table for the supported primitive operations,
and it is executed on the client side. Hence, the adversarial server learns no information
from the GenDB execution itself and thus the leakage from GenDB can be expressed as
null.

LGenDB =⊥,

Thus, the simulator SIMKeyGen can exactly simulate GenDB execution straightforwardly.

30

Subsequently, the OXT.Encrypt is invoked with the plain DB generated by GenDB. Since
the OXT.Encrypt algorithm is executed in a black-box way, the leakage from SECOXT.KeyGen
is same as the OXT.Encrypt executed over DB. Also, OXT.GenToken phase is invoked
on all possible queries q of keywords (alphanumeric translations of encrypted input bits) in
DB. This algorithm is also used a black-box and is entirely executed by the client. Thus,
the leakage can be expressed as below.

LKeyGen
SECOXT

= {LEncrypt
OXT (DB),LGenToken

OXT (q)},

Finally, the TSet Setup execution does not leak additional information apart from already
known public information (the size of the database |W| = N is known). The leakage for
this part can be expressed as below.

LKeyGen,TSet
SECOXT

= N =⊥ as this is a public information

SIMKeyGen can run the TSet simulator (as discussed in the original paper [17]). Combined
all, the simulator for KeyGen (SIMKeyGen) simulates SECOXT.KeyGen with access to
following the leakage.

LKeyGen
SECOXT

={LGenDB,LKeyGen
SECOXT

,LKeyGen,TSet
SECOXT

},

Simulating SECOXT.Encrypt. For simulating SECOXT.Encrypt the simulator SIMEncrypt

observes LEncrypt
SECOXT

which is equal to the length of the ciphertext c1, . . . , cn.

LEncrypt
SECOXT

= |c1, . . . , cn|,

The SECOXT.Encrypt algorithm invokes an IND-CPA secure symmetric-key encryption
scheme which is used to encrypt an input bit x1, . . . , xn. The SIMEncrypt produces a
ciphertext c1, . . . , cn corresponding to the input only with the information from LEncrypt

SECOXT

and its state (sSIM). The ciphertext thus produced by SIMEncrypt is indistinguishable from
the ciphertext produced by SECOXT.Encrypt in the real scheme.

Simulating SECOXT.Evaluate. The Evaluate function takes as input encrypted bits
c1, . . . , cn and retrieves search tokens from the TokenSet using the encrypted input bits (as
input to the ConstructQuery subroutine). It then invokes the CSSE.Search function using
the search tokens and gets an encrypted bit as output. This process is repeated for all
gates at every depth of the circuit being evaluated. The ConstructQuery subroutine leaks
essentially no information to the server. This is because the input bits are encrypted using
an IND-CPA symmetric-key encryption algorithm and the search tokens to be searched are
dependent on the “special” term for that particular function/query (which can be selected at
random by the client and the number of possible permutation of “special” terms for a circuit
with n gates is upper bounded by O(n!)) and also the function to be evaluated. Therefore,
the search pattern in the TokenSet for any repeated input bits cannot be correlated by the
server. This proves that -

LConstructQuery =⊥,

The leakage LEvaluate
SECOXT

is therefore exactly similar to LSearch
OXT . Hence, we can write the

following.
LEvaluate
SECOXT

= {LSearch
OXT (EDB, stq)},

31

By the simulation security guarantee of OXT, SECOXT is secure against these leakages. We
show that the leakages from OXT.Search phase do not have any detrimental effect on the
encrypted function evaluations in SEC.

Let a client evaluate a circuit of the form f3(f2(x1,x2), f1(x3,x4)). The client sends the
encrypted input bits to SEC.Evaluate. A two-input function evaluation is translated
to a three-keyword conjunctive query, where the first keyword is a “special” term (chosen
randomly by the client), the second keyword corresponds to the first input bit, and the
third keyword to the second input bit. The client maintains a state of record of all “special”
terms used. For a circuit with n gates, the client chooses n “special” terms, which can be
permuted and selected in n! different ways (upper bounded by O(n!)). The client sends a
set of “special” terms to be used at each gate in a circuit. Since the “special” terms are
used to fetch the records from memory, permuting “special” terms for consecutive (same)
gate evaluation ensures no repetition of the same “special” term hence, the same memory
location is not accessed twice.

Case-I: If the same circuit is evaluated twice, the “special” terms are permuted (which is
upper bounded by O(n!)). Hence the server cannot distinguish between two identical gate
evaluations.

Case-II: The search tokens generated corresponding to encrypted input bits are a function
of the “special” term and the function being evaluated. Thus, for each gate, the search
tokens depend on “special” terms (n! possible combinations). This ensures that an adversary
cannot distinguish between two isomorphic gate evaluation.

This proves that the leakages incurred by the underlying CSSE.Search algorithm does
not compromise the security of SEC.Evaluate. The output of SEC.Evaluate is indis-
tinguishable from random by the security guarantees of an IND-CPA secure symmteric-key
encryption scheme. Since, OXT is proven simulation secure it follows from the simulation
security guarantee that A no additional advantage over the real experiment. This implies
the Real experiment of SEC (Algorithm 3) is indistinguishable from the Ideal experiment
(Algorithm 4), and proves Theorem 1.

5.3 LSEC and Reusability of SEC specific data structures

The design rationale of SEC guarantees data privacy: privacy of the input bits to a func-
tion and the output bit returned after function evaluation. Note that SEC leverages the
encrypted search capability of an efficient CSSE scheme to perform encrypted computation.
We now detail how LSEC evolves from LCSSE.

Details on LCSSE. The most generic notion of SSE with optimal guarantees on security is
achievable through Oblivious RAM [35], which allows evaluation of search queries without
leaking anything to the server20. However, such ideal security guarantees come at immense
computational/communication overheads. Hence, most modern SSE constructions trade-off
security for efficiency by allowing calculated, acceptable leakages. Some usual leakages:

20As with state-of-the-art FHE and SSE constructions, we assume semi-honest server. That is, the server
acts as a passive adversary which does not deviate from the protocol.

32

• Access Pattern of “special” term: Two queries having the same “special” term
can be correlated by the server by the same set of svalw,Dj returned. We emphasize
that the server learns not the plaintext alphanumeric value of w, but rather the fact
that two queries share the same “special” term. Data privacy of w thus still remains
intact.

• Access Pattern of “actual” keywords: Two queries having a common document
matched to their “special” term and the same cross term tuples (for example, (w,wi))
are leaked since the same Tokenw,wi,Dj

is generated for both queries. As before, the
server can not learn the underlying plaintext alphanumeric value of wi; it can simply
correlate same cross-terms across two queries. Data privacy of wi thus still remains
intact.

• Query Result Pattern: Two queries having the same result (i.e. svalw,Dj) can be
correlated by the server. Data privacy of Dj still remains intact.

Evolving LSEC from LCSSE. To the best of our knowledge, state-of-the-art SSE construc-
tions tolerate such correlations made by the semi-honest server. However, when we use the
search capabilities of SSE to compute, leaking these correlations essentially allows a server to
learn: 1○ when inputs of two different gates evaluations are same, and 2○ when the output
of two different gates is same. We stress that while the exact plaintext input/output bit can
not be leaked (thereby not violating data privacy guaranteed by the IND-CPA symmetric-
key encryption scheme used to encrypt the data); still, such correlations between different
computations are undesirable non-trivial leakages.

As such, we focus not on plugging these leakages, but rather on unlinking the computation
from such leakages. In other words, we allow the server to learn these leakages; but embed
no critical information in such leakages. To do so, we first observe the aforementioned
leakages: the “special” term is present in all leakage functions, be it whether the leakage
occurs through svalw,Dj

or through Tokenw,wi,Dj
. Hence, in our construction, we do

not embed any computation-related information in the “special” term. From Table 3 it is
observed that the actual bits participating in computing XOR are independent of the choice
of the “special term” w. This design choice allows SEC to change the “special” term across
multiple queries. The server still learns the aforementioned leakages; however, no useful
correlations as to the underlying computation are revealed.

Example. Re-consider the problem of computing XOR(1,1) using SEC (from Section 1.2),
but now the computations happen twice. As such, two queries q1 = (w1

d ∧ w1 ∧ w2) and
q2 = (w2

d ∧ w1 ∧ w2) are issued by a black-box CSSE scheme. We enumerate the leakages
visible across these queries:

• Access Pattern of “special” term: q1 leaks [svalw1
d,Dj

: j ∈ {0, 1, 2, 3}]. Likewise,
q2 leaks [svalw2

d,Dj
: j ∈ {0, 1, 2, 3}]

• Access Pattern of “actual” keywords: q1 leaks accesses made by Tokenw1
d,w1,Dj

and by Tokenw1
d,w2,Dj

. Likewise, q2 leaks accesses make by Tokenw2
d,w1,Dj

and by

Tokenw2
d,w2,Dj

. In all cases, j ∈ {0, 1, 2, 3}.

• Query Result Pattern Leakage: q1 leaks svalw1
d,D3

, while q2 leaks svalw2
d,D3

to
the server.

33

Hence, even though the same gate with same inputs is being evaluated, by unlinking the
“special” term from the actual computation, the view of the server is different in both cases.
LSEC still contains these leakages (as with LCSSE), but the server can still not correlate
multiple evaluations of the same gate. We formalize this idea in Theorem 2.

Reusability of SEC specific data structures. The unique selection of “special” terms
by a client for each gate evaluation guarantees resistance of SEC to any statistical analysis
of input bits by restricting the adversary’s advantage of reverse-engineering inputs to neg-
ligible. This design choice also ensures that the same function invocation across different
input sets has a non-identical access pattern. Concretely, for an adversary to correlate the
encrypted input bits in two same function evaluations of the form fi(x, y) (where, x, y are
all encrypted), it requires correlating the “special” term used for each query (evaluation).
Let in this case the client chooses two different “special” terms for each gate evaluation, the
corresponding conjunctive query translates to - qfi = w1

d ∧wx ∧wy for first evaluation and
qf ′

i
= w2

d ∧ wx ∧ wy for second evaluation (where, wx,wy are keywords that map to the
corresponding input bits). By the design of SEC, the access pattern leakage is dependent
on the “special” term because the memory location of the documents corresponding to the
“special” term is accessed and only those documents are fetched during a conjunctive search.
In the example above the probability of a “special” term being repeated is upper bounded by
O(n!) (n is the number of gates in a circuit) because the client chooses unique permutation
of “special” terms for every query (function evaluation). This is unlike the CSSE schemes
where the “special” term is determined based on the least frequent keyword in the query
and hence for the example above it would be the same for both functions. Since the fre-
quency of all keywords in SEC is equal, we can leverage the unique selection of a “special”
term thereby preventing an adversary from potentially guessing the encrypted input bits
to a function by observing the memory access pattern. We re-iterate that both queries qfi
and qf ′

i
evaluate the same function fi(x, y), hence the output of both evaluations will be

equal. However, because of permuting the “special” term across two queries, the adversarial
view of the server is indistinguishable from uniform for both queries. Thus, using the same
look-up table that is encrypted and offloaded to the server once during SEC.KeyGen phase,
SEC can evaluate any arbitrary Boolean circuit multiple times. This is guaranteed both in
a single circuit across multiple gate evaluation as well as across multiple circuit evaluation.
Hence, even though the generic SSE leakages still occur, nothing significant to the underly-
ing computation is compromised. We provide a formal proof of reusability of lookup tables
in Theorem 2.

Theorem 2 (Reusability of Lookup Table) Given that SECOXT encrypts an input x1, . . . , xp

using an IND-CPA secure symmetric-key encryption scheme to obtain corresponding en-
crypted bits c1, . . . , cp that is used as an input to a (publicly known) function f , and all
information leaked from the underlying CSSE.Search (OXT.Search) phase is encapsu-
lated by LSearch

OXT , SECOXT ensures reusability of the same look-up table for multiple (simi-
lar/different) gate evaluations without leaking any extra information than that encapsulated
by LSECOXT

, while guaranteeing input and output data privacy from semantic security guar-
antees of an IND-CPA secure encryption scheme.

Proof 2 We prove Theorem 2 via a sequence of games between a challenger and an ad-
versary, where the first game (G0) is identical to the real experiment RealSECA and the
final game (Simulator) is identical to the simulation experiment IdealSECSIM,A. We establish

34

formally that the view of the adversary A in each pair of consecutive experiments is compu-
tationally indistinguishable. For ease of exposition, we consider the client computes a binary
function f on encrypted input bits {c1, c2}.

Game G0. This game is identical to RealSECA , where the challenger generates transcripts for
the encrypted input bits {c1, c2} by invoking SEC.Encrypt and transcripts for the output
f(c1, c2) by invoking SEC.Evaluate.

Pr[G0 = 1] ≤ Pr[RealSECA (λ) = 1]− negl(λ),

Game G1. This game is identical to G0 except for the fact that the challenger changes the
encrypted input of function f to {c3, c4}. The evaluation of the function is done by invoking
SEC.Evaluate in the same way as done in G0, i.e. lookup is performed on the same
encrypted lookup table. The adversary cannot distinguish between G0 and G1 due to the use
of different “special” terms for both queries.

f(c1, c2)
translated−−−−−−−→ OXT.Search(EDB, {w1

d ∧w1 ∧w2})

f(c3, c4)
translated−−−−−−−→ OXT.Search(EDB, {w2

d ∧w3 ∧w4})

where, {w1
d,w

2
d} are randomly chosen “special” terms, and {w1, . . . ,w4} are translated

keywords from input bits {c1, . . . , c4}. We say that by IND-CPA security guarantees the
output of both G0 and G1 are indistinguishable from random.

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ negl(λ),

Game G2. This game is identical to G1 except for the fact that the function being evaluated
is changed to f ′ by the challenger. Since the search tokens generated depend on the “special”
term and the function being evaluated, and since for every function evaluation the “special”
term is chosen randomly by the client, for every function (same/different) evaluation the
search tokens generated are different. The adversary can therefore not distinguish between
two isomorphic gate evaluations.

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ negl(λ),

Simulator. The simulator SIM generates similar transcripts for SEC.Evaluate using the
leakages from LSECOXT

and this experiment is similar to IdealSECSIM,A. How the transcripts
are generated from each leakage component is discussed in detail above. We state here, that
the SIM generates the transcripts from the corresponding leakages correctly, and the output
of IdealSECSIM,A is indistinguishable from G2.

5.4 Statistical Analysis of Leakage Due to Reusability

We demonstrated a proof of computational indistinguishability (from an adversarial per-
spective) that establishes the secure reusability of SEC’s lookup tables in Section 4. In this

35

section, we provide statistical analysis of the leakage from SEC’s lookup tables to validate
the same. For this, we closely follow the non-interference security notion well established in
several side-channel analysis paradigms [4, 23].

Abstractly, the non-interference property ensures no sensitive information flow to the output
of a system, given the system’s inputs. In context of SEC, non-interference between inputs
to SEC.Evaluate and LEvaluate

SEC (i.e. the observable leakage) translates directly to the
server’s inability to infer (with statistical significance) anything about the inputs purely
from LEvaluate

SEC . Concretely, non-interference can be defined as [4, 23]:

Definition 1 (Non-Interference) For a probabilistic program P, consider the set of secret
(“high”) inputs as H, the set of public (“low”) inputs as L, and the output as L. Then, P is
said to be non-interfering if and only if the mutual information I(L; H | L) = 0.

In other words, this information-theoretic definition captures the mutual information (or the
mutual dependence) of L and H (or the critical, secret input to P), given knowledge of non-
secret L. P is considered to be non-interfering if variations in H do not (statistically) affect L
(given knowledge of L). This is captured by the mutual information (conditioned on L) being
0. However, estimating conditional mutual information in an information-theoretic setting
is a difficult problem in general. Thus, a slightly “relaxed” definition for non-interference
can be used instead [23]:

Definition 2 (“Relaxed” Non-Interference) For a probabilistic program P, consider the
set of secret (“high”) inputs as H, the set of public (“low”) inputs as L, and the output as
L. Then, P is said to be non-interfering if the marginal distribution of L is independent of
the distribution of H.

Concretely, from the point of view of reusability in SEC (as in Theorem 2), the random
choice of “special” terms by the client leads to a computationally indistinguishable view
of the server for repeated evaluations. From the perspective of non-interference definitions
established, given a query executed in SEC.Evaluate, the “high” inputs H correspond to
the actual tokens that map inputs to the function being evaluated, while the “low” input is
the “special” term (that does not participate in actual functional evaluation). Evidently, L
is then essentially the leakage observed from SEC’s evaluate phase (i.e. LEvaluate

SEC).

To establish statistical independence between H and L, we rely on Welch’s t-test (that is
naturally applied when two populations have unequal variances). In our experiments, we
allow the server to learn memory access patterns wrt. the aforementioned leakage profile of
SEC.Evaluate. The null hypothesis (for a two-tailed test) then tests whether the popula-
tion means for two evaluations of SEC (while reusing SEC’s data structures) are indistin-
guishable. We initialize the “special” terms during SEC.KeyGen as usual, and the client
controls the permutations of the same over the execution of 1 million queries (i.e. a circuit
consisting of 1 million gates). Our α value (i.e. the probability of incorrectly rejecting the
null hypothesis when it is instead true) is 1%. Empirically, we observe a t-statistic of−1.7321
and a p-value of 0.0832. We hence conclude that there is not sufficient evidence to reject
the null hypothesis. In other words, statistically, the server’s view (given SEC.Evaluate’s
leakage profile) of reusable executions in SEC is statistically indistinguishable from the ex-

36

ecution of a randomly sampled circuit of the same size (for client-controlled permutation of
“special” terms). This statistically establishes non-interference of H in the leakage LEvaluate

SEC .

6 Experimental Results

In this section, we report on a prototype implementation of SECOXT and SECConjFilter, and
compare it with a prototype implementation of the TFHE library [22], which implements an
efficient and fast gate-by-gate bootstrapping [21].

Implementation Details. Our prototype implementations are developed in C++ and we
use Redis as the database backend. More specifically, we realize all PRF operations using
AES-256 in counter mode, BLAKE3 hash function for computing all hash operations, and
all group operations over the elliptic curve Curve25519 [7].

Platform. For our experiments, we used a single node with 64-bit Intel Xeon Silver 4214R
v4 3.27GHz processors, running Ubuntu 20.04.4 LTS, with 128GB RAM and 1TB SSD hard
disk.

Evaluation Of Storage Overhead. As discussed in Section 3.6, the storage required for
SEC scales with the number of keyword-document pairs and the number of search tokens
for a particular function. In our implementations, the server storage required for SECOXT to
store TSet21 and XSet22 and the TokenSet is around 43 KB while that for SECConjFilter is 26
KB. We thus note that SEC is highly optimized and scalable with significantly fewer storage
requirements than state-of-the- art FHE schemes. Table 7 offers a quantifiable comparison.

Table 7: Storage Overhead comparison (in MB) of SEC with existing FHE schemes in
literature. Storage overhead of FHE scheme typically indicates the bootstrapping key size
whereas for SECOXT and SECConjFilter it implies the size of the encrypted search index
stored at the cloud server.

Scheme Storage Overhead (in MB)

Gentry et. al[33] 3700

Gentry et. al[29] 2300

Halevi et. al.[40] 1600

Ducas et. al[26] 1000

Chillotti et. al.[21] 24

SECConjFilter (This work) 0.449

SECOXT (This work) 0.098

Evaluation of Computation time. The evaluation time of SECOXT for computing ar-
bitrary sized Boolean circuit over encrypted data scales linearly with the search time com-
plexity of OXT times some constant which depends upon the depth of the circuit. The
time required to retrieve the documents corresponding to a conjunctive query scales with
the least frequent keyword in the query in OXT. Since the database (search index) in SEC
is extremely small, the time taken by OXT.Search is significantly less. Hence, the aver-
age time required by SECOXT is around 10 milliseconds for one binary function evaluation

21OXT specific data structure to store inverted index for the “special” term.
22OXT specific data structure to check presence of “cross” terms in respective document identifiers.

37

which is remarkably fast. On a similar note SECConjFilter scales with the search complexity
of ConjFilter, which is dependent on the least frequent conjunct in the query. Notably
SECConjFilter exhibits even faster performance with an average evaluation time of 40 mi-
croseconds for one binary function evaluation. Our experimental results validate that SEC
is highly efficient and extremely fast while evaluating arbitrary Boolean functions over en-
crypted data. Figure 4 compares the execution time of SECOXT and SECConjFilter with
different TFHE backends for varying depth of circuits.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 101 201 301 401 501 601 701 801 901

T
im

e
 (

in
 s

e
c
o

n
d

s
)

Experiments

TFHE-Nayuki AVX TFHE-Nayuki portable TFHE-Spqlios AVX

TFHE-Spqlios FMA SECOXT SECConjFilter

Figure 3: Time taken (in seconds) for 1000 invocations of SECOXT and SECConjFilter

against different TFHE backends.

0

5

10

15

20

1 11 21 31 41

T
im

e
 (

)i
n

 s
e
c
o

n
d

s
)

Depth

TFHE-Nayuki AVX TFHE-Nayuki portable TFHE-Spqlios AVX

TFHE-Spqlios FMA SECOXT SECConjFilter

Figure 4: Time taken (in seconds) for different circuit depths of SECOXT and SECConjFilter

against different TFHE backends.

Table 8: Time taken (in minutes) and Storage overhead (in MB) for evaluation of AES-128
circuit and Maxpool function (AlexNet) by SECOXT and SECConjFilter against different
TFHE backends.

Scheme Time (in minutes) Storage (in MB)

AES-128 Maxpool Function

TFHE-Nayuki Portable 336.03 2920.52 24

TFHE-Nayuki AVX 179.02 1441.18 24

TFHE-Spqlios AVX 57.37 523.62 24

TFHE-Spqlios FMA 41.87 349.30 24

SECConjFilter (This work) 1.02 6.18 0.449

SECOXT (This work) 6.57 48.17 0.098

Comparison With FHE. We compare SECOXT and SECConjFilter with different varia-
tions of TFHE in Figure 3. One variation is Nayuki portable (non-AVX) and AVX builds,
which implement very efficient versions of Fast Fourier Transform. Another back-end family

38

is spqlios AVX and spqlios FMA back-ends, which are efficient assembly implementations
of ring operations. It is observed from Figure 3 that SECOXT is 103× and six to seven
times faster; SECConjFilter is 106× and 103× faster than the portable TFHE backend and
the fastest (non-portable) TFHE backend Spqlios AVX, respectively. Figure 4 compares the
increase in execution time with an increase in the depth of the circuit. Both instantiations
of SEC outperforms the fastest TFHE backend using Spqlios AVX optimization for function
evaluation of arbitrary depth.

We showcase SEC’s scalability for functions with multi-bit inputs by using it for encrypted
evaluation of (i) the entire AES-128 circuit (with XOR/AND/NOT-gate count of 25124/6800/1692)
and (ii) three max-pooling layers of AlexNet architecture23 (a circuit with OR-gate count of
289060). This requires no extra storage (since we still only require storage for three extra
gates), and the performance figures (as well as a comparison with Torus-FHE) are described
in Table 8. For both circuits, a (non-parallelized) implementation of SECOXT outperforms a
(non-parallelized) implementation of Torus-FHE by six to seven orders of magnitude, while
a (non-parallelized) implementation of SECConjFilter shows an improvement of 103× in
computation time (we expect the relative comparison to remaining unchanged with paral-
lelization and additional hardware/software-level optimizations). SECOXT requires around
250× less storage while SECConjFilter requires 50× times less storage, which are remarkably
less. These results clearly showcase the efficiency and scalability of SEC for circuits with
multi-bit inputs.

7 Discussion

We conclude with a brief discussion comparing SEC with traditional FHE. The core tech-
nical difference between SEC and FHE is as follows: SEC models each Boolean gate as
a truth table, and leverages encrypted look-ups for evaluating this truth table on an en-
crypted input, while FHE models each Boolean gate as an algebraic operation over some
appropriate algebraically structured mathematical object (e.g., polynomial rings [29, 11, 34]
or the Torus [21, 22]), and exploits the algebraic structure underlying each encrypted input
to evaluate the gate. This offers an efficiency vs functionality tradeoff. As demonstrated
empirically, SEC outperforms traditional FHE schemes significantly, both in terms of com-
putation time and storage requirements, when operating over symmetrically encrypted data.
On the other hand, the algebraic structure underlying FHE allows it to operate over publicly
encrypted data, and we leave it as an interesting open question to extend the lookup-based
approach underlying SEC to computing over publicly encrypted data.

We note, however, that in many practical applications (e.g., querying over outsourced en-
crypted databases), it suffices to support evaluation of arbitrary Boolean circuits over sym-
metrically encrypted data, since the data owner is also the primary entity querying the
(encrypted) data after outsourcing it to an untrusted server for storage and processing. In-
deed, this setting motivates the entire literature on SSE [48, 25, 19, 16], albeit for restricted
classes of functions. To the best of our knowledge, our work is the first to establish the
possibility of supporting arbitrary Boolean circuit evaluation efficiently over encrypted data
using purely symmetric-key encryption techniques on top of lookup-based gate evaluation.

23KSH17 Imagenet classification with deep convolutional neural networks

39

Indeed, as demonstrated by our theoretical analysis and practical evaluation, the usage of
purely symmetric-key primitives is what enables the highly desirable efficiency and compact-
ness guarantees of SEC, allowing it to scale over extremely large symmetrically encrypted
datasets while outperforming FHE.

References

[1] Al Badawi, A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., et al.: Openfhe: Open-source fully homomorphic
encryption library. In: WAHC (2022)

[2] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Ad-
vances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 18-22, 2013. Proceedings, Part I (2013)

[3] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In: Ad-
vances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 17-21, 2014, Proceedings, Part I 34 (2014)

[4] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.A., Grégoire, B., Strub, P.Y.: Verified
proofs of higher-order masking. In: Annual International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 457–485. Springer (2015)

[5] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: the ACM
Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA
(2012)

[6] Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Advances in Cryptology - ASIACRYPT 2017 - 23rd International
Conference on the Theory and Applications of Cryptology and Information Security,
Proceedings, Part II (2017)

[7] Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Public Key Cryp-
tography - PKC. Lecture Notes in Computer Science (2006)

[8] Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: 27th
Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA (2020)

[9] Boemer, F., Kim, S., Seifu, G., DM de Souza, F., Gopal, V.: Intel hexl: accelerating
homomorphic encryption with intel avx512-ifma52. In: WAHC (2021)

[10] Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011,
Providence, RI, USA, March 28-30, 2011. Proceedings 8 (2011)

[11] Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in lwe-based homomorphic
encryption. In: Public-Key Cryptography–PKC 2013 (2013)

[12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT) (2014)

40

[13] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (stan-
dard) LWE. In: IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011 (2011)

[14] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (stan-
dard) lwe. SIAM Journal on computing (2014)

[15] Cash, D., Jaeger, J., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation. In: NDSS 2014 (2014)

[16] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: CRYPTO (2013)

[17] Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner, M.: Highly-scalable
searchable symmetric encryption with support for boolean queries. In: CRYPTO 2013
(2013)

[18] Chang, Z., Xie, D., Li, F.: Oblivious ram: A dissection and experimental evaluation.
Proceedings of the VLDB Endowment (2016)

[19] Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: ASI-
ACRYPT 2010 (2010)

[20] Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of
approximate numbers. In: ASIACRYPT 2017 (2017)

[21] Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT 2016 (2016)

[22] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: Fast fully homomorphic
encryption library (2019)

[23] Clark, D., Hunt, S., Malacaria, P.: Quantified interference: Information theory and
information flow. In: Workshop on Issues in the Theory of Security (WITS’04) (2004)

[24] Clearinghouse., P.R.: Chronology of data breaches. https://privacyrights.org/

data-breaches (2024)

[25] Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption:
improved definitions and efficient constructions. In: ACM CCS (2006)

[26] Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less than
a second. In: EUROCRYPT 2015 (2015)

[27] El-Yahyaoui, A., Kettani, M.D.E.E.: A verifiable fully homomorphic encryption scheme
for cloud computing security. CoRR (2018)

[28] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing (2009)

[29] Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme.
In: EUROCRYPT 2011 (2011)

41

https://privacyrights.org/data-breaches
https://privacyrights.org/data-breaches

[30] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in bgv-style homomor-
phic encryption. In: SCN (2012)

[31] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic en-
cryption. In: PKC 2012 (2012)

[32] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog over-
head. In: Eurocrypt (2012)

[33] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In:
CRYPTO 2012 (2012)

[34] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances in Cryptol-
ogy - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I (2013)

[35] Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
Journal of the ACM (JACM) (1996)

[36] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Symposium on Theory of Com-
puting Conference, STOC’13, Palo Alto, CA, USA. ACM (2013)

[37] Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures
from standard lattices. In: Proceedings of the forty-seventh annual ACM symposium
on Theory of computing (2015)

[38] Goyal, V., Li, H., Ostrovsky, R., Polychroniadou, A., Song, Y.: ATLAS: efficient and
scalable MPC in the honest majority setting. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, Proceedings, Part II (2021)

[39] Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomor-
phic encryption scheme. In: Topics in Cryptology - CT-RSA 2019 - The Cryptogra-
phers’ Track at the RSA Conference (2019)

[40] Halevi, S., Shoup, V.: Design and implementation of helib: a homomorphic encryption
library. Cryptology ePrint Archive (2020)

[41] Iliashenko, I., Zucca, V.: Faster homomorphic comparison operations for BGV and
BFV. Proc. Priv. Enhancing Technol. (2021)

[42] Kamara, S., Wei, L.: Garbled circuits via structured encryption. In: Financial Cryp-
tography and Data Security - FC 2013 Workshops, USEC and WAHC 2013, Okinawa,
Japan (2013)

[43] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of
compact hardware implementations for the rijndael s-box. In: Topics in Cryptology–
CT-RSA 2005 (2005)

[44] Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations
from the decisional linear assumption. In: Annual cryptology conference (2010)

42

[45] Patel, S., Persiano, G., Seo, J.Y., Yeo, K.: Efficient boolean search over encrypted data
with reduced leakage. In: ASIACRYPT 2021 (2021)

[46] Patranabis, S., Mukhopadhyay, D.: Forward and backward private conjunctive search-
able symmetric encryption. In: NDSS 2021 (2021)

[47] Smart, N.P.: Practical and efficient fhe-based MPC. In: Quaglia, E.A. (ed.) Cryptog-
raphy and Coding - 19th IMA International Conference, IMACC 2023, London, UK,
Proceedings (2023)

[48] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceeding 2000 IEEE symposium on security and privacy. S&P 2000 (2000)

[49] Yang, K., Wang, X., Zhang, J.: More efficient MPC from improved triple generation
and authenticated garbling. In: CCS ’20: 2020 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, USA, 2020 (2020)

[50] Yang, Q., Peng, G., Gasti, P., Balagani, K.S., Li, Y., Zhou, G.: MEG: memory and
energy efficient garbled circuit evaluation on smartphones. IEEE Trans. Inf. Forensics
Secur. (2019)

[51] Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986) (1986)

[52] Yuan, B., Jia, Y., Xing, L., Zhao, D., Wang, X., Zou, D., Jin, H., Zhang, Y.: Shattered
chain of trust: Understanding security risks in cross-cloud iot access delegation. In:
USENIX Security Symposium (2020)

[53] Zhang, Y., Katz, J., Papamanthou, C.: Queries are belong to us: The power of file-
injection attacks on searchable encryption (2016)

[54] Zhou, W., Jia, Y., Yao, Y., Zhu, L., Guan, L., Mao, Y., Liu, P., Zhang, Y.: Discovering
and understanding the security hazards in the interactions between iot devices, mobile
apps, and clouds on smart home platforms. In: 28th USENIX Security Symposium
(2019)

43

	Introduction
	Our Contributions
	Technical Overview
	Related Work
	How SEC differs from GC and HE

	Preliminaries and Background
	Conjunctive SSE: Syntax and Security Model
	Adaptive Security of CSSE
	Oblivious Cross-Tag Protocol (OXT): Overview

	Symmetric Encrypted Computation
	Syntax of SEC
	SEC Construction
	Proof of Correctness of SEC
	Correctness
	Practical Instantiation of SEC
	Complexity Analysis of SEC

	Security and Leakage Profile Analysis of SEC
	Security Analysis and Discussion on Leakage Profile of SECOXT
	Leakage Profile of SECOXT
	Analysis of Potential Leakages in SECOXT
	LSEC and Reusability of SEC specific data structures
	Statistical Analysis of Leakage Due to Reusability

	Experimental Results
	Discussion

