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Abstract

An n-server information-theoretic Distributed Point Function (DPF) allows a
client to secret-share a point function fα,β(x) with domain [N ] and output
group G among n servers such that each server learns no information about
the function from its share (called a key) but can compute an additive share of
fα,β(x) for any x. DPFs with small key sizes and general output groups are pre-
ferred. In this paper, we propose a new transformation from share conversions to
information-theoretic DPFs. By applying it to the share conversions from Efre-
menko’s PIR and Dvir-Gopi PIR, we obtain both an 8-server DPF with key size

O(210
√

logN log logN + log p) and output group Zp and a 4-server DPF with key

size O(τ · 26
√

logN log logN ) and output group Z2τ . The former allows us to par-
tially answer an open question by Boyle, Gilboa, Ishai, and Kolobov (ITC 2022)
and the latter allows us to build the first DPFs that may take any finite Abelian
groups as output groups. We also discuss how to further reduce the key sizes by
using different PIRs, how to reduce the number of servers by resorting to sta-
tistical security or using nice integers, and how to obtain DPFs with t-security.
We show the applications of the new DPFs by constructing new efficient PIR
protocols with result verification.
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Information-theoretic cryptography
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1 Introduction

An n-server Distributed Point Function (DPF) [1] converts any point function fα,β
(i.e., fα,β(x) = β for x = α and fα,β(x) = 0 for all x ̸= α) into n shares k0, . . . , kn−1

such that every share ki leaks no information about the function but enables the com-
putation of an additive share of fα,β(x). In particular, both the additive shares and
fα,β(x) belong to an Abelian group, which is called the output group. The communi-
cation efficiency of a DPF may be measured by its key size, i.e., the maximum size
of the n shares k0, . . . , kn−1. Ideally, we would like DPFs with general output groups,
small key sizes, and a small number of servers.

DPFs can be computational or information-theoretic. Computational DPFs [1]
base their security on cryptographic assumptions (e.g., the existence of one-way func-
tions) such that every share ki leaks no information about the point function to a
polynomial-time server. Information-theoretic DPFs [2] can tolerate any computa-
tionally unbounded server and have better computation efficiency. These merits make
them especially useful in constructing efficient cryptographic protocols such as private
information retrieval (PIR) [3].

The study of information-theoretic DPFs was initiated by Boyle et al. [2]. For point
functions with domain [N ] and output group Zpτ (p ≥ 3 is a prime, τ ≥ 1), they con-

structed a 4-server perfectly secure DPF with key size O(τ log(p) · 22p
√
logN log logN );

for point functions with domain [N ] and output group Zp (p ≥ 2 is a prime), they con-

structed a 3-server statistically secure DPF with key size O(log(p) · 22p
√
logN log logN ).

Both DPFs were based on share conversions [4–6], which may be derived from the
PIR of [7].

Note that the DPFs of [2] have several restrictions. First, their key sizes are all
exponential in p. When p is large, they will incur unaffordable communication over-
head. In fact, Boyle et al. [2] leave it as an open question to remove this exponential
dependence of key sizes in p. In particular, it is not even known how to reduce the p
in the exponent to poly(log p). Second, the DPFs of [2] cannot handle point functions
with an output group of the form Z2τ for any τ > 1. Consequently, it is impossible
for Boyle et al. [2] to handle point functions with any finite Abelian group as output
group. In many real-life applications, either an output group of the form Z2τ with
τ > 1 (e.g., PIR with result verification [8]) or an output group of the form Zp with a
very large p (e.g., statistical analysis [9, 10]) is needed. Therefore, it is interesting to
lift the above restrictions with new techniques.

1.1 Our Contributions

In this paper, we focus on the open question raised by Boyle et al. [2] and construct
new DPFs (see Table 1) with either smaller key sizes or more general output groups.

As the first contribution, we extend the definition of 1-private n-server DPFs of
[2] that requires every key ki leaks no information about a point function to that of
t-private n-server DPFs that can tolerate the collusion of any t servers (t ≥ 1). We
then give a general transformation from share conversions that satisfy certain nice
properties to perfectly secure DPFs. This transformation is novel and of independent
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interest. In particular, we give a t-private DPF transformed from Woodruff-Yekhanin
PIR [11] (see Theorem 7).

As the second contribution, we build a share conversion from the matching vec-
tors (MVs) based PIR scheme of [12] and apply the transformation to the share
conversion to obtain a perfectly secure 8-server DPF (see Theorem 8) with key

size O(210
√
logN log logN + log p), for point functions with domain [N ] and output

group Zp (p ≥ 2 is a prime). We then adopt the idea of [2] to this DPF and con-
struct a 2−Ω(λ)-statistically secure 4-server DPF (see Theorem 11) with key size

O(λ·210
√
logN log logN+λ log p), for the same point functions. These DPFs remove the p

from the exponent and partially answer the open question of [2]. We also extend these
constructions with the nice integers from [13, 14] and give both n-server (n ≤ 2r+1)
perfectly secure DPFs and n-server (n ≤ 2r) statistically secure DPFs with key size

O(2c(r)
r
√

logN(log logN)r−1
+ log p), for point functions with domain [N ] and output

group Zp, where r ≥ 2 and c(r) is a constant. Since the set of functions we need to
share is of size N(p − 1) + 1, the key size should be at least Θ(logN + log p). Our
construction almost reach the optimal key size when p is quite larger than N . For
applications like secure aggregation [9] or secure writing [15, 16], we need a DPF with
a large prime output group, our new constructions greatly improved the efficiency.

As the third contribution, we build a share conversion from the MVs based PIR
scheme of [7] and apply the transformation to the share conversion to obtain a perfectly

secure 4-server DPF (see Theorem 6) with key size O(τ log p · 2c(p)
√
logN log logN ), for

point functions with domain [N ] and output group Zpτ , where c(p) = 6 for p = 2 and
c(p) = 2p for p ≥ 3. In particular, for p = 2 and τ > 1, our DPFs fill the gap left
by Boyle et al. [2] and thus lead to DPFs with any finite Abelian groups as output
groups. In the problem of private set intersection [17], each element is given a weight
and the DPF is used to sum the weights of the elements in the intersection. In this
application, we may assign weight 2j to the j-th element. Choosing Z2τ as the output
group can reduce the storage cost. Besides, DPFs with arbitrary output groups are
more flexible building blocks for constructing function secret sharing schemes [10, 18].

Scheme n t Key size G Security

[2] 4 1 O(τ log p · 22p
√
logN log logN ) Zpτ (p ≥ 3) Perfect

Theorem 6 4 1 O(τ log p · 26
√
logN log logN ) Z2τ Perfect

[2] 3 1

O(λ log p · 2c(p)
√

logN log logN )

c(p) =

 6, p = 2;

10, p = 3;

2p, p ≥ 5.

Zp (p ≥ 2) Statistical

Theorem 11 4 1 O(λ · 210
√
logN log logN + λ log p) Zp (p ≥ 2) Statistical

Theorem 8 8 1 O(210
√
logN log logN + log p) Zp (p ≥ 2) Perfect

Theorem 7
d(t+ 1),

d ≥ 1
≥ 1 O(log p ·N1/⌊(2d+1)/t⌋) Zp (p ≥ 2) Perfect

Table 1 Comparison of information-theoretic DPFs (n: the number of servers; t: the number of
colluding servers; G: the output group; p: a prime; λ: the statistical security parameter).
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1.2 Technical Overview

In this section, we give a high-level overview of the main techniques used in this paper.

1.2.1 Overview of the Existing DPF Construction

The existing construction [2] of perfectly secure information-theoretic DPFs requires a
share conversion between two secret sharing schemes (SSSs) that are based on match-
ing vectors (MVs). A secret sharing scheme may split a secret α into shares such that
any authorized subset of the shares can recover α but any unauthorized subset gives
no information about α. A share conversion scheme may convert the shares of a secret
α under one SSS to the shares of a related secret under another SSS. Given positive
integers m = pe11 p

e2
2 and h, where p1, p2 are distinct primes and e1, e2 ≥ 1, an Sm-MV

family of size N in Zh
m is a pair (U, V ) = ({ui}Ni=1, {vi}Ni=1) of subsets of Zh

m such that

• ⟨ui,vi⟩ = 0 for all i ∈ [N ] (where ⟨·, ·⟩ stands for dot products), and
• ⟨ui,vj⟩ ∈ Sm for all i ̸= j,

where Sm = {s : 0 < s < m, (s mod pe11 ), (s mod pe22 ) ∈ {0, 1}}.
Given a point function fα,β : [N ] → G with output group G = Zpτ , where p ≥ 3

is a prime, N, τ ≥ 1, α ∈ [N ], and β ∈ G, Boyle et al. [2] considered an SSS that
identifies the secret α with a vector vα from an Sqpτ -MV family U = {ui}Ni=1, V =
{vi}Ni=1 ⊆ Zh

qpτ , where q = 2 and Sqpτ = {1, pτ , 1 + pτ}, and splits vα into two shares

c0 = w, c1 = w + vα ∈ Zh
qpτ (1)

with a randomly picked vector w ∈ Zh
qpτ . For the construction of [2] to work, a basic

requirement is that the output group G must be a communicative ring with identity.
Boyle et al. [2] constructed a share conversion function Conv with range H = Gh+1

(which is a G-module) that may take any x ∈ [N ] and share cℓ as input and outputs
an additive share

Conv(ℓ, x, cℓ) = (−1)⟨cℓ,ux⟩ · (1,ux) mod pτ (2)

of a related secret ν =
∑1

ℓ=0 Conv(ℓ, x, cℓ) ∈ H. They observed that there exists a
function

ψ : [N ]→ H α 7→ (1,−vα) mod pτ (3)

and an invertible ring element θ ∈ {2,−2} ⊆ G such that〈
ψ(α),

1∑
ℓ=0

Conv(ℓ, x, cℓ)

〉
=

{
0, x ̸= α;
θ, x = α.

(4)
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They chose σ = θ−1 ∈ G and reduced the problem of evaluating fα,β(x) to the problem
of computing an inner product, i.e.,

fα,β(x) =

〈
(σ · β) · ψ(α),

1∑
ℓ=0

Conv(ℓ, x, cℓ)

〉
. (5)

In particular, the (σ · β) · ψ(α) in Eq. (5) may be considered as the action of the ring
element σ · β ∈ G on the module element ψ(α) ∈ H and the inner product in Eq. (5)
is a bilinear function from H×H to G. The main idea of [2] is sharing the vector

h = (σ · β) · ψ(α) (6)

from Eq. (5) additively as h = h0 + h1 such that fα,β(x) can be further represented
as the sum of four inner products as follows:

fα,β(x) =

1∑
j=0

1∑
ℓ=0

⟨hj ,Conv(ℓ, x, cℓ)⟩. (7)

By distributing the four keys {(hj , cℓ) : j = 0, 1, ℓ = 0, 1} to four servers and asking
each server to return an inner product ⟨hj ,Conv(ℓ, x, cℓ)⟩, the client can additively
reconstruct fα,β(x) as per Eq. (7). Note that each key (hj , cℓ) leaks no information
about the point function fα,β to a server. Such an idea gives a 4-server DPF with
output group G = Zpτ . By [19], the required MV family exists when h = O(τ log p ·
22p

√
logN log logN ) and thus leads to a subpolynomial key size (see Table 1).

1.2.2 Overview of Our DPF Framework

Although the construction of [2] already results in DPFs with subpolynomial key sizes,
it still has many limitations. First, it requires p ≥ 3 and cannot allow the output group
Z2τ , which however is very important for constructing DPFs that support an arbitrary
Abelian output group. Second, it yields insecure DPFs if ≥ 2 servers collude. Finally,
the key size cannot be further reduced, even if more servers are used. In this work, we
generalize the construction of [2] and give a DPF framework that may overcome the
aforementioned limitations.

Like [2], our DPF framework requires the output group G of the point function
fα,β : [N ] → G to have a ring structure. It is obtained by generalizing Eq. (5). In
general, to obtain t-private (t + 1)n-server DPFs that may resist the collusion of t
servers, we start with a (t, n)-threshold SSS (TSSS) that splits the secret value α ∈ [N ]
into n shares c0, c1, . . . , cn−1 such that any > t shares can recover α but any ≤ t shares
contain no information about α. Instead of using a G-module H in [2], we choose an
extension ring R of G and an R-module H, and design a share conversion function
Conv with range H such that there exist a function ψ : [N ]→ H and a bilinear function
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Φ : H×H→ R satisfying

Φ

(
ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

)
=

{
0, x ̸= α;
θ, x = α.

(8)

for a ring element θ ∈ R, where θ is nonzero but not necessarily invertible. The core
technique of our framework is introducing a ring homomorphism

ϕ : R→ G (9)

such that there exists a ring element σ ∈ R satisfying ϕ(σ ·θ) = 1. Then we can reduce
the problem of evaluating fα,β(x) with the following generalized formula

fα,β(x) = ϕ

(
Φ

((
σ · β

)
⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

))
, (10)

where ⋄ stands for the action of the ring element σ · β ∈ R on the module element
ψ(α) ∈ H. To have a t-private (t+ 1)n-server DPF, we share the module element

h = (σ · β) ⋄ ψ(α) (11)

from Eq. (10) additively as h = h0 + h1 + · · · + ht such that fα,β(x) can be further
represented as the sum of (t+ 1)n terms as follows

fα,β(x) =

t∑
j=0

n−1∑
ℓ=0

ϕ
(
Φ
(
hj ,Conv(ℓ, x, cℓ)

))
. (12)

By distributing the keys {(hj , cℓ) : 0 ≤ j ≤ t, 0 ≤ ℓ < n} to (t + 1)n servers and
asking each server to return a term ϕ(Φ(hj ,Conv(ℓ, x, cℓ))), the client can additively
reconstruct fα,β(x) as per Eq. (12). As each key (hj , cℓ) leaks no information about
the point function fα,β to any t colluding servers, our framework gives a t-private
(t+ 1)n-server DPF with output group G.

In our language, the DPF construction of [2] is a special case of ours. To see this,
it suffices to choose R = G = Zpτ ,H = Gh+1, t = 1, n = 2, choose the SSS for α as per
Eq. (1), choose the Conv as per Eq. (2), choose ψ as per Eq. (3), and choose the ϕ in
Eq. (9) to be the identity function on G, in our DPF framework.

1.2.3 Instantiations of our DPF Framework

In Section 4.1, we instantiate the proposed DPF framework and give a 4-server per-
fectly secure DPF (Theorem 6) for the point function fα,β : [N ] → G with output
group G = Zpτ , where p ≥ 2 is a prime, N, τ ≥ 1, α ∈ [N ], and β ∈ G. Like [2], we
consider an SSS that identifies the secret value α ∈ [N ] with a vector vα from an
Sqpτ -MV family in Zh

qpτ and splits vα into two shares as per Eq. (1). However, we
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make a change as follows: instead of fixing q = 2, we only need q to be a prime ̸= p.
As Sqpτ -MV families exist only if q ̸= p, by fixing q = 2 Boyle et al. [2] rules out the
possibility that p = 2 and thus cannot give DPFs with output group Z2τ . Although
the idea of changing the prime q from 2 to an arbitrary prime ̸= p is natural, inte-
grating this simple idea into the process of Section 1.2.1 turns out not to work for the
output group G = Z2τ , because now the ring element θ ∈ {2,−2} from Eq. (4) is no
longer invertible in G. To bypass this difficulty, we turn to the new DPF framework
of Section 1.2.2. Instead of choosing R = G = Zpτ , we choose R = Zpτ [γ]/(γq − 1), an
extension ring of the ring G, and change the share conversion function in Eq. (2) to

Conv(ℓ, x, cℓ) = (−1)ℓγ1−ℓ+⟨cℓ,ux⟩ ⋄ (1,ux)

a function with range H = Rh+1 such that for the function ψ from Eq. (3) there
exist a ring element θ = (γ − 1) · γ⟨w,uα⟩ ∈ R and a bilinear inner product function
Φ : H×H→ R satisfying Eq. (8). Then we choose the ring element σ = γ−⟨w,uα⟩ ∈ R
and choose the following ring homomorphism

ϕ : R→ G
q−1∑
i=0

riγ
i 7→ r1

such that ϕ(σ · θ) = 1. With these choices, the remaining steps of the proposed
framework eventually give us the expected DPF.

In Section 4.2.1, we instantiate the proposed DPF framework with a share con-
version from the Woodruff-Yekhanin PIR [11] and obtain a t-private (t + 1)n-server
perfectly secure DPF (Theorem 7) with output group G = Zp. In this instan-
tiation, the SSS for the secret value α ∈ [N ] splits α into shares in a finite field
R = Fpτ = Zp[X]/(g(X)), where g(X) is an irreducible polynomial of degree τ , the
share conversion converts these shares into shares in the R-module H = Rh+1, the
bilinear function Φ computes the inner product of any two vector in H, and the ring
homomorphism ϕ : R→ G maps any ring element

∑τ−1
i=0 riX

i ∈ R to r0 ∈ G.
In Section 4.2.2, we instantiate the proposed DPF framework with a share con-

version from the Efremenko PIR [12] and obtain an 8-server perfectly secure DPF
(Theorem 8) with output group G = Zp. The MVs of [12] may be built over a much
smaller ring Zm and in particular allow us to remove the exponential dependence in
p of the key size. In this instantiation, the MVs reside in Zh

m for an integer m = p1p2,
the product of two distinct primes that are ̸= p; the SSS for the secret value α ∈ [N ]
splits α into shares in Zh

m; we choose R = Fpτ = Zp[X]/(g(X)), where g(X) is an
irreducible polynomial of degree τ and m|(q − 1); the share conversion converts the
shares of α into shares in the R-module H = R; the bilinear function Φ computes the
multiplication of any two elements of H, and the ring homomorphism ϕ : R→ G maps
any ring element

∑τ−1
i=0 riX

i ∈ R to r0 ∈ G.
With the standard techniques (Fig. 3) from [2], we also convert the proposed

perfectly secure DPFs to statistically secure DPFs (Theorem 11) that use less
servers.
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1.3 Application to Private Information Retrieval

DPFs are particularly useful in the context of private information retrieval (PIR),
which allows a client to retrieve an item DBα from a database DB = (DB1, . . . ,DBN ) ∈
{0, 1}N , without revealing which item is being retrieved. In a t-private n-server PIR
protocol, DB is replicated between n servers, the client retrieves DBα by sending a
query to each server, receiving an answer from the server and reconstructing DBα

from the n answers, such that any ≤ t servers learn no information about α ∈ [N ].
With an increased number of servers involved in PIR, the likelihood of servers

returning incorrect answers rises. Such problems may be caused by many reasons, e.g.,
malicious servers or outdated databases. During the past years, significant endeavors
[8, 20–27] have been undertaken to address the challenge posed by malicious servers,
which might collude and provide wrong answers to the client, aiming to mislead the
client into reconstructing an incorrect value of DBα. PIR protocols tolerating malicious
servers have particular interest in the modern age of cloud computing because they
allow the PIR servers to be implemented by untrusted cloud services.

1.3.1 New PIR-RV Protocols

Ke et al. [8] proposed PIR with result verification (PIR-RV) protocols (see Section 5
for a formal definition of PIR-RV) that allow the client to verify the correctness of the
reconstructed value of DBα. A t-private n-server PIR protocol is said to be (v, ϵ)-secure
if any ≤ v colluding malicious servers can never escape the above verification, except
with a very small probability ϵ. In Ke et al. [8], the number v of tolerable servers is at
most n/2. More precisely, for n = 2, t = 1, they have a 2-server (1, 1p )-secure PIR-RV

protocol with communication complexity O(log p ·
√
N).

Scheme n t Communication complexity Security

[8] 2 1 O(log p ·
√
N) (2, 1

p
)

Theorem 13 2(ζ + 1) 1 O(ζ3τ · 26
√
logN log logN ) (2ζ, 1

2τ
)

Theorem 14 4(ζ + 1) 1 O(ζ5 · 210
√
logN log logN + ζ5 log p) (4ζ, 1

p
)

Table 2 Our PIR-RV Protocols

As the fourth contribution of this work, we construct a 1-private 2(ζ + 1)-server
(2ζ, 1

2τ )-secure PIR-RV protocol and a 1-private 4(ζ + 1)-server (4ζ, 1p )-secure PIR-
RV protocol, by using our new DPFs. Both PIR-RV protocols support more servers
and achieve a subpolynomial communication complexity, which is asymptotically more
efficient than [8] and best to date.

1.3.2 From DPF to PIR-RV

Our PIR-RV protocols are obtained by applying a general transformation to the pro-
posed DPFs. First of all, it is well-known that the t-private (t + 1)n-server DPF
protocols from Section 1.2.2 can be easily translated into t-private (t+1)n-server PIR
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protocols: to privately retrieve DBα from the database, the client may generate a DPF
key ki for fα,1 : [N ]→ G to the ith server Si, receive ai =

∑N
ℓ=1 Evali(ki, ℓ) ·DBℓ from

the server and then reconstruct DBα additively as

DBα =

N∑
ℓ=1

fα,1(ℓ) ·DBℓ =

(t+1)n∑
i=1

ai. (13)

A basic transformation. To construct a PIR-RV protocol, a basic idea is asking
the client to randomly choose a group element β ∈ G and use fα,β instead of fα,1 in
Eq. (13). With this idea, the client will reconstruct β ·DBα ∈ {0, β} instead of DBα.
If the reconstructed value is not in {0, β}, then some servers must be dishonest and
have provided incorrect answers. The security of the underlying t-private (t + 1)n-
server DPF implies that any ≤ t server have no information about β and thus cannot
escape the proposed verification, except with a very small probability 1/|G| (given a
very large group G). In such a way, this basic transformation will give a (t+1)n-server
PIR-RV protocol that is t-private and (t, 1

|G| )-secure.

An improved transformation. While the basic transformation is applicable to
any t-private (t+ 1)n-server DPF protocols from Section 1.2.2, the resulting PIR-RV
protocols cannot be (v, ϵ)-secure for v > t. Recall that in our DPF framework, the
module element h = (σ ·β)⋄ψ(α) is split into t+1 additive shares h0,h1, . . . ,ht. The
(t + 1)n servers are divided into t + 1 different sets and each set is given one of the
shares. Observe that as long as the v colluding servers miss at least one of the t + 1
shares h0,h1, . . . ,ht, they will not be able to learn β and thus cannot compromise
the verifiability of the PIR-RV protocol. To have a (v, ϵ)-secure PIR-RV protocol with

v > t, our main idea is running m =
(
n(t+1)

n

)
independent instances of the (t, 1

|G| )-

secure protocol from our basic transformation with the following requirements: (i) the
β in each instance is truly random and independent of all the other instances, and (ii)
the h0 in each instance is given to a different n-subset of the (t + 1)n servers. When
v ≤ nt, in at least one of the m instances, the h0 is given to n honest servers. This
instance will allow the client to verify the correctness of the results. Thus, we get a
(t+ 1)n-server PIR-RV protocol that is t-private and (nt, 1

|G| )-secure.

The general transformation. Our general transformation may give PIR-RV proto-
cols that tolerate a larger fraction of malicious servers. The main idea is replacing the
t-private n(t + 1)-server DPF in the basic transformation with a t-private n(ζ + 1)-
server DPF (ζ ≥ t), where h = (σ · β) ⋄ ψ(α) is split into ζ + 1 additive shares and
each share is given to n servers, and then apply the technique in the improved trans-
formation by running m =

(
n(ζ+1)

n

)
independent instances of the basic protocol. As

any v ≤ nζ colluding servers will miss the h0 in at least one of the instances, we
eventually have a t-private (nζ, 1

|G| )-secure (ζ+1)n-server PIR-RV protocol where the

fraction nζ/(n(ζ + 1)) = 1/(1 + ζ−1) of malicious servers can be arbitrarily close to
1. The PIR-RV protocols of Theorem 13 and Theorem 14 are obtained by applying
our general transformation to the t-private n(t+1)-server DPF for (t, n) = (1, 2) from
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Section 4.1 and the t-private n(t+1)-server DPF for (t, n) = (1, 4) from Section 4.2.2,
respectively.

1.4 Organization

In Section 2, we introduce the basic notions, definitions and techniques that will be
used in our constructions. Section 3 presents our transformation from share conversion
to information-theoretic DPFs. In Section 4, we build share conversions on several
existing PIR schemes and apply the transformation to obtain our new DPFs. In Section
5, we show the applications of our DPFs to PIR-RV protocols. Finally, Section 6
contains our concluding remarks.

2 Preliminaries

Let Z+ be the set of all positive integers. For any N ∈ Z+, we denote [N ] = {1, . . . , N}.
For any m,h ∈ Z+, we denote by Zm the ring of integers modulo m and denote by Zh

m

the set of all vectors of length h over Zm. For any u = (u1, . . . , uh),v = (v1, . . . , vh) ∈
Zh
m, we denote ⟨u,v⟩m =

∑h
i=1 uivi. For any prime power q, we denote by Fq the finite

field of q elements and denote by F∗
q its multiplicative group. Let u = (u1, . . . , uh).

For any vector z = (z1, . . . , zh), we denote zu = zu1
1 · · · z

uh

h . For any γ, we denote
γu = (γu1 , . . . , γuh). We use δα,x to denote the Kronecker symbol, i.e., δα,x = 1 when
x = α and δα,x = 0 when α ̸= x.

Bilinear functions. Let R a commutative ring with identity. Let H be an R-module
(see Section 2.1 for basics about rings and modules). We denote by r ⋄ h the action of
a ring element r ∈ R on a module element h ∈ H. Let C be a finite Abelian group. A
function Φ : H×C → R is said to be bilinear if for any h1, h2 ∈ H, c1, c2 ∈ C, r1, r2 ∈ R,
Φ(r1 ⋄ h1 + r2 ⋄ h2, c1 + c2) =

∑2
i=1 ri · Φ(hi, cj).

Probability. We denote by Uℓ the uniform distribution over {0, 1}ℓ. For any two
distributions D1, D2 over the same sample space Ω, we denote by SD(D1, D2) =
1
2

∑
ω∈Ω |PrD1

[ω]− PrD2
[ω]| their statistical distance.

Point functions. Let N ∈ Z+ and let G be an Abelian group. For any α ∈ [N ] and
β ∈ G, the point function fα,β : [N ]→ G is defined by fα,β(x) = β · δα,x.

2.1 Rings, Modules and the Structure of Finite Abelian groups

Definition 1. (Commutative ring with identity [28]) A commutative ring R with
identity is a set together with two binary operations + and · satisfying the following
axioms:

1. (R,+) is an Abelian group, we call this group the additive group of R;
2. (a · b) · c = a · (b · c) and a · b = b · a for all a, b, c ∈ R;
3. (a+ b) · c = (a · c) + (b · c);
4. there is an element 1 ∈ R with 1 · a = a · 1 = a for all a ∈ R.
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Definition 2. (Module [28]) Let R be a commutative ring with identity. A (left)
R-module is an Abelian group H with an action of R on H denoted by r ⋄ h, for all
r ∈ R and h ∈ H which satisfies

1. (r + s) ⋄ h = r ⋄ h+ s ⋄ h for all r, s ∈ R and h ∈ H;
2. (r · s) ⋄ h = r ⋄ (s ⋄ h) for all r, s ∈ R and h ∈ H;
3. r ⋄ (h1 + h2) = r ⋄ h1 + r ⋄ h2 for all r ∈ R and h1, h2 ∈ H;
4. 1 ⋄ h = h for all h ∈ H.

In particular, let m be a positive integer, R is a commutative ring with identity,
where Zm is a subgroup of the additive group of R. Let Zm = {[0]m, . . . , [m − 1]m},
we have the following theorem.
Theorem 1. ([28]) Let ϕ be a surjective (group) homomorphism from the additive
group of R to G that fix G = Zm ⊆ R. Then for all r ∈ R and [b]m ∈ G we have:

ϕ(r · [b]m) = [b]m ⋄ ϕ(r),

where G = Zm is also regarded as a Zm-module.
There is a theorem about the structure of finitely generated modules over a

principal ideal domain in [28], which could imply the structure of finite Abelian groups.
Theorem 2. (Structure of finite Abelian groups [28]) For any finite Abelian
group G, there exist primes p1, . . . , pℓ and positive integers τ1, . . . , τℓ such that:

G ∼= Z/(pτ11 )× · · · × Z/(pτℓℓ ).

2.2 Distributed Point Function

Informally, a t-private n-server DPF [2] allows one to secret-share a point function
fα,β among n servers such that any t servers learn no information about the function.
However, given any input x ∈ [N ], each server can compute an additive share of
fα,β(x) ∈ G.
Definition 3. (Distributed point function [2]) An n-server DPF Π =
(Gen, {Evali}n−1

i=0 ) is a tuple of n+ 1 algorithms with the following syntax:

• (k0, . . . , kn−1) ← Gen(1λ, fα,β): Given a security parameter λ and a point func-
tion fα,β, the (randomized) key generation algorithm Gen returns n secret keys
k0, . . . , kn−1.

• yi ← Evali(ki, x): Give a secret key ki and an input x ∈ [N ], the (deterministic)
evaluation algorithm Evali (of server i) returns a group element yi ∈ G.

The protocol Π should satisfy the following requirements:

• Correctness. For any λ, any fα,β, any x ∈ [N ], and any (k0, . . . , kn−1) ←
Gen(1λ, fα,β), Pr

[∑n−1
i=0 Evali(ki, x) = fα,β(x)

]
= 1.

• Security. The security of a t-private DPF requires that every ≤ t secret keys leak no
information about the point function. Formally, we consider the following security
experiment between a challenger and an adversary A that controls the j-th server
for j ∈ T (T ⊆ {0, 1, . . . , n− 1}, |T | ≤ t):
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– Given the security parameter λ, A generates two point functions f0 = fα0,β0 and
f1 = fα1,β1 , both having domain [N ] and range G.

– The challenger samples b
$← {0, 1} uniformly, generates n secret keys

(k0, . . . , kn−1) ← Gen(1λ, f b) for the point function f b, and gives kT = {ki : i ∈
T} to A.

– The adversary A outputs a guess b′ ← A(kT ).

Denote by Adv(1λ,A, T ) := |Pr[b = b′]−1/2| the advantage of A in guessing b in the
experiment. For a circuit size bound M = M(λ) and an advantage bound ϵ = ϵ(λ),
we say that Π is (M, ϵ)-secure if for all subset T ⊆ {0, . . . , n− 1} of cardinality ≤ t,
and all non-uniform adversaries A of size M(λ), Adv(1λ,A, T ) ≤ ϵ(λ).

A DPF is said to be statistically ϵ-secure if it is (M, ϵ)-secure for allM , and perfectly
secure if it is statistically 0-secure. Both kinds of DPFs are called information-theoretic
DPFs [2]. In this work, we focus on information-theoretic DPFs.

2.3 Private Information Retrieval

A t-private n-server PIR protocol involves two kinds of participants: a client and n
servers S0, · · · ,Sn−1, where each server has a database DB ∈ {0, 1}N and the client
has an index α ∈ [N ]. It allows the client to retrieve DBα, without revealing α to any
t of the servers.
Definition 4 (Private information retrieval). An n-server PIR Γ =
(Que,Ans,Rec) is a triple of algorithms with the following syntax:

• ({quej}n−1
j=0 , aux) ← Que(N,α): This is a randomized querying algorithm for the

client. Given a retrieval index α ∈ [N ], it outputs n queries {quej}n−1
j=0 , along with

an auxiliary information aux. For each 0 ≤ j < n, the query quej will be sent
to the server Sj. The auxiliary information aux will be used by the client in the
reconstructing algorithm.

• ansj ← Ans(DB, quej): This is a deterministic answering algorithm for the server Sj
(0 ≤ j < n). Given the database DB and the query quej, it outputs an answer ansj.

• DBα ← Rec(α, {ansj}n−1
j=0 , aux): This is a deterministic reconstructing algorithm for

the client. Given the the retrieval index α, the answers {ansj}n−1
j=0 and the auxiliary

information aux, it outputs DBα.

The protocol Γ should satisfy the following requirements:

• Correctness. For any N , any DB ∈ {0, 1}N , any α ∈ [N ], and any
({quej}n−1

j=0 , aux) ← Que(N,α), it holds that Rec(α, {Ans(DB, quej)}n−1
j=0 , aux) =

DBα.
• t-Privacy. For any N , any α1, α2 ∈ [N ], and any T ⊆ {0, 1, . . . , n−1} with |T | ≤ t,

QueT (N,α1) and QueT (N,α2) are identically distributed, where QueT denotes the
concatenation of the j-th output of Que for all j ∈ T .

The efficiency of an n-server PIR protocol is measured by its communication com-
plexity, which is denoted by CCΓ(N) and defined as the number of bits communicated
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between the client and all servers, maximized over the choices of DB ∈ {0, 1}N and

α ∈ [N ], i.e., CCΓ(N) = maxDB,α(
∑n−1

j=0 (|quej |+ |ansj |)).

2.4 Secret Sharing and Share Conversion

In Section 3, we will propose a general transformation from PIR to information-
theoretic DPF. A stepping stone in this transformation is share conversion, which
converts one SSS into another.
Definition 5. (Secret sharing [4, 29]) An SSS L = (Share,Recov) for n participants
allows a dealer to convert a secret s ∈ S into n shares (c0, . . . , cn−1)← Share(s), one
to each participant, such that

• Any authorized set A ⊆ {0, 1, . . . , n− 1} of participants can reconstruct the secret s
by executing the reconstruction algorithm on their shares, i.e., s← Recov({cj}j∈A);

• Any unauthorized set B ⊆ {0, 1, . . . , n− 1} learns no information about s, i.e., for
any s1, s2 ∈ S, ShareB(s1) and ShareB(s2) are identically distributed.

For ease of exposition, we denote an SSS by (L,S). An SSS (L,S) is called a (t, n)-
threshold SSS if the authorized sets are the subsets of {0, 1, . . . , n − 1} of cardinality
≤ t, and called an additive SSS if s = c0+ · · ·+cn−1 for all (c0, . . . , cn−1)← Share(s).
We say that (L,S) has share space C if for any s ∈ S, the n shares output by Share(s)
all belong to C.
Definition 6. (Share conversion [4]) Let (L1,S1) = ((Share1,Recov1),S1) and
(L2,S2) be two SSSs. Let R ⊆ S1 × S2 be a binary relation such that, for every
s1 ∈ S1 there exists at least one s2 ∈ S2 such that (s1, s2) ∈ R. We say that L1

is locally convertible to L2 w.r.t. R if there exist local share conversion functions
(g0, . . . , gn−1) with the following property: For any s1 ∈ S1 and

(
c0, . . . , cn−1) ←

Share1(s1), (g0(c0), . . . , gn−1(cn−1)
)
is a valid sharing for some s2 ∈ S2 such that

(s1, s2) ∈ R.

2.5 Matching Vector Families

Our DPFs are constructed with matching vector (MV) families [12], which also
underlie the most efficient PIR schemes [7, 12, 30] to date.
Definition 7. (S-matching family) Let m,h ∈ Z+ and let S ⊆ Zm \ {0}. A pair
(U, V ), where U = {ux}Nx=1, V = {vx}Nx=1 ⊆ Zh

m, is said to be an S-matching family
of size N if ⟨uα,vα⟩m = 0 for all α ∈ [N ], and ⟨ux,vα⟩m ∈ S for all x, α ∈ [N ] such
that x ̸= α.

Efremenko [12] defined MV families and gave the first superpolynomial size S-
matching families modulo a composite integerm, where S ⊆ Zm\{0} was the canonical
set [13] of m.
Definition 8. (Canonical set) Let m = pe11 . . . perr > 1, where p1, . . . , pr are r > 1
distinct primes and e1, . . . , er ∈ Z+. The canonical set of m, denoted by Sm, is the set
of integers σ ∈ Zm \ {0} such that σ mod peii ∈ {0, 1} for all i ∈ [r].

The Sm-matching families of Efremenko [12] are obtained from the superpolyno-
mial size set systems of Grolmusz [19].
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Theorem 3. ([12, 19]) Let m = pe11 · · · perr > 1, where p1, . . . , pr are r > 1 distinct
primes and e1, . . . , er ∈ Z+. Then there is a constant c = c(m) such that: for any
integer h > 0, there is an Sm-matching family (U, V ) of size N in Zh

m such that

h = O
(
2c

r
√

logN(log logN)r−1)
.

For r = 2, the constant c in Theorem 3 may be taken as 2 ·max{p1, p2}. In the PIR
schemes of [7, 12], the Sm-matching family (U, V ) of Theorem 3 was used to encode
any database DB = (DB1, . . . ,DBN ) ∈ {0, 1}N as

FDB(z) =

N∑
j=1

DBj · zuj , (14)

a polynomial in z = (z1, . . . , zh), such that the problem of privately retrieving a
database entry DBi is reduced to the problem of privately recovering a coefficient of
FDB. In particular, FDB may be interpreted as a polynomial over a finite field [12] or
a finite ring [7].

2.6 Efremenko’s PIR

Let q be a prime power such that q−1 is a multiple of the integer m from Theorem 3.
Then the finite field Fq contains an element γ of multiplicative order m. In Efremenko
[12], the FDB(z) in (14) was interpreted as a polynomial in Fq[z] and any DBα was
recovered by considering the restriction of FDB(z) on a random multiplicative line in
Gh, where G = ⟨γ⟩. The recovering procedure is based on an Sm-decoding polynomial
[12].
Definition 9. (S-decoding polynomial) Let m ∈ Z+ and let S ⊆ Zm \ {0}. Let
q be a prime power such that m|(q − 1) and let γ ∈ F∗

q be of multiplicative order m.
A polynomial P (x) ∈ Fq[x] is called an Sm-decoding polynomial if P (γσ) = 0 for all
σ ∈ S, and P (γ0) = 1.

For any S ⊆ Zm \ {0}, a trivial construction may give an S-decoding polynomial

P (X) =
∏
σ∈S

(X − γσ)
/∏

σ∈S

(1− γσ) (15)

with at most n = |S| + 1 monomials, e.g., P (X) = a0X
b0 + · · · + an−1X

bn−1 . To
retrieve any DBα, Efremenko [12] requires one to communicate with n servers, choose
a random vector w ← Zh

m, send to the j-th server w + bjvα for all 0 ≤ j < n, and
finally output

DBα =

n−1∑
j=0

aj · FDB(γ
w+bjvα). (16)

The number of monomials in P (X) is equal to the number of required servers, which
should be as small as possible. For a given (m,S, q, γ), the S-decoding polynomial in
Definition 9 is not unique. For example, for m = 511 and S = {1, 147, 365}, Efremenko
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[12] showed an S-decoding polynomial with 3 (< |S|+ 1) monomials. Itol and Suzuki
[13] showed a composition theorem for finding Sm-decoding polynomials with fewer
monomials.
Theorem 4. (Composition theorem [13]) Let m = m1m2 be the product of two
coprime integers m1 and m2. If there is an Smi-decoding polynomial with ni monomials
for i = 1, 2, then there is an Sm-decoding polynomial with n monomials such that
n ≤ n1n2.

Chee et al. [14] showed that if m = p1p2 is a Mersenne number, then there is
an Sm-decoding polynomial with 3 monomials. Such m is nice in the sense that the
number of monomials in an Sm-decoding polynomial can be strictly smaller than
|Sm|+1 = 4. Zhu et al. [31] showed that there are infinitely many nice integers of the
form m = pα1

1 pα2
2 . The nice integers from [14, 31] gave the most efficient n-server PIR

schemes to date for all n ≥ 27.

2.7 Generalized Dvir-Gopi PIR

Dvir and Gopi [7] constructed an MV-based 2-server PIR with communication com-
plexity exp(O(

√
logN(log logN))). In their PIR, the FDB(z) in (14) is regarded as a

polynomial over the finite ring Zm[γ]/(γm− 1). Each server uses not only FDB(z) but
also the following vector-valued function to answer PIR queries:

F
(1)
DB(z) =

N∑
j=1

DBj · uj · zuj . (17)

Boyle et al. [2] generalized [7] such that the reconstruction algorithm computes a
linear combination of the servers’ answers. They chosem = 2pτ for an odd prime p. We
give a more general version by choosing m = qpτ , where p, q are distinct primes. We

regard FDB(z) and F
(1)
DB(z) as functions from Rh to Zpτ , where R = Zpτ [γ]/(γq−1). To

retrieve DBi, the client interacts with two servers, chooses a random vector w← Zh
m

and sends to the ℓ-th server cℓ = w+ ℓ · vi for ℓ = 0, 1, where vi is from the set V in
an MV family (U, V ). The ℓ-th server replies with

aℓ = (−1)ℓγ1−ℓ
(
FDB(γ

cℓ), F
(1)
DB(γ

cℓ)
)
=

N∑
j=1

DBj · (−1)ℓγ1−ℓ+⟨cℓ,uj⟩m · (1,uj) (18)

which is in Rh+1. Let ϕ(r) = r1 for r = r0 + r1γ+ · · ·+ rq−1γ
q−1 ∈ R. Upon receiving

a0 and a1 from the two servers, the user recovers DBi with

DBi = ϕ
(
⟨(a0 + a1), (1,−vi)⟩pτ · γ−⟨w,ui⟩m

)
∈ Zpτ . (19)
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3 Our Transformation from Share Conversion to
DPF

In this section, we show a transformation from share conversions that satisfy certain
properties of DPFs. As many existing PIR protocols [7, 12] imply share conversions
by virtue of their properties, our transformation will give a method of constructing
DPFs from PIR via share conversion, which will be used in Section 4 to obtain our
new DPFs.

We construct perfectly secure DPFs for point functions with domain [N ] and range
G, where N ∈ Z+ and G is an Abelian group. From Theorem 2 we know that any finite
Abelian group G is isomorphic to a group of form Z/(pτ11 ) × · · · × Z/(pτℓℓ ). Suppose

there are n-server DPFs (DPF1, . . . ,DPFℓ) with DPFj = (Genj ,Evalj0, . . . ,Eval
j
n−1)

and output group Gj = Z/(pτjj ). Then it’s enough to construct a DPF with output
group G in the following figure.

• Gen(1λ, fα,β) : For α ∈ [N ], β = (β1, . . . , βℓ) ∈ Z/(pτ11 )× · · · × Z/(pτℓℓ ) ∼= G,

– for j = 1, . . . , ℓ, (kj0, . . . , k
j
n−1)← Genj(1

λ, fα,βj );
– output (k0, . . . , kn−1) where ki = (k1i , . . . , k

ℓ
i ).

• Evali(ki, x) : For ki = (k1i , . . . , k
ℓ
i ), x = (x1, . . . , xℓ) ∈ Z/(pτ11 )× · · ·×Z/(pτℓℓ ) ∼= G,

output

(Eval1i (k
1
i , x1), . . . ,Eval

ℓ
i(k

ℓ
i , xℓ)) ∈ Z/(pτ11 )× · · · × Z/(pτℓℓ ) ∼= G.

Fig. 1 DPF with output group G

Fig. 1 shows that we only need to consider DPFs with output groups of form
Z/(pτ ) = Zpτ , then we can use them to construct DPFs with any output groups. The
construction is essentially a transformation from share conversions with certain nice
properties to DPFs.

Let (L1,S1) = ((Share1,Recov1), [N ]) be a (t, n)-threshold SSS with share space
C1. Let (L2,S2) be an additive SSS with share space C2, where C2 = S2 is an additive
group. Suppose that R ⊆ S1×S2 is a binary relation and (L1,S1) is locally convertible
to (L2,S2). To enable the proposed transformation, we require:

(a) There is a function Conv : {0, 1, . . . , n−1}×S1×C1 → C2 such that for any x ∈ S1,
the functions gx0 , . . . , g

x
n−1 : C1 → C2 defined by

gxℓ (c) = Conv(ℓ, x, c), ∀0 ≤ ℓ < n, c ∈ C1, (20)

are n local share conversion functions for the binary relation R.
(b) There is a commutative ring R with identity such that G ⊆ R is a subgroup of the

additive group of R, G contains the identity element of R and there is a surjective
homomorphism ϕ : R→ G.
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(c) There exist an R-module H, a function ψ : S1 → H, and a bilinear function Φ :
H×C2 → R such that: for any α ∈ S1, any (c0, . . . , cn−1)← Share1(α), any x ∈ S1,
and

ρ(α, x) := Φ

(
ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

)
, (21)

there exists a ring element σ ∈ R that satisfies

ϕ(ρ(α, x) · σ) = δα,x. (22)

Share conversion: the SSSs (L1,S1) and (L2,S2), the binary relation R, the func-
tion Conv, the ring R, the module H, and the functions ϕ, ψ,Φ that satisfy (a), (b)
and (c).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ G, compute (c0, c1, . . . , cn−1)← Share1(α);
choose h0, h1, . . . , ht ← H uniformly subject to

h0 + h1 + · · ·+ ht = (σ · β) ⋄ ψ(α);

output n(t + 1) keys {ki}n(t+1)−1
i=0 , where ki = (hj , cℓ) for i = nj + ℓ (0 ≤ j ≤

t, 0 ≤ ℓ < n).
• Evali(ki, x) : For ki = (hj , cℓ) and x ∈ [N ], output ϕ

(
Φ
(
hj ,Conv(ℓ, x, cℓ)

))
.

Fig. 2 Perfectly secure DPF Π from share conversion

Given the SSSs (L1,S1) and (L2,S2), the binary relation R, the function Conv,
the ring R, the module H, and the functions ϕ, ψ,Φ that satisfy (a), (b) and (c), Fig.
2 shows our construction of perfectly secure DPFs. For a point function fα,β with
domain [N ] and range G, we secret-share α with the (t, n)-threshold SSS (L1,S1) such
that any ≤ t shares leak no information about fα,β . For any x ∈ [N ], the outputs
{Conv(ℓ, x, cℓ)}0≤ℓ<n define a function ρ(α, x) in (21) that satisfies (22), where σ ∈ R.
We normalize the ψ(α) in (21) by acting the ring element σ · β in order to have that

fα,β(x) = ϕ

(
Φ

((
σ · β

)
⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

))
. (23)

We additively secret-share
(
σ · β

)
⋄ ψ(α) ∈ H such that any ≤ t shares leak no

information about fα,β . In our construction, the n(t + 1) servers are organized as
a (t + 1) × n array, the (j, ℓ)-th server (0 ≤ j ≤ t, 0 ≤ ℓ < n) is given both the
jth share of

(
σ · β

)
⋄ ψ(α) and the ℓth share of α such that any ≤ t servers learn

no information about fα,β . The bilinear property of Φ allows us to distribute the
computation of the left-hand side of (23) to the n(t + 1) servers and obtain a DPF
(Gen,Eval0, . . . ,Evaln(t+1)−1).
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Theorem 5. The construction of Fig. 2 gives a t-private n(t + 1)-server perfectly
secure DPF with output group G (= Zpτ ).

Proof. We need to show that Π is correct and t-private. The correctness requires that
for any α ∈ [N ], β ∈ G and x ∈ [N ], the sum of the n(t+ 1) servers’ outputs is equal
to fα,β(x). Since Φ is bilinear, we have that

Φ
( t∑

j=0

hj ,

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)
= Φ

(
(σ · β) ⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)

=
(
σ · β

)
· Φ
(
ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)
= σ · β · ρ(α, x).

(24)

Note that β ∈ G is the residue class of b modulo pτ for some integer 0 ≤ b < pτ . In
Section 2.1, we show that ϕ(r · β) = β · ϕ(r) for any r ∈ R and β ∈ G. By Eq. (22),
we have that

ϕ(σ · β · ρ(α, x)) = β · ϕ(ρ(α, x) · σ) = β · δα,x = fα,β(x). (25)

Due to Eq. (24) and Eq. (25), we have that

n(t+1)−1∑
i=0

Evali(ki, x) =
t∑

j=0

n−1∑
ℓ=0

ϕ
(
Φ
(
hj ,Conv(ℓ, x, cℓ)

))
= ϕ

(
Φ
( t∑
j=0

hj ,

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
))

= fα,β(x).

Regarding privacy, we note that c0, . . . , cn−1 are shares of α under the (t, n)-
threshold SSS (L1,S1), h0, . . . , ht are shares of (σ ·β)⋄ψ(α) under a t-private additive
SSS, and any ≤ t servers learn ≤ t of c0, . . . , cn−1 and ≤ t of h0, . . . , ht. It’s easy to
see that any ≤ t servers learn no information about fα,β , i.e., Π is t-private.

Statistically Secure DPFs. Boyle et al. [2] construct a 3-server statistically secure
DPF using a share conversion from (2, 3)-CNF sharing to additive secret sharing. By
choosing

S1 = [N ], G = Zp, S2 = C2 = R = H = Fpτ , Φ(a, b) = a · b, (26)

Under this condition, we have

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

{
̸= 0, x = α

= 0, x ̸= α
. (27)
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Following the techniques in [2], we can generalize their construction to get more general
statistically secure DPFs in Fig. 3, which is a t-private n-server 2−Ω(λ)-statistically
secure DPF with output group Zp.

Let Share be the Share1 algorithm of SSS (L1,S1), Conv be the algorithm given by
Eq. (20) from the share conversion.

• Gen(1λ, fα,β): For α ∈ [N ] and β ∈ Zp,

– for ξ = 1, . . . , λ draw α∗
ξ ← {α,N+1} at random and compute (cξ0, . . . , c

ξ
n−1)←

Share(α∗
ξ);

– for ξ = 1, . . . , λ set y = (y1, . . . , yλ) as

yξ =


n−1∑
ℓ=0

Conv(ℓ, α, cξℓ) , α∗
ξ = α

0 , α∗
ξ = N + 1

;

– choose r ∈ Fλ
pτ at random under the constraint that ϕ(⟨r,y⟩) = β;

– output n keys {ki}n−1
i=0 , where ki = ((cξℓ)

λ
ξ=1, r) for i = ℓ (ℓ ∈ {0, . . . , n− 1}).

• Evali(ki, x) : For ki = ((cξℓ)
λ
ξ=1, r) and x ∈ [N ];

– for ξ = 1, . . . , λ set yξi = Conv(ℓ, x, cξℓ), and denote by yi ∈ Fλ
pτ the vector of all

yξi values concatenated;
– output ϕ(⟨r,yi⟩).

Fig. 3 Statistically secure MV-based DPF framework

4 DPFs from Our Transformation

In this section, we construct new perfectly secure DPFs by instantiating the trans-
formation from Section 3. We construct 1-private perfectly secure DPFs with output
group G = Zpτ for any prime p and any integer τ ∈ Z+. For p = 2 and τ > 1, such
DPFs are not known to exist before this work. These DPFs allow us to obtain per-
fectly secure DPFs with any finite Abelian groups as output groups. For any prime
p and τ = 1, we provide a DPF that supports colluding servers and an alternative
construction of DPFs that have much shorter secret keys.

4.1 DPFs with Output Group Zpτ

In this section, we construct a 1-private perfectly secure 4-server DPF with output
group G = Zpτ , where p may be any prime and τ ∈ Z+. Our DPFs are obtained by
instantiating the transformation from Section 3. Underlying our construction is our
new generalization of the Dvir-Gopi PIR [7] with m = qpτ (see Section 2.7). Our
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choice of m only requires that p, q be different primes. In our language, Boyle et al.
[2] is a special case of our generalization by fixing q = 2. It is this new choice of m
that allows us to obtain DPFs with output group G = Z2τ (let p = 2 and q be an odd
prime). In Fig. 1, we show that the techniques of this section enable the construction
of DPFs with any finite Abelian group as the output group.

To present the new DPFs with G = Zpτ , we directly give the share conversion in
our generalization of Dvir-Gopi PIR, and then apply the transformation from Section
3.

Share Conversion. Let fα,β be a point function with domain [N ] and output group
G = Zpτ . We choose a prime q ̸= p and let

R = Zpτ [γ]/(γq − 1) (28)

be the ring of polynomials modulo γq − 1, with coefficients from Zpτ . In our share
conversion, the SSSs (L1 = (Share1,Recov1),S1) and (L2,S2) are chosen such that

S1 = [N ], C1 = Zh
m, S2 = C2 = Rh+1, (29)

where m = qpτ , h ∈ Z+ is an integer such that there is an Sm-matching family
(U, V ) ⊆ Zh

m of size N , and C1, C2 are the share spaces of the two SSSs. For α ∈ S1,
Share1(α) generates two shares c0, c1 ∈ C1 by mapping α to a vector vα ∈ V , randomly
choosing w← Zh

m, and finally setting

cℓ = w + ℓ · vα, ℓ = 0, 1. (30)

Given cℓ and any x ∈ S1, the local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = (−1)ℓγ1−ℓ+⟨cℓ,ux⟩m · (1,ux), (31)

where ux ∈ U is the x-th element of U . The SSS (L2,S2) is additive and may recover
a value s2(w, α, x) ∈ S2 from the converted shares in Eq. (31) via

s2(w, α, x) =

1∑
ℓ=0

Conv(ℓ, x, cℓ). (32)

Eq. (32) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Zh
m}. (33)

From Share Conversion to DPF. Besides the ring R, the SSSs (L1,S1) and
(L2,S2), the binary relation R, and the local share conversion function Conv that sat-
isfies the requirement of (a) in Section 3, we still need to properly choose a module
H and three functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our trans-
formation. Note that G is a subgroup of the additive group of R and contains the
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identity element of R. For any r ∈ R, there exist q elements r0, . . . , rq−1 ∈ G such that
r = r0 + r1γ + · · · + rq−1γ

q−1. In particular, the representation of r into the sum is
always unique. We choose ϕ : R→ G such that

ϕ(r) = r1, ∀r = r0 + r1γ + · · ·+ rq−1γ
q−1 ∈ R. (34)

Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the
requirement of (b). For (c), we choose the R-module H = Rh+1(= S2 = C2) and
ψ : S1 → H such that

ψ(α) = (1,−vα), ∀α ∈ S1. (35)

Then it is easy to verify that the function Φ : H× C2 → R defined by

Φ(h, c) = ⟨h, c⟩, ∀h ∈ H = Rh+1, c ∈ C2 = Rh+1 (36)

is bilinear. For any α ∈ S1, any (c0, c1) ← Share1(α), any x ∈ S1, Eq. (32), (35) and
(36) jointly imply that the ρ(α, x) in Eq. (21) is

ρ(α, x) = ⟨(1,−vα), s2(w, α, x)⟩. (37)

For the above choices of w, α, and x, we set

σ = γ−⟨w,uα⟩m , (38)

show that Eq. (22) is satisfied (see the proof for Theorem 6), and thus meet the require-
ment of (c). Applying our transformation from Section 3 with the related building
blocks as above, we get the 4-server perfectly secure DPF (see Fig. 4).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zpτ , generate (c0, c1) = (w,w+vα), choose
h0,h1 ← H = Rh+1 uniformly subject to

h0 + h1 = γ−⟨w,uα⟩mβ ⋄ (1,−vα),

output k0 = (h0, c0), k1 = (h0, c1), k2 = (h1, c0), k3 = (h1, c1).
• Evali(ki, x) : For every i ∈ {0, 1, 2, 3}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ
(〈
hj , (−1)ℓγ1−ℓ+⟨cℓ,ux⟩m · (1,ux)

〉)
.

Fig. 4 A 4-server perfectly secure DPF with output group G = Zpτ

Theorem 6. The construction of Fig. 4 gives a 1-private perfectly secure 4-server
DPF with output group Zpτ (p is any prime, τ ∈ Z+). For point functions with domain

[N ], the key size of the DPF is O(τ log(p) · 2c(p)
√
logN log logN ), where c(2) = 6, c(p) =

2p for p ≥ 3.
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Proof. First of all, we show the correctness and security of that construction. Since
we have shown that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.

In this construction we have

ϕ(ρ(α, x) · σ) = ϕ

(
⟨(1,−vα),

1∑
ℓ=0

Conv(ℓ, x, cℓ)⟩ · γ−⟨w,uα⟩m

)
= ϕ

(
⟨(1,−vα), (γ

1+⟨c0,ux⟩m − γ⟨c1,ux⟩m) · (1,ux)⟩ · γ−⟨w,uα⟩m
)

= ϕ
(
γ−⟨w,uα⟩m · γ⟨w,ux⟩m · (γ − γ⟨vα,ux⟩m) · (1− ⟨vα,ux⟩ mod pτ )

)
.

• For x = α, ⟨vα,ux⟩m = 0, ϕ(ρ(α, x) · σ) = ϕ(γ − 1) = 1.
• For x ̸= α, ⟨vα,ux⟩m ∈ {1, σ01, σ10}, where σ01 mod pτ = 0, σ01 mod q = 1,
σ10 mod pτ = 1, σ10 mod q = 0:

– If ⟨vα,ux⟩m = 1 or ⟨vα,ux⟩m = σ01, then γ−γ⟨vα,ux⟩m = 0, hence ϕ(ρ(α, x)·σ) =
0;

– If ⟨vα,ux⟩m = σ10, then 1− ⟨vα,ux⟩m mod pτ = 0, hence ϕ(ρ(α, x) · σ) = 0.

Then the requirement (c) is satisfied, then the correctness and security of
(Gen, {Evali}0≤i<4) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
Zm × Rh+1, whose size is O(τ log p · h). From Theorem 3 we know the key size |ki| =
O(τ log(p) · 2c(p)

√
logN log logN ), where c(2) = 6, c(p) = 2p for p ≥ 3 which completes

the proof.

4.2 DPFs with Output Group Zp

For G = Zp, the DPFs from Section 4.1 have key sizes exponential in p. Boyle et al. [2]
have statistically secure DPFs for the same output group. However, both schemes are
only 1-private and the key sizes of both schemes are exponential in p as well. In Section
4.2.1, we show that how to obtain a DPF with G = Zp by applying our transformation
to a share conversion from the PIR [11] and get a t-private information-theoretic DPF.
In Section 4.2.2, we show how to get a DPF with key sizes only linear in log p.

4.2.1 t-private DPF

Applying our transformation to Woodruff-Yekhanin PIR of [11], we obtain a t-private
DPF with keys of size sublinear in the point function’s domain. The construction is
as follows.

Share conversion. Let fα,β = (N,G, α, β) be the point function that we want to
share between two servers, where G = Zp. We choose a positive integer τ and let

R = Fpτ . (39)
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In our share conversion, the SSSs (L1 = (Share1,Recov1),S1) and (L2,S2) are chosen
such that

S1 = [N ]; C1 = Fh
pτ ; S2 = C2 = Fh+1

pτ ; (40)

where
(
h
d

)
≥ N , d = ⌊ 2n−1

t ⌋ and p
τ > n. We first take E : [N ]→ {0, 1}h ⊆ Fh

pτ to be

an embedding of the N coordinates into points in {0, 1}h of Hamming weight d. The
SSS (L1,S1) secret-shares any s1 = α ∈ S1 between n servers by first mapping α to a
vector E(α), then randomly choosing w← Fh

pτ , and finally setting

cℓ = E(α) + ζℓw, ∀ℓ = 0, 1, . . . , n− 1 (41)

where ζ0, ζ1, . . . , ζn−1 ∈ Fpτ are distinct and nonzero. The ℓ-th server computes the
product of cℓj for all j’s where E(x)j = 1 as a function of ℓ, x and cℓ, i.e.,

F (ℓ, x, cℓ) =
∏

j:E(x)j=1

cℓj (42)

together with its gradients

∇F (ℓ, x, cℓ) :=
(
∂F

∂cℓ0
(ℓ, x, cℓ), . . . ,

∂F

∂cℓn−1

(ℓ, x, cℓ)

)
. (43)

Then if we let f(ζℓ) := F (ℓ, x, cℓ) be a degree d polynomial of ζℓ, we have

f ′(ζℓ) = ⟨w,∇F (ℓ, x, cℓ)⟩. (44)

If f(ζ) = a0 + a1ζ + · · ·+ adζ
d, we can get

a0 = F (ℓ, x,E(α)) =

{
0, x ̸= α

1, x = α
(45)

by solving the linear equation (sometimes we have 2n− 1 > d, then we don’t need all
the 2n equations, but this doesn’t matter)

f(ζ0)
f ′(ζ0)

...
f(ζn−1)
f ′(ζn−1)

 =


1 ζ0 . . . ζd0
0 1 . . . dζd−1

0
...

...
. . .

...
1 ζn−1 . . . ζdn−1

0 1 . . . dζd−1
n−1




a0
a1
...

ad−1

ad

 (46)

Then we can denote the solution of a0 by

a0 = b0f(ζ0) + b′0f
′(ζ0) + · · ·+ bn−1f(ζn−1) + b′n−1f

′(ζn−1). (47)
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The local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = (bℓF (ℓ, x, cℓ), b
′
ℓ∇F (ℓ, x, cℓ)) . (48)

The SSS (L2,S2) recovers s2 ∈ S2 via computing

s2(w, α, x) =

n−1∑
ℓ=0

Conv(ℓ, x, cℓ) (49)

Eq. (49) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Fh
pτ }. (50)

For any α ∈ S1, there exist exactly N · phτ elements s2 ∈ S2 such that (α, s2) ∈ R.

From share conversion to DPF. Besides the ring R, the SSSs (L1,S1) and (L2,S2),
the binary relation R, and the local share conversion function Conv that satisfies the
requirement of (a) in Section 3, we still need to properly choose a module H and three
functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our transformation. Note
that G is a subgroup of the additive group of R and shares the same identity element
with R. Let ϕ : Fpτ → Zp be a homomorphism from the additive group Fpτ to the
additive group Zp, which is defined as follows

ϕ(r) = r0, ∀r =
τ−1∑
i=0

riX
i ∈ R. (51)

Note that there exists an irreducible polynomial g(X) ∈ Zp[X] of degree τ such
that R = Fpτ = Zp[X]/⟨g(X)⟩ and any element r ∈ Fpτ can be written as r =∑τ−1

i=0 riX
i ∈ Zp[X] for some r0, . . . , rτ−1. In particular, the representation of r into

the sum is always unique.
Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the

requirement of (b). For (c), we choose the R-module H = Rh+1(= S2 = C2) and
ψ : S1 → H such that

ψ(α) = (1,w) (52)

Then it is easy to verify that the function Φ : H× C2 → R defined by

Φ(h, c) = ⟨h, c⟩, ∀h ∈ H = Rh+1, c ∈ C2 = Rh+1 (53)

is bilinear. For any α ∈ S1, any (c0, c1) ← Share1(α), any x ∈ S1, Eq. (49), (52) and
(53) jointly imply that the ρ(α, x) in Eq. (21) is

ρ(α, x) = ⟨(1,w), s2(w, α, x)⟩. (54)
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For the above choices of w, α, and x, we set σ = 1, show that Eq. (22) is satisfied (see
the proof for Theorem 7), and thus finally meet the requirement of (c). Applying our
transformation from Section 3 with the related building blocks as above, we get the
expected perfectly secure DPF.

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zp, generate cℓ = E(α) + ζℓw, ∀ℓ =
0, 1, . . . , n− 1, choose h0, . . . ,ht ← H = Rh+1 uniformly subject to

h0 + · · ·+ ht = β ⋄ (1,w),

output knj+ℓ = (hj , cℓ),where j ∈ {0, . . . , t}, ℓ ∈ {0, 1, . . . n− 1}.
• Evali(ki, x) : For every i ∈ {0, 1, 2, 3}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ(⟨hj , (bℓF (ℓ, x, cℓ), b
′
ℓ∇F (ℓ, x, cℓ)) .

Fig. 5 A 4-server perfectly secure DPF with output group G = Zpτ

Theorem 7. The construction of Fig. 5 is a t-private perfectly secure n(t+1)-server
DPF with output group Zp (p is any prime, n ∈ Z+). for point function with domain

[N ], the key size of the DPF is O(log(p) ·N1/⌊ 2n−1
t ⌋).

Proof. First of all, we show the correctness and security of that construction. Since
we have shown that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.

In this construction we have

ϕ(ρ(α, x) · σ) = ϕ(ρ(α, x))

= ⟨(1,w), s2(w, α, x)⟩

= ⟨(1,w),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)⟩

=

n−1∑
ℓ=0

(bℓF (ℓ, x, cℓ) + ⟨w, b′ℓ∇F (ℓ, x, cℓ)⟩)

=

n−1∑
ℓ=0

(bℓf(ζℓ) + b′ℓf
′(ζℓ))

= a0 = δα,x.

Then the requirement (c) satisfies, then the correctness and security of
(Gen, {Evali}0≤i<n(t+1)) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
F2h+1
pτ , whose size is O(τ · log(p) · h) with

(
h
d

)
> n and d = ⌊ 2n−1

t ⌋. Thus the key size

is O(log(p) ·N⌊ 2n−1
t ⌋), which completes the proof.
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4.2.2 DPF with Smaller Key Sizes

Now we come back to the 1-private DPFs with subpolynomial key size. The prior
constructions on information-theoretic DPFs [2] and the constructions in Section 4.1

and Section 4.2.1 require keys of size Ω(log |G| · 2Θ(
√
logN log logN)) to support output

group G. However, in the computational setting, the key size of DPFs can reach
O(λ · logN + log |G|) [10], where λ is the computation secure parameter. When the
output group G is large, e.g. |G| ≫ N , the key size of computational DPFs remains to
be O(log |G|). However, the information-theoretic ones require keys of size O(log |G| ·
2Θ(

√
logN log logN)), which leads to a multiplicative overhead of O(2Θ(

√
logN log logN))

on the key size compared to the computational ones. To this end, we try to construct a
DPF whose key size is only log |G| when |G| ≫ N without extending the keys with size

O(2Θ(
√
logN log logN)) when G is small, and a DPF with O(2Θ(

√
logN log logN)+log |G|)

key size is ideal.
Fortunately, such DPFs exist. In this section, we show that it is possible to have

a perfectly secure DPF with output group G = Zp whose key size is upper bounded
by a function only on log p, which reaches the optimal key size relative to p. Our
construction requires at least 8 servers. Moreover, we show that the complexity of key
size to N can even be further reduced with more servers. The achieved key size is

O(2Θ( r
√

logN(log logN)r−1) + log p) for an integer r ≥ 2 with 2r servers. To obtain the
DPF, we first build a share conversion from Efremenko’s PIR [12] and then apply the
transformation from Section 3.

Share Conversion. Let fα,β be a point function with domain [N ] and output group
G = Zp. Given the prime p, we choose an integer m = p1p2 such that gcd(p,m) = 1,
where p1, p2 ≤ 5 are distinct primes. Then there is a prime power q = pτ such that
m|(q − 1). We set

R = Fq, (55)

the finite field of q elements. In our share conversion, the SSSs (L1 =
(Share1,Recov1),S1) and (L2,S2) are chosen such that

S1 = [N ]; C1 = Zh
m; S2 = C2 = R, (56)

where h ∈ Z+ is an integer such that there is an Sm-matching family (U, V ) ⊆ Zh
m of

size N , and C1, C2 are the share spaces of the two SSSs. Let γ ∈ F∗
q have multiplicative

order m. Let P (X) = a0X
b0 + a1X

b1 + a2X
b2 + a3X

b3 ∈ Fq[X] be the trivial Sm-
decoding polynomial from Eq. (15). For α ∈ S1, Share1(α) generates two shares c0, c1 ∈
C1 by mapping α to a vector vα ∈ V , randomly choosing w← Zh

m, and finally setting

cℓ = w + bℓvα, ∀ℓ ∈ {0, 1, 2, 3} (57)

Given cℓ and any x ∈ S1, the local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = aℓγ
⟨cℓ,ux⟩m (58)
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where ux ∈ U is the x-th element of U . Finally, the SSS (L2,S2) is additive and may
recover a value s2(w, α, x) via computing

s2(w, α, x) =

3∑
ℓ=0

Conv(ℓ, x, cℓ). (59)

Eq. (59) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Zh
m}. (60)

From Share Conversion to DPF. Besides the ring R, the SSSs (L1,S1) and
(L2,S2), the binary relation R, and the local share conversion function Conv that sat-
isfies the requirement of (a) in Section 3, we still need to properly choose a module H
and three functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our transforma-
tion. Note that G is a subgroup of the additive group of R and contains the identity
element of R. As there is an irreducible polynomial g(X) ∈ Zp[X] of degree τ such that

R = Fq = Zp[X]/(g(X)), (61)

for any r ∈ R, there exist τ elements r0, . . . , rτ−1 ∈ G such that r =
∑τ−1

i=0 riX
i ∈

Zp[X]. In particular, the representation of r into the sum is unique. We choose ϕ :
R→ G such that

ϕ(r) = r0, ∀r = r0 + r1X + · · ·+ rτ−1X
τ−1 ∈ R. (62)

Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the
requirement of (b). For (c), we choose the R-module H = R (= S2 = C2) and ψ : S1 →
H such that

ψ(α) = 1, ∀α ∈ S1 (63)

Then it is easy to verify that the function Φ : H× C2 → R defined by

Φ(h, c) = h · c, ∀h ∈ H = R, c ∈ C2 = R (64)

is bilinear. For any α ∈ S1, any (c0, c1, c2, c3) ← Share1(α), any x ∈ S1, Eq. (59),
(63), and (64) jointly imply that the ρ(α, x) in Eq. (21) is

ρ(α, x) = s2(w, α, x). (65)

For the above choices of w, α, and x, we set

σ = γ−⟨w,uα⟩m , (66)
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show that Eq. (22) is satisfied (see the proof for Theorem 8), and thus meet the require-
ment of (c). Applying our transformation from Section 3 with the related building
blocks as above, we get the expected perfectly secure DPF (see Fig. 6).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zp, generate cℓ ← w + bℓvα for all ℓ ∈
{0, 1, 2, 3}, choose h0, h1 ← H = Fq subject to

h0 + h1 = γ−⟨w,uα⟩m · β,

output eight keys {ki}7i=0, where ki = (hj , cℓ) for i = 4j + ℓ (ℓ ∈ {0, 1, 2, 3}, j ∈
{0, 1}).

• Evali(ki, x) : For every i ∈ {0, . . . , 7}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ
(
hj · aℓγ⟨cℓ,ux⟩m

)
.

Fig. 6 An 8-server perfectly secure DPF with output group G = Zp

Theorem 8. The construction of Fig. 6 gives a perfectly secure 8-server DPF with
output group Zp (p is any prime). For point functions with domain [N ], the key size

of the DPF is O(210
√
logN log logN + log p).

Proof. First of all, we show the correctness and security of that construction. Since
we have shown that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.

In this construction we have

ϕ(ρ(α, x) · σ) = ϕ

(
3∑

ℓ=0

Conv(ℓ, x, cℓ) · γ−⟨w,uα⟩m

)

= ϕ

(
3∑

ℓ=0

aℓγ
⟨cℓ,uα⟩m · γ−⟨w,uα⟩m

)

= ϕ

(
3∑

ℓ=0

aℓγ
⟨w,ux⟩m(γ⟨vα,ux⟩m)bℓ · γ−⟨w,uα⟩m

)
= ϕ

(
P (γ⟨vα,ux⟩m) · γ⟨w,ux⟩m · γ−⟨w,uα⟩m

)
.

• For x = α, γ⟨w,ux⟩m · γ−⟨w,uα⟩m = 1 and P (γ⟨vα,ux⟩m) = 1. Thus ϕ(ρ(α, x) · σ) = 1.
• For x ̸= α, P (γ⟨vα,ux⟩m) = 0. Thus ϕ(ρ(α, x) · σ) = 0.

Then the requirement (c) satisfies, then the correctness and security of
(Gen, {Evali}0≤i<8) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
Zh
m×Fq, whose size is O(log(m) ·h+log p). Note that m = p1p2 may be the product of
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any two distinct primes such that gcd(m, p) = 1. For p = 2, p = 3, and p ≥ 5, we may
choose m = 15,m = 10 and m = 6 respectively such that max{p1, p2} is minimized. In
particular, we always have that 2max{p1, p2} ≤ 10 and thus from Theorem 3 we have

that h = O(210
√
logN log logN + log p). Then we know the key size is upper bounded by

|ki| = O(210
√
logN log logN + log p), which completes the proof.

Generalization to More Servers. Note that the communication complexity of Efre-
menko’s PIR can be reduced if the modulus m has more prime powers as factors (see
Theorem 3). Next, we show that DPFs that use more servers but have smaller key
sizes can be obtained in a way similar to that of Fig. 6.
Theorem 9. For any integer r ≥ 2, there exists a 1-private perfectly secure 2r+1-
server DPF with output group Zp (p is any prime). For point functions with domain

[N ], the key size of the DPF is O(2c(r)
r
√

logN(log logN)r−1
+log p), where c(r) is roughly

the (r + 1)th smallest prime and independent of p.

Proof. Let m = p1p2 . . . pr, where p1 ≤ · · · ≤ pr are distinct primes and pi ̸= p
for all i ∈ [r]. Let t be the multiplicative order of p modulo m. Then we have that
m|(pτ − 1). There exists an Sm-decoding polynomial with 2r monomials. We can
similarly construct a perfectly secure 2r+1-DPF. The key size of the DPF is upper

bounded by O(2c(r)
r
√

logN(log logN)r−1
+log p) by Theorem 3, where c(r) is independent

of p. Since pr must be at least the (r + 1)th smallest prime, from Grolmusz [19] (see
Section 2.5) c(r) is roughly the (r + 1)th smallest prime.

Reducing the Number of Servers. The DPF in Theorem 8 doubles the number
of servers required by the underlying PIR, which is exactly equal to the number of
monomials in the Sm-decoding polynomial. Therefore, an Sm-decoding polynomial
with fewer monomials will give DPFs that use fewer servers.
Theorem 10. Let p be a prime. Let m be a product of r distinct primes such that
gcd(m, p) = 1. Let t be the multiplicative order of p modulo m. If there is an Sm-
decoding polynomial in Fpτ [X] that has n monomials, then there is a 1-private perfectly
secure 2n-server DPF with output group Zp. For point functions domain [N ], the key

size of the DPF is O(2c(r)
r
√

logN(log logN)r−1
+log p), where c(r) is roughly equal to the

(r + 1)th smallest prime, and is independent of p.
Theorem 10 has many consequences. For example, for p = 2, if we choose the S511-

decoding polynomial from [12], which has only 3 monomials, then we can obtain a
6-DPF with output group Z2. In general, we can reduce the number of servers with the
composition theorem (Theorem 4). The nice integers [14] allow us to further reduce
the number of required servers.

Statistically Secure DPF. Since our construction satisfies Eq. (26), our construction
could lead to statistically secure DPFs (see Fig. 3).
Theorem 11. For any integer r ≥ 2, there exists a 1-private 2−Ω(λ)-statistically
secure 2r-server DPF with output group Zp (p is any prime). For point functions with

domain [N ], the key size of the DPF is O(λ · 2c(r) r
√

logN(log logN)r−1
+ λ log p), where

c(r) is roughly the (r + 1)th smallest prime and independent of p.
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Theorem 11 gives a statistically secure 4-server DPF with key size O(λ ·
210
√

logN(log logN)+λ log p) only λ times the key size of the 8-server DPF from Theorem
8 but uses fewer servers.

5 Application to PIR with Result Verification

5.1 PIR with Result Verification

Like PIR, an n-server PIR-RV protocol involves two kinds of participants: a client and
n servers, where each server has a database DB ∈ {0, 1}N and the client has an index
α ∈ [N ]. Compared with PIR, PIR-RV allows the client to verify whether the value
of DBα is correctly reconstructed, when some of the servers may collude and provide
wrong answers. The syntax of an n-server PIR-RV Γ = (Que,Ans,Rec) is identical to
that of PIR (see Definition 4), except that Rec is replaced with the following:

• {DBα,⊥} ← Rec(α, {ansj}n−1
j=0 , aux): This is a deterministic reconstructing algo-

rithm for the client. Given the the retrieval index α, the answers {ansj}n−1
j=0 and the

auxiliary information aux, it either outputs DBα or a special symbol ⊥ to indicate
that at least one of the answers is incorrect.

The requirements of correctness and privacy are identical to those in Definition 4.
Besides, PIR-RV should satisfy the additional requirement of security. Intuitively, an
n-server PIR-RV protocol is (t, ϵ)-secure if no collusion of up to t servers can cause the
client with input α to output a value /∈ {DBα,⊥} with probability > ϵ, by providing
wrong answers.
Definition 10 (Security). Consider the security experiment in Fig. 7. An n-server
PIR-RV protocol Γ is (t, ϵ)-secure if for any set T ⊆ {0, . . . , n− 1} with |T | ≤ t, any
adversary A that controls the j-th servers for all j ∈ T , any N , any DB ∈ {0, 1}N
and any α ∈ [N ], Pr[EXPVer

A,Γ(N,DB, α, T ) = 1] ≤ ϵ.

• The challenger generates ({quej}n−1
j=0 , aux) ← Que(N,α) and sends {quej}j∈T to

A.
• The adversary A chooses the answers {ans′j}j∈T to the challenger.
• The challenger computes ans′j ← Ans(DB, quej) for all j ∈ {0, . . . , n− 1} \ T .
• If Rec(α, {ansj}n−1

j=0 , aux) /∈ {DBα,⊥}, outputs 1; otherwise outputs 0.

Fig. 7 The security experiment EXPVer
A,Γ(N,DB, α, T ).

5.2 Our Construction

In this section, we generalize the DPF in Fig. 2 to a t-private n(ζ + 1)-server DPF
Πζ for any ζ ≥ t and present our t-private n(ζ + 1)-server PIR-RV protocol Γ as we
introduced in Sec 1.3.2.

Let N = {0, 1, . . . , n(ζ + 1) − 1}, W = {w|w ⊆ N , |w| = n} and let Πζ =

(Genζ ,Evalζ0, . . . , Eval
ζ
n−1) be the DPF with output group G. Our PIR-RV protocol Γ

is shown in Fig. 8.
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• Que(N,α): For each w ∈ W, randomly choose βw ∈ G, compute(
kw0 , k

w
1 , . . . , k

w
n(ζ+1)−1

)
← Genζ(1λ, fα,βw

); denote Pw, Qw are bijective functions

where Pw : w → {0, . . . , n− 1} and Qw : (N \ w)→ {n, n+ 1, . . . , n(ζ + 1)− 1},
for each j ∈ N , compute

quej,w =

{
kwPw(j), j ∈ w
kwQw(j), j /∈ w

,

output n(ζ+1) queries {quej}
n(ζ+1)−1
j=0 where quej = {quej,w}w∈W , together with

the auxiliary information aux = {βw}w∈W .
• Ans(DB, quej , j): Parse quej = {quej,w}w∈W . For each w ∈ W, parse quej,w = kw,
compute

ansj,w =

N∑
ℓ=1

DBℓ · Evalζj (k
w, ℓ),

output ansj = {ansj,w}w∈W .

• Rec(α, {ansj}n(ζ+1)−1
j=0 , aux) : Parse aux = {βw}w∈W and ansj = {ansj,w}w∈W

for all j ∈ N . For each w ∈ W, compute Rw =
∑n(ζ+1)−1

j=0 ansj,w. If there
exists w ∈ W such that Rw /∈ {0, βw}, output ⊥; otherwise, for each w ∈ W, set
resw = δRw,βw

. If there exist distinct w1, w2 ∈ W such that resw1
̸= resw2

, output
⊥; otherwise, output {resw}w∈W .

Fig. 8 n(ζ + 1)-Server PIR-RV protocol Γ.

Theorem 12. The n(ζ+1)-server PIR-RV protocol Γ is t-private and (nζ, 1
|G| )-secure.

If the key size of the DPF used in the PIR-RV is K, then the total communication
complexity of the PIR-RV is CCΓ(N) = O(ζn+1K)

Proof. The privacy and correctness of the PIR-RV protocol follow directly from the
perfect security and correctness of the DPF Πζ . It suffices to prove the security and
the communication complexity.

If there exists an adversary Adv that can win the security experiment in Fig. 7,
for every w ∈ W, the sum of all outputs of servers should be changed from 0 to βw
or from βw to 0 for every w ∈ W. This shows that Adv can only break the PIR-RV
by guessing every βw correctly. We only need to show that there exists a w ∈ W such
that Adv knows no information about βw. The privacy of βw depends on the privacy
of β of Πζ .

For each w ∈ W, the values βw are chosen independently and randomly. The
algorithm Genζ(1λ, fα,βw

) splits (σ ·βw)⋄ψ(α) into ζ+1 additive shares h0,w, . . . , hζ,w,

each contained in n keys in the key set {kwi }
n(ζ+1)
i=0 . For each j ∈ w, the query quej,w

is one of the n keys {kwi }
n−1
i=0 containing the share h0,w. Denote by honest ⊆ N be

the set of indexes of the honest servers. Since there are at most nζ malicious servers,
|honest| ≥ n. There exists w ∈ W such that w ⊆ |honest|. For this case, Adv know
nothing about h0,w. Since (σ · βw) ⋄ ψ(α) is additive shared to h0,w, . . . , hζ,w, the set
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{h1,w, . . . , hζ,w} share no information about (σ · βw) ⋄ ψ(α), or more generally, about
βw. Furthermore, the change of βw have no effect on c0, . . . , cn−1, which means the
distribution of the keys that Adv gets can reveal nothing about βw. Thus the malicious
servers have no information on βw. For the adversary Adv, the distribution of βw is
the uniform distribution over Zpτ . The adversary Adv wins if and only if it can guess
the value of β0,w correctly, so the protocol is (nζ, 1

pτ )-secure.
For each w ∈ W, the client only sends the key to each server and the size of

the answer is independent of N , so the communication complexity is O(K). Since
|W| = O(ζn), the communication complexity of the PIR-RV protocol Γ is O(ζn ·K) to
each server, hence the total communication complexity is CCΓ(N) = O(ζn+1 ·K).

In particular, if we use the DPF in Section 4.1, and share (σ · β) ⋄ ψ(α) additively
to more shares, then we can get a PIR-RV that only need 2 honest servers with
subpolynomial communication complexity. We state this as follows.
Theorem 13. For any ζ ∈ Z+, there exist a 1-private 2(ζ +1)-server (2ζ, 1

2τ )-secure
PIR-RV protocol with database size N and total communication complexity CCΓ(N) =

O(ζ3τ · 26
√
logN log logN ).

If we use the DPF in Section 4.2.2, similarly we can get a PIR-RV that needs
4 honest servers which is quite more efficient. When we take a very large Zp as the
output group, our PIR-RV protocol could achieve an extremely small statistical error
and a small communication complexity that is subpolynomial in N .
Theorem 14. For any ζ ∈ Z+, there exists a 1-private 4(ζ +1)-server (4ζ, 1p )-secure

PIR-RV protocol with database size N and total communication complexity CCΓ(N) =

O(ζ5 · 210
√
logN log logN + ζ5 log p).

Ke and Zhang [8] proposed a 2-server (1, 3
p−2 )-secure PIR-RV protocol with com-

munication complexity O(log p ·
√
N). Compared with [8], our protocol provides

subpolynomial communication complexity and higher malicious server tolerance with
at least 4 servers.

6 Conclusions

In this paper, we provide a transformation from share conversion to information-
theoretic DPFs. With this transformation, we give a perfectly secure 4-DPF for
any output group and an 8-DPF with a smaller key size for output group Zp. We
also construct new efficient PIR-RV protocols with the new DPFs. Our DPFs with
subpolynomial key size are all t-private for t = 1. The question is open for t > 1.
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