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Abstract. The Brakerski/Fan-Vercauteren (BFV) scheme is a state-of-
the-art scheme in Fully Homomorphic Encryption based on the Ring
Learning with Errors (RLWE) problem. Thus, ciphertexts contain an
error that increases with each homomorphic operation and has to stay
below a certain threshold for correctness. This can be achieved by setting
the ciphertext modulus big enough. On the other hand, a larger cipher-
text modulus decreases the level of security and computational efficiency,
making parameter selection challenging. Our work aims to improve the
bound on the ciphertext modulus, minimizing it.

Our main contributions are the following. Primarily, we perform the first
average-case analysis of the error growth for the BFV scheme, signifi-
cantly improving its estimation. For a circuit with a multiplicative depth
of only 5, our bounds are up to 25.2 bits tighter than previous analyses
and within 1.2 bits of the experimentally observed values. Secondly, we
give a general way to bound the ciphertext modulus for correct decryp-
tion that allows closed formulas. Finally, we use our theoretical advances
and propose the first parameter generation tool for the BFV scheme.
Here, we add support for arbitrary but use-case-specific circuits, as well
as the ability to generate easy-to-use code snippets, making our theoret-
ical work accessible to both researchers and practitioners.

Keywords: Fully Homomorphic Encryption, BFV, Parameter Generation, Average-
Case Noise Analysis, OpenFHE

1 Introduction

Data privacy concerns are increasing significantly in the context of future-generation
networking, such as Internet of Things, cloud services, edge computing and artifi-
cial intelligence applications. Homomorphic encryption enables privacy-preserving
data processing, namely data manipulation in the encrypted domain without de-
cryption. More specifically, fully homomorphic encryption (FHE) schemes allows
ciphertext operations that correspond to additions and multiplications on the
underlying plaintext.
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The first Fully Homomorphic Encryption (FHE) scheme was introduced in
2009 by Gentry in [26]. In his PhD thesis, Gentry provided a method for con-
structing a general FHE scheme from a scheme with limited but sufficient homo-
morphic evaluation capacity. Since then, novel constructions on FHE have been
proposed following his idea, BGV [8], BFV [7,24], TFHE [16,17] which improves
the FHEW scheme [23], and CKKS [14,15] some of the most representative.
The reader interested in FHE and its applications will find some introductory
material in [1,13,34,35].

The security of most of the FHE schemes is based on the presumed in-
tractability of the decision Learning with Errors (LWE) problem, [38], and its
ring variant (RLWE), [33]. Informally, they consist of distinguishing equations
perturbed by small error from random tuples. In the following, our focus will
be on the ring version. Let Rq = Zq[x]/⟨xn + 1⟩ where q is a positive integer.
The decision RLWE problem consists of distinguishing with non-negligible ad-
vantage between independent and uniformly random samples in Rq×Rq and the
same number of independent RLWE instances. These instances are represented
as (a, b = s · a+ e) ∈ Rq ×Rq, where a, s ∈ Rq are randomly chosen and e ∈ Rq

is the error sampled from a distribution χ.

The problem arising from this construction is that the error (also called noise)
grows progressively as operations are performed, particularly when homomor-
phic multiplications are involved. In order to guarantee correct decryption, the
error has to be small. Specifically, its maximal coefficient must be smaller than
a quantity depending on the ciphertext modulus q. One approach to accommo-
dating more operations is increasing the ciphertext modulus q. However, a larger
modulus also decreases the security level of the underlying scheme. To maintain
an equivalent level of security, we must require a larger polynomial degree n at
the cost of efficiency. This delicate balance between security (achieved with a
small ciphertext modulus) and error margin (associated with a large ciphertext
modulus) illustrates the difficulty of finding an optimal set of parameters for a
specific FHE scheme.

Addressing this challenge is crucial to reach widespread adoption of FHE.
For this reason, the FHE community has made significant efforts by providing
automated and user-friendly methods for choosing an appropriate set of parame-
ters. For instance, Mono et al. [36] developed an interactive parameters generator
for the leveled BGV scheme that supports arbitrary circuit models. Bergerat et
al. [5] proposed a framework for efficiently selecting parameters in TFHE-like
schemes. Moreover, for all FHE schemes, the Homomorphic Encryption Stan-
dard [3] provides lookup tables (recently updated in [6]) that allow to determine
the maximum ciphertext modulus q required to achieve a desired security level λ
given fixed polynomial degrees n. To provide λ, the Homomorphic Encryption
Standard used the Lattice Estimator4, a software tool to determine the security
level of LWE instances against the known attacks. Finally, in [31], starting from
a theoretical analysis of lattice attacks, Kirshanova et al. present closed and pre-
cise formulas for two key tasks: 1) deriving the security parameter λ given the

4 https://github.com/malb/lattice-estimator.

https://github.com/malb/lattice-estimator
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secret distribution χs, the polynomial degree n, and the ciphertext modulus q,
2) determining n as a function of λ, q, and χs. Additionally, they offer a prac-
tical tool to compute these formulas, making their approach both rigorous and
accessible.

It is worth noting that to achieve the goal of finding an optimal set of pa-
rameters is also essential to provide an accurate approximation of the noise size.
Indeed, an underestimation not only results in an incorrect plaintext recovery
but also renders the FHE schemes vulnerable to attacks, as evidenced by re-
cent papers [10,12]. While a substantial overestimation would significantly affect
security and efficiency.

Over the past few years, several methods to compute a bound for the error
have been proposed, from the Euclidean [8] and infinity norms [24,30] to the
canonical norm (called worst-case analysis) [18,20,27,29,36]. The prevailing trend
in the current literature adopts the average-case analysis, where the coefficients
of the polynomial error are treated as random variables. With this approach, it is
possible to compute a tight probabilistic upper bound, taking into consideration
the Gaussian distribution of the error coefficients, their mean, and variance.
However, the state-of-the-art is limited to the case where the ciphertexts are
computed independently. Firstly employed in the TFHE [16] scheme, it has been
successively used for CKKS [19] and BGV [21,37].

In this context, we want to emphasize that applying these established average-
case methods to the BFV scheme results in incorrect bounds. For this reason,
the state-of-the-art still employs either the infinity [30] or the canonical norm
[29,18,20]. In this paper, we propose the first average-case approach that suc-
cessfully applies to the BFV, because it takes in account the dependency among
its error coefficients. This yields correct, accurate and secure bound.

Our contributions. This paper presents three main contributions, significantly
improving the current state of BFV parameters selection.

Firstly, we present an innovative and accurate approach for the noise analysis
of the BFV scheme based on the average-case. Our method significantly differs
from the previously proposed for the BGV [37] and CKKS schemes [19], as we
take into consideration the fact that the error coefficients are not independent
among each other, making it impossible to apply the Central Limit Theorem.
As a result, our analysis is more intricate, particularly for homomorphic mul-
tiplication, where we have to introduce a function to “correct” the product of
the variances. This results in more accurate and secure bounds. In contrast, the
heuristics used in the BGV [37] and CKKS [19] schemes often underestimate the
noise growth due to the assumption of noise coefficient independence, leading to
imprecise bounds, as also pointed out in [19,37].

With our approach, we significantly improve the understanding of the noise
growth arising from the encryption and homomorphic operations in BFV, offer-
ing exceptionally tight bounds. This improvement is validated by experimental
results (Tables 7 to 9), where our bounds are exceptionally close, differing by no
more than 2.5 bits from the experimentally observed values. The experiments
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are done by computing the error growth in different circuits using OpenFHE [2]
library, a well-known and used open-source FHE library. Moreover, we conduct
a comprehensive comparison of our bounds with the state-of-the-art noise analy-
sis based on the canonical norm. Notably, for a circuit with multiplicative depth
only 5, our bounds are up to 25.2 bits tighter than the previous one, showing
the substantial improvement our approach brings to noise analysis.

Secondly, we provide closed formulas to compute a minimal bound on the ci-
phertext modulus that guarantees correct decryption. Specifically, we introduce
a method for the computation of the ciphertext modulus in any circuit. More-
over, we focus on the most common ones illustrated in Figure 3, for which we
explicitly provide closed formulas for q. Thanks to our findings, we compare our
results with those obtained using the worst-case approach. This highlights the
importance of having a tighter bound for the error. For instance, for a simple
circuit with multiplicative depth 3, the ciphertext modulus decreases by at least
13.5% (Figure 4a).

In addition, we develop an interactive parameters generator, which makes
use of our theoretical results and the security formula proposed in [36]. This
tool provides flexibility, allowing users to choose the desired security level, the
degree of the arithmetic function to be evaluated homomorphically, and the er-
ror and secret distributions, among other parameters. This user-friendly tool is
designed to be accessible to individuals with different levels of expertise, ensur-
ing that even those who are not FHE experts can utilize it. By providing an
accessible mean for generating parameters tailored to the BFV scheme, we aim
to contribute to the widespread adoption of FHE.

Finally, we conduct the first study of specific circuits with dependent cipher-
texts. In addition to our comparison of dependent and independent cases, this
analysis establishes a groundwork for understanding error bounds and highlights
the significant differences between the two scenarios. In particular, when compar-
ing Figure 7b (dependent-computed ciphertexts) with Figure 4b (independent
case) for a simple circuit with a multiplicative depth of 5, we observe at least
a 5.3% increase in the ciphertext modulus. These findings point out the critical
importance of selecting the parameters according to the correct case to ensure
both correctness and security. Specifically, using parameters optimized for inde-
pendent ciphertexts in the dependent case can result in decryption failures and
thus expose the system to key recovery attacks [12].

The structure of the paper is the following:

– To facilitate the understanding of the paper, we present the notation and
mathematical background required in Section 2.

– In Section 3, we comprehensively analyze and compute invariant noise after
any operation in the BFV scheme.

– The core of the paper is Section 4, where we introduce our average-case
approach.

– In Section 5, we exploit the novel error analysis to provide a general way to
compute a minimal bound on the ciphertext modulus, focusing on practical-
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used circuits. Additionally, we introduce our parameter generator to facilitate
the selection of optimal parameters for the BFV scheme.

– In Section 6, we compare our average-case approach with prior bounds of
BFV noise growth as well as with experimental results.

– In Section 7, we explore a general setting where ciphertexts can be depen-
dently computed. This section establishes a baseline for understanding error
bounds in this context and highlights the differences with the independent
case.

– Finally, Section 8 draws some conclusions and open problems.

2 Preliminaries

In this section, we first define the general notations that we will use in the
remainder of the work, then we provide the mathematical background for the
secret and error distributions, as well as their analysis.

2.1 Notation

Let f(x) be a monic irreducible polynomial of degree n, in particular, we take
f(x) = xn + 1 with n a power of 2. We denote by R = Z[x]/⟨f(x)⟩ and with
K = Q[x]/⟨f(x)⟩. Let a ∈ K, we denote by a|i the coefficient of xi. Note that,
for a, b ∈ K we have that

(ab)|i =
n−1∑
j=0

ξ(i, j) a|j b|i−j , (1)

where i− j is computed mod n and ξ(i, j) is defined as 1 if i− j ∈ [0, n) and −1
otherwise. For a positive integer p, Zp denotes the set of integers in (−p/2, p/2]
and by Rp the set of polynomials in R with coefficients in Zp. Let z ∈ Z, we
write [z]p ∈ Zp for the centered representative of z mod p. For polynomials in
R, it denotes the element in Rp where [·]p is applied coefficient-wise. Let x ∈ Q,
⌊x⌉ be the rounding to the nearest integer. The same holds coefficient-wise for
polynomials in K.

The integer t > 1 denotes the plaintext modulus and withRt the plaintext space.
We further require t ≡ 1 (mod 2n). Analogously, we denote the ciphertext mod-

ulus by q =
∏k

i=1 ri, and the ciphertext space follows as Rq. ri > 1 are pairwise
coprime of approximately the same size, coprime with t and such that ri ≡ 1
mod 2n. Moreover, for the BGV-like circuit case explained in Section 5.2, we
need L = M + 1 sub-moduli pj defined analogously to q, where M is the multi-

plicative depth of the circuit. For any ℓ, we denote by qℓ =
∏ℓ

j=1 pj =
∏kℓ

i=1 ri,
the initial ciphertext is q = qL, or qms to distinguish it.
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Finally, we recall the characteristic function of a subset A is defined as

1x∈A =

{
1 if x ∈ A ,

0 if x /∈ A .

Note that if A = {a}, we can also denoted the characteristic function as 1x=a

2.2 Secret and Error Distributions

Let χ be a probabilistic distribution and a ∈ R, we write a← χ when sampling
each coefficient of a independently from χ. We use the following distributions.

– DG(0, σ2), the discrete Gaussian distribution centered in 0 with standard
deviation σ.

– Up, the uniform distribution over Zp, where p is a positive integer.
– UI , the uniform distribution over a real interval I ⊂ R.
– ZO(ρ), a distribution over the ternary set {0,±1} with probability ρ/2 for
±1 and probability 1− ρ for 0 with ρ ∈ [0, 1].

Finally, the distributions HWT (h) chooses a vector uniformly at random from
{0,±1}n with exactly h nonzero entries, where h ≤ n positive integer. Let χs,
χu be secret key distributions, χe an error distribution from the Learning with
Errors over Rings (RLWE) problem and Vs, Vu, Ve the associated variances.
Tipically, we have χe = DG(0, σ2), with σ = 3.19 and χs = χu = U3 [3]. Other
common options for χs are ZO(0.5), DG(0, (3.19)2) and HWT (64). A variable
with any of the above distributions or from the uniform over a centered interval
is symmetric, thus with mean 0, and has variance as follows.

– If X ← DG(0, σ2) then Var(X) = σ2.
– If X ← Up then Var(X) = (p2 − 1)/12. In particular,

- If X ← Uq then Var(X) ≈ q2/12.
- If X ← U3 then Var(X) = 2/3.

– If X ← U(−1/2,1/2] then Var(X) = 1/12.
– If X ← ZO(0.5) then Var(X) = 1/2.
– If X ← HWT (64) then Var(X) = 64/n.

2.3 Properties of probabilistic operators

In the following statement, we recall some useful properties of the most common
probabilistic operators.

Fact 1 Let E be the expected value, Var be the variance, and Cov be the covari-
ance. Let a, b be constants and X,Y, Z,W be random variables. Then

(a) The expected value E is linear: E[X + Y ] = E[X] + E[Y ], E[aX] = aE[X].
(b) E is monotonic: if X ≤ Y (a.s.) and E[X],E[Y ] exist, then E[X] ≤ E[Y ].
(c) Cov(X,Y ) = E[XY ]− E[X]E[Y ].
(d) If X and Y are independent, then E[XY ] = E[X]E[Y ], i.e. Cov(X,Y ) = 0.
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(e) The covariance is bilinear: Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y,Z)
(f) Cov is symmetric: Cov(X,Y ) = Cov(Y,X).
(g) If X,Y ⊥⊥ Z,W , Cov(X,Y ) = 0 and E[X] = 0, then Cov(XZ, YW ) = 0.

Indeed, by (c) and (d), we have

Cov(XZ, YW ) =E[XY ZW ]− E[XZ]E[YW ]

=E[XY ]E[ZW ]− E[X]E[Z]E[YW ]

=E[XY ]E[ZW ] = (E[X]E[Y ] + Cov(X,Y ))E[ZW ] = 0

(h) If X ⊥⊥ Y, Z,W and E[X] = 0, then Cov(XZ, YW ) = 0.
Analogously to (g), we have

Cov(XZ, YW ) =E[XY ZW ]− E[XZ]E[YW ]

=E[X](E[Y ZW ]− E[Z]E[YW ]) = 0

(i) Var(X) = E[X2]− E[X]2, Var(X) ≥ 0 and V (X) = Cov(X,X).
(j) Var(X + a) = Var(X) and Var(aX) = a2Var(X).
(k) Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ), in general Var(

∑
i Xi) =∑N

i=1 Var(Xi) +
∑

i1 ̸=i2
Cov(Xi1 , Xi2).

(l) Var(XY ) = (Var(X)+E[X]2)(Var(Y )+E[Y ]2)+Cov(X2, Y 2)−(Cov(X,Y )+
E[X]E[Y ])2, in particular
– if E[X] = E[Y ] = 0, Var(XY ) = Var(X)Var(Y )+Cov(X2, Y 2)−Cov(X,Y )2

– if E[X] = E[Y ] = 0 and X and Y are independent, Var(XY ) = Var(X)Var(Y )
(m) If Var(X),Var(Y ) are finite, then |Cov(X,Y )| ≤

√
Var(X)Var(Y ).

Coverage probability for Gaussian-distributed variables. Let X be a random vari-
able (r.v.) from a Gaussian distribution centred in 0 of variance V , then

P
(
|X| ≤ x

)
= P

(
X ≤ x

)
− P

(
X ≤ −x

)
=

=
1

2

(
1 + erf

( x√
2V

))
− 1

2

(
1 + erf

( −x√
2V

))
= erf

( x√
2V

)
.

(2)

Suppose now that we want to study the infinity norm of a vector. If its entries

are independent, then P
(
||X||∞ ≤ x

)
= P

(
|X| ≤ x

)n

. In general, we can give

an upper bound on the complementary probability:

P
(
||X||∞ > x

)
≤ nP

(
|X| > x

)
= n

(
1− erf

( x√
2V

))
. (3)

Canonical embedding and norm. We recall the results of [18,29,20]. The canonical
embedding of a ∈ R is the vector obtained by evaluating a in the primitive 2n-th
roots of unity. The canonical embedding norm of a is defined as the infinity norm
of the canonical embedding.

Let us consider a random polynomial a ∈ R where each coefficient is sampled
independently from a zero-mean distribution, then ||a||can ≤ D

√
nVa with high

probability [18].
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We now want to estimate the probability that the canonical norm of a random
polynomial exceeds a certain value x.

Let us consider the case where the coefficients in a, a|0, ..., a|n−1, are in-
dependent and identically distributed (i.i.d.) with 0 mean and variance Va,
and suppose E(|a|i|2+δ) < ∞ for all i and for some fixed δ > 0 (this last
condition it is not restrictive in our case). As shown in [22], using the Lya-
punov Central Limit Theorem, it is possible to prove that for any root of unity
ζ = cos(α) + i sin(α), the r.v. a(ζ) is a complex r.v. which can be approximated
by a complex Gaussian r.v.. That is, a(ζ) is approximated by a bivariate Nor-
mal distributed r.v. (X,Y ). Moreover, X and Y are Normal distributed with

variance VX = Va(
∑n−1

j=0 cos2(jα)) and VY = Va(
∑n−1

j=0 sin2(jα)) = nVa − VX ,
respectively.

Let C be the diagonal matrix with the standard deviation of X and Y over
the diagonal. We have that (X,Y )t = C · (Z,Z ′)t with Z and Z ′ i.i.d. standard
Gaussian r.v.’s. Therefore,

P (|a(ζ)| < x) = P (||(X,Y )||2 < x) ≥ P (||C||2||(Z,Z ′)||2 < x) .

LetM be the maximum between VX and VY (note that n
2Va ≤M ≤ nVa). The 2-

norm of the matrix C is
√
M . Thus, P (||C||2||(Z,Z ′)||2 < x) = P

(
||(Z,Z ′)||22 < x2

M

)
.

Since Z,Z ′ are independent standard Gaussian r.v., ||(Z,Z ′)||22 is Chi-squared

distributed and P
(
||(Z,Z ′)||22 < x2

M

)
= 1− e−

x2

2M ≥ 1− e−
x2

nVa , implying

P (|a(ζm)| > x) ≤ e−
x2

nVa . Therefore,

P (||a||can > x) ≤ ne−
x2

nVa . (4)

3 The BFV Scheme

The following describes the BFV scheme [7,24], a cutting-edge FHE scheme
whose security relies on the hardness of the ring learning with errors (RLWE)
problem. We consider the latest enhancements proposed in [30]. In particular,
the authors revised the encryption algorithm replacing the term ∆m = ⌊ qt ⌋m
with

⌊
q
tm

⌉
, which eliminates the noise gap with respect to the BGV scheme.

KeyGen(λ, L)
Define parameters and distributions accordingly to λ and L. Sample s ← χs,

a← Uq and e← χe. Output sk = s and pk = (b, a) = ([−as+ e]q, a).

Enc(m, pk)

Receive the plaintext m ∈ Rt and pk = (b, a). Sample u← χu and e0, e1 ← χe.

Output c = (c, q, νclean) with c = (c0, c1) =
([⌊

q
t
m
⌉
+ ub+ e0

]
q
, [ua+ e1]q

)
.
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Dec(c, sk)

Receive the extended ciphertext c for sk = s. Output
[⌊

t
qℓ
[c0 + c1s]qℓ

⌉]
t
.

Let c = (c, qℓ, ν) be the extended ciphertext, where c is a ciphertext, qℓ denotes
the ciphertext modulus and ν the invariant noise. The invariant noise [29] is the
minimal ν ∈ K such that

t

qℓ
[c0 + c1s]qℓ = m+ ν + kt

for some k ∈ R. Therefore,
[⌊

t
q [c0 + c1s]q

⌉]
t
= [⌊m+ ν + kt⌉]t = [m + ⌊ν⌉]t.

Hence, the decryption works properly as long as ν is small enough. In particular,
it is correct when the coefficients of ν belong to the interval (− 1

2 ,
1
2 ]. After the

encryption operation, the invariant noise is

νclean =
t

q
(ε+ eu+ e0 + e1s) (5)

where ε =
⌊
q
tm

⌉
− q

tm = − [qm]t
t , [30].

Addition & Constant Multiplication.

Add(c, c′)

Receive extended ciphertexts c = (c, qℓ, ν) and c′ = (c′, qℓ, ν
′).

Output (cadd, qℓ, νadd) with cadd = ([c0 + c′0]qℓ , [c1 + c′1]qℓ).

MulConst(α, c)

Receive constant polynomial α ∈ Rt and extended ciphertext c = (c, qℓ, ν).

Output (cconst, qℓ, νconst) with cconst = ([αc0]qℓ , [αc1]qℓ).

By the definition of invariant noise, for some k ∈ R, we have

t

qℓ
[c0 + c1s+ c′0 + c′1s]qℓ = [m+m′]t + ν + ν′ + kt =⇒ νadd = ν + ν′ (6)

t

qℓ
[αc0 + αc1s]qℓ = [αm]t + αν + kt =⇒ νconst = αν, (7)

Multiplication & Modulus switching. In this section, we are going to see the
multiplication algorithm presented in [30], which, before multiplying two cipher-
texts, applies to one of them a modulus switch. This is done in order to make
the Residue Number System (RNS) representation more efficient. The modu-
lus switch technique was first introduced for the BGV scheme in [9] to reduce
the error associated with a ciphertext. In the BFV scheme, this error reduction
is made implicitly, so the purpose of the modulus switch is only to shift to a
different ciphertext modulus.
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ModSwitch(c, q′ℓ)

Receive the extended ciphertext c = (c, qℓ, ν) and the target modulo q′ℓ. Output

c′ = (c′, q′ℓ, ν + νms(q
′
ℓ)) with c′ =

([⌊
q′ℓ
qℓ
c0
⌉]

q′
ℓ

,
[⌊

q′ℓ
qℓ
c1
⌉]

q′
ℓ

)
.

The noise added by the modulo switch operation is

νms(q
′
ℓ) =

t

q′ℓ
(ε0 + ε1s), with εi = −

[q′ℓci]qℓ
qℓ

. (8)

The multiplication algorithm takes as input two extended ciphertexts c and
c′, where one of the ciphertexts, say c′, is the result of a modulo switch to q′ℓ.
The new modulus q′ℓ is required to be of approximately the same size of qℓ, to
satisfy q′ℓ ≡ 1 (mod 2n) and (t, q′ℓ) = (qℓ, q

′
ℓ) = 1.

Ten(c, c′)

Receive the extended ciphertexts c = (c, qℓ, ν) and c′ = (c′, q′ℓ, ν
′). Output

d = (d, qℓ, νmul(qℓ)) with

d = (d0, d1, d2) =

([⌊
t

q′ℓ
c0c

′
0

⌉]
qℓ

,

[⌊
t

q′ℓ
(c0c

′
1 + c1c

′
0)

⌉]
qℓ

,

[⌊
t

q′ℓ
c1c

′
1

⌉]
qℓ

)
.

The multiplication output is a polynomial R3
q that can be decrypted in the

following way:
⌊

t
qℓ
[d0 + d1s+ d2s

2]qℓ

⌉
. Let t

qℓ
(c0+c1s) = m+ν+ht and t

q′ℓ
(c′0+

c′1s) = m′ + ν′ + h′t, as per definition of invariant noise. Thus,

t
qℓ

[⌊
t
q′ℓ
c0c

′
0

⌉
+
⌊

t
q′ℓ
(c0c

′
1 + c′0c1)

⌉
s+

⌊
t
q′ℓ
c1c

′
1

⌉
s2
]
qℓ

= t
qℓ
(c0 + c1s) · t

q′ℓ
(c′0 + c′1s) +

t
qℓ
(ε0 + ε1s+ ε2s

2) + h′′t

= [mm′]t + ν(m′ + h′t) + ν′(m+ ht) + νν′ + t
qℓ
(ε0 + ε1s+ ε2s

2) + kt

= [mm′]t + νmul(qℓ) + kt,

where the noise after the multiplication is

νmul(qℓ) = −νν′ + ν
t

q′ℓ
(c′0 + c′1s) + ν′

t

qℓ
(c0 + c1s) +

t

qℓ
(ε0 + ε1s+ ε2s

2). (9)

Finally, the multiplication output needs to be transformed back to a cipher-
text in R2

q. This is done by encrypting its last term d2 via key switching (see
Section 3.1), also called relinearization.

3.1 Key Switching

The key switch is used for (i) reducing the degree of a ciphertext polynomial,
usually the multiplication output, or (ii) changing the key after a rotation. In the
multiplication case, the term d2 ·s2 is converted into a polynomial cks0 +cks1 ·s and
the two components are added, obtaining the equivalent c′ = (d0+ cks0 , d1+ cks1 ).
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In the rotation, where we need to go back to the original key s from rot(s), we
convert the ciphertext term c1 · rot(s) into cks0 + cks1 · s. In the following, we will
only analyze the first case.

The idea is to encrypt the extra term s2 under the secret key. However, in
doing so, the resulting error would be too significant. Hence several variants
exist to reduce its growth. This work considers the three main ones: Brakerski
Vaikuntanathan (BV), Gentry Halevi Smart (GHS), and Hybrid. For the sake of
simplicity, we present directly the variants compatible with the RNS representa-
tion [4,28,30]. The RNS method makes the scheme implementation substantially
faster and allows parallelization.

Brakerski-Vaikuntanathan The strategy is exploiting the Chinese Remainder
Theorem (CRT) to decompose d2 in the kℓ moduli ri ≈ k

√
q.

KeySwitchGenBV (s, s2)

Sample ai ← Uq, ei ← χe and set (bi, ai) =
([[(

q
ri

)−1]
ri

q
ri
s2 − ais+ ei

]
q
, ai

)
for i = 1, . . . , k. Output ksBV = {(bi, ai)}.

KeySwitchBV(ksBV, c)

Receive d = (d, qℓ, ν) with d = (d0, d1, d2) and ksBV = {(bi, ai)}. Output c =

(c, qℓ, ν + νBV
ks (qℓ)) where c =

([
d0 +

∑kℓ
i=1[d2]ribi

]
qℓ

,
[
d1 +

∑kℓ
i=1[d2]riai

]
qℓ

)
.

The error after the BV key switching is ν + νBVks (qℓ) where

νBVks (qℓ) =
t

qℓ

kℓ∑
i=1

[d2]riei. (10)

Gentry-Halevi-Smart An alternative is encrypting Ps2 instead of s2 with P a
large number, usually of approximately the same size as q. In this way, the error
quantity added is divided by P .

KeySwitchGenGHS(s, s2)

Sample a′ ← UqP , e′ ← χe and output the key switching key

ksGHS = (b′, a′) = ([Ps2 − a′s+ e′]qP , a
′).

KeySwitchGHS(ks, c)

Receive extended ciphertext d = (d, qℓ, ν) and key switching key ksGHS.

Output c = (c, qℓ, ν + νGHS
ks ((qℓ)) with c =

([
d0 +

⌊
d2b

′

P

⌉]
qℓ

,
[
d1 +

⌊
d2a

′

P

⌉]
qℓ

)
.

The noise after the GHS key switching is ν + νGHSks (qℓ) where

νGHSks (qℓ) =
t

qℓ

(
d2e

′

P
+ ε0 + ε1s

)
. (11)
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GHS-RNS In practice, d2 in base qℓP is computed with the FastBaseExtension
technique [30], for better efficiency, which gives an approximate result d2 + uqℓ:

kℓ∑
i=1

[
[d2]ri

[(qℓ
ri

)−1]
ri

]
ri

qℓ
ri

= d2 + uqℓ, u =

⌊
kℓ∑
i=1

[
[d2]ri

[(qℓ
ri

)−1]
ri

]
ri

1

ri

⌉
.

Therefore, the added error becomes

νGHS−RNS
ks (qℓ) =

t

qℓ

(
(d2 + uqℓ)e

′

P
+ ε0 + ε1s

)
. (12)

Hybrid The Hybrid variant offers a trade-off between efficiency and security from
the two previous variants. Indeed, the downside of the first one is the inefficiency
due to a large number of multiplications to be performed. In contrast, the issue
with the second one is that its security relies on the RLWE assumption with a
larger factor qℓP , instead of qℓ. This larger factor means that to achieve the same
level of security, the modulus qℓ must be smaller, which limits the depth of the
circuit that can be evaluated homomorphically. In the Hybrid relinearization,
the modulus is split in a smaller number of elements ω by gathering the ri in
chunks r̃i, and the division is done considering P ≈ ω

√
q. For further information

see [30,27].

KeySwitchGenHyb(s, s2)

Sample ai ← UqP , ei ← χe and output ksHyb = {(bi, ai)}i=1,...,ω with

(bi, ai) =
([

P
[( q

r̃i

)−1]
r̃i

q

r̃i
s2 − ais+ ei

]
qP

, ai

)
.

KeySwitchHyb(ksHyb, c)

Receive extended ciphertext d = (d, qℓ, ν) and key switching key ksHyb.
Output c = (c, qℓ, ν + νHyb

ks (qℓ)) with

c =
([

d0 +
⌊∑ω

i=1[d2]r̃ibi

P

⌉]
qℓ

,
[
d1 +

⌊∑ω
i=1[d2]r̃iai

P

⌉]
qℓ

)
.

The noise after the Hybrid key switching is ν + νHybks (qℓ), where

νHybks (qℓ) =
t

qℓ

(∑ω
i=1[d2]r̃iei

P
+ ε0 + ε1s

)
. (13)

Hyb-RNS Here, the FastBaseExtension is eventually applied to the terms [d2]r̃i ,∑
rj |r̃i

[
[d2]rj

[
( r̃irj )

−1
]
rj

]
rj

r̃i
rj

= [d2]r̃i + uir̃i, ui =

∑
rj |r̃i

[
[d2]rj

[
( r̃irj )

−1
]
rj

]
rj

1
rj

.
Therefore, the error added becomes

νHyb−RNS
ks (qℓ) =

t

qℓ

(∑ω
i=1([d2]r̃i + uir̃i)ei

P
+ ε0 + ε1s

)
. (14)



Improving BFV Parameters: An Average-Case Approach 13

4 Average-Case Noise Analysis for BFV

The purpose of this section is to investigate the error behaviour during homo-
morphic operations among independently computed ciphertexts. The goal is to
find a small ciphertext modulus ensuring correct decryption. More specifically,
it has to make the error coefficients lie in (− 1

2 ,
1
2 ] with overwhelming probability.

We observed that the distributions of the noise coefficients are well-approximated
by identical distributed Gaussian centred in 0, but not independent. Therefore,
we can bound the maximum error coefficient in absolute value with high prob-
ability just by limiting their variance V . In particular, by Equation (3), setting
V ≤ 1

8D2 , i.e. D ≤ 1
2
√
2V

, the probability of failure for the decryption is

P
(
||ν||∞ >

1

2

)
≤ n

(
1− erf

( 1

2
√
2V

))
≤ n(1− erf(D)),

Usually D = 6. So, for example, for n = 213, we have n(1− erf(D)) ≈ 2−42.

In the following, we denote with ν the invariant noise of any ciphertext and
with ν|i the i-th coefficient of ν. Moreover, we indicate with aι the ι-th element
of ν when written as a polynomial in s, i.e. ν =

∑
ι aιs

ι. Note that the element aι
is a polynomial in K itself, then aι|i is its i-th coefficient. Finally, the ciphertexts
we are considering are computed independently. In other words, each time we
perform addition and multiplication operations, we use ciphertexts that either
encrypt two different messages or are the results of different circuits, and there
are no shared messages between them.

4.1 Distribution Analysis

Our study of coefficients distribution has been performed computationally. We
used the OpenFHE library [2] to compute 10000 error samples, then analysed
their coefficients with the Python fitter package5. We obtained that their dis-
tributions can be well-approximated by Gaussians with confidence level 95%,
indeed the resulting p-value is ≥ 0.05.

In Figure 1, we show the outcome for circuits of multiplicative depth 0, 1 and
2, in particular of the first coefficient. As parameters, we took t = 65537, n = 213,
q as computed by the library to have at least 128 bit security, χs = χu = U3, and
χe = DG(0, σ2) with σ = 3.19. We used the Hybrid key switching and HPSPOVERQ

multiplication.4.2 Mean Analysis

We will prove that the error coefficients always have mean 0.

Lemma 1. Let ν =
∑

ι aιs
ι be any invariant noise, aι the ι-th element of ν as

a polynomial in s, and aι|i its i-th coefficient. Then, E[aι|i] = 0,∀ι, i ∈ N>0.

See Appendix A for the proof of Lemma 1.

5 https://fitter.readthedocs.io/en/latest/



14 Beatrice Biasioli, Chiara Marcolla, Marco Calderini, and Johannes Mono

Fig. 1: (i) kspval 0.588918; (ii) kspval 0.596218; and (iii) kspval 0.744975.

Proposition 1. Let ν be any invariant noise and ν|i the i-th coefficient, then
the average value of its coefficients is 0, i.e. E[ν|i] = 0.

Proof. Let us write the invariant noise as a polynomial in s, i.e., ν =
∑

ι aιs
ι.

Then, by Equation (1), ν|i =
∑

ι(aιs
ι)|i = a0|i +

∑
ι>0

∑n−1
j=0 ξ(i, j)aι|jsι|i−j .

Hence, by the linearity of the expected value and the independence between aι|j
and sι|i−j , properties (a) and (d) of Fact 1, E[ν|i] = E[a0|i]+

∑
ι>0

∑n−1
j=0 ξ(i, j) ·

E[aι|j ]E[sι|i−j ] = 0, by Lemma 1. ⊓⊔

4.3 Variance Analysis

In this section, we show how the variance of the error coefficients changes as
homomorphic operations are performed. To do this, we need the following results.

Lemma 2. Let ν =
∑

ι aιs
ι be an invariant noise written as a polynomial in

s, and aι1 |i1 , aι2 |i2 any two coefficients i1, i2 of elements of ν . It follows that
Cov(aι1 |i1 , aι2 |i2) = 0, if either ι1 ̸= ι2 or i1 ̸= i2, and that Var(aι|i) does not
depend on the coefficient i. Moreover, we have that

– Encryption. The invariant noise νclean of a fresh ciphertext can be write as
νclean = aclean0 + aclean1 s, where the coefficient variances are

Var(aclean0 |i) =
t2

q2
(
1

12
+ nVeVu + Ve) and Var(aclean1 |i) =

t2

q2
Ve.

– Addition. Let ν, ν′ be the invariant noise of two independently-computed
ciphertexts, then Var(aaddι |i) = Var(aι|i) + Var(a′ι|i);

– Constant Multiplication. Let νconst be the invariant noise after a mul-
tiplication between a constant α ∈ Rt and a ciphertext with noise ν, then

Var(aconstι |i) = (t2−1)n
12 Var(aι|i);

– Modulo Switch to q′ℓ. Let νms(q′ℓ) = ν + νms(q
′
ℓ) be the noise after the

modulo switch operation to q′ℓ, then Var(ams
ι (q′ℓ)|i) = Var(aι|i)+ t2

12q′2ℓ
1ι∈{0,1};
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– Key Switch. Let νks = ν + νks be the error after the key switch operation,
then Var(aksι |i) ≤ Var(aι|i) + V ι

ks(qℓ), where

V ι
ks(qℓ) =



t2

12q2ℓ
kℓ

k
√
q2nVe1ι=0 for BV

t2

12q2ℓ

(
(nVe + 1)1ι=0 + 1ι=1

)
for GHS

t2

12q2ℓ

(
((k + 2)nVe + 1)1ι=0 + 1ι=1

)
for GHS-RNS

t2

12q2ℓ

(
(ωnVe + 1)1ι=0 + 1ι=1

)
for Hybrid

t2

12q2ℓ

(
((k + 2ω)nVe + 1)1ι=0 + 1ι=1

)
for Hybrid-RNS

– Multiplication. Let ν =
∑T1

ι1=0 aι1s
ι1 , ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 be the noises of
two independently-computed ciphertexts, then

Var(amul
ι (qℓ)|i) = n

∑T1

ι1=0

∑T2

ι2=0 Var(aι1 |i)Var(a′ι2 |i)1ι1+ι2=ι

+ t2n
12

(
Var(aι|i)10≤ι≤T1 + Var(aι−1|i)11≤ι≤T1+1

+Var(a′ι|i)10≤ι≤T2 + Var(a′ι−1|i)11≤ι≤T2+1

)
+ t2

12q2ℓ
1ι∈{0,1,2}.

See Appendix A for the proof of the lemma.

We can finally state our results on the variance computation for operations,
dedicating a special section to the multiplication.

Proposition 2. Let ν =
∑

ι aιs
ι be any invariant noise written as a polynomial

in s, ν|i its i-th coefficients and aι|i the i-th coefficients of the ι-th element of ν
written as a polynomial in s. Then, the variance of the noise coefficients is

Var(ν|i) = Var(a0|i) +
∑
ι>0

Var(aι|i)
n−1∑
j=0

E
[
sι|2j

]
. (15)

Proof. To simplify the notation, we write ν|i =
∑

ι

∑n−1
j=0 ξ(i, j)aι|jsι|i−j , in-

stead of ν|i = a0|i+
∑

ι>0

∑n−1
j=0 ξ(i, j)aι|jsι|i−j . By Equation (1) and the prop-

erties (k), (j) and (e) of Fact 1, the variance of the noise invariant’s i-th coefficient
is

Var(ν|i) =Var
(∑

ι

n−1∑
j=0

ξ(i, j)aι|jsι|i−j

)
=

∑
ι

n−1∑
j=0

Var(aι|jsι|i−j)+

+
∑

ι1 ̸=ι2 or
j1 ̸=j2

ξ(i, j1)ξ(i, j2)Cov(aι1 |j1sι1 |i−j1 , aι2 |j2sι2 |i−j2).

By definition of covariance and the independence of aι and s, properties (c), (d)
Fact 1, we can write Cov(aι1 |j1sι1 |i−j1 , aι2 |j2sι2 |i−j2) as

E[aι1 |j1aι2 |j2 ]E[sι1 |i−j1s
ι2 |i−j2 ]− E[aι1 |j1 ]E[sι1 |i−j1 ]E[aι2 |j2 ]E[sι2 |i−j2 ],
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which, by Lemma 1, becomes

E[aι1 |j1aι2 |j2 ]E[sι1 |i−j1s
ι2 |i−j2 ] = Cov(aι1 |j1 , aι2 |j2)E[sι1 |i−j1s

ι2 |i−j2 ].

Since Cov(aι1 |j1 , aι2 |j2) = 0, thanks to Lemma 2, it follows that

Var(ν|i) =
∑
ι

n−1∑
j=0

Var(aι|jsι|i−j).

Then, since aι and s are independent and, by Lemma 1, E[aι|j ] = 0 for any j,
then we can apply the property (l) of Fact 1 obtaining,

Var(aι|jsι|i−j) = Var(aι|j)E[sι|2i−j ].

Finally, by Lemma 2, Var(aι|j) does not depend on j, hence

Var(ν|i) = Var(a0|i) +
∑

ι>0

∑n−1
j=0 Var(aι|j)E[sι|2i−j ]

= Var(a0|i) +
∑

ι>0 Var(aι|i)
∑n−1

j=0 E[sι|2i−j ].

⊓⊔

Proposition 3 (Encryption). The invariant noise νclean of a fresh ciphertext
has coefficient variance

Vclean = Var(νclean|i) = t2

q2

(
1
12 + nVeVu + Ve + nVeVs

)
. (16)

Proof. By Equation (5), the fresh error νclean can be written as νclean = aclean0 +
aclean1 s. Thus, thanks to Equation (15), we have

Var(νclean|i) = Var(aclean0 |i) + Var(aclean1 |i)
n−1∑
j=0

E[s|2j ].

Moreover, E[s|2j ] = Var(s|j) = Vs since E[s|j ] = 0 (property (i) of Fact 1). Then,

by Lemma 2, Var(νclean|i) = t2

q2 (
1
12 + nVeVu + Ve + nVeVs). ⊓⊔

Proposition 4 (Addition & Constant Multiplication). Let α ∈ Rt be
a constant and c, c′ be two independently-computed ciphertexts with invariant
noises ν, ν′, respectively. Then the variance of the error coefficients

– resulting from the addition of c and c′ is

Var(νadd|i) = Var(ν|i) + Var(ν′|i). (17)

– after a multiplication between α and c is

Var(νconst|i) = (t2−1)n
12 Var(ν|i). (18)



Improving BFV Parameters: An Average-Case Approach 17

Proof. By Equation (15) and Lemma 2, we have the variance of the error coef-
ficients after

- the addition is

Var(νadd|i) = Var(a0|i) +
∑

ι>0 Var(aι|i)
∑n−1

j=0 E[sι|2j ]
+Var(a′0|i) +

∑
ι>0 Var(a

′
ι|i)

∑n−1
j=0 E[sι|2j ]

= Var(ν|i) + Var(ν′|i).

- the constant multiplication is

Var(νconst|i) = Var(aconst0 |i) +
∑

ι>0 Var(a
const
ι |i)

∑n−1
j=0 E[sι|2j ]

= (t2−1)n
12

(
Var(a0|i) +

∑
ι>0 Var(aι|i)

∑n−1
j=0 E[sι|2j ]

)
= (t2−1)n

12 Var(ν|i).
⊓⊔

Proposition 5 (Modulo Switch). Let c = (c, qℓ, ν) be an extended ciphertext.
The variance of the error coefficients after the modulo switch to the target modulo
q′ℓ is

V ((ν + νms(q
′
ℓ))|i) = Var(ν|i) + t2

12q′2ℓ
(1 + nVs). (19)

Proof. By Equation (15) and Lemma 2, since E[s|2j ] = Var(s|j) = Vs, we have

Var((ν + νms(q
′
ℓ))|i) = Var(ams

0 (q′ℓ)|i) +
∑
ι>0

Var
(
ams
ι (q′ℓ)|i

) n−1∑
j=0

E[sι|2j ]

= Var(a0|i) +
∑
ι>0

Var(aι|i)
n−1∑
j=0

E[sι|2j ] +
t2

12q′2ℓ

(
1 +

n−1∑
j=0

E[s|2j ]
)

= Var(ν|i) +
t2

12q′2ℓ
(1 + nVs)

⊓⊔

Proposition 6 (Key Switch). Let d = (d, qℓ, ν) be an extended ciphertext,
the variance of the error coefficients after the key switching is

Var((ν + νks(qℓ))|i) ≤ Var(ν|i) + Vks(qℓ), (20)

where

Vks(qℓ) =



t2

12q2ℓ
kℓ

k
√

q2nVe for BV
t2

12q2ℓ
(nVe + 1 + nVs) for GHS

t2

12q2ℓ
(n(k + 2)Ve + 1 + nVs) for GHS-RNS

t2

12q2ℓ
(ωnVe + 1 + nVs) for Hybrid

t2

12q2ℓ
((k + 2ω)nVe + 1 + nVs) for Hybrid-RNS

(21)

and ω, k and kℓ are defined as in Section 3.1.
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Proof. Analogously, the result follows by Equation (15) and Lemma 2. Indeed,
since E[s|2j ] = Var(s|j) = Vs, then

Var((ν + νks(qℓ)) = Var(aks0 (qℓ)|i) +
∑

ι>0 Var
(
aksι (qℓ)|i

)∑n−1
j=0 E[sι|2j ]

≤ V (a0|i) + V 0
ks(qℓ) +

∑
ι>0

(
Var(aι|i) + V ι

ks(qℓ)
)∑n−1

j=0 E[sι|2j ]
= Var(ν|i) + Vks(qℓ)

⊓⊔

Theorem 1 (Multiplication). Let ν =
∑T1

ι1=0 aι1s
ι1 , ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 be
the noises of two independently computed ciphertexts, the variance of the error
coefficients after a multiplication is well-approximated by

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)

)
, (22)

with f(i) as in Heuristic 1.

The proof is given in the following section, due to its complexity.

4.4 On the Estimation of the Variance in the Multiplication

In this section, we prove Theorem 1. To do so, we analyze the coefficient variance
Var(νmul(qℓ)|i) of the error resulting from the multiplication of two independently-

computed ciphertexts, which noises are ν =
∑T1

ι1=0 aι1s
ι1 and ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 .

To give an idea of the problem that we are tackling in this section, we start
by considering the term νν′ of the multiplication error. By Lemma 2 and Equa-
tion (15), we get Var

(
(νν′)|i

)
= Var

(
aνν′
0 |i

)
+

∑
ι>0 Var

(
aνν′
ι |i

)∑n−1
j=0 E

[
sι|2j

]
.

Abusing notation for the sake of clarity, we have:

Var
(
(νν′)|i

)
=

∑
ι

Var
(
aνν′

ι |i
) n−1∑
j=0

E
[
sι|2j

]
= n

∑
ι

∑
ι1,ι2

Var(aι1 |i)Var(a′ι2 |i)1ι1+ι2=ι

n−1∑
j=0

E
[
sι1+ι2 |2j

]
Note that, computing nVar(ν|i)Var(ν′|i) (with the same abuse of notation), we
obtain almost Var

(
(νν′)|i

)
. Indeed,

nVar(ν|i)Var(ν′|i) = n
(∑

ι1

Var(aι1 |i)
n−1∑
j1=0

E
[
sι|2j1

])(∑
ι2

Var(aι2 |i)
n−1∑
j2=0

E
[
sι|2j2

])
=

= n
∑
ι

∑
ι1,ι2

Var(aι1 |i)Var(a′ι2 |i)1ι1+ι2=ι

n−1∑
j1=0

E
[
sι|2j1

] n−1∑
j2=0

E
[
sι|2j2

]
,



Improving BFV Parameters: An Average-Case Approach 19

where the unique difference is that

n−1∑
j=0

E
[
sι1+ι2 |2j

]
̸=

n−1∑
j1=0

E
[
sι|2j1

] n−1∑
j2=0

E
[
sι|2j2

]
.

Therefore, the goal of this section is to find a correction function F such that

n−1∑
j=0

E[sι1+ι2 |2j ] ≈ F (ι1, ι2)

n−1∑
j1=0

E[sι1 |2j1 ]
n−1∑
j2=0

E[sι2 |2j2 ]. (23)

In this way, we can compute Var(νmul(qℓ)|i) from Var(ν|i) and Var(ν′|i) using a
simple formula.

We achieve this as follows:

1. We start by computing the correction function F (ι1, ι2) for a specific case,
namely for ι2 = 1, by defining f(ι) := F (ι− 1, 1).

2. Using this function f and exploiting Lemma 3, we define the correction
function F (ι1, ι2) for any ι1 and ι2 (Corollary 1).

3. In Lemma 4, we prove some properties of F (ι1, ι2) that will be used in the
proof of Theorem 1.

4. Finally, we prove Theorem 1, providing a method for the computation of
Var(νmul|i).

The function f(ι). As mentioned, the first step is finding a function f(ι) that
approximates the following special case of the correction function F , for ι ≥ 2:

f(ι) := F (ι− 1, 1) ≈
∑n−1

j=0 E[sι|2j ]∑n−1
j1=0 E[sι−1|2j1 ]

∑n−1
j2=0 E[s|2j2 ]

. (24)

Note that the function f(ι) only depends on the distribution χs and the ring
dimension n.

We compute the values that f(ι) has to approximate, namely the right-hand
side of Equation (24), experimentally for ι ≤ 300, considering 25000 samples (for
more details see Appendix B).

Heuristic 1 A function f(ι), verifying Equation (24) for ι ≥ 2, is

f(ι) = −eα−βι−γι2 + δ. (25)

where α, β, γ, and δ depend on the distribution χs and the ring dimension n.
In Table 1 we show the constant values when χs = U3. The list of all the other
values obtained for the function f(ι) across different n and χs, can be found in
Appendix B.

In Figures 2a and 2b we give an example with n = 212 and χs = U3.
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n α β γ δ

212 2.8732 0.0160 0.0049 19.1895
213 2.9644 0.0196 0.0046 20.4747
214 2.9578 0.0386 0.0032 19.5755
215 2.9765 0.0197 0.0043 20.7760

Table 1: χs = U3

ι (24) f(ι)

2 2.0003 2.3858
3 2.9991 3.0527
4 3.9966 3.8443
5 4.9911 4.7394
6 5.9789 5.7150
7 6.9545 6.7472
8 7.9126 7.8124
...

...
...

91 19.1894 19.1895
92 19.1895 19.1895
...

...
...

300 19.1895 19.1895

(a) Calculated values of the
right-hand side of Equa-
tion (24) and f(ι) as ι varies.

(b) The grey dots represent the values from
Tables (2a) (i.e., the right-hand side of Equa-
tion (24)), while the green line shows the ap-
proximation of f(ι) according to Heuristic 1.

Fig. 2: Example of the function f(ι) for n = 212 and χs = U3.
The correction function F (ι1, ι2). Under Heuristic 1, we are able to define
the correction function F , thanks to the following result.

Lemma 3. Let g(ι) =
∏ι

i=0 f(i) with f(i) as in Equation (24) and f(0) =

f(1) = 1. Then for ι ≥ 1,
∑n−1

j=0 E[sι|2j ] ≈ (nVs)
ιg(ι).

Proof. The proof is done by induction on ι.

– For ι = 1,
∑n−1

j=0 E[s|2j ] = nVs = nVsg(1).

– Moreover, if the thesis holds for all ι′ < ι, then by Equation (24)

n−1∑
j=0

E[sι|2j ] ≈ f(ι)

n−1∑
j1=0

E[sι−1|2j1 ]
n−1∑
j2=0

E[s|2j2 ] ≈ g(ι)(nVs)
ι.

⊓⊔

Note that for ι = 0, we can also define
∑n−1

j=0 E[sι|2j ] ≈ (nVs)
ιg(ι). Indeed, in

this case, the term Var(a0|i) is only multiplied by g(0)(nV s)0 = 1.
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Corollary 1. Let g(ι) =
∏ι

i=0 f(i) with f(i) as in Equation (24) and f(0) =
f(1) = 1. Then, the correction function F is

F (ι1, ι2) :=
g(ι1 + ι2)

g(ι1)g(ι2)
≈

∑n−1
j=0 E[sι1+ι2 |2j ]∑n−1

j1=0 E[sι1 |2j1 ]
∑n−1

j2=0 E[sι2 |2j2 ]
. (26)

To provide an estimation of Var(νmul(qℓ)|i), we need the following technical
lemma regarding some properties of F (ι1, ι2).

Lemma 4. Let F (ι1, ι2) be the correction function as in Equation (26), then

1. F (ι1, ι2) ≤ F (T1, T2) for any ι1 ∈ {0, . . . , T1}, and ι2 ∈ {0, . . . , T2}.

2. Let T1, T2 ∈ N, then F (T1,T2)
f(T1+1)f(T2+1) ≤ Kn with Kn is a finite constant.

Specifically, Kn < 40n, for any n = 2κ, where κ ∈ {12, . . . , 15} .

The proof of Lemma 4 is in Appendix C.

Proof of Theorem 1. Finally, we present the proof of our main result:

Theorem 1 (Multiplication). Let ν =
∑T1

ι1=0 aι1s
ι1 , ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 be
the noises of two independently computed ciphertexts, the variance of the error
coefficients after a multiplication is well-approximated by

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)

)
,

with f(ι) as in Heuristic 1.

The proof is divided into two parts. Firstly, we propose a formula for the
computation of (an upper bound of) Var(νmul(qℓ)|i) from Var(ν|i) and Var(ν′|i).
Secondly, we show that some terms in the obtained formula are negligible. This
approach simplifies the computation of the ciphertext modulus q in a circuit (see
Section 5).
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Proof. Abusing notation for the sake of clarity, by Lemma 2 and Equation (15),
we have

Var(νmul(qℓ)|i) =
∑
ι

Var
(
amul(qℓ)
ι |i

) n−1∑
j=0

E
[
sι|2j

]
= n

T1∑
ι1=0

T2∑
ι2=0

Var(aι1 |i)Var(a′ι2 |i)
n−1∑
j=0

E
[
sι1+ι2 |2j

]
+

t2n

12

T1∑
ι1=0

Var(aι1 |i)
(n−1∑
j=0

E
[
sι1 |2j

]
+

n−1∑
j=0

E
[
sι1+1|2j

])

+
t2n

12

T2∑
ι2=0

Var(a′ι2 |i)
(n−1∑
j=0

E
[
sι2 |2j

]
+

n−1∑
j=0

E
[
sι2+1|2j

])

+
t2

12q2ℓ

(
1 +

n−1∑
j=0

E
[
s|2j

]
+

n−1∑
j=0

E
[
s2|2j

])
Thanks to Corollary 1, we approximate

n−1∑
j=0

E[sι1+ι2 |2j ] ≈ F (ι1, ι2)

n−1∑
j1=0

E[sι1 |2j1 ]
n−1∑
j2=0

E[sι2 |2j2 ].

Additionally, by Lemma 3, we have
∑n−1

j=0 E[s|2j ] ≈ nVs and
∑n−1

j=0 E[s2|2j ] ≈
(nVs)

2f(2), and, in general,
∑n−1

j=0 E[sι+1|2j ] ≈ f(ι+1)
∑n−1

j1=0 E[sι|2j1 ]
∑n−1

j2=0 E[s|2j2 ].
Hence,

Var(νmul(qℓ)|i) ≈n

T1∑
ι1=0

T2∑
ι2=0

Var(aι1 |i)Var(a′ι2 |i)
n−1∑

j1,j2=0

E[sι1 |2j1 ]E[s
ι2 |2j2 ]F (ι1, ι2)+

+
t2n

12

T1∑
ι1=0

Var(aι1 |i)
n−1∑
j=0

E[sι1 |2j ]
(
1 + nVsf(ι1 + 1)

)
+

+
t2n

12

T2∑
ι2=0

Var(a′ι2 |i)
n−1∑
j=0

E[sι2 |2j ]
(
1 + nVsf(ι2 + 1)

)
+

+
t2

12q2ℓ

(
1 + nVs + n2V 2

s f(2)
)
.

Moreover, by point 1 of Lemma 4, we obtain the following bound

Var(νmul(qℓ)|i) ≤ nVar(ν|i)Var(ν′|i)F (T1, T2) +
t2n

12
Var(ν|i)

(
1 + nVsf(T1 + 1)

)
+

t2n

12
Var(ν′|i)

(
1 + nVsf(T2 + 1)

)
+

t2

12q2ℓ

(
1 + nVs + n2V 2

s f(2)
)
.
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Now, we need to make some further simplifications to obtain the thesis.

First, recall that n is a power of 2, usually at least 212. Thus we can approx-
imate the previous inequality as

Var(νmul(qℓ)|i) ≤nVar(ν|i)Var(ν′|i)F (T1, T2) +
t2n2Vs

12

(
Var(ν|i)f(T1 + 1)+

+ Var(ν′|i)f(T2 + 1)
)
+

t2n2V 2
s f(2)

12q2ℓ
. (27)

Second, we prove that the first term is negligible compared to the rest, specif-
ically to the second term. To do so, we exploit the fact that we are pursuing
correctness, namely the bound (27) is set smaller than 1/8D2. In particular, it
follows that

t2n2Vs

12
Var(ν′|i)f(T2 + 1) <

1

8D2
, i.e. Var(ν′|i) <

3

2D2t2n2Vsf(T2 + 1)
.

Then, by point 2 of Lemma 4,

nVar(ν|i)Var(ν′|i)F (T1, T2) ≤
3

2D2t2nVs
Var(ν|i)

F (T1, T2)

f(T2 + 1)

≤ 3Kn

2D2t2nVs
Var(ν|i)f(T1 + 1)

≪ t2n2Vs

12
Var(ν|i)f(T1 + 1).

Hence, the bound (27) becomes

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 +1)+Var(ν′|i)f(T2 +1)

)
+

t2n2V 2
s

12q2ℓ
f(2).

Finally, we prove that the last term is negligible respect the other terms. Let
us consider the case in which the multiplication is performed in the modulus q.
We know that Var(ν|i) ≥ Vclean, since all the homomorphic operations performed
increase the variance of the error coefficients. Therefore, by Equation (16), we
get Var(ν|i) ≥ t2nVeVs/q

2. It follows

t2n2Vs

12
Var(ν|i)f(T1 + 1) ≥ t4n3VeV

2
s

12q2
f(T1 + 1)≫ t2n2V 2

s

12q2
f(2).

Hence, the thesis.

Note that if a modulo switch to a different ciphertext modulus qℓ has been
performed, the proof is analogous. Indeed, we only need to observe that Var(ν|i) ≥
Vms(qℓ), where Vms(qℓ) =

t2nVs

12q2ℓ
by Equation (19).

⊓⊔
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5 Closed formulas for BFV Circuits

In this section, we exploit our theoretical work (Section 4) to improve the param-
eter generation for the BFV scheme, providing a method to derive closed formu-
las for determining the ciphertext modulus q and, eventually, its sub-moduli qj .
In particular, we analyze a specific circuit and we show how to track the error
growth. These formulas are implemented in our tool, which provides automated
parameter selection for non-FHE experts (Section 5.3).

Recall that the coefficients of any error follow a Gaussian distribution with
mean 0 and variance computable using the formulas in Proposition 2. Therefore,
a lower bound for correctness on the ciphertext modulus q or its sub-moduli pj
can always be determined by tracking the increasing variance and setting its
final value ≤ 1/8D2. However, solving this inequality can be challenging in some
cases. We will explain how this problem is addressed in the following sections.

Note that the homomorphic circuits where the BFV scheme is used are mainly
of two kinds: the ones that employ the division into levels using the modulo
switch, hence adopting smaller ciphertext moduli at each slot of operation, and
those that use a fixed ciphertext-modulus. We analyze these two cases in Sec-
tion 5.2 and Section 5.1, respectively.

The modulo switching technique was introduced in the BGV scheme to reduce
the error associated with the ciphertext, and it is typically applied after heavy-
on-the-error operations, like homomorphic multiplications. In BFV, even if this
technique does not reduce the error, it can still be beneficial for efficiency. This
is because homomorphic operations are computed over smaller moduli [24,18].

5.1 State-of-the-art: Fixed Ciphertext-Modulus Circuits

Since the modulo switch technique does not reduce the error, the state-of-the-
art circuits for the BFV scheme are the fixed ciphertext-modulus ones. This
means that all the homomorphic operations are performed modulus the same q.
The only exception is during the multiplication algorithm, where one of the two
ciphertexts is temporarily moved to q′ (which has approximately the same size
of q); however, the result obtained after the multiplication is again in modulo q.

In Table 2, we summarize the variance for each homomorphic operation.
These results are coming from Propositions 3 to 6 and Theorem 1, where V, V ′, V ′′

are the error coefficients’ variances of independently-computed ciphertexts c, c′

in modulo q and c′′ in modulo q′. Moreover, T1, T2 are the degrees of errors as
polynomials in s of c, c′′ and f(ι) is defined as Equation (25).

We point out that the variance can always be written as B
q2 , where B does not

depend6 on q. Therefore, to find q, we solve an inequality of the form B
q2 ≤

1
8D2 ,

obtaining q ≥
√
8D2B.

6 The BV relinearization is the only exception, but its use is no longer common in
practice (see Section 3.1).
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Homom. operation Variance

Enc Venc = Bclean/q
2 Bclean = t2( 1

12
+ nVeVu + Ve + nVeVs)

Add(c, c′) V + V ′

Const(c) BconstV Bconst =
(t2−1)n

12

Mod Switch(q′) V +Bms/q
′2 ≈ V +Bms/q

2 Bms =
t2(1+nVs)

12

Key Switch V +Bks/q
2 Bks = Vks(q)/q

2, where Vks(q) is as in (21)

Mult(c, c′′) t2n2Vs
12

(
V f(T1+1) + V ′′f(T2+1)

)
Table 2: Variance depending on the homomorphic operations.

In the following example, we will track the error for a specific circuit (Figure 3
Model 2). We have chosen this circuit among those available in our tool because
it has the most complex error growth to track. We believe that by providing
this example, users will be able to generalize our approach for calculating the
error in simpler cases. Additionally, this circuit exhibits the highest error growth
compared to all other circuits.

In Section 5.2, we will refer back to this same example to calculate the ci-
phertext modulus q in both scenarios that involve the use of modulo switching.
Finally, in Section 5.3, we also provide the closed formulas for determining q for
all the other circuits in Figure 3.

Example 1. Consider the Model 2 circuit in Figure 3. This circuit has a mul-
tiplicative depth of M = L − 1, and we operate on η independently computed
ciphertexts in parallel. In this circuit, we perform τ rotations followed by a con-
stant multiplication. The resulting ciphertexts are then summed together and
used as input for a multiplication with relinearization. This new ciphertext is
subsequently used as an input for the same circuit. Considering this circuit, we
are going to compute the ciphertext modulus q by tracing the variance’s growth
and setting its final value smaller or equal than 1/8D2.

Let us define V0 = Vclean the variance after the fresh encryption (Equa-
tion (16)) and Vℓ the variance after the ℓ-th multiplication (and relineariza-
tion), hence we will set VL−1 ≤ 1/8D2. From Table 2, we write the variance as
V = B/q2, where B is not depend on q, then we denote V0 = Vclean = Bclean/q

2

and compute Vℓ from Vℓ−1 with the following steps:

– We first apply τ rotations to each ciphertext, obtaining, by Equation (20),
Vℓ−1 + τVks(q) = Vℓ−1 + τBks/q

2.
– Secondly, we have a constant multiplication. Thus, by Proposition 4, the

variance is multiplied by Bconst =
(t2−1)n

12 , becoming (Vℓ−1 + τ Bks

q2 )Bconst.

– We add η ciphertexts, obtaining η(Vℓ−1 + τ Bks

q2 )Bconst, thanks to Proposi-
tion 4.

– Finally, we perform a homomorphic multiplication between pairs of cipher-
texts. Recall from Section 3 that, in each pair, a modulo switch to the mod-
ulus q′ ≈ q is applied to one of the two ciphertexts. Hence, by Proposi-
tion 5, its variance becomes approximately η(Vℓ−1 + τ Bks

q2 )Bconst + Bms/q
2,

with Bms = t2(1 + nVs)/12. Performing also the multiplication and relin-



26 Beatrice Biasioli, Chiara Marcolla, Marco Calderini, and Johannes Mono

earization, we get

Vℓ ≈
t2n2Vs

12

(
2η(Vℓ−1 + τ Bks

q2 )Bconst +
Bms

q2

)
f(ℓ+ 1) + Bks

q2

≈ t2n2Vs

12

(
2η(Vℓ−1 + τ Bks

q2 )Bconst +
Bms

q2

)
f(ℓ+ 1). (28)

Recursively, we have that Vℓ = Bℓ/q
2 withBℓ independent of q and, in particular,

Vℓ =
Bℓ

q2
≈ (ABℓ−1 + C)f(ℓ+ 1)

q2
(29)

where A = η t2n2Vs

6 Bconst and C = t2n2Vs

12 (2ητBksBconst +Bms). Hence,

VL−1 =
BL−1

q2
≈ (ABL−2 + C)f(L)

q2
≈ A(ABL−3 + C)f(L− 1)f(L)

q2

≈ · · · ≈ AL−2(ABclean + C)g(L)

q2
,

and, setting VL−1 ≤ 1/8D2, we obtain

q2 ≥ 8D2AL−2(ABclean + C)g(L). (30)

5.2 Circuits Exploiting the Modulo Switch

In this section, we study the case where modulus switching to smaller moduli
is applied in two different ways: the first follows the BGV-like approach (see
[18]), the second was proposed by Kim et al. in [30]. Moreover, we propose a set
of parameters to limit the error growth difference compared to the non-leveled
circuits (Section 5.1), focusing on the same circuit as in Example 1.

BGV-like circuit In BGV [9], the noise is managed for the first time without
the bootstrapping by using the modulo switching technique. Hence, the encryp-
tion modulus is a product q =

∏L
j=1 pj , and the operations are performed pro-

gressively in the sub-moduli qL, qL−1, . . . , q1 with qℓ =
∏ℓ

j=1 pj . Specifically, in
BGV, the modulus is switched from qℓ to qℓ−1 when the noise level approaches
the threshold that permits correct decryption, typically after a homomorphic
multiplication.

Considering the same circuit as in Example 1, the pj can be divided into
three types:

– The top one pL is smaller than the others, since since no operations are
performed between the enctyption and the first modulo switch.

– The middle ones, pℓ where 2 ≤ ℓ ≤ L − 1, are approximately of the same
size. The modulo switch from qℓ to qℓ−1 is executed after each round of
operations (i.e., after τ rotations, a constant multiplication, η additions and
a homomorphic multiplication with relinearization), continuing until the last
modulus q1 = p1.
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– For the bottom modulus p1, the same operations are performed. However,
instead of performing a key switch and a modulus switch after the final
multiplication, we decrypt right after this multiplication using s and s2,
reducing the overall amount of operations performed. For this reason and to
guarantee correctness p1 is bigger than the previous pi.

These types of circuits were also utilized for the BFV scheme [18]. We provide
a clearer explanation by demonstrating the parameter settings in the circuit
example from the previous section.

Example 2. The circuit is the same as Example 1. Using the same argument, we
compute the noise variance starting from V ms

0 = Vclean and we only need to ensure
that the final variance, V ms

L−1, is bounded. The analysis differs for the presence
of many moduli. At the ℓ-th level we switch from qL−ℓ+1 to qL−ℓ, yielding

V ms
ℓ−1 + Vms(qL−ℓ) = V ms

ℓ−1 +
Bms

q2L−ℓ

with Bms as in Table 2 and the errors of the next operations are divided by q2L−ℓ

as well. Thus, similarly to Equation (28), we have

V ms
ℓ ≈ t2n2Vs

12

(
2η

(
V ms
ℓ−1 +

Bms + τBks

q2L−ℓ

)
Bconst +

Bms

q2L−ℓ

)
f(ℓ+ 1).

Therefore

V ms
ℓ ≈

(
AmsVℓ−1 +

Cms

q2L−ℓ

)
f(ℓ+ 1), (31)

where Ams =
ηt2n2Vs

6 Bconst and Cms =
t2n2Vs

12

(
2ητBksBconst + (2ηBconst +1)Bms

)
.

Note that Ams = A and Cms > C, where A,C are as in Example 1. Thanks to
Equation (31), we can recursively compute the variance V ms

L−1 as

V ms
L−1 ≈ AV ms

L−2f(L) +
Cms

q21
f(L) ≈

≈ A2V ms
L−3f(L−1)f(L) + ACms

q22
f(L−1)f(L) + Cms

q21
f(L) ≈ · · · ≈

≈ AL−1V ms
0 f(2)···f(L) +

∑L−1
i=1

Ai−1Cms

q2i
f(L−i+1)···f(L),

therefore,

AL−1Bclean

q2L
g(L) +

L−1∑
i=1

Ai−1Cms

q2i

g(L)

g(L−i)
≤ 1

8D2
. (32)

Observe that, since Cms > C and qℓ ≤ qL, V
ms
L−1 > VL−1. This implies that the

ciphertext modulus obtained with the modulus switch technique, qms = qL, is
bigger than the modulus q obtained in Equation (30). However, we can select
specific sub-moduli for them to be close, improving efficiency.

Fact 2 An optimal choice for the pj’s, maximizing the efficiency while keeping
the ciphertext modulus close to the one gotten without modulus-switching, is
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obtained when the addends in Equation (32) are approximately of the same size,
namely when

p21 ≈ 8D2LCmsf(L), p2ℓ ≈ Af(L−ℓ−1), p2L ≈
ABclean

Cms
.

Then q2ms ≈ 8D2LAL−1Bcleang(L), which means that qms is approximately
√
L

times the ciphertext modulus q in Equation (30).

Proof. We begin our proof by contradiction, assuming that there exists at least
one index i in Equation (32) such that

Ai−1Cms

q2i

g(L)

g(L−i)
≫ AL−1Bclean

q2L
g(L), (33)

Then, called N ≥ 1 the number such indices, we get from Equation (32)

V ms
L−1 ≈

NAi−1Cms

q2i

g(L)

g(L−i)
≤ 1

8D2

and, consequently, q2i ≥ 8D2NAi−1Cms
g(L)

g(L−i) . From Equation (33), it also fol-

lows
q2L
q2i
≫ AL−iBclean

Cms
g(L−i), which implies q2ms ≫ 8D2NAL−1Bcleang(L), much

larger than the bound for q given by (30).

Thus, we now suppose that, for any index i, we have

Ai−1Cms

q2i

g(L)

g(L−i)
≤ AL−1Bclean

q2L
g(L). (34)

So that

V ms
L−1 ≤

LAL−1Bclean

q2L
g(L), (35)

namely, q2ms ≥ 8D2LAL−1Bcleang(L). From Equation (34) we get

p2L ≤
ABclean

Cms
, p2L−1p

2
L ≤

A2Bclean

Cms
g(2), . . . , p22 · · · p2L ≤

AL−1Bclean

Cms
g(L−1).

Moreover, from Equation (35), we take p21 · · · p2L ≈ 8D2LAL−1Bcleang(L). For
maximal efficiency, we choose p1 to be as small as possible by setting p22 · · · p2L
the largest, i.e. satisfying p22 · · · p2L ≈ AL−1Bcleang(L−1)/Cms. This yields p21 ≈
8D2LCmsf(L). We can apply the same argument iteratively to p2, . . . , pL−1,
obtaining the values of the thesis, i.e. p2ℓ ≈ Af(L−ℓ−1), for ℓ = 2, . . . , L − 1.
Finally, from these values and p21 · · · p2L ≈ 8D2LAL−1Bcleang(L), we get p2L ≈
ABclean/Cms. ⊓⊔
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Kim et al. circuit In [30], the authors proposed an alternative approach that
applies the modulo switch only during multiplications, which is the most expen-
sive operation. Specifically, the ciphertexts modulo q is internally switched to a
smaller modulus qlev, the homomorphic multiplication is performed, and then
the results are scaled back up to q. Although the error remains larger compared
to the fixed ciphertext-modulus case, it can be kept relatively close.

Example 3. Let us consider the same circuit as in Examples 1 and 2. In this
case, we obtain

Vℓ ≈ 2

[
η

(
Vℓ−1 +

τBks

q2

)
Bconst +

Bms

q2lev

]
t2n2Vs

12
f(ℓ+ 1) +

Bms

q2
+

Bks

q2
,

which, written as Vℓ ≈ AVℓ−1f(ℓ+ 1) + C1f(ℓ+1)+C2

q2 + Ef(ℓ+1)
q2lev

, yields

VL−1 ≈ AL−2g(L)

[
ABclean + C1 + C2/f(2)

q2
+

E

q2lev

]
≤ 1

8D2
,

withA = ηt2n2Vs

6 Bconst, C1 = ητ t2n2Vs

6 BconstBks, C2 = Bms+Bks, E = t2n2Vs

6 Bms.
To have a level of security similar to the previous one, we can take qlev such that
ABclean+C1+C2/f(2)

q2 ≈ E
q2lev

, i.e. q2lev ≈ E
ABclean+C1+C2/f(2)

q2. Then the bound on q

become approximately

q2 ≥ 16D2AL−2g(L)(ABclean + C1 + C2/f(2)).

5.3 A Parameter Generator for BFV

To make our work more valuable and approachable for practical purposes, we
provide automated parameter generation implemented in Python and publicly
available on GitHub 7. We integrated our theoretical work for the BFV scheme
in the tool of Mono et al. [36], combining the correctness analysis developed in
the previous sections with the formula for security in their paper.

In this tool, the focus is on the circuit models proposed by Mono et al. [36].
The circuit models chosen perform a list of operations on η ciphertexts ci in
parallel, as illustrated in Figure 3. The resulting ciphertexts are homomorphically
multiplied with other ones computed analogously. This sequence is repeated M
times.

Base model This is a simplified version of the other models, performing con-
stant multiplications on the ciphertexts and summing them afterwards, be-
fore the homomorphic multiplication. It is mainly used to make the analysis
easier, and it is equal to Model 1 and 2 with τ = 0.

7 https://github.com/Crypto-TII/fhegen

https://github.com/Crypto-TII/fhegen
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c1 . . . cη

+

c

α0 αη

Base Model

c1 . . . cη

+

α0

rot

rot

αη

rot

rot

τ

c

Model 1

c1 . . . cη

+

rot

rot

α0

rot

rot

αη

τ

c

Model 2

c1 . . . cη

+

rot

rot

c

OpenFHE Model

Fig. 3: Sequences of operations in the different models.

Model 1 & 2 Models 1 and 2 extend the Base Model performing τ rotations
either after or before the constant multiplications, respectively.

OpenFHE Model For comparison with previous work, we also define the model
used in the OpenFHE library [30,2]. Here the first operation to be performed
is a homomorphic multiplication, then η additions and τ rotations are carried
out.

As for the rest of the paper, in the parameters generation, we assume that
the input ciphertexts for each circuit encrypt different messages, therefore all
the operation involve independently computed ciphertexts. For the Base Model
and Model 1, the modulus q can be computed using Equation (30):

q2 ≥ 8D2AL−2(ABclean + C)g(L),

analogously to Example 1 (Model 2).
We make slight modifications for the OpenFHE Model, where the multi-

plication occurs at the beginning of the circuit. In this case, we approximate

Vℓ =
ABℓ−1f(ℓ+1)+C

q2 , hence

q2 ≥ 8D2AL−2(ABclean + C/f(2))g(L). (36)

In Table 3, we list the resulting A and C depending on the models.

Model A C

Base Model ηt2n2Vs
6

Bconst
t2n2Vs

12
Bms

Model 1 ηt2n2Vs
6

Bconst
t2n2Vs

12
(2ητBks +Bms)

Model 2 ηt2n2Vs
6

Bconst
t2n2Vs

12
(2ητBksBconst +Bms)

OpenFHE Model ηt2n2Vs
6

(η + τ)Bks

Table 3: A, C to compute q with either (30), or (36) for the OpenFHE one.
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The generator interacts with the user by asking a series of questions and
presenting a list of mandatory and optional inputs, then generating code snippets
based on the obtained parameters. We provide a list of required inputs in the
first part and optional inputs in the second part of Table 4.

Model 'Base', 'Model1', 'Model2', 'OpenFHE'
t or log t any integer ≥ 2
λ or m any integer ≥ 40 or ≥ 4, respectively
M , η any integer > 0
τ any integer ≥ 0
Library 'None', 'OpenFHE', 'PALISADE', 'SEAL'

Full Batching full batching with t, 'True' or 'False'
Secret Distribution 'Ternary', 'Error'
Key Switching 'Hybrid', 'BV', 'GHS'
β any integer ≥ 2
ω any integer ≥ 1

Table 4: Required and optional inputs to the parameter generator

This approach ensures high versatility and comprehensiveness, supporting
multiple state-of-the-art libraries and all the circuits in Figure 3. Moreover, its
implementation is easily adaptable to any sequence of operations.

To support arbitrary circuit models, we adapt Mono et al. approach for the
key switching noise estimation to our average-case analysis. We use fixed values
for β and ω, per default β = 210 and ω = 3. When applicable, we set the key
switching modulus P approximately equal to the ciphertext modulus q in the
GHS variant, and to the submoduli r̃i that split it in the Hybrid one, and scale
it by a constant K, per default K = 100. Using this estimate for the extension
modulus, we compute the noise bound programmatically.

Note that, although this approach slightly overestimates the error, the noise
growth due to key switching is relatively small compared to other operations.
Thus, this estimation still results in valid parameter sets. This generalization
extends our theoretical work to arbitrary, use-case-specific circuit models with a
user-friendly interface.

6 Comparison with Previous Works

In this section, we demonstrate the efficacy of our average-case approach by
comparing it to the state-of-the-art works [29,18,20,30] and the practical errors
arising from OpenFHE [2].

In particular, we conduct this analysis for the basic homomorphic operations:
Encryption of a fresh ciphertext and Addition and Multiplication between 2 fresh
independently computed ciphertexts (Table 7). Moreover, in Tables 8 and 9 we
focus on circuits. Specifically, Table 8 examines the Base Model circuits (Fig-
ure 3) with η = 8 and depth 2 and 3, while the same circuit is analyzed with



32 Beatrice Biasioli, Chiara Marcolla, Marco Calderini, and Johannes Mono

depths 4 and 5 in Table 9. Obviously, we can apply our analysis to any circuit
evaluated on independent ciphertexts.

To ensure clarity, we summarize the main results needed for the comparison.
The bounds with the canonical norm are computed following the latest work by
Costache et al. [20], and Iliashenko [29], taking into account the modifications
we made to the encryption and multiplication algorithms based on the work of
Kim et al. [30]. Moreover, we recall our formulas from Sections 4 and 5.

Canonical norm. In contrast to our approach, the latest works establishing theo-
retical bounds on the BFV noise growth propose a worst-case analysis employing
either the infinity norm [30] or the canonical norm [29,18,20]. The canonical norm
is known to result in better parameters.

In Table 5 we summarize how the error behaves when the homomorphic
operations are performed considering the error bounds using the canonical norm.

Homomorphic operation Error bounds with canonical norm

Enc ||νclean||can ≤ D t
q

√
n
(

1
12

+ nVeVu + Ve + nVeVs

)
Mod Switch(q′) ||ν + νms(q

′)||can ≤ ||ν||can + D
√
nBms
q′

Key switch(q) ||ν + νks||can ≤ ||ν||can +D
√
nVks

Add(c, c′) ||ν + ν′||can ≤ ||ν||can + ||ν′||can

Const(c) ||αν||can ≤ D

√
n (t2−1)

12
||ν||can

Mult(c, c′) ||νmul||can ≤
(
2||ν||can +D

√
nVms(q)

)
Dt
√

n
12
(1 + nVs)

Table 5: Canonical norm depending on the homomorphic operations.

In [18], the authors, assuming independence among the coefficients, used
the bound ||a||can ≤ D

√
nVa for polynomials a ∈ R, where D is an integer

in general set equal to 6 and Va is the variance of the coefficients of a. With
the same hypothesis, we can bound the canonical norm of the invariant noise ν
with ||ν||can ≤ D

√
nV , whose probability is greater or equal to 1 − ne−D2

, by
Equation (4). In line with the previous works, we set D = 6 which guarantees
the bound with probability at least 1−2−36. It’s worth noting that, in a practical
scenario is better to choose D = 8 since the probability of failure is limited to
2−77 (for n smaller than 215).
Applying the same argument of Section 5.1, we get that the following bound on
the final error of a Base Model circuit: ||νL−1||can ≤ AL−2

(
AD
√
nBclean + C

)
/q,

with A = Dηt
√

n
3 (1 + nVs) and C = D2t2n

12 (1 + nVs). Since the norm has to
satisfy ||νL−1||can ≤ 1/2, it follows that

q ≥ 2AL−2
(
AD

√
nBclean + C

)
. (37)
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Average-case bounds. In the average-case approach, we set ||ν||∞ ≤ D
√
2V with

V variance of each coefficient of ν. Thanks to Equation (3), the bound holds
with probability at least 1−n (1− erf(D)), which for D = 6 is at least 1− 2−40.

Summarizing the results of Section 4, let ν, ν′ be the invariant noises associ-
ated with the ciphertexts c and c′, results of independent circuits of depth ℓ−1.
Let V be the variance of their coefficients, in Table 2 we recall how it changes
depending on the homomorphic operations.

Homomorphic operation Variance

Enc t2

q2

(
1
12

+ nVeVu + Ve + nVeVs

)
Mod Switch(q′) V + t2(1+nVs)

12q′2

Key switch(q) V + Vks(q)
Add(c, c′) 2V

Const(c) (t2−1)n
12

V

Mult(c, c′) t2n2Vs
12

(2V + Vms)f(ℓ+1)

Table 6: Variance depending on the homomorphic operations.

In Tables 7 to 9, we compare the error analysis performed using the canon-
ical norm, using our method, and the experimental results obtained from the
OpenFHE library. For readability, we do not show the bounds themselves, but
their noise budget : − log2(2·||ν||) = log2

(
1
2

)
−log2(||ν||), [39]. Roughly speaking,

this measures in bits the distance between the input and 1
2 , which is the limit

for correct decryption.
The tag “can” denotes the state-of-the-art analysis carried out with the

canonical norm, “our” presents the results obtained with the average-case ap-
proach presented in this paper, “exp” shows the observed values from OpenFHE
[2] library with 215 polynomial samples. We additionally display the average of
the absolute error values under “mean”, in Tables 8 and 9 we also present our
estimation of this as

√
V , tagged as “our”.

For parameters, we use t = 65537, n = 212, . . . , 215 and q set by OpenFHE
library8. We highlight the results in black in the tables when the security level
is at least 128-bit, and in grey when it is below this threshold. We use Hybrid
key switching and HPSPOVERQ multiplication and set D = 6, χs = χu = U3,
and χe = DG(0, σ2), with σ = 3.19.

In Table 7, we display the results after only the encryption, an encryption
followed by an addition or an encryption followed by a multiplication.

In Table 8, we consider the Base Model circuit (Figure 3) of depth 2 and 3,
taking η = 8. In Table 9, the same circuit is analyzed with depths 4 and 5.

8 Specifically, for Encryption and Addition log2 q ≈ 60; for Multiplication or Multi-
plicative depth 2, log2 q ≈ 120; for depth 3 or 4, log2 q ≈ 180; and for 5, log2 q ≈ 240.
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Encryption Addition Multiplication

maximum value mean maximum value mean maximum value mean
n can our exp exp can our exp exp can our exp exp

212 26.5 32.0 33.0 35.4 25.5 31.5 32.3 34.9 57.0 65.0 66.4 68.7
213 25.5 31.5 32.5 35.0 24.5 31.0 32.0 34.4 55.0 63.6 64.8 67.2
214 24.5 31.0 32.0 34.4 23.5 30.5 31.4 33.9 53.0 62.1 63.1 65.7
215 23.5 30.5 31.5 33.9 22.5 30.0 31.2 33.4 51.0 60.5 61.9 64.2

Table 7: Encryption, addition and multiplication of fresh ciphertexts.

Multiplicative depth 2 Multiplicative depth 3

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 21.5 34.8 36.2 37.9 38.6 49.0 65.9 67.3 69.0 69.7
213 18.5 32.4 33.8 35.4 36.1 45.0 62.5 63.9 65.6 66.2
214 15.5 29.9 30.9 33.0 33.5 41.0 59.0 60.1 62.1 62.7
215 12.5 27.3 28.8 30.4 31.2 37.0 55.4 57.0 58.5 59.4

Table 8: Comparison in the Base Model of depth 2 and 3 with α = 1 and η = 8.

Multiplicative depth 4 Multiplicative depth 5

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 16.5 36.8 38.5 39.9 40.9 44.0 67.7 68.9 70.8 71.6
213 11.5 32.4 33.5 35.5 36.1 38.0 62.2 63.8 65.3 66.2
214 6.5 28.0 29.3 31.1 31.8 32.0 56.8 57.7 59.9 59.9
215 1.5 23.4 24.9 26.5 27.2 26.0 51.2 52.2 54.3 54.3

Table 9: Comparison in the Base Model of depth 4 and 5 with α = 1 and η = 8.

Tables 7 to 9 suggest that our approach is a promising method for analyz-
ing noise in the BFV scheme. It provides more accurate results, very close to
the experimentally observed ones, and it significantly improves upon previous
works, especially as the multiplicative depth of the circuit grows. For example,
for a circuit with multiplicative depth 3, our bounds are up to 18.4 bits tighter
than the state-of-the-art, and up to 25.2 bits for circuits with depth 5, with a
difference of less than 2 bits compared to the actual values.

Our last comparison is on the ciphertext modulus q. In Figure 4, we present
the obtained bounds for log2(q) following from the two theoretical approaches
(Equation (37) and Equation (30)) when η = 8, α = 1 and either M = 3 (4a)
or M = 5 (4b). We set D = 8 to have a failure probability smaller than 2−80,
which is usually required in a practical scenario.

Here we can see the impact that a better noise analysis has on the scheme’s
efficiency and security, indeed for a simple circuit with multiplicative depth 5,
the ciphertext modulus decreases by at least 12.6%.
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n 212 213 214 215

can 132.6 136.6 140.6 144.6
our 114.5 117.9 121.4 125.0

(a) Circuit of depth 3 and η = 8.

n 212 213 214 215

can 198.5 204.5 210.5 216.5
our 172.7 178.2 183.6 189.2

(b) Circuit of depth 5 and η = 8.

Fig. 4: Comparison of log2(q) in the Base Model circuit (setting D = 8).

Finally, in Figure 5, we graphically compare our parameter generation with
the OpenFHE one, based on theoretical work with the infinity norm [30]. We
compare our generated bounds with the size of the ciphertext modulus generated
for λ = 128.

log q

M2 4 6 8 10 12 14

100

300

500

Fig. 5: Comparison of modulus sizes across multiplicative depthsM with λ = 128
and t = 216 + 1 for OpenFHE and our parameter generation.

7 Comparing Error Bounds for Dependent and
Independent Ciphertexts

In this section, we consider a more general setting where ciphertexts can be
dependently computed. Unlike the independent case analyzed in the previous
sections, here we allow ciphertext inputs to be repeated, as for example in the
homomorphic computation of x2+x+1. This introduces additional complexity,
as dependencies between ciphertexts create new challenges.

The aim of this section is to establish a baseline for understanding the er-
ror bounds in the dependent ciphertext setting and to highlight the significant
differences compared to the independent case. To demonstrate this, we present
theoretical results under specific hypotheses and support our findings with ex-
perimental evidence. However, our current methods do not allow us to generalize
these theorems to all circuits, and addressing this may require a different ap-
proach for future research.

Distribution The coefficients distribution is analyzed as in Section 4.1. Also in
this case it is well-approximated by a Gaussian distribution. In Figure 6, we
show the outcome for circuits of multiplicative depth 2 with (i) all the input
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ciphertexts equal, (ii) the 16 input ciphertexts taken randomly from a set of 5
and (iii) independently-computed ciphertexts. As parameters, we took t = 3,
n = 213, σ = 3.19, q = 2149 + 1, χs = U3, η = 2.

Fig. 6: (i) kspval 0.915409; (ii) kspval 0.50072; and (iii) kspval 0.92972.

Mean & Variance Analysis In the general case where the ciphertexts can be com-
puted dependently, the computation of mean and variance changes only when
it comes to additions and multiplication. We believe that it is still possible to
prove Proposition 1, i.e. that the expected value of the coefficients of the invari-
ant noise is 0, and experimental results confirm it. Note that this proposition is
used in Proposition 8.

Regarding the variance computation, we have

Proposition 7 (Addition). Let c, c′ be any two ciphertexts with invariant
noises ν, ν′, respectively. Then the variance of the error coefficients resulting
from the addition of c and c′ is

Var((ν + ν′)|i) = Var(ν|i) + Var(ν′|i) + 2Cov(ν|i, ν′|i)

≤ Var(ν|i) + Var(ν′|i) + 2
√
Var(ν|i)Var(ν′|i)

≤ 4max(Var(ν|i),Var(ν′|i))

Proof. The proof follows by the properties (k) and (m) of variance and covariance
in Fact 1. ⊓⊔

Proposition 8 (Multiplication). Let c, c′ be any two ciphertexts with in-

variant noises ν =
∑T1

ι1=0 aι1s
ι1 , ν′ =

∑T2

ι2=0 a
′
ι2s

ι2 , respectively. Assuming that
E[ν|i] = E[ν′|i] = 0 for all i, the variance of the error coefficients resulting from
the multiplication of c and c′ satisfies

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)+

+2
√
Var(ν|i)Var(ν′|i)f(T1 + 1)f(T2 + 1)

)
+ Var((νν′)|i)

(38)

with f(i) as in Heuristic 1.
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Proof. Recall that νmul(qℓ) = −νν′+ν t
q′ℓ
(c′0+c′1s)+ν′ t

qℓ
(c0+c1s)+

t
qℓ
(ε0+ε1s+

ε2s
2), by Equation (9), hence by property (k) of Fact 1, we get Var(νmul(qℓ)|i) is

equal to

Var((νν′)|i) + Var
(
(ν t

q′ℓ
(c′0 + c′1s))|i

)
+ Var

(
(ν′ t

qℓ
(c0 + c1s))|i

)
+ Var

(
( t
qℓ
(ε0 + ε1s+ ε2s

2))|i
)
+ 2Cov((−νν′)|i, (ν t

q′ℓ
(c′0 + c′1s))|i)

+ 2Cov((−νν′)|i, (ν′ t
qℓ
(c0 + c1s))|i) + 2Cov((−νν′)|i, t

qℓ
(ε0 + ε1s+ ε2s

2)|i)

+ 2Cov((ν t
q′ℓ
(c′0 + c′1s))|i, (ν′ t

qℓ
(c0 + c1s))|i)

+ 2Cov((ν t
q′ℓ
(c′0 + c′1s))|i, t

qℓ
(ε0 + ε1s+ ε2s

2)|i)

+ 2Cov((ν′ t
qℓ
(c0 + c1s))|i, t

qℓ
(ε0 + ε1s+ ε2s

2)|i)

Except Cov((ν t
q′ℓ
(c′0 + c′1s))|i, (ν′ t

qℓ
(c0 + c1s))|i), all the covariances go to 0.

Indeed, by Equation (1) and property (e) of Fact 1, they can be written as sums
of covariances that satisfy the assumptions of property (h) of Fact 1. We get

Var(νmul(qℓ)|i) = Var((νν′)|i) + Var
(
(ν t

q′ℓ
(c′0 + c′1s))|i

)
+ Var

(
(ν′ t

qℓ
(c0 + c1s))|i

)
+ Var

(
( t
qℓ
(ε0 + ε1s+ ε2s

2))|i
)
+ 2Cov((ν t

q′ℓ
(c′0 + c′1s))|i, (ν′ t

qℓ
(c0 + c1s))|i).

Analogously to the proof of Theorem 1 (page 21), we get that the term Var
(
( t
qℓ
(ε0+

ε1s + ε2s
2))|i

)
is negligible and we have the following bound Var

(
(ν t

q′ℓ
(c′0 +

c′1s))|i
)
+Var

(
(ν′ t

qℓ
(c0+c1s))|i

)
≤ t2n2Vs

12

(
Var(ν|i)f(T1+1)+Var(ν′|i)f(T2+1)

)
.

Finally, applying property (m) of Fact 1 to the covariance term, we obtain

Cov((ν t
q′ℓ
(c′0+c′1s))|i, (ν′ t

qℓ
(c0+c1s))|i) ≤ t2n2Vs

12

√
Var(ν|i)Var(ν′|i)f(T1+1)f(T2+1),

hence the thesis

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)+

+2
√
Var(ν|i)Var(ν′|i)f(T1 + 1)f(T2 + 1)

)
+ Var((νν′)|i).

⊓⊔

Note that Equation (38) contains the same terms of Equation (22) with the addi-
tion of two terms: the last term, which comes from the covariance Cov((ν t

q′ℓ
(c′0+

c′1s))|i, (ν′ t
qℓ
(c0 + c1s))|i); and Var((νν′)|i). It is important to observe that, un-

like the independent case, we are not able to give an estimation of Var((νν′)|i)
starting from Var(ν|i) and Var(ν′|i).

Example: Error Bounds for Circuits in Figure 3 with Identical Inputs. Let us
consider, as for the independent case, the circuits shown in Figure 3 with the
modification that all input ciphertexts ci are equal. In this case, we assume that



38 Beatrice Biasioli, Chiara Marcolla, Marco Calderini, and Johannes Mono

the variance term Var((νν′)|i) is negligible compared to the other terms. Thus,
under this assumption, Equation (38) becomes

Var(νmul(qℓ)|i) ≤
t2n2Vs

12

(
Var(ν|i)f(T1 + 1) + Var(ν′|i)f(T2 + 1)

+ 2
√
Var(ν|i)Var(ν′|i)f(T1 + 1)f(T2 + 1)

)
≤ t2n2Vs

3
Var(ν|i)f(T1 + 1). (39)

Note that the last inequality arises from the fact that the input ciphertexts
are equal; thus, we have ν = ν′ and T1 = T2.

This assumption is confirmed by the practical experiments shown in Tables 10
to 12, where we compare the error analysis and we provide the noise budget on
the error bound. However, it is important to note that for different types of
circuits, Var((νν′)|i) may not always be negligible.

In Tables 10 to 12, we present the noise budget of the error bounds. The tag
“can” denotes the state-of-the-art analysis carried out with the canonical norm,
“our” presents the results obtained with the average-case approach presented in
this section under the hypothesis that Var((νν′)|i) is negligible and “exp” shows
the observed values from OpenFHE [2] library with 215 polynomial samples.
As in Section 6, we set ||ν||∞ ≤ D

√
2V with D = 6 and V variance of each

coefficient of ν. Moreover, we chose t = 65537, n = 212, . . . , 215 and q set by the
library. We highlight the results in black in the tables when the security level
is at least 128-bit, and in grey when it is below this threshold. We use Hybrid
key switching and HPSPOVERQ multiplication and fixed χs = χu = U3, and
χe = DG(0, σ2), with σ = 3.19.

Addition Multiplication

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 25.5 31.0 31.7 34.1 34.4 57.0 64.5 65.9 67.6 68.2
213 24.5 30.5 31.6 33.6 33.9 55.0 63.1 64.1 66.1 66.7
214 23.5 30.0 31.0 33.1 33.4 53.0 61.6 62.7 64.7 65.2
215 22.5 29.5 30.5 32.6 32.9 51.0 60.0 61.3 63.1 63.7

Table 10: Addition and multiplication of a fresh ciphertext with itself.

Just as in the independent case, for dependent ciphertexts, our method pro-
vides more precise results, closely matching with experimental observations and
offering substantial improvements over previous approaches. For example, for
circuits with a depth of 3, our bounds are up to 12.4 bits tighter compared
to the state-of-the-art, and for circuits with depth 5, they are up to 15.2 bits
tighter, with a maximum deviation of 1.8 bits from the actual values.



Improving BFV Parameters: An Average-Case Approach 39

Multiplicative depth 2 Multiplicative depth 3

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 21.5 30.8 32.2 33.9 34.7 49.0 59.9 61.2 63.0 63.7
213 18.5 28.4 29.8 31.4 32.2 45.0 56.5 57.9 59.6 60.2
214 15.5 25.9 27.1 29.0 29.6 41.0 53.0 54.2 56.1 56.7
215 12.5 23.3 24.6 26.4 27.1 37.0 49.4 50.7 52.5 53.2

Table 11: Comparison in the Base Model of depth 2 and 3 with α = 1 and η = 8.

Multiplicative depth 4 Multiplicative depth 5

maximum value mean value maximum value mean value
n can our exp our exp can our exp our exp

212 16.5 28.8 30.3 31.9 32.7 44.0 57.7 59.3 60.8 61.8
213 11.5 24.4 25.8 27.5 28.8 38.0 52.2 53.4 55.3 55.7
214 6.5 20.0 21.1 23.1 23.5 32.0 46.8 48.4 49.9 50.8
215 1.5 15.4 17.1 18.5 19.4 26.0 41.2 43.0 44.3 45.4

Table 12: Comparison in the Base Model of depth 4 and 5 with α = 1 and η = 8.

It is worth noting that comparing the dependent (Tables 10 to 12) and the
independent (Tables 7 to 9) case, reveals some differences. Specifically, we observe
the following key points:
– The error is moderately larger when ciphertexts are dependent. In particular,

the gap between the dependent and independent case grows as the number
of multiplications increases, as reflected in the noise budget in the Tables 8,
9, 11 and 12. Indeed, after three multiplications, the difference can be up to
6 bits and after 5, the different is at most 10 bits (and this is also reflected in
the experimental one where it is up to 6.3 bits and 10.4 bits, respectively).

– The difference in the noise budget is obviously reflected in the ciphertext
modulus q. Specifically, the difference in q between the dependent (Figure 7)
and independent (Figure 4) cases can be as large as 10 bits when the mul-
tiplicative depth is 5, leading to a 5.3% increase in the ciphertext modulus.

n 212 213 214 215

can 132.6 136.6 140.6 144.6
our 120.5 123.9 127.4 131.0

(a) Circuit of depth 3, η = 8 and α = 1.

n 212 213 214 215

can 198.5 204.5 210.5 216.5
our 182.7 188.2 193.6 199.2

(b) Circuit of depth 5, η = 8 and α = 1.

Fig. 7: Comparison of log2(q) in the Base Model circuit (setting D = 8).

To conclude this section, we point out that choosing the correct parameters
based on the specific case (whether dependent or independent) is crucial to
ensure both correctness and, more importantly, security. Using parameters suited
for one case in the other may compromise these guarantees. We believe that
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with the correct parameter set (and setting D = 8), the recent attack [12] is not
feasible.

8 Conclusion

Our average-case noise analysis significantly outperforms the state-of-the-art
methods for the BFV scheme. Our approach provides very precise estimations
for any multiplicative depth; in the examples, they deviate by no more than 2.5
bits from the values observed in experiments. This level of precision results in
considerably smaller bounds on the ciphertext modulus, which translates into
better performance.

In addition, the introduction of simple closed formulas for correctness simpli-
fies the parameter selection. The development of the first automated parameter
generation tool for BFV makes the scheme accessible to a wider range of users
while still ensuring security, correctness, and high efficiency.

Moreover, we establish a baseline for understanding error bounds in depen-
dently computed ciphertexts, highlighting key differences from the independent
case through both theoretical and experimental results. This underlines the ne-
cessity of adjusting parameters according to the nature of the ciphertexts, as
using those optimized for independent ciphertexts in the dependent case can
open up the risk of recovery attacks.

Future work. It is worth noting that this approach is expected to be adaptable
to BGV and CKKS schemes. In particular, we are currently in the process of
developing and implementing this approach for the BGV scheme.
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A Proof of Lemma 1 and Lemma 2

Fresh ciphertext By Equation (5), we can write νclean = a0 + a1s with a0 =
t
q (ε + eu + e0) and a1 = t

q e1. Since the coefficients of all the polynomi-

als in νclean are sampled independently from symmetric distributions (with

expected value 0) we have E[a0|i] = t
q (E[ε|i] +

∑n−1
j=0 ξ(i, j)E[e|j ]E[u|i−j ] +

E[e0|i]) = 0 and E[a1|i] = t
qE[e1|i] = 0, by (a) and (d) of Fact 1. Moreover,

all the covariances are equal to zero. Indeed:

– Cov(a0|i1 , a1|i2) = 0 and Cov(a1|i1 , a1|i2) = 0, for i1 ̸= i2, since the terms
are independent, thus we apply property (d) of Fact 1.

– Cov(a0|i1 , a0|i2) = 0, by the bilinearity of the covariance (property (e) of
Fact 1).

 https://github.com/Microsoft/SEAL
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– Cov((eu)|i1 , (eu)|i2) = 0. Indeed, it is a sum of terms Cov(e|j1u|i1−j1 ,
e|j2u|i2−j2), where j1 ̸= j2 or i1 − j1 ̸= i2 − j2, hence we can apply
property (g) of Fact 1.

Finally, by the properties of the variance (j), (k) and (l) of Fact 1, Var(a1|i) =
t2

q2Ve and V (a0|i) = t2

q2

(
Var(ε|i) +

∑n−1
j=0 Var(e|j)Var(u|i−j) + Var(e0|i)

)
=

t2

q2

(
1
12 + nVeVu + Ve

)
, where Ve, Vu, Vs denotes the variances of any element

sampled from the distributions χe, χu, χs, respectively and Var(ε|i) = 1
12

since ε = − [qm]t
t and [qm]t can be consider a random element from the uni-

form distribution Ut.

Addition Let ν, ν′ be the errors of two independently-computed ciphertexts,
then ν =

∑
ι aιs

ι, ν′ =
∑

ι′ a
′
ι′s

ι′ with aι, a
′
ι′ independent for any ι, ι′.

By Equation (6), it follows that νadd = ν + ν′ =
∑

ι(aι + a′ι)s
ι, where

E[(aι + a′ι)|i] = E[aι|i] +E[a′ι|i] = 0 and Cov((aι1 + a′ι1)|i1 , (aι2 + a′ι2)|i2) = 0
if ι1 ̸= ι2 or i1 ̸= i2. Indeed, by the bilinearity of the covariance, it splits in
Cov(aι1 |i1 , aι2 |i2)+Cov(aι1 |i1 , a′ι2 |i2)+Cov(a′ι1 |i1 , aι2 |i2)+Cov(a′ι1 |i1 , a

′
ι2 |i2),

where the variables in each pairs are either uncorrelated by induction hypoth-
esis or independent because they come from different ciphertexts. Finally,
Var((aι + a′ι)|i) = Var(aι|i) + Var(a′ι|i) does not depend on the coefficient i
by inductive hypothesis.

Modulo switch & Key switch The proof is analogous to the addition case,
we only need to do some observation.
In the modulo switch, as described in Equation (8), the noise ν increased by

the quantity νms(q
′
ℓ) =

t
q′ℓ
(ε0 + ε1s) with εi = −

[q′ℓci]qℓ
qℓ

. Hence, for ι = 0, 1,
t
q′ℓ
ει|i is added to aι|i. The elements t

q′ℓ
ει|i can be considered as sampled

independently at random from U(−0.5,0.5), since cι is indistinguishable from

a random element in Rqℓ . Therefore, they have mean 0 and variance t2

12q′2ℓ
.

For the key switch, we also have to make an observation about the first
term. As described in (10)–(14), each key switching equation includes one
of the terms [d2]ri , d2 or [d2]r̃i . Similar to the modulo switch case, these
terms can be considered as sampled uniformly at random from Uri , Uqℓ , Ur̃i ,
respectively, resulting in a covariance 0 thanks to the property (g) of Fact 1.
Finally, the added variances are

BV key switch. Since ri ≈ k
√
q,

Var
(( t

qℓ

kℓ∑
i=1

[d2]riei
)∣∣

j

)
1ι=0 =

t2

q2ℓ

kℓ∑
i=1

n
r2i
12

Ve1ι=0 ≈
t2

12q2ℓ
kℓ

k
√
q2nVe1ι=0.

GHS key switch. Since P ≈ q ≥ qℓ, and Var( t
qℓ
ε1|i)1ι=1 = t2

12q2ℓ
1ι=1,

Var
( t

qℓ

(d2e′
P

+ε0

)∣∣∣
i

)
1ι=0 =

t2

12q2ℓ

(
nq2ℓVe

P 2
+ 1

)
1ι=0 ≤

t2

12q2ℓ
(nVe+1)1ι=0.
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GHS-RNS key switch. Analogously to GHS key switch,

Var(
t

qℓ
(
(d2 + uqℓ)e

′

P
+ ε0)|i)1ι=0 ≤

t2

12q2ℓ
(n(kℓ + 2)Ve + 1)1ι=0,

since u = ⌊
∑kℓ

i=1[[d2]ri [(
qℓ
ri
)−1]ri ]ri

1
ri
⌉, hence Var(u|i) = kℓ+1

12 . Moreover,

Var( t
qℓ
ε1|i)1ι=1 = t2

12q2ℓ
1ι=1.

Hybrid key switch. Since r̃i ≈ ω
√
qℓ and P ≈ ω

√
q, by Equation (13),

Var

(
t

qℓ

(∑ω
i=1[d2]r̃iei

P
+ ε0

)
|i
)

=
t2

12q2ℓ

(
nVe

∑ω
i=1 r̃i

2

P 2
+ 1

)
=

t2

12q2ℓ

(ωnVe
ω
√

q2ℓ
ω
√

q2
+ 1
)
≤ t2

12q2ℓ

(
ωnVe + 1

)
,

and Var
(

t
qℓ
ε1|i

)
= t2

12q2ℓ
.

Hybrid-RNS key switch. The only difference with the hybrid key switch
is that [d2]r̃i becomes ([d2]r̃i+uir̃i), with ui = ⌊

∑
rj |r̃i [[d2]rj [(

r̃i
rj
)−1]rj ]rj

1
rj
⌉.

Thus, its variance is r̃i
2

12 +
(∑

rj |r̃i
r2j
12

1
r2j

+ 1
12

)
r̃i

2 = r̃i
2

12 (
k
ω + 2). Hence,

Var

(
t

qℓ

(∑ω
i=1([d2]r̃i + uir̃i)ei

P
+ ε0

) ∣∣∣
i

)
=

t2

12q2ℓ

(
nVe(k + 2ω) + 1

)
.

Constant multiplication Let ν =
∑

ι aιs
ι be any invariant noise and α a poly-

nomial with coefficients sampled randomly from Ut, then αν =
∑

ι(αaι)s
ι,

since α is constant in s, E[α|i] = 0 and Var(α|i) ≈ (t2 − 1)/12 . More-
over, by the properties of the expected value and since the coefficients of
α and aι are independent with mean 0, E

[
(αaι)|i

]
= 0. Finally, by the bi-

linearity of the covariance (property (e) of Fact 1) and by property (g) of
Fact 1 applied to each summand Cov(α|j1aι1 |i1−j1 , α|j2aι2 |i2−j2), we have
Cov

(
(αaι1)|i1 , (αaι2)|i2

)
= 0. Analogously to the previous cases, Var((αaι)|i) =∑n−1

j=0 V (α|j) · V (aι|i−j) =
(t2−1)n

12 V (aι|i−j) does not depend on the coeffi-
cient i by inductive hypothesis.

Multiplication Let ν =
∑

j ajs
j and ν′ =

∑
k a

′
ks

k be the errors of two
independently-computed ciphertexts, then νν′ =

∑
ι

∑
j+k=ι aja

′
ks

ι. Note
that the ι-th element of νν′, as a polynomial in s, is

∑
j+k=ι aja

′
k where

aj , a
′
k are independent for any j, k. It follows that E

[(∑
j+k=ι aja

′
k

)
|i
]
=∑

j+k=ι

∑n−1
l=0 ξ(i, l)E[aj |l]E[a′k|i−l] = 0. Furthermore, by bilinearity of the

covariance, Cov((
∑

j1+k1=ι1
aj1a

′
k1
)|i1 , (

∑
j2+k2=ι2

aj2a
′
k2
)|i2) is a linear com-

bination of elements Cov(aj1 |l1a′k1
|i1−l1 , aj2 |l2a′k2

|i2−l2). For ι1 ̸= ι2 or i1 ̸=
i2, all these terms are null, hence the thesis, since we fall in the same case
as in constant multiplication.
Analogously, this holds for ν t

q′ℓ
(c′0+c′1s), ν

′ t
qℓ
(c0+c1s). Finally, we have that

the covariance of different summands in νmul is 0, hence the conditions hold
also for νmul = −νν′+ ν t

q′ℓ
(c′0+ c′1s)+ ν′ t

qℓ
(c0+ c1s)+

t
q (ε0+ ε1s+ ε2s

2). ⊓⊔
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B Parameterized calculation of the function f(ι)

In this section, we present the results obtained for the function f(ι) in Heuris-
tic 1 across different values of n and χs.

Let us recall Heuristic 1: for ι ≥ 2, Equation (24) is well-approximated by
the function f(ι), specifically:

f(ι) = −eα−βι−γι2 + δ ≈
∑n−1

j=0 E[sι|2j ]∑n−1
j1=0 E[sι−1|2j1 ]

∑n−1
j2=0 E[s|2j2 ]

, (40)

where α, β, γ, and δ depend on the distribution χs and the ring dimension n
(see Tables 13 to 15).

n α β γ δ

212 2.9163 0.0394 0.0036 18.8210
213 2.9069 0.0177 0.0051 19.5385
214 2.9568 0.0547 0.0025 18.8333
215 2.9525 0.0176 0.0043 20.5393

Table 13: χs = ZO(1/2)

n α β γ δ

212 2.9000 0.0157 0.0051 19.5356
213 2.9340 0.0042 0.0055 20.7063
214 2.9138 0.0290 0.0039 19.2973
215 2.9511 0.0129 0.0046 20.7263

Table 14: χs = DG(0, σ2)

n α β γ δ

212 2.8367 0.0395 0.0032 17.6662
213 2.8331 0.0184 0.0047 18.3825
214 2.8964 0.0558 0.0023 17.8335
215 2.9036 0.0466 0.0023 18.4545

Table 15: χs = HWT (64)

We computed their values with Python function curve fit9.

The experiments were conducted for ι ≤ 300, considering 25000 samples
(for n = 212 and n = 213) and 10000 samples (for n = 214 and n = 215).
After ι ≈ 100, we observe an asymptote. Note that, in general, the BFV scheme
utilizes a ternary distribution for the secret key. However, in setups expecting the
bootstrapping, the HWT (h) distribution is preferred [11,25,32]. In light of this,
we provide plots for both scenarios. In particular, we show f(ι) as n varies, with
χs = U3 (Figure 8) and χs = HWT (64) (Figure 9). The grey dots represent the
experimental values from the right-hand side of Equation (24), while the green
line shows the approximation of f(ι) as in Equation (40). Note that for clarity,
we have plotted only 50 data points.

9 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve fit.html
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Fig. 8: Examples of f(ι) fitting the points for χs = U3, where f is as in (40).

Fig. 9: Examples of f(ι) fitting the points for χs = HWT (64), where f is as in
Equation (40).
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C Proof of Lemma 4

1. Let us fix ι1 and consider ι2. Since f(ι) is an increasing function and ι2 ≤ T2,
we have f(ι2 + i) ≤ f(T2 + i), then

g(ι1 + ι2)

g(ι2)
= f(ι2 + 1) · · · f(ι1 + ι2) ≤ f(T2 + 1) · · · f(ι1 + T2) =

g(ι1 + T2)

g(T2)
.

It follows, in particular, F(ι1, ι2) ≤ F (ι1, T2).
We get the thesis analogously on ι1.

2. We divide the proof in two parts:

– proving that, defined T = T1 + T2,

F (T1, T2)

f(T1 + 1)f(T2 + 1)
=

g(T1 + T2)

g(T1 + 1)g(T2 + 1)
≤ g(T )

g(⌊T/2⌋+ 1)g(⌈T/2⌉+ 1)
;

– proving the existence of the limit

Kn = lim
T→+∞

g(T )

g(⌊T/2⌋+ 1)g(⌈T/2⌉+ 1)

and giving an good approximation for different values of n and χs.

Firstly, we prove g(T1+T2)
g(T1+1)g(T2+1) ≤

g(T )
g(⌊T/2⌋+1)g(⌈T/2⌉+1) . For example, for T = 4,

we have

g(4)

g(1)g(5)
=

1

f(5)
<

g(4)

g(2)g(4)
=

1

f(2)
<

g(4)

g(3)g(3)
=

f(4)

f(2)f(3)
.

To simplify the notation, we assume wlog T1 ≤ T2 and define T = T1 + T2,
τ = ⌊T/2⌋. It follows that T − τ = ⌈T/2⌉ and T1 ≤ τ ≤ T − τ ≤ T2. Then, we
can write T1, T2 as T1 = τ − k, T2 = T − τ + k for some k ∈ N. Now,

g(T1 + T2)

g(T1 + 1)g(T2 + 1)
=

g(T )

g(τ − k + 1)g(T − τ + k + 1)

=
g(T )

g(τ + 1)g(T − τ + 1)

f(τ − k + 2) · · · f(τ + 1)

f(T − τ + 2) · · · f(T − τ + k + 1)
≤

≤ g(T )

g(τ + 1)g(T − τ + 1)
=

g(T )

g(⌊T/2⌋+ 1)g(⌈T/2⌉+ 1)
,

indeed f(τ−k+2)···f(τ+1)
f(T−τ+2)···f(T−τ+k+1) =

∏k−1
j=0

f(τ−k+2+j)
f(T−τ+2+j) ≤ 1, as f is an increasing

function and τ − k ≤ T − τ .

Now, we prove the existence of the limit

lim
T→+∞

g(T )

g(⌊T/2⌋+ 1)g(⌈T/2⌉+ 1)
.
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Let

G(T ) =
g(T )

g(⌊T/2⌋+ 1)g(⌈T/2⌉+ 1)
=

1

f(τ + 1)

τ∏
ι=2

f(T − τ + ι)

f(ι)
,

where τ = ⌈T/2⌉. Let us define s = T − τ , cι = f(ι) = δ − eα−βι−γι2 and

ει = (1− e−βs−γ(s2+2sι))eα−βι−γι2 . We have

G(T ) =
1

cτ+1

τ∏
ι=2

cι + ει
cι

Since (cι + ει)/cι ≥ 1, we have
∏τ

ι=2 (cι + ει)/cι ≤ exp (
∑τ

ι=2 ει/cι) .

Let ε̄ι = (1−e−βs−γ(s2+2sι))e−γι2 . The derivative of ε̄ι with respect ι is given
by

dε̄ι
dι

= 2γe−γι2(−ι+ (ι+ s)e−βs−γ(s2+2sι)).

So the sign of the derivative is given by the term (−ι + (ι + s)e−βs−γ(s2+2sι))
and for ι sufficiently large this is negative (if s is large, which is the case if T
is large, then it is negative for any ι). Therefore, from a certain point, we have
ε̄ι+1 < ε̄ι. Noting that ει = ε̄ιe

α−βι we have

ει+1 < e−βει,

and so
ει+1/cι+1 < e−βει/cι.

Since e−β < 1, we get that the sum
∑τ

ι=2 ει/cι converges and thus the limit
limT→+∞ G(T ) is finite.

We can show computationally that the limit Kn = limT→+∞ G(T ) < 40n,
for any n = 2κ, where κ ∈ {12, . . . , 15}.

⊓⊔
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