
A Note on a CBC-Type Mode of Operation

George Teşeleanu1,2

1 Advanced Technologies Institute
10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro
2 Simion Stoilow Institute of Mathematics of the Romanian Academy

21 Calea Grivitei, Bucharest, Romania

Abstract. In this paper we formally introduce a novel mode of opera-
tion based on the cipher block chaining mode. The main idea of this mode
is to use a stateful block cipher instead of a stateless one. Afterwards, we
show how to implement our proposal and present a performance analysis
of our mode. Next, we provide a concrete security analysis by computing
a tight bound on the success of adversaries based on their resources. The
results of our performance and security analyses are that this novel mode
is more secure than the cipher block chaining mode for large files, but the
encryption/decryption time doubles/triples. Therefore, our novel mode
is suitable for encrypting large files, when higher security is required,
but speed is not paramount. Note that the changes required to trans-
form the software implementations of the cipher block chaining mode
into this new mode are minimal, and therefore transitioning to this new
mode is straightforward.

1 Introduction

One of the most popular classical mode of operation is called Cipher Block
Chaining (CBC) mode [16]. The CBC mode is widespread and very widely used,
and therefore is standardised in [6, 8, 9, 15]. Implementations of CBC can be
found in software libraries such as [1–3,5].

In this paper we introduce a novel CBC-based mode of operation. More
precisely, we use the CBC mode with a stateful block cipher instead of a stateless
one. Specifically, rather of using the same key to encrypt each block of data, we
modify the key schedule such that after generating the round keys necessary
for encryption it also generates an encryption key3. Therefore, after encrypting
the first block of data, we memorize the encryption key generated by the key
schedule. The memorized key is then used to encrypt the second block of data
and the process is repeated for the remaining blocks. After finishing all the
blocks, the key is reset to the original value and the block cipher is now ready
to encrypt the next set of data. Note that resetting the key before each new set
of plaintexts avoids synchronisation problems.

3 formed by concatenating one or more additional generated round keys depending on
the size of the round and encryption keys

https://orcid.org/0000-0003-3953-2744


2

After formalizing our novel CBC-based mode, we provide some implementa-
tions details. We start with describing two possible approaches for transforming
a stateless block cipher into a stateful one. Since the second one is more suitable
for all three ciphers implemented in Mbed TLS [3], namely AES [14], ARIA [7]
and Camellia [10], we made the necessary implementation modifications needed
to obtain a stateful cipher. To analyze the performance of our mode, we also
modified the CBC implementation found in Mbed TLS [3]. We observed that
our mode’s encryption/decryption time is two/three times slower than that of
classical CBC.

In the last part of the paper, we provide a tight security bound. To achieve
this we first compute an upper bound and then we devise an attack that has
a success probability close to this bound. Therefore, there is no significantly
better bound than the one given in this paper. Based on this security bound, we
conclude that this mode is more secure than CBC for large files. Since modifying
existing CBC implementations to use a stateful block cipher is straightforward,
we recommend switching to this novel mode for large files, when the additional
processing time does not lead to bottlenecks. An example of such a use case
is the following: suppose you want to store some sensitive data that is rarely
accessed, such as backup copies of surveillance footage. In this case, the data
is not accessed frequently, so the speed of accessing it is not crucial. However,
security is essential to ensure the confidentiality of the data.

Structure of the paper. We introduce notations and definitions used throughout
the paper in Section 2. In Section 3 we formalize the Running Key CBC mode
of operation. Implementation details and a security analysis are provided in
Sections 4 and 5. We conclude in Section 6.

2 Preliminaries

Notations and conventions. Throughout the paper |b| will denote the bit size of
b and ⊕ the bitwise xor operation. By x∥y we understand the concatenation of
the strings x and y. Also, we define 0s and 1s as a string of s zeros and ones,

respectively. We use the notation x
$←− X when selecting a random element x

from a sample space X. We denote by x ← y the assignment of the value y
to the variable x. The probability that event E happens is denoted by Pr[E].
Hexadecimal strings are marked by the prefix 0x. The most ℓ significant bits of
Q are denoted by MSBℓ(Q).

For all complexity measures we work in the random access model and all the
adversaries are probabilistic polynomial time machines (PPT). When we talk
about the running time of an opponent, we will include the actual running time
plus the length of the adversary’s description (i.e. the length of the random access
machine program that describes the adversary). Also, queries are answered in
one unity of time.



3

2.1 PRF/PRP

We start by defining the security notions commonly used to quantify the security
of a block cipher [20] and then we provide the link between the two notions [12].

Definition 1 (Pseudorandom Function - prf, Pseudorandom Permu-
tation - prp). A function F : {0, 1}n × {0, 1}k → {0, 1}n is a prf or prp if
for any PPT algorithm A which makes at most q oracle queries, the following
advantages

ADV prf
F (A) =

∣∣∣Pr[AFK(·) = 1|K $←− {0, 1}k]− Pr[Aρ(·) = 1|ρ $←− F ]
∣∣∣ ,

ADV prp
F (A) =

∣∣∣Pr[AFK(·) = 1|K $←− {0, 1}k]− Pr[Aπ(·) = 1|π $←− P]
∣∣∣

are negligible, where FK(X) = F (X,K), and F and P denote the sets of all
functions and permutations from n-bit strings to n-bit strings.

Lemma 1 (prp/prf Switching Lemma). Let F : {0, 1}n×{0, 1}k → {0, 1}n
be a function. Also, let A be an adversary that asks at most q oracle queries.
Then ∣∣∣Pr[Aρ(·) = 1|ρ $←− F ]− Pr[Aπ(·) = 1|π $←− P]

∣∣∣ ≤ q(q − 1)

2n+1
.

As a consequence, we have that

|ADV prf
F (A)−ADV prp

F (A)| ≤ q(q − 1)

2n+1
.

2.2 Symmetric Key Encryption

We further define symmetric key encryption schemes [11] and provide one of the
security notions commonly used to model chosen-plaintext attacks [12,20].

Definition 2 (Symmetric Key Encryption - SKE). A symmetric key en-
cryption (SKE) scheme usually consists of three PPT algorithms: Setup, Encrypt
and Decrypt. The Setup algorithm takes as input a security parameter and out-
puts the secret key. Encrypt takes as input the secret key and a message and
outputs the corresponding ciphertext. The Decrypt algorithm takes as input the
secret key and a ciphertext and outputs either a valid message or an invalidity
symbol (if the decryption failed).

Definition 3 (Indistinguishability under Chosen Plaintext Attacks -
ind-cpa). The security model against chosen plaintext attacks for a SKE scheme
SE is captured in the following game:

Setup(λ): The challenger C generates the secret key K
$←− {0, 1}k and a bit

b
$←− {0, 1}.



4

Queries: Adversary A sends C two messages m0,m1 ∈ {0, 1}∗ of the same
length. The challenger encrypts mb and obtains the ciphertext cb = SE(mb,K).
The value cb is sent to the adversary.

Guess: After making a polynomial number of queries, the adversary outputs a
guess b′ ∈ {0, 1}. He wins the game, if b′ = b.

The advantage of an adversary A which runs in time t, makes at most q oracle
queries, these totaling σ bits and is attacking a SKE scheme is defined as

ADV ind-cpa
SE (A) = |2Pr[b = b′]− 1|

where the probability is computed over the random bits used by C and A. A
SKE scheme is ind-cpa secure, if for any PPT adversary A the advantage
ADV ind-cpa

SE (A) is negligible.

We further present the CBC encryption algorithm in Algorithm 1 and then
we present its security margins as stated in [11, 20]. Let K be an k-bit random
key, P a plaintext and C a ciphertext.

Algorithm 1: CBC Mode of Operation.

1 Function Encrypt(P , K):
2 if |P | mod n ̸≡ 0 or |P | = 0 then return ⊥;
3 P1∥ . . . ∥Pm ← P where |Pi| = n;

4 IV
$←− {0, 1}n and C0 ← IV ;

5 foreach i ∈ [1,m] do Ci ← EK(Pi ⊕ Ci−1) ;
6 C ← C1∥ . . . ∥Cm;

7 return (IV, C);

8 Function Decrypt(IV , C, K):
9 if |C| mod n ̸≡ 0 or |C| = 0 then return ⊥;

10 C1∥ . . . ∥Cm ← C where |Ci| = n;
11 C0 ← IV ;

12 foreach i ∈ [1,m] do Pi ← E−1
K (Ci)⊕ Ci−1 ;

13 P ← P1∥ . . . ∥Pm;

14 return P ;

Theorem 1 (Upper Bound on Security of CBC Mode Using a Block
Cipher). Let E : {0, 1}n×{0, 1}k → {0, 1}n be a block cipher. Let A be a PPT
adversary against the ind-cpa security of CBC that runs at most time t and
queries at most σ n-bit blocks. Then there exists an adversary B against the prp
security of E such that

ADV ind-cpa
CBC (A) ≤ ADV prp

E (B) +
2σ2

2n
,

and where B makes at most σ queries and runs in time at most t+O(nσ).



5

Theorem 2 (Lower Bound on Security of CBC Mode Using a Block
Cipher). Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher and let σ ∈
[1,
√
2n+1]. Then there exists an adversary A against the ind-cpa security of

CBC such that

ADV ind-cpa
CBC (A) ≥ 0.15σ2

2n
,

and which asks one query consisting of σ n-bit blocks and runs in time at most
O(nσ log σ).

3 Running Key CBC SKE

Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher. Instantiating the running
key CBC (denoted RK-CBC) with E and with a random initialisation vector (de-
noted IV ) leads to a stateless symmetric encryption scheme. Let Kf = {Ki}i>0

be a family of distinct k-bit random keys, P a plaintext and C a ciphertext. We
present in Algorithm 2 the exact detail of RK-CBC.

Algorithm 2: Running Key CBC Mode of Operation.

1 Function Encrypt(P , Kf):
2 if |P | mod n ̸≡ 0 or |P | = 0 then return ⊥;
3 P1∥ . . . ∥Pm ← P where |Pi| = n;

4 IV
$←− {0, 1}n and C0 ← IV ;

5 foreach i ∈ [1,m] do Ci ← EKi(Pi ⊕ Ci−1) ;
6 C ← C1∥ . . . ∥Cm;

7 return (IV, C);

8 Function Decrypt(IV , C, Kf):
9 if |C| mod n ̸≡ 0 or |C| = 0 then return ⊥;

10 C1∥ . . . ∥Cm ← C where |Ci| = n;
11 C0 ← IV ;

12 foreach i ∈ [1,m] do Pi ← E−1
Ki

(Ci)⊕ Ci−1 ;

13 P ← P1∥ . . . ∥Pm;

14 return P ;

4 Implementation Details

When studying the security of iterated block ciphers [18], it is assumed that
the cipher’s round sub-keys are independent. This assumption is reasonable in
practice [13, 17, 22]. Using this assumption, we can transform a stateless block
cipher into a stateful one using two methods.



6

In the first method we simply memorize the initial key into a buffer and
then we continuously run the key schedule algorithm until all data blocks are
encrypted (see Figure 1). More precisely, for an r round cipher4 and an m block
plaintext the key schedule algorithm will generate (r + 1)m keys. Since we as-
sumed that the round sub-keys are independent, we obtain m independent in-
stantiations of the iterated block cipher. Therefore, we can use it to implement
the RK-CBC mode. Unfortunately, not all key schedules can be easily modified
to support continuous generation. For example, the AES [14] and ARIA [7] key
schedules support this out of the box, but for the Camellia [10] key schedule we
could not devise a suitable modification.

Enc

P1

KS . . .

C1

k1

kr+1

state1

Enc

P2

KS . . .

C2

kr+2

k2r+1

state2

Enc

P3

KS . . .

C3

k2r+2

k3r+1

K1

IV

Fig. 1. The First Method for Implementing RK-CBC when m = 3.

In the second method we modify the key schedule to generate a few additional
round keys after computing the round keys needed for encryption. Then we
concatenate the additional round keys to obtain a new encryption key, that is
used to encrypt the next block of data. The process continues until all blocks are
processed. For example, if n = k we generate only one additional round key kr+2

and set K2 = kr+2 (see Figure 2).5 If n = 2k we have to generate two additional
round keys kr+2, kr+3 and set K2 = kr+2∥kr+3. Using this method we managed
to modify all three block ciphers implemented in Mbed TLS [3]. The technical
details of the changes can be found in Appendix A.

Taking into account the above discussions, we can transform a CBC im-
plementation into a RK-CBC one by simply resetting the key before encrypting
each block of plaintexts and by using either stateful block cipher described above.
Note that, compared to CBC, RK-CBC needs an extra buffer to memorize the
initial key.

Let tks be the time needed run the key schedule once and tenc be the time
needed to compute a block cipher encryption without taking into account tks.
In terms of performance, the time required to encrypt an m-block of data using

4 We consider that an r round cipher uses r + 1 sub-keys.
5 Figures 1 and 2 are based on the TikZ found in [19].



7

Enc

P1

KS . . .

C1

k1

kr+1

kr+2

Enc

P2

KS . . .

C2

k1

kr+1

kr+2

Enc

P3

KS . . .

C3

k1

kr+1

K2 K3K1

IV

Fig. 2. The Second Method of Implementing RK-CBC when m = 3 and n = k.

CBC is O(m · tenc).6 On the other hand, the time required by the RK-CBC is
O(m · (tks+ tenc)). Therefore, CBC is O((tks+ tenc)/tenc) faster than RK-CBC.

To compute the exact slowdown for Mbed TLS [3], we implemented the
RK-CBC mode and run the Mbed TLS benchmark program on a CPU Intel
i7-4790 4.00 GHz. Note that to compute the rate of kilobytes per second, Mbed
TLS first sets an internal alarm to 1 second and then increments a counter for
each 1024 bytes block that is processed, until the alarm is set off. The counter
represents the given rate. In the case of the cycle per byte rate, the benchmark
program computes the number of cycles needed to process 1024 blocks of size
1024 bytes. Then it divides the resulting number by 1024 · 1024 and outputs the
rate. The results of our experiments can be found in Figures 3 to 8. Compared
to RK-CBC encryption/decryption, classical CBC encryption is 2x/3.5x faster
for AES7, 2.3x/3.2x faster for ARIA and 2.2x/2.5x faster for Camellia.

We also carried a series of experiments to test the validity of our assumption
(i.e. the generated key bits are independent and identically distributed). There-
fore, we set K1 as either 0s or 1s, where s = 128/192/256 and we generated
K2,K3 . . . using the second method. Then we applied the NIST test suite [4,21]
to check if the key bits of K2,K3 . . . are independent and identically distributed.
We obtained that the samples pass all the statistical tests, and have an entropy
of 0.99 per bit and 7.9 per byte. Thus, based on the results of the experiments we
conducted, we can safely assume the generated keys are random and mutually
independent.

5 Security Analysis

Before starting our analysis, some notations are required. Therefore, A will de-
note a PPT algorithm which makes at most q oracle queries, these totaling at
most σ n-bit blocks, unless mentioned otherwise. Let σ′ = σ−q+1 and σ = αq+r,

6 Usually, the key schedule is run once at the beginning and the round keys memorized
for the duration of encryption, and thus tks can be ignored.

7 Note that we deactivated the AES-NI instructions for a fair performance between
the three block ciphers.



8

Fig. 3. AES performance

0 20 40 60 80 100 120

128

192

256

cycles/byte

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC

Fig. 4. ARIA performance

0 20 40 60 80 100 120

128

192

256

cycles/byte

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC

Fig. 5. Camellia performance

0 20 40 60 80 100 120

128

192

256

cycles/byte

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC



9

Fig. 6. AES performance

0 1 2 3 4

·105

128

192

256

kilobytes/second

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC

Fig. 7. ARIA performance

0 1 2 3 4

·105

128

192

256

kilobytes/second

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC

Fig. 8. Camellia performance

0 1 2 3 4

·105

128

192

256

kilobytes/second

k
ey

si
ze

Enc CBC

Enc RK-CBC

Dec CBC

Dec RK-CBC



10

where r < q. For simplicity, we denote by ρf the oracle that responds to a query
of type (i,X) with ρi(X), where {ρi}i∈[1,σ′] is a family of distinct random func-
tions. Similarly, we denote by πf the oracle that responds with πi(X), where
{πi}i∈[1,σ′] is a family of distinct random permutations. Lastly, we denote by Ff

the oracle that responds with FKi
(Xi), where {Ki}i∈[1,σ′] is a family of distinct

random k-bit keys and F : {0, 1}n × {0, 1}k → {0, 1}n is a function.
For simplicity, we further assume that adversary A never asks a query that

is not composed of n-bit blocks. In our case, queries that do not satisfy this
restriction generate error messages, and thus they are pointless for A.

Now, we start our security analysis by first studying the security of the
RK-CBC mode instantiated with random functions ρi from F instead of EKi .
We denote this version by RK-CBC(ρf ). Note that in this case, the decryption
algorithm returns ⊥ with probability 1 − 2−n, since it does not have a correct
decryption property.

Lemma 2 (Upper Bound on Security of RK-CBC Mode Using a Ran-
dom Function). Let A be a PPT adversary against the ind-cpa security of
the RK-CBC(ρf ) mode. Then

ADV ind-cpa
RK-CBC(ρf )

(A) ≤ αq2 + r2

2n
.

Proof. To prove our result, we introduce a series of games that help us to com-
pute the upper bound of the advantage. All the games have the same initial-
isation phase, which is presented in Algorithm 3. This phase starts by setting
2σ′ dictionaries to empty and a flag to false. Note that, we must have 2σ′

dictionaries since the adversary can make q − 1 queries using only one block of
data and one query using σ′ blocks. All other query strategies of the adversary
require less than σ′ functions.

Algorithm 3: Initialisation.

1 for i ∈ [1, σ − q + 1] do ρ0i ← ∅ and ρ1i ← ∅;
2 bad← false;

The oracle phase of the games is presented in Algorithm 4. The first game,
denoted by G0, simulates perfectly the query phase of the ind-cpa game under a
family of random function when b = 0. Similarly, G1 simulates the case b = 1. In
the last game G2 we simply remove lines 6 and 7 from Algorithm 4. Therefore,
we have

ADV ind-cpa
RK-CBC(ρf )

(A) =
∣∣∣Pr[AG1(·) = 1]− Pr[AG0(·) = 1]

∣∣∣
≤ Pr[AG2(·) sets bad to true],

since all the games are identical until the flag bad is set to true.



11

Algorithm 4: Oracle.

Input: Two plaintexts P0 and P1

Output: A ciphertext C
1 P 0

1 ∥ . . . ∥P 0
m ← P0 and P 1

1 ∥ . . . ∥P 1
m ← P1;

2 C0
$←− {0, 1}n

3 foreach i ∈ [1,m] do
4 X0

i ← P 0
i ⊕ Ci−1 and X1

i ← P 1
i ⊕ Ci−1;

5 Ci
$←− {0, 1}n;

6 if ρ0i (X
0
i ) ̸= ⊥ then bad← true and Ci ← ρ0i (X

0
i );//include this line only

in game G0

7 if ρ1i (X
1
i ) ̸= ⊥ then bad← true and Ci ← ρ1i (X

1
i );//include this line only

in game G1

8 ρ0i (X
0
i )← Ci and ρ1i (X

1
i )← Ci;

9 end
10 C ← C0∥C1∥ . . . ∥Cm

11 return C

The last thing that we need to do is to compute the probability of setting
bad to true. Note that all dictionaries start empty and grow with a maximum
of one point per query. Therefore, the strategy that maximizes the probability
of having a collision in any of the dictionaries is to make q queries to as many
dictionaries as possible. The previous condition is satisfied when the adversary is
to making r queries of size α+1 blocks and q− r queries of size α blocks. Using
this strategy we obtain that the probability of setting bad due to dictionary
i ∈ [1, α] is at most (1 + 2 + . . .+ q − 1)/2n and to dictionary α + 1 is at most
(1+2+ . . .+r−1)/2n. To see this we have to note that each Ci−1 is random and
independent of the current values stored in ρ0i , and thus each X0

i = P 0
i ⊕Ci−1 is

random and independent of the current values stored in ρ0i . The same holds for
the link between X1

i and the values from ρ1i . Keeping all this in mind, we obtain

Pr[AG2(·) sets bad to true] ≤ 2

(
α
q(q − 1)

2n+1
+

r(r − 1)

2n+1

)
≤ αq2 + r2

2n
,

as desired. ⊓⊔

In order to make the switch from random function to random permutation
we need an equivalent of the Switching Lemma (Lemma 1). We also introduce
an equivalent of Definition 1 that will be useful later.

Definition 4 (Family of Pseudorandom Functions - f-prf, Family of
Pseudorandom Permutation - f-prp). A function F : {0, 1}n × {0, 1}k →
{0, 1}n is a f-prf or f-prp if for any PPT algorithm A which makes at most
q oracle queries of type (i, ·), these totaling at most σ n-bit blocks, the following



12

Algorithm 5: Initialisation.

1 for i ∈ [1, σ − q + 1] do ρi ← ∅;
2 bad← false;

advantages

ADV f-prf
F (A) =

∣∣∣Pr[AFf (·) = 1|Ki
$←− {0, 1}k]− Pr[Aρf (·) = 1|ρi

$←− F ]
∣∣∣ ,

ADV f-prp
F (A) =

∣∣∣Pr[AFf (·) = 1|Ki
$←− {0, 1}k]− Pr[Aπf (·) = 1|πi

$←− P]
∣∣∣

are negligible.

Remark 1. Note that when q = σ the f-prf/f-prp security notions are identical
to the prf/prp ones.

Lemma 3 (f-prp/f-prf Switching Lemma). Let A be an adversary that
asks at most q oracle queries, these totaling at most σ n-bit blocks. Then

Pr[switch] =
∣∣∣Pr[Aρf (·) = 1|ρi

$←− F ]− Pr[Aπf (·) = 1|πi
$←− P]

∣∣∣ ≤ 0.5(αq2 + r2)

2n
.

As a consequence, we have that

|ADV f-prf
F (A)−ADV f-prp

F (A)| ≤ 0.5(αq2 + r2)

2n
.

Proof. Before we begin the proof, let us first introduce a few notations. Let
Range(f) be the set of n-bit strings Y such that f(X) = Y for some X. The
set of n-bit strings that are not in Range(f) is denoted by Range(f). We also
assume that A never repeats a query, since it will always receive the same answer.
Therefore, is not helpful for A to repeat oracle interrogations.

As before, to prove our result we use a sequence of games. The initialisation
and oracle phases are given in Algorithms 5 and 6. The first game G0 simulates
perfectly a random function, while the second one G2 a random permutation.
Hence, we have

Pr[switch] =
∣∣∣Pr[AG1(·) = 1]− Pr[AG2(·) = 1

∣∣∣ ≤ Pr[AG2(·) sets bad to true],

since the only difference between the two games is line 2 from Algorithm 6.
As in the case of the proof of Lemma 2, the best strategy for A is to ask as

many q queries of type (i, ·) as possible. This happens when A queries α oracles
with q queries and one oracle with r queries. Therefore, the probability of setting
bad due to one of the α dictionaries is at most q(q − 1)/2n+1 and to the last
dictionary is at most r(r − 1)/2n+1. Summing it all up, we obtain that

Pr[AG2(·) sets bad to true] ≤
(
α
q(q − 1)

2n+1
+

r(r − 1)

2n+1

)
≤ 0.5(αq2 + r2)

2n
,



13

Algorithm 6: Oracle.

Input: An input (i,X)
Output: An output Y

1 Y
$←− {0, 1}n;

2 if Y ∈ Range(ρi) then bad← true and Y
$←− Range(ρi);//include this line

only in game G1;
3 ρi(X)← Y ;
4 return Y

as desired.
As a consequence, we have the following inequalities

|ADV f-prf
F (A)−ADV f-prp

F (A)| ≤
∣∣∣Pr[AFf (·) = 1]− Pr[Aρf (·) = 1]

−Pr[AFf (·) = 1] + Pr[Aπf (·) = 1]
∣∣∣

≤
∣∣∣Pr[Aπf (·) = 1]− Pr[Aρf (·) = 1]

∣∣∣
≤ 0.5(αq2 + r2)

2n
.

⊓⊔

We further apply Lemma 3 to see what happens if we use random permuta-
tions instead random function when instantiating the RK-CBC mode. We denote
this version by RK-CBC(πf ).

Corollary 1 (Upper Bound on Security of RK-CBC Mode Using a
Random Permutation). Let A be a PPT adversary against the ind-cpa
security of the RK-CBC(πf ) mode. Then

ADV ind-cpa
RK-CBC(πf )

(A) ≤ 2(αq2 + r2)

2n
.

Proof. Let Fρ = RK-CBC(ρf ) and Fπ = RK-CBC(πf ). We have that

ADV ind-cpa
RK-CBC(πf )

(A) =
∣∣∣Pr[AFπ(·) = 1|b← 1]− Pr[AFπ(·) = 1|b← 0]

∣∣∣
≤

∣∣∣Pr[AFπ(·) = 1|b← 1]− Pr[AFρ(·) = 1|b← 1]
∣∣∣

+
∣∣∣Pr[AFρ(·) = 1|b← 1]− Pr[AFρ(·) = 1|b← 0]

∣∣∣
+
∣∣∣Pr[AFρ(·) = 1|b← 0]− Pr[AFπ(·) = 1|b← 0]

∣∣∣ .
Lets see why we can use Lemma 3 for the first and third addend. Lets assume

that there exists an efficient adversary A that can distinguish between Fρ(·) and



14

Algorithm 7: Algorithm B.

1 Run A;
2 while A makes an oracle query call (P ) do
3 P1∥ . . . ∥Pm ← P ;

4 IV
$←− {0, 1}n and C0 ← IV ;

5 foreach i ∈ [1,m] do Ci ← θ(i, Pi ⊕ Ci−1) ;
6 C ← C1∥ . . . ∥Cm;
7 Send (IV, C) to A;

8 end
9 b← A;

10 return b

Fπ(·). Then we construct an adversary B (see Algorithm 7) that can distinguish
between ρf (·) and πf (·). Let θ(·) be either ρf (·) or πf (·). Then we have

Pr[Bθ(·) = 1] = Pr[Bρf (·) = 1] = Pr[AFρ(·) = 1],

P r[Bθ(·) = 1] = Pr[Bπf (·) = 1] = Pr[AFπ(·) = 1].

Therefore, we obtain that∣∣∣Pr[AFρ(·) = 1]− Pr[AFπ(·) = 1]
∣∣∣ = ∣∣∣Pr[Bρf (·) = 1]− Pr[Bπf (·) = 1]

∣∣∣
≤ 0.5(αq2 + r2)

2n
.

Using Lemma 2 and the previous arguments, we have that

ADV ind-cpa
RK-CBC(πf )

(A) ≤ 0.5(αq2 + r2)

2n
+

αq2 + r2

2n
+

0.5(αq2 + r2)

2n

≤ 2(αq2 + r2)

2n
,

as desired. ⊓⊔

Theorem 3 (Upper Bound on Security of RK-CBC Mode Using a
Block Cipher). Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher. Let
A be a PPT adversary against the ind-cpa security of RK-CBC that runs at
most time t. Then there exists an adversary B against the f-prp security of E
such that

ADV ind-cpa
RK-CBC(A) ≤ ADV f-prp

E (B) +
2(αq2 + r2)

2n
,

and where B makes at most q queries of type (i, ·) and runs in time at most
t+O(nσ).



15

Algorithm 8: Algorithm B.

1 Run A;
2 b← {0, 1};
3 while A makes an oracle query call (P0, P1) do

4 P b
1 ∥ . . . ∥P b

m ← Pb;

5 IV
$←− {0, 1}n and C0 ← IV ;

6 foreach i ∈ [1,m] do Ci ← θ(i, Pi ⊕ Ci−1) ;
7 C ← C1∥ . . . ∥Cm;
8 Send (IV, C) to A;

9 end
10 b′ ← A;
11 return (b == b′)

Proof. We will further construct an adversary B that uses A in order to break
the f-prp security of E. Note that B has access to an oracle θ(·) which is either
πf (·) or Ef (·). The exact details of B are given in Algorithm 8.

It is easy to see that the running time of B is O(nσ). To compute the ad-
vantage of B we must observe that

Pr[Bθ(·) = 1] = Pr[BEf (·) = 1] = ADV ind-cpa
RK-CBC(A),

P r[Bθ(·) = 1] = Pr[Bπf (·) = 1] = ADV ind-cpa
RK-CBC(πf )

(A).

Therefore, we obtain

ADV f-prp
E (B) =

∣∣∣Pr[BEf (·) = 1]− Pr[Bπf (·) = 1]
∣∣∣

=
∣∣∣ADV ind-cpa

RK-CBC(A)−ADV ind-cpa
RK-CBC(πf )

(A)
∣∣∣

≥
∣∣∣∣ADV ind-cpa

RK-CBC(A)− 2(αq2 + r2)

2n

∣∣∣∣ ,
as desired. ⊓⊔

Corollary 2 (Simplified Upper Bound on Security of RK-CBC Mode
Using a Block Cipher). Let E : {0, 1}n×{0, 1}k → {0, 1}n be a block cipher.
Let A be a PPT adversary against the ind-cpa security of RK-CBC that runs
at most time t. Then there exists an adversary B against the f-prp security of
E such that

ADV ind-cpa
RK-CBC(A) ≤ ADV f-prp

E (B) +
2qσ

2n
,

and where B makes at most q queries of type (i, ·) and runs in time at most
t+O(nσ).



16

Proof. According to Theorem 3 we have

ADV ind-cpa
RK-CBC(A) ≤ ADV f-prp

E (B) +
2(αq2 + r2)

2n

≤ ADV f-prp
E (B) +

2(αq2 + qr)

2n

= ADV f-prp
E (B) +

2qσ

2n
,

as desired. ⊓⊔

We further provide an attack that gives A an advantage of around (αq2 +
r2)/2n to break the ind-cpa security of RK-CBC. This implies that there is no
significantly better bound than the one given in Theorem 3 .

Theorem 4 (Lower Bound on Security of RK-CBC Mode Using a
Block Cipher). Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher and

let q ∈ [1,
√
2n+1]. Then there exists an adversary A against the ind-cpa secu-

rity of RK-CBC such that

ADV ind-cpa
RK-CBC(A) ≥ 0.15(αq2 + r2)

2n
,

and runs in time at most O(n(αq log q + r log r)).

Proof. Adversary A makes q queries of type (Zi, Ri), where for i ∈ [1, r] we have

Zi ← 0n(α+1) and Ri
$←− {0, 1}n(α+1), and otherwise we have Zi ← 0nα and

Ri
$←− {0, 1}nα. If there exists two distinct queries qi and qj such that blocks

v received from the challenger, denoted Bv(qi) and Bv(qj), are identical then
A selects lexicographically the first such (qi, qj , v) and output 1 if Bv+1(qi) ̸=
Bv+1(qj). Note that the running time of A is dominated by the running time
needed to sort the data received from each oracle, and thus we obtain a running
time of O(n(αq log q + r log r)).

When b = 0, adversary A queries identical blocks, and thus if a collision of
type Bv(qi) = Bv(qj) occurs we always have Bv+1(qi) = Bv+1(qj). Therefore,
we always have

Pr[ARK-CBC(·) = 1|b← 0] = 0,

and hence

ADV ind-cpa
RK-CBC(A) = Pr[ARK-CBC(·) = 1|b← 1].

When b = 1, encrypting a random block of data using RK-CBC results in
another block of random data, since the image of a uniformly selected value
under a permutation remains uniform. Therefore, we can apply the birthday
paradox to compute the probability of obtaining Bv(qi) = Bv(qj). The paradox
states that the probability of obtaining a collision when making Q ∈ {q, r}



17

0

0.5
1

·1020
0

0.5

1

·1020
0

1

2

·1029

qc c (
by
te
s)

q r
k

Fig. 9. The curve qrk = qc
√

c/n when n = 16 bytes.

queries to oracle v ∈ [1, α + 1] is at least 0.3Q2/2n, when Q ∈ [1,
√
2n+1]. Also,

note that since Bv+1(qi) and Bv+1(qj) are random, the probability of having
Bv+1(qi) = Bv+1(qj) is 1/2

n. Hence, we obtain that

Pr[ARK-CBC(·) = 1|b← 1] ≥
(
α
0.3q2

2n
+

0.3r2

2n

)
·
(
1− 1

2n

)
≥ 0.15(αq2 + r2)

2n
,

as desired. ⊓⊔

CBC vs. RK-CBC. To better understand the security gap between the two
modes we further consider two scenarios. In the first scenario we assume that we
can only encrypt blocks of data of a fixed size c = d · n, where d > 0. Therefore,
the data requirement for both modes is σ = q · d. According to Theorem 1 we
obtain

ADV ind-cpa
CBC (A) ≤ ADV prp

E (B) +
2q2d2

2n
,

and to Theorem 3

ADV ind-cpa
RK-CBC(A) ≤ ADV f-prp

E (B) +
2q2d

2n
.

Therefore, the free term for RK-CBC is d times better than the one for CBC.
Hence, to obtain the same security margin we have to set the number of RK-CBC
queries to qrk = qc

√
d (see Figure 9), where qc is the number of CBC queries.

For example, if we consider TLS packages of maximum record size 16 Kilo-
bytes we obtain that d = 1000, which means that we have to make 31x more



18

0

0.5
1

·1020
0

0.5

1

·1020
0

0.5

1

·1020

qrk
σr

k

σ
c

Fig. 10. The curve σc =
√
qrkσrk.

queries for RK-CBC. If restrict to encrypting DVDs, we have that c = 4.37
Gibibytes and d ≃ 228, and thus we have to make 214 times more queries for
RK-CBC. Since RK-CBC is slower than CBC (see Section 4) we consider that the
security advantage becomes relevant only for large files (e.g. DVDs, Blu-rays).

In the second scenario we consider that we can encrypt files of any size. Let
σc and σrk be the data requirements from Theorem 1 and Corollary 2. Then the
security margins presented in Corollary 2 coincide with the ones from Theorem 1
only if σ2

c = qrkσrk (see Figure 10). If we consider that σc = σrk = σ, then we
obtain that qrk = σ . In this case, the only difference is that instead of asking
one query consisting of σ blocks (see Theorem 1) we have to ask σ queries each
consisting of one block (see Corollary 2). One consequence of this is that if we
have an ind-cpa attacker for RK-CBC that asks σ queries, then we can use
this attacker to break the ind-cpa security of CBC. More precisely, we only
send messages of one block to the CBC oracle, forward the challenges to the
RK-CBC attacker and output the bit computed by the RK-CBC attacker. The
converse is not true. We can also consider the other extreme case qrk = 1. This
leads to σrk = σ2

c . Therefore, if we want to make one query as in the case of
CBC, we need σc times more data for RK-CBC.

6 Conclusions

In this work we presented a novel CBC-based mode of operation. Then we
provided some implementation details and a performance analysis. Finally, we
proved its security by giving an upper bound to polynomial adversaries and,
moreover, we showed that this bound is the best possible, by showing a match-
ing attack.

Let σc be the data requirements from Theorem 1, and let σrk and qrk be
the data and query requirements from Corollary 2. From the security analysis



19

we can see that to match the ind-cpa upper limit of CBC we need to have
σ2
c = qrkσrk. Therefore, an ind-cpa adversary against the RK-CBC mode re-

quires either more data or more queries. Since obtaining legitimate ciphertexts is
problematic in practice, we obtain that the RK-CBC is more secure that CBC.
Therefore, because converting existing CBC implementations into RK-CBC ones
is straightforward and due to the speed penalty incurred by RK-CBC, we rec-
ommend using this novel mode instead of CBC for encrypting large files when
processing time is not paramount.

References

1. Bouncy Castle. https://www.bouncycastle.org/
2. Crypto++ Library. https://www.cryptopp.com/
3. Mbed TLS. https://tls.mbed.org/
4. NIST SP 800-90B: Recommendation for the Entropy Sources Used for Random Bit

Generation. https://github.com/usnistgov/SP800-90B_EntropyAssessment
5. OpenSSL. https://www.openssl.org/
6. The AES-CBC Cipher Algorithm and Its Use with IPsec (2003), IETF Standard

No. RFC3602
7. Specification of ARIA. Tech. rep., National Security Research Institute (2005)
8. Information Technology - Security Techniques - Modes of Operation for an n-bit

Block Cipher (2017), ISO/IEC Standard No. 10116:2017
9. IEEE Standard for Authenticated Encryption with Length Expansion for Storage

Devices (2018), IEEE Standard No. 1619.1
10. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.:

Specification of Camellia - A 128-bit Block Cipher. Tech. rep., Nippon Telegraph
and Telephone Corporation and Mitsubishi Electric Corporation (2001)

11. Bellare, M., Rogaway, P.: Introduction to Modern Cryptography. UCSD CSE
(2005)

12. Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs. In: EUROCRYPT 2006. Lecture Notes in
Computer Science, vol. 4004, pp. 409–426. Springer (2006)

13. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
CRYPTO 1990. Lecture Notes in Computer Science, vol. 537, pp. 2–21. Springer
(1991)

14. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer (2002)
15. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: Methods

and Techniques. Tech. rep., NIST Special Publication 800-38A (2001)
16. Ehrsam, W.F., Meyer, C.H., Smith, J.L., Tuchman, W.L.: Message Verification and

Transmission Error Detection by Block Chaining (1978), US Patent No. 4,074,066
17. Knudsen, L.R., Mathiassen, J.E.: On the Role of Key Schedules in Attacks on

Iterated Ciphers. In: ESORICS 2004. Lecture Notes in Computer Science, vol. 3193,
pp. 322–334. Springer (2004)

18. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: EUROCRYPT 1991. Lecture Notes in Computer Science, vol. 547, pp. 17–38.
Springer (1991)

19. Maimuţ, D.: TikZ for Cryptographers. https://www.iacr.org/authors/tikz/

(2017)

https://www.bouncycastle.org/
https://www.cryptopp.com/
https://tls.mbed.org/
https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://www.openssl.org/
https://www.iacr.org/authors/tikz/


20

20. Rogaway, P.: Evaluation of Some Blockcipher Modes of Operation. Tech. rep.,
Cryptography Research and Evaluation Committees (CRYPTREC) for the Gov-
ernment of Japan (2011)

21. Turan, M.S., Barker, E., Kelsey, J., McKay, K., Baish, M., Boyle, M.: NIST SP 800-
90B: Recommendation for the Entropy Sources Used for Random Bit Generation.
Tech. rep., National Institute of Standards and Technology (2018)

22. Vaudenay, S.: A Classical Introduction to Cryptography: Applications for Com-
munications Security. Springer Science & Business Media (2005)



21

A Technical Details

In this appendix we present the changes to the key schedules of AES [14], ARIA
[7] and Camellia [10] necessary to convert them into stateful block ciphers.

A.1 AES

Our presentation is based on [14, Section 3.6]. In order to obtain the key Knext

for the next block of data we had to increase the number of rounds Nr used
in the initial key schedule to Nr + 1. For the 128-bit key schedule we also had
to use the additional constant RC[11] = 0x6c.8 Therefore, we have Knext =
ExpandedKey[11] for k = 128, Knext = ExpandedKey[13] for k = 192 and
Knext = ExpandedKey[15] for k = 256.

A.2 ARIA

Our presentation is based on [7, Section 2.5.2]. The key Knext for the next
block of data is Knext = ek14 for k = 128 and Knext = MSB192(ek16∥ek17) for
k = 192. For k = 256 we first had to define the additional round keys

ek18 = (W1)⊕ (W≪19
2 ),

ek19 = (W2)⊕ (W≪19
3 ),

and then set Knext = ek18∥ek19. Note that ek17 is simply ek1 with the rotation
changed from right to left. Therefore, to generate the additional keys we simply
continued the previous rationale: ek18 and ek19 are ek2 and ek3 with the rotation
changed from right to left.

A.3 Camellia

Our presentation is based on [10, Section 3.4]. To generate the key Knext for
the next block of data we had to generate two additional keys KC and KD. For
k = 128 the generation method is provided in Figure 11 and Knext = KC . For
k = 192/256 the generation method is provided in Figure 12.9 Knext is set as
MSB192(KC∥KD) for k = 192 and KC∥KD for k = 256.

Σ7 0xf83d9abfb41bd6b2

Σ8 0xbe0cd19137e21798

Σ9 0xbbb9d5dc1059ed8e

Σ10 0x29a292a367cd5079

Table 1. Additional Key Schedule Constants

8 The constant is defined in [14, Section 3.6], but is not required for AES encryption.
9 Figures 11 and 12 are based on the TikZ found in [19].



22

In Figures 11 and 12 the red blocks are identical with [10, Figure 8]. There-
fore, we simply continued the rationale from [10] to generate KC and KD. Note
that for k = 192/256 we had to generate four additional constants (see Table 1).
We used the rationale from [10, Section 3.4]: Σ7, Σ8, Σ9 and Σ10 are defined
as the continuous values from the second hexadecimal place to the seventeenth
hexadecimal place of the hexadecimal representation of the square root of the
primes 17, 19, 23 and 29.

Enc

KL

Σ1

Σ2

Enc

KL

KA

Σ3

Σ4

Enc

KL

KC

Σ5

Σ6

0n

Fig. 11. Camellia 128-bit Key Schedule.

Enc

KL

Σ1

Σ2

Enc

KL

KA

Σ3

Σ4

Enc

KR

KB

Σ5

Σ6

Enc

KL

KC

Σ7

Σ8

Enc

KR

KD

Σ9

Σ10

KR

Fig. 12. Camellia 192/256-bit Key Schedule.


	A Note on a CBC-Type Mode of Operation

