
 1

Time Complexities of Multiple-precision Modular Operations and Related Ratios

Shenghui Su 1, 3 and Ping Luo 2

1 College of Computers, Nanjing University of Aero. and Astro., Nanjing 211106, PRC
2 Software School, Tsinghua University, Beijing 100084, PRC

3 Laboratory of Computational Complexity, BFID Corporation, Fuzhou 350207, PRC

Abstract: Modular arithmetic used for cryptography includes modular adding, modular subtracting,

modular multiplying, modular inverting, modular exponentiating etc. In this paper, the authors well

analyze the bit complexity of a bitwise modular operation and the time complexity of a non-bitwise

modular operation. Besides discuss the clock cycles for one bytewise modular operation utilizing

directives from the ATmel 8-bit AVR instruction set. Last, reveal that the ratio of derivate numbers

of clock cycles for two modular operations under different modulus lengths is almost a constant.

Keywords: Multiple-precision modular arithmetic, Montgomery multiplication algorithm, Time

complexity, Ratio of derivate numbers of clock cycles, Bytewise, 8-bit AVR instruction set

1 Introduction

The time complexity of an algorithm is also called the running time or time cost. It is the number of

required arithmetical operations for the algorithm to complete a specified task in the worst case [1][2].

Sometimes, an average case will be considered if the worst case is obviously irrational. As a basic unit

of measurement, the time complexity in bits (shortly bit complexity) is usually adopted [3][4]. The bit

complexity is namely the number of required bit operations to complete the task.

A non-bitwise (namely bytewise or wordwise) modular arithmetic operation is just an algorithm. Its

time complexity is essentially independent of assembly programming languages or processor clock

cycles, but it is usually measured with the number of assembly directives or clock cycles [5][6].

In cryptographic systems, multiple-precision (or super-long) modular arithmetic involving modular

adding, modular subtracting, modular multiplying, modular inverting, modular exponentiating etc is

widely employed [7][8]. The running time (in bits, directives, or cycles) of a modular operation has to

be concerned. Occasionally the ratio of fit numbers of clock cycles for two operations is also concerned.

Throughout the paper, unless otherwise specified, there lies ḇ = 256 or 65536, lgP (= log2P + 1)

denotes the bit-length of a prime modulus P with being divisible by 8 or 16, n does the byte-length or

word-length of P, gcd(X, Y) signifies the greatest common divisor of two integers X and Y, X  Y (mod

P) means that X equals Y modulo P, and |X| represents the absolute value of a number X.

2 Running Time of a Multiple-precision Modular Operation

Let X (< P) and Y (< P) be two arbitrary nonnegative integers, and modular arithmetic be performed

over the prime field P. Assume that P, X, and Y in radix 2 or ḇ representation are (p(lg P) - 1…p0)2,

(x(lg P) - 1…x0)2, and (y(lg P) - 1…y0)2, or (ṗn - 1…ṗ0)ḇ, (ẋn - 1…ẋ0)ḇ, and (ẏn - 1…ẏ0)ḇ, where n = lgP / 8 (or / 16).

Notice that P, X, and Y in radix 2 representation may be converted into ones in ḇ representation, and

the left of the most significant bit (or digit) of representation of X or Y is filled with 0-bits (or -digits).

2.1 Running Time of a Modular Addition

2.1.1 Bit Complexity of a Bitwise Modular Addition

Assume that bitwise operators on adding are available. Let S = (s(lg P)…s0)2 be a mid variable.

Apparently, our computing (s(lg P)…s0)2  (x(lg P) - 1…x0)2 + (y(lg P) - 1…y0)2 requires lgP bit operations

(with carry). If (X + Y) > P, we need further seeking the difference (s(lg P)…s0)2  (p(lg P) - 1…p0)2, which

 2

also requires lgP bit operations (likewise with carry).

Observe an example of (X + Y) mod P.

Let lgP = 8.

Set 11111011 (= 251) to (p7…p0)2, 11110101 to (x7…x0)2, and 10111101 to (y7…y0)2. Then,

X + Y  (X + Y)  P  ((x7…x0)2 + (y7…y0)2)  (p7…p0)2

  (11110101 + 10111101)  11111011

  110110010  11111011  10110111 (mod 11111011).

Therefore, the bit complexity of a bitwise modular addition is 2lgP (= O(lgP)) [4], where big-O is

the asymptotic notation, and it popularly represents an asymptotic upper bound disregarding factors,

coefficients, or lower order terms [9][10].

2.1.2 Time Complexity of a Non-bitwise Modular Addition

Assume that 8- or 16-bit single-precision adding (or subtracting on occasion) directives are available.

Let S = (ṡn…ṡ0)ḇ be a mid variable.

Algo 14.7 in Reference 4 manifests that computing (ṡn…ṡ0)ḇ  (ẋn - 1…ẋ0)ḇ + (ẏn - 1…ẏ0)ḇ requires n

single-precision adding directives (with carry) [4]. If (X + Y) > P, we will need searching the difference

(ṡn…ṡ0)ḇ  (ṗn - 1…ṗ0)ḇ, which requires n single-precision subtracting directives (likewise with carry)

according to Algo 14.9 [4].

Analogous to a bitwise modular addition, the time complexity of a non-bitwise modular addition is

2n (= O(n)) single-precision adding (or subtracting) directives [4].

Notice that during the time complexity evaluation, a subtraction may be regarded as an addition be-

cause a subtracting directive consumes the same number of clock cycles as an adding directive [11].

2.2 Running Time of a Modular Subtraction

2.2.1 Bit Complexity of a Bitwise Modular Subtraction

Assume that bitwise operators on subtracting are available. Let S = (s(lg P)…s0)2 be a mid variable.

Clearly, we first need computing (s(lg P)…s0)2  (x(lg P) - 1…x0)2 + (p(lg P) - 1…p0)2 if X < Y, which requires

lgP bit operations (with carry), and further, seeking the difference (s(lg P)…s0)2  (y(lg P) - 1…y0)2 also

requires lgP bit operations (likewise with carry).

Observe an example of (X  Y) mod P.

Still let lgP = 8.

Set 11111011 (= 251) to (p7…p0)2, 01010101 to (x7…x0)2, and 10101010 to (y7…y0)2 (notice that

there is X < Y). Then,

X  Y  (X + P)  Y  ((x7…x0)2 + (p7…p0)2)  (y7…y0)2

  (01010101 + 11111011)  10101010

  101010000  10101010  10100110 (mod 11111011).

Therefore, the bit complexity of a bitwise modular subtraction is 2lgP (= O(lgP)) [4].

2.2.2 Time Complexity of a Non-bitwise Modular Subtraction

Assume that 8- or 16-bit single-precision subtracting (or adding on occasion) directives are available.

Let S = (ṡn…ṡ0)ḇ be a mid variable.

It is well understood that we first need computing (ṡn…ṡ0)ḇ  (ẋn - 1…ẋ0)ḇ + (ṗn - 1…ṗ0)ḇ if X < Y,

which requires n single-precision adding directives (with carry) according to Algo 14.7 [4], and further,

searching the difference (ṡn…ṡ0)ḇ  (ẏn - 1…ẏ0)ḇ requires n single-precision subtracting directives (like-

wise with carry) according to Algo 14.9 [4].

Analogous to a bitwise modular subtraction, the time complexity of a non-bitwise modular subtraction

is 2n (= O(n)) single-precision subtracting (or adding) directives [4].

 3

2.3 Running Time of a Modular Multiplication

2.3.1 Bit Complexity of a Bitwise Modular Multiplication

Assume that a bitwise addition and subtraction are available. Let A = (a2(lg P) - 1…a0)2 be a mid variable.

Owing to yi = 0 or 1, the bitwise multiplication (a2(lg P) - 1…a0)2  (x(lg P) - 1…x0)2  (y(lg P) - 1…y0)2 may
be fulfilled through lgP iterations of the bitwise addition (with shift), which requires (lgP)2 bit opera-

tions. Further, the bitwise reduction (a2(lg P) - 1…a0)2 mod (p(lg P) - 1…p0)2 may be fulfilled through lgP

iterations of the bitwise subtraction (with shift), which also requires (lgP)2 bit operations.

Observe an example of (X  Y) mod P.

Still let lgP = 8.

Set 11111011 (= 251) to (p7…p0)2, 11001100 to (x7…x0)2, and 00110011 to (y7…y0)2. Then,

 X  Y  (x7…x0)2  (y7…y0)2

  11001100  00110011  0010100010100100  01110001 (mod 11111011).

Hence, the bit complexity of a bitwise modular multiplication is 2(lgP)2 (= O((lgP)2)) [4]. Notice

that trivial judging and shifting operations are customarily neglected during the time cost evaluation [4].

2.3.2 Time Complexity of a Non-bitwise Modular Multiplication

Assume that 8- or 16-bit single-precision multiplying, adding, and subtracting directives are avail-

able. Let A = (ȧ2n - 1…ȧn…ȧ0)ḇ be a resultant variable.

Ordinarily, first we need to get (ȧ2n - 1…ȧ0)ḇ  (ẋn - 1…ẋ0)ḇ  (ẏn - 1…ẏ0)ḇ, which requires n2
 (= O(n2))

single-precision multiplying directives and 3n2 (= O(n2)) single-precision adding directives according

to Algo 14.12 in which the value of a carry digit is at most (ḇ  1) but not 1 [4], and then we need to

reduce (ȧ2n - 1…ȧ0)ḇ mod (ṗn - 1…ṗ0)ḇ, which demands single-precision dividing directives.

However, there is no single-precision dividing directive in some CPU assembly instruction sets (for

example the ATmel 8-bit AVR instruction set [11]); thus the Montgomery multiplication algorithm

wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg is designed for the modular product of two multiple-precision integers [4].

Let a mid variable U in radix ḇ representation be (ün - 1…ü0)ḇ.

Similar to Algo 14.36 [4], the Montgomery multiplication algorithm in non-bitwise (shortly Mont(X,

Y mod P) or Mont(X, Y)) is described as follows:

INPUT: X = (ẋn - 1…ẋ0)ḇ, Y = (ẏn - 1…ẏ0)ḇ, P = (ṗn - 1…ṗ0)ḇ with 0  X, Y < P;

 Ŕ = (řn - 1…ř0)ḇ = ḇn mod P with gcd(P, ḇ) = 1, and Ṕ = P1 mod ḇ.

OUTPUT: XYŔ1 mod P.

S1: Set (ȧn…ȧ0)ḇ  0. (Note that A = (ȧn…ȧ0)ḇ.)

S2: For i from 0 to (n 1) do:

 S2.1: Get üi  (ȧ0 + ẋiẏ0)Ṕ mod ḇ.

 S2.2: Get (ȧn…ȧ0)ḇ  ((ȧn…ȧ0)ḇ + ẋi (ẏn - 1…ẏ0)ḇ + üi(ṗn - 1…ṗ0)ḇ) / ḇ.

S3: If (ȧn…ȧ0)ḇ  (ṗn - 1…ṗ0)ḇ then (ȧn - 1…ȧ0)ḇ  (ȧn…ȧ0)ḇ  (ṗn - 1…ṗ0)ḇ.

S4: Return (A).

Through two iterations of the Montgomery multiplication algorithm (namely Mont(X, Y mod P) and

Mont(XYŔ1, Ŕ2 mod P), where Ŕ (= ḇn mod P) and Ŕ2 mod P may be calculated in advance), we can

obtain the product A = XY mod P (namely (ȧn - 1…ȧ0)ḇ = (ẋn - 1…ẋ0)ḇ  (ẏn - 1…ẏ0)ḇ mod (ṗn - 1…ṗ0)ḇ),

which indicates the time complexity of the XY mod P operation is 4n(n + 1) (= O(n2)) single-precision

multiplying directives and 4n(n + 2) (= O(n2)) single-precision adding (or subtracting) directives (con-

cretely including 2n subtracting directives) [4].

2.3.3 Time Complexity of a Non-bitwise Modular Squaring Operation

Under the circumstances of there being no single-precision dividing directive, computing X 2 mod P

demands three steps. Let A = (ȧ2n - 1…ȧn…ȧ0)ḇ be a resultant variable.

 4

First, to compute (ȧ2n - 1…ȧ0)ḇ  (ẋn - 1…ẋ0)ḇ  (ẋn - 1…ẋ0)ḇ, which requires n(n + 1) / 2 (= O(n2)) single-

precision multiplying directives and 2n + 4n(n  1) / 2 = 2n 2
 (= O(n 2)) single-precision adding directives

according to Algo 14.16 [4].

Next, to reduce A (= (ȧ2n - 1…ȧ0)ḇ) 2n-digits in length to AŔ1 mod P n-digits in length (where Ŕ = ḇn

mod P) through the Montgomery reduction algorithm wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg, which requires n(n + 1)

(= O(n2)) single-precision multiplying directives and n(n + 2) (= O(n2)) single-precision adding (or sub-

tracting) directives (concretely including n subtracting directives) according to Algo 14.32 [4].

Last, to extract A (= (ȧn - 1…ȧ0)ḇ) from AŔ1 through the Montgomery multiplication (Mont(AŔ1, Ŕ2

mod P)), which requires 2n(n + 1) (= O(n2)) single-precision multiplying directives and 2n(n + 2) (=

O(n2)) single-precision adding (or subtracting) directives according to Algo 14.36.

Hence, the time complexity of a non-bitwise modular squaring operation is 3.5n(n + 1) (= O(n2)) single-

precision multiplying directives and n(5n + 6) (= O(n2)) single-precision adding (or subtracting) directives.

2.4 Running Time of a GCD(X, Y) Operation with Y  X  P

2.4.1 Bit Complexity of the Euclidean Algorithm in Bitwise

Let R = X  YQ, where R (= (r(lg P) - 1…r0)2) is a remainder, and Q (= (q(lg P) - 1…q0)2) is a quotient.

We can gain Q and R through multiple iterations of a bitwise subtraction instead of a bitwise division.

Similar to Algo 2.104 [4], the Euclidean algorithm in bitwise (shortly EAB) is described as follows:

 INPUT: Two positive integers X and Y with Y  X  P.

 OUTPUT: The greatest common divisor of X and Y.

 S1: While (y(lg P) - 1…y0)2  0 do:

 S1.1: Get (r(lg P) - 1…r0)2  (x(lg P) - 1…x0)2 mod (y(lg P) - 1…y0)2;

 S1.2: Let (x(lg P) - 1…x0)2  (y(lg P) - 1…y0)2;

 S1.3: Let (y(lg P) - 1…y0)2  (r(lg P) - 1…r0)2.

 S2: Return ((x(lg P) - 1…x0)2).

Notice that the most significant bits of X, Y, and R will gradually move rightward.

Now, we analyze the running time Ŧ of the Euclidean algorithm in bitwise.

Let k be the number of iterations of S1.1-S1.3, then k is less than or equal to 5(0.301lgX)  1.5lgX [12].

Due to (running time of X mod Y) = (valid bit-length of Y)  (valid bit-length of Q), we have

Ŧ =  k
i = 1 lgYi (lgXi  lgYi + 1)

   k
i = 1 lgX (lgXi  lgYi + 1)

 = lgX (lgX1  lgYk + k)

  lgX (lgX + k)

  lgX (lgX + 1.5lgX)

 = 2.5(lgX)2  2.5(lgP)2,

where X1 = X, Y1 = Y, X2 = Y1, X3 = Y2, …, and Xk = Yk - 1 [13].

Hence, the bit complexity of the Euclidean algorithm in bitwise is 2.5(lgP)2 (= O((lgP)2)) [4].

Note that the Euclidean algorithm in bbyytteewwiissee demands single-precision dividing directives; thus it

will be inapplicable to 8-bit AVR assembly source programs.

2.4.2 Time Complexity of the Binary GCD Algorithm in Non-bitwise

Let mid variables G and T in radix 2 or ḇ representation be separately (g(lg P) - 1…g0)2 and (t(lg P) - 1…t0)2,

or (ġn - 1…ġ0)ḇ and (ṫn - 1…ṫ0)ḇ.

Due to lgP being divisible by 8 or 16, transforming (x(lg P) - 1…x0)2 into (ẋn - 1…ẋ0)ḇ or (y(lg P) - 1…y0)2

into (ẏn - 1…ẏ0)ḇ will be very convenient.

Similar to Algo 14.54 wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg [4], the binary GCD algorithm in non-bitwise (shortly

BGANB) is described as follows:

 5

 INPUT: Two positive integers X and Y with Y  X  P.

 OUTPUT: The greatest common divisor of X and Y.

 S1: Set (ġn - 1…ġ0)ḇ  1.

 S2: While both (x(lg P) - 1…x0)2 and (y(lg P) - 1…y0)2 are even do:

 S2.1: Let (x(lg P) - 1…x0)2  (x(lg P) - 1…x0)2 / 2;

 S2.2: Let (y(lg P) - 1…y0)2  (y(lg P) - 1…y0)2 / 2;

 S2.3: Let (g(lg P) - 1…g0)2  (g(lg P) - 1…g0)2  2.

 S3: While (ẋn - 1…ẋ0)ḇ  0 do:

 S3.1: While (x(lg P) - 1…x0)2 is even do: (x(lg P) - 1…x0)2  (x(lg P) - 1…x0)2 / 2;

 S3.2: While (y(lg P) - 1…y0)2 is even do: (y(lg P) - 1…y0)2  (y(lg P) - 1…y0)2 / 2;

 S3.3: Get (ṫn - 1…ṫ0)ḇ  |(ẋn - 1…ẋ0)ḇ  (ẏn - 1…ẏ0)ḇ|,

 and let (t(lg P) - 1…t0)2  (t(lg P) - 1…t0)2 / 2;

 S3.4: If (ẋn - 1…ẋ0)ḇ  (ẏn - 1…ẏ0)ḇ then (ẋn - 1…ẋ0)ḇ  (ṫn - 1…ṫ0)ḇ;

 else (ẏn - 1…ẏ0)ḇ  (ṫn - 1…ṫ0)ḇ.

 S4: Get (y(lg P) - 1…y0)2  (y(lg P) - 1…y0)2  (g(lg P) - 1…g0)2, and return (Y).

Notice that an 8- or 16-bit single-precision subtraction is employed at S3.3, and the most significant

bits of X, Y, and T will gradually move rightward along with increase of iterations.

It is not difficult to comprehend that the number of valid bits of X or Y will decrease by (at least) 1

after at most two iterations of S3.1-S3.4, and thus BGANB takes at most 2lgP such iterations, which

tells us that BGANB requires 2n lgP (= O(n lgP)) 8- or 16-bit subtracting directives [4].

2.5 Running Time of a Modular Inversion

2.5.1 Bit Complexity of the Extended Euclidean Algorithm in Bitwise

By the greatest common divisor theorem [12], for the coprime P and Y (< P), it holds that PS + YT =

V (= gcd(P, Y)) = 1, where S and T are two integers, and T is called the multiplicative inverse of Y.

Coherently, let S, T, and V in radix 2 representation be (s(lg P) - 1…s0)2, (t(lg P) - 1…t0)2, and (v(lg P) - 1…v0)2.

Again let mid variables A, B, C, D, Q, and R (a remainder) in radix 2 representation be (a(lg P) - 1…a0)2,

(b(lg P) - 1…b0)2, (c(lg P) - 1…c0)2, (d(lg P) - 1…d0)2, (q(lg P) - 1…q0)2, and (r(lg P) - 1…r0)2.

Referring to Algo 2.107 [4], we characterize the extended Euclidean algorithm in bitwise (shortly

EEAB) for seeking the gcd of X and Y or the multiplicative inverse of Y in P as follows:

 INPUT: Two nonnegative integers X (or P) and Y with Y  X  P.

 OUTPUT: V = gcd(X, Y) and integers S, T (or an inverse) satisfying XS + YT = V.

 S1: If (y(lg P) - 1…y0)2 = 0 then let (v(lg P) - 1…v0)2  (x(lg P) - 1…x0)2,

 set (s(lg P) - 1…s0)2  1, (t(lg P) - 1…t0)2  0, and return (V, S, T).

 S2: Set (b(lg P) - 1…b0)2  1, (a(lg P) - 1…a0)2  0, (d(lg P) - 1…d0)2  0, (c(lg P) - 1…c0)2  1.

 S3: While (y(lg P) - 1…y0)2 > 0 do:

 S3.1: Get (q(lg P) - 1…q0)2 and (r(lg P) - 1…r0)2 by (x(lg P) - 1…x0)2 / (y(lg P) - 1…y0)2,

 (s(lg P) - 1…s0)2  (b(lg P) - 1…b0)2  (q(lg P) - 1…q0)2  (a(lg P) - 1…a0)2,

 (t(lg P) - 1…t0)2  (d(lg P) - 1…d0)2  (q(lg P) - 1…q0)2  (c(lg P) - 1…c0)2.

 S3.2: Let (x(lg P) - 1…x0)2  (y(lg P) - 1…y0)2, (y(lg P) - 1…y0)2  (r(lg P) - 1…r0)2,

 (b(lg P) - 1…b0)2  (a(lg P) - 1…a0)2, (a(lg P) - 1…a0)2  (s(lg P) - 1…s0)2,

 (d(lg P) - 1…d0)2  (c(lg P) - 1…c0)2, (c(lg P) - 1…c0)2  (t(lg P) - 1…t0)2.

 S4: Let (v(lg P) - 1…v0)2  (x(lg P) - 1…x0)2, (s(lg P) - 1…s0)2  (b(lg P) - 1…b0)2,

 (t(lg P) - 1…t0)2  (d(lg P) - 1…d0)2, and return (V, S, T).

We see that at S3.1 of EEAB, one bitwise division for a quotient with a remainder and two bitwise

multiplications are required, which can be implemented separately through iterations of the bitwise

 6

subtraction (with shift) and iterations of the bitwise addition (with shift).

Paralleling EAB, EEAB will expend 3(2.5(lgP)2) = 7.5(lgP)2 (= O((lgP)2)) bit operations after at

most 1.5lgP iterations of S3.1-S3.2 [4].

Hence, the bit complexity of EEAB is 7.5(lgP)2 which is three times as large as EAB. However, they

both have the same magnitude of O((lgP)2) [4].

Note that the extended Euclidean algorithm in bbyytteewwiissee demands single-precision dividing directives;

thus it will be inapplicable to 8-bit AVR assembly source programs.

2.5.2 Time Complexity of the Binary Extended GCD Algorithm in Non-bitwise

Algo 14.61 is called the binary extended GCD algorithm utilizing 8- or 16-bit adding and subtracting

directives for searching the integers S, T and V such that XS + YT = V (= gcd(X, Y)) with Y  X  P [4].

Especially, when X = P (namely V = 1), T is the multiplicative inverse of Y in P.

Let the variables S, T and V in radix 2 or ḇ representation be respectively expressed as (s(lg P) - 1…s0)2,

(t(lg P) - 1…t0)2, and (v(lg P) - 1…v0)2, or (ṡn - 1…ṡ0)ḇ, (ṫn - 1…ṫ0)ḇ, and (ϋn - 1…ϋ0)ḇ, where n = lgP / 8 (or / 16).

Again let mid variables A, B, C, D, G, and U in radix 2 or ḇ representation be separately (a(lg P) - 1…a0)2,

(b(lg P) - 1…b0)2, (c(lg P) - 1…c0)2, (d(lg P) - 1…d0)2, (g(lg P) - 1…g0)2, and (u(lg P) - 1…u0)2, or (ȧn - 1…ȧ0)ḇ, (ḃn - 1…ḃ0)ḇ,

(ċn - 1…ċ0)ḇ, (ḋn - 1…ḋ0)ḇ, (ġn - 1…ġ0)ḇ, and (ün - 1…ü0)ḇ.

Similar to Algo 14.61 wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg aanndd mmuullttiippllyyiinngg [4], the binary extended GCD algo-

rithm in non-bitwise (shortly BEGANB) for searching the gcd or inverse is described as follows:

 INPUT: Two positive integers X (or P) and Y with Y  X  P.

 OUTPUT: Integers S, T (or an inverse), and V such that XS + YT = V, where V = gcd(X, Y).

 S1: Set (ġn - 1…ġ0)ḇ  1.

 S2: While (x(lg P) - 1…x0)2 and (y(lg P) - 1…y0)2 are both even do:

 S2.1: Let (x(lg P) - 1…x0)2  (x(lg P) - 1…x0)2 / 2;

 S2.2: Let (y(lg P) - 1…y0)2  (y(lg P) - 1…y0)2 / 2;

 S2.3: Let (g(lg P) - 1…g0)2  (g(lg P) - 1…g0)2  2.

 S3: Let (ün - 1…ü0)ḇ  (ẋn - 1…ẋ0)ḇ, (ϋn - 1…ϋ0)ḇ  (ẏn - 1…ẏ0)ḇ;

 Set (ȧn - 1…ȧ0)ḇ  1, (ḃn - 1…ḃ0)ḇ  0, (ċn - 1…ċ0)ḇ  0, (ḋn - 1…ḋ0)ḇ  1.

 S4: While (u(lg P) - 1…u0)2 is even do:

 S4.1: Let (u(lg P) - 1…u0)2  (u(lg P) - 1…u0)2 / 2;

 S4.2: If (a(lg P) - 1…a0)2  (b(lg P) - 1…b0)2  0 (mod 2)

 then (a(lg P) - 1…a0)2  (a(lg P) - 1…a0)2 / 2, (b(lg P) - 1…b0)2  (b(lg P) - 1…b0)2 / 2;

 else (ȧn - 1…ȧ0)ḇ  (ȧn - 1…ȧ0)ḇ + (ẏn - 1…ẏ0)ḇ, (a(lg P) - 1…a0)2  (a(lg P) - 1…a0)2 / 2,

 (ḃn - 1…ḃ0)ḇ  (ḃn - 1…ḃ0)ḇ  (ẋn - 1…ẋ0)ḇ, (b(lg P) - 1…b0)2  (b(lg P) - 1…b0)2 / 2.

 S5: While (v(lg P) - 1…v0)2 is even do:

 S5.1: Let (v(lg P) - 1…v0)2  (v(lg P) - 1…v0)2 / 2;

 S5.2: If (c(lg P) - 1…c0)2  (d(lg P) - 1…d0)2  0 (mod 2)

 then (c(lg P) - 1…c0)2  (c(lg P) - 1…c0)2 / 2, (d(lg P) - 1…d0)2  (d(lg P) - 1…d0)2 / 2;

 else (ċn - 1…ċ0)ḇ  (ċn - 1…ċ0)ḇ + (ẏn - 1…ẏ0)ḇ, (c(lg P) - 1…c0)2  (c(lg P) - 1…c0)2 / 2,

 (ḋn - 1…ḋ0)ḇ  (ḋn - 1…ḋ0)ḇ  (ẋn - 1…ẋ0)ḇ, (d(lg P) - 1…d0)2  (d(lg P) - 1…d0)2 / 2.

 S6: If (ün - 1…ü0)ḇ  (ϋn - 1…ϋ0)ḇ then (ün - 1…ü0)ḇ  (ün - 1…ü0)ḇ  (ϋn - 1…ϋ0)ḇ,

 (ȧn - 1…ȧ0)ḇ  (ȧn - 1…ȧ0)ḇ  (ċn - 1…ċ0)ḇ, (ḃn - 1…ḃ0)ḇ  (ḃn - 1…ḃ0)ḇ  (ḋn - 1…ḋ0)ḇ;

 else (ϋn - 1…ϋ0)ḇ  (ϋn - 1…ϋ0)ḇ  (ün - 1…ü0)ḇ,

 (ċn - 1…ċ0)ḇ  (ċn - 1…ċ0)ḇ  (ȧn - 1…ȧ0)ḇ, (ḋn - 1…ḋ0)ḇ  (ḋn - 1…ḋ0)ḇ  (ḃn - 1…ḃ0)ḇ.

 S7: If (ün - 1…ü0)ḇ = 0 then (ṡn - 1…ṡ0)ḇ  (ċn - 1…ċ0)ḇ, (ṫn - 1…ṫ0)ḇ  (ḋn - 1…ḋ0)ḇ,

 (v(lg P) - 1…v0)2  (v(lg P) - 1…v0)2  (g(lg P) - 1…g0)2, and return (S, T, V);

 else go to S4.

 7

We observe S4 and S5 of BEGANB.

When U is even, the commands A  A + Y and B  B  X are always executed in the worst case.

When V is even, the commands C  C + Y and D  D  X are also always executed in the worst case.

Notice that it is impossibly that U at S4 and V at S5 are simultaneously even.

Next observe S6. There always lie 3 executed subtracting commands whether U is bigger than V or not.

Hence, a single iteration of S4-S7 requires 5 multiple-precision adding (or subtracting) operations.

Analogous to BGANB, BEGANB takes at most 2lgP iterations. Further, 2lgP iterations require 10lgP

adding (or subtracting) operations, which indicates that BEGANB requires 10n lgP (= O(n lgP)) 8- or

16-bit single-precision adding (or subtracting) directives [4].

2.6 Running Time of a Modular Exponentiation

2.6.1 Bit Complexity of the Left-to-right Modular Exponentiation Algorithm in Bitwise

Suppose that the resultant variable A in radix 2 representation is (a(lg P) - 1…a0)2.

Similar to Algo 14.79 [4], the left-to-right modular exponentiation algorithm in bitwise (shortly

LRMEAB) is described as follows:

 INPUT: Two positive integers X and Y with X < P and Y < P.

 OUTPUT: The power A = XY mod P.

 S1: Set (a(lg P) - 1…a0)2  1.

 S2: For i from (lgP)1 down to 0 do:

 S2.1: Get (a(lg P) - 1…a0)2  (a(lg P) - 1…a0)2  (a(lg P) - 1…a0)2 mod (p(lg P) - 1…p0)2;

 S2.2: If yi = 1 then (a(lg P) - 1…a0)2  (a(lg P) - 1…a0)2  (x(lg P) - 1…x0)2 mod (p(lg P) - 1…p0)2.

 S3: Return ((a(lg P) - 1…a0)2).

We see that S2.1 is a bitwise modular multiplication, which requires 2(lgP)2 bit operations.

Likewise, we see that S2.2 is a bitwise modular multiplication, which requires 2(lgP)2 bit operations

in the worst case.

Consequently, the bit complexity of LRMEAB is 4(lgP)3 (= O((lgP)3)) [4].

2.6.2 Time Complexity of the Montgomery Exponentiation Algorithm in Non-bitwise

Algo 14.94 is called the Montgomery exponentiation algorithm wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg ooppeerraattiioonn,

and suitable for 8-bit AVR assembly programming [4].

As they come, X and P in radix ḇ (= 256 or 65536) representation are respectively (ẋn - 1…ẋ0)ḇ and

(ṗn - 1…ṗ0)ḇ, and Y in radix 2 representation is (y(lg P) - 1…y0)2.

Let Ẍ = (n - 1…0)ḇ be a mid variable, and A = (ȧn - 1…ȧ0)ḇ be a resultant variable. Similar to Algo

14.94 [4], the Montgomery exponentiation algorithm in non-bitwise is described as follows:

INPUT: X = (ẋn - 1…ẋ0)ḇ, P = (ṗn - 1…ṗ0)ḇ, and Y = (y(lg P) - 1…y0)2 with y(lg P) - 1 = 1;

 Ŕ = (řn - 1…ř0)ḇ = ḇn mod P, Ȑ = (n - 1…0)ḇ = Ŕ2 mod P, and Ṕ = P1 mod ḇ.

OUTPUT: XY mod P.

S1: Let (ȧn - 1…ȧ0)ḇ  (řn - 1…ř0)ḇ mod (ṗn - 1…ṗ0)ḇ,

 get (n - 1…0)ḇ  Mont((ẋn - 1…ẋ0)ḇ, (n - 1…0)ḇ).

S2: For i from (lgP)1 down to 0 do:

 S2.1: Get (ȧn - 1…ȧ0)ḇ  Mont((ȧn - 1…ȧ0)ḇ, (ȧn - 1…ȧ0)ḇ).

 S2.2: If yi = 1 then (ȧn - 1…ȧ0)ḇ  Mont((ȧn - 1…ȧ0)ḇ, (n - 1…0)ḇ).

S3: Get (ȧn - 1…ȧ0)ḇ  Mont((ȧn - 1…ȧ0)ḇ, 1).

S4: Return (A).

We see that at S1, one Montgomery multiplication is required, at S2, 1.5(lgP) Montgomery multi-

plications are required (notice that the probability of S2.2 being executed is obviously 1 / 2), and at S3,

one special Montgomery multiplication is required.

 8

Then, at S1, single-precision 2n(n + 1) multiplying directives and 2n(n + 2) adding (or subtracting)

directives are required, at S2, single-precision 3n(n + 1)(lgP) multiplying directives and 3n(n + 2)(lgP)

adding (or subtracting) directives are required, and at S3, single-precision n(n + 1) multiplying direc-

tives and rational n (n + 2) adding (or subtracting) directives are required.

Consequently, the time complexity of the Montgomery exponentiation algorithm is 3n(n + 1)(1 + lgP)

(= O(n2 lgP)) single-precision multiplying directives and 3n(n + 2)(1 + lgP) (= O(n2 lgP)) single-precision

adding (or subtracting) directives.

3 Clock Cycles for a Bytewise Multiple-precision Modular Operation

Assume that multiple-precision modular arithmetic is performed on the ATmel 8-bit AVR processor,

which means that bytewise multiple-precision modular arithmetic is operated. Notice that there is no

single-precision dividing directive in the ATmel 8-bit AVR instruction set.

Again assume that the bit-length of a cryptographic multiple-precision modulus is 160, 192, 224, or 256.

We will only consider clock cycles taken by adding (or subtracting) and multiplying directives, and

ignore clock cycles taken by trivial judging, shifting, moving, loading, storing etc directives. The demand

for every trivial directive of an 8-bit AVR assembly source program may be formulated.

The ATmel 8-bit AVR instruction set shows that one adding directive (with carry) consumes 1 clock

cycle, one subtracting directive (with carry) consumes 1 clock cycle, and one unsigned multiplying

directive consumes 2 clock cycles (note that in cryptosystems with moduli all integers are nonnegative).

When ḇ = 256 and lgP = 160, 192, 224, or 256, we have n = 20, 24, 28, or 32.

3.1 Clock Cycles for a Bytewise Modular Addition

It is known from Sect 2.1.2 that the running time of a bytewise modular addition is 2n single-

precision adding (or subtracting) directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 40 40 0 0 40

lgP = 192 (n = 24) 48 48 0 0 48

lgP = 224 (n = 28) 56 56 0 0 56

lgP = 256 (n = 32) 64 64 0 0 64

Table 1: Number of Clock Cycles for a Bytewise Modular Addition

Note that the practical number of clock cycles for a bytewise modular addition will be bigger than

the table number when trivial directives are considered.

3.2 Clock Cycles for a Bytewise Modular Subtraction

It is known from Sect 2.2.2 that the running time of a bytewise modular subtraction is 2n single-

precision adding (or subtracting) directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 40 40 0 0 40

lgP = 192 (n = 24) 48 48 0 0 48

lgP = 224 (n = 28) 56 56 0 0 56

lgP = 256 (n = 32) 64 64 0 0 64

Table 2: Number of Clock Cycles for a Bytewise Modular Subtraction

Note that the practical number of clock cycles for a bytewise modular subtraction will be bigger than

the table number when trivial directives are considered.

 9

3.3 Clock Cycles for a Bytewise Modular Multiplication

It is known from Sect 2.3.2 that the running time of a bytewise modular multiplication utilizing the

Montgomery multiplication algorithm wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg is 4n(n + 2) single-precision adding (or

subtracting) directives and 4n(n + 1) single-precision multiplying directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 1760 1760 1680 3360 5120

lgP = 192 (n = 24) 2496 2496 2400 4800 7296

lgP = 224 (n = 28) 3360 3360 3248 6496 9856

lgP = 256 (n = 32) 4352 4352 4224 8448 12800

Table 3: Number of Clock Cycles for a Bytewise Modular Multiplication

Note that the practical number of clock cycles for a bytewise modular multiplication will be bigger

than the table number when trivial directives are considered.

3.4 Clock Cycles for a Bytewise Modular Squaring Operation

It is known from Sect 2.3.3 that the running time of a bytewise modular squaring operation which

utilizes respectively the Montgomery reduction algorithm and the homonymous multiplication algo-

rithm wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg is n(5n + 6) single-precision adding (or subtracting) directives and

3.5n(n + 1) single-precision multiplying directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 2120 2120 1470 2940 5060

lgP = 192 (n = 24) 3024 3024 2100 4200 7224

lgP = 224 (n = 28) 4088 4088 2842 5684 9772

lgP = 256 (n = 32) 5312 5312 3696 7392 12704

Table 4: Number of Clock Cycles for a Bytewise Modular Squaring Operation

Note that the practical number of clock cycles for a bytewise modular squaring operation will be big-

ger than the table number when trivial directives are considered.

3.5 Clock Cycles for the Binary GCD Algorithm in Bytewise

It is known from Sect 2.4.2 that the running time of the binary GCD algorithm in bytewise wwiitthhoouutt

eexxpplliicciitt ddiivviiddiinngg is 2n lgP single-precision adding (or subtracting) directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 6400 6400 0 0 6400

lgP = 192 (n = 24) 9216 9216 0 0 9216

lgP = 224 (n = 28) 12544 12544 0 0 12544

lgP = 256 (n = 32) 16384 16384 0 0 16384

Table 5: Number of Clock Cycles for the Binary GCD Algorithm in Bytewise

Note that the practical number of clock cycles for the binary GCD algorithm in bytewise will be big-

ger than the table number when trivial directives are considered.

3.6 Clock Cycles for the Binary Extended GCD Algorithm in Bytewise

It is known from Sect 2.5.2 that the running time of the binary extended GCD algorithm in bytewise

(for searching one gcd or multiplicative inverse) wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg aanndd mmuullttiippllyyiinngg is 10n lgP

single-precision adding (or subtracting) directives.

 10

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 32000 32000 0 0 32000

lgP = 192 (n = 24) 46080 46080 0 0 46080

lgP = 224 (n = 28) 62720 62720 0 0 62720

lgP = 256 (n = 32) 81920 81920 0 0 81920

Table 6: Number of Clock Cycles for the Binary Extended GCD Algorithm in Bytewise

Note that the practical number of clock cycles for the binary extended GCD algorithm in bytewise

will be bigger than the table number when trivial directives are considered.

3.7 Clock Cycles for the Montgomery Exponentiation Algorithm in Bytewise

It is known from Sect 2.6.2 that the time complexity of the Montgomery exponentiation algorithm

in bytewise wwiitthhoouutt eexxpplliicciitt ddiivviiddiinngg is 3n(n + 2)(1 + lgP) single-precision adding (or subtracting)

directives and 3n(n + 1)(1 + lgP) single-precision multiplying directives.

Add (or Sub) Mul

Directives Clock Cycles Directives Clock Cycles
Total Clock Cycles

lgP = 160 (n = 20) 212520 212520 202860 405720 618240

lgP = 192 (n = 24) 361296 361296 347400 694800 1056096

lgP = 224 (n = 28) 567000 567000 548100 1096200 1663200

lgP = 256 (n = 32) 838848 838848 814176 1628352 2467200

Table 7: Number of Clock Cycles for the Montgomery Exponentiation Algorithm in Bytewise

Note that the practical number of clock cycles for the Montgomery exponentiation algorithm in

bytewise will be bigger than the table number when trivial directives are considered.

4 Ratio of Derivate Numbers of Clock Cycles for Two Modular Operations

Still assume that multiple-precision modular arithmetic is done on the ATmel 8-bit AVR processor.

Still again assume that the bit-length of a multiple-precision modulus is 160, 192, 224, or 256.

Since the demand for the single-precision adding, subtracting, and multiplying directives in a byte-

wise modular operation may be formulated, the number of clock cycles for the modular operation may

be formulated, and further, the ratio of derivate numbers of clock cycles for two modular operations

under different modulus lengths may be computed.

Let MADD symbolize a modular addition, MMUL do a modular multiplication, MINV do a modular

inversion (namely the binary extended GCD algorithm), and MEXP do a modular exponentiation.

4.1 Ratio of Square of Number of Cycles for MADD to Number of Cycles for MMUL

Sect 3.1 tells us that the number of clock cycles for MADD (Ca) is 2n.

Sect 3.3 tells us that the number of clock cycles for MMUL (Cm) is 4n(n + 2) + 4n(n + 1)2 = 12n2
 + 8n.

Then, Ɍ(Ca)2 : Cm = (Ca)2
 / Cm = 4n2

 / (12n2
 + 8n) = 1 / (3 + 2 / n).

When lgP = 160 (viz. n = 20), Ɍ(Ca)2 : Cm = 1 / (3 + 2 / 20) = 1 / 3.100000 = 0.322581.

When lgP = 192 (viz. n = 24), Ɍ(Ca)2 : Cm = 1 / (3 + 2 / 24) = 1 / 3.083333 = 0.324324.

When lgP = 224 (viz. n = 28), Ɍ(Ca)2 : Cm = 1 / (3 + 2 / 28) = 1 / 3.071429 = 0.325581.

When lgP = 256 (viz. n = 32), Ɍ(Ca)2 : Cm = 1 / (3 + 2 / 32) = 1 / 3.062500 = 0.326531.

The average of the ratios = (0.322581 + 0.324324 + 0.325581 + 0.326531) / 4 = 1.299017 / 4 = 0.324754.

The average of |the errors| = (0.002173 + 0.000430 + 0.000827 + 0.001777) / 4 = 0.005207 / 4 = 0.001302.

The weight of average of |the errors| = 0.001302 / 0.324754 = 0.004009 = 0.4009 % < 1 %.

Thus, the ratio of the square of number of clock cycles for MADD to the number of clock cycles for

MMUL is almost one constant, which hints that the ratio is determined by two the highest order terms.

 11

4.2 Ratio of Number of Cycles for MINV to Number of Cycles for MMUL

Sect 3.3 tells us that the number of clock cycles for MMUL (Cm) is 4n(n + 2) + 4n(n + 1)2 = 12n2
 + 8n.

Sect 3.6 tells us that the number of clock cycles for MINV (Ci) is 10n lgP = 10n(8n) = 80n2.

Then, ɌCi : Cm = Ci / Cm = 80n2
 / (12n2

 + 8n) = 20 / (3 + 2 / n).

When lgP = 160 (viz. n = 20), ɌCi : Cm = 20 / (3 + 2 / 20) = 20 / 3.100000 = 6.451613.

When lgP = 192 (viz. n = 24), ɌCi : Cm = 20 / (3 + 2 / 24) = 20 / 3.083333 = 6.486487.

When lgP = 224 (viz. n = 28), ɌCi : Cm = 20 / (3 + 2 / 28) = 20 / 3.071429 = 6.511627.

When lgP = 256 (viz. n = 32), ɌCi : Cm = 20 / (3 + 2 / 32) = 20 / 3.062500 = 6.530612.

The average of the ratios = (6.451613 + 6.486487 + 6.511627 + 6.530612) / 4 = 25.980339 / 4 = 6.495085.

The average of |the errors| = (0.043472 + 0.008598 + 0.016542 + 0.035527) / 4 = 0.104139 / 4 = 0.026035.

The weight of average of |the errors| = 0.026035 / 6.495085 = 0.004008 = 0.4008 % < 1 %.

Thus, the ratio of the number of clock cycles for MINV to the number of clock cycles for MMUL is

almost one constant, which implies that the ratio is determined by two the highest order terms.

4.3 Ratio of Cube of Number of Cycles for MADD to Number of Cycles for MEXP

Sect 3.1 shows that the number of clock cycles for MADD (Ca) is 2n.

Sect 3.7 shows that the number of clock cycles for MEXP (Ce) is 3n(n + 2)(1 + lgP) + 3n(n + 1)(1 + lgP)2.

Then, Ɍ(Ca)3 : Ce = (Ca)3
 / Ce = 8n3

 / (72n3
 + 105n2

 + 12n) = 8 / (72 + 105 / n + 12 / n2).

When lgP = 160 (viz. n = 20), Ɍ(Ca)3 : Ce = 8 / (72 + 105 / 20 + 12 / 400) = 8 / 77.280000 = 0.103519.

When lgP = 192 (viz. n = 24), Ɍ(Ca)3 : Ce = 8 / (72 + 105 / 24 + 12 / 576) = 8 / 76.395833 = 0.104718.

When lgP = 224 (viz. n = 28), Ɍ(Ca)3 : Ce = 8 / (72 + 105 / 28 + 12 / 784) = 8 / 75.765306 = 0.105589.

When lgP = 256 (viz. n = 32), Ɍ(Ca)3 : Ce = 8 / (72 + 105 / 32 + 12 / 1024) = 8 / 75.292969 = 0.106252.

The average of the ratios = (0.103519 + 0.104718 + 0.105589 + 0.106252) / 4 = 0.420078 / 4 = 0.105019.

The average of |the errors| = (0.001500 + 0.000301 + 0.000570 + 0.001233) / 4 = 0.003604 / 4 = 0.000901.

The weight of average of |the errors| = 0.000901 / 0.105019 = 0.008579 = 0.8579 % < 1 %.

Thus, the ratio of the cube of number of clock cycles for MADD to the number of clock cycles for

MEXP is almost one constant, which indicates that the ratio is decided by two the highest order terms.

4.4 Ratio of (3 / 2)-th Root of Number of Cycles for MINV to Number of Cycles for MEXP

Sect 3.6 shows that the number of clock cycles for MINV (Ci) is 10n lgP = 10n(8n) = 80n2.

Sect 3.7 shows that the number of clock cycles for MEXP (Ce) is 3n(n + 2)(1 + lgP) + 3n(n + 1)(1 + lgP)2

= 72n3 + 105n2 + 12n.

Then, Ɍ(Ci)3 / 2 : Ce = (Ci)3

/

2
 / Ce = (80n2)3

/

2
 / (72n3

 + 105n2
 + 12n) = 715.54 / (72 + 105 / n + 12 / n2).

As lgP = 160 (viz. n = 20), Ɍ(Ci)3 / 2 : Ce = 715.54 / (72 + 105 / 20 + 12 / 400) = 715.54 / 77.280000 = 9.259058.

As lgP = 192 (viz. n = 24), Ɍ(Ci)3 / 2 : Ce = 715.54 / (72 + 105 / 24 + 12 / 576) = 715.54 / 76.395833 = 9.366218.

As lgP = 224 (viz. n = 28), Ɍ(Ci)3 / 2 : Ce = 715.54 / (72 + 105 / 28 + 12 / 784) = 715.54 / 75.765306 = 9.444164.

As lgP = 256 (viz. n = 32), Ɍ(Ci)3 / 2 : Ce = 715.54 / (72 + 105 / 32 + 12 / 1024) = 715.54 / 75.292969 = 9.503411.

The average of the ratios = (9.259058 + 9.366218 + 9.444164 + 9.503411) / 4 = 37.572851 / 4 = 9.393213.

The average of |the errors| = (0.134155 + 0.026995 + 0.050951 + 0.110198) / 4 = 0.322299 / 4 = 0.080575.

The weight of average of |the errors| = 0.080575 / 9.393213 = 0.008578 = 0.8578 % < 1 %.

Thus, the ratio of the (3 / 2)-th root of number of clock cycles for MINV to the number of clock cycles

for MEXP is almost one constant, which hints that the ratio is decided by two the highest order terms.

4.5 Ratio of Number of Cycles for MADD to 2nd Root of Number of Cycles for MMUL

Sect 3.1 says that the number of clock cycles for MADD (Ca) is 2n.

Sect 3.3 says that the number of clock cycles for MMUL (Cm) is 4n(n + 2) + 4n(n + 1)2 = 12n2
 + 8n.

Then, ɌCa : (Cm)1/2 = Ca / (Cm)1/2 = 2n / (12n2
 + 8n)1/2 = 1 / (3 + 2 / n)1/2.

 12

When lgP = 160 (viz. n = 20), ɌCa : (Cm)1/2 = 1 / (3 + 2 / 20)1/2 = 1 / 3.1000001/2 = 0.567962.

When lgP = 192 (viz. n = 24), ɌCa : (Cm)1/2 = 1 / (3 + 2 / 24)1/2 = 1 / 3.0833331/2 = 0.569495.

When lgP = 224 (viz. n = 28), ɌCa : (Cm)1/2 = 1 / (3 + 2 / 28)1/2 = 1 / 3.0714291/2 = 0.570597.

When lgP = 256 (viz. n = 32), ɌCa : (Cm)1/2 = 1 / (3 + 2 / 32)1/2 = 1 / 3.0625001/2 = 0.571429.

The average of the ratios = (0.567962 + 0.569495 + 0.570597 + 0.571429) / 4 = 2.279483 / 4 = 0.569871.

The average of |the errors| = (0.001909 + 0.000376 + 0.000726 + 0.001558) / 4 = 0.004569 / 4 = 0.001142.

The weight of average of |the errors| = 0.001142 / 0.569871 = 0.002004 = 0.2004 % < 1 %.

Thus, the ratio of the number of clock cycles for MADD to the 2nd root of number of clock cycles

for MMUL is almost one constant, which means that the ratio is decided by two the highest order terms.

Extendedly, other similar ratios will also be individually smaller than 1%, and almost one constant.

Sect 4.1-4.5 illustrate that when lgP  160 (viz. n  20), the ratio of derivate numbers of clock cycles

for two bytewise modular operations is decided by the highest order terms of the two time polynomials,

and is almost a constant under different modulus lengths, and moreover, logically the ratio is still a

constant even if the numbers of clock cycles taken by relevant trivial directives are considered.

5 Conclusion

In the paper, we analyze detailedly the bit complexity of every bitwise modular operation and the

time complexity by single-precision directives of every non-bitwise modular operation in multiple-

precision modular arithmetic, and give the number of clock cycles for every bytewise modular opera-

tion which utilizes directives from the ATmel 8-bit AVR instruction set.

At last, we acquire a interesting discovery that the ratio of derivate numbers of clock cycles for two

bytewise modular operations is decided by the highest order terms of the two time polynomials, and is

almost a constant under different modulus lengths when lgP  160 (or n  20), and furthermore, there is

a logical extension that the ratio is still a constant even if the numbers of clock cycles consumed by

trivial directives of a modular operation shaped as an assembly source program are considered, where

the demand amount for every trivial directive will be formulated during the running time evaluation.

References

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, etc. Introduction to Algorithms (3rd Edition). MIT Press, Cambridge, 2009.

2. E. N. Zalta, U. Nodelman, C. Allen, etc. Stanford Encyclopedia of Philosophy: Computational Complexity Theory. Stan-

ford University, Stanford, 2016.

3. D. Z. Du and K. Ko, Theory of Computational Complexity, John Wiley & Sons, New York, 2000.

4. A. J. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography (Chapter 2 and 14). CRC Press, UK:

London, 1997.

5. M. Scott and P. Szczechowiak. Optimizing Multiprecision Multiplication for Public Key Cryptography. Cryptology ePrint

Archive, Report 2007/299, 2007.

6. E. Çelebi, M. Gözütok, and L. Ertaul. Implementations of Montgomery Multiplication Algorithms in Machine Languages.

The 2008 Int'l Conference on Security & Management, LasVegas, 2008.

7. H. Davenport. The Higher Arithmetic (7th Edition). Cambridge University Press, UK: Cambridge, 1999.

8. T. W. Hungerford. Algebra. Springer-Verlag, New York, 1998.

9. M. Sipser. Introduction to the Theory of Computation. PWS Publishing, Boston, 1997.

10. S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, New York, 2009.

11. Atmel Corporation. 8-bit AVR Instruction Set. http://www.atmel.com, 2002.

12. K. H. Rosen. Elementary Number Theory and Its Applications (5th Edition). Addison-Wesley, Boston, 2005.

13. P. Q. Nguên and D. Stehlé. Floating-Point LLL Revisited. Advances in Cryptology – EUROCRYPT 2005, May 2005.

