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Abstract. Authenticated Encryption (AE) achieves privacy and au-
thenticity with a single scheme. It is possible to obtain an AE scheme
gluing together an encryption scheme (privacy secure) and a Message Au-
thentication Code (authenticity secure). This approach is called generic
composition and its security has been studied by Namprempre et al. [NRS14].
They looked into all the possible gluings of an encryption scheme with a
secure MAC to obtain a nonce-based AE-scheme. The encryption scheme
is either IV-based (that is, with an additional random input, the initial-
ization vector [IV]) or nonce-based (with an input to be used once, the
nonce). Nampremepre et al. assessed the security/insecurity of all pos-
sible composition combinations except for 4 (N4, A10, A11 and A12).
Berti et al. [BPP18a] showed that N4 is insecure and that the remaining
modes (A10, A11, and A12) are either all secure or insecure.
Here, we prove that these modes are all insecure with a counterexample.
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1 Introduction

Privacy and authenticity are two of the most important goals of cryptography.
Encryption schemes provide privacy, that is, no information about a plaintext
(except its length) can be obtained from a ciphertext encrypting it; while Mes-
sage Authentication Codes (MAC) provide authenticity, that is, it is not possi-
ble to send a message impersonating another person. Authenticated Encryption
(AE) is the cryptographic primitive that provides both. In addition, AE allows
the presence of Associated Data (AD), which are data sent in clear but au-
thenticated. This primitive is the object of flourishing research from the seminal
papers [BN00,Rog02,RS06,BN08], with many constructions proposed, see for
example [RBBK01,BDH+17,HKR15,PS16,BDPA11,BMPS21] and the CAESAR
competition [Ber14,AFL16]. Moreover, there is an ongoing NIST competition for
a lightweight AE scheme [NIS18], whose finalists have been announced [NIS21]
and whose winner is ASCON [DEMS21]. See [JZK+22] for a survey of the AE-
literature.

⋆ Work done when this author was at TU Darmstadt, Germany, CAC - Applied
Cryptography



It is possible to design an AE-scheme from scratch (as the case of OCB [RBBK01],
for example) or to combine an encryption scheme with a MAC. This second ap-
proach is called generic composition [BN00].
About generic composition, the first result is the well-known “Encrypt-then-MAC
is secure” [BR00,Kra01]. Namprempre et al. [NRS14] studied thoroughly the
generic composition problem. They realised that while the first result [BR00,Kra01]
assumed that the encryption scheme is probabilistic, the literature moved to IV-
based or nonce-based encryption schemes [RS06,KL14]. Since probabilistic en-
cryption schemes are hard to design, we usually use a deterministic encryption
scheme and provide the random coins needed externally with an initialization
vector, the IV [BDJR97]. These are the IV-based encryption schemes.
Unfortunately, in practice, the IV is not always sampled as it should, that is,
uniformly at random [RS06]. Thus, we can replace the IV with a nonce (“num-
ber used once”). Nonce-based encryption schemes are assumed to be secure as
long as the nonce is not repeated [RS06].
Namprempre et al. [NRS14] studied all possible combinations of IV-based and
nonce-based encryption schemes with prf-MACs (that is, MACs which provide a
pseudo-random tag) to obtain a nonce-based AE scheme. They proved that 164
modes are insecure, 12 secure (9 with IV-based encryption schemes and 3 with
nonce-based encryption schemes). Only 4 modes remained elusive: N4 (using a
nonce-based encryption scheme) and A10, A11, and A12 (using an IV-based),
see Fig. 1. For these modes, the security remained undecided.
Note that all these modes follow the MAC-then-Encrypt paradigm. Moreover,
N4, A11, and A12 are among the “most efficient” AE-composition modes, in
the sense that they use the nonce, the AD, and the message the least possible
number of times (and there is the hope that they are secure).
Finally, their security has been proved using an additional hypothesis: the “Knowledge-
of-Tags” (KOT) [NRS14]. However, the problem of knowing if KOT is implied
by the privacy requirement of the encryption scheme remains.
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Fig. 1. The modes A10, A11, A12 and N4 [NRS14]. Note that the IV used may be sent
in clear along with the ciphertext to speed decryption.



Berti et al. [BPP18a] investigated the security of these 4 modes, giving some
partial results. First, they proved that N4 is not secure, offering a counterexample
with a nonce-based encryption schemeΠ with “a kind of Trojan injected”. Unfor-
tunately, Π outputs ciphertexts longer than the plaintext. Second, they proved
that modes A10, A11, and A12 have the same security: from a counterexample
against any of them, we can build counterexamples against the other 2 modes.
Third, they proved that the modes A10, A11, and A12 are secure if the secure
encryption scheme has any of these two hypotheses: either “misuse-resistance”
(that is, using the same IV and different messages, the encryption schemes still
outputs pseudorandom ciphertexts) or “message-malleability” (that is, having
the encryption of any message with a given IV iv, the adversary can correctly
encrypt all other messages with that iv). Since these two hypotheses are, in a
certain way, one the opposite of the other, it seems that these modes are secure,
but we still do not have the proof.

Our contribution. Surprisingly, this paper proves that modes A10, A11, and A12
are not secure in general. In particular, they do not provide authenticity. That is,
being able to encrypt messages, it is possible to produce a triple (nonce, AD, ci-
phertext), (N∗, A∗, C∗) which is fresh and valid (that is, ADec(N∗, A∗, C∗) does
not answer “invalid”). We exhibit a counterexample: a secure ivE scheme Π1,
whose composition according to mode A12 with a secure prf-MAC, we can forge.
Using [BPP18a], we immediately extend this result to modes A10 and A11.
Π1 uses a tweakable block-cipher 1 (TBC) F. If the message m is s.t. the first
two blocks are different, (that is, m1 ̸= m2), substantially Π1 is a TBC-based
version of CTR, that is ci = F1,i(iv)⊕mi with the difference that the last block
(the one carrying the tag in A12) is encrypted with a slightly different tweak,
that is, cl = F2,l(iv) ⊕ mi. If the first two message blocks are equal, instead,
we modify the encryption of the two last ciphertext blocks: the second-to-last
ciphertext block is obtained as cl−1 = F2,m3(iv) ⊕ F2,m3(m1) ⊕ml−1, while the
last block is obtained as cl = F1,l(iv)⊕ml. Further, we assume that Π1 outputs
the IV iv it uses with the ciphertext c. Π1 is IV-secure, as we prove in Thm. 1.
When mode A12 is implemented with Π1, a forgery can be created, proceeding
as follow: the attacker asks the encryption of a message M = M1, ...,Ml with
nonce N and AD A, obtaining iv1, C1, ..., Cl+1 (Remind that C = c = Enc(iv,m)
with m = M∥τ). Then, she asks the encryption C ′ of N ′, A′,M ′, where M ′ is
one block longer than M and M ′ = iv, iv, l + 1, ...,. Our goal is to produce C∗

s.t. ADec(N ′, A,C∗) = M . From C ′ it is easy to compute the correct C∗
1 , ..., C

∗
l ,

while to compute C∗
l+1 (the block encrypting the tag τ), we need both Cl+1 and

C ′
l+1. The details are in Sec. 4.1.

Since to obtain the correct C∗
l , the adversary needs to know the IV iv used by

Π1 to produce C, a natural solution seems to use the new syntax introduced by
Bellare et al. [BNT19]. They assumed that the decryption algorithm needs only
to know the ciphertext (and the key) to decrypt correctly (and not the IV, or

1 Tweakable block ciphers (TBCs) were introduced by Liskov et al. [LRW02]. They
are block-ciphers (BCs) with an additional input, the tweak, to add flexibility.



the nonce). Unfortunately, this simple solution does not work. In fact, we offer
as a counterexample Π2, a variant of Π1, where the IV is sent as C0 = F0,0(iv).
Third, we show that, to prove that N4 is not secure, we do not need an en-
cryption scheme outputting ciphertexts longer than the plaintexts. We offer
two counterexamples: a variant of Π1 and a variant of the scheme Π presented
in [BPP18a]. Since TBCs can be build from BCs [LRW02], our construction can
be built only from BCs.

This work concludes the classification of all generic composition modes (when
the encryption scheme is either nonce-based or IV-based). Moreover, we have
proved that IV-security does not imply KOT.

2 Background

Notations. We denote with {0, 1}n the set of all n-bit long strings and with
{0, 1}∗ the set of all finite strings. We denote the length of the string x with |x|.
To denote that x is picked uniformly at random from the set X , we use x

$← X .
In our security games, we use adversaries, which are probabilistic algorithms. An
adversary A who has access to oracles O1, . . . ,OT is denoted with AO1(·),...,OT (·).
A (q1, . . . , qT , t)-adversary A can do at most qi queries to oracle Oi and runs in
time bounded by t. We denote with AO1(·),...,OT (·) ⇒ x the fact that the adversary
A outputs x.

2.1 Tweakable blockciphers (TBCs)

Encryption schemes and MACs usually use (tweakable)-block ciphers to produce
the randomness they need. Formally,

Definition 1. A tweakable blockcipher (TBC) is a function F : K × T W ×
{0, 1}n → {0, 1}n s.t. ∀(k, tw) ∈ K × T W, F(k, tw, ·) : {0, 1}n → {0, 1}n is a
permutation.

We use often Ftw
k (x) and Fk(tw, x) to denote F(k, tw, x). To denote the inverse

of Ftw
k (·), we use F−1,tw

k (·). We call n the block-length of F.

We want that a TBC outputs values indistinguishable from random ones.
Formally:

Definition 2. A TBC F : K × T W × {0, 1}n → {0, 1}n is a (q, t, ϵ)-tweakable
pseudorandom permutation (tprp) if ∀ (q, t)-adversary A, the following advan-
tage ∣∣∣Pr[AFk(·,·) ⇒ 1]− Pr[Af(·,·) ⇒ 1]

∣∣∣ ≤ ϵ

where k
$← K and f

$← TWP. T WP is the set of all tweakable permutations
f, that is, the functions f : T W × {0, 1}n → {0, 1}n s.t. ∀tw ∈ T W, f(tw, ·) :
{0, 1}n → {0, 1}n is a permutation.



When the adversary, even having access also to the inverse of F, cannot distin-
guish F from f, we say that F is a strong tprp. Formally:

Definition 3. A TBC F : K × T W × {0, 1}n → {0, 1}n is a (q, t, ϵ)-strong
tweakable pseudorandom permutation (stprp) if ∀ (q1, q2, t)-adversary A, the
following advantage∣∣∣Pr[AFk(·,·),F−1

k (·,·) ⇒ 1]− Pr[Af(·,·),f−1(·,·) ⇒ 1]
∣∣∣ ≤ ϵ

where k
$← K, f $← TWP, f−1(·, ·) is the inverse of f, and q1 + q2 ≤ q.

When we do not need that F is a permutation, we use the following security
definition

Definition 4. A (q, t, ϵ)-pseudorandom function (prf) is a function F : K ×
{0, 1}n′ → {0, 1}n s.t. ∀(q, t)-adversary A, the following advantage∣∣∣Pr[AFk(·) ⇒ 1]− Pr[Af(·) ⇒ 1]

∣∣∣ ≤ ϵ

where k
$← K and f

$← RF with RF is the set of all functions f which are the
functions f : {0, 1}n′ → {0, 1}n.

Note that tprp-secure implies prf-secure [KL14].

2.2 Encryption schemes

Encryption schemes are the cryptographic primitive used to provide privacy. To
have security, we need that the encryption is probabilistic [KL14]. Often, to have
probabilistic encryption, we use a random input, called the initialization vector
(IV), or an input used only once, called a nonce. Thus, we have IV-based and
nonce-based encryption scheme. Formally:

Definition 5. An IV-based encryption (ivE) scheme is a triple Π = (Gen,Enc,Dec)
where
– the key-generation algorithm Gen generates a key kE from the keyspace KE

(usually kE
$← K);

– the encryption algorithm Enc takes as input a key kE ∈ KE, an initialization
vector (IV) iv in the IV-space (IV), and a message m in the message space
m ∈M, and outputs a string c← EncivkE

(m) called ciphertext;
– the decryption algorithm Dec takes as input a key kE ∈ KE, an IV iv ∈ IV,

and a ciphertext c ∈ {0, 1}∗, and outputs either a string m ∈ M or the
symbol ⊥ (“invalid”); we denote this with m/ ⊥← DecivkE

(c).
We require that Enc and Dec are the “inverse” of the other. That is,
– correctness: if EncivkE

(m) = c (when defined), then, DecivkE
(c) = m;

– tidyness: if DecivkE
(c) = m ̸=⊥, then, EncivkE

(m) = c.



We assume that the length of the ciphertexts does not depend on the key and on

the IV, that is, ∀m ∈M |EncivkE
(m)| = |Enciv′k′

E
(m)| ∀kE , k′E ∈ KE , iv, iv′ ∈ IV.

A nonce-based encryption scheme (nE) is defined as an IV-based encryption
scheme where the IV iv is replaced with a nonce n.

To distinguish nonce from block-size, we use always capital letters for nonces,
e.g. N .

Note that syntactically, ivE and nE schemes are the same. But, their security
definitions are different: we want that the ciphertexts are indistinguishable from
random when the IVs are randomly picked (for ivE) or used only once (for nE).
Formally:

Definition 6. An ivE encryption scheme Π = (Gen,Enc,Dec) is (q, t, ϵ)-secure
(ivE) if ∀(q, t)-adversary A, the following advantage∣∣∣Pr[AEnc$kE

(·) ⇒ 1]− Pr[A$(·) ⇒ 1]
∣∣∣ ≤ ϵ

where kE ← Gen, Enc$kE
(m), first, randomly picks the IV, iv

$← IV and then

outputs c ← EncivkE
(m), and $ picks (iv, c)

$← IV × {0, 1}|Enc
$
kE

(m)| uniformly at
random.

Note that iv is picked in the same way in both cases.

Definition 7. An nE encryption scheme Π = (Gen,Enc,Dec) is (q, t, ϵ)-secure
(nE) if ∀(q, t)-adversary A, the following advantage∣∣∣Pr[AEnckE

(·,·) ⇒ 1]− Pr[A$(·,·) ⇒ 1]
∣∣∣ ≤ ϵ

where kE ← Gen, and $ picks c
$← {0, 1}|EnckE

(N,m)| uniformly at random. The
adversary is not allowed to do a query on input (N,m) if she has already done
a query on input (N,m′) for m ̸= m′. That is, each nonce N is used at most
once.

For both ivE and nE-security, the adversary cannot query the decryption oracle
(or an ideal counterpart).

2.3 Message Authentication Codes (MAC)

Message authentication codes (MACs) are the cryptographic primitive used for
authenticity.

Definition 8. A MAC is a triple Π = (Gen,Mac,Vrfy) where
– the key-generation algorithm Gen generates a key kA from the keyspace KA

(usually kA
$← KA);



– the tag-generation algorithm Mac takes as input a key kA ∈ KA, and a value
x in the domain space x ∈ X , and outputs a string called tag τ ← MackA

(x);
– the verification algorithm Vrfy takes as input a key kA ∈ KA, a value x ∈
X and a tag τ , and outputs either a string ⊤ (“valid”) or the symbol ⊥
(“invalid”) and we denote this with ⊤/ ⊥← VrfykA

(x, τ).
We require that Mac and Vrfy are one the “inverse” of the other. That is,
– correctness: if MackA

(x) = τ (when defined), then, VrfykA
(x, τ) = ⊤;

– tidyness: if VrfykA
(x, τ) = ⊤, then, MackA

(x) = τ .

The tidiness is implied, when the verification algorithm is the most obvious: on
input (x, τ), VrfykA

computes τ ′ = MackA
(x) and checks if τ = τ ′.

The security definition that we use for MAC, as in [NRS14], is not standard:
we ask that Mac is a prf. Formally,

Definition 9. A MAC Π = (Gen,Mac,Vrfy) is (q, t, ϵ)-prf secure if Mac is a
(q, t, ϵ)-prf where the key is picked according to Gen.

The standard definition (unforgeability, see [KL14]) is implied by this definition,
but it is not “ a suitable starting point when the goal is to create a nAE scheme
” [NRS14].

2.4 Authenticated Encryption (AE)

Authenticated Encryption is the cryptographic primitive used to provide both
privacy and authenticity. We assume, following [Rog02], that there is a nonce,
and there are data to be authenticated but not encrypted. They are called As-
sociated Data (AD).

Definition 10. A nonce-based authenticated encryption (nAE) is a triple Π =
(Gen,AEnc,ADec) where
– the key-generation algorithm Gen generates a key K from the keyspace KAE

(usually K
$← KAE);

– the encryption algorithm AEnc takes as input a key K ∈ KAE, a nonce N
in the nonce-space (N ), an associated data A in the associated data space
(A), and a message M in the message space M ∈MAE, and outputs a string
C ← AEncK(N,A,M) called ciphertext;

– the decryption algorithm ADec takes as input a key K ∈ KAE, a nonce
N ∈ N , and a ciphertext C ∈ {0, 1}∗, and outputs either a string M ∈MAE

or the symbol ⊥ (“invalid”); we denote this with M/ ⊥← ADecK(N,A,C).
We require that AEnc and ADec are one the “inverse” of the other. That is,
– correctness: if AEncK(N,A,M) = C (when defined), then, ADecK(N,A,C) =

M ;
– tidyness: if ADecK(N,A,C) = M ̸=⊥, then, AEncK(N,A,M) = C.

We assume that the length of the ciphertext does not depend on the key K,
that is, ∀(N,A,M) ∈ N × A ×MAE |AEncK(N,A,M)| = |AEncK′(N,A,M)|
∀K,K ′ ∈ KAE.



Note that, syntactically, nAE schemes are very similar to nE schemes (Def. 5)
with the addition of associated data.
To make the reading clearer, we use capital letters (e.g., M) for the inputs of
AEnc and ADec, while small letters (e.g., m) for the inputs of Enc, Dec, Mac,
and Vrfy. This will make the next section more accessible.

nAE schemes want to provide privacy and authenticity with the same scheme.
The following definition captures this:

Definition 11. An nAE encryption scheme Π = (Gen,AEnc,ADec) is (q1, q2, t, ϵ)-
secure (nAE) if ∀(q1, q2, t)-adversary A, the following advantage∣∣∣Pr[AAEncK(·,·,·),ADecK(·,·,·) ⇒ 1]− Pr[A$(·,·,·),⊥(·,·,·) ⇒ 1]

∣∣∣ ≤ ϵ

where K ← Gen, $(N,A,M) outputs a random string with the same length as
AEncK(N,A,M), and ⊥ (·, ·, ·) always outputs ⊥. The adversary is not allowed
to ask her second oracle on input (N,A,C) if she has received C as an answer
to a query to the first oracle on input (N,A,M) for any M ∈ MAE. Moreover,
the adversary cannot query her first oracle on input (N,A,M) if she has already
queried her first oracle on input (N,A′,M ′). That is, each nonce N is used at
most once during “encryption” (first oracle) queries.

This notion implies that the adversary cannot find a forgery, that is a triple
(N,A,C) which is fresh and valid, that is, (N,A,C) does not come as answer to
a previous query on input (N,A,M) [C = AEncK(N,A,M)] and
ADecK(N,A,C) ̸=⊥.

3 Generic composition and the elusive generic
composition modes

3.1 Generic composition

A natural way to obtain an AE scheme is to compose an encryption scheme
with a MAC [BN00]. This approach is the so-called generic composition. In the
original paper considering the security of the generic composition [BN00], the
authors studied the composition of a probabilistic encryption schemes2 with a
MAC. There are three possible composition methods: Encrypt-and-MAC, MAC-
then-Encrypt, and Encrypt-then-MAC. They proved that Encrypt-then-MAC is
always secure.

Namprempre et al. [NRS14] studied the generic composition when the en-
cryption scheme is either ivE or nE-based and the MAC scheme is prf-secure. For
ivE-based, the prf-MAC provides both the IV to the ivE scheme and the tag. To
prevent trivial attacks, there is the domain separation between these two calls,

2 A probabilistic encryption scheme is a triple Π = (Gen,Enc,Dec) s.t. the output of
Enc is probabilistic. For all its other requirements, see [KL14].



that is, the IV iv is obtained from MacIVkA
, while the tag τ from MacTAGkA

. There
are three possible type compositions modes, with C = AEncK(N,A,M) with
K = (kE , kA):
E&M Encrypt-&-MAC where C = (c∥τ), c = EncivkE

(M), iv =

MacIVkA
(N |U,A|U,M |U) and τ = MacTAGkA

(N |U,A|U,M |U). (With X|U , we
denote that the input either contains the string X or is absent).

EtM Encrypt-then-MAC, where C = (c∥τ), c = EncivkE
(M),

iv = MacIVkA
(N |U,A|U,M |U) and τ = MacTAGkA

(N |U,A|U,C).

MtE MAC-then-Encrypt , where C = c, c = EncivkE
(m), with m = M∥τ , iv =

MacIVkA
(N |U,A|U,M |U) and τ = MacTAGkA

(N |U,A|U,C).
These are the so called A-modes.
In general, we can suppose that the IV is public and it is sent with C. This can
speed decryption (anyway, we can check if the IV is correct). The fact that the
IV is public follows from [NRS14]’s description.

When we compose a MAC with an nE scheme, then, we have the following
types of composition modes, C = AEncK(N,A,M) with K = (kE , kA):
E&M Encrypt-&-MAC where C = (c∥τ), c = EncNkE

(M),

τ = MacTAGkA
(N |U,A|U,M |U).

EtM Encrypt-then-MAC, where C = (c∥τ), c = EncNkE
(M), and

τ = MacTAGkA
(N |U,A|U,C).

MtE MAC-then-Encrypt , where C = c, c = EncNkE
(m), with m = M∥τ , and

τ = MacTAGkA
(N |U,A|U,C).

These are the so-called N-modes.
Note that both AEnc and Enc use the same nonce.

Thus, there are 160 possible modes when we use an ivE scheme and 20 possible
modes when we use a nE scheme.

3.2 The four elusive modes: A10,A11,A12,N4.

Namprempre et al. [NRS14] were able to prove the security of 9 modes for ivE-
composition and 3 for nE-composition, and the insecurity of all others except for
4 modes, all MAC-then-Encrypt type:
A10 MtE with MACIV(N,A,U) and MACTAG(U,A,M).
A11 MtE with MACIV(N,A,U) and MACTAG(U,U,M).
A12 MtE with MACIV(N,U,U) and MACTAG(U,A,M).
N4 MtE with MACTAG(U,A,M).
We have depicted them in Fig. 1.
For decryption either the IV is sent in clear and it is checked and used for
decryption, or it is recomputed from (N,A|U).

Knowledge-of-Tag based security. Namprempre et al. [NRS14] proved that modes
A10, A11, and A12 are secure if the ivE-scheme is Knowledge-of-Tag-secure



(KOT). In the KOT-experiment, “knowing a tag is captured by introducing a
plaintext extractor Ext, a deterministic algorithm that takes as input all the
inputs explicitly available to the forging adversary and outputs a string x or
⊥” [NRS14]. Roughly speaking, a scheme is KOT-secure, if the adversary cannot
“ produce a forgery that uses an old iv∗ = ivj and an old m∗∥τ∗ = mi∥τi, for
which it [the adversary] does not (explicitly) know τi, and yet the extractor fails
to determine this mi∥τi. Loosely speaking if the forger wins the KOT game, it
has done so without (extractable) knowledge of the tag τi” [NRS14]. We depict
the experiment in Tab. 1 in App. A.
It was left open the problem of whether ivE-security implies KOT.

Partial results on these modes [BPP18a]. At Indocrypt18, Berti et al.
[BPP18a] proved some results about these modes: 1) mode N4 is insecure (using
an nE-scheme which expands the ciphertext), 2) modes A10, A11, and A12 are
either all secure or insecure, 3) modes A10, A11, A12 are secure if the IV scheme
used is either misuse resistant or “message-malleable”. On the other hand, if the
ivE scheme used is either stateful or untidy, the modes are not secure. Here, we
give some insights into these results.

Mode N4 is insecure. Berti et al. [BPP18a] provides a counterexample using
the nE scheme Π (detailed in App. B in Alg. 3). Π has a key composed of two
components kE = (k, v∗) where k is a key for a TBC with n-bit block, and v∗ is
a n-bit random string.
For the encryption Π proceeds as follow: the first ciphertext block c0 is a pseu-
dorandom value, except if the nonce is 1. In this case c0 = v∗, where v∗ is a
secret random value; all others ciphertext block (except the last) are computed

as ci = Fi,0
k (N)⊕mi, the last ciphertext block is computed as cl = Fl,0

k (N)⊕ml,
except if the nonce is either 1 or 2 and the second to last message block ml−1,
is v∗: in this case, cl = Fl,1

k (0) ⊕ml. That is, ml is encrypted in the same way
with both N = 1 and N = 2 in the case ml−1 = v∗.
We leave the proof that this scheme is nE-secure to the original paper [BPP18a], 3

as well with the description when the length of the message is not a multiple of
n.
Observe that the ciphertext is n-bit longer than the message since there is the
block c0. We can see v∗ as the trigger of a trojan which forces the same block to
be encrypted in the same way in two different encryption queries.

The forgery against N4, when Enc is implemented with Π is straightforward:
– Authenticated encrypt (1, A,M) with M = M1, ...,Ml, obtaining C. Note

that C0 = v∗.
– Authenticated encrypt (2, A,M1) with M1

l−1 = v∗ and |M | = |M1|, obtain-
ing C1.

3 The only problem is if the adversary can do an encryption query (N,m) with N = 1
and ml−1 = v∗, but this cannot happen since v∗ is random and leaked only during
a query with N = 1.



– The forgery is (1, A,C∗) with C∗
0 = v∗, C∗

i = Ci ⊕Mi ⊕M1
i for i = 1, ..., l,

and C∗
l+1 = C1

l+1 [we remind that C∗
l+1 encrypts the tag in N4 when Enc is

Π]. Note that ADec(1, A,C∗) = M1.
The forgery is correct (we leave the easy proof to the original paper).

Equivalent security among modes A10, A11 and A12. In the same paper, Berti
et al. [BPP18a] proved that modes A10, A11, and A12 are either all secure or all
insecure. First, they proved that all forgeries (except with negligible probability)
must use an IV iv and a tag τ already computed. Then, they prove that in this
case (reusing an iv and a τ) if an adversary can create a forgery against one of
these modes, she can easily create a forgery against the other two modes. The
main ingredients of this last step are these:
– A12 secure ⇒ A10 secure: Since the nonce N cannot be repeated during

encryption queries, the adversary cannot distinguish if iv = MACIV
kA

(N) or

iv = MACIV
kA

(N,A).
– A11 secure ⇒ A10 secure: Encrypt with A11 M ′ = H(A)∥M , with H a hash

function. Use an ivE scheme for A11 s.t. the encryption of H(A) is indepen-
dent from the one of M , e.g., Enc′kE

(iv,M ′) = f(kE , iv)⊕H(A)∥EnckE
(iv,M),

where f is a random function f : {0, 1}2n → {0, 1}n.
– A10 secure ⇒ A12 secure: We use the same idea as before, encrypting with

A12 M ′ = H(A)∥M .
– A10 secure ⇒ A11 secure: We use a similar idea, but here we modify the

nonce. The nonce used for A10 is N , while for A11 is N ′ = N∥H(A).
We leave the full details to the original paper [BPP18a] and its extended ver-
sion [BPP18b].

Partial security/unsecurity results. Finally, in the same paper [BPP18a], the
authors proved that modes A10, A11 and A12 are secure if the ivE scheme is
either “misuse resistant” (that is, an adversary has no advantage if she can
reuse the same IV during encryption queries 4) or message-malleable (that is, if
an adversary receives the decryption, different from ⊥, of (iv, c), she can correctly
decrypt (iv, c′) ∀c′, as for example CTR, Counter mode [KL14].)
On the other hand, if the ivE scheme is not tidy or stateful, then the adversary
can create a forgery against modes A10, A11, and A12 when implemented with
certain ivE schemes (for the stateful case, we can use a variant of the scheme
used against N4). We leave the details to the original paper [BPP18a] and its
extended version [BPP18b].

4 The modes A10, A11, A12 are insecure

Now, we show that mode A12 is insecure, giving a counterexample. Thanks
to [BPP18a], this means that also modes A11 and A10 are not secure.

4 Note that this misuse-resistant definition is weaker then the standard one (see [RS06]
for the original definition), where the adversary can do also decryption queries.



The first natural idea is to start from the counterexample against N4 and try
to adapt it to the A12 case. But this is impossible because the iv is random, and
the adversary does not choose it. Thus, if too many IVs reveal v∗ or for which
the last block is encrypted differently, the scheme is no more ivE-secure. On the
other hand, with too few such IVs, the forgery may be done only with negligible
probability.
Thus, we need a different idea.

4.1 Warming up - suppose that ivE outputs the IV

We start considering the case when the ivE scheme reveals the IV it used during
the encryption queries. Note that in mode A12, the AE scheme does not need to
reveal the IV since it can be correctly computed even by the decryption oracle
(iv = MACIV

kA
(N)). But, following the original paper, we assume that the IV is

revealed. This follows also from the KOT definition [NRS14].

Construction. We propose an ivE-scheme Π1 which is based on a TBC F and
whose key kE is the key k of the TBC.
If the message is s.t. the first two blocks are different, (that is, m1 ̸= m2), sub-
stantially it is a TBC-based version of CTR, that is ci = F1,i

k (iv) ⊕ mi with
the difference that the last block (the one carrying the tag in A12) is en-

crypted with a slightly different tweak, that is, cl = F2,l
k (iv) ⊕ ml. Instead, if

the first two message blocks are equal, the encryption is the same except for
the two last ciphertext blocks: the second-to-last ciphertext block is obtained
as cl−1 = F2,m3

k (iv) ⊕ F2,m3

k (m1) ⊕ ml−1, while the last block is obtained as

cl = F1,l
k (iv)⊕ml. The details are in Alg. 1.

The idea is that if m1 = m2, we are encrypting the second to last block (not
the last block because it carries the tag that it is not known by an adversary,
differently from the message that she has chosen to encrypt) in a secure way.
Still, it reveals the information necessary to forge using previous encryptions.
Note that if the adversary asks for an encryption of a message M with block-
length l − 1, she receives the iv used to encrypt and a ciphertext C. Now, if
she asks to encrypt a second message M ′ s.t. it has block-length l′ = l + 1,
M1 = M2 = iv, and M3 = l + 1, she receives C ′, where a random iv′ is used.
Cl+1 and C ′

l+1 reveal the crucial information for the forgery:

Cl+1⊕C ′
l+1⊕M ′

l+1 = F2,l+1
k (iv)⊕ml+1⊕F2,l+1

k (iv′)⊕F2,l+1
k (iv)⊕M ′

l+1⊕M ′
l+1 = ml+1⊕F2,l+1

k (iv′)

where m = M∥τ , thus mi = Mi for i = 1, ..., l and ml+1 is the tag τ of A12.

For simplicity, we have considered the case where all message has a length
of a multiple of n with a minimum of 3n. We can easily extend Π1 to overcome
these limitations.



Algorithm 1 The ivE encryption algorithm Π1.

It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with T W = {1, 2} × {0, 1}n

Gen:
– Return k

$← K

Enck(iv,m):
– Parse m = m1, ...,ml with |mi| = n
– For i = 1, ..., l − 2
• ci = F1,i

k (iv)⊕mi

– If m1 ̸= m2

• cl−1 = F1,l−1
k (iv)⊕ml−1

• cl = F2,l
k (iv)⊕ml

– Else
• cl−1 = F2,m3

k (iv) ⊕ F2,m3
k (m1) ⊕

ml−1

• cl = F1,l
k (iv)⊕ml

– Return (iv, c) with c = (c1, ..., cl)

Deck(iv, c):

– Parse c = c1, ..., cl with |ci| = n

– For i = 1, ..., l − 2

• mi = F1,i
k (iv)⊕ ci

– If m1 ̸= m2

• ml−1 = F1,l−1
k (iv)⊕ cl−1

• ml = F2,l
k (iv)⊕ cl

– Else

• ml−1 = F2,m3
k (iv) ⊕ F2,m3

k (m1) ⊕
cl−1

• ml = F1,l
k (iv)⊕ cl

– Return m = (m1, ...,ml)

ivE-security of Π1. The ivE-security of Π1 is straightforward. It is easy to see
that each ciphertext block is obtained XORing at least a call to F that has never
been asked before, with the following exceptions:
– if two IVs are repeated, that is ivi = ivj ;
– if ivj is equal to mi

1 with i ≤ j;
But both conditions happen with negligible probability since the IVs are ran-
domly picked. Note that this the reason why there is a first component of the
tweak that it is different for cl (when m1 ̸= m2), and cl−1 (when m1 = m2).
Formally,

Theorem 1. Let F be a (q1, t, ϵtprp)-tprp, where the block-length is n bits, then
Π1 is (q, t, ϵ)-ivE-secure with

ϵ ≤ ϵtprp +
(L̃+ 2)(q + 1)2

2n+1
,

where q1 = L + q, with L the total number of message blocks to be encrypted,
and L̃ the maximal number of blocks in any message query.

We leave the easy proof to App. C.1.

Forgery for A12 when the ivE-scheme is Π1. The idea of the forgery is to ask
the encryption of a message M s.t. M1 ̸= M2 and then ask the encryption of a
message M ′ s.t. M ′

1 = M ′
2 = iv1 which is at least a block longer than M . For

the forgery, we proceed as follow:
– Ask the encryption of (N,A,M) with the message M s.t. M1 ̸= M2 and it

has l blocks. Obtain the ciphertext C = (iv, C1, ..., Cl, Cl+1). Π1 encrypts
m = M∥τ with τ = MacTAGkA

(A,M) using as IV iv = MacIVkA
(N).



– Ask the encryption of (N ′, A′,M ′) with the message M ′ s.t. M ′
1 = M ′

2 = iv,
M ′

3 = l + 1 and it has l + 1 blocks, and N ̸= N ′. Obtain the ciphertext
C ′ = (iv′, C ′

1, ..., C
′
l , C

′
l+1, C

′
l+2).

– The forgery is (N∗, A∗, C∗) with N∗ = N ′, A∗ = A and C∗ defined as follow:
• iv∗ = iv′;
• C∗

i = C ′
i ⊕M ′

i ⊕Mi for i = 1, ..., l;
• C∗

l+1 = Cl+1 ⊕ C ′
l+1 ⊕M ′

l+1.

This is a valid forgery (encrypting M), as we formally prove in the next propo-
sition:

Proposition 1. Let Π1 be the ivE scheme defined in Alg. 1. Let MAC be a prf-
secure MAC with n-bit long output. Then the A12 composition is not nAE-secure.

Proof. Observe that to break the nAE security (Def. 11) is enough to provide a
valid forgery because, in the left world (AEnc,ADec), the answer will be different
from the right world ($,⊥) which is always invalid.
Now, we have to prove that the forgery just described is fresh and valid.
We use the same notation as in the previous paragraph.
The fact that (N∗, A∗, C∗) is fresh is trivial since with nonce N∗, we have ob-
tained only a ciphertext C ′, which is one block longer.
For validity, we start observing that we have never repeated a nonce. Now,
we want to prove that ADec(N∗, A∗, C∗) = M . To do this we compute C̃ =
AEnc(N ′, A,M):

– ĩv := MACIV(N ′). Thus, ĩv = iv′ = iv∗;
– For i = 1, ..., l − 2, C̃i = F1,i

k (iv∗) ⊕ Mi = F1,i
k (iv′) ⊕ M ′

i ⊕ M ′
i ⊕ Mi =

C ′
i ⊕M ′

i ⊕Mi (and both Mi and M ′
i are known by the adversary since she

has chosen them).

– Since M1 ̸= M2, then C̃l = F1,l
k (ĩv) ⊕ Ml = F1,l

k (iv′) ⊕ M ′
l ⊕ M ′

l ⊕ Ml =
C ′

l ⊕M ′
l ⊕Ml (and both Mi and M ′

i are known by the adversary since she
has chosen them). Note that C ′

l is the third to last ciphertext block of C ′.
In fact, during the second encryption query the message encrypted by Π1 is
m′ = M ′∥τ ′ = M ′

1∥...∥M ′
l∥M ′

l+1∥τ ′.
– τ̃ = MACTAG

kA
(A,M) = τ .

– C̃l+1 = F2,l+1
k (ĩv)⊕ τ̃ = F2,l+1

k (ĩv)⊕F2,l+1
k (iv)⊕M ′

l+1⊕F2,l+1
k (iv)⊕ τ̃⊕M ′

l+1 =

F2,l+1
k (iv′)⊕F

2,M ′
3

k (M ′
1)⊕M ′

l+1⊕F2,l+1
k (iv)⊕τ⊕M ′

l+1 = C ′
l+1⊕Cl+1⊕M ′

l+1,

since ĩv = iv′, M ′
3 = l + 1, M ′

1 = iv and M ′
l+1 is known by the adversary

(since chosen).

Thus, C̃ = C∗ consequently ADec(N∗, A∗, C∗) = ADec(N∗, A∗, C̃) = M .

This and [BPP18a] proves that modes A10, A11 and A12 are not nAE-secure.
Formally,

Theorem 2. Let MAC be a prf-secure MAC. Then, there exist 3 ivE-secure ivE-
encryption schemes Π10, Π11, Π12 outputting the IV s.t. modes A10, A11 and
A12 are not nAE-secure when implemented with MAC and the corresponding Π.



Proof. For mode A12, the proof follows easily from the previous proposition,
setting Π12 := Π1 where the TBC has a block-length equal to the size of the
MAC output. The proof that Π12 is ivE-secure is in Prop. 1.
For the other two cases, A10 and A11, in [BPP18a] it has been proved that a
forgery against a mode A12 composition can be extended to a forgery to a mode
A10 or A11 composition(see Sec. 3.2). This proves our statement.

As a side remark, it is easy to see that if in our forgery attack we had set A′ = A,
Π1 is a good candidate as Π10 and Π11. The details are provided in App. E.

This result also proves a domain separation between ivE and KOT. Formally,

Theorem 3. ivE-secure ⇏ KOT-secure.

Proof. Π1 is ivE-secure and not KOT-secure. The previous attack breaks the
KOT-definition (App. A).

4.2 Broadcasting the IV in the ciphertext - Attack when the IV is
hidden

In an interesting paper, Bellare et al. [BNT19] realized that sending the nonce
along with the ciphertext can create security problems. Thus, they proposed a
new syntax (NBE2) for AE scheme where the decryption oracle needs only as
input the ciphertext and the header (and the key) to decrypt correctly.
Note that nonce-based encryption scheme and IV-based encryption scheme are
syntactically equivalent (see Sec. 2.2), thus we can use their syntax also for ivE-
scheme.
Since in the forgery attack we have presented in the previous section, we need
that the adversary knows the IV used by Π1 during the first authenticated en-
cryption query, it is natural to wonder if it is enough to hide the IV used to
prevent the previous attack and prove that modes A10, A11 and A12 are secure.
Moreover, the IV is not needed to decrypt since it can be recomputed from N .
Unfortunately, this is not the case, as we prove in this section by providing a
variant of Π1, called Π2 which can be forged even if the adversary has no clue
about the IV used.

The construction Π2. We add a block before all the ciphertext, called c0. This
block contains an encryption of the iv used (c0 = F0,0

k (iv)). Now, even if the
adversary cannot recover the iv from c0, this pseudo-random block can be used
in the forgery. Then, Π2 is equal to Π1 with the exception of cl−1 when m1 =
m2. Instead of computing cl−1 = F2,m3

k (iv) ⊕ F2,m3

k (m1) ⊕ ml−1, we compute

cl−1 = F2,m3

k (iv)⊕ F2,m3

k (w)⊕ml−1, with w = F
−1,(0,0)
k (m1). Thus, with m1, we

can tell the encryption algorithm for which iv, that we do not know, we want
some information.
Note that we can create a variant for the decryption that does not need IV as an

input: Dec′. Dec′ simply computes the iv as iv = F
−1,(0,0)
k (c0) and then proceeds

as for Dec.



Algorithm 2 The ivE encryption algorithm Π2.

It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with T W = {0, 1, 2} × {0, 1}n

Gen:
– Return k

$← K

Enck(iv,m):
– Parse m = m1, ...,ml with |mi| = n
– c0 = F0,0

k (iv)
– For i = 1, ..., l − 2
• ci = F1,i

k (iv)⊕mi

– If m1 ̸= m2

• cl−1 = F1,l−1
k (iv)⊕ml−1

• cl = F2,l
k (iv)⊕ml

– Else
• w = F

−1,(0,0)
k (m1)

• cl−1 = F2,m3
k (iv) ⊕ F2,m3

k (w) ⊕
ml−1

• cl = F1,l
k (iv)⊕ml

– Return c = (c0, c1, ..., cl)

Deck(iv, c):

– Parse c = c0, c1, ..., cl with |ci| = n

– If c0 ̸= F0,0
k (iv)

• Return ⊥
– For i = 1, ..., l − 2

• mi = F1,i
k (iv)⊕ ci

– If m1 ̸= m2

• ml−1 = F1,l−1
k (iv)⊕ cl−1

• ml = F2,l
k (iv)⊕ cl

– Else

• w = F
−1,(0,0)
k (m1)

• ml−1 = F2,m3
k (iv) ⊕ F2,m3

k (w) ⊕
cl−1

• ml = F1,l
k (iv)⊕ cl

– Return m = (m1, ...,ml)

ivE-security of Π2. We have only to show that the modification that we have
done does not affect security. In particular, c0 is a pseudo-random block, and we
need to use a stprp-secure F because we use F−1 during encryption, and we have
a problem if w is equal to a previous iv.
Thus, we have that

Theorem 4. Let F be a (q1, t, ϵstprp)-stprp, where the block-length is n bits, then
Π2 is (q, t, ϵ)-ivE-secure with

ϵ ≤ ϵstprp +
(L̃+ 4)(q + 1)2

2n+1
,

where q1 = L + 3q, with L the total number of message blocks to be encrypted,
and L̃ the maximal number of blocks in any message query.

We leave the easy proof to App. C.2.

Forgery for A12 when the ivE scheme is Π2. It is easy to extend to forgery for
mode A12 when implemented with Π1 to mode A12 implemented with Π2 as
follow:
– Ask the encryption of (N,A,M) with the message M s.t. M1 ̸= M2 and it

has l blocks. Obtain the ciphertext C = (C0, C1, ..., Cl, Cl+1).
– Ask the encryption of (N ′, A′,M ′) with the message M ′ s.t. M ′

1 = M ′
2 = C0,

M ′
3 = l + 1 and it has l + 1 blocks, and N ̸= N ′. Obtain the ciphertext

C ′ = (C ′
0, C

′
1, ..., C

′
l , C

′
l+1, C

′
l+2).

– The forgery is (N∗, A∗, C∗) with N∗ = N ′, A∗ = A and C∗ defined as follow:



• C∗
0 = C ′

0;
• C∗

i = C ′
i ⊕M ′

i ⊕Mi for i = 1, ..., l;
• C∗

l+1 = Cl+1 ⊕ C ′
l+1 ⊕M ′

l+1.
This is a valid forgery (encrypting M). Formally,

Proposition 2. Let Π2 be the ivE scheme defined in Alg. 1. Let MAC be a prf-
secure MAC with n-bit long output. Then the A12 composition is not nAE-secure.

The proof is the same as for Prop. 1 with the difference that we have to

replace in the computation of C̃l+1, F
2,M ′

3

k (M ′
1) with F

2,M ′
3

k (w′) where

w′ = F
−1,(0,0)
k (C∗

0 ) = F
−1,(0,0)
k (M ′

0) = F
−1,(0,0)
k

(
F
(0,0)
k (iv)

)
= iv.

This and [BPP18a] proves that modes A10, A11 and A12 are not nAE-secure
even if the IV is not broadcast. Formally,

Theorem 5. Let MAC be a prf-secure MAC. Then, there exist 3 ivE-secure ivE-
encryption schemes Π10, Π11, Π12 s.t 1) they do not output the IV, 2) the com-
position of Πi with a prf-secure MAC according to mode A i is not nAE-secure
for i = 10, 11, 12.

The proof is the same as for Thm. 2.

Note that this attack proves that ivE-security does not imply Knowledge-of-
Tag secure.

4.3 Fixed length nE scheme for N4

Finally, we prove that it is unnecessary to use an nE encryption scheme whose
ciphertext is longer than plaintext to prove that N4 is not secure. We propose
two constructions: one which is a modified version of Π1 (Alg. 1) and another is
a version of the scheme of [BPP18a].

Π3, a variant of Π1. The first idea is to use Π1 directly since ivE-schemes and
nE-schemes are syntactically equivalent.
Unfortunately, Π1 is not nE-secure. It is trivial to see that the condition ivi

equal to mj for j ≤ i does not happen with negligible probability since the IV is
replaced with a nonce which the adversary chooses.
Thus, we modify Π1, obtaining Π3 as follows:
– the condition if m1 ̸= m2 becomes m1 ̸= m2 ∧N ̸= 2
– in the else we replace cl−1 = F2,m3

k (iv)⊕ F2,m3

k (m1)⊕ml−1 with

cl−1 = F2,m3

k (N)⊕ F2,m3

k (1)⊕ml−1

The idea is that we always enter in the if except when the nonce N = 2. When
we do not enter in the if, we obtain information to obtain a forgery combined
with the information given by an encryption with N = 1.
It is easy to see that Π3 is nE secure: If we do not enter in the else, Π3 is secure.
If we enter in the else we observe that cl−1 when encrypted with N = 2, and cl
when N = 1 are independently. We describe formally Π3 in Alg. 4 in App. D.



Π4 a variant of [BPP18a] Π4 is obtained from the nE scheme described in Alg. 3
with these modifications:
– we remove v∗ and c0.
– the if condition becomes if (N = 1 ∨N = 2) ∧m2 = F1,0

k (1)⊕m1

To enter the if condition during encryption twice, it is necessary to guess F1,0
k (1)

before it is computed. We describe formally Π4 in Alg. 5 in App. D and the
forgery is detailed in App. F.

5 Conclusions

We have proved that modes A10, A11, and A12 are not secure in general. This
concludes the classification of [NRS14].
Note that our results do not imply that all schemes obtained using mode N4,
A10, A11, and A12 composition are insecure. Instead, these modes seem insecure
only when implemented with artificial schemes, while they are secure when im-
plemented with “natural” schemes. But, these compositions need ad-hoc proofs
and cannot rely on general proof.
Finally, this work gives some insights into the limitation of indistinguishability
from randomness. That is, having a random ciphertext encrypting the tag may
not be enough to make it not usable for forgeries.
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Assche, and Ronny Van Keer. Farfalle: parallel permutation-based cryptog-
raphy. IACR Trans. Symmetric Cryptol., 2017(4):1–38, 2017.

[BDJR97] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA,
October 19-22, 1997, pages 394–403. IEEE Computer Society, 1997.

[BDPA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Du-
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A Knowledge-of-Tag (KOT)

We describe the KOT experiment in Tab. 1.
For an ivE encryption scheme Π = (Gen,Enc,Dec), a plaintext extractor Ext, a
tag length T and a tag-input selection function Tsel, we write

AdvKOT
Π,Ext,Tsel,T

(A) := Pr[KOTΠ,Ext,Tsel,T (A) = 1],

for the KOT-advantage of A.
Note that a plaintext extractor is a deterministic algorithm that takes as input
all the inputs explicitly available to the forging adversary and outputs a string
or ⊥, “invalid” [NRS14].

KOTΠ,Ext,Tsel,T (A) : Oracle AEnc(N,A,M) : Oracle Test(j∗, C∗) :
i← 0; win← 0 i← i+ 1 X ← Ext(j∗, C∗,Q, T )
K

$← K (Ni, Ai,Mi)← (N,A,M) valid← xgood← 0

Run AEnc,Reveal,Test ivi
$← {0, 1}n if ∃Xi s.t.

Return win τi ← Tsel(Ni, Ai,Mi) a) C∗ = EncK(ivj∗ , Xi) and
if T [Si] =⊥, then b) (·, τi) /∈ T and

Oracle Reveal(j): T [Si]
$← {0, 1}T c) Xi = Xj∗ then

T ← T ∪ {(j, τj)} τi ← T [Si] valid← 1
Return τj Xi ←Mi∥τi if X = Xi then xgood← 1

Ci ← Enck(ivi, Xi) if valid ∧ xgood then
Q ← Q∪ {(i, ivi,Mi, Ci)} win← 1
Return (ivi, Ci) Return 1

Return 0

Table 1. The Knowledge-of-Tag (KOT) experiment [NRS14].

The attack detailed in Sec. 4.1, breaks the KOT-security since we never use
the oracle Reveal, and when we ask the forgery to the oracle Test. This query
makes the Ext output M and win← 1.

B Attack against N4

We describe the nE scheme proposed by Berti et al. [BPP18a] to prove that N4
is not secure in Alg. 3.

C ivE-security of Π1 and Π2

C.1 Π1 is ivE-secure

Here we prove Thm. 1.



Algorithm 3 The nE encryption algorithm Π [BPP18a].

It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with T W = {1, 2} × {0, 1}n

Gen:
– k

$← K
– v∗

$← {0, 1}n
– Return kE = (k, v∗)

EnckE (N,m):
– Parse m = (m1, ...,ml) with |mi| = n
– If N = 1
• c0 = v∗

– Else
• c0 = F0,0

k (N)
– For i = 1, ..., l − 1
• ci = Fi,0

k (N)⊕mi

– If (N = 1 ∨N = 2) ∧ ml−1 = v∗

• cl = Fl,1
k (1)⊕ml

– Else
• cl = Fl,0

k (N)⊕ml

– Return c = (c0, ..., cl)

DeckE (n, c):
– Parse c = (c1, ..., cl) with |ci| = n
– If N = 1
• If c0 ̸= v∗

* Return ⊥
– Else
• If c0 ̸= F0,0

k (n)
* Return ⊥

– For i = 1, ..., l − 1
• mi = Fi,0

k (N)⊕ ci
– If (N = 1 ∨N = 2) ∧ ml−1 = v∗

• ml = Fl,1
k (1)⊕ cl

– Else
• ml = Fl,0

k (N)⊕ cl
– Return m = (m1, ...,ml)

Proof. Let Game 0 be the ivE-game where the adversary A has to distinguish
Π1 from a random scheme Π (outputting ciphertexts with the same length as
Π1). Let E0 be the event that A wins this game.
Let Game 1 be Game 0 where we abort if two different IVs are equal, that is,
there exists i, j ∈ {1, ..., q} s.t. ivi = ivj . Let E1 be the event that A wins this
game.
Clearly |Pr[E0]−Pr[E1]| ≤ Pr[B] where B is the event that 2 IVs collides. Since
the IVs are uniformly randomly picked, due to the well known birthday bound

(see, for example [KL14]), Pr[B] ≤ q2

2n+1 .
Let Game 2 be Game 1 where we have replaced the tprp F with a random func-
tion. Let E2 be the event that A wins this game.

Clearly |Pr[E1]− Pr[E2]| ≤ ϵtprp +
L̃q2

2n+1 . This is proved in two steps:

a) we replace F with a tweakable random permutation f̃. We observe that we
need at most (l+1) call to F per encryption query (only for cl−1 two calls may be
needed), thus in total we need to do at most L+ q queries to F and the running
time is the same (there are no other primitives involved).
b) we replace f̃ with a random function f. To use tightly the well-known result
that a random permutation is a random function (they can be distinguished with

probability ≤ Q2

2n+1 when queried at most Q times, see [KL14], for example), we
observe that for each possible tweak there are at most 2q different inputs. This
is obvious for the tweaks (1, i), there is at most one call for each query. Instead
for the tweak of type 2, j, we can have at most 2 calls for each query. Thus, there



at most L̃ possible tweaks for which this happens.5

Game 3 is Game 2 where we abort if ivj is equal to mi
1 with i ≤ j. Let call C

this event. Let E3 be the event that A wins this game.
Clearly |Pr[E3] − Pr[E2]| ≤ Pr[C]. To bound Pr[C], we call Cj the event that

ivj = mi
1 for i ≤ j. Clearly Pr[C] ≤

q∑
j=1

Pr[Cj ] and Pr[Cj ] = j
2n . Thus,

q∑
j=1

Pr[Xj ] =
1
2n

q∑
j=1

(j) = q(q+1)
2n+1 ≤ (q+1)2

2n+1 .

Finally, we observe that the probability that A wins Game 3 is 0 since for all
message blocks except cjl−1 and cjl (∀j = 1, ..., q), cji = f1,i(ivj) ⊕ mj

i is indis-
tinguishable from random ciphertext blocks since f is a random function and
f1,i(ivj) has never been computed before (the IVs are all different). For cjl−1 if

mj
1 ̸= mj

2, the previous argument holds. Instead, if mj
1 = mj

2 since ivj is different

from all previous IVs and mj′

1 for all j′ ≤ j, f2,m3(ivj) has never been computed
before, thus, we can reuse the previous argument. Similarly, for the last cipher-
tex block cjl , we have that if mj

1 ̸= mj
2, f

2,l(ivj) has never been computed before

due to the non collision of IVs and the event Cj , while if m
j
1 = mj

2, we can reuse
easily a previous argument.
Summing up everything we obtain the thesis. Thus,

Pr[E0] ≤
q2

2n+1
+ ϵtprp +

L̃q2

2n+1
+

(q + 1)2

2n+1
≤ ϵtprp +

(L̃+ 2)(q + 1)2

2n+1
.

C.2 Π2 is ivE-secure

Here we prove Thm. 4.

Proof. The proof follows the proof of Thm. 1 with the following difference:
When we do the transition between Game 2 and Game 1, when we replace the
stprp F with a random tweakable permutation f̃, we need at most l+3 queries to
F and its inverse (or to f̃). Thus, in total we need L + 2q queries to (F,F−1) or
to (̃f, f̃−1). Then, we want to replace f̃−1 with a random permutation g̃ except
when f̃−1 is previously defined. That is, ci0 = f̃0,0, then if mj

1 = ci0, f̃
−1,(0,0)(mj

1)
is already defined. If it is not the case, instead of using f̃−1 we use g̃. We observe
that the adversary can distinguish the two situations if an iv picked is equal to
a previous output of g̃. We call this event D, and we call Di the event that ivi

is equal to wj with j < i. Clearly the replacement of f̃−1 with g̃ is undetectable

5 Observe that for the second case, since the adversary can do at most 2 queries
with tweak 2,m3 per encryption query, if she uses different 2,m3 tweaks in different
queries, then, the total number of queries which can result in collision for f and f̃

remains the same, but the bound is different since it is
∑

j∈{0,1}n

Q(j)2

2n+1 with Q(j) the

number of queries asked with tweak 2, j. Note that
∑

j∈{0,1}n
Q(j) = 2q and Q(j) ≥ 0.

It is easy to see that the max for the bound for all possible distribution of Q(j) is
4q2

2n+1 .



if event D does not happen, which means ∀i = 1, ..., n that event Di does not

happen6. But Pr[D] ≤
q∑

i=1

Pr[Di] ≤
q∑

i=1

i−1
2n = q(q−1)

2n+1 .

Finally, when we replace f̃ and g̃ with two random functions f and g, we observe
that we may have collision also when the tweak is (0, 0), thus there are at most
L̃+ 1 possible tweaks for which a collision may happen.
For Game 3, instead of having the problem that ivi = mj

1 for j ≤ i, we have the
problem if ivi = wj for j ≤ i. The transition between Game 2 and 3 is the same.
Finally, when we prove that Pr[E3] = 0, we have only to consider in the analysis
of the case cjl−1 if mj

1 = mj
2 that we need to replace m1 in the computation with

w with w = g(m1). Thus, putting everything together we obtain that

Pr[E0] ≤
q2

2n+1
+ϵstprp+

q(q − 1)

2n+1
+
(L̃+ 1)q2

2n+1
+
(q + 1)2

2n+1
≤ ϵstprp+

(L̃+ 4)(q + 1)2

2n+1
.

D New schemes against N4

We describe the algorithm Π3 in Alg. 4 and Π4 in Alg. 5.

Algorithm 4 The nE encryption algorithm Π3.

It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with T W = {1, 2} × {0, 1}n

Gen:
– k

$← K

Enck(iv,m):
– Parse m = m1, ...,ml with |mi| = n
– For i = 1, ..., l − 2
• ci = F1,i

k (n)⊕mi

– If m1 ̸= m2 ∧ n ̸= 2
• cl−1 = F1,l−1

k (n)⊕ml−1

• cl = F2,l
k (n)⊕ml

– Else
• cl−1 = F2,m3

k (n)⊕F2,m3
k (1)⊕ml−1

• cl = F1,l
k (n)⊕ml

– Return c = (c1, ..., cl)

Deck(n, c):

– Parse c = c1, ..., cl with |ci| = n

– For i = 1, ..., l − 2

• mi = F1,i
k (n)⊕ ci

– If m1 ̸= m2 ∧ n ̸= 2

• ml−1 = F1,l−1
k (n)⊕ cl−1

• ml = F2,l
k (n)⊕ cl

– Else

• ml−1 = F2,m3
k (n)⊕F2,m3

k (1)⊕cl−1

• ml = F1,l
k (n)⊕ cl

– Return m = (m1, ...,ml)

E Attacks against A10 and A11 using the scheme Π1

We give the details of how we can use Π1 as a counterexample for modes A10
and A11.
6 To improve this result, we should consider that the computation of g̃ is not always
triggered and we can do a more detailed analysis, but this is not necessary.



Algorithm 5 The nE encryption algorithm Π4.

It uses a TBC F : K × T W × {0, 1}n → {0, 1}n with T W = {1, 2} × {0, 1}n

Gen:
– Return k

$← K

Enck(N,m):
– Parse m = (m1, ...,ml) with |mi| = n
– For i = 1, ..., l − 1
• ci = Fi,0

k (N)⊕mi

– If (N = 1 ∨N = 2) ∧ m2 = F1,0
k (1)⊕

m1

• cl = Fl,1
k (1)⊕ml

– Else
• cl = Fl,0

k (N)⊕ml

– Return c = (c1, ..., cl)

Deck(n, c):
– Parse c = (c1, ..., cl) with |ci| = n
– For i = 1, ..., l − 1
• mi = Fi,0

k (N)⊕ ci
– If (N = 1 ∨N = 2) ∧ m2 = F1,0

k (1)⊕
m1

• ml = Fl,1
k (1)⊕ cl

– Else
• ml = Fl,0

k (N)⊕ cl
– Return m = (m1, ...,ml)

Forgery for mode A10 when the ivE-scheme is Π1. The idea of the forgery is to
ask the encryption of a message M s.t. M1 ̸= M2 and then ask the encryption
of a message M ′ s.t. M ′

1 = M ′
2 = iv1 which is at least a block longer than M .

For the forgery, we proceed as follow:
– Ask the encryption of (N,A,M) with the message M s.t. M1 ̸= M2 and it

has l blocks. Obtain the ciphertext C = (iv, C1, ..., Cl, Cl+1). Π1 encrypts
m = M∥τ with τ = MacTAGkA

(A,M) using as IV iv = MacIVkA
(N,A).

– Ask the encryption of (N ′, A′,M ′) with the message M ′ s.t. M ′
1 = M ′

2 = iv,
M ′

3 = l + 1 and it has l + 1 blocks, and N ̸= N ′. Obtain the ciphertext
C ′ = (iv′, C ′

1, ..., C
′
l , C

′
l+1, C

′
l+2).

– The forgery is (N∗, A∗, C∗) with N∗ = N ′, A∗ = A and C∗ defined as follow:
• iv∗ = iv′;
• C∗

i = C ′
i ⊕M ′

i ⊕Mi for i = 1, ..., l;
• C∗

l+1 = Cl+1 ⊕ C ′
l+1 ⊕M ′

l+1.
This is a valid forgery (encrypting M). The proof is the same as Prop. 1.

Forgery for mode A11 when the ivE-scheme is Π1. The idea of the forgery is to
ask the encryption of a message M s.t. M1 ̸= M2 and then ask the encryption
of a message M ′ s.t. M ′

1 = M ′
2 = iv1 which is at least a block longer than M .

For the forgery, we proceed as follow:
– Ask the encryption of (N,A,M) with the message M s.t. M1 ̸= M2 and it

has l blocks. Obtain the ciphertext C = (iv, C1, ..., Cl, Cl+1). Π1 encrypts
m = M∥τ with τ = MacTAGkA

(M) using as IV iv = MacIVkA
(N,A).

– Ask the encryption of (N ′, A′,M ′) with the message M ′ s.t. M ′
1 = M ′

2 = iv,
M ′

3 = l + 1 and it has l + 1 blocks, and N ̸= N ′. Obtain the ciphertext
C ′ = (iv′, C ′

1, ..., C
′
l , C

′
l+1, C

′
l+2).

– The forgery is (N∗, A∗, C∗) with N∗ = N ′, A∗ = A and C∗ defined as follow:
• iv∗ = iv′;
• C∗

i = C ′
i ⊕M ′

i ⊕Mi for i = 1, ..., l;



• C∗
l+1 = Cl+1 ⊕ C ′

l+1 ⊕M ′
l+1.

This is a valid forgery (encrypting M). The proof is the same as Prop. 1.

F Forgery of mode N4 using Π4

The forgery proceeds as follow:
– Ask the encryption of (N,A,M) with N = 1, M = (M1,M2), with M1,M2

picked uniformly at random in {0, 1}n. Obtain the ciphertext C = (C1, C2, C3)
with Ci = Fi,0

k (N) ⊕ Mi, for i = 1, 2. With probability equal to 1 − 2n,

M2 ̸= F1,0
k (1) ̸= M1, thus, C3 = F3,0

k (N)⊕ τ with τ = MacTAGkA
(A,M) (since

the last ciphertext block encrypts the tag).
– Ask the encryption of (N ′, A,M ′) with N ′ = 2, M = (M ′

1,M
′
2), with M ′

1 =
M1, and M ′

2 = C1, thus, M
′
2 = F1,0

k (N) ⊕M1. Obtain the ciphertext C ′ =

(C ′
1, C

′
2, C

′
3) with C ′

i = Fi,0
k (N ′)⊕M ′

i , for i = 1, 2. Since M ′
2 = F1,0

k (1)⊕M1,

then, C ′
3 = F3,1

k (1)⊕ τ ′, with τ ′ = MacTAGkA
(A,M ′).

– The forgery is (N∗, A∗, C∗) with N∗ = 1 A∗ = A, and C∗ = C∗
1 , C

∗
2 , C

∗
3 ,

where C∗
1 = C1, C

∗
2 = C2 ⊕M2 ⊕M ′

2, and C∗
3 = C ′

3.
This is a valid forgery. In fact, if we consider an encryption of (1, A,M ′), we

obtain:
– C∗

1 = F1,0
k (1)⊕M1 = C1

– C∗
2 = F2,0

k (1)⊕M ′
2 = F2,0

k (1)⊕M2 ⊕M2 ⊕M ′
2 = C2 ⊕M2 ⊕M ′

2.

– C∗
3 = F3,1(1)⊕ τ ′ = C ′

3 since N∗ = 1 and M ′
2 = C1 = M ′

2 = F1,0
k (N)⊕M1

Thus, with probability 1−2n (N∗, A∗, C∗) is a forgery, since it correctly encrypts
(1, A,M ′).


