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Abstract.

We introduce HyperNova, a new recursive argument for proving incremental
computations whose steps are expressed with CCS (Setty et al. ePrint 2023/552),
a customizable constraint system that simultaneously generalizes Plonkish,
R1CS, and AIR without overheads. HyperNova makes four contributions, each
resolving a major problem in the area of recursive arguments.

First, it provides a folding scheme for CCS where the prover’s cryptographic
cost is a single multi-scalar multiplication (MSM) of size equal to the number of
variables in the constraint system, which is optimal when using an MSM-based
commitment scheme. The folding scheme can fold multiple instances at once,
making it easier to build generalizations of IVC such as PCD. Second, when
proving program executions on stateful machines (e.g., EVM, RISC-V), the
cost of proving a step of a program is proportional only to the size of the
circuit representing the instruction invoked by the program step (“a la carte”
cost profile). Third, we show how to achieve zero-knowledge for “free” and
without the need to employ zero-knowledge SNARKs: we use a folding scheme to
“randomize” IVC proofs. This highlights a new application of folding schemes.
Fourth, we show how to efficiently instantiate HyperNova over a cycle of elliptic
curves. For this, we provide a general technique, which we refer to as CycleFold,
that applies to all modern folding-scheme-based recursive arguments.

1 Introduction

Incrementally verifiable computation (IVC) [66] is a powerful cryptographic
primitive that allows a prover to produce a proof of the correct execution of a
“long running” computation in an incremental fashion. For example, it enables the
following workflow: The prover takes as input a proof πi proving the the first i
steps of its computation and then update it to produce a proof πi+1 proving the
correct execution of the first i+ 1 steps. Crucially, the prover’s work to update
the proof does not depend on the number of steps executed thus far, and the
verifier’s work to verify a proof does not grow with the number of steps executed
thus far. IVC has received recent, renewed interest as it enables a wide variety of
applications in decentralized settings including verifiable delay functions [9,70],
succinct blockchains [44], rollups [71,45,53], verifiable state machines [58], and
proofs of machine executions (e.g., EVM, RISC-V)

This is an extended version of a paper from CRYPTO 2024 [42]. Compared to an initial
version, this version of the paper incorporates material from prior preprints [40,41].
Additionally, this version provides an approach to achieve zero-knowledge in folding-
scheme-based recursive arguments without needing to use zkSNARKs.



Early realizations of IVC [66,4] rely on succinct non-interactive arguments of
knowledge (SNARKs) [37,50,32,6]. At step i, the prover produces a SNARK
proving that it has correctly applied a step of the specified computation using
the output of step i − 1 and that the SNARK verifier represented as a circuit
has accepted a SNARK from step i− 1 [7,4]. These works require representing
the SNARK verifier as a circuit. To reduce the size of the SNARK verifier when
encoded as a circuit, prior work [4] uses a two-cycle of elliptic curves.1

A flurry of works [13,19,10,18,43,40] reduce reliance on SNARKs to construct
IVC, culminating in folding schemes [43], a primitive that simply reduces the task
of checking two NP instances with the same “structure” (e.g., circuit description)
into the task of checking a single NP instance. This primitive is sufficient to
construct IVC, and is simpler and far more efficient than a SNARK.

1.1 An overview of the prior state-of-the-art: Nova

We first focus on prior work at the time this paper was written. We discuss
additional related work in Appendix C. Following a preprint of this work, there
are several follow-up works. Section 1.4 describes subsequent work.

Nova’s computational model proves incremental computations where each step
executes a non-deterministic circuit. To prove such computations, Nova uses a
folding scheme for an NP-complete language to (recursively) transform the task
of proving N steps of a computation into the task of proving a single step of the
computation. It then applies a general-purpose zkSNARK (e.g., Spartan [57]) to
prove that single step, obtaining zero-knowledge and additional succinctness.

Compared to employing a general-purpose zkSNARK, built from from polynomial
IOPs and polynomial commitment schemes (e.g., Spartan [57], Plonk [30], Mar-
lin [21], HyperPlonk [20]), to prove the entire incremental computation, Nova’s
approach is substantially cheaper (as long as each step is sufficiently large, to
offset recursion overheads). Specifically, at each incremental step, Nova’s prover
incurs only two MSMs of size proportional to the size of the circuit proven.
Whereas, general-purpose zkSNARKs need many more MSMs. For example,
Marlin [21, Figure 1] reports 22 MSMs and many more FFTs of size proportional
to the circuit size. In addition, by design, Nova’s proof generation is incremental
(i.e., it produces a proof for each step and then uses its recursion capabilities to
produce a single proof), so it can be more easily distributed and parallelized than
with a non-recursive zkSNARK where one must unroll program executions into
monolithic circuits. The latter rules out applications where one cannot statically
unroll program executions (e.g., VDF) or makes it inconvenient (e.g., program
executions on machines such as EVM or RISC-V). As presented, Nova does
not immediately support parallel proof generation, but there exists a generic
compiler [7] to transform constructions such as Nova to support parallel proving.

1 A 2-cycle of elliptic curves is a pair of elliptic curves (E1, E2) such that the scalar
field of E1 equals the base field of E2 (i.e., the field over which points in E2 are
defined over) and vice versa (Section 8 provides details on how a 2-cycle of elliptic
curves is used and how they help with concrete efficiency).
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1.2 Open problems addressed by this work

Our work addresses several open problems in the prior state-of-the-art. We first
discuss these problems and provide sufficient context about each of these.

(1) The need to fold customizable, high-degree constraint systems.
In Nova, each step of an incremental computation is expressed with R1CS, an
NP-complete problem that generalizes arithmetic circuit satisfiability [31,59,3]. In
practice, when zkSNARKs (e.g., Plonk) are applied to prove program executions,
practitioners use custom constraint systems (e.g., Plonkish) that are tailored to a
particular classes of applications. Specifically, Plonkish constraints are multivari-
ate high-degree polynomials. Whereas, R1CS is restricted to checking quadratic
constraints in a specific form. These customizable, high-degree constraint systems
are often more compact than equivalent R1CS. As a concrete example, a single
iteration of MinRoot [36] can be represented with one degree-5 constraint in
Plonkish [74]. Whereas, R1CS needs three constraints.

Sangria [51] shows that Nova can be adapted to handle Plonkish. However, the
number of cross-terms that the prover must commit to increases linearly with
the degree of the constraints d: The prover must incur O(n · d) cryptographic
operations to commit to O(d) cross-terms, where n is the number of constraints.
As a result, in general, there are not significant benefits to employing high-degree
constraints and use Sangria than use Nova with R1CS. Concretely, Sangria’s
prover applied to MinRoot with degree-5 constraints requires 5 scalar multiplica-
tions (and additional field work to compute cross-terms) per MinRoot iteration
whereas Nova applied to MinRoot in R1CS requires 6 scalar multiplications.

A key question is whether one can build a recursive argument for Plonkish, with
Nova-like performance characteristics. In particular, our goal is to prove CCS [60],
a customizable constraint system that simultaneously generalizes Plonkish, R1CS,
and AIR without overheads ([60] provides context on CCS, Plonkish, and AIR).
Additionally, for any solution that handles high-degree constraints, we require
the prover’s cryptographic work to be independent of the degree of constraints
supported. That is, the number of MSMs (or their sizes) performed by the prover
must not depend on the degree of the supported constraints.

(2) The need to achieve an “a la carte” cost profile for proving machine
executions. A classic approach to prove machine executions (e.g., program
executions on EVM) is to employ a universal circuit (e.g., [2,5,55,33,47]) that
can execute any instruction supported by the machine. To prove the correct
execution of programs on the corresponding machine, it suffices to recursively
prove, with an IVC scheme, repeated invocations of this circuit on an input
program and memory state [4]. Unfortunately, the cost of proving a program’s
step is proportional to the size of the universal circuit (i.e., sum of sizes of circuits
of all instructions supported by the machine)—even though the step invokes only
one of the instructions.

Given the high costs imposed by universal circuits, designers of these machines
aim to employ a minimal instruction set, to keep the size of the universal circuit

3



and thereby the cost of proving a program step minimal [5,3,33]. However, this is a
not a panacea: for real applications, one needs to execute an enormous number of
iterations of the minimal circuit (e.g., billions of iterations), making the prover’s
work largely untenable. This also means that emulating real programs that target
existing virtual machines with rich instruction sets (e.g., EVM, RISC-V, Wasm)
via a machine with a minimal instruction set would incur enormous costs.

An open question is whether one can achieve an “a la carte” cost profile, where
the cost of proving a step of a program execution is proportional only to the
size of the circuit representing the instruction invoked by the program step and
independent of the circuit sizes of the uninvoked instructions.

(3) The need for providing zero-knowledge without needing zkSNARKs.
Nova [43] shows how to efficiently achieve zero-knowledge for its IVC proofs
by producing a zkSNARK proving the knowledge of valid IVC proofs. The
zkSNARK scheme that is natively compatible with Nova is Spartan [57], which
internally uses the sum-check protocol [46]. The most efficient way to achieve
zero-knowledge in Spartan is to use the Cramer-Damgard transformation [25,69],
where sum-check messages are committed with homomorphic commitments (e.g.,
Pedersen) and the sum-check verifier’s checks are proven in zero-knowledge using
Schnorr-type proofs. This means that the Spartan verifier must perform public
key operations (e.g., group scalar multiplications), which are far too expensive
especially in blockchain settings where the verifier is deployed on-chain.

An open question is whether one can leverage folding schemes to “blind” the
IVC proof such that one can use a non-zk Spartan, where the verifier verifies the
sum-check messages in plaintext (which are orders of magnitude more efficient).

(4) The need for an efficient instantiation over a cycle of elliptic
curves. Folding schemes leverage additively homomorphic commitments, which
are typically instantiated with elliptic curve groups. To realize IVC, the folding
scheme’s verifier must be represented as a circuit. The best known approach
for this is the blueprint of [4], which leverages a cycle of elliptic curves. Nova’s
implementation [1] adapts BCTV’s approach [4] to the context of folding-scheme-
based recursive arguments and was recently proven secure [52].

Unfortunately, Nova’s approach, like in [4], still requires representing a verifier
(which happens to be the the non-interactive folding scheme verifier) as a circuit
on both curves in the cycle of curves. For Nova [43], which is the only fully
implemented folding-scheme-based approach to date, the circuit defined over the
second curve in the cycle is ≈10, 000 multiplication gates (and more than 100,000
non-zero entries in R1CS matrices).

In practice, one often wants to use a “half”-pairing cycle E1/E2
2 (e.g., BN254

and Grumpkin, where only BN254 is pairing-friendly). The BN254/Grumpkin
cycle is as efficient as non-pairing-friendly cycle of curves (e.g., Pasta) and also
compatible with Ethereum for proof verification. In this setting, the part of the

2 A 2-cycle of elliptic curves where only one of the curves is pairing-friendly.
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IVC proof defined over E1 can be compressed easily into a succinct proof with
Spartan [57] using KZG-based commitment scheme [72,12]; the compressed proof
can be verified with a logarithmic number of group scalar multiplications and
two pairings. However, for E2, the corresponding IVC proof must be verified
with a circuit C defined over E1 and then proven with a SNARK defined over
E1. Unfortunately, |C| > 70 · 106 gates (far too expensive to prove).3

An open question is whether one can substantially reduce the size of the circuit
defined over the second curve in the cycle, which in turn reduces the size of C.

1.3 A technical overview of results in this work

This subsection provides an overview of HyperNova, which resolves all the four
open problems listed in the prior section.

(1) Multi-folding schemes and a multi-folding scheme for CCS. As noted
earlier, HyperNova’s target is to prove incremental computations where each
step of the incremental computation is expressed with CCS [60]. However, if we
naively build a folding scheme for CCS, perhaps for a “relaxed” variant of CCS
(analogous to relaxed R1CS in Nova [43]), it will have the efficiency issues noted
above for Sangria. To avoid those issues, HyperNova takes a different approach
that involves leveraging the power of the sum-check protocol [46].

To construct HyperNova, we introduce a generalization of folding schemes, and
we refer to it as multi-folding schemes. Recall that a folding scheme for a relation
R is a protocol between a prover and verifier in which the prover and the verifier
reduce the task of checking two instances in R with the same structure s into
the task of checking a single instance in R with structure s. A multi-folding
scheme is defined with respect to a pair of relations (R1,R2) and constants
(µ, ν), and it is an interactive protocol in which the prover and the verifier reduce
the task of checking µ instances in R1 with structure s1 and ν instances in R2

with structure s2 into the task of checking a single instance in R1 with structure
s1—as long as (s1, s2) satisfy a pre-defined predicate (e.g., that the two structures
are equal). Below, we clarify how this generalization unlocks additional power
for constructing IVC.

We also construct a multi-folding scheme for CCS. Our starting point is the
observation that Spartan [57] (more specifically its generalization to handle CCS
called SuperSpartan [60]) transforms the task of checking the satisfiability of a
CCS instance into the task of checking if a multivariate polynomial g of total
degree d+ 1, where d is the degree of the CCS constraints, sums to zero over a
suitable Boolean hypercube. Spartan then invokes the sum-check protocol [46] to
prove that claim about g. At the end of the sum-check invocation, the prover
and the verifier are left with checking certain claims. Fortunately, these claims
concern a restricted form of CCS (we formalize this and refer to it as linearized

3 C proves openings of two vector commitments of 10,000 bases, which costs ≈2 ·10, 000 ·
3, 000 = 60 · 106 gates. Also, C evaluates 105 linear combinations, which require field
emulation and we estimate it to be 105 × 100 = 10 · 106 gates. So, |C| > 70 · 106 gates.
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CCS ). Note that Spartan proves those claims about the restricted form of CCS
with an additional invocation of the sum-check protocol, followed by evaluations
proofs of committed sparse multilinear polynomials.

While an “early stopping” version of Spartan (the one with a single invocation
of the sum-check protocol) provides a reduction of knowledge [39] from CCS to
linearized CCS, it is not a folding (or a multi-folding) scheme. So, our second
idea is to redefine the polynomial g to additionally include claims from a running
linearized CCS instance using a random challenge from the verifier. This is
possible as long as the running instance and the CCS instance that is being
folded share a compatible structure (e.g., the same CCS matrices).

The following theorem summarizes our result about the multi-folding scheme.
Notably, our multi-folding scheme avoids commitments to cross-terms altogether.

Theorem 1 (A multi-folding scheme for CCS). Construction 1 is a public-
coin, multi-folding scheme that reduces the task of checking an arbitrary number
of CCS instances and linearized CCS instances with the same structure into the
task of checking a single linearized CCS instance with the same structure. For a
single CCS instance with m constraints of degree d and q monomials, n witness
variables, t CCS matrices, and N non-zero entries in CCS matrices, and a single
linearized CCS instance, the efficiency characteristics are as follows.

• The prover time is O(N + t ·m+ q ·m · d · log2 d) finite field operations and
O(1) group operations;

• The verifier time is O(d · logm) finite field operations and O(1) group opera-
tions; and

• The communication complexity is O(d · logm) finite field elements.

Since the multi-folding scheme is public coin, we make it non-interactive in the
random oracle model using the Fiat-Shamir transform [28] and heuristically
instantiate it in the plain model using a concrete cryptographic hash function.

(2) Achieving “a la carte” costs with non-uniform IVC. We first introduce
a generalization of IVC [66] to formally capture an “a la carte” cost profile.
Consider a collection of ℓ + 1 non-deterministic, polynomial-time computable
functions ((F1, . . . , Fℓ), φ), where ℓ ≥ 1. Suppose that each function Fj (1 ≤ j ≤ ℓ)
takes s inputs and produces s outputs, where s > 0; Fj can additionally take
an arbitrary non-deterministic input. Furthermore, φ is a function that takes
s inputs and an arbitrary non-deterministic input, and produces an element of
Z∗ℓ+1 (i.e., the set {1, . . . , ℓ}).

A non-uniform IVC (NIVC) scheme enables a prover to incrementally prove that
it has performed an n-step computation with an initial input z0 to produce an
output zn. In particular, at step i, the prover proves that it has applied Fj on
input (zi−1, ωi−1) to produce an output zi, where zi−1 is output of step i−1, ωi−1
is a (potentially secret) non-deterministic input from the prover for step i, and
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j = φ(zi−1, ωi−1). That is, φ selects one of the possible ℓ functions to apply at
step i using inputs to step i. A bit more concisely, for a specified ((F1, . . . , Fℓ), φ)
and (n, z0, zn), the prover proves the knowledge of a set of non-deterministic
values (ω0, . . . , ωn−1) and (z1, . . . , zn−1) such that for all i ∈ {0, . . . , n − 1},
we have that zi+1 = Fφ(zi,ωi)(zi, ωi). Crucially, the prover’s work at step i is
proportional only to |Fj |, where j = φ(zi, ωi), rather than |F1|+ . . .+ |Fℓ|.

We then provide a generic compiler to construct a non-uniform IVC scheme from
non-interactive multi-folding schemes such as the multi-folding scheme for CCS
discussed above. The compiler requires the multi-folding scheme to satisfy certain
requirements, which we formalize as NIVC-compatibility.

In more detail, suppose that the prover is provided with an NIVC proof πi of
i steps, which consists of a “fresh” instance ui claiming the correct execution
of step i, a collection of “running” instances (one for each function/instruction
supported in NIVC) Ui claiming the correct execution of all prior i − 1 steps,
and the corresponding witnesses wi and Wi. That is, πi = (Ui, ui,Wi,wi).

Then, the prover runs an augmented function, which, in addition to running a
step of the incremental computation, runs a verifier circuit. The verifier circuit
implements the verifier of the multi-folding scheme to fold ui into an appropriate
running instance in Ui to produce new running instances Ui+1 that claims the
correct execution of i steps. Alongside, the prover computes the corresponding
folded witnesses Wi+1. The prover then produces a corresponding fresh instance
ui+1 (and the corresponding witness wi+1) that claims the correct execution
of this augmented function; this fresh instance claims the correctness of the
latest step of the incremental computation and that Ui+1 was produced honestly.
Together, πi+1 = (Ui+1, ui+1,Wi+1,wi+1) represents an NIVC proof of i+1 steps.

Remark 1. Because a multi-folding scheme folds an arbitrary number of running
instances incoming instances into a single running instance, it affords a natural
generalization of IVC [66] called proof-carrying data [7] using the approach of
Bünz et al. [18]. We focus on IVC for its conceptual simplicity.

(3) Achieving zero-knowledge without zkSNARKs. To achieve a zero-
knowledge argument of a valid NIVC proof without relying on zkSNARKs,
we provide a new approach of rerandomizing the NIVC proof using folding
schemes. In particular, given an NIVC proof πi = (Ui, ui,Wi,wi), the prover
first folds the fresh instance ui into an appropriate running instance. Next, the
prover uses a folding scheme to fold in a random instance-witness pairs into
(Ui,Wi), effectively rerandomizing them. The prover then produces a randomized
proof which consists of the rerandomized instance-witness pairs and the prover’s
messages in the folding scheme. A central challenge with this strategy is that
the prover must prove that folding is done correctly without revealing the input
random instances (and witnesses) used to randomize. To solve this, we have
the prover execute the verifier’s checks for the folding scheme inside a circuit
and prove in zero-knowledge once again using a randomizing folding scheme.
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The verifier at this point can directly check the randomized instances, or use a
non-zero-knowledge SNARK if further succinctness is needed.

This approach highlights a new application of folding schemes. Until now, folding
schemes were used to construct IVC [43]. Whereas, this result shows that folding
schemes can be used to randomize folding-scheme-based IVC proofs (and NP
instances!) prior to proving them with a non-zero-knowledge SNARK. Thus, we
introduce a simpler, more efficient methodology (as opposed to that in [25]) for
achieving zero-knowledge.

(4) Efficient instantiation over a two-cycle of elliptic curves. We provide a
new approach, which we refer to as CycleFold, to efficiently instantiate HyperNova
over a two-cycle of elliptic curves. In particular, we provide security proofs for
this instantiation of HyperNova, but the approach and proofs generalize to other
folding-scheme-based (N)IVC schemes.

CycleFold’s starting point is the observation that folding-scheme-based recursive
arguments can be efficiently instantiated without a cycle of elliptic curves—except
for a few scalar multiplications in their verifiers (2 in Nova and 1 in HyperNova).
Accordingly, CycleFold uses the second curve in the cycle to merely represent
a single scalar multiplication (≈1,000 multiplication gates and ≈4,000 non-zero
entries in R1CS matrices). CycleFold then folds invocations of this tiny circuit on
the first curve in the cycle. This is more than an order of magnitude improvement
over the prior state-of-the-art in terms of circuit sizes on the second curve.
Furthermore, to achieve full succinctness for verification of proofs on a blockchain,
|C| is similarly more than 10× smaller, and is now within the feasible range for
proving with a SNARK defined over a pairing-friendly curve (§1.2).

Theorem 2 (HyperNova with CycleFold). Given the multi-folding scheme
for CCS (Construction 7) instantiated with the Pedersen commitment scheme,
HyperNova (Construction 2) produces an NIVC scheme such that for step func-
tions Fj for j ∈ [ℓ] that can be expressed in CCS with mj constraints of degree d
and qj monomials, nj witness variables, tj CCS matrices, and Nj non-zero entries
in CCS matrices, and control function φ that can be expressed in CCS with m
constraints of degree d and qφ monomials, nφ witness variables, tφ CCS matrices,
and Nφ non-zero entries in the CCS matrices, the efficiency characteristics are
as follows.

• The NIVC prover time for each step is a single MSM of size O(nφ + nj) and
O((Nφ +Nj) + (tφ + tj) · (mφ +mj) + (qφ + qj) · (mφ +mj) · d · log2 d) finite
field operations

• The verifier circuit size is o(|φ|+2·G+(d·logmj)·F+logmj ·Rd+2·Hℓ,tj+2·M)
on the first curve and G on the second curve in a cycle of elliptic curves.

where G is the number of constraints required to encode a group scalar multi-
plication natively (i.e., without field emulation), H is the number of constraints
required to encode a hash function, F is the number of constraints to encode field
operations, R is the number of constraints to encode a cryptographic hash function
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used for randomness, and M is the number of constraints to encode to memory
read/write over a memory of size O(ℓ).

1.4 Subsequent works

We now discuss subsequent works that follow a preprint of this work.

(1) PCD. Zhou et al. [76] show that HyperNova naturally extends to provide a
generalization of IVC called PCD [7,19,18].

(2) Protostar and ProtoGalaxy. Like HyperNova, Protostar [17] provides a
folding scheme for high-degree constraints. Protostar achieves a similar prover
efficiency as HyperNova. Although Protostar does not explicitly invoke the sum-
check protocol, its folding procedure performs the same amount of commitment
work and finite field operations, so it implicitly invokes a sum-check-like procedure.

• When folding two instances, Protostar’s verifier circuit performs three group
scalar multiplications whereas HyperNova does only one. On the other hand,
HyperNova performs O(d · logm) hashes where d is the degree of constraints
and m is the number of constraints folded, and Protostar performs O(d)
hashes. When using SNARK-friendly hash functions (e.g., Poseidon), the
hashing cost difference between HyperNova and Protostar is concretely small.

• HyperNova can fold k > 2 instances at once, which makes it easy to realize
PCD [76]. On the other hand, Protostar folds only two instances at once.
Extending it fold k > 2 instances at once blows up the degree of the polynomial
involved exponentially in k [27, §1.2]. ProtoGalaxy [27] provides details of
this, and avoids avoids this issue by essentially leveraging the sum-check
protocol in a different way than in HyperNova. However, like HyperNova, it
requires a logarithmic number of hashes in the verifier circuit [27, Table 1].

• Protostar does not describe how to instantiate it on a cycle of elliptic curves
nor provide a zero-knowledge layer, whereas HyperNova includes both.

• Protostar describes how to integrate the logUp lookup argument [35] into
IVC. One can easily integrate HyperNova with logUp as well as more recent
lookup arguments (e.g., Lasso [61]). Since Lasso encodes lookups as sum-
check instances, HyperNova can integrate with Lasso by including the lookup
sum-check instances alongside HyperNova’s sum-check instances for CCS.

• Protostar designs its folding scheme for special-sound protocols whereas
HyperNova targets CCS. Both are equivalent as one can represent the verifier
of the special-sound protocol as a CCS instance with standard transformations,
for instance after making the special-sound protocol non-interactive with
Fiat-Shamir transformation [65, §6]. Once that is done, a folding scheme for
CCS can be applied. Note that Protostar too turns its special-sound protocols
non-interactive protocols.

(3) KiloNova. KiloNova [75] extends HyperNova to achieve non-uniform PCD
(a generalization of non-uniform IVC introduced in this paper). But, there are
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fundamental problems. Its folding verifier’s runtime is linear in the size of the
NP instance (step-13 of Construction-1 folds CCS matrices), which makes it
unsuitable for IVC, let alone PCD. In IVC, the folding-scheme verifier’s runtime
is O(|F ′|), where F ′ is an augmented circuit. This causes a well-known sizing
issue because F ′ must include the folding verifier as a sub-circuit. KiloNova
does separately suggest an optimization that may (inadvertently) resolve this
issue. It is neither specified nor proven. Their scheme fundamentally relies on
the ability to efficiently fold commitments to sparse CCS matrices, which is
necessary for IVC/PCD. Unfortunately, the “natural” fix of committing to sparse
CCS matrices such that they can be folded is an open problem: existing sparse
polynomial commitments do not provide homomorphic commitments, or require
(impractical) quadratic-sized parameters.

2 Preliminaries

We use λ to denote the security parameter and F to denote a finite field (e.g., the
prime field Fp for a large prime p). We use negl(λ) to denote a negligible function in
λ. We write Pr[X] ≈ ϵ to mean that |Pr[X]−ϵ| = negl(λ). Throughout the paper,
the depicted asymptotics depend on λ, but we elide this for brevity. We write
PPT to refer to probabilistic polynomial time algorithms. For relations R1 and
R2 we let R1×R2 denote a new relation such that ((u1, u2), (w1, w2)) ∈ R1×R2

if and only if (u1, w1) ∈ R1 and (u2, w2) ∈ R2. We write Fd[X1, . . . , Xn] to
denote multivariate polynomials over field F in the variables X1, . . . , Xn with
degree bound d for each variable. We omit the superscript if there is no bound.

Appendix A provides additional preliminaries on multilinear polynomials, the
sum-check protocol, commitment schemes, arguments of knowledge, and IVC.

Customizable constraint systems (CCS). CCS simultaneously generalizes
R1CS, Plonkish, and AIR without overheads. We first provide an arithmetized
variant of the original formulation. The definitions below are characterized by a
finite field F, but we leave this implicit.

Definition 1 (CCS [60]). Consider size bounds m,n,N, ℓ, t, q, d ∈ N where
n > ℓ. Let s = logm and s′ = log n. We define the customizable constraint system
(CCS) relation, RCCS, over structure, instance, witness tuples as follows.

An RCCS structure s consists of

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCS instance consists of public input and output vector x ∈ Fℓ. An RCCS

witness consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that
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(s, x, w̃) ∈ RCCS if and only if for all x ∈ {0, 1}s,

q∑
i=1

ci ·

∏
j∈Si

 ∑
y∈{0,1}log m

M̃j(x, y) · z̃(y)

 = 0,

where z̃ is an s′-variate multilinear polynomial such that z̃(x) = ˜(w, 1, x)(x) for
all x ∈ {0, 1}s′ .

In this work, we introduce linearized CCS, a variant of CCS that only contains
the linear checks of CCS. We later show that we can fold a CCS instance into a
linearized CCS instance to produce a new linearized CCS instance.

Definition 2 (Linearized CCS). Consider size bounds m,n,N, ℓ, t, q, d ∈ N
where n = 2 · (ℓ + 1). Let s = logm and s′ = log n. We define the linearized
committed customizable constraint system (LCCS) relation, RLCCS, over structure,
instance, witness tuples as follows.

An RLCCS structure s consists of

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RLCCS instance is a tuple (u, x, r, v1, . . . , vt) ∈ (F,Fℓ,F,Ft). An RLCCS wit-
ness consists of a multilinear polynomial w̃ in s′ − 1 variables. We have that
(s, (u, x, r, v1, . . . , vt), w̃) ∈ RLCCS if and only if for all i ∈ [t]

vi =
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y)

where z̃ is an s′-variate multilinear polynomial such that z(x) = ˜(w, u, x)(x) for
all x ∈ {0, 1}s′ .

R1CS is an NP-complete problem implicit in QAPs [31]. For completeness, we
formally define R1CS in Appendix A.4. Below, we recall its folding-friendly
variant, relaxed R1CS [43]. We utilize relaxed R1CS for our zero-knowledge layer
and our instantiation of HyperNova over a cycle of curves.

Definition 3 (Relaxed R1CS). Consider a finite field F and a commitment
scheme Commit over vectors over F. Consider size bounds m,n, ℓ ∈ N where

11



m > ℓ. We define the relaxed R1CS relation, RRR1CS, over structure, instance,
witness tuples as follows.4

A RRR1CS structure consists of matrices A,B,C ∈ Fm×m with at most n =
Ω(m) non-zero entries in each matrix. A RRR1CS instance is a tuple (u, x) ∈
(F,Fℓ). A RRR1CS witness is a tuple (E,W ) ∈ (Fm,Fm−ℓ−1). We have that
((A,B,C), (u, x), (E,W )) ∈ RRR1CS iff for Z = (W, x, u), AZ ◦BZ = u ·CZ +E.

Instead of directly working with all of the above relations, we consider variants
where a commitment to the witness is additionally presented in the instance. We
generically refer to such relations as committed relations.

Definition 4 (Committed relation). Consider a relation R over structure,
instance, witness tuples where witnesses are in some space W . Consider a com-
mitment scheme com = (Gen,Commit) over message space W . We define the
corresponding committed relation over public parameter, structure, instance, wit-
ness tuples characterized by com as follows.

R(com) =

{
(ppcom, s, (C, u), (w, r))

∣∣∣∣ (s, u, w) ∈ R,C = Commit(ppcom, w, r)

}
We say relation R is the underlying relation for committed relation R(com).

Definition 5 ((Linearized) Committed CCS). Consider an additively ho-
momorphic polynomial commitment scheme, PC, for multilinear polynomials over
a finite field F. We define the committed CCS relation RCCCS as RCCS(PC) and
the linearized committed CCS relation RLCCCS as RLCCS(PC).

Definition 6 (Committed relaxed R1CS). Consider a commitment scheme
VC over vectors over field F. We define the committed relaxed R1CS relation
RCRR1CS as RRR1CS(VC

′) where VC′ commits to pairs of vectors by applying VC
to each vector.

3 Multi-folding schemes

Recall that a folding scheme [43] for a relation R is a protocol between a prover
and verifier in which the prover and the verifier reduce the task of checking
two instances in R with the same structure s into the task of checking a single
instance in R with structure s.

We introduce a generalization of folding schemes, which we refer to as multi-
folding schemes. A multi-folding scheme is defined with respect to a pair of
relations (R1,R2), a predicate compat, and size parameters µ and ν. It is an
interactive protocol between a prover and a verifier in which the prover and the

4 As formulated, any relaxed R1CS is naturally satisfiable by setting E appropriately.
As shown by Kothapalli et al. [43] relaxed R1CS is augmented with honestly generated
commitments to E, which sufficiently restricts the prover’s choice of E.
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verifier reduce the task of checking µ instances in R1 with structure s1 and ν
instances in R2 with structure s2 into the task of checking a single instance in R1

with structure s1—as long as s1 and s2 satisfy a predicate compat (e.g., compat
might require that s1 = s2). Below, we formally define multi-folding schemes.

Definition 7 (Multi-folding schemes). Consider relations R1 and R2 over
public parameters, structure, instance, and witness tuples, a predicate compat
that structures for instances in R1 and R2 must satisfy, and size parameters
µ, ν ∈ N. A multi-folding scheme for (R1,R2, compat, µ, ν) is defined by PPT
algorithms (G,P,V) and deterministic K denoted the generator, prover, verifier
and encoder respectively with the following interface:

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, (s1, s2))→ (pk, vk): on input pp, and structures s1 and s2 among the
instances to be folded, outputs a prover key pk and a verifier key vk.

• P(pk, (⃗u1, w⃗1), (⃗u2, w⃗2))→ (u,w): on input a vector of instances u⃗1 in R1 of
size µ with structure s1 and a vector of instances u⃗2 in R2 of size ν with
structure s2, and corresponding witness vectors w⃗1 and w⃗2 outputs a folded
instance-witness pair (u,w) in R1 with structure s1.

• V(vk, (⃗u1, u⃗2))→ u: on input a vector of instances u⃗1 and a vector of instances
u⃗2 outputs a new instance u.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a func-
tion that takes as input ((pk, vk), (⃗u1, w⃗1), (⃗u2, w⃗2)) and runs the interaction on
prover input (pk, (⃗u1, w⃗1), (⃗u2, w⃗2)) and verifier input (vk, (⃗u1, u⃗2)). At the end of
interaction ⟨P,V⟩ outputs (u,w) where u is the verifier’s output folded instance,
and w is the prover’s output folded witness.

Let R(n) be the relation such that (pp, s, u⃗, w⃗) ∈ R(n) if and only if (pp, s, u⃗i, w⃗i) ∈
R for all i ∈ [n]. A multi-folding scheme for (R1,R2, compat, µ, ν) satisfies the
following requirements.

1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

 (pp, s1, u,w) ∈ R1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), (w⃗1, w⃗2))← A(pp),
compat(s1, s2) = true,

(pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 , (pp, s2, u⃗2, w⃗2) ∈ R(ν)

2 ,
(pk, vk)← K(pp, s1, s2),
(u,w)← ⟨P,V⟩((pk, vk), (⃗u1, u⃗2), (w⃗1, w⃗2))

 = 1.
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2. Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗ there is an expected polynomial-time extractor E such that

Pr
r

 (pp, s1, u⃗1, w⃗1) ∈ R(µ)
1 ,

(pp, s2, u⃗2, w⃗2) ∈ R(ν)
2

∣∣∣∣∣∣∣∣
pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), st)← A(pp, r),
compat(s1, s2) = true,
(w⃗1, w⃗2)← E(pp, r)

 ≈

Pr
r

 (pp, s1, u, w) ∈ R1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
((s1, s2), (⃗u1, u⃗2), st)← A(pp, r),
compat(s1, s2) = true,
(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P∗,V⟩((pk, vk), (⃗u1, u⃗2), st)


where r denotes an arbitrarily long random tape.

A multi-folding scheme is secure in the random oracle model if the above require-
ments hold when all parties are provided access to a random oracle.

Definition 8 (Succinct). A multi-folding scheme is succinct if the communi-
cation complexity and verifier time complexity is at most poly-logarithmic in the
size of the structures and witnesses.

Definition 9 (Non-interactive). A multi-folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as P’s output and as V’s input.

Definition 10 (Public-coin). A multi-folding scheme (G,K,P,V) is called
public-coin if all the messages sent from V to P are sampled uniformly.

By applying the Fiat-Shamir transformation [28] we can transform a public-coin
multi-folding scheme into a non-interactive multi-folding scheme in the random
oracle model. We formally describe this transformation in Appendix B.

Lemma 1 (Fiat-Shamir transformation for multi-folding schemes).
Construction 3 transforms a public-coin multi-folding scheme for

(R1,R2, compat, µ, ν)

into a non-interactive multi-folding scheme for (R1,R2, compat, µ, ν) in the ran-
dom oracle model.

4 A multi-folding scheme for CCS

This section describes a multi-folding scheme for CCS. Specifically, we provide
a multi-folding scheme for R1 = RLCCCS and R2 = RCCCS, with compat(s1, s2)
requiring s1 = s2. Our multi-folding scheme supports arbitrary values of µ and ν.
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Overview. To introduce core ideas, we focus on the case of µ = ν = 1. Con-
struction 1 formally describes the general case.

Consider structure s1 = s2 = ([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq]), and let s =
logm, and s′ = log n. We design a multi-folding scheme that reduces the verifier’s
task of checking a linearized committed CCS instance (C1, u, x1, rx, v1, . . . , vt)
and a committed CCS instance (C2, x2) to the task of checking a new linearized
committed CCS instance. In particular, the verifier’s goal is to reduce the task
of checking that a prover knows satisfying witnesses w̃1 and w̃2 such that for

z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2) we have that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) (1)

for all j ∈ [t] and

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s

M̃j(x, y) · z̃2(y)

 = 0 (2)

for all x ∈ {0, 1}s.

The high-level strategy of the prover and verifier is to first encode the above
claims as a claim about the evaluations of polynomials and then reduce this
claim using the sum-check protocol. The resulting reduced claim is equivalent to
checking two compatible linearized committed CCS instances. The compatibility
ensures that we can reduce the task of checking both instances into the task of
checking a single linearized CCS instance using a random linear combination.

In more detail, consider polynomials

Hj(x) :=
∑

y∈{0,1}s′
M̃j(x, y) · z̃1(y) (3)

and

G(x) :=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

. (4)

Then, checking Hj(rx) = vj for all j ∈ [t] implies checking Equation 1. Then, by
Lemma 6, for Lj(x) = ẽq(rx, x) ·Hj(x), this is equivalent to checking

vj =
∑

x∈{0,1}s
Lj(x) (5)

for all j ∈ [t].

Similarly, checking G(x) = 0 for all x ∈ {0, 1}s implies checking Equation 2. We
define a corresponding Lagrange polynomial,

∑
x∈{0,1}s ẽq(X,x) · G(x), which
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encodes each evaluation ofG into its coefficients. Then checking that this Lagrange
polynomial is the zero polynomial implies checking that G(x) = 0 for all x ∈
{0, 1}s. Then, for a random challenge β ∈ F, by the Schwartz-Zippel lemma
(Lemma 7), for Q(x) = ẽq(β, x) ·G(x), checking

0 =
∑

x∈{0,1}s
Q(x) (6)

implies checking Equation 2 with high probability.

Equations 5 and 6 can be checked simultaneously with high probability by setting

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

T :=

∑
j∈T

γj · vj

+ γt+1 · 0

for some random challenge γ ∈ F and checking if

T =
∑

x∈{0,1}s
g(x). (7)

Then, the prover and verifier run the sum-check protocol to reduce the task of
checking Equation 7 to the task of checking

c = g(r′x) (8)

for some random point r′x ∈ Fs chosen over the course of the sum-check protocol
and a claimed evaluation c ∈ F.

To assist the verifier in checking Equation 8, the prover computes claimed values
for sums internal to polynomial g,

σi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) (9)

θi ←
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y), (10)

for all i ∈ [t], and sends them to the verifier.

Using these values, the verifier can check Equation 8. However, it must still check
Equations 9 and 10, that is, that σi and θi were computed correctly for all i ∈ [t].

We observe that because both of these equations are defined with respect to the
same randomness r′x. So, by linearity, the verifier can sample a random challenge
ρ, and reduce the task of checking Equations 9 and 10 to the task of checking

σi + ρ · θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · (z̃1(y) + ρ · z̃2(y)) (11)
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for all i ∈ [t].

Conveniently, letting C ′ ← C1 + ρ · C2, u
′ ← u + ρ · 1, x′ ← x1 + ρ · x2, and

v′i ← σi + ρ · θi for all i ∈ [t], checking Equation 11, is equivalent to checking that
the prover knows a witness for the following linearized committed CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t),

thus completing the reduction. We formally describe our folding scheme below.

Construction 1 (A multi-folding scheme for CCS). Let PC = (Gen,Commit)
denote an additively-homomorphic commitment scheme for multilinear polynomi-
als. We construct a multi-folding scheme for (RLCCCS,RCCCS, compat, µ, ν), where
compat is defined as follows.

compat(s1, s2)→ {true, false}: If s1.M̃i = s2.M̃i for i ∈ [t], then return true,
otherwise return false.

Let s1 = s2 = ([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq]).

We define the generator and the encoder as follows.

G(1λ, (m,N, ℓ, t, q, d ∈ N))→ pp:

1. Let n = 2 · (ℓ+ 1)

2. ppPC ← Gen(1λ, log n− 1)

3. Output (m,n,N, ℓ, t, q, d, ppPC)

K(pp, (s1, s2))→ (pk, vk):

1. Let pk← (pp, s1) and vk← pp

2. Output (pk, vk)

The verifier V takes µ linearized committed CCS instances u⃗1 and ν committed
CCS instances u⃗2. The prover in addition to these instances takes witnesses
to all instances w⃗1 and w⃗2. We denote µ linearized committed CCS instance-
witness pairs with L and use Lk (for k ∈ [µ]) to index into the kth linearized
committed CCS instance-witness pair. Similarly, we denote ν committed CCS
instance-witness pairs C and use Ck (for k ∈ [ν]) to index into the kth committed
CCS instance-witness pair. Inside an instance-witness pair, we use ϕ to index
into the instance and w to index into the witness.

Let s = logm and s′ = log n. Let z̃1,k = ˜(w, u, x), where w = Lk.w, u = Lk.ϕ.u,

and x = Lk.ϕ.x. Similarly, let z̃2,k = ˜(w, 1, x), where w = Ck.w and x = Ck.ϕ.x.

The prover and the verifier proceed as follows.

1. V → P: V samples γ
$← F, β $← Fs, and sends them to P.

2. V: Sample r′x
$← Fs.
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3. V ↔ P: Run the sum-check protocol c← ⟨P,V(r′x)⟩(g, s, d+ 1, T ), where:

g(x) :=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


Lj,k(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)


Qk(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


T :=

∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk.ϕ.vj

4. P → V: {σj,k}, where for all j ∈ [t], k ∈ [µ]:

σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

Similarly, {θj,k}, where for all j ∈ [t] and k ∈ [ν]:

θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x), and check that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj,k


6. V → P: V samples ρ

$← F and sends it to P.

7. V,P : Output the folded linearized committed CCS instance (C, u, x, r′x, v1, . . . , vt),
where for all j ∈ [t]:

C ←
∑

k∈[µ] ρ
k · Lk.ϕ.C +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.C

u ←
∑

k∈[µ] ρ
k · Lk.ϕ.u +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · Lk.ϕ.x +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.x

vj ←
∑

k∈[µ] ρ
k · σj,k +

∑
k∈[ν] ρ

µ+k · θj,k

8. P: Output the folded witness w̃ ←
∑

k∈[µ] ρ
k · Lk.w +

∑
k∈[ν] ρ

µ+k · Ck.w.
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Below, we adapt the proof of Kothapalli et al. [43] to prove the correctness of
our multifolding scheme for CCS (Theorem 1).

Proof (intuition). We provide a formal proof in Appendix H.1. Our multi-folding
scheme is an “early stopping” version of SuperSpartan [60] and the claimed
efficiency follows from the analysis of costs for the first sum-check invocation in
SuperSpartan [60, Theorem 1]. To prove knowledge soundness, we show there
exists an expected polynomial-time extractor that can rewind the interaction
between a verifier and a malicious prover to interpolate for witnesses w⃗1 and
w⃗2. So long as the verifier does not abort, we have that g(r′x) = c. Then, by the
soundness of the sum-check protocol, we have that

∑
j∈[t],k∈[µ] γ

(k−1)·t+j · vj,k +∑
k∈[ν] γ

µ·t+k · 0 =
∑

x∈{0,1}s g(x). By the Schwartz-Zippel lemma, we have that

vj,k =
∑

x∈{0,1}s Lj,k(x) for all j ∈ [t] and k ∈ [µ] and 0 =
∑

x∈{0,1}s Qk(x) for

k ∈ [ν]. This in turn implies that w̃1 and w̃2 are satisfying.

Lemma 2 (Efficiency). Construction 1 is succinct.

Proof. In Step 1 and Step 2, the verifier begins by sampling and sending random
challenges, which takes work O(logm) work, where m is the number of CCS
constraints. Next, in Step 3, the verifier verifies sum-check messages which requires
O(d logm) work, where d is the degree of CCS constraints. In Step 5, the verifier
computes ẽq(rx, r

′
x) and ẽq(β, r′x), which requires O(logm) field operations, and

performs O(t · µ+ ν) field operations where t, µ, and ν are constants. Finally,
in Step 7, the verifier computes O(µ+ ν) group scalar multiplication operations
and O((µ+ ν) · |x|) field operations. Combining all these, the verifier’s work and
the space requirements are logarithmic in the number of constraints and linear
in the degree of CCS constraints. Hence, the verifier’s work is succinct.

By applying the Fiat-Shamir transformation (Construction 3), and instantiating
the random oracle with a hash function, we have the following.

Assumption 1 (Non-interactivity). There exists a non-interactive multi-
folding scheme for (RLCCCS,RCCCS, compat, µ, ν) in the plain model.

5 Non-uniform incrementally verifiable computation

This section introduces non-uniform IVC (NIVC), a generalization of IVC, where
at each step of an incremental computation, the prover proves the satisfiability
of a relation chosen from a set of possible relations (the choice of which relation
to use is made by an additional designated relation), whereas in the standard
IVC, there is only one possible relation. As a result of this generalization, the
overall relation proven by non-uniform IVC can be a non-uniform circuit (i.e.,
circuits without repeating structure), which motivates its name.

As detailed in the introduction, non-uniform IVC implies proofs of program
executions on machines with a pre-defined custom instruction set. In Section 6,
we construct HyperNova, an efficient NIVC scheme.
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In IVC, for a polynomial-time function F , the prover takes as input a claim (i, z0, z)
and a corresponding proofΠi that proves the knowledge of witnesses (ω0, . . . , ωi−1)
such that by computing zj+1 ← F (zj , ωj) for all j ∈ {0, . . . , i− 1} we have that
z = zi. Given a new witness ωi, the prover computes a new proof Πi+1 of the
same size, which proves the statement (i+ 1, z0, zi+1) for zi+1 = F (zi, ωi).

In NIVC, we extend IVC to handle a number of arbitrary polynomial-time
functions (F1, . . . , Fℓ). The choice of which function Fj for j ∈ [ℓ] is executed at
a particular step in the incremental computation is handled by an additional
polynomial-time function φ. More specifically, NIVC captures an incremental
proof system for the following augmented statement: There exists (ω0, . . . , ωi−1)
such that on initial input z0 and claimed output z, by computing zj+1 ←
Fφ(zj ,ωj)(zj , ωj) for all j ∈ {0, . . . , i− 1}, we have that z = zi.

Observe that if we fix ℓ = 1 and that φ outputs 1, we recovers the definition of
IVC [66]. This means that any NIVC scheme is also an IVC scheme.

Definition 11 (Non-uniform IVC). A non-uniform incrementally verifiable
computation (NIVC) scheme is defined by PPT algorithms (G,P,V) and a de-
terministic K denoting the generator, the prover, the verifier, and the encoder
respectively, with the following interface:

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, ((F1, . . . , Fℓ), φ))→ (pk, vk): on input public parameters pp, a control
function φ, and functions F1, . . . , Fℓ deterministically produces a prover key
pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi, Πi)→ Πi+1: on input a prover key pk, a counter i, initial
input z0, claimed output after i applications zi, a non-deterministic advice ωi,
and an NIVC proof Πi attesting to zi, produces a new proof Πi+1 attesting
to zi+1 = Fφ(zi,ωi)(zi, ωi).

• V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i applications zi, and an NIVC proof Πi

attesting to zi, outputs 1 if Πi is accepting, 0 otherwise.

An NIVC scheme (G,K,P,V) satisfies following requirements.

(i) Completeness: For any PPT adversary A we have that

Pr


b = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (i, z0, zi), (ωi, Πi))← A(pp),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ)),
V(vk, (i, z0, zi), Πi) = 1,
zi+1 ← Fφ(zi,ωi)(zi, ωi),
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi),
b← V(vk, (i+ 1, z0, zi+1), Πi+1)


= 1
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where ℓ ≥ 1 and φ produces an element in Z∗ℓ+1. Moreover, φ and each Fj

for j ∈ {1, . . . , ℓ} are a polynomial-time computable function represented as
arithmetic circuits.

(ii) Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E
such that

Pr
r

 zn = z where
zi+1 ← Fφ(zi,ωi)(zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z), Π)← P∗(pp, r),
(ω0, . . . , ωn−1)← E(pp, r)

 ≈
Pr
r

V(vk, (n, z0, z), Π) = 1

∣∣∣∣∣∣
pp← G(1λ, N),
(((F1, . . . , Fℓ), φ), (z0, z), Π)← P∗(pp, r),
(pk, vk)← K(pp, ((F1, . . . , Fℓ), φ))


where r denotes an arbitrarily long random tape.

(iii) Succinctness: The NIVC proof size is independent of the iteration count.

(iv) Efficiency: The prover’s time complexity at any step i is linear in the size
of the function applied at step i and the total number of functions ℓ.

6 HyperNova: NIVC from multi-folding schemes

We now describe HyperNova, a general compiler that takes a multi-folding scheme
for an NP-complete relation with mild requirements and produces an NIVC
scheme. For simplicity, we focus on constructing NIVC, but our construction
extends naturally to provide a generalization of IVC to distributed computations
called proof-carrying data (PCD) [22,7].

In Section 6.1, we provide an informal overview of HyperNova, instantiated with
the multi-folding scheme for CCCS from Section 4. Next, in Section 6.2 we isolate
the necessary properties for a general multi-folding scheme to be used to construct
NIVC. We refer to multi-folding schemes that satisfy these properties as NIVC-
compatible. We then prove that the folding scheme for CCCS is NIVC-compatible.
In Section 6.3 we provide a formal construction of HyperNova.

6.1 Overview of HyperNova

We intentionally overlook certain minor complications. We then address these
complications before providing a formal construction. For concreteness, we fix
CCCS as the NP-complete relation.

Consider efficient functions {F1, . . . , Fℓ} and φ. Recall that the NIVC statement
(i, z0, zi) claims the knowledge of (ω0, . . . , ωi−1) such that by computing z′k+1 ←
Fφ(z′

k,ωk)(z
′
k, ωk) for all k ∈ {0, . . . , i− 1} for z′0 = z0 we have that z′i = zi.

We now describe a single iterative step of the prover’s work. That is, we explain
how the prover can take a proofΠi for the NIVC statement (i, z0, zi) and efficiently
produce an updated proof Πi+1 for the NIVC statement (i+1, z0, zi+1). At a high
level, instead of directly proving the knowledge of a satisfying witness to some
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prescribed Fj for j ∈ {1, . . . , ℓ} in each step, the prover proves the knowledge
of a satisfying witness to an augmented function F ′j . The augmented function
F ′j , in addition to running Fj , performs additional bookkeeping using a folding
scheme to help verifiably update the NIVC proof.

At first glance, a straw-man approach is to have each F ′j take as input a CCCS
instance that claims the correct execution of the latest iteration and then fold that
instance into a running LCCCS instance using the folding scheme in Section 4
(this is the approach taken by Nova [43]). However, the folding scheme for CCCS
requires that both instances have compatible structure (which requires that they
represent the same computation in their matrices). In the case of standard IVC,
as there is only one function that can be applied at each iterative step, this holds
naturally. However, this is not the case for non-uniform IVC.

To address this, F ′j instead takes a list Ui of running instances, where Ui[j]
attests to all prior iterations of F ′j up to i− 1 steps. As such, checking all of Ui is
equivalent to checking i− 1 steps. In addition, F ′j takes as input a new instance
ui, which claims the correctness of the i’th step. Instead of directly checking this
instance (which would be concretely expensive), F ′j folds ui into the appropriate
instance in Ui according to φ to produce a new list of running instances Ui+1.
To claim the correctness of F ′j itself, the prover produces a new instance ui+1.

We let the NIVC proof Πi contain the list Ui, the fresh instance ui, and the
corresponding witnesses. Thus, the prover can use parts of Πi as input to the
appropriate function F ′j to produce Ui+1 and ui+1, and separately compute the
corresponding witnesses. These terms together define Πi+1. At the end of the
iterative computation (or at any intermediate step, if necessary), the verifier can
check i steps by checking proof Πi directly.

The prior description overlooks the following minor issues. Prior work [43] ad-
dresses these (except for the first one), and we now provide an overview of these
in light of the above overview.

First, we describe how to update a proof Πi to produce a proof Πi+1. However,
we did not define a base case proof Π0 and how the prover, the verifier, and each
function F ′j handles the base case. At a high level, we have F ′j populate U with
satisfying running instances in the base case.

Second, the non-interactive folding scheme’s verifier run by F ′j needs additional
advice generated by the non-interactive folding scheme’s prover. To address this,
the prover provides additional non-deterministic input to F ′j .

Finally, there is a subtle sizing issue in the above description: in each step, because
Ui+1 is produced as the public IO of F ′pci+1

, it must be contained in the public

IO of instance ui+1. In the next iteration, because ui+1 is folded into Ui+1[pci+1],
this means that Ui+1[pci+1] is at least as large as Ui by the properties of the
folding scheme. This means that the list of running instances grows in each step.
To alleviate this issue, we have each F ′j only produce a hash of its outputs as
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public output. In the subsequent step, the next augmented function takes as
non-deterministic input a preimage to this hash.

6.2 NIVC-Compatible multi-folding schemes

Generalizing the above discussion, a multi-folding scheme for an arbitrary com-
mitted relation R2 can be used for NIVC if it satisfies the following properties:
First, statements about the correct execution of an efficient function F can be
encoded (and decoded) as statements in the underlying relation of R2. We refer
to this property as NP-completeness. Second, structures and instances can be
encoded (and decoded) independently of witnesses. We refer to this property
as partial functions. Third, we must have that any efficient function F can be
encoded as an R2 structure in a way that preserves the size of F . We refer to
this property as monotonicity. Fourth, we must have that there exists a default
satisfying instance-witness pair in R1 (this is required for the base case of our
NIVC construction). We refer to this property as default instances. We formally
define NIVC-compatibility as follows.

Definition 12 (NIVC-compatible multi-folding scheme). Consider a re-
lation R1, and a committed relation R2 over an underlying relation R′2. A suc-
cinct, non-interactive multi-folding scheme (G,K,P,V) with deterministic V for
(R1,R2, compat, 1, 1) is NIVC-compatible if it satisfies the following properties.

1. NP-completeness: There exists a deterministic polynomial-time efficiently
invertible function enc such that for any arithmetic circuit F , input x, non-
deterministic input w, and output y, for structure-instance-witness tuple
(s2, u,w)← enc(F, (x, y), w) we have that (s2, u,w) ∈ R′2 iff F (x,w) = y.

2. Partial functions: There exists deterministic, efficiently-invertible polynomial-
time functions encstr and encinst such that for any arithmetic circuit F ,
input x, non-deterministic input w, and output y, for R′1 and R′2 struc-
tures (s1, s2) ← encstr(F ) and R′2 instance u ← encinst((x, y)) we have that
(s2, u,w) = enc(F, (x, y), w) for some R′2 witness w and that compat(s1, s2) =
1.5

3. Monotonicity: For arithmetic circuits F and G, given |F | ≤ |G| we have that
|encstr(F )| ≤ |encstr(G)|. The term |F | denotes the total number of gates in F
and the term |encstr(F )| denotes the total number of constraints in encstr(F ).

4. Default instances: There exists (u⊥,w⊥) such that for any public parameters
pp and structure s, we have that (pp, s, u⊥,w⊥) ∈ R1.

Our multi-folding scheme for CCS (Construction 1) is NIVC-compatible.

Lemma 3 (NIVC-compatibility). Construction 1 is NIVC-compatible.

5 Note that the required property on w is captured in the NP-completeness requirement.
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Proof (Intuition). NP-completeness of RCCS follows from [60, Lemma 1], which
reduces an NP-complete relation, R1CS, to RCCS. Moreover, a structure, instance,
and witness tuple in RCCS has enough information to reconstruct the original
function F and its inputs and outputs. This implies invertibility of enc. Since
CCS generalizes R1CS, we have that that the RCCCS structure (i.e., constraint
matrices) depends only on the function F (and not inputs) and in turn can be
used to reconstruct F and that the RCCCS instance depends only on the public
inputs and outputs and can be used to reconstruct these values. This implies the
partial function requirement. Moreover, monotonicity holds from the reasoning
in Setty et al. [60]. Finally, we have that RLCCCS has default instances because
for any public parameters and structure, we have that (u = 0, x = 0⃗, r = 0, v1 =
0, . . . , vt = 0) and w̃ = 0 is a satisfying instance-witness pair. We provide a
formal proof in Appendix H.2.

6.3 A compiler from NIVC-compatible folding schemes to NIVC

Construction 2 (NIVC from multi-folding schemes). Consider a relation
R1 and a committed relation R2 for a commitment scheme (Commit,Gen). Let
NIFS be an NIVC-compatible non-interactive multi-folding scheme for a single
instance of R1 and R2. Let (u⊥,w⊥) be a default instance-witness pair for R1

that satisfies any structure and public parameters. We construct an NIVC scheme
as follows.

Consider a deterministic polynomial-time function φ and ℓ polynomial-time
functions (F1, . . . , Fℓ) that take non-deterministic input and a cryptographic
hash function hash. We first define augmented functions F ′j for j ∈ [ℓ], where all
input arguments are taken as non-deterministic advice, as follows.

F ′j(vkfs,Ui, ui, pci, (i, z0, zi), ωi, π)→ x:

1. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

2. Compute the next output zi+1 ← Fj(zi, ωi).

3. If i = 0:

(a) Check that z0 = zi to ensure that the statement holds in the base case.

(b) Set Ui+1 ← (u⊥, . . . , u⊥).

4. Otherwise:

(a) Parse ui as (C, u
′
i), a commitment to the witness and the remainder.

(b) Check that u′i references Ui in the output of the prior iteration:

u′i
?
= encinst(hash(vkfs, i, z0, zi,Ui, pci)).

(c) Check that 1 ≤ pci ≤ ℓ.
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(d) Copy Ui+1 ← Ui and update Ui+1[pci]← NIFS.V(vkfs[pci],Ui[pci], ui, π).

5. Output x← hash(vkfs, i+ 1, z0, zi+1,Ui+1, pci+1).

Next, we define the NIVC scheme (G,K,P,V) as follows.

G(1λ, N)→ pp: Output NIFS.G(1λ, N).

K(pp, (φ, (F1, . . . , Fℓ)))→ (pk, vk):

1. Compute (s1,j , s2,j)← encstr(F
′
j) for all j ∈ [ℓ].

2. Compute (pkfs,j , vkfs,j)← NIFS.K(pp, s1,j , s2,j) for all j ∈ [ℓ].

3. Compute and output the prover and verifier keys.

vk← (pp, (vkfs,1, . . . , vkfs,ℓ), (s1,1, . . . , s1,ℓ), (s2,1, . . . , s2,ℓ))

pk← ((φ, (F1, . . . , Fℓ)), (pkfs,1, . . . , pkfs,ℓ), vk)

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:

1. Parse Πi as ((Ui,Wi), (ui,wi), pci).

2. Compute the next program counter pci+1 ∈ [ℓ]← φ(zi, ωi).

3. If i = 0: Let (Ui+1,Wi+1, π)← ((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥),⊥).

Otherwise: Copy Ui+1 ← Ui and Wi+1 ←Wi, and update

(Ui+1[pci],Wi+1[pci], π)← NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

4. Compute the output y ← F ′pci+1
(vkfs,Ui, ui, pci, (i, z0, zi), ωi, π).

5. Compute an instance-witness pair encoding the valid execution of F ′pci+1
:

( , u′i+1,wi+1)← enc(F ′pci+1
, (⊥, y), (vkfs,Ui, ui, pci, (i, z0, zi), ωi, π)).

6. Compute the committed instance: ui+1 ← (Commit(pp,wi+1), u
′
i+1).

7. Output Πi+1 ← ((Ui+1,Wi+1), (ui+1,wi+1), pci+1)

V(vk, (i, z0, zi), Πi)→ {0, 1}:

1. If i = 0, output 1 if zi = z0 and 0 otherwise.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Parse ui as (C, u
′
i). Check that u′i = encinst(hash(vkfs, i, z0, zi,Ui, pci)).

4. Check that 1 ≤ pci ≤ ℓ.

5. Check (pp, s1,j ,Ui[j],Wi[j]) ∈ R1 for j ∈ [ℓ] and (pp, s2,pci , ui,wi) ∈ R2.

We formally prove the following lemma in Appendix H.3.
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Lemma 4 (NIVC from multi-folding schemes). Construction 2 takes a
NIVC-compatible multi-folding scheme and produces an NIVC scheme.

Proof (Intuition). To prove knowledge soundness, suppose that we have a ma-
licious prover P∗i that successfully produces a convincing NIVC proof Πi of i
iterations with non-negligible probability. Using P∗i , we construct a corresponding
extractor Ei−1 which can use this prover to extract a proof Πi−1 and the witness
ωi−1 by the knowledge soundness of the underlying multi-folding scheme. This
extractor then implies a corresponding prover P∗i−1 which can use this extractor
to produce a successful proof Πi−1 with non-negligible property. Then, recursively
repeating this process, we can derive the full list of witnesses.

Below, we state the concrete efficiency characteristics of HyperNova instantiated
with our multi-folding scheme for CCS (Construction 1), which is in turn is
instantiated with the Pedersen commitment scheme.

Optimization. As an immediate optimization, we have the verifier circuit inside
F ′j for j ∈ [ℓ] use standard memory checking techniques to verifiably read and
write the appropriate running instance into externalized memory rather than
directly passing all running instances through each step of F ′j . This provides
asymptotic improvements: For instance the verifier circuits work is O(log ℓ) hashes
when using Merkle trees [49,16], and O(1) hashes and elliptic curve hash-to-curve
and point additions when using a multiset-CRHF-based memory [8,23,58]. Then,
we have an NIVC scheme with an a-la-carte cost profile, where the cost of each
recursive step only scales with the particular function executed at that step.

Theorem 3 (HyperNova). Given the multi-folding scheme in Construction 1
instantiated with the Pedersen commitment scheme, Construction 2 produces an
NIVC scheme such that for step functions Fj for j ∈ [ℓ] that can be expressed in
CCS with mj constraints of degree d and qj monomials, nj witness variables, tj
CCS matrices, and Nj non-zero entries in the CCS matrices, and control function
φ that can be expressed in CCS with m constraints of degree d and qφ monomials,
nφ witness variables, tφ CCS matrices, and Nφ non-zero entries in the CCS
matrices, the efficiency characteristics are as follows: The NIVC prover time for
a step proving the correct execution of Fj is a single MSM of size O(nφ + nj)
and O((Nφ + Nj) + (tφ + tj) · (mφ + mj) + (qφ + qj) · (mφ + mj) · d · log2 d)
finite field operations. The verifier circuit size is o(|φ| + 1 · G + 2 · Hℓ,tj + d ·
logmj ·F+logmj ·Rd+2 ·M), where |φ| denotes the size of the constraint system
for encoding φ in the verifier circuit, G is the number of constraints required to
encode a group scalar multiplication, Hℓ,tj is the number of constraints required to
encode hash (which depends on ℓ and tj), F is the number of constraints to encode
field operations, Rd is the number of constraints to encode the RO ρ, and M is
the number of constraints to encode to memory read/write over O(ℓ) elements.

Proof. The prover time complexity follows from Theorem 1. As for the verifier
circuit size, on input instances U and u, NIFS.V computes U.C ← U.C + ρ · u.C,
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which costs a single group scalar multiplication. Verifying the non-interactive
sum-check proof in the non-interactive multi-folding scheme proof requires the
verifier to perform O(d · logmφ +mj) finite field operations and O(logmφ +mj)
calls to the RO to obtain challenges in the sum-check protocol. By construction,
the verifier circuit calls φ once and makes two additional calls to hash. Finally,
two memory operations are required to read and write a running instance.

7 HyperNova’s zero-knowledge and succinctness layer

In HyperNova, NIVC proofs are linear in the sizes of circuits for each supported
function and may reveal information about the secret witnesses in each step of
execution. This section describes how to provide a zero-knowledge argument of
a valid NIVC proof. Formally, our goal is to design a zero-knowledge argument
(Definition 23) for the following relation. We achieve this without employing
zkSNARKs (solving the problem motivated earlier in Section 1.2). For additional
succinctness, one can employ a non-zk SNARK.

Definition 13 (Proof of Valid NIVC Proof). Let NIVC denote the NIVC
scheme described in Construction 2. We define the relation RVNIVC over public
parameter, structure, instance, and witness tuples as follows.

RVNIVC =

{
(pp, (F1, . . . , Fℓ, φ), (i, z0, zi), Π)

∣∣∣∣ vk← NIVC.K(pp, (F1, . . . , Fℓ, φ)),
NIVC.V(vk, (i, z0, zi), Π) = 1

}

Recall that an NIVC proof consists of running instances U and the corresponding
witnesses W, the latest instance u and the corresponding witness w, and the
latest index pc. To check a statement (i, z0, zi), the NIVC verifier checks the list
of running instances U against witnesses W, checks the latest instance u against
witness w with respect to F ′pc, and checks that u references (i, z0, zi) and U.

A straw-man solution is to simply run a zkSNARK proving that the NIVC verifier
accepts some proof Π with respect to a prescribed verifier key vk. However, this
is prohibitively expensive, as it would involve a universal circuit that checks all
running instance-witness pairs internally (including the task of checking if the
provided witnesses are valid openings of commitments in the instances). Also, as
noted in Section 1.2, this entails significant verifier costs in some settings.

Achieving zero-knowledge. To avoid zkSNARKs, our central idea is to instead
rerandomize an NIVC proof using a much more efficient folding scheme.

We formalize this construction and prove its properties in Appendix D (Con-
struction 6). Here, we provide an overview.

To ensure that an NIVC proof Π does not reveal any secret information, the
prover does the following: First, to hide the last instruction pc, the prover
verifiably folds (u,w) into (U[pc],W[pc]) without revealing any of the involved
terms. Next, the prover verifiably folds in randomized instances (Ur,Wr) into
(U,W) to produce a new set of randomized running instances (U′,W′), that reveal
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no information about (U,W) or (Ur,Wr), but can be checked in place of the
original instance-witness pairs. Finally, the prover produces a randomized proof,
which consists of (U′,W′) along with proofs of correct folding.

The central challenge with the above strategy is that the prover must verifiably
fold the instance-witness pairs in the first two steps without revealing any
information about the randomizing instances (and corresponding witnesses) to
the verifier. Due to this constraint, the prover cannot directly engage in a folding
scheme with the verifier. Instead, the prover executes the verifier’s end of the
folding scheme in an auxiliary circuit blind which takes as secret input (u,U, pc)
and randomized instances Ur. blind performs the standard checks on u before
folding in u into U[pc] and then folds each of the randomized instances Ur into U
to produce and output the randomized running instances U′. The prover then
produces a corresponding instance-witness pair (ublind,wblind) that attests to the
correct execution of the blind circuit itself.

Remark 2. If we are interested in randomizing an IVC proof, specifically Nova’s
IVC proof, as opposed to an NIVC proof, then the blind circuit can be avoided
as there is no need to hide pc. We describe this idea further in Appendix D.4.

Several problems remain. First, we must ensure that there actually exists a
method to sample (Ur,Wr). Moreover, we must ensure that the folding scheme
used to randomize (U,W) satisfies the following property: Given one of the input
instance-witness pairs is randomly sampled, we must have that the output folded
instance-witness pair is indistinguishable from random. We refer to a folding
scheme that satisfies this property as a randomizing folding scheme (Definition 28)
and argue that the folding scheme for committed CCS is randomizing (Lemma 8).
Then, we can ensure that (U′,W′) reveals no information.

Second, the prover cannot directly reveal the instance-witness pair (ublind,wblind)
attesting to the correct execution of blind as wblind will implicitly contain pc
and several other sensitive terms. Seemingly, we can use a randomizing folding
scheme again, where the prover samples (urb,wrb) folds it into (ublind,wblind) and
only reveals the randomized instance-witness pair (u′blind,w

′
blind) as well as an

(interactive) proof of correct folding πblind. However, this may not be sufficient
because πblind may itself reveal information about wblind even if (u′blind,w

′
blind) does

not. To account for this, we require a folding scheme with a slightly stronger
property, in which the transcript (and output) can be simulated so long as
one of the inputs is random. We refer to a folding scheme that satisfies this
stronger property as a hiding folding scheme. Unfortunately, the folding scheme
for committed CCS, as presented, is not a hiding folding scheme as the interaction
may reveal information about the witness. To remedy this, we instead use the
folding scheme underlying Nova, which we demonstrate satisfies the required
hiding property. Then, we can ensure that (u′blind,w

′
blind) and πblind reveal no

information about wblind.
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The use of Nova’s folding scheme rather than HyperNova’s in the zero-knowledge
layer does not pose efficiency problems: the zero-knowledge layer is applied only
once in the “end” before externalizing NIVC proofs. Furthermore, the work
performed inside blind consists only of the folding scheme verifier (which is quite
efficient to represent in R1CS, the computational model of Nova’s folding scheme).

Altogether, the prover’s final blinded proof consists of the blinded running
instance-witness pairs (U′,W′), an instance ublind attesting to the correct execution
of blind, a randomized instance-witness pair (u′blind,w

′
blind), and an (interactive)

proof πblind attesting that checking (u′blind,w
′
blind) implies checking ublind.

Achieving non-interactivity and succinctness. Appendix D demonstrates
that the above construction is honest-verifier zero-knowledge (i.e., zero-knowledge
only if the verifier behaves honestly in the interaction). One can heuristically
make it zero-knowledge and non-interactive by employing the Fiat-Shamir trans-
formation in a standard manner.

For some applications, further succinctness may be required. In such a situ-
ation, the prover can succinctly prove the knowledge of a randomized proof
((U′,W′), ublind, (u

′
blind,w

′
blind), πblind) by using a SNARK to prove each instance in

U′ and u′blind. This is sufficient as the remainder of the blinded proof is constant-
sized. This approach of randomizing first, then adding a succinctness layer affords
two benefits. First, there is no need to use a zero-knowledge SNARK as the
randomizing step ensures that the randomized proof reveals no sensitive informa-
tion. Second, this SNARK can be independently used on each of the instances in
the randomized proof, as opposed to a universal circuit. This avoids having to
simulate the SNARK verifier inside a circuit.

8 HyperNova over a two-cycle of curves with CycleFold

This section describes how to instantiate HyperNova over a cycle of elliptic curves,
which unlocks a concretely-efficient construction that can be implemented. We
motivate a cycle of elliptic curves below, but we refer to prior works [4,52] for
more details. We focus on HyperNova, but our approach is generic and applies to
other folding-scheme-based IVC schemes. It also improves upon prior approach
that was proposed in the context of SNARK-based IVC [4].

8.1 Prior approaches and downsides for using them for HyperNova

We first recall the 2-cycle approach to instantiate SNARK-based recursive argu-
ments in [4]. We then describe how an implementation of Nova [1,52] adapts this
approach to the context of folding-scheme-based recursive arguments.

The 2-cycle approach in [4]. The starting point for [4] is a pairing-based
SNARK (e.g., [54,5]) instantiated over a pairing-friendly elliptic curve E. The
proof system can prove constraint systems defined over E’s scalar field. Fur-
thermore, verifying a proof requires a handful of pairing operations, which are
naturally represented as operations over E’s base field.
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Let (Π1, Π2) denote two SNARK schemes (such as [54,5]) defined respectively
over (E1, E2). In particular, Π1 can “natively” (i.e., without field emulation)
prove constraint systems (e.g., R1CS) defined over the scalar field of E1 and Π2

can prove constraint systems defined over the scalar field of E2.
6 Naturally, proofs

produced by Π1 can be efficiently verified by a constraint system supported by
Π2 and vice versa. This is because the algorithm to verify proofs produced by
Π1 involves operations over E1’s base field, which, by design, equals the scalar
field of E2. (When the fields do not match, one would need to emulate arithmetic
of the desired field using another field, which entails significant costs in terms
of the number of gates necessary to perform basic operations such as additions
and multiplications over the desired field.) In other words, the constraint system
supported by Π2 can efficiently encode the SNARK verifier of Π1.

To realize IVC, at step i, in [4], the prover proceeds as follows (for ease of
exposition, we ignore the base case of i = 0).

1. Using Π1, the prover produces a SNARK π
(1)
i that proves that it has executed

the step i of the desired computation and has successfully verified a SNARK
π
(2)
i−1 from step i− 1.

2. Using Π2, the prover produces a SNARK π
(2)
i that it knows a SNARK π

(1)
i

and has successfully verified it.

Note that π
(2)
i is the IVC proof at the end of step i. At step i+ 1, the prover

starts with π
(2)
i and repeats the above procedure for the (i + 1)th step of the

computation. A key take-away is that this approach requires representing the
SNARK verifier as a circuit on both curves in the cycle.

Nova’s instantiation over a 2-cycle of elliptic curves. The Nova library [1]
adapts [4]’s blueprint to the context of folding schemes, and obtains a concretely-
efficient implementation of Nova [43]. Its approach is to essentially replace
“SNARK verifier” with a “non-interactive folding scheme verifier”. Specifically, an
NP instance defined over the scalar field of the first curve can be efficiently folded
using a circuit defined over the scalar field of the second curve and vice versa.
Different from [4], Nova’s IVC proof is a set of instances and witnesses defined
over both curves in the cycle rather than a single SNARK. Nova additionally
uses the public IO of circuits to track folded NP instances. A recent work [52]
provides a rigorous and detailed description of Nova’s instantiation on a 2-cycle
of elliptic curves and proves its security. This work also exposes a vulnerability
in the original implementation (which is now fixed). Overall, Nova’s approach,
like in [4], still requires representing a verifier (which happens to be the non-
interactive folding scheme verifier) as a circuit on both curves in the cycle of
curves. For Nova [43], which provides the most efficient folding scheme verifier in

6 [4] uses cycles of elliptic curves where both curves are pairing-friendly as they use
pairing-based SNARKs to realize IVC. Unfortunately, such cycles of pairing-friendly
elliptic curves require field sizes to be much larger than ordinary elliptic curves to
achieve a “standard” 128 bits of security.
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the literature, the circuit defined over the second curve in the cycle is ≈10, 000
multiplication gates.

Additional downsides in the context of HyperNova. If the approach in
Nova’s implementation [1,52] is applied to HyperNova to instantiate HyperNova
over a 2-cycle of elliptic curves, it requires significant non-native arithmetic. In
particular, HyperNova’s verifier circuit on the scalar field of E2 must verify a
sum-check proof produced on the scalar field of E1. This involves representing
operations over the scalar field of E1 in a circuit defined over the scalar field of E2.
Since the two scalar fields are different, this would require field emulation, which
is concretely expensive (e.g., thousands of constraints for each field multiplication
and verifying a sum-check proof requires O(d · logm) field operations).

8.2 CycleFold’s approach

CycleFold’s starting point is the observation that folding-scheme-based recursive
arguments (e.g., Nova, HyperNova) can be efficiently instantiated without a cycle
of elliptic curves—except for a few elliptic scalar multiplication operations (2
in Nova, 1 in HyperNova) in their verifier circuits that must be handled with
“wrong” field arithmetic (or non-native arithmetic). We further observe that this
scalar multiplication operation can be verifiably delegated to the second curve
with the following approach. We first represent the desired scalar multiplication
operation as a circuit over the scalar field of the second curve. Crucially, this
avoids non-native arithmetic for computing the scalar multiplication operation (as
there is no need for field emulation). Then, by employing Nova’s folding scheme
verifier on the first curve, we fold that scalar multiplication circuit satisfiability
instance into a running instance. Figure 1 depicts CycleFold’s approach.

Note that CycleFold can be viewed as employing a cycle of elliptic curves at
a different level of abstraction than [4] or its adaptation in Nova [43,1,52].
Specifically, with CycleFold, the cycle of elliptic curves is used at the level of a
folding scheme. In particular, the specific way the cycle of elliptic curves is used
ensures that the folding scheme verifier can be efficiently represented as a circuit
with a single curve in the cycle. Accordingly, the resulting IVC scheme nor its
proof of security has to reason about the cycle of elliptic curves. Indeed, when
we apply CycleFold to HyperNova, we apply it at the level of a folding scheme.

A preliminary design. CycleFold employs a 2-cycle of curves (E1, E2), but it
instantiates a folding-scheme-based recursive argument as if there is only a single
elliptic curve E1. This means that the folding-scheme verifier is represented as a
circuit, say CV, on the scalar field of E1. For the case of HyperNova, CV performs
finite field and hash operations, and a single scalar multiplication (more precisely,
a scalar multiplication followed by a point addition). The finite field and hashing
operations in CV are over E1’s scalar field so they are represented efficiently in
E1’s scalar field. However, the scalar multiplication and point addition operations
require arithmetic over E1’s base field. Naively, one can perform those operations
with non-native arithmetic inside CV. Unfortunately, this strategy will result in
CV containing a million multiplication gates or more.
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Fig. 1. Two incremental steps in HyperNova’s recursive argument instantiated with
CycleFold. ui attests to the computation at step i and Ui attests to all prior steps of the
computation. UEC,i attests to all prior steps of the outsourced elliptic curve operations.
CEC is a circuit which computes the outsourced elliptic curve operations on E2. ui and
Ui are parsed to retrieve inputs for circuit CEC (represented with a dotted line). uEC,i
represents the correct execution of CEC. The main computation on each step additionally
runs the HyperNova folding scheme verifier (which folds claims regarding the main
computation) by taking as auxiliary advice the result of the elliptic curve operation
(read from uEC,i). The main computation additionally runs the Nova folding scheme
verifier which folds claims about the outsourced elliptic curve operation. ui+1 represents
the correctness of the latest step and (Ui,UEC,i) represents the correctness of all prior
steps and outsourced computations.

We now discuss how CycleFold avoids the non-native arithmetic to compute a
scalar multiplication and a point addition—without using the 2-cycle approach
of [4] or its adaptation in Nova [43,1,52].

A “co-processor” circuit over the scalar field of E2. CycleFold creates
a circuit CEC defined over the scalar field of the second curve in the cycle E2

(e.g., on Grumpkin). CEC performs the desired scalar multiplication and a point
addition operation. Furthermore, the public IO of CEC contains the inputs and
outputs of the scalar multiplication and point addition operation. Since CEC is
defined over the scalar field of E2, which is the base field of E1 since (E1, E2) is a
2-cycle of elliptic curves. As a result, CEC does not require non-native arithmetic
to compute the desired scalar multiplication and point addition. In particular,
the size CEC is concretely small (e.g., with ≈1,000–1,500 multiplication gates).

Closing the loop. Instead of performing a scalar multiplication and a point
addition with non-native arithmetic (which as noted above is untenable), the
verifier circuit CV takes as non-deterministic input, among other things, a circuit
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satisfiability instance uEC (i.e., the public IO and a commitment to a purported
satisfying witness to an instance of CEC). In addition to performing the rest of
folding scheme verifier’s work, CV consumes the claimed output from the public
IO of uEC after checking that inputs to CEC match its desired inputs. CV then
folds uEC into a running instance, using Nova’s folding scheme.

Appendix E provides a formal construction of HyperNova over a cycle of elliptic
curves and proves its correctness. We summarize our result with the following
theorem. For simplicity, we formalize the case folding a single fresh instance into
a single running instance. However, our construction can be naturally generalized
for an arbitrary number of instances, as in Construction 1.

Theorem 4 (A multi-folding scheme for CCS over cycles). Construc-
tion 7 is a public-coin multi-folding scheme for (R1 = RLCCCS ×RCRR1CS,R2 =
RCCCS, compat, µ = 1, ν = 1) with perfect completeness and knowledge soundness.
For a CCS instance with m constraints of degree d and q monomials, n witness
variables, t CCS matrices, and N non-zero entries in CCS matrices, and a lin-
earized CCS instance with the same structure, the efficiency characteristics are
as follows: The prover time is O(N + t ·m+ q ·m · d · log2 d) finite field operations
and O(1) group operations. The verifier time is O(d · logm) finite field operations
and O(1) group operations. The communication complexity is O(d · logm) finite
field elements.

Proof (Intuition). Completeness, knowledge-soundness, and efficiency hold by
similar reasoning as the proof of Theorem 1 and the properties of the folding
scheme for relaxed R1CS [43]. We provide a formal proof in Appendix H.4

By leveraging Construction 7 made non-interactive in the plain model via the
Fiat-Shamir transformation (Construction 3), we get Theorem 2, which follows
from [43, Lemma 4] and Theorem 4.
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A Additional Preliminaries

A.1 Polynomials and low-degree extensions

We adapt this subsection from prior work [57]. We start by recalling several facts
about polynomials.

Definition 14 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 15 (Low-degree polynomial). A multivariate polynomial g over
a finite field F is called low-degree polynomial if the degree d of g in each variable
is exponentially smaller than |F| (i.e., d = O(log |F|)).

Low-degree extensions (LDEs). Suppose g : {0, 1}ℓ → F is a function that
maps ℓ-bit elements into an element of F. A polynomial extension of g is a low-
degree ℓ-variate polynomial, denoted g̃, such that g̃(x) = g(x) for all x ∈ {0, 1}ℓ.

A multilinear polynomial extension (or simply, a multilinear extension, or MLE) is
a low-degree polynomial extension where the extension is a multilinear polynomial
(i.e., the degree of each variable in g̃ is at most one). Given a function Z : {0, 1}ℓ →
F, the multilinear extension of Z is the unique multilinear polynomial Z̃ : Fℓ → F.
It can be computed as follows.

Z̃(x1, . . . , xℓ) =
∑

e∈{0,1}ℓ
Z(e) ·

ℓ∏
i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}ℓ
Z(e) · ẽq(x, e)

= ⟨(Z(0), . . . , Z(2ℓ − 1)), (ẽq(x, 0), . . . , ẽq(x, 2ℓ − 1)⟩

Note that ẽq(x, e) =
∏ℓ

i=1(ei · xi + (1− ei) · (1− xi)), which is the MLE of the
following function:

eq(x, e) =

{
1 if x = e

0 otherwise

For any r ∈ Fℓ, Z̃(r) can be computed in O(2ℓ) operations in F [67,64].

Dense representation for multilinear polynomials. Since the MLE of a
function is unique, it offers the following method to represent any multilinear
polynomial. Given a multilinear polynomial g : Fℓ → F, it can be represented
uniquely by the list of tuples L such that for all i ∈ {0, 1}ℓ, (to-field(i), g(i)) ∈ L
if and only if g(i) ̸= 0, where to-field is the canonical injection from {0, 1}ℓ to F.
We denote such a representation of g as DenseRepr(g).
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Definition 16. A multilinear polynomial g in ℓ variables is a sparse multilin-
ear polynomial if |DenseRepr(g)| is sub-linear in 2ℓ. Otherwise, it is a dense
multilinear polynomial.

As an example, suppose g : F2s → F. Suppose |DenseRepr(g)| = O(2s), then g is
a sparse multilinear polynomial because 2s is sublinear in 22s.

A.2 The sum-check protocol

Suppose there is an ℓ-variate low-degree polynomial, g, where the degree of each
variable in g is at most d. Suppose that a verifier V is interested in checking a
claim of the following form by an untrusted prover P:

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xℓ∈{0,1}

g(x1, x2, . . . , xℓ)

Of course, given g, V can deterministically evaluate the above sum and verify
whether the sum is T . But, this computation takes time exponential in ℓ. Lund et
al. [46] describe the sum-check protocol that requires far less computation on V ’s
behalf, but provides a probabilistic guarantee. In the protocol, V takes as input
randomness r ∈ Fℓ and interacts with P over a sequence of ℓ rounds. At the end
of this interaction, V outputs a claim about the evaluation g(r). Let ⟨P,V(r)⟩
denote the interaction between the prover and verifier with verifier randomness r.
We treat ⟨P,V(r)⟩ as a function that takes prover and verifier input (g, ℓ, d, T )
and outputs the claimed evaluation to be checked.

Lemma 5 (The sum-check protocol [46]). Let g be an ℓ-variate polynomial
with degree at most d in each variable. Then, the sumcheck protocol satisfies the
following properties.

1. Completeness: If T =
∑

x∈{0,1}ℓ g(x), then for all r ∈ Fℓ,

Pr
[
⟨P,V(r)⟩(g, ℓ, d, T ) = g(r)

]
= 1.

2. Soundness: If T ̸=
∑

x∈{0,1}ℓ g(x), then for any P⋆

Pr
r

[
⟨P⋆,V(r)⟩(g, ℓ, d, T ) = g(r)

]
≤ ℓ · d/|F|.

3. Succinctness: The communication cost is O(ℓ · d) elements of F.

Lemma 6 (Sums over evaluations). Consider size ℓ ∈ N. For multilinear
polynomial P ∈ F[X1, . . . , Xℓ] we have that

P (X) =
∑

x∈{0,1}ℓ
ẽq(X,x) · P (x).

where ẽq is a multilinear extension of eq, which takes as inputs two values in
{0, 1}ℓ returns 1 if its inputs are equal and 0 otherwise.
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Proof. Let Q(X) =
∑

x∈{0,1}ℓ ẽq(X,x) · P (x) By the definition of ẽq, we have
that

P (x) = Q(x)

for all x ∈ {0, 1}ℓ. However, because P ∈ F[X1, . . . , Xℓ] is multilinear it is
completely determined by 2ℓ evaluation points. The same holds for Q. Because
P and Q agree on 2ℓ points, they must be the same polynomial.

Lemma 7 (Schwartz-Zippel [56]). let g : Fℓ → F be an ℓ-variate polynomial
of total degree at most d. Then, on any finite set S ⊆ F,

Pr
x←Sℓ

[g(x) = 0] ≤ d/|S|.

A.3 Commitment Schemes

Definition 17 (Commitment Scheme). A commitment scheme is defined
by polynomial-time algorithm Gen : N2 → P that produces public parameters
given the security parameter and size parameter, a deterministic polynomial-
time algorithm Commit : P ×M × R → C that produces a commitment in C
given a public parameters, message, and randomness tuple such that binding
holds. That is, for any PPT adversary A, given pp ← Gen(λ, n), and given
((m1, r1), (m2, r2))← A(pp) we have that

Pr[(m1, r1) ̸= (m2, r2) ∧ Commit(pp,m1, r1) = Commit(pp,m2, r2)] ≈ 0.

The commitment scheme is deterministic if Commit does not use its randomness.

Definition 18 (Hiding). The commitment scheme (Gen,Commit) is hiding if
for any PPT adversary A, given pp ← Gen(λ, n), ((m1, r1), (m2, r2)) ← A(pp),
and Ci ← Commit(pp,mi, ri) for i ∈ {1, 2} we have that

Pr[A(pp, C1) = 1] ≈ Pr[A(pp, C2) = 1].

Definition 19 (Homomorphic). The commitment scheme (Gen,Commit) is
homomorphic if the message space M , randomness space R, and commitment
space C are groups and for all n ∈ N, and pp← Gen(λ, n), we have that for any
m1,m2 ∈M and r1, r2 ∈ R

Commit(pp,m1, r1) + Commit(pp,m2, r2) = Commit(pp,m1 +m2, r1 + r2).

Definition 20 (Succinct Commitments). A commitment scheme (Gen,Commit),
over message space M and commitment space R, provides succinct commit-
ments if for all pp ← Gen(1λ), and any m ∈ M and r ∈ R, we have that
|Commit(pp,m, r)| = Oλ(polylog(|m|)).

Definition 21 (Multilinear Polynomial Commitment Scheme). A multi-
linear polynomial commitment scheme over polynomial ring F1[X1, . . . , Xn] is a
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commitment scheme (Gen,Commit) over message space F1[X1, . . . , Xn], equipped
with an argument of knowledge (Definition 23) for relation Rpolyeval defined as
follows

Rpolyeval =

 (pp, (C, x, y), (P, r))

∣∣∣∣∣∣
P ∈ F1[X1, . . . , Xn],
P (x) = y,
C = Commit(pp, P, r)

 .

A.4 Rank-1 constraint satisfiability (R1CS)

R1CS is an NP-complete problem implicit in the work of GGPR [31]. Below, we
recall its definition.

Definition 22 (R1CS). Consider a finite field F. Let the public parameters
consist of size bounds m,n, ℓ ∈ N where m > ℓ. The R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. An instance x ∈ Fℓ consists of public inputs and outputs and is satisfied
by a witness W ∈ Fm−ℓ−1 if (A · Z) ◦ (B · Z) = C · Z, where Z = (W, x, 1).

A.5 Arguments of Knowledge

Definition 23 (Argument of Knowledge). Consider relation R over public
parameters, structure, instance, and witness tuples. A reduction of knowledge
for R is defined by PPT algorithms (G,P,V) and deterministic algorithm K,
denoting the generator, the prover, the verifier and the encoder respectively with
the following interface.

• G(λ,N)→ pp: Takes as input security parameter λ and size parameters N .
Outputs public parameters pp.

• K(pp, s) → (pk, vk): Takes as input public parameters pp and structure s.
Outputs prover key pk and verifier key vk

• P(pk, u,w) → ⊥: Takes as input public parameters pp, and an instance-
witness pair (u,w). Interactively proves that (pp, s, u,w) ∈ R.

• V(pk, u)→ {0, 1}: Takes as input public parameters pp, and an instance u.
Interactively checks u.

Let ⟨P,V⟩ denote the interaction between P and V. We treat ⟨P,V⟩ as a func-
tion that takes as input ((pk, vk), u,w) and runs the interaction on prover input
(pk, u,w) and verifier input (pp, u). At the end of the interaction, ⟨P,V⟩ out-
puts the verifier’s decision. An argument of knowledge (G,K,P,V) satisfies the
following conditions.

(i) Completeness: For any PPT adversary A, given pp← G(λ,N), (s, u,w)←
A(pp) such that (pp, s, u,w) ∈ R and (pk, vk)← K(pp, s) we have that

⟨P,V⟩((pk, vk), u,w) = 1
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(ii) Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗, there exists an expected polynomial-time extractor E such that given
pp← G(λ,N), (s, u, st)← A(pp), and (pk, vk)← K(pp, s), we have that

Pr[(pp, s, u, E(pp, u, st)) ∈ R1] ≈ Pr[⟨P∗,V⟩((pk, vk), u, st) = 1].

Definition 24 (Succinctness). An argument of knowledge is succinct if the
communication complexity and the verifier time complexity is at most poly-
logarithmic in the size of the structure and witness.

Definition 25 (Non-Interactivity). An argument of knowledge is non-interactive
if the interaction consists of a single message from the prover to the verifier. In
this case, we denote this single message as the output of the prover, and as an
input to the verifier.

Definition 26 (Zero-knowledge). An argument of knowledge (G,K,P,V) for
relation R satisfies zero-knowledge if for any PPT adversary V∗ there exists
an EPT simulator S such that for any PPT adversary A for pp ← G(1λ, N),
(s, (u,w), st1)← A(pp) such that (pp, s, u, w) ∈ R, and (pk, vk)← K(pp, s){

st2
∣∣ st2 ← ⟨P,V∗(st1)⟩((pk, vk), u, w)} ∼= {

st2
∣∣ st2 ← S(pp, s, u, st1)}

where st2 denotes the output of V∗ after interaction. An argument of knowledge
satisfies honest-verifier zero-knowledge (HVZK) if it satisifes zero-knowledge
under an honest (but curious) verifier that behaves according to the interactive
protocol but produces arbitrary output on the side.

A.6 Incrementally Verifiable Computation

Definition 27 (Incrementally verifiable computation (IVC)). An in-
crementally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P,V) and deterministic K denoting the generator, the prover, the verifier,
and the encoder respectively, with the following interface

• G(1λ, N)→ pp: on input security parameter λ and size bounds N , samples
public parameters pp.

• K(pp, F ) → (pk, vk): on input public parameters pp, and polynomial-time
function F , deterministically produces a prover key pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi, Πi) → Πi+1: on input a prover key pk, a counter i, an
initial input z0, a claimed output after i iterations zi, a non-deterministic
advice ωi, and an IVC proof Πi attesting to zi, produces a new proof Πi+1

attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i iterations zi, and an IVC proof Πi attesting
to zi, outputs 1 if Πi is accepting, and 0 otherwise.
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An IVC scheme (G,K,P,V) satisfies the following requirements.

1. Perfect Completeness: For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ, N),
F, (i, z0, zi, Πi)← A(pp),
(pk, vk)← K(pp, F ),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi, Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)

 = 1

where F is a polynomial-time computable function represented as an arithmetic
circuit.

2. Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E such
that

Pr
r


zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ, N),
(F, (z0, zi), Π)← P∗(pp, r),
(pk, vk)← K(pp, F ),
V(vk, (n, z0, z), Π) = 1,
(ω0, . . . , ωn−1)← E(pp, r)

 ≈ 1

where r denotes an arbitrarily long random tape. Moreover, F is a polynomial-
time computable function represented as an arithmetic circuit.

3. Succinctness: The size of an IVC proof Π is independent of the number of
iterations n.

B Achieving non-interactivity for multi-folding schemes

Construction 3 (Fiat-Shamir transformation for multi-folding schemes).
Consider a public-coin multi-folding schemeΠ = (G,K,P,V) for (R1,R2, compat, µ, ν)
with ℓ rounds. Let ρ denote a random oracle. We construct a non-interactive
multi-folding scheme Π ′ = (G′,K′,P ′,V ′) for (R1,R2, compat, µ, ν) in the ran-
dom oracle model as follows.

• G′(1λ, N)→ pp: Compute and output pp← G(1λ, N).

• K′(pp, s)→ pp:

1. Compute (pk, vk)← K(pp, s).

2. Compute hs← ρ(pp, s).

3. Output (pk′, vk′)← ((pk, hs), (vk, hs)).

• P ′(pk′, (u⃗1, u⃗2), (w⃗1, w⃗2)):

1. Parse pk′ as (pk, hs)

2. Run P(pk, (u⃗1, u⃗2), (w⃗1, w⃗2)). On the ith message mi, respond with veri-
fier randomness ri+1 ← ρ(mi, ri) where r1 = hs. Let (u,w) be the output
of P and let π = (m1, . . . ,mℓ) consist of messages from P.
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3. Send π to the verifier.

4. Output (u,w).

• V ′(vk′, (u⃗1, u⃗2)):

1. Parse vk′ as (vk, hs)

2. Receive π = (m1, . . . ,mℓ) from the prover. Compute ri+1 ← ρ(mi, ri) for
r1 = hs.

3. Run V(vk, (u⃗1, u⃗2)) with randomness (r1, . . . , rℓ+1). In round i, send the
prover message mi. Let u be the output of V.

4. Output u.

The Fiat-Shamir transformation affords Lemma 1.

C Additional related work

Halo [13] and its generalization in [19] propose a way to realize IVC (and
proof-carrying data [22,7]) using SNARKs whose verifiers support the so-called
accumulation schemes. Halo2 [14] switches the polynomial IOP in Halo [13] from
Sonic [48] to Plonk [30]. Unfortunately, it incurs substantial prover costs as
the prover must produce a SNARK using Plonk at each step of the program
execution. Furthermore, the prover incurs O(n · d) cryptographic operations,
where n is the size of the circuit at each step and d is the maximum degree of
constraints proven. Switching from Plonk to HyperPlonk [20] would reduce the
cryptographic operations to O(n), but it does not avoid the need to produce
a SNARK. Split accumulation [18] avoids succinct arguments (e.g., SNARKs)
to construct IVC or PCD. Unfortunately, their construction targets R1CS. It is
not clear how to extend it to handle Plonkish without making the prover incur
O(n · d) cryptographic operations, which, as noted above, is undesirable.

Buffet [68], building on Pantry [16] and Ben-Sasson et al. [5], avoids the high
cost of universal circuits yet supports a general class of programs. For exam-
ple, Buffet supports any program in the C programming language as long as it
neither invokes goto statements nor uses function pointers. Furthermore, Buffet
provides an “a la carte” cost profile where the prover’s proof generation costs
are proportional only to the sum of sizes of circuits of the operations invoked
by the program execution. However, Buffet adopts a “line-by-line compilation”
approach [62,15,54,16], where it unrolls programs into non-uniform circuits by
translating each program statement into a concise set of constraints. Unfortu-
nately, this approach requires static bounds on program execution lengths. More
importantly, it is unclear how to prove the satisfiability of unrolled non-uniform
circuits in an incremental fashion. Furthermore, although general, it is unclear
how to use Buffet’s approach to prove program executions on a stateful machine
without producing a non-uniform circuit for each program. Having a separate
circuit for each program is undesirable in practice as it is not clear how in that
model one program can invoke another program (a la “composability”).
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A work that follows Buffet, called vRAM [73], achieves Buffet-like costs for pro-
gram executions on vnTinyRAM [4], a RAM machine with a minimal instruction
set. In particular, during program execution, at the granularity of a processor
cycle, vRAM uses a “trimmed” version of the vnTinyRAM universal circuit where
the trimmed version eliminates circuit elements corresponding to instructions
that were not invoked. Unfortunately, like Buffet, this approach is not incremen-
tal. Specifically, it requires proving that certain global invariants hold over the
entire trace of program execution (e.g., to prove that the trimmed version of the
circuit is correct), using randomized fingerprinting techniques. As with Buffet, it
is unclear how to prove these global invariants hold in an incremental fashion.
Furthermore, this approach reveals, for each program execution, the number
of invocations of each instruction supported by the machine to the verifier, so
vRAM’s approach does not ensure zero-knowledge.

MIRAGE [38] adapts vRAM’s techniques in the context of Groth’s SNARK [34]
(vRAM uses a CMT-based argument [24]). Like vRAM, MIRAGE still relies on
proving invariants over the entire execution trace via fingerprinting techniques,
making its techniques incompatible with incremental proof systems.

D Details of the zero-knowledge and succinctness layer

In this section, we formally construct and prove HyperNova’s zero-knowledge and
succinctness layer. Recall that our goal is to design a zero-knowledge argument
for the following relation.

RVNIVC =

{
(pp, (F1, . . . , Fℓ, φ), (i, z0, zi), Π)

∣∣∣∣ vk← NIVC.K(pp, (F1, . . . , Fℓ, φ)),
NIVC.V(vk, (i, z0, zi), Π) = 1

}

D.1 Building blocks: randomizing and hiding folding schemes

We begin by defining randomizing folding schemes, a central building block for
our zero-knowledge layer. We then demonstrate that the Nova folding scheme
for relaxed R1CS features a stronger hiding property, which we will additionally
leverage in our construction.

Definition 28 (Randomizing). A multi-folding scheme (G,K,P,V) for
(R1,R2, compat, µ, ν) is randomizing if there exists a sampling algorithm sampleR1

for instance-witness pairs in R1 such that for any expected polynomial-time ad-
versary A given pp← G(λ,N) and ((s1, s2), (u⃗1, w⃗1), (u⃗2, w⃗2))← A(pp) such that
compat(s1, s2) = 1, (pp, s1, u⃗1, w⃗1) ∈ Rµ−1

1 , and (pp, s2, u⃗2, w⃗2) ∈ Rν
2 we have

that {
(pp, s1, u, w)

∣∣∣ (u,w) $← sampleR1
(pp, s1)

}
∼= (pp, s1, u, w)

∣∣∣∣∣∣
(ur, wr)

$← sampleR1
(pp, s1),

(pk, vk)← K(pp, (s1, s2)),
(u,w)← ⟨P,V⟩((pk, vk), ((ur, u⃗1), u⃗2), ((wr, w⃗1), w⃗2))

 .
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Lemma 8 (Folding CCS is randomizing). Construction 1 is randomizing.

Proof. We begin by describing a sampling algorithm for linearized committed
CCS.

sampleLCCCS(pp, s)→ (u,w):

(1) Parse size bounds t, ℓ, s′ ∈ N from s.

(2) Parse matrices M̃1, . . . , M̃t from the LCCCS structure s.

(3) Randomly sample partial instance (u, x, r) ∈ (F,Fℓ,F) and witness w̃ ∈
F2s

′−1

.

(4) For i ∈ [t], compute

vi ←
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y)

where z̃ is an s′-variate multilinear polynomial such that z(x) = ˜(w, u, x)(x)
for all x ∈ {0, 1}s′ .

(5) Sample rw̃ ← F and compute C ← Commit(pp, w̃, rw̃)

(6) Compute and output u← (C, (u, x, r, v1, . . . , vt)) and w← (w̃, rw̃).

Now, consider a linearized committed CCS instance-witness pair (C, (u, x, r, v1, . . . , vt))
and (w̃, rw̃) that is folded into an arbitrarily chosen instance-witness pair.

By Step 7 of the multi-folding scheme for CCS, we have that the folded linearized
committed CCS instance is computed by taking a random linear combination of
all incoming linearized CCS instances (and CCS instances reduced to linearized
CCS instances by the sum-check protocol). Thus, we have that the folded terms
C, u, and x are indistinguishable from random. Similarly, we have that the folded
witness w̃ is indistinguishable from random. Moreover, by construction of the sum-
check protocol, we have the updated random value r′x is also indistinguishable from
random. Finally, we have that the terms vj for j ∈ [t] are completely determined
by the prior values. Therefore, we have that the folded instance-witness pair is
indistinguishable from one sampled randomly.

Construction 4 (A folding scheme for committed relaxed R1CS [43]).
Consider a finite field F and a succinct, hiding, and homomorphic commitment
scheme Commit over F. We define the generator and the encoder as follows.

• G(1λ, (m,n, ℓ ∈ N))→ pp: output commitment parameters ppW and ppE for
vectors of size m and m− ℓ− 1 respectively.

• K(pp, (A,B,C))→ (pk, vk): output pk← (pp, (A,B,C)) and vk← ⊥.
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The verifier V takes two committed relaxed R1CS instances (E1, u1,W 1, x1) and
(E2, u2,W 2, x2). The prover P , in addition to the two instances, takes witnesses to
both instances, (E1, rE1 ,W1, rW1) and (E2, rE2 ,W2, rW2). Let Z1 = (W1, x1, u1)
and Z2 = (W2, x2, u2). The prover and the verifier proceed as follows.

1. P: Send T := Commit(ppE , T, rT ), where rT
$← F and

T = AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − u2 · CZ1.

2. V: Sample and send a challenge r
$← F.

3. V,P: Output the folded instance (E, u,W, x), where

E ← E1 + r · T + r2 · E2

u ← u1 + r · u2

W ←W 1 + r ·W 2

x ← x1 + r · x2

4. P: Output the folded witness (E, rE ,W, rW ), where

E ← E1 + r · T + r2 · E2

rE ← rE1 + r · rT + r2 · rE2

W ←W1 + r ·W2

rW ← rW1
+ r · rW2

Construction 5 (Sampling randomized relaxed R1CS). We now provide
an algorithm to sample a randomized relaxed R1CS instance-witness pairs.

sampleRR1CS(pp, s)→ (u,w):

1. Parse s as matrices (A,B,C).

2. Sample a random (W, x, u, rE , rW );

3. Compute E ← AZ ◦BZ − u · CZ, where Z = (W, x, u);

4. Compute (E,W )← (Commit(pp, E, rE),Commit(pp,W, rW )), where rE and
rW are sampled randomly; and

5. Output the instance (E, u,W, x) and witness (E, rE ,W, rW ).

Lemma 9 (Folding R1CS is hiding). Consider the folding scheme (G,K,P,V)
for relaxed R1CS from Construction 4. Then, for any honest-but-curious deter-
ministic V∗, there exists an EPT simulator S such that for all PPT adversary
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A for pp← G(1λ, N), (s, u1,w1)← A(pp) such that (pp, s, u1,w1) ∈ RRR1CS, and
(pk, vk)← K(pp, s){

(st2,w2)

∣∣∣∣∣ (urb,wrb)
$← sampleRR1CS(pp, s)

(st2,w2)← ⟨P,V∗⟩((pk, vk), (u1, urb), (w1,wrb))

}
∼={
(st2,w2)

∣∣ (st2,w2)← S(pp, s, u1)
}
.

where st2 represents the (arbitrary) output of V∗.

Proof. Consider an honest-but-curious PPT adversary V∗. To prove hiding, we
construct an EPT simulator S that simulates the joint distribution of the verifier’s
output and the prover’s output witness as follows.

S(pp, (A,B,C), (E, u,W, x))→ ((E
′
, u′,W

′
, x′), (E′, rE′ ,W ′, rW ′), π):

1. Sample the folded instance-witness pair ((E
′
, u′,W

′
, x′), (E′, rE′ ,W ′, rW ′)).

2. Sample the verifier’s challenge r
$← F

3. Sample a uniformly random T .

4. Solve for the prover’s first message ublind = (Eblind, ublind,W blind, xblind):

• Eblind ← r−2 · (E′ − r · T −W )

• ublind ← r−1 · (u′ − u)

• W blind ← r−1 · (W ′ −W )

• xblind ← r−1 · (x′ − x)

5. Run the verifier V∗ on input vk, and instances (E, u,W, x) and (Eblind, ublind,W blind, xblind).
Let st′ be the output of V∗. Instantiate the verifier randomness to r and send
the first message T .

6. Output st′ and (E′, rE′ ,W ′, rW ′)

We now argue that the simulator (i.e. the ideal setting) produces an output that
is indistinguishable from the prover and the verifier output (i.e. the real setting).
Indeed, consider an arbitrary adversary A. Suppose that

pp← G(1λ, N)

((A,B,C), (E, u,W, x), (E, rE ,W, rW ))← A(pp)
(pk, vk)← K(pp, (A,B,C))

In both the real and ideal settings, because the verifier V∗ interacts honestly with
the prover, the challenge r sampled by V∗ in the real setting is indistinguishable
from the challenge r sampled by S in the ideal setting.
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Moreover, in both the real and ideal settings, T is a hiding commitment, so T is
indistinguishable in the real and ideal settings.

In the real setting, (Eblind, ublind,W blind, xblind) is randomly sampled from the
blinding distribution. And, in the ideal setting, (Eblind, ublind,W blind, xblind) is
indistinguishable from random as it is computed from the randomly sampled

(E
′
, u′,W

′
, x′), T , and r. So, they are indistinguishable.

In the honest setting, by construction, we have that

W ′ ←W + r ·Wblind

x′ ← x+ r · xblind
u′ ← u+ r · ublind

Because Wblind, xblind, and ublind are uniformly random, we have that W ′, x′, and
u′ are uniformly random. Moreover, r′E and r′W are computed as follows.

r′E ← rE + r · rT + r2 · rEblind

r′W ← rW + r · rWblind

By the same argument as above, we have that r′E and r′W are uniformly random.

Then, we have that E′, E
′
, and W

′
are completely determined by the prior values.

Therefore, because W ′, x′, u′, r′E and r′W are also randomly sampled in the ideal

setting, we have that the folded instance (E
′
, u′,W

′
, x′) and the corresponding

witness (E′, rE′ ,W ′, rW ′) are indistinguishable in the real and ideal settings.

This implies that the view of the verifier V∗ is indistinguishable in both the real
and ideal setting. Therefore, the output st′ is indistinguishable in both the real
and ideal setting.

Putting everything together, we have that the simulator’s output is indistinguish-
able from that of the interaction between an honest prover and V∗.

D.2 Core construction

We now formally define a zero-knowledge argument for RVNIVC.

Construction 6 (A zero-knowledge argument for RVNIVC). We construct
a zero-knowledge argument of a valid HyperNova proof. Let NIFS be the non-
interactive multi-folding scheme underlying HyperNova for (R1,R2, compat, ν, µ)
that satisfies randomization and where R2 is a committed relation with respect
to a hiding commitment scheme. Let sampleR1

be the corresponding sampling
algorithm for NIFS guaranteed by the randomization property. Let sampleRR1CS
be the sampling algorithm corresponding to relaxed R1CS (Construction 5). Let
Nova be the zero-knowledge non-interactive folding scheme for relaxed R1CS.

We first construct a blinding circuit blind that takes as input the non-interactive
folding scheme’s verifier key vkNIFS, the NIVC statement (i, z0, zi), and as non-
deterministic input a list of running instances U, an instance u, an index pc, a
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folding proof π for u, random instances Ur, and the corresponding folding proofs
(π1, . . . , πℓ). It outputs an updated list of running instances U′.

blind((vkNIFS, (i, z0, zi)); (U, u, pc, π),Ur, (π1, . . . , πℓ))→ U′:

1. Parse u as (C, u′), i.e., the part that commits to the witness and the remainder.

2. Check that u′ = encinst(hash(vkNIFS, i, z0, zi,U, pc)).

3. Check that 1 ≤ pc ≤ ℓ.

4. Fold in the fresh instance: U[pc]← NIFS.V(vkNIFS[pc],U[pc], u, π).

5. For j ∈ [ℓ], compute U′[j]← NIFS.V(vkNIFS[j],U[j],Ur[j], πj)

6. Output U′.

We define a zero-knowledge argument of knowledge (G,K,P,V) as follows.

G(1λ, N)→ pp:

1. Output (ppNIVC, ppNova)← (NIFS.G(1λ, N),Nova.G(1λ, N)).

K(pp, (φ, (F1, . . . , Fℓ)))→ (pk, vk):

1. Compute (pkNIFS, vkNIFS)← NIFS.K(ppNIFS, (φ, (F1, . . . , Fℓ))).

2. Compute sblind ← encstr(blind).

3. Compute (pkNova, vkNova)← Nova.K(ppNova, sblind)

4. Compute and output

vk← (pp, (pkNIFS, vkNIFS), (pkNova, vkNova))

pk← vk

P(pk, (i, z0, zi), Π):

1. If i = 0: Output ⊥.

2. Parse Π as ((U,W), (u,w), pc).

3. Update (U[pc],W[pc], π)← NIFS.P(pkNIFS[pc], (U[pc],W[pc]), (u,w))

4. Sample ℓ randomized running instance-witness pairs (Ur,Wr) in R1 with
respect to the structures corresponding to F ′1, . . . , F

′
ℓ .

5. For j ∈ [ℓ], compute

(U′[j],W′[j]), πj ← NIFS.P(pkNIFS[j], (U[j],Ur[j]), (W[j],Wr[j]))

6. Compute a relaxed R1CS instance-witness pair corresponding to the execution
of blind

(upartialblind ,wpartial
blind )← enc(blind, ((vkNIFS, (i, z0, zi)),U

′), (vkNIFS, (i, z0, zi), (U, u, pc, π),Ur, (π1, . . . , πℓ)))
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7. Sample randomness r and let wblind ← (wpartial
blind , r) compute the committed

instance

ublind ← (Commit(pp,wblind), u
partial
blind ).

8. Sample a randomized committed relaxed R1CS instance-witness pair (urb,wrb)
with respect to the structure corresponding to blind.

9. Send ublind and urb to the verifier.

10. Interactively randomize the instance-witness pair corresponding to the execu-
tion of blind

(u′blind,w
′
blind)← Nova.P(pkNova, (ublind,wblind), (urb,wrb)).

11. Send (w′blind,W
′) to the verifier.

V(vk, (i, z0, zi))→ {0, 1}:

1. If i = 0: Output 1 if z0 = zi and 0 otherwise.

2. Receive ublind and urb from the prover.

3. Check that enc−1inst(ublind) references vkNIFS and (i, z0, zi).

4. Parse U′ from enc−1inst(ublind).

5. Interactively randomize ublind:

u′blind ← Nova.V(vkNova, ublind, urb)

6. Receive (w′blind,W
′) from the prover.

7. Check the randomized instance attests to the correct execution of blind

(pp, sblind, u
′
blind,w

′
blind) ∈ RRR1CS

where sblind is the structure corresponding to blind.

8. For j ∈ ℓ, check that

(pp, sF ′
j
,U′[j],W′[j]) ∈ R1

where sF ′
j
is the structure corresponding to F ′j .

D.3 Proof of properties

We now prove that Construction 6 is a zero-knowledge argument of knowledge.
In particular, we prove the following theorem.

Theorem 5 (A zero-knowledge argument for RVNIVC). Construction 6 is
an honest-verifier zero-knowledge argument of knowledge for RVNIVC.
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The proof of Theorem 5 can be decomposed into the following lemmas. We sketch
the proof for completeness and knowledge soundness, and give a full proof for
honest-verifier zero-knowledge.

Lemma 10. Construction 6 satisfies completeness and knowledge soundness.

Proof (Sketch). The completeness and knowledge soundness of Construction 6
follows from the completeness and knowledge soundness of the underlying folding
schemes. In particular, the proof proceeds similarly to that of Theorem 4 which
also has the prover demonstrate the correct execution of the folding verifier,
by demonstrating the knowledge of a valid instance-witness pair for a circuit
containing the folding verifier (albeit recursively).

Lemma 11 (Zero-Knowledge). Construction 6 satisfies honest-verifier zero-
knowledge.

Proof. To prove honest-verifier zero-knowledge, we must construct a simulator
(without access to the witness) that can produce a computationally equivalent
transcript to that of an honest prover and a verifier. At a high-level, we observe
that all running instances are randomized by blind and thus can be simulated.
The instance ublind attesting to the execution of blind is itself randomized by Nova,
and thus the corresponding proof of valid randomization and randomized witness
can be simulated due to the hiding property of the Nova folding scheme.

Indeed, consider an honest-but-curious PPT adversary V∗. We begin by con-
structing an honest-but-curious PPT adversary V∗Nova for the underlying Nova
folding scheme.

V∗Nova(vkNova, ublind, urb)→ st2

1. Compute
u′blind ← Nova.V(vkNova, ublind, urb)

and record the transcript as πblind.

2. Output (vk, ublind, urb, u
′
blind, πblind).

Given V∗novafold, let SNova be the corresponding hiding simulator for Nova guaran-
teed by Lemma 9. We construct the desired simulator as follows.

S(pp, (F1, . . . , Fℓ, φ), (i, z0, zi))→ π:

1. Compute the prover and verifier keys

(pk, vk)← K(pp, (F1, . . . , Fℓ, φ))

2. Compute the structure corresponding to the blind circuit:

sblind ← encstr(blind).
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3. Simulate the running instance-witness pairs (U′,W′) with respect to the
structures corresponding to F ′1, . . . , F

′
ℓ :

(U′[j],W′[j])← sampleR1
(pp, encstr(F

′
j)).

4. Simulate a relaxed R1CS instance corresponding to the blinding step that
outputs the randomized running instances U′:

upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U
′)).

5. Sample commitment randomness r and simulate the full instance:

ublind ← (Commit(pp,⊥, r), upartialblind ).

6. Simulate the randomized instance-witness pair attesting to the correct execu-
tion of blind and the corresponding proof of correct randomization:

((urb, u
′
blind, πblind),w

′
blind)← SNova(pp, sblind, ublind).

7. Run the V∗(vk, (i, z0, zi)) with randomness instantiated to the randomness
found in the verifier’s message in πblind:

(a) Send (ublind, urb) as the first message to V∗.

(b) Send prover’s message in πblind as the second message to V∗.

(c) Send w′blind and W′ as the third message to V∗.

(d) Let st2 be the output of V∗.

8. Output st2.

We now demonstrate that the simulated proof is computationally equivalent to
that of an honest interaction. Consider an arbitrary PPT adversary A. Consider
public parameters pp← G(1λ, N) and consider the following adversarially chosen
structure, instance, and witness pair:

((F1, . . . , Fℓ, φ), (i, z0, zi), Π)← A(pp)

Consider the prover and verifier keys (pk, vk) ← NIVC.K(pp, (F1, . . . , Fℓ, φ)).
Suppose that

NIVC.V(vk, (i, z0, zi), Π) = 1.

Now, consider the following distribution, which represents the result of an honest
interaction.  st2

∣∣∣∣∣∣∣∣
(ublind, urb)← P(pk, (i, z0, zi), Π),
r ← V∗(vk, (i, z0, zi), (ublind, urb))
T , (w′blind,W

′)← P(r)
st2 ← V∗(T , (w′blind,W′))
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By construction, we have that P first randomly samples (urb,wrb) and then folds it
into (ublind,wblind) to produce the randomized instance-witness pair (u′blind,w

′
blind)

and the corresponding interactive proof πblind = (r, T ). Moreover, by construction
of Nova, The terms urb, u

′
blind, πblind, and w′blind are uncorrelated with U′ and W′.

Then, by the hiding property of the Nova folding scheme (Lemma 9) and by the
construction of V∗Nova, we have that SNova can simulate ((urb, u

′
blind, πblind),w

′
blind)

with respect to the same verifier key vkNova and instance ublind. Therefore, the
prior distribution is computationally equivalent to the following distribution.

st2

∣∣∣∣∣∣∣∣∣∣∣∣

ublind ← P(pk, (i, z0, zi), Π),
sblind ← encstr(blind),
(urb, (r, T ),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
W′ ← P(r)
st2 ← V∗(T , (w′blind,W′))


.

Next, we have that upartialblind is completely determined by vkNIFS, (i, z0, zi), and U′.
Then, because ublind only additionally contains a hiding commitment, we have have
that it can be simulated by randomly sampling a commitment. Crucially, even
though ublind is no longer guaranteed to be satisfying, we have that SNova cannot
distinguish this fact, and thus performs as if ublind is satisfying. In particular,
letting U′ be the result of parsing the internal state of P, we have that the
following distribution is computationally equivalent to the former distribution.

st2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

U′ ← P(pk, (i, z0, zi), Π),

upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U
′)),

ublind ← (Commit(pp,⊥, r), upartialblind ),
sblind ← encstr(blind),
(urb, (r, T ),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
W′ ← P(r)
st2 ← V∗(T , (w′blind,W′))


.

Moreover, by the randomization property of the underlying multi-folding scheme,
we have that (U′,W′) produced by the prover is indistinguishable from one
an instance-witness pair sampled randomly. Therefore, we have that the prior
distribution is equivalent to the following distribution.

st2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(U′,W′) sampled randomly,

upartialblind ← encinst(((vkNIFS, (i, z0, zi)),U
′)),

ublind ← (Commit(pp,⊥, r), upartialblind ),
sblind ← encstr(blind),
(urb, (r, T ),w

′
blind)← SNova(pp, sblind, ublind),

r ← V∗(vk, (i, z0, zi), (ublind, urb))
st2 ← V∗(T , (w′blind,W′))


.

However, the above distribution precisely follows the construction of the simulator.
Therefore, we have that that the above distribution is computationally equivalent
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to the following distribution.{
st2

∣∣ st2 ← S(pp, (F1, . . . , Fℓ, φ), (i, z0, zi))
}
.

Thus, we have demonstrated that the output of the simulator is computationally
equivalent to that of an honest (but curious) interaction.

D.4 Specializing the zero-knowledge layer for Nova’s IVC proofs

Suppose that we are interested in randomizing Nova’s IVC proof as opposed
to an NIVC proof, we can substantially simplify the zero-knowledge layer. In
particular, we can avoid the blind circuit as there is no need to hide pc in the
case of Nova’s IVC proofs. We now provide a sketch of this simplification.

The folding scheme used below is Nova (Construction 4), which provides the
required hiding property (Lemma 9). Given a Nova IVC proof Π = (Ui, ui,Wi,wi)
proving a statement (i, z0, zi) with a verifier key of vk, the prover produces a
randomized IVC proof Π ′ with the following steps.

1. Fold the instance-witness pairs (Ui,Wi) with (ui,wi) to get a folded instance-
witness pair (Uf ,Wf ) and a folding proof π.

2. Randomly sample a satisfying relaxed R1CS instance-witness pair (Ur,Wr).
3. Fold the instance-witness pairs (Uf ,Wf ) with (Ur,Wr) to get a folded

instance-witness pair (U′i,W
′
i) and a folding proof π′.

4. Output the randomized IVC proof as Π ′ = (Ui, ui,Ur, π, π
′,W′i).

Given a randomized Nova IVC proof Π ′ = (Ui, ui,Ur, π, π
′,W′i), for an IVC

statement (i, z0, zi) with a verifier key of vk, the verifier proceeds as follows.

1. If i = 0, check that z0 = zi.
2. Otherwise:

• Check that ui.x = hash(vk, i, z0, zi,Ui).

• Check that (ui.E, ui.u) = (u⊥.E, 1).

• Fold the instance Ui with ui using π to get a folded instance Uf .

• Fold the instance Uf with Ur using π′ to get a folded instance U′i.

• Check that W′i is a satisfying witness to U′i.

E Details of HyperNova over a cycle of elliptic curves

Let (G1,G2) denote a 2-cycle of elliptic curves, where each curve in the cycle can
be used as cryptographic group (i.e. the discrete logarithm problem is hard). Let
Fp and Fq respectively denote the scalar field and the base field of G1. Naturally,
Fq and Fp respectively denote the scalar field and the base field of G2.

Suppose RLCCCS and RCCCS are both defined over Fp (i.e., the scalar field of
G1) and RCRR1CS is defined over Fq (i.e., the scalar field of G2). We provide a
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multi-folding scheme for

(R1 = RLCCCS ×RCRR1CS,R2 = RCCCS, compat, µ = 1, ν = 1)

where the compat predicate is defined below.

Overview. Our goal is to modify the folding scheme for CCS (Construction 1)
such that it can be efficiently instantiated on a cycle of elliptic curves. For
simplicity, we describe and prove the case of µ = ν = 1. However, both the
construction and proofs naturally generalize to the case of arbitrary values of µ
and ν. In particular, the generalized version simply uses additional powers of a
random challenge when combining claims (as in Construction 1).

Suppose that the prover and the verifier are given as input a tuple consisting of
a linearized committed CCS instance and a committed relaxed R1CS instance
(ULCCCS,UCRR1CS), and a committed CCS instance uCCCS. The prover additionally
takes as input witnesses (WLCCCS,WCRR1CS) and wCCCS.

The original folding scheme verifier folds the committed CCS instance uCCCS into
the the linearized committed CCS instance ULCCCS to produce a new linearized
committed CCS instance U′LCCCS. Internally, this involves finite field and hash
operations. In addition, it involves one scalar multiplication and point addition.
In particular, provided commitment C1 in the linearized committed CCS instance
ULCCCS and commitment C2 in the committed CCS instance uCCCS, the HyperNova
verifier, picks a random challenge ρ, and computes in Step 7

C ′ ← C1 + ρ · C2.

Unfortunately, this computation makes it inefficient to represent the original
verifier over the same curve that represents the computations that it verifies. To
address this, we modify the original verifier to take the resulting value C ′ as
non-deterministic advice. Of course, this advice must be verified.

To do so, the prover generates a relaxed R1CS instance that represents the
random linear combination during the original folding protocol. In more detail,
let sEC = (A,B,C) denote a committed relaxed R1CS structure defined over Fq.
Its public IO consists of (ρ, C1, C2, C

′), where ρ ∈ Fp, C1 ∈ G1, C2 ∈ G1, C
′ ∈ G1.

This constraint system enforces that C ′ = C1 + ρ · C2, where + is the elliptic
curve point addition and · is the elliptic curve scalar multiplication operation in
G1. Since Fq is the base field of G1, sEC computes the required point addition
and scalar multiplication operations “natively” with a concise set of constraints
(i.e., without the “wrong field” arithmetic).

We modify the original verifier to read the inputs and outputs of this relaxed
R1CS instance (rather than computing the random linear combination itself).
Instead of directly checking this instance, it is folded into a running relaxed
R1CS instance using the folding scheme underlying Nova [43]. Note that this
auxiliary computation is represented on the second curve in the cycle. Thus, the
Nova verifier can be natively represented over the first curve alongside the rest
of the original verifier.
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Putting everything together, we achieve a folding scheme that takes a committed
CCS instance and folds it into a linearized CCS instance and a relaxed R1CS
instance to produce a new linearized CCS instance and a relaxed R1CS instance.

Construction 7 (A multi-folding scheme for CCS over cycles). We con-
struct a multi-folding scheme for (R1 = RLCCCS×RCRR1CS,R2 = RCCCS, compat, µ =
1, ν = 1), where compat is defined as follows.

compat(s1, s2)→ {true, false}

1. Parse s1 as (sLCCCS, sRR1CS)

2. Check that sLCCCS = s2 and sRR1CS = sEC

Let PC = (Gen,Commit,Open,Eval) denote an additively-homomorphic poly-
nomial commitment scheme for multilinear polynomials over Fp. Let VC =
(Gen,Commit,Open) denote an additively-homomorphic commitment scheme
with succinct commitments for vectors over Fq.

We define the generator and the encoder as follows.

G(1λ, (m,N, ℓ, t, q, d ∈ N))→ pp:

1. Let n = 2 · (ℓ+ 1)

2. ppPC ← PC.Gen(1λ, log n− 1)

3. ppVC ← VC.Gen(1λ, |sEC|), where |sEC| is the maximum among the number of
constraints or the number of witness variables in sEC.

4. Output (m,n,N, ℓ, t, q, d, |sEC|, ppPC, ppVC)

K(pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))→ (pk, vk):

1. pk← (pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))

2. vk← ⊥

3. Output (pk, vk)

The verifier V takes a tuple consisting of a linearized committed CCS instance
and a committed relaxed R1CS instance (ULCCCS,UCRR1CS), where ULCCCS =
(C1, u, x1, rx, v1, . . . , vt) and UCRR1CS = (E1, u1,W 1, x1), and a committed CCS
instance uCCCS = (C2, x2). The prover P, in addition to these instances, takes
witnesses to all instances, WLCCCS = w̃1, WCRR1CS = (E1,W1), and wCCCS = w̃2.

Let s = logm and s′ = log n. Let z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2).

The prover and the verifier proceed as follows.

1. V → P: V samples γ
$← Fp, β

$← Fs
p, and sends them to P.

2. V: Sample r′x
$← Fs

p.
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3. V ↔ P : Run the sum-check protocol c← ⟨P,V(r′x)⟩(g, s, d+1,
∑

j∈[t] γ
j · vj),

where:

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

Lj(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


Q(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)



4. P → V: ((σ1, . . . , σt), (θ1, . . . , θt)), where for all i ∈ [t]:

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y)

θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y)

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x), and check that

c =

∑
j∈[t]

γj · e1 · σj + γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj



6. V → P: V samples ρ
$← Fp and sends it to P.

7. P → V : P computes a committed relaxed R1CS instance uCRR1CS = (E2, u2,W 2, x2)
with structure sEC and witness wCRR1CS = (E2,W2) to compute the quantity
C1 + ρ · C2, such that the following hold: (1) u2 = 1, (2) E1 = 0, and (3)
x2 = (ρ, C1, C2, C

′) for some C ′ ∈ G1. P then sends uCRR1CS to V.

8. V: Check that E2 = 0, u2 = 1, and x2 = (ρ, C1, C2, C
′) for some C ′ ∈ G1.

9. P → V : Send T = VC.Commit(ppVC, T ), where T = AZ1◦BZ2+AZ2◦BZ1−
u1 · CZ2 − u2 · CZ1, Z1 = (W1, x1, u1), and Z2 = (W2, x2, u2).

10. V → P: V samples ρ⋆
$← Fp and sends it to P.

11. V,P : Output the folded linearized committed CCS instance (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

and the folded committed relaxed R1CS instance (E
⋆
, u⋆,W

⋆
, x⋆), where for
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all i ∈ [t]:

u′ ← u + ρ · 1

x′ ← x1 + ρ · x2
v′i ← σi + ρ · θi
E

⋆ ← E1 + ρ⋆ · T

u⋆ ← u1 + ρ⋆ · 1

W
⋆ ←W 1 + ρ⋆ ·W 2

x⋆ ← x1 + ρ⋆ · x2

12. P: Output the folded witnesses WLCCCS = w̃′ ← w̃1 + ρ · w̃2 and WCRR1CS =
(E⋆,W ⋆), where E⋆ ← E1 + ρ⋆ · T and W ⋆ ←W1 + ρ⋆ ·W2.

We recall Theorem 4 below. We prove correctness in Appendix H.4.

Theorem 6 (A multi-folding scheme for CCS over cycles). Construc-
tion 7 is a public-coin multi-folding scheme for (R1 = RLCCCS ×RCRR1CS,R2 =
RCCCS, compat, µ = 1, ν = 1). with perfect completeness and knowledge soundness.

Assumption 2 (Non-interactivity). There exists a non-interactive multi-
folding scheme for (RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the plain model.

Justification. By applying the Fiat-Shamir transformation (Construction 3) to
the multi-folding scheme in Construction 7, we obtain a non-interactive multi-
folding scheme for (RLCCCS×RCRR1CS,RCCCS, 1, 1) in the random oracle model. By
instantiating the random oracle with an appropriate cryptographic hash function,
we heuristically obtain a non-interactive multi-folding scheme for (RLCCCS ×
RCRR1CS,RCCCS, 1, 1) in the plain model.

Given the above multi-folding scheme, we prove that it is IVC-compatible.

Lemma 12 (IVC-compatibility). The non-interactive multi-folding scheme
for (RLCCCS × RCRR1CS,RCCCS, 1, 1) (Construction 7, Assumption 2) is IVC-
compatible.

Proof (Intuition). NP-completeness, partial functions, and monotonicity forRCCS,
the underlying relation of RCCCS, holds by Lemma 3. To show the default in-
stances property, we must show that RLCCCS and RCRR1CS both have default
instances. The former requirement holds by Lemma 3, and the latter requirement
holds due to Kothapalli et al. [43].

We recall Theorem 2 below.
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Theorem 7 (HyperNova over cycles). Given the multi-folding scheme in
Construction 7 instantiated with the Pedersen commitment scheme, Construc-
tion 2 produces an IVC scheme such that for step functions Fj for j ∈ [ℓ] that
can be expressed in CCS with mj constraints of degree d and qj monomials, nj

witness variables, tj CCS matrices, and Nj non-zero entries in CCS matrices,
and control function φ that can be expressed in CCS with m constraints of degree
d and qφ monomials, nφ witness variables, tφ CCS matrices, and Nφ non-zero
entries in the CCS matrices, the efficiency characteristics are as follows.

• The NIVC prover time for each step is a single MSM of size O(nφ + nj) and
O((Nφ +Nj) + (tφ + tj) · (mφ +mj) + (qφ + qj) · (mφ +mj) · d · log2 d) finite
field operations

• The size of the verifier circuit is o(|φ|+ 2 · G+ (d · logmj) · F+ logmj · Rd +
2 · Hℓ,tj + 2 ·M) on the first curve and G on the second curve in a cycle of
elliptic curves

where G is the number of constraints required to encode a group scalar multi-
plication natively (i.e., without field emulation), H is the number of constraints
required to encode a hash function, F is the number of constraints to encode field
operations, R is the number of constraints to encode a cryptographic hash function
used for randomness, and M is the number of constraints to encode to memory
read/write over a memory of size O(ℓ).

Proof (Intuition). This follows from [43, Lemma 4] and Theorem 3.

F nlookup: A lookup argument for HyperNova

This section describes a lookup argument, which we refer to as nlookup, that is
suitable for use in recursive arguments such as Nova, HyperNova, and others.

Suppose that there is a table T of size n. Now consider m variables v1, . . . , vm in
a CCS instance and we wish to enforce that those values are contained in T .

A classic approach is to store T as a Merkle tree for which the circuit gets as
public input a commitment. Then to prove that a certain value is in T , the prover
could supply as non-deterministic advice to the circuit a Merkle proof of inclusion,
and the circuit verifies the Merkle proof of inclusion. This unfortunately requires
O(m · log n) hash evaluations inside the circuit, which is prohibitive. Plookup [29]
provides an approach where the number of constraints is O(max(m,n)), which
is acceptable when m ≈ n. It is unsuitable in the context of recursive SNARKs
such as Nova where a particular recursive step may perform m << n lookup
operations. A recent flurry of works (e.g., see cq [26] for the latest in this line of
work) consider the case where m << n, but it is unclear how to adapt them to
the setting of recursive SNARKs without incurring high recursion overheads.

We provide a conceptually simple and yet efficient lookup argument, that we
refer to as nlookup. For m lookups on a table of size n entries, nlookup requires
O(m log n) multiplications and O(log n) hash operations inside a circuit (with
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small constants) and the prover performs O(n) finite field operations. In partic-
ular, the prover does not commit to any additional polynomials. This lookup
argument is not suitable for accelerating bitwise operations in the circuit model of
computation, but it is a perfect tool for expressing finite state machines efficiently
with Nova and HyperNova (e.g., see [63, §2.4]).

nlookup in a nutshell. Without loss of generality, assume that n = 2ℓ. We
can view T as a function from {0, 1}ℓ → F. Furthermore, let T̃ denote the

unique multilinear extension of the function T . In other words, T̃ is a multilinear
polynomial in ℓ variables where the entries in the table are evaluations of T̃
over the Boolean hypercube {0, 1}ℓ. To prove m lookup operations, the prover
specifies m evaluation points q1, . . . , qm over the Boolean hypercube such that
T̃ (qi) = vi for all i ∈ [m]. This requires O(m log n) Booleanity checks in the
circuit to ensure that qi ∈ {0, 1}ℓ for all i ∈ [m].

We now devise a multi-folding scheme where the prover and the verifier fold the
task of checking the correctness of m lookup operations into task of checking
an evaluation of T̃ at a single point in its domain. Furthermore, in our context,
the circuit maintains a running claim about an evaluation of T̃ and the folding
scheme folds incoming lookup claims into this running claim.

Suppose that the running claim is T̃ (qr)
?
= vr for some qr ∈ Flogn and vr ∈ F.

At initialization, qr can be arbitrary and vr ← T̃ (qr). Now, the folding scheme

reduces the following claim to an evaluation of T̃ , where ρ ∈ F is picked by the
verifier at random.

vr +
∑

i={1,...,m}

ρi · vi
?
=

∑
j∈{0,1}log n

ẽq(qr, j) · T̃ (j) +
∑

i={1,...,m}

ρi ·
∑

j∈{0,1}log n

ẽq(qi, j) · T̃ (j)

The folding scheme applies the sum-check protocol and outputs a new claim

about T̃ (q′r)
?
= v′r. The prover’s work in the folding scheme is O(n) finite field

operations. The verifier’s work in the non-interactive folding scheme is O(log n)
hash and field operations. Furthermore, at the end of the sum-check protocol (i.e.,
inside the folding scheme), the verifier computes evaluations of m ẽq polynomials
at a random point, this takes O(m · log n) multiplications.

F.1 Details and security proofs

Definition 29 (Polynomial Evaluation Relation). We define the polynomial
evaluation relation Rpoly as follows. Let the public parameters consist of size

parameter ℓ ∈ N. An Rpoly structure consists of T̃ , a multilinear polynomial in ℓ
variables. An Rpoly instance is (r, v) ∈ (Fℓ,F) where r is an evaluation point and
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v is a claimed evaluation. An Rpoly witness is ⊥. We define Rpoly as follows.

Rpoly =

{
((ℓ, T̃ ), (r, v),⊥)

∣∣∣∣∣ ℓ ∈ N, T̃ ∈ F1[X1, . . . , Xℓ], (r, v) ∈ (Fℓ,F)
T̃ (r) = v

}
.

Definition 30 (Lookup Relation). We define the lookup relation Rlookup as
follows. Let the public parameters consist of size parameter ℓ ∈ N. For vector
T ∈ Fn (where n = 2ℓ), an Rlookup structure consists of the corresponding

multilinear extension in ℓ variables, T̃ . An Rlookup instance consists of value
v ∈ F. An Rlookup witness consists of index q ∈ {0, 1}ℓ. We define Rlookup as
follows.

Rlookup =

{
((ℓ, T̃ ), v, q)

∣∣∣∣∣ ℓ ∈ N, T̃ ∈ F1[X1, . . . , Xℓ], v ∈ F, q ∈ {0, 1}ℓ
T̃ (q) = v

}
.

We now provide a multi-folding between two relations, a polynomial evaluation
instance and a collection of lookup instances.

Construction 8 (A multi-folding scheme for lookup instances). We
construct a multi-folding scheme for (Rpoly,Rlookup, compat, µ = 1, ν) for arbitrary
ν ∈ N.

compat(s1, s2)→ {true, false}

1. If s1 = s2, then return true, otherwise, return false.

We define the generator and the encoder as follows.

• G(1λ, N)→ pp:

1. Sample size bound ℓ ∈ N.

2. Output pp = ℓ.

• K(pp = ℓ, T̃ ∈ F1[X1, . . . , Xℓ])→ (pk, vk): Output (pk, vk) = ((pp, T̃ ), pp).

The prover takes as input pk = (pp = ℓ, T̃ ) and the verifier take as input
vk = pp = ℓ. The verifier V takes a polynomial evaluation instance (qr, vr) and a
vector of lookup instances (v1, . . . , vm) The prover P , in addition to the instances,
takes witnesses to the lookup instances (q1, . . . , qm).

The prover and the verifier proceed as follows.

1. P → V: (q1, . . . , qm).

2. V: Check that for all i ∈ [m], qi ∈ {0, 1}ℓ.

3. V → P: V samples ρ
$← F and send it to P.

4. V: Sample q′r
$← Fs.
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5. V ↔ P : Run the sum-check protocol c← ⟨P,V(q′r)⟩(g, ℓ, 2, vr+
∑

i∈[m] ρ
i · vi),

where:

g(x) := ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

6. P → V: v′r, where v′r = T̃ (q′r).

7. V: Compute e← ẽq(qr, q
′
r) and ei ← ẽq(qi, q

′
r) for all i ∈ [m]. Abort if

c ̸= e · v′r +
∑
i∈[m]

ρi · ei · v′r.

8. V,P: Output the folded polynomial evaluation instance (q′r, v
′
r).

Theorem 8 (nlookup). Construction 8 is a public-coin multi-folding scheme
for (Rpoly,Rlookup, compat, µ = 1, ν) for arbitrary ν ∈ N.

Proof (Intuition). Completeness and knowledge soundness holds by the com-
pleteness and soundness of the sumcheck protocol. We provide a formal proof in
Appendix H.5.

G Building HyperNova with a black-box use of Nova

We design a step circuit for Nova that runs the verifier’s logic in any IVC-
compatible non-interactive multi-folding scheme. The step circuit is encoded with
R1CS (a popular NP-complete constraint system [31]) and proven incrementally
with Nova, but the step circuit is only in charge of running the verifier of the non-
interactive multi-folding scheme, in addition to simple bookkeeping. As a result,
this provides an IVC scheme, where each step of the incremental computation is
expressed with any NP-complete language that has an IVC-compatible multi-
folding scheme. Furthermore, we achieve this with a black box use of an IVC
scheme for R1CS.

In Nova, each step circuit takes as input the output of the previous step and
produces the output for the current step. In HyperNova, besides the application’s
IO, we augment them with the latest running instance. At each recursive step,
the step circuit gets as non-deterministic input a purported instance u in RCCCS

and π, where π is the prover’s output in the non-interactive multi-folding scheme.
The step circuit checks that the public input of u matches the application’s input
provided to the step circuit. If so, it runs the verifier of the non-interactive folding
scheme on (vk,U, u, π), where vk is the verifier’s key and U is the latest running
instance passed from the prior step. It then provides uses the public output of u
and the output of the folding scheme verifier to construct the step’s output.
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Construction 9 (A step circuit for Nova). Let NIFS be an IVC-compatible
non-interactive multi-folding scheme for (R1,R2, 1, 1). Let IVC denote the Nova’s
IVC scheme for functions expressed as R1CS constraints.

We first define a non-deterministic polynomial-time function step, represented as
an R1CS structure, that iteratively folds instances expressed in RCCCS.

step(vk,Ui, zi; (u, π))→ (vk,Ui+1, zi+1)

1. Parse (in, out)← enc−1inst(u
′), where u′ represents the portion of u that does

not contain commitments to the witness.

2. Check that in = zi

3. Compute Ui+1 ← NIFS.V(vk,Ui, u, π)

4. Output (vk,Ui+1, out)

Given F , we define the corresponding IVC scheme (G,K,P,V), which uses Nova
in a black-box manner.

G(1λ, N)→ pp: Output (NIFS.G(1λ, N), IVC.G(1λ, N))

K((ppNIFS, ppIVC), F )→ (pk, vk):

1. Compute (s1, s2)← encstr(F )

2. Compute (pkNIFS, vkNIFS)← NIFS.K(ppNIFS, s1, s2)

3. Compute (pkIVC, vkIVC)← IVC.K(ppIVC, step)

4. Output (pk, vk)← ((F, pkNIFS, vkNIFS, pkIVC), (step, ppNIFS, vkNIFS, vkIVC)).

P(pk, (i, z0, zi), ωi, Πi)→ Πi+1:

1. Parse Πi as (Π
′
i,Ui,Wi)

2. Let zi+1 ← F (zi, ωi) and compute (ui,wi)← enc(F, (zi, zi+1), ωi).

3. Compute (Ui+1,Wi+1, πi+1)← NIFS.P(pkNIFS, (Ui,Wi), (ui,wi))

4. ComputeΠ ′i+1 ← IVC.P(pkIVC, i, (vkNIFS, u⊥, z0), (vkNIFS,Ui, zi), (ui, πi+1), Π
′
i)

5. Output Πi+1 = (Π ′i+1,Ui+1,Wi+1)

V(vk, (i, z0, zi), Πi)→ {0, 1}:

1. Parse Πi as (Π
′
i,Ui,Wi).

2. Check that IVC.V(vkIVC, i, (vkNIFS, u⊥, z0), (vkNIFS,Ui, zi), Π
′
i) = 1

3. Check that (ppNIFS, step,Ui,Wi) ∈ RLCCCS

Theorem 9 (A simple construction for IVC). Construction 9 is an IVC
scheme.
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H Deferred Proofs

H.1 Proof of Theorem 1 (A multi-folding scheme for CCS)

Lemma 13 (Perfect Completeness). Construction 1 satisfies perfect com-
pleteness.

Proof. Consider the public parameters pp = (m,n,N, ℓ, t, q, d, ppPC)← G(1λ, N)
and let s = logm and s′ = log n.

Consider arbitrary structures (s1, s2), where compat(s1, s2) = true

s1 = s2 = (M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)← A(pp).

Consider the prover and verifier keys (pk, vk)← K(pp, (s1, s2)). Suppose that the
prover and the verifier are provided µ linearized committed CCS instances u⃗1 and
ν committed CCS instances u⃗2. Suppose that the prover additionally is provided
with the corresponding satisfying witnesses w⃗1 and w⃗2.

As in the construction, let s = logm and s′ = log n. Let z̃1,k = ˜(w, u, x), where
w = Lk.w, u = Lk.ϕ.u, and x = Lk.ϕ.x. Similarly, let z̃2,k = ˜(w, 1, x), where
w = Ck.w and x = Ck.ϕ.x.

Because the input linearized committed CCS instance-witness pairs are satisfying,
we have for all j ∈ [t] and k ∈ [µ]

vj,k =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1,k(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1,k(y)

 By Lemma 6.

=
∑

x∈{0,1}s
Lj,k(x) By construction.

Moreover, because the input committed CCS instance-witness pairs are satisfying,
for all k ∈ [ν], we have, for all x ∈ {0, 1}s that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


Therefore, for all k ∈ [ν], we have that the polynomial in variables t

∑
x∈{0,1}s

ẽq(t, x) ·
q∑

i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)
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must be the zero polynomial. Therefore, for β sampled by the verifier, we have
that for all k ∈ [ν]

0 =
∑

x∈{0,1}s
ẽq(β, x) ·

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


=

∑
x∈{0,1}s

Qk(x) By construction.

Therefore, for γ sampled by the verifier, by linearity, we have that

∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lk.ϕ.vj =
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


=

∑
x∈{0,1}s

g(x)

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(β, r′x),

σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y),

for j ∈ [t] and k ∈ [µ], and

θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

j ∈ [t] and k ∈ [ν] that

c = g(r′x)

=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r
′
x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2
∑
i∈[q]

ci ·
∏
j∈Si

θj,k

 .

This implies that the verifier will not abort.

Now, consider the following linearized committed CCS instances obtained by
reducing input committed CCS instances (for all k ∈ [ν]):

(Ck.ϕ.C, 1, Ck.ϕ.x, r′x, θ1,k, . . . , θt,k).

By the precondition that committed CCS instance-witness pairs are satisfying
and by the definition of (θ1,k, . . . , θt,k) for all k ∈ [ν], we have that kth linearized
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committed CCS instance is satisfied by the witness of the kth committed CCS
instances i.e., Ck.w.

Therefore, for a random ρ sampled by the verifier, and for

C ←
∑

k∈[µ] ρ
k · Lk.ϕ.C +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.C

u ←
∑

k∈[µ] ρ
k · Lk.ϕ.u +

∑
k∈[ν] ρ

µ+k · 1

x ←
∑

k∈[µ] ρ
k · Lk.ϕ.x +

∑
k∈[ν] ρ

µ+k · Ck.ϕ.x

vj ←
∑

k∈[µ] ρ
k · σj,k +

∑
k∈[ν] ρ

µ+k · θj,k

we have that the output linearized CCS instance

(C, u, x, r′x, v1, . . . , vt)

is satisfied by the witness w̃ ←
∑

k∈[µ] ρ
k · Lk.w+

∑
k∈[ν] ρ

µ+k · Ck.w by linearity
and the additive homomorphism property of the polynomial commitment scheme.

Some of our probabilistic analysis below is adapted from the proof of forking
lemma for folding schemes [43], which itself builds on the proof of the forking
lemma for interactive arguments [11].

Lemma 14 (Knowledge Soundness). Construction 1 satisfies knowledge
soundness.

Proof. Consider an adversary A that adaptively picks the structure and instances,
and a malicious prover P∗ that succeeds with probability ϵ. Let pp← G(1λ, N).
Suppose on input pp and random tape r, the adversary A picks structures
satisfying compat

s = s1 = s2 = ([M1, . . . ,Mt], [S1, . . . , Sq], [c1, · · · , cq]),

µ linearized committed CCS instances, ν committed CCS instances, and some
auxiliary state st. We now construct an expected-polynomial time extractor E
that succeeds with probability ϵ− negl(λ) in obtaining satisfying witnesses for
the original instances.

E(pp, r):

1. Obtain the output tuple from A:

((s1, s2), (⃗u1, u⃗2), st)← A(pp, r).

2. Compute (pk, vk)← K(pp, (s1, s2)).
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3. Run the interaction

(u(1),w(1))← ⟨P∗,V⟩((pk, vk), u⃗1, u⃗2, st)

once with the final verifier challenge ρ(1)
$← F.

4. Abort if (pp, s, u(1),w(1)) ̸∈ RLCCCS.

5. For i ∈ {2, . . . , µ+ ν}, rewind the interaction

(u(i),w(i))← ⟨P∗,V⟩((pk, vk), u⃗1, u⃗2, st)

with a different verifier’s final challenge ρ(i)
$← F while maintaining the same

prior randomness. Keep doing so until (pp, s, u(i),w(i)) ∈ RLCCCS.

6. Interpolating points (ρ(i),w(i)) for all i ∈ [µ+ ν] retrieve µ witnesses w⃗1 =
(w1,1, . . . ,w1,µ) and ν witnesses w⃗2 = (w2,1, . . . ,w2,ν) such that for i ∈ [µ+ν]

w(i) =
∑
k∈[µ]

ρk · w1,k +
∑
k∈[ν]

ρµ+k · w2,k. (12)

7. Output (w⃗1, w⃗2).

We first demonstrate that the extractor E runs in expected polynomial time.
Observe that E runs the interaction once, and if it does not abort, keeps rerunning
the interaction until P∗ succeeds. Thus, the expected number of times E runs
the interaction is

1 + Pr[First call to ⟨P∗,V⟩ succeeds] · µ+ ν − 1

Pr[⟨P∗,V⟩ succeeds]
= 1 + ϵ · µ+ ν − 1

ϵ
= µ+ ν.

Therefore, we have that the extractor runs in expected polynomial-time.

We now analyze E ’s success probability. We must demonstrate that E succeeds
in producing w⃗1 and w⃗2 such that

(pp, s, u⃗1, w⃗1) ∈ RLCCCS and (pp, s, u⃗2, w⃗2) ∈ RCCCS

with probability ϵ− negl(λ).

To do so, we first show that the extractor successfully produces some output
(i.e., does not abort) in under |F| rewinding steps with probability ϵ− negl(λ).
Note that |F| is a worst case bound and we have already established that the
extractor runs in expected polynomial time. By the malicious prover’s success
probability, we have that the extractor does not abort in step (4) with probability
ϵ. Given that the extractor does not abort in step (4), by Markov’s inequality, we
have that the extractor rewinds more than |F| times with probability (µ+ ν)/|F|.
Thus, the probability that the extractor does not abort in step (4) and requires
less than |F| rewinds is (1− (µ+ ν)/|F|) · ϵ = ϵ− negl(λ).
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Next, if the extractor does not abort, we show that the extractor succeeds in
producing satisfying witnesses with probability 1−negl(λ). This brings the overall
extractor success probability to ϵ− negl(λ).

Indeed, for i ∈ {1, . . . , µ + ν}, let u(i) = (C(i), u(i), x(i), r
(i)
x , v

(i)
1 , . . . , v

(i)
t ). We

first show that the retrieved polynomials are valid openings to the corresponding
commitments in the instance. For i ∈ {1, . . . , µ+ ν}, because w(i) is a satisfying
witness, by construction,∑
k∈[µ]

ρ(i)
k
· Commit(pp,w1,k) +

∑
k∈[ν]

ρ(i)
µ+k
· Commit(pp,w2,k)

= Commit(pp, (
∑
k∈[µ]

ρ(i)
k
· w1,k) + (

∑
k∈[ν]

ρ(i)
µ+k
· w2,k)) By additive homomorphism.

= Commit(pp,w(i)) By Equation (12).

= C(i) Witness w(i) is a satisfying opening.

=
∑
k∈[µ]

ρ(i)
k
· u1,k.C +

∑
k∈[ν]

ρ(i)
µ+k
· u2,k.C

Interpolating, we have that for all i ∈ [µ] and j ∈ [ν]

Commit(pp,w1,i) = u1,i.C (13)

Commit(pp,w2,j) = u2,j .C. (14)

Next, we must argue that w⃗1 and w⃗2 satisfy the remainder of the instances u⃗1
and u⃗2 respectively under the structure s.

Indeed, consider {σj,k} (for all j ∈ [t] and k ∈ [µ]), and {θj,k} (for all j ∈ [t] and
k ∈ [ν]) sent by the prover which by the extractor’s construction are identical
across all executions of the interaction. By the verifier’s computation we have
that for i ∈ {1, . . . , µ+ ν} and all j ∈ [t]∑

k∈[µ]

(ρ(i))k · σj,k +
∑
k∈[ν]

(ρ(i))µ+k · θj,k = v
(i)
j (15)

Now, because w(i) is a satisfying witness, for i ∈ {1, . . . , µ+ ν} we have for all
j ∈ [t] that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)) where w(i) is the result of interpreting w(i) as a
multilinear polynomial.
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However, by Equations (12) and (15), for i ∈ {1, . . . , µ + ν} and j ∈ [t], this
implies that

∑
k∈[µ]

(ρ(i))k · σj,k +
∑
k∈[ν]

(ρ(i))µ+k · θj,k

=
∑
k∈[µ]

(ρ(i))k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

+
∑
k∈[ν]

(ρ(i))µ+k ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y),

where z̃1,k = ˜(w1,k, u, u1,k.x) for k ∈ [µ] where w1,k denotes the multilinear

polynomial interpretation of w1,k and z̃2,k = ˜(w2,k, 1, u2,k.x) for k ∈ [ν] where
w2,k represents the multilinear polynomial interpretation of w2,k. Interpolating,
we have that, for all j ∈ [t]

∀k ∈ [µ], σj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

∀k ∈ [ν], θj,k =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2,k(y)

Thus, because that the verifier does not abort, we have that

c =

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · e1 · σj,k

+

∑
k∈[ν]

γµ·t+k · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) · σj,k

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj,k


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1,k(y)

+

∑
k∈[ν]

γµ·t+k · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2,k(y)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(r
′
x)

+

∑
k∈[ν]

γµ·t+k ·Qk(r
′
x)


= g(r′x)
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By the soundness of the sum-check protocol, this implies that with probability
1−O(d · s)/|F| = 1− negl(λ) over the choice of r′x,

T =
∑

j∈[t],k∈[µ]

γ(k−1)·t+j · vj,k +
∑
k∈[ν]

γµ·t+k · 0

=
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j · Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·Qk(x)


=

 ∑
j∈[t],k∈[µ]

γ(k−1)·t+j ·

 ∑
x∈{0,1}s

Lj,k(x)

+

∑
k∈[ν]

γµ·t+k ·

 ∑
x∈{0,1}s

Qk(x)



By the Schwartz-Zippel lemma [56], this implies that with probability 1−O(t ·
µ+ ν)/|F| = 1− negl(λ) over the choice of γ, we have for all j ∈ [t] and k ∈ [µ]

vj,k =
∑

x∈{0,1}s
Lj,k(x),

and for all k ∈ [ν]

0 =
∑

x∈{0,1}s
Qk(x).

Now, for all j ∈ [t] and k ∈ [µ], we have

vj,k =
∑

x∈{0,1}s
Lj,k(x)

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1,k(y)


=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1,k(y)

This implies that w⃗1 is a satisfying witness to u⃗1.
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Finally, we have that for all k ∈ [ν]

0 =
∑

x∈{0,1}s
Qk(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2,k(y)


By the Schwartz-Zippel lemma, this implies that with probability 1− s/|F| =
1− negl(λ) over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2,k(y)


This implies that w⃗2 is a satisfying witness to u⃗2.

Thus, if the extractor does not abort, it succeeds in producing satisfying witness
(w⃗1, w⃗2) with probability 1− negl(λ).

H.2 Proof of Lemma 3 (Folding CCS NIVC-compatibility)

Lemma 15 (NIVC-compatibility). Construction 1 is NIVC-compatible.

Proof. NP-completeness of RCCS follows from [60, Lemma 1], which reduces
R1CS to RCCS. Furthermore, Gennaro et al. [31, Section 7.4] and Parno et al. [54,
Section 2.2.1] implicitly reduce circuit satisfiability to R1CS (Thaler [65, Sec-
tion 8.4] provides explicit details). These two reductions induce the functions
enc, encstr and encinst.

In particular, let the circuit satisfiability relation be characterized by circuits
over n total gates, m multiplication gates, and without loss of generality input
size ℓ/2 and output size ℓ/2. We demonstrate how to reduce circuit satisfiability
to RCCS characterized by size bounds m,n,N = Ω(m), ℓ, t = 3, q = 2, d = 2.

First, we explicitly describe the function encstr, which takes as input an arithmetic
circuit F and produces RCCS and RLCCS structures s1 and s2

encstr(F )→ (s1, s2):

1. Initalize matrices A,B,C ∈ Fm×(n+1) with zeros.

2. For each multiplication gate index i ∈ [m] in F , do the following:
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(a) let L be the indices of all the upstream left input addition gates such that
gate i is the first downstream multiplication gate. Similarly let R be all
the upstream right input gates such that gate i is the first downstream
multiplication gate.

(b) Let Ai,j = 1 for j ∈ L, Bi,j = 1 for j ∈ R, and Ci,i = 1. This encodes
the constraint that the result of multiplying the sum of all the upstream
left addition gates and the sum of all the upstream right addition gates
results in the wire value assigned at gate i.

3. Let S1 ← {1, 2} and S2 ← {3}. Output CCS and LCCS structure

s1 = s2 =
(
(Ã, B̃, C̃), (S1, S2), (1,−1)

)
where Ã, B̃, and C̃ denote the multilinear extensions of A, B, and C.

By observation, we have that encstr is invertible. In particular, given matrices A,
B, and C, we can parse out the inputs to each gate in the circuit F .

Next, we explicitly describe the function encinst, which takes as input an arith-
metic circuit public input x and output y and produces an RCCS instance x

encinst((x, y))→ x:

1. Output (x, y).

By observation, we have that encinst is invertible. In particular, provided an RCCS

instance x ∈ Fℓ we can recover an arithmetic circuit public input and output
tuple (x, y) ∈ (Fℓ/2,Fℓ/2) by splitting x into its first and second half.

Given encstr and encinst, we can explicitly describe enc, which takes as input
an arithmetic circuit F , a circuit input x, a non-deterministic input w, and an
output y, and outputs a corresponding RCCS structure-instance-witness tuple.

enc(F, (x, y), w)→ x:

1. Let (s1, s2)← encstr(F ).

2. Let x← encinst((x, y)).

3. Let w be the gate wire values that results from executing F on inputs x and
w excluding the public input x and output y wire values.

4. Output CCS structure-instance-witness tuple (s2, x,w).

By Setty et al. [60, Lemma 1] and Parno et al. [54], for any arithmetic circuit F ,
input x, non-deterministic input w, and output y, for (s2, u,w)← enc(F, (x, y), w)
we have that (s2, u,w) ∈ R′2 if and only if F (x,w) = y.

Moreover, we have that enc is invertible. In particular, Given a CCS structure-
instance-witness pair (s2, u,w), we can compute F and (x, y) by the invertibility
of encstr and encinst, and compute w by parsing the appropriate gates in w.
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By observation, we have that (s2, u,w) = enc(F, (x, y), w). Combining all prior
assertions we have that the NP-completeness property holds.

Next, by construction, for any arithmetic circuit F , an input x, a non-deterministic
input w, and an output y, for R′1 and R′2 structures (s1, s2)← encstr(F ) and R′2
instance u ← encinst((x, y)) we have that (s2, u,w) = enc(F, (x, y), w) for some
R′2 witness w and that compat(s1, s2) = 1. Combining all the prior assertions we
have that the partial functions property holds.

Moreover, we have monotonicity holds by the construction of encstr. In particular,
each gate in the input arithmetic circuit F corresponds to exactly one constraint
in the output CCS structure.

Finally, we have that RLCCCS has default instances because for any public param-
eters and structure, we have that u⊥ = (u = 0, x = 0⃗, r = 0, v1 = 0, . . . , vt = 0)
and w⊥ = 0 is a satisfying instance-witness pair in R1.

H.3 Proof of Theorem 4 (HyperNova)

Lemma 16 (Completeness). Construction 2 is an NIVC scheme that satisfies
completeness.

Proof. Consider arbitrary PPT adversary A. Suppose pp← G(1λ, N). Suppose,
on input pp, A produces polynomial-time functions (φ, (F1, . . . ,Fℓ)), instance
(i, z0, zi), private input ωi, and NIVC proof Πi. Suppose that for

(pk, vk)← K(pp, (φ, (F1, . . . , Fℓ)))

we have that

V(vk, i, z0, zi, Πi) = 1.

Then, for pci+1 ∈ [ℓ]← φ(zi, ωi), given

zi+1 ← Fpci+1
(zi, ωi)

and

Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)

we must show that

V(vk, i+ 1, z0, zi+1, Πi+1) = 1

with probability 1. We show this by considering the case when i = 0 and when
i ≥ 1.

Indeed, suppose i = 0. By the base case of P and F ′pc1 , we have

Π1 = (((u⊥, . . . , u⊥), (w⊥, . . . ,w⊥)), (u1,w1), pc1)
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for some (u1,w1). By definition, the instance-witness pair (u⊥,w⊥) is satisfying.
Moreover, by construction, (u1,w1) must also be satisfying. Additionally, by the
construction of F ′pc1 , we have

u′1 = encinst(hash(vk, 1, z0, Fpc1(z0, w0), u⊥, pc1)).

where u′1 is the portion of u1 that excludes the commitment to the w1. Therefore,
we have

V(pp, 1, z0, z1, Π1) = 1.

Suppose instead that i ≥ 1. Let Πi be parsed as ((Ui,Wi), (ui,wi), πi) and let
Πi+1 be parsed as ((Ui+1,Wi+1), (ui+1,wi+1), πi+1). By the construction of P,
we have that

(Ui+1[pci],Wi+1[pci], π) = NIFS.P(pk[pci], (Ui[pci],Wi[pci]), (ui,wi)).

Thus, becauseΠi is satisfying, we have that (ui,wi) and (Ui[pci],Wi[pci]) are satis-
fying instance-witness pairs (with respect to compatible structures). Then, by the
completeness of the underlying folding scheme, we have that (Ui+1[pci],Wi+1[pci])
is a satisfying instance-witness pair. Therefore, because (Ui+1,Wi+1) copies
the remaining elements from (Ui,Wi), we have that (Ui+1,Wi+1) contains
satisfying instance-witness pairs. Additionally, by the premise, we have that
u′i = encinst(hash(vk, i, z0, zi,Ui, pci)) where u′i represents the portion of ui that
excludes the commitment to the witness. Therefore, P can construct a satisfying
instance-witness pair (ui+1,wi+1) that represents the correct execution of F ′pci+1

on input (vkfs,U, u, pci, (i, z0, zi), ωi, π). By construction, this particular input
implies that

u′i+1 = encinst(hash(vk, i+ 1, z0, zi+1,Ui+1, pci+1)) (16)

by the correctness of the underlying folding scheme (again u′i+1 represents the
portion of ui+1 that excludes the commitment to the witness). Moreover, because
pci+1 = φ(zi, ωi), by construction, we have that 1 ≤ pci+1 ≤ ℓ. Thus, by
Equation (16) we have

V(vk, i+ 1, z0, zi+1, Πi+1) = 1.

Lemma 17 (Knowledge Soundness). Construction 2 is an IVC scheme that
satisfies knowledge soundness.

Proof. Our approach is inspired by a recursive extraction technique described
by Bünz et al [18]. Let n be a global constant. Consider deterministic expected
polynomial-time adversary P∗. Let pp ← G(1λ, N). Suppose on input pp and
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randomness r, P∗ outputs deterministic polynomial-time function φ, ℓ polynomial-
time functions (F1, . . . , Fℓ), instance (z0, z), and NIVC proof Π. Let (pk, vk)←
K(pp, (φ, (F1, . . . , Fℓ))). Suppose that

V(vk, (n, z0, z), Π) = 1

with probability ϵ. We must construct an expected polynomial-time extractor E
that, with input (pp, r), outputs (ω0, . . . , ωn−1) such that by computing

zi+1 ← Fφ(zi,ωi)(zi, ωi)

we have that zn = z with probability ϵ− negl(λ).

We show inductively that E can construct an expected polynomial-time extractor
Ei(pp) that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi) such that for all j ∈ {i+
1, . . . , n},

zj = Fφ(zj−1,ωj−1)(zj−1, ωj−1)

and

V(vk, i, z0, zi, Πi) = 1 (17)

for zn = z with probability ϵ − negl(λ). Then, because in the base case when
i = 0, V checks that z0 = zi, the values (ω0, . . . , ωn−1) retrieved by E0(pp) are
such that computing zi+1 = F (zi, ωi) for all i ≥ 1 gives zn = z.

At a high level, to construct an extractor Ei−1, we first assume the existence of
Ei that satisfies the inductive hypothesis. We then use Ei(pp) to construct an

adversary for the non-interactive folding scheme (which we denote as P̃i−1). This
in turn guarantees an extractor for the non-interactive folding scheme, which we
denote as Ẽi−1. We then use Ẽi−1 to construct Ei−1 that satisfies the inductive
hypothesis.

In the base case, for i = n, let En(pp, r) output (⊥,⊥, Πn) where Πn is the
output of P∗(pp, r). By the premise, En succeeds with probability ϵ in expected
polynomial-time.

For i ≥ 1, suppose E can construct an expected polynomial-time extractor Ei
that outputs ((zi, . . . , zn−1), (ωi, . . . , ωn−1)), and Πi that satisfies the inductive

hypothesis. To construct an extractor Ei−1, E first constructs an adversary P̃i−1
for the non-interactive folding scheme as follows:

P̃i−1(pp, r):

1. Let ((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)← Ei(pp, r).

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Compute compatible structures (s1,pci , s2,pci)← encstr(F
′
pci

).
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4. Parse non-deterministic inputs (Ui−1, ui−1, πi−1, pci−1) to F
′
pci

from enc−1(s2,pci , ui,wi).

5. Output structures (s1,pci−1
, s2,pci−1

), unfolded instances (Ui−1[pci−1], ui−1),
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), and folding proof πi−1.

We now analyze the success probability of P̃i−1. By the inductive hypothesis, we
have that V(vk, i, z0, zi, Πi) = 1, where Πi ← Ei(pp, r) with probability ϵ−negl(λ).
Therefore, by the the verifier’s checks we have that (ui,wi) is satisfying, (Ui,Wi)
consists of satisfying instance-witness pairs, and that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci))

where u′i represents the portion of ui that excludes the commitment to the witness.
Then, by the construction of F ′pci and the binding property of the hash function,
we have that 1 ≤ pci−1 ≤ ℓ and

Ui[pci−1] = NIFS.V(vk,Ui−1[pci−1], ui−1, πi−1)

with probability ϵ − negl(λ). Thus, P̃i−1 succeeds in producing an accepting
folded instance-witness pair (Ui[pci−1],Wi[pci−1]), for instances Ui−1[pci−1] and
ui−1, with probability ϵ− negl(λ) in expected polynomial-time.

Then, by the knowledge soundness of the underlying non-interactive multi-
folding scheme (Assumption 1) there exists an extractor Ẽi−1 that outputs
(Wi−1[pci−1],wi−1) such that (Ui−1[pci−1],Wi−1[pci−1]) and (ui−1,wi−1) are sat-
isfying with respect to structures s1,pci−1

and s2,pci−1
respectively with probability

ϵ− negl(λ) in expected polynomial-time.

Given an expected polynomial-time P̃i−1 and an expected polynomial-time Ẽi−1,
E constructs an expected polynomial time Ei−1 as follows

Ei−1(pp, r):

1. Run P̃i−1(pp, r) to retrieve unfolded instances (u′i−1, ui−1) and parse

((zi, . . . , zn−1), (ωi, . . . , ωn−1), Πi)

from its internal state.

2. Parse Πi as ((Ui,Wi), (ui,wi), pci).

3. Compute (s1,pci , s2,pci)← encstr(F
′
pci

)

4. Parse private inputs zi−1, ωi−1, and pci−1 to F ′pci from enc−1(s2, ui,wi).

5. Let (w′i−1,wi−1)← Ẽi−1(pp).

6. Set (Ui−1,Wi−1)← (Ui,Wi) and update

(Ui−1[pci−1],Wi−1[pci−1])← (u′i−1,w
′
i−1)
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7. Let Πi−1 ← ((Ui−1,Wi−1), (ui−1,wi−1), pci−1).

8. Output ((zi−1, . . . , zn−1), (ωi−1, . . . , ωn−1), Πi−1).

We first reason that the output (zi−1, . . . , zn−1), and (ωi−1, . . . , ωn−1) are valid.
By the inductive hypothesis, we already have that for all j ∈ {i+ 1, . . . , n},

zj = Fpcj (zj−1, ωj−1),

and that V(vk, i, z0, zi, Πi) = 1 with probability ϵ−negl(λ). Because V additionally
checks that

u′i = encinst(hash(vk, i, z0, zi,Ui, pci)), (18)

where u′i represents the portion of ui that excludes the commitment to the witness,
by the construction of F ′pci and the binding property of the hash function, we
have

Fpci(zi−1, ωi−1) = zi

with probability ϵ− negl(λ). Next, we argue that Πi−1 is valid. Because (ui,wi)
satisfies F ′, and (Ui−1, ui−1) were retrieved from wi, by the binding property of
the hash function, and by Equation (18), we have that

u′i−1 = encinst(hash(vk, i− 1, z0, zi−1,Ui−1, pci−1))

where u′i−1 represents the portion of ui−1 that excludes the commitment the
witness. Additionally, in the case where i = 1, by the base case check of F ′φ(z0,ω0)

,

we have that zi−1 = z0. Because Ẽi−1 succeeds with probability ϵ − negl(λ),
and the remainder of the elements of (Ui−1,Wi−1) are directly copied from
(Ui,Wi) we have that all the elements of (Ui−1,Wi−1) are satisfying. Moreover,
by construction of F ′pci we have that 1 ≤ pci−1 ≤ ℓ. Thus, we have that

V(vk, i− 1, z0, zi−1, Πi−1) = 1

with probability ϵ− negl(λ).

H.4 Proof of Theorem 4 (CycleFold)

Lemma 18 (Perfect Completeness). Construction 7 satisfies perfect com-
pleteness.

Proof. Consider public parameters pp = (m,n,N, ℓ, t, q, d, |sEC|, ppPC, ppVC) ←
G(1λ, N) and let s = logm and s′ = log n. Let sEC = (A,B,C) denote a
committed relaxed R1CS structure defined over Fq, with public IO (ρ, C1, C2, C

′),
where ρ ∈ Fp, C1 ∈ G1, C2 ∈ G1, C

′ ∈ G1. This constraint system enforces that
C ′ = C1 + ρ · C2, where + is the elliptic curve point addition and · is the elliptic
curve scalar multiplication operation in G1.
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Consider arbitrary structures (s1, s2) ← A(pp) such that compat(s1, s2) = true.

Let s1 = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), and let s2 = (A,B,C). Con-
sider prover and verifier keys (pk, vk)← K(pp, (s1, s2)). Suppose that the prover
and the verifier are provided with a linearized committed CCS instance and a
committed relaxed R1CS instance

((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1)),

and a committed CCS instance

(C2, x2).

Suppose that the prover additionally is provided with the corresponding satisfying
witnesses (w̃1, (E1,W1)) and w̃2.

Because the input linearized committed CCS instance-witness pair is satisfying,

we have, for z̃1 = ˜(w1, u, x1), that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)

 By Lemma 6

=
∑

x∈{0,1}s
Lj(x) By construction.

Furthermore, because the input committed relaxed R1CS instance-witness pair
is also satisfying, we have for Z1 = (W1, u1, x1), AZ1 ◦BZ1 = u · CZ1 + E1.

Moreover, because the input committed CCS instance-witness pair is satisfying,

we have, for all x ∈ {0, 1}s and for z̃2(x) = ˜(w2, 1, x2)(x), that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


Because the RHS vanishes on all x ∈ {0, 1}s, for β sampled by the verifier, we
have that

0 =
∑

x∈{0,1}s
ẽq(β, x) ·

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


=

∑
x∈{0,1}s

Q(x) By construction.
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Therefore, for γ sampled by the verifier, by linearity, we have that

∑
j∈[t]

γj · vj =
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)


=

∑
x∈{0,1}s

g(x) By construction.

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(β, r′x) and

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) and θi =

∑
y∈{0,1}s′

M̃i(r
′
x, y) · z̃2(y)

that

c = g(r′x)

=

∑
j∈[t]

γj · Lj(r
′
x)

+ γt+1 ·Q(r′x)


=

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2
∑
i∈[q]

ci ·
∏
j∈Si

θj

 .

This implies that the verifier will not abort on step 5.

By construction, the prover can construct uCRR1CS such that the verifier does not
abort on step 8. Furthermore, the prover can construct uCRR1CS such that wCRR1CS

is a satisfying witness under structure sEC. This implies that C ′ = C1 + ρ · C2,
where C ′ is parsed from x2, which is the public IO of uCRR1CS.

Now, consider the linearized CCS instance

(C2, 1, x2, r
′
x, θ1, . . . , θt).

By the precondition that the committed CCS instance (C2, x2) is satisfied by w̃2

and by the definition of θ1, . . . , θt we have that this linearized CCS instance is
satisfied by the witness w̃2.

Therefore, for random ρ sampled by the verifier, and for C ′ = C1 + ρ · C2,
u′ = u+ ρ · 1, x′ = x1 + ρ · x2, v′i = σi + ρ · θi, we have that the output linearized
CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

is satisfied by the witness w̃′ = w̃1 + ρ · w̃2 by the linearity and the additive
homomorphism property of the commitment scheme.
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Now, we argue that the the output committed relaxed R1CS instance (E
⋆
, u⋆,W

⋆
, x⋆)

is satisfying under the witness (E⋆,W ⋆), for relaxed R1CS structure sEC =
(A,B,C). We need to establish the following. Let Z⋆ = (W ⋆, u⋆, x⋆).

AZ⋆ ◦BZ⋆ = u⋆ · CZ⋆ + E⋆ (19)

W
⋆
= VC.Commit(ppVC,W

⋆) (20)

E
⋆
= VC.Commit(ppVC, E

⋆) (21)

The latter two requirements hold from the additive homomorphism of the com-
mitment scheme. We now focus on proving the first requirement. We are given
that the input committed relaxed R1CS instance (E1, u1,W 1, x1) is satisfying
under the witness (E1,W1) and structure sEC. This implies that

AZ1 ◦BZ2 = u1 · CZ1 + E1,

where Z1 = (W1, u1, x1). As noted above, the committed relaxed R1CS instance
sent by the prover (E2, u2,W 2, x2) is satisfying under the witness (E2,W2) and
structure sEC. This implies that

AZ2 ◦BZ2 = CZ2,

where Z2 = (W2, 1, x2). (This is because by construction u2 = 1 and E2 = 0.)

Now, consider the LHS of the desired equality.

AZ⋆ ◦BZ⋆ = A(Z1 + ρ⋆ · Z2) ◦B(Z1 + ρ⋆ · Z2)

= AZ1 ◦BZ1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · (AZ2 ◦BZ2)

= u1 · CZ1 + E1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · CZ2

Consider the RHS of the desired equality.

u⋆ · CZ⋆ + E⋆ = (u1 + ρ⋆) · C(Z1 + ρ⋆ · Z2) + E1 + ρ⋆ · T
= (u1 + ρ⋆) · (CZ1 + ρ⋆ · CZ2) + E1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − CZ1)

= u1 · CZ1 + ρ⋆ · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ⋆)2 · CZ2

This establishes the desired requirements.

Lemma 19 (Knowledge Soundness). Construction 7 satisfies knowledge
soundness.

Proof. Consider an adversary A that adaptively picks the structure and in-
stances, and a malicious prover P∗ that succeeds with probability ϵ. Let pp←
G(1λ, N). Suppose on input pp and random tape r, the adversary A picks

a structure (s1, s2) = (((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), (A,B,C)) such
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that compat(s1, s2) = true, a pair of linearized committed CCS instance and a
committed relaxed R1CS instance

φ1 = ((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1))

and a committed CCS instance

φ2 = (C2, x2),

and some auxiliary state st.

We construct an expected-polynomial time extractor E that succeeds with proba-
bility ϵ− negl(λ) in obtaining satisfying witnesses for the original instances as
follows. Below, let R1 = RLCCCS ×RCRR1CS and R2 = RCCCS.

E(pp, r):

1. Obtain the output tuple from A:

(s, φ1, φ2, st)← A(pp, r).

2. Compute (pk, vk)← K(pp, s).

3. Run the interaction

(φ(1,1), (w̃, (E,W ))(1,1))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

once with the verifier’s final challenges ρ(1)
$← F and ρ⋆(1,1)

$← F.

4. Abort if (pp, s, φ(1,1), (w̃, (E,W ))(1,1)) ̸∈ R1.

5. Rewind the interaction

(φ(1,2), (w̃, (E,W ))(1,2))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with a different verifier’s challenge ρ⋆(2,1)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, φ(1,2), (w̃, (E,W ))(1,2)) ∈ R1.

6. Rewind the interaction

(φ(2,1), (w̃, (E,W ))(2,1))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with different verifier’s challenges ρ(2)
$← F and ρ⋆(2,1)

$← F while maintaining
the same prior randomness. Repeat until (pp, s, φ(2,1), (w̃, (E,W ))(2,1)) ∈ R1.

7. Rewind the interaction

(φ(2,2), (w̃, (E,W ))(2,2))← ⟨P∗,V⟩((pk, vk), φ1, φ2, st)

with a different verifier’s challenge ρ⋆(2,2)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, φ(2,1), (w̃, (E,W ))(2,2)) ∈ R1.
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8. Abort if ρ⋆(1,1) = ρ⋆(1,2), ρ(1) = ρ(2), or ρ⋆(2,1) = ρ⋆(2,2).

9. Interpolating points (ρ(1), w̃(1,1)) and (ρ(2), w̃(2,1)), retrieve the witness poly-
nomials w̃1 and w̃2 such that for i ∈ {1, 2}

w̃1 + ρ(i) · w̃2 = w̃(i,1). (22)

10. Interpolating points (ρ⋆(1,1), (E,W )(1,1)) and (ρ⋆(1,2), (E,W )(1,2)), retrieve
(E1,W1) and (T,W2) such that for j ∈ {1, 2}

E1 + ρ⋆(1,j) · T = E(1,j) (23)

W1 + ρ⋆(1,j) ·W2 = W (1,j) (24)

11. Output ((w̃1, (E1,W1)), w̃2).

We first demonstrate that the extractor E runs in expected polynomial time.
Observe that E runs the interaction once, and if it does not abort, keeps rerunning
the interaction until P∗ succeeds three additional times. Thus, the expected
number of times E runs the interaction is

1 + Pr[First call to ⟨P∗,V⟩ succeeds] · 3

Pr[⟨P∗,V⟩ succeeds]
= 1 + ϵ · 3

ϵ
= 4.

Therefore, we have that the extractor runs in expected polynomial-time.

We now analyze E ’s success probability. We must demonstrate that E succeeds
in producing (w̃1, (E1,W1)) and w̃2 such that

(pp, s, φ1, (w̃1, (E1,W1))) ∈ R1 and (pp, s1, φ2, w̃2) ∈ R2

with probability ϵ− negl(λ).

To do so, we first show that the extractor successfully produces some output (i.e.,
does not abort) in under |F| rewinding steps with probability ϵ− negl(λ). Note
that |F| is a worst case bound and we have already established that the extractor
runs in expected polynomial time. By the malicious prover’s success probability,
we have that the extractor does not abort in step (4) with probability ϵ. Given
that the extractor does not abort in step (4), by Markov’s inequality, we have
that the extractor rewinds more than |F| times with probability 4/|F|. Thus, the
probability that the extractor does not abort in step (4) and requires less than
|F| rewinds is ϵ · (1− 4/|F|).

Now, suppose that the extractor does not abort in step (4). Then, because

the extractor randomly samples ρ⋆(1,2), we have that ρ⋆(1,1) ≠ ρ⋆(1,2) with
probability 1/|F|. Similarly, we have that, ρ(1) ̸= ρ(2) with probability 1/|F| and
ρ⋆(2,1) = ρ⋆(2,2) with probability 1/|F|. Thus, we have that the probability the
extractor successfully produces some output in under |F| rewinding steps is

ϵ ·
(
1− 4

|F|

)
·
(
1− 3

|F|

)
= ϵ− negl(λ).
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Next, if the extractor does not abort, we show that the extractor succeeds in
producing satisfying witnesses with probability 1−negl(λ). This brings the overall
extractor success probability to ϵ− negl(λ).

We first show that the in the transcripts retrieved, the output witnesses for
linearized committed CCS instances do not depend on the choice of ρ⋆. More
precisely, we show that, for i ∈ {1, 2}, w̃(i,1) = w̃(i,2).

For i ∈ {1, 2} and j ∈ {1, 2}, let

φ(i,j) = ((C(i,j), u(i,j), x(i,j), r(i,j)x , v
(i,j)
1 , . . . , v

(i,j)
t ), (E

(i,j)
, u⋆(i,j),W

(i,j)
, x⋆(i,j))).

By the verifier’s construction and because the transcripts share the same prefix
prior to the choice of ρ⋆, we have for i ∈ {1, 2} that

(C(i,1), u(i,1), x(i,1), r(i,1)x , v
(i,1)
1 , . . . , v

(i,1)
t ) = (C(i,2), u(i,2), x(i,2), r(i,2)x , v

(i,2)
1 , . . . , v

(i,2)
t ).

(25)

We are given that for i ∈ {1, 2} and j ∈ {1, 2}, w̃(i,j) is a satisfying witness and
hence a valid opening of the commitment C(i,j). By Equation 25, we have that for
i ∈ {1, 2}, C(i,1) = C(i,2). Therefore, by the binding property of the polynomial
commitment scheme, with probability 1− negl(λ), we have for i ∈ {1, 2} that

w̃(i,1) = w̃(i,2). (26)

Given this equality of commitments and the associated witnesses for the output
linearized committed CCS instances, we drop the second index when appropriate.

We now show that the retrieved polynomials and vectors ((w̃1, (E1,W1)), w̃2) are
valid openings to the corresponding commitments in the instance.

For j ∈ {1, 2}, because (E,W )(1,j) is a satisfying witness to the folded committed
relaxed R1CS instance, by construction,

Commit(ppVC,W1) + ρ⋆(1,j) · Commit(ppVC,W2)

= Commit(ppVC,W1 + ρ⋆(1,j) ·W2) By additive homomorphism.

= Commit(ppVC,W
(1,j)) By Equation (24).

= W
(1,j)

Witness W̃ (1,j) is a satisfying opening.

= W 1 + ρ⋆(1,j) ·W 2 By the verifier’s computation.

Interpolating, we have that

Commit(ppVC,W1) = W 1 (27)

Commit(ppVC,W2) = W 2 (28)
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Similarly,

Commit(ppVC, E1) + ρ⋆(1,j) · Commit(ppVC, T )

= Commit(ppVC, E1 + ρ⋆(1,j) · T ) By additive homomorphism.

= Commit(ppVC, E
(1,j)) By Equation (23).

= E
(1,j)

Witness Ẽ(1,j) is a satisfying opening.

= E1 + ρ⋆(1,j) · T By the verifier’s computation.

Interpolating, we have that

Commit(ppVC, E1) = E1 (29)

For j ∈ {1, 2}, because (E,W )(1,j) is a satisfying witness to the committed re-

laxed R1CS instance (E
(1,j)

, u⋆(1,j),W
(1,j)

, x⋆(1,j)), we have the following, where

Z(1,j) = (W (1,j), u⋆(1,j), x⋆(1,j)).

AZ(1,j) ◦BZ(1,j) = u⋆(1,j) · CZ(1,j) + E(1,j)

By Equation (24), this implies that for j ∈ {1, 2}

A · (Z1 + ρ⋆(1,j) · Z2) ◦B · (Z1 + ρ⋆(1,j) · Z2)

= (u1 + ρ⋆(1,j)) · C · (Z1 + ρ⋆(1,j) · Z2) + (E1 + ρ⋆(1,j) · T ),

where Z1 = (W1, u1, x1), Z2 = (W2, 1, x2), and x2 is parsed from the transcripts
and is identical across the two executions with the same ρ.

Because the prover commits to W1, W2, and T before the verifier sends the
challenge ρ⋆(1,j), we have with probability 1− negl(λ) that

AZ1 ◦BZ1 = u1 · CZ1 + E1 (30)

AZ2 ◦BZ2 = CZ2. (31)

This implies that (E1,W1) and (⃗0,W2) meet the requirements of a satisfying
witness for committed relaxed R1CS instances with structure (A,B,C). In
particular, we have established that (E1,W1) is a satisfying witness to the
committed relaxed R1CS instance in φ1.

Furthermore, since the verifier checks that x2 = (ρ(1), C1, C2, C
′) for some C ′ ∈

G1, given that the we have have a witness satisfying Equation 31, this implies
that for j ∈ {1, 2}

C(1,j) = C1 + ρ(1) · C2 (32)

With a similar reasoning via the accepting transcripts with ρ(2) as the verifier’s
randomness, we can establish that for j ∈ {1, 2}:

C(2,j) = C1 + ρ(2) · C2 (33)
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For i ∈ {1, 2} and j ∈ {1, 2}, because w̃(i,j) is a satisfying witness to the folded
linearized CCS instance, by construction,

Commit(ppPC, w̃1) + ρ(i) · Commit(ppPC, w̃2)

= Commit(ppPC, w̃1 + ρ(i) · w̃2) By additive homomorphism.

= Commit(ppPC, w̃
(i,j)) By Equations (22) and (26).

= C(i,j) Witness w̃(i,j) is a satisfying opening.

= C1 + ρ(i) · C2 By Equations 32 and 33

Interpolating, we have that

Commit(ppPC, w̃1) = C1 (34)

Commit(ppPC, w̃2) = C2. (35)

Next, we must argue that w̃1 and w̃2 satisfy the remainder of the instances φ1

and φ2 respectively under the structure s.

Indeed, consider (σ1, . . . , σt) and (θ1, . . . , θt) sent by the prover which by the
extractor’s construction are identical across all executions of the interaction. By
the verifier’s computation we have that for i ∈ {1, 2} and all j ∈ [t]

σj + ρ(i) · θj = v
(i)
j (36)

Now, because w̃(i) is a satisfying witness, for i ∈ {1, 2} we have for all j ∈ [t] that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)).

However, by Equations (22) and (36), for i ∈ {1, 2} and j ∈ [t], this implies that

σj + ρ(i) · θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y) + ρ(i) ·

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y),

where z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2). Interpolating, we have that, for all
j ∈ [t]

σj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2(y)
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Thus, because that the verifier does not abort, we have that

c =

∑
j∈t

γj · e1 · σj

+

γt+1 · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) · σj

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)


=

∑
j∈[t]

γj · Lj(r
′
x) + γt+1 ·Q(r′x)

= g(r′x)

by the soundness of the sum-check protocol, this implies that with probability
1−O(d · s)/|F| = 1− negl(λ) over the choice of r′x,∑

j∈[t]

γj · vj + γt+1 · 0 =
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x) + γt+1 ·Q(x)


=

∑
j∈[t]

γj ·

 ∑
x∈{0,1}s

Lj(x)

+ γt+1 ·
∑

x∈{0,1}s
Q(x)

By the Schwartz-Zippel lemma [56], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of γ, we have

vj =
∑

x∈{0,1}s
Lj(x)

for all j ∈ [t] and

0 =
∑

x∈{0,1}s
Q(x).
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Now, for all j ∈ [t], we have

vj =
∑

x∈{0,1}s
Lj(x)

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1(y)


=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1(y)

This implies that w̃1 is a satisfying witness to the linearized committed CCS
instance in φ1.

Finally, we have that

0 =
∑

x∈{0,1}s
Q(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2(y)


By the Schwartz-Zippel lemma, this implies that with probability 1− s/|F| =
1− negl(λ) over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


This implies that w̃2 is a satisfying witness to φ2.

Thus, if the extractor does not abort, it succeeds in producing satisfying witness
(w̃1, w̃2) with probability 1− negl(λ).

H.5 Proof of Theorem 8 (nlookup)

Lemma 20 (Perfect Completeness). Construction 8 satisfies perfect com-
pleteness.

Proof. Consider public parameters pp = ℓ ← G(1λ, N). Consider a common

structure s1 = s2 = T̃ ∈ F[X1, . . . , Xℓ]. Consider the prover and verifier keys
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(pk, vk) = (T̃ ,⊥) ← K(pp, T̃ ). Suppose that the prover and the verifier are
provided an instance in Rpoly

(qr, vr)

and a vector of Rlookup instances

(v1, . . . , vm).

Suppose that the prover is additionally provided with the corresponding satisfying
witnesses for the Rlookup instances

(q1, . . . , qm).

By the satisfiability of the input instances we have that vr = T̃ (qr) and vi = T̃ (qi)
for all i ∈ [m].

Therefore, for ρ ∈ F, we have that

vr +
∑
i∈[m]

ρi · vi = T̃ (qr) +
∑
i∈[m]

ρi · T̃ (qi) By precondition.

=
∑

x∈{0,1}ℓ

ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

 By Lemma 6.

= g(x) By definition.

Therefore, by the perfect completeness of the sum-check protocol, we have that
c = g(q′r) Thus, for v

′
r = T̃ (q′r), e = ẽq(qr, q

′
r), and ei = ẽq(qi, q

′
r) for all i ∈ [m],

we have that

c = g(q′r)

= ẽq(qr, q
′
r) · T̃ (q′r) +

∑
i∈[m]

ρi · ẽq(qi, q′r) · T̃ (q′r)

= e · v′r +
∑
i∈[m]

ρi · ei · v′r

Therefore, we have that the verifier does not abort.

By construction, we have that v′r = T̃ (q′r). Therefore, the folded polynomial
evaluation instance is satisfying.

Lemma 21 (Knowledge Soundness). Construction 8 satisfies knowledge
soundness assuming that |F| = Θ(2λ).

Proof. Consider an adversary A that adaptively picks the structure and instances,
and a malicious prover P∗ that succeeds with probability ϵ. Let pp = ℓ ←
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G(1λ, N). Suppose on input pp and random tape r, the adversary A picks a

structure s1 = s2 = T̃ ∈ F[X1, . . . , Xℓ], an Rpoly instance (qr, vr), a vector of
Rlookup instances (v1, . . . , vm), and some auxiliary state st.

We construct an extractor E that succeeds with probability ϵ−negl(λ) in obtaining
satisfying witnesses for the original instances. It works as follows.

On input pp and r, E first obtains the following tuple from A:

(T̃ , (qr, vr), (v1, . . . , vm), st)← A(pp, r).

E then computes (pk, vk)← K(pp, T̃ ). Next, E runs

((q′r, v
′
r),⊥)← ⟨P∗,V⟩((pk, vk), (qr, vr), (v1, . . . , vm), st)

and obtains the first message (q1, . . . , qm) from P∗ by parsing the corresponding
transcript. The extractor E outputs (⊥, (q1, . . . , qm)) as the witness. Because the
extractor only runs P∗ once, it runs in expected polynomial-time.

We must argue that⊥ is a satisfyingRpoly witness for (qr, vr), and that (q1, . . . , qm)
are satisfying Rlookup witnesses for the input instances (v1, . . . , vm) with proba-
bility ϵ− negl(λ).

Suppose that we have that the witness ⊥ output by P∗ is satisfying for the
corresponding verifier’s output (q′r, v

′
r) with probability ϵ. By definition, this

means that

v′r = T̃ (q′r) (37)

with probability ϵ. Moreover, this means that the verifier does not abort with
probability at least ϵ, and thus we have the following:

c = e · v′r +
∑
i∈[m]

ρi · ei · v′r

= ẽq(qr, q
′
r) · v′r +

∑
i∈[m]

ρi · ẽq(qi, q′r) · v′r By the verifier’s computation.

= ẽq(qr, q
′
r) · T̃ (q′r) +

∑
i∈[m]

ρi · ẽq(qi, q′r) · T̃ (q′r) By Equation 37.

= g(q′r) By definition.

with probability ϵ.

Then, by the soundness of the sum-check protocol, we must have that

vr +
∑
i∈[m]

ρi · vi =
∑

x∈{0,1}ℓ
g(x)

=
∑

x∈{0,1}ℓ

ẽq(qr, x) · T̃ (x) +
∑
i∈[m]

ρi · ẽq(qi, x) · T̃ (x)

 By definition.

= T̃ (qr) +
∑
i∈[m]

ρi · T̃ (qi) By Lemma 6.
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with probability ϵ− negl(λ). By the Schwartz-Zippel lemma over ρ, this implies

that vr = T̃ (qr) and vi = T̃ (qi) for all i ∈ [m] with probability ϵ− negl(λ).

Moreover, by the verifier’s initial check, we have that qi ∈ {0, 1}ℓ for all i ∈ [m].
Therefore, we have that

(pp, T̃ , (qr, vr),⊥) ∈ Rpoly

and
(pp, T̃ , (v1, . . . , vm), (q1, . . . , qm)) ∈ R(m)

lookup.

with probability ϵ− negl(λ). Because the extractor E outputs the initial message
from the prover, we have that the extractor succeeds with probability ϵ −
negl(λ).
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