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Abstract

We prove that perfectly-secure optimally-resilient secure Multi-Party Computation (MPC)
for a circuit with C gates and depth D can be obtained in O((Cn + n4 + Dn2) log n) com-
munication complexity and O(D) expected time. For D ≪ n and C ≥ n3, this is the first
perfectly-secure optimal-resilient MPC protocol with linear communication complexity per gate
and constant expected time complexity per layer.

Compared to state-of-the-art MPC protocols in the player elimination framework [Beerliova
and Hirt TCC’08, and Goyal, Liu, and Song CRYPTO’19], for C > n3 and D ≪ n, our results
significantly improve the run time from Ω(n+D) to expectedO(D) while keeping communication
complexity at O(Cn log n).

Compared to state-of-the-art MPC protocols that obtain an expected O(D) time complexity
[Abraham, Asharov, and Yanai TCC’21], for C > n3, our results significantly improve the
communication complexity from O(Cn4 log n) to O(Cn log n) while keeping the expected run
time at O(D).

One salient part of our technical contribution is centered around a new primitive we call
detectable secret sharing. It is perfectly-hiding, weakly-binding, and has the property that
either reconstruction succeeds, or O(n) parties are (privately) detected. On the one hand, we
show that detectable secret sharing is sufficiently powerful to generate multiplication triplets
needed for MPC. On the other hand, we show how to share p secrets via detectable secret sharing
with communication complexity of just O(n4 log n+ p log n). When sharing p ≥ n4 secrets, the
communication cost is amortized to just O(1) field elements per secret.

Our second technical contribution is a new Verifiable Secret Sharing protocol that can share
p secrets at just O(n4 log n + pn log n) word complexity. When sharing p ≥ n3 secrets, the
communication cost is amortized to just O(n) filed elements per secret. The best prior required
Ω(n3) communication per secret.
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1 Introduction

In the setting of secure multiparty computation (MPC), n distrustful parties jointly compute a
function on their inputs while keeping their inputs private. Security should be preserved even in
the presence of an external entity that controls some parties and coordinates their behavior. We
consider in this paper the most demanding setting: perfect security with optimal resilience. Perfect
security means that the adversary is all-powerful and that the protocol has zero probability of error.
Optimal resilience means that the number of corruptions is at most t < n/3. Such protocols come
with desirable properties: They guarantee adaptive security (with some caveats [18, 5]) and remain
secure under universal composition [36].

The seminal protocols of Ben-Or, Goldwasser, and Wigderson [13], and Chaum, Crépeau and
Damg̊ard [20] led the foundations of this setting. Since then, there are, in general, two families of
protocols:

1. Efficient but slow: These protocols [34, 12, 32] ([12] test-of-time award) have O(n log n)
communication complexity per multiplication gate. Still, the running time of these protocols
is at least Θ(n) rounds, even if the depth of the circuit is much smaller D ≪ n. Specifically:

Theorem 1.1. For an arithmetic circuit with C multiplication gates and depth D
there exists a perfectly-secure, optimally-resilient MPC protocol with O(n5 log n +
Cn log n) bits communication complexity and Ω(n+D) expected number of rounds.

The protocol requires O(n3 log n + Cn log n) bits of point-to-point communication and n
sequential invocations of broadcast of O(log n) bits each, with Ω(n +D) rounds. Using the
broadcast implementation of [1], this becomes the complexity of Theorem 1.1. Alternatively,
using the implementation of [15, 24], the protocol can be more efficient, but even more slower:
O(n3 log n+ Cn log n) bits communication complexity and Ω(n2 +D) number of rounds.

2. Fast but not efficient: This line of protocols [13, 20, 31, 25, 7, 2] run at O(D) expected
number of rounds, but require Ω(n4 log n) communication complexity per multiplication gate.

Theorem 1.2. For an arithmetic circuit with C multiplication gates and depth D
there exists a perfectly-secure, optimally-resilient MPC protocol with Ω(Cn4 log n)
communication complexity and O(D) expected number of rounds.

In the broadcast hybrid model, the protocol requires O(n3 log n) bits of communication
complexity over point-to-point channels and O(n3 log n) bits broadcast, in O(D) number
of rounds. Theorem 1.2 reports the communication complexity using the broadcast imple-
mentation of [1]. Using [15, 24] for implementing the broadcast, the number of rounds is
increased to Ω(n+D).

Our Main Result

Our main result is that it is possible to simultaneously achieve the best of both families. For the
first time, we provide a perfectly-secure, optimally-resilient MPC protocol that has both O(n log n)
communication complexity per multiplication gate and O(D) expected time complexity.
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Theorem 1.3 (Main Result). For a circuit with C multiplication gates and depth D there exists
a perfectly-secure, optimally-resilient MPC protocol with O((Cn+Dn2 + n4) log n) communication
complexity and O(D) expected number of rounds.

In the broadcast-hybrid model, the total communication complexity over point-to-point is
O((Cn + Dn2 + n4) log n), and each party has to broadcast at most O(n2 log n) bits. Using [1]
for implementing the broadcast, we obtain Theorem 1.3. Compared to [12, 32], for D ≪ n, our
result provides up to an O(n) improvement in round complexity while keeping the same linear
communication complexity (and also improving the communication complexity for C ∈ o(n4)).
Compared to [2], for C > n3, our result provides an O(n3) improvement in the communication
complexity while keeping the same O(D) expected round complexity.

We remark that in many practical settings, a large set of parties may want to compute a shallow
depth circuit in a robust manner. For instance, consider a network with 200ms latency and channels
of 1Gbps, and consider a highly parallel circuit with 1M gates, depth D = 10, and n = 200 parties.
Then, the round complexity of our protocol is O(D), which results in a delay of 10 · 200ms = 2
seconds. The delay associated with the communication complexity is smaller: each party sends or
receives (C+Dn+n3) log n bits, which over 1Gbps channel results in a delay of 0.08 seconds. In [32],
the delay due to the round complexity is O(n +D), which results in a delay of 210 · 200ms = 42
seconds, and each party sends or receives (C +n4) log n bits which over 1Gbps results in a delay of
≈ 14 seconds. If we use [15, 24] to implement the broadcast, then the round complexity becomes
O(n2 + D) which is ≈ 8000 seconds. The improvement in the round complexity is significant in
this scenario. Of course, these are only coarse estimations that do not even take into account the
hidden constants in the O notation.

Main Technical Result

Our main result is obtained via several advances in building blocks for perfectly secure optimally
resilient MPC. In our view, the most important and technically involved contribution is a new
primitive called Detectable Secret Sharing. This is a secret sharing with the following properties:
(1) Secrecy: The corrupted parties cannot learn anything about the secrets after the sharing phase
for an honest dealer; (2) Binding: After the sharing phase (even if the dealer is corrupted), the secret
is well defined by the shares of the honest parties; (3) Reconstruction or detection: Reconstruction
ends up in the well-defined secret, or it might fail (even if the dealer is honest). However, in the case
of failure, there is a (private) detection of O(n) corrupted parties. Moreover, successful sharing and
reconstruction are guaranteed if the dealer has already detected more than t/2 corrupted parties
before the respective phases.

We show that despite the possible failure of the reconstruction, Detectable Secret Sharing suffices
for obtaining our end result for MPC. Most importantly, we obtain a highly efficient construction
for this primitive:

Theorem 1.4 (informal). There exists a detectable secret sharing protocol that allows sharing p
secrets (of log n bits each) with malicious security and optimal resilience with O(n4 log n+ p log n)
communication complexity and expected constant number of rounds.

For p ≥ n4, this is O(1) field elements per secret (which is also a field element)! This matches
packed semi-honest secret sharing as in [30]. The theorem holds for a single dealer; for n dealers,
each sharing p secrets in parallel, we get O(1) field elements per secret starting from p ≥ n3.
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Stated differently, we show a detectable secret sharing protocol that can pack O(n2) secrets (of
size logn each) at the cost of O(n2 log n) communication complexity for private channels and each
party broadcasts at most O(n log n) bits, with a strictly constant number of rounds. There are at
least two striking features of our new detectable secret sharing: packing, and batching. First, to
the best of our knowledge, this is the first protocol in the malicious setting that can pack O(n2)
secrets at the cost of O(n2) communication complexity – so an amortized cost of O(1) per secret
over point-to-point channels. Second, our scheme allows batching – m independent instances with
the same dealer require O(mn2 log n) over point-to-point channels but just O(n log n) broadcast
per party in all m instances combined. To the best of our knowledge, this is the first protocol that
requires a fixed broadcast cost independent of the batching parameter m. By setting m = p/n2 and
combining with the recent broadcast implementation of Abraham, Asharov, Patil, and Patra [1],
we obtain Theorem 1.4 in the point-to-point channel model and no broadcast.

Note that this primitive is formally incomparable with weak-secret sharing [38] (where recon-
struction needs the help of the dealer but is guaranteed to succeed when the dealer is honest).
On the one hand, our notion seems weaker as there is no guaranteed validity (no guaranteed re-
construction in case of an honest dealer). On the other hand, it is not strictly weaker since our
notion ensures mass detection in case of a reconstruction failure. For comparison, the best known
weak-secret sharing [2] requires O(n4 log n) for sharing O(n) secrets (i.e., O(n3) per secret).

Verifiable secret sharing. We also derive (and use) a “strong” secret sharing (i.e., honest parties
always succeed to reconstruct), i.e., in the standard verifiable secret sharing [21] setting:

Theorem 1.5 (informal). There exists a protocol that allows to secret share p secrets (of log n bits
each) with malicious security and optimal resilience with O(n4 log n + p · n log n) communication
complexity and expected constant number of rounds.

For p ≥ n3, this is an overhead of O(n) per secret. Previously, the best known [1] in this
setting packs O(n) secrets with O(n4 log n) communication complexity (an overhead of O(n3) per
secret). This is an improvement of O(n2) over the state-of-the-art. In comparison, the starting
point is the VSS of BGW and Feldman [13, 28] requires O(n2 log n) point-to-point and O(n2 log n)
broadcast, for sharing just a single secret. This results in O(n4 log n) communication complexity
over point-to-point channels and no broadcast, for sharing just a single secret (an overhead of
O(n4)).

Detection. The line of work of [34, 12, 32] in perfectly-secure MPC is based on the player
elimination framework (introduced by Hirt, Maurer and Przydatek [34]). The protocol identifies a
set of parties in which it is guaranteed that one of the players among the set is corrupted, excludes
the entire set, and restarts the protocol. The important aspect here is that all parties agree on the
set, and that honest parties are also “sacrificed” along the way. In each iteration, the number of
parties being excluded is constant. This is a slow process that leads to the O(n) rounds overhead.

Instead of globally eliminating a set of parties, our approach is to have each party maintain
a local set of conflicted parties, with no global agreement among parties on who is malicious.
Each party can decide which parties to mark as conflicted while it shares its own secret(s). When
an honest party marks enough corrupt parties as conflicted, its sharing will always be successful.
Moreover, whenever there is a failure in sharing or reconstruction, then there is a mass detection –
O(n) corruptions are identified, either publicly or privately.

To elaborate further, our MPC protocol uses three kinds of detections:
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1. Global detection – wherein a set of parties is excluded from the computation. Unlike [34, 12,
32], in our case, honest parties are never discarded (e.g., “discard the dealer”).

2. Public individual detection – wherein each party has its own conflict set that is publicly known
to all (see, e.g., Step 2b in Protocol 4.2). While a similar mechanism, referred to as ‘dispute
control’ has been used in [11, 14, 33], these works achieve statistical security in the honest
majority setting with O(n) rounds overhead similar to the player-elimination framework;

3. Private (local) detection – wherein each party has its private conflict set that it excludes from
its local computation. Specifically, an honest party may locally identify a set conflicts (with
corrupted parties) without a mechanism to prove that it has done so honestly. In our protocol,
it can identify O(n) such conflicts simultaneously in case private reconstruction towards it
fails (see, e.g., Step 7 in Protocol 5.2). This allows an honest party to locally discard the
communication from O(n) corrupt parties, eventually ensuring a successful reconstruction.

1.1 Related Work

Broadcast. Our communication complexity takes into account the cost of broadcast. In the setting
of perfect security, there are two families of protocols for implementing the broadcast: once again –
efficient and slow, or fast but less efficient. The former [15, 24] takes O(n) rounds and O(n2 + pn)
for broadcasting a message of p bits. The latter [1] (built upon Feldman and Micali [27], and Katz
and Koo [35]) takes O(1) expected number of rounds and O(n4 + pn) communication complexity
for broadcasting a message of size p bits, i.e., this is optimal for p > n3 log n. Note that when
broadcasting a message of size p, then since each party is supposed to receive p bits, the minimal
possible communication complexity is pn. Moreover, n parties broadcasting messages of size p bits
each takes O(n4 + pn2), i.e., optimal for p > n2 log n. We also remark that containing strict O(1)
number of rounds is impossible [29].

Shunning. Our notion of detectable secret sharing can be viewed as a synchronous analog of the
notion of shunning, in which parties either succeed in their asynchronous verifiable secret sharing or
some detection event happens. In the context of asynchronous verifiable secret sharing, shunning
was first suggested by Abraham, Dolev, and Halpern [3] and later improved and extended to
shunning O(n) parties by Bangalore, Choudhury, and Patra [8, 9]. However, unlike our detectable
secret sharing, none of these works attain O(1) amortized communication cost per secret.

2 Technical Overview

In this section, we provide a technical overview of our work. We start in Section 2.1 with an
overview of our main technical result – our detectable and verifiable secret sharing schemes. In
Section 2.2 we overview our MPC result. Most of the building blocks are based on previous works,
and we highlight in the overview the steps where we made significant improvements. In Section 2.3
we overview another step in the protocol, triplet secret sharing.

2.1 Detectable and Verifiable Secret Sharing

We start this overview with the most basic verifiable secret sharing protocol – the one by BGW [13].
See also [6, 4] for further details. To share a secret s, the dealer chooses a bivariate polynomial
S(x, y) =

∑t
k=0

∑t
ℓ=0 sk,ℓ · xkyℓ of degree t in both x and y under the constraint that S(0, 0) =
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s0,0 = s. The share of each party Pi is the pair of degree-t univariate polynomials S(x, i), S(i, y).
The goal of the verification step is to verify that the shares of all honest parties indeed lie on a
unique bivariate polynomial S(x, y). Let us briefly recall the sharing phase:

1. Sharing: The dealer sends the share (fi(x), gi(y)) = (S(x, i), S(i, y)) to each party Pi.

2. Pairwise checks: Pi sends to each Pj the two points (fi(j), gi(j)) = (S(j, i), S(i, j)) =
(gj(i), fj(i)). If Pi did not receive from Pj the points it expects to see (i.e., that agree with
fi(x), gi(y)), then it publicly broadcasts a complaint complaint(i, j, fi(j), gi(j)).

3. Publicly resolving the complaints: The dealer checks all complaints; if some party Pi

publicly complains with values that are different than what the dealer has sent it, then the
dealer makes the share of Pi public – i.e., it broadcasts reveal(i, S(x, i), S(i, y)).

4. If a party Pj sees that (1) all polynomials that the dealer made public agree with its private
shares; (2) its share was not made public; (3) if two parties Pk and Pℓ both complaint on each
other, then the dealer must open one of them. If all those conditions hold, then Pj is happy
with its share, and votes to accept the dealer. If the shares of Pj were made public, then it
re-assigns fj(x), gj(y) to the publicly revealed ones.

5. If 2t+ 1 parties votes to accept the shares, then each party output its share. Otherwise, the
dealer is discarded.

Observe that if the dealer is honest, then during the verification phase the corrupted parties do
not learn anything new. Specifically, a party always broadcasts a complaint with the values that
it received from the dealer, and the dealer makes a share public only if the public complaint does
not contain the values that the dealer has sent that party. Therefore, an honest dealer never makes
the shares of another honest party public. Moreover, all honest parties are happy, and accept the
shares.

If the dealer is corrupted, then 2t + 1 parties that voted to accept the dealer implies that we
have a set J ⊆ [n] of at least t + 1 honest parties that are happy with their shares and that their
shares were never made public. The shares of those t+1 honest parties fully determine a bivariate
polynomial of degree-t in both variables. If some honest party Pj initially held a share that does
not agree with this bivariate polynomial, i.e., does not agree with some Pk for k ∈ J , then it must
be that Pj and Pk both publicly complained, and that the share of Pj was made public with some
new share that agrees with S (if it does not agree with S, then at least one party in J would have
not voted to accept). Therefore, at the end, all honest parties hold shares of a well-defined bivariate
polynomial.

To reconstruct the bivariate polynomial, each party sends to each other party its pair of poly-
nomials. Since the underlying polynomial is of degree-t, the adversary controls at most t parties,
we must have n − t ≥ 2t + 1 correct points and at most t errors. The Reed-Solomon decoding
procedure guarantees that the t errors can be identified and corrected.

Our improvements. The above scheme for verifiable secret sharing requires O(n2 log n) commu-
nication over the point-to-point channels, and also the broadcast of O(n2 log n) bits. This results
in total communication complexity of O(n4 log n) over point-to-point for sharing a single secret.
The work of [1] has the same complexity for sharing O(n) secrets.

For the same communication complexity, we show how to do detectable secret sharing for O(n4)
secrets or to do (standard) verifiable secret sharing for O(n3) secrets. Looking ahead, we improve
the basic scheme in the following aspects, each giving a factor of O(n2) improvement for our
detectable secret sharing:
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(1) Packing: The bivariate polynomial S(x, y) in the basic construction contains only a single
secret, located at S(0, 0). This is the best possible when sharing a bivariate polynomial of degree-t
in both x and y: The t shares of the corrupted parties, together with the secret, fully determine
the bivariate polynomial. In our detectable secret sharing scheme, the dealer shares a bivariate
polynomial of degrees greater than t in both x and y. This allows planting O(n2) secrets. The
verification that all parties hold shares on the same bivariate polynomial is much more challenging
because the degrees of all the univariate polynomials are greater than t. Nevertheless, we obtain
binding with asymptotically the same cost as the basic scheme, therefore we already obtain an
improvement of O(n2) over the basic scheme.

Moreover, once the degree in both dimensions is greater than t, then reconstruction might fail
because the underlying codeword is of degree greater than t, and the parties cannot necessarily
correct the errors if the adversary does not provide correct shares. Nevertheless, Reed-Solomon
decoding guarantees that the honest parties can (efficiently) identify whether there is a unique
decoding or not. We use this property to also detect sufficiently many corrupted parties. This
suffices for constructing a detectable secret sharing scheme.

For (standard) verifiable secret sharing, we must make the degree in at least one of the dimen-
sions to be at most t, to allow to always succeed in correcting errors. This allows us to pack “only”
O(n) secrets and not O(n2).

(2) Batching: The verification step of [13] requires broadcasting O(n2) field elements by the
dealer, and O(n) field elements by each party. Hence m independent instances (with the same
dealer) require broadcasting of O(mn2) field elements. First, we balance the protocol such that
each party broadcasts at most O(n) field elements, including the dealer. Second, by designing a
sharing protocol that is tailored for achieving cheap batching, the broadcast cost for m independent
instances remains the same as a single instance, i.e., it requires each party to broadcast O(n log n)
bits in all m executions combined. By setting m = O(n2) and implementing the broadcast over
point-to-point, we get a detectable secret sharing of O(n4) secrets (each is a field element of size
O(log n)) at the cost of O(n4 log n) communication over the point-to-point channels. This is the
second O(n2) improvement over the basic scheme.

Our batched and packed detectable secret sharing protocol. For our discussion, assume
that the dealer first chooses a polynomial S(x, y) of degree t+ t/4 in x and degree t+ t/4 in y. We
will use different parameters in the actual construction later,1 but we choose t+ t/4 for simplicity
of exposition in this overview. Like the basic scheme, the view of the adversary consists of the pair
of the univariate polynomials S(x, i), S(i, x), for every i ∈ I, where I ⊆ [n] is the set of indices of
the corrupted parties (of cardinality at most t). This means that the adversary receives at most
2t(t+t/4+1)−t2 values, and therefore the dealer can still plant (t/4+1)2 ∈ O(n2) secrets in S(x, y),
which is fully determined by (t+ t/4+1)2 values. Concretely, it can plant for every a ∈ {0, . . . , t/4}
and b ∈ {0, . . . , t/4} a secret at location S(−a,−b).

Looking ahead, to allow batching, the dealer will choose m different bivariate polynomials
S1(x, y), . . . , Sm(x, y), and all the parties will verify all the m instances simultaneously. To accept
the shares, all instances must end up successfully. We follow the following two design principles:

1. Broadcast is expensive; Each broadcast must be utilized in all m instances, not just
in one instance.

2. Detection: Whenever a party is detected as an obstacle for achieving agreement (a

1Our actual parameters are further optimized to pack more secrets.
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foe), we should make it a “friend”, or more precisely, we neutralize its capacity to
obstruct further, and utilize it to achieve agreement on a later stage.

We focus on sharing of one instance for now, while keeping these design principles in mind. Along
the way, we also discuss how to keep the broadcasts of the dealer low for all m instances simultane-
ously, and we will show how to reduce the broadcasts of other parties later on. We follow a similar
structure to that of the basic scheme:

1. Sharing: The dealer sends fi(x), gi(y) to each party Pi.

2. Pairwise checks: Each pair of parties exchange sub-shares. In case of a mismatch, a party
broadcasts a complaint complaint(i, j, fi(j), gi(j)).

The dealer now has to resolve the complaints. In the basic protocol, when the dealer identifies
party Pi as corrupted, the dealer simply broadcasts the “correct” (S(x, i), S(i, y)) so that everyone
can verify that the shares are consistent. However, this leads to O(n2) values being broadcasted,
and O(mn2) values in the batched case. Instead, in our protocol, the dealer just marks Pi as
corrupted and adds it to a set CONFLICTS ⊂ [n] which is initially empty. It broadcasts the set
CONFLICTS. This set should be considered as “parties that had false complaints” from an honest
dealer’s perspective. There are three cases to consider:

1. The dealer is discarded: This might happen, e.g., if two parties complained on each other
and none of them is in CONFLICTS. In this case, it is clear that the dealer is corrupted, and
all parties can just discard it.

2. If the dealer is not discarded and |CONFLICTS| > t/4, then we have large conflict. The
dealer identified a large set of conflicts (note that if the dealer is honest, then CONFLICTS
contains only corrupted parties). Instead of publicly announcing the polynomials fi(x), gi(y)
of the identified corrupted parties, the dealer simply restarts the protocol. In the new iter-
ation, the shares of parties in CONFLICTS are publicly set to 0. That is, it chooses a new
random bivariate polynomial S(x, y) that hides the same secrets as before, this time under
the additional constraints that S(x, i) = S(i, y) = 0 for every i ∈ CONFLICTS.
The dealer does not broadcast the shares of parties in CONFLICTS; all the parties know that
they are 0s. When each party receives its new pair of shares fj(x), gj(y), it also verifies that
fj(i) = gj(i) = 0, and if not, it raises a complaint. Parties in CONFLICTS cannot raise any
complaints. Furthermore, observe that the outcome of “large conflict” might occur only O(1)
times; if the dealer tries to exclude more than t parties total, then the dealer is publicly
discarded.
When batching over m instances, we choose the shares of the set CONFLICTS to be 0 in
all instances. Thus, the dealer uses a broadcast of O(n log n) bits, i.e., the set CONFLICTS,
and by restarting the protocol it made the shares of parties in CONFLICTS public in all m
executions. Thus, we get the same effect as broadcasting m|CONFLICTS| pairs of polynomials
(i.e., broadcasting O(m · n2 log n) bits). This follows exactly our first design principle.

3. If |CONFLICTS| ≤ t/4 then the dealer proceeds with the protocol. It has to reconstruct the
f and g polynomials of all parties in CONFLICTS.

Before we proceed, let’s highlight what guarantees we have so far: when the dealer is honest,
then all the parties in CONFLICTS are corrupted. Moreover, if in some iteration there were more
than t/4 identified conflicts by the dealer, those corrupted parties are eliminated, and they have
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shares that all parties know (i.e., 0) and are consistent with the shares of the honest parties. This
turns a “foe” into a “friend”, as our second design principle.

When the dealer is corrupted, then all parties that are not in CONFLICTS have shares that
define a unique bivariate polynomial, and we have binding. Specifically, if the shares of two honest
parties do not agree with each other, then they both complain on each other, and the dealer must
include one of them in CONFLICTS. Therefore, all honest parties that are not in CONFLICTS
(assuming that the dealer was not publicly discarded) hold shares that are consistent with each
other. Moreover, there is one more important property: Honest parties that were excluded in
previous iterations (and now their shares are 0) also hold shares that are consistent with the honest
parties that are not in CONFLICTS. In particular, if we indeed proceed, then there are at most t/4
honest parties who do not hold shares on the polynomial. This means that there are 2t + 1 − t/4
honest parties that have shares on the bivariate polynomial – not only do we have binding, but we
also have some redundancy! This redundancy will be crucial for our next step as we show below.

However, there might still be up to t/4 honest parties (in CONFLICTS) that do not have shares
on the correct polynomial. The rest of the protocol is devoted to reconstructing their shares. We
call this phase reconstruction of the shares of honest parties in CONFLICTS. However, before
proceeding to the reconstruction, we first describe how to batch over m instances.

Batching Complaints. Consider sharing m instances simultaneously with the same dealer. In
the above description, we already described how the dealer’s broadcast is just the set CONFLICTS,
which require O(n log n) bits, independent of m. However, the broadcast of other parties depends
on m. Specifically:

1. A party Pi broadcasts complaint(i, j, fi(j), gi(j)) when it receives a wrong share from some
party Pj .

2. A party Pi broadcast complaint if the share it received do not agree with the parties that are
publicly 0. Recall that in that case, the dealer must include Pi in CONFLICTS.

It suffices to complain in only one of the instances, say the one with the lexicographically smallest
index. This follows our first design principle. If two parties Pi and Pj do not agree in ℓ < m of the
instances, they will both file a joint complaint with the same minimal index. Thus, we have a joint
complaint, and in order to not be discarded, the dealer must include either i or j in CONFLICTS.
Thus, we still have the guarantee that if two honest parties are not in CONFLICTS then their shares
must be consistent, now in all m executions.

Likewise, if some party Pi receives from the dealer private shares where on points of some parties
that were excluded it does not receive 0s, it essentially requires to be part of CONFLICTS. Thus,
there is no need to make m requests, it suffices to make just one such request.

Reconstruction of the shares of honest parties in CONFLICTS. Going back to the last step
of the sharing process, each party Pj in CONFLICTS wishes to reconstruct its pair of polynomials
(fj(x), gj(y)). Towards that end, each party Pk that are not in CONFLICTS send to Pj , privately,
the values (fj(k), gj(k)). Pj therefore is guaranteed to receive 2t+1− t/4 correct points. However,
the polynomials are of degree t+ t/4, and we need 2t+ t/4 “correct values” to eliminate t errors.
This means that if the adversary introduces more than t/2 incorrect values, Pj does not have unique
decoding. If this is the case, then Pj broadcasts a complaint complaint(j), insisting that its shares
will be publicly reconstructed. As we will see, when batching over m executions, it is enough to
make one public complaint in one execution, say the lexicographically smallest one, let’s denote it
as β ∈ [m]. Resolving this instance will help to resolve all other m instances.
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Upon receiving complaint(j, β), each party Pk broadcasts reveal(k, j, fk(j), gk(j)) for the βth
instance. Thus, we will have at least 2t+1−t/4 correct values that are public. Moreover, corrupted
parties might now reveal values that are different than what they have previously sent privately,
and we might already have unique decoding. In any case, with each value that was broadcasted
and is wrong, the dealer adds the identity of the party that broadcasted the wrong value into a
set Bad. It then broadcasts the set Bad, and all parties can check that when excluding parties in
Bad then all other values define a unique polynomial, and all public points (excluding Bad) lie on
this polynomial. Otherwise, the dealer is publicly discarded. Note that it is enough to broadcast
one set Bad for all party j ∈ CONFLICTS and for all m instances. If |Bad| > t/2, we restart the
protocol, again giving shares 0 to parties in Bad (as long as the total number of parties that the
dealer excluded does not exceed t).

At this point, if we did not restart and the dealer was not discarded, then it must be that Pj

can reconstruct its polynomials fj(x), gj(y) in all m instances. First, in the βth instance (that was
publicly resolved), we know that we have 2t+1− t/4 public points that are “correct” and that the
dealer could have excluded at most t/2 parties. Therefore, there are more than t+ t/4 + 1 correct
points even if the dealer excludes up to t/2 honest parties (recall that it cannot exclude more than
t/2). Those correct points uniquely determine a polynomial of degree t+t/4, and therefore, since all
points after excluding parties in Bad lie on one unique polynomial, it must be that this polynomial
is the correct one.

Using the information learned in the resolved instance party Pj can uniquely decode all other m
instances. Specifically, there is no unique decoding in a particular instance only if Pj received more
than t/2 wrong private shares. When going publicly, some parties might announce different values
than what they first told Pj privately. Pj can compare between the polynomial reconstructed in
the βth instance to the initial values it received privately from the parties, and identify all parties
that sent it wrong shares. Denote this set as localBadj . It must hold that this set contains more
than t/2 corrupted parties. Now, in each one of the other instances, ignore all parties in localBadj .
This implies that the remaining values are of distance at most t/2 from a correct word, i.e., they
contain at most t/2 errors. Moreover, it is guaranteed that honest parties are not eliminated, and
we still have at least 2t+1− t/4 correct points. Therefore, Pj guarantees to have unique decoding
in all m instances.

Detectable and Robust Reconstruction. So far, we described the sharing procedure. While we
do not use the reconstruction of detectable secret sharing directly (we will use private reconstruction,
and parties never reconstruct all secrets), we briefly describe it for completeness. To reconstruct
polynomials S1(x, y), . . . , Sm(x, y) that were shared with the same dealer, we follow a similar step
as reconstruction towards parties in CONFLICTS, but with reconstructing all polynomials: Each
party sends (privately) the f -shares, the parties try to privately reconstruct gi-polynomials for all
i ∈ [n], and interpolate the bivariate polynomials from the gi-polynomials. If some party does not
succeed in uniquely reconstructing some gi-polynomial, then it asks to go public. For each party
Pj , it is enough to publicly reconstruct one gi-polynomial that it did not succeed to reconstruct
privately, and from that, Pj can reconstruct all other shares (by ignoring the new privately detected
parties).

However, as before, the adversary can cause the reconstruction to fail. When it does so, the
dealer is guaranteed to detect more than t/2 corruptions. Moreover, if the dealer already detected at
least t/2 corruptions during the sharing phase, then those parties cannot fail the reconstruction, and
reconstruction is guaranteed. Note that the cost of the reconstruction is O(mn2 log n) over point-
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to-point channels, plus each party has to broadcast at most O(n log n) bits, again, independent
of m.

Reconstruction for VSS. Recall that for VSS, we set the degree of y in each bivariate polynomial
to t. This implies that all parties can reconstruct all g-polynomials using Reed-Solomon error
correction and we never have to resolve complaints publicly. Moreover, the adversary can never
cause any failure. The cost is therefore O(mn2 log n) over point-to-point channels, and VSS robust
reconstruction is always guaranteed.

We refer the reader to Section 4 for our packed secret sharing scheme for a single polynomial,
and to Section 5 for the batched version.

2.2 Our MPC Protocol

Our MPC protocol follows the following structure: an offline phase in which the parties generate
Beaver triplets [10], and an online phase in which the parties compute the circuit while consuming
those triples.

Beaver triplets generation. Our goal is to distribute shares of random secret values a, b and
c, such that c = ab. If the circuit contains C multiplication gates, then we need C such triplets.
Towards that end, we follow the same steps as in [23], and generate such triplets in two stages:

1. Triplets with a dealer: Each party generates shares of ai, bi, ci such that ci = ai · bi. We
generate all the triplets in parallel using expected O(1) rounds. We will elaborate on this
step below in Section 2.3. Our main contribution is in improving this step. In our protocol,
each party acts as a dealer to generate mn triplets. This step requires an overall cost of
O(n4 log n + mn3 log n) point-to-point communication for all the parties together. Later,
these mn2 triplets will be used for generating O(mn2) triplets overall. Looking ahead, we
will use m = C/n2 and this step costs O(n4 log n+ Cn log n).
Previously, the best known [23] used O(n3 log n) point-to-point and O(n3 log n) broadcast for
generating just a single triplet for one dealer. That is, for O(mn2) triplets this is O(mn5 log n)
broadcast which costs at least Ω(mn6 log n) over point-to-point. We therefore improve in a
factor of O(n3).

2. Triplets with no dealer: Using triplet extraction of [23], we can extract from a total of C
triplets with a dealer, O(C) triplets where no party knows the underlying values. That is, if
n parties generate C/n triplets each, then we have a total of C triplets and we can extract
from it O(C) triplets. This step costs O(n2 log n+ Cn log n).

Putting it all together, for generating C triplets we pay a total ofO(n4 log n+Cn log n) and constant
expected number of rounds.

The MPC protocol then follows the standard structure where each party shares its input, and
the parties evaluate the circuit gate-by-gate, or more exactly, layer-by-layer. In each multiplication
gate, the parties have to consume one multiplication triple. Using the method of [23], if the
ith layer of the circuit contains Ci multiplications (for i ∈ [D], where D is the depth of the
circuit), the evaluation costs O(n2 log n+Ci ·n log n). Summing over all layers, this is

∑
i∈[D](n

2+

nCi) log n = (Dn2 + Cn) log n. Together with the generation of the triplets, we get the claimed
O((Cn + Dn2 + n4) log n) cost as in Theorem 1.3. We refer the reader to Section 8 for further
details on our MPC protocol.
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2.3 Multiplication Triplets with a Dealer

As mentioned, a building block which we improve in a factor of O(n3) over the state-of-the-art is
multiplication triplets with a dealer. The goal is that given a dealer, to distribute shares of secret
values a⃗, b⃗, c⃗ such that for every i it holds that ci = aibi. Towards this end, the dealer plants
a⃗ into some bivariate polynomial A(x, y) using our verifiable secret sharing scheme. It plants b⃗
into B(x, y) and c⃗ into C(x, y) in a similar manner. Note that we use verifiable secret sharing
here, since we want to output the triplets shared via degree-t polynomials (which is utilized by
our MPC protocol). So we can plant only O(n) values in each one of them. Then, the dealer
has to prove, using a distributed zero-knowledge protocol, that indeed ci = aibi for every i. The
zero-knowledge proof uses sharing and computations on the coefficients of the polynomials used for
sharing a⃗, b⃗, c⃗, i.e., if we shared O(M) triplets, then the zero-knowledge involves sharing of O(Mn)
values. However, since the dealer is involved in the sharing and the reconstruction of those values,
we do not need full-fledged secret sharing scheme, and we can use the lighter detectable secret
sharing. This scheme enables us to share O(Mn) values at the same cost of “strong” verifiable
secret sharing of O(M) values.

In a more detail, after verifiable sharing A,B and C, the dealer needs to prove that for every
a ∈ {0, . . . , t/4} it holds that C(−a, 0) = A(−a, 0) · B(−a, 0). Towards that end, for every a ∈
{0, . . . , t/4} it considers the polynomial

E−a(y) = A(−a, y) ·B(−a, y)− C(−a, y) = e−a,0 + e−a,1y + . . .+ e−a,2ty
2t

and its goal is to show that the degree-2t polynomial E−a(y) evaluates to 0 on each y ∈ {0, . . . ,−t/4}.
The dealer secret-shares all the coefficients (e−a,k) for a ∈ {0, . . . , t/4} and k ∈ {0, . . . , 2t} using
our detectable secret sharing scheme, by packing them into several bivariate polynomials E(x, y).
Note that there are O(n2) coefficients to share, and each polynomial E(x, y) can pack (t/4 + 1)2

secrets.2 Thus, we actually share a constant number (precisely 8) of polynomials to share all the
coefficients.

Using linear combinations over the shares, the reconstruction protocol privately reconstructs
towards Pj (for every j ∈ [n]) the evaluation of E−a(y) on j, i.e., E−a(j), for each a ∈ {0, . . . , t/4}.
This is performed in a similar manner to the reconstruction of shares of honest parties in CONFLICTS
in our detectable secret sharing protocol. Each Pj can then verify that E−a(j) = A(−a, j) ·
B(−a, j) − C(−a, j), and if not, it can raise a public complaint. The parties can then open the
shares of Pj on A,B,C publicly, and also the value E−a(j). If indeed E−a(j) ̸= A(−a, j)·B(−a, j)−
C(−a, j), then the dealer is discarded.

Moreover, again using linear evaluations over the shares and reconstruction, the parties can
obtain E−a(0) for every a ∈ {0, . . . , t/4} and verify that it equals 0. If indeed E−a(j) = A(−a, j) ·
B(−a, j)−C(−a, j) for 2t+ 1 such js, then E−a(y) = A(−a, y) ·B(−a, y)−C(−a, y) as those are
two polynomials of degree 2t that agree on 2t+1 points. Moreover, if indeed E−a(0) = 0 for every
a ∈ {0, . . . , t/4}, then C(−a, 0) = A(−a, 0) ·B(−a, 0) for every a ∈ {0, . . . , t/4}, as required.

The above description is a bit oversimplified. Recall that the coefficients of E are shared using
only detectable secret sharing. This means that the private reconstruction towards some Pj might
fail. In that case, Pj will ask to perform public reconstruction, and the adversary learns E−a(j) on
a point j ̸∈ I. This is a leakage because the reconstruction was meant to be private and becomes

2Again, in the actual construction we will use different dimensions, but we keep using a bivariate polynomial with
degree t + t/4 in both x and y for simplicity.
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public. The good news is that the outcome of each such public reconstruction is that party Pj

identifies at least t/2 corruptions in localBadj , and all the later reconstructions towards it must
succeed.

As a result, the adversary may learn up to n−t reconstructions that it was not supposed to learn.
Whenever this occurs, we cannot use the entire polynomials that are involved (which pack O(n)
triplets). If a “pack” of triplets requires a public reconstruction, we discard the whole “pack”. On
the positive side, this can happen at most once per party. Moreover, since the multiplication triplets
are just random and do not involve secret inputs, we can just sacrifice them. This means that for
generating m “packs” of triplets, we need to start with batching O(m+n) “packs” of triplets. This
additional overhead does not affect the overall complexity, but it makes the functionalities and the
protocol a bit more involved. We refer the reader to Sections 6 and 7 for further details.

Organization. The rest of this paper is organized as follows. After some Preliminaries (Section 3)
we focus on our packed (Section 4) and batched (Section 5) secret sharing. We then discuss our
packed (Section 6) and batched (Section 7) multiplication triplets with a dealer, and conclude with
the MPC protocol in Section 8.

3 Preliminaries

3.1 Network Model and Definitions

We consider a synchronous network model where the parties in P = {P1, . . . , Pn} are connected
via pairwise private and authenticated channels. Additionally, for some of our protocols we assume
the availability of a broadcast channel, which allows a party to send an identical message to all the
parties. The distrust in the network is modelled as a computationally unbounded active adversary
A which can maliciously corrupt up to t out of the n parties during the protocol execution and
make them behave in an arbitrary manner. We prove security in the stand-alone model for a static
adversary. We provide the definitions (which are standard) below. Owing to the results of [19],
this guarantees adaptive security with inefficient simulation. We derive universal composability [17]
using [36].

Our protocols are defined over a finite field F where |F| > n+ t/2 + 1. We denote the elements
by {−t/2,−t/2 + 1, . . . , 0, 1 . . . , n}. We use ⟨v⟩ to denote the degree-t Shamir-sharing of a value v
among parties in P.

3.2 Security Definition

We prove the security of our protocols in the standard, standalone simulation-based security model
of multiparty computation in the perfect settings [16, 6]. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-
party functionality and let π be an n-party protocol over private and authenticated point-to-point
channels and an authenticated broadcast channel. Let A be the adversary with auxiliary input
z, and let C ⊂ P be the set of corrupted parties controlled by it. We define the real and ideal
executions:

• The real execution: In the real model, the parties run the protocol π where the adversary
A controls the parties in C. The adversary is assumed to be rushing, meaning that in every
round it can see the messages sent by the honest parties to the corrupted parties before it
determines the message sent by the corrupted parties. The adversary cannot see the messages
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sent between honest parties on the point-to-point channels. We denote by RealπA(z),C(x⃗) the
random variable consisting of the view of the adversary A in the execution (consisting of all
the initial inputs of the corrupted parties, their randomness and all messages they received),
together with the output of all honest parties.

• The ideal execution: The ideal model consists of all honest parties, a trusted party and
an ideal adversary SIM, controlling the same set of corrupted parties C. The honest parties
send their inputs to the trusted party. The ideal adversary SIM receives the auxiliary
input z and sees the inputs of the corrupted parties. SIM can substitute any xi with any
x′i of its choice (for the corrupted parties) under the condition that |x′i| = |xi|. Once the
trusted party receives (possibly modified) inputs (x′1, ..., x

′
n) from all parties, it computes

(y1, ..., yn) = f(x′1, ..., x
′
n) and sends yi to Pi. The output of the ideal execution, denoted

as IdealfSIM(z),C(x⃗) is the output of all honest parties and the output of the ideal adversary
SIM.

Definition 3.1. We say that a protocol π is t-secure for a functionality f , if for every adversary
A in the real world, there exists an adversary SIM in the ideal world such that for every C ⊂ P
of cardinality at most t, it must hold that

{IdealfSIM(z),C(x⃗)} ≡ {RealπA(z),C(x⃗)}

where x⃗ is chosen from ({0, 1}∗)n such that |x1| = . . . = |xn|.

Modular composition. We also consider standard f -hybrid model. In the f -hybrid model, the
parties can have access to some trusted party that can compute some functionality f for them.
See, e.g., [16, 6] for further details.

3.3 Bivariate Polynomials and Secret Embedding

A degree (l,m)-bivariate polynomial over F is of the form S(x, y) =
∑l

i=0

∑m
j=0 bijx

iyj where
bij ∈ F. The polynomials fi(x) = S(x, i) and gi(y) = S(i, y) are called ith f and g univariate
polynomials of S(x, y) respectively. In our protocol, we use (t + t/2, t + d)-bivariate polynomials
where d ≤ t/4, and the ith f and g univariate polynomials are associated with party Pi for every
Pi ∈ P.

We view a list of (t/2+1)(d+1) secrets SECRETS as a (t/2+1)× (d+1) matrix. We then say
that the set SECRETS is embedded in a bivariate polynomial S(x, y) of degree (t + t/2) in x and
(t+d) in y if for every a ∈ {0, . . . , t/2} and b ∈ {0, . . . , d} it holds that S(−a,−b) = SECRETS(a, b).

3.4 Simultaneous Error Correction and Detection of Reed-Solomon Codes

We require the following coding-theory related results. Let C be an Reed-Solomon (RS) code word
of length N , corresponding to a k-degree polynomial (containing k + 1 coefficients). Assume that
at most t errors can occur in C. Let C̄ be the word after introducing error in C in at most t
positions. Let the distance between C and C̄ be s where s ≤ t. Then there exists an efficient
decoding algorithm that takes C̄ and a pair of parameters (e, e′) as input, such that e+ e′ ≤ t and
N − k − 1 ≥ 2e+ e′ hold and gives one of the following as output:

1. Correction: output C if s ≤ e, i.e. the distance between C and C̄ is at most e;
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2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices, rather it simply indicates error correction
fails due to the presence of more than correctable (i.e. e) errors. The above property of RS codes
is traditionally referred to as simultaneous error correction and detection. In fact the bounds,
e+ e′ ≤ t and N − k − 1 ≥ 2e+ e′, are known to be necessary. We cite:

Theorem 3.2 ([22, 37]). Let C be an Reed-Solomon (RS) code word of length N , corresponding
to a k-degree polynomial (containing k + 1 coefficients). Let C̄ be a word of length N such that
the distance between C and C̄ is at most t. Then RS decoding can correct up to e errors in C̄ to
reconstruct C and detect the presence of up to e+ e′ errors in C̄ if and only if N − k− 1 ≥ 2e+ e′

and e+ e′ ≤ t.

A couple of corollaries follows from the above theorem that we will use in our work.

Corollary 3.3. Let C and C̄ be as in Theorem 3.2 with N = 2t + 1 + d + t/2 and k = t + d for
any d > 0.

1. Then RS decoding can correct up to t/2 errors in C̄, or detect the presence of up to t errors
in C̄.

2. If t′ > t/2 errors are known in code word C̄, then the remaining t − t′ errors in C̄ can be
corrected from the truncated code word C ′ obtained by removing the t′ error points from C̄.

Proof. The first item follows because N−k−1 = 2t+1+d+t/2−t−d−1 = t+t/2, 2e+e′ = t+t/2
and e+e′ = t hold. The second item holds because (N−t′)−k−1 = 2t+1+d+t/2−t′−t−d−1 =
t+ t/2− t′. And so N − t′ − k − 1 = t+ t/2− t′ ≥ 2(t− t′) holds true for all t′ > t/2.

Corollary 3.4. Let C and C̄ be as in Theorem 3.2 with N = 3t+ 1 and k = t+ t/2.

1. Then RS decoding can correct up to t/2 errors and detect the presence of up to t errors in C̄.

2. If t′ > t/2 errors are known in C̄, then t − t′ errors can be corrected from the truncated
codeword C ′ obtained from C̄ after removing the t′ error points.

Proof. The first item follows since N − k − 1 = t + t/2, 2e + e′ = t + t/2 and e + e′ = t hold.
The second item follows since (N − t′) − k − 1 = 3t + 1 − t′ − t − t/2 − 1 = t + t/2 − t′. And so
N − t′ − k − 1 = t+ t/2− t′ ≥ 2(t− t′) holds true for all t′ > t/2.

Corollary 3.5. Let C and C̄ be as in Theorem 3.2 with N = 3t+ 1 and k = t+ d where d ≤ t/4.

1. Then RS decoding can correct up to t/2 errors and detect the presence of up to t errors in C̄.

2. If t′ > t/2 errors are known in C̄, then t − t′ errors can be corrected from the truncated
codeword C ′ obtained from C̄ after removing the t′ error points.

Proof. The first item follows since N−k−1 = 2t−d ≥ t+3t/4, 2e+e′ = t+t/2 and e+e′ = t hold.
The second item follows since (N − t′)− k− 1 = 3t+1− t′ − t− d− 1 = 2t− d− t′ ≥ t+3t/4− t′.
And so N − t′ − k − 1 ≥ t+ 3t/4− t′ ≥ 2(t− t′) holds true for all t′ > t/2.
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3.5 Parallel Broadcast

In our MPC, we use parallel broadcast that relates to the case where n parties wish to broadcast
a message of size L bits in parallel, as captured in the following functionality.

Functionality 3.6: Fparallel
BC

The functionality is parameterized with a parameter L.

1. Each Pi ∈ P sends the functionality its message Mi ∈ {0, 1}L.
2. The functionality sends to all parties the message {Mi}i∈[n].

The work of [1] presents an instantiation with the following security and complexity. Also note
that, when some party has smaller message than L bits, it can pad with default values to make an
L bit message.

Theorem 3.7 ([1]). There exists a perfectly-secure parallel broadcast with optimal resilience of
t < n/3, which allows n parties to broadcast messages of size L bits each, at the cost of O(n2L)
bits communication, plus O(n4 log n) expected communicating bits. The protocols runs in constant
expected number of rounds.

4 Packed Secret Sharing

In this section we present our secret sharing scheme. In the introduction, we mentioned that we
have two variants: regular verifiable secret sharing, and a novel detectable secret sharing. The
protocol presented in this section fits the two primitives, where the difference is obtained by using
different parameters in the bivariate polynomial, as we will see shortly. In this section, we still do
not “batch” over multiple polynomials; the dealer share just a single polynomial. In Section 5 we
provide details on the batched version. The packed secret sharing protocol consists of the following
building blocks:

1. The dealer chooses a bivariate polynomial S(x, y) of degree 3t/2 in x and degree t + d in
y, where its secret are embedded in S. We should think of d as 0 or t/4. Unlike presented
in Section 2.1, we have two different parameters for x and y. Looking ahead, for verifiable
secret sharing, we use d = 0. For detectable secret sharing, we can use d ∈ [1, t/4] (packing
O((d+ 1)n) secrets).

2. The dealer tries to share S(x, y) using a functionality called FShareAttempt (see Functional-
ity 4.1). At the end of this functionality, the sharing attempt might have the following three
outcomes: (a) discard – the dealer is discarded; (b) (detect,CONFLICTS) - a large set
of conflicts was detected and the protocol will be restarted; (c) proceed, in which case all
parties also receive a set CONFLICTS (of size at most t/2 − d) of parties that still did not
receive shares. All honest parties not in CONFLICTS hold shares that define unique bivariate
polynomial of the appropriate degree. See Section 4.1 for further details.

3. The goal is now to let parties in CONFLICTS to learn their shares. Since the degrees of the
bivariate polynomial is not symmetric, we first reconstruct the g-share (of degree t + d <
3t/2), and then the f -share (of degree 3t/2). Reconstruction of g-polynomial is described in
Section 4.2. The reconstruction of f -polynomial is similar, and is discussed in Section 4.3.

We first present the different building blocks, and then in Section 4.4 we provide the protocol
(and functionality) for packed secret sharing, that uses those building blocks.
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4.1 Sharing Attempt

We start with the description of the functionality.

Functionality 4.1: Sharing Attempt– FShareAttempt

The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. All the honest parties send to FShareAttempt a set ZEROS ⊂ [n]. For an honest dealer, it holds
that ZEROS ⊆ I. FShareAttempt sends the set ZEROS to the adversary.

2. The dealer sends a polynomial S(x, y) to FShareAttempt. When either the polynomial is not
of degree at most 3t/2 in x and at most t + d in y, or for some i ∈ ZEROS it holds that
S(x, i) ̸= 0 or S(i, y) ̸= 0, FShareAttempt executes Step 4c to discard the dealer.

3. For every i ∈ I, FShareAttempt sends (S(x, i), S(i, x)) to the adversary. It receives back a set
CONFLICTS such that CONFLICTS∩ZEROS = ∅.3 If the dealer is honest, then CONFLICTS∪
ZEROS ⊆ I. If |CONFLICTS ∪ ZEROS| > t for a corrupt dealer, then FShareAttempt executes
Step 4c to discard the dealer.

4. Output:

(a) Detect: If |CONFLICTS| > t/2− d, then send (detect,CONFLICTS) to all parties.

(b) Proceed: Otherwise, send (proceed, S(x, i), S(i, y),CONFLICTS) for every i ̸∈ CONFLICTS
and (proceed,⊥,⊥,CONFLICTS) to every i ∈ CONFLICTS.

(c) Discard: send discard to all parties.

Protocol 4.2: Sharing Attempt– ΠShareAttempt

Common input: The description of a field F, parameter d < t.
Input: All parties input ZEROS ⊂ [n]. The dealer inputs a polynomial S(x, y) with degree 3t/2
in x and t+ d in y, such that for every i ∈ ZEROS it holds that S(x, i) = 0 and S(i, y) = 0.
The protocol:

1. (Dealing shares): The dealer sends (fi(x), gi(y)) = (S(x, i), S(i, y)) to Pi for i ̸∈ ZEROS.
Each Pi for i ∈ ZEROS sets (fi(x), gi(y)) = (0, 0).

2. (Pairwise Consistency Checks):

(a) Each i ̸∈ ZEROS sends (fi(j), gi(j)) to every j ̸∈ ZEROS. Let (fji, gji) be the values
received by Pi from Pj .

(b) Each i ̸∈ ZEROS broadcasts complaint(i, j, fi(j), gi(j)) if (a) fji ̸= gi(j) or gji ̸= fi(j) for
any j ̸∈ ZEROS. For j ∈ ZEROS, Pi broadcasts complaint(i, j, fi(j), gi(j)) if fi(j) ̸= 0 or
gi(j) ̸= 0.

3. (Conflict Resolution):

(a) The dealer sets CONFLICTS = ∅. For each complaint(i, j, u, v) such that u ̸= S(j, i) or
v ̸= S(i, j), the dealer adds i to CONFLICTS. The dealer broadcasts CONFLICTS.

3To ease understanding and notion, we sometimes expect to receive from the adversary some sets or inputs that
satisfy some conditions. We do not necessarily verify the conditions in the functionality, and this is without loss of
generality. For instance, in this step we require that the adversary sends a set CONFLICTS such that CONFLICTS ∩
ZEROS = ∅. Instead, we can enforce that this is the case by resetting: CONFLICTS = CONFLICTS \ ZEROS.
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(b) Discard the dealer if any one of the following does not hold: (i) |ZEROS∩CONFLICTS| =
∅; (ii) |CONFLICTS ∪ ZEROS| ≤ t (iii) if some Pi broadcasted complaint(i, j, ui, vi) and
Pj broadcasted complaint(j, i, uj , vj) with ui ̸= vj or vi ̸= uj , then CONFLICTS should
contain either i or j (or both); (iv) if some Pi broadcasted complaint(i, j, u, v) with
j ∈ ZEROS and u ̸= 0 or v ̸= 0, then i ∈ CONFLICTS.

4. (Output): Each Pi outputs discard when the dealer is discarded and (detect,CONFLICTS)
when |CONFLICTS| > t/2 − d. Else, it outputs (proceed,⊥,⊥,CONFLICTS) when i ∈
CONFLICTS, and (proceed, fi(x), gi(y),CONFLICTS) otherwise.

Lemma 4.3. Protocol 4.2, ΠShareAttempt, perfectly-securely computes Functionality 4.1, FShareAttempt,
in the presence of a malicious adversary, controlling at most t < n/3.

Proof. The efficiency of the protocol can be verified by inspection. As for security, we prove the
statement separately for the case of an honest dealer and of a corrupted dealer.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Initialize CONFLICTS = ∅.
2. Receive from the functionality the set ZEROS and a set of polynomials (fi(x), gi(y))i∈I . For

every i ∈ I \ ZEROS, send A the pair (fi(x), gi(y)) as coming from the dealer to Pi.

3. For every j ̸∈ I, and i ̸∈ ZEROS, simulate Pj privately sending to Pi the pair (fj(i), gj(i)) =
(gi(j), fi(j)).

4. Receive from the adversary values (fi,j , gi,j) for every i ∈ I \ZEROS and j ̸∈ I. If fi,j ̸= fi(j)
or gi,j ̸= gi(j), then simulate Pj broadcasting complaint(j, i, gi(j), fi(j)).

5. If the adversary broadcasts complaint(i, j, ui, vi) with ui ̸= fi(j) or vi ̸= gi(j), then add i to
CONFLICTS.

6. Simulate the dealer broadcasting CONFLICTS, and send CONFLICTS to the functionality.

7. Receive from the functionality the output. If (detect,CONFLICTS) received, then send it to
the adversary. Otherwise, for each i ∈ I\CONFLICTS, send (proceed, fi(x), gi(y),CONFLICTS)
and send (proceed,⊥,⊥,CONFLICTS) to each i ∈ CONFLICTS.

It is clear that since the protocol as well as the simulation is deterministic, the adversary’s view
in the real execution and ideal execution are identical. It thus remains to be shown that the output
of the honest parties is the same in both these executions.

In the ideal execution, all the honest parties including the dealer hold the same set ZEROS with
which they invoke the functionality. Moreover, an honest dealer always sends a valid (3t/2, t+ d)-
bivariate polynomial S(x, y) such that S(x, i) = 0 and S(i, y) = 0 holds for each i ∈ ZEROS. Thus,
it is guaranteed that the honest parties never output discard. Consequently, each honest party Pi

either outputs (detect,CONFLICTS) or (proceed, S(x, i), S(i, y),CONFLICTS). The latter holds
since no honest party belongs to CONFLICTS in the case of an honest dealer.

In the real execution, since the dealer is honest, it always holds a valid (3t/2, t + d)-bivariate
polynomial S(x, y) such that S(x, i) = 0 and S(i, y) = 0 holds for each i ∈ ZEROS. Moreover an
honest dealer is never in conflict with another honest party and hence CONFLICTS may consist
of only the corrupted parties. We first show that an honest dealer is never discarded in a real
execution. To that end, observe that a dealer is discarded if and only if the following conditions
hold:
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1. |ZEROS ∩ CONFLICTS| ≠ ∅.
2. |CONFLICTS ∪ ZEROS| > t.

3. If some Pi broadcasted complaint(i, j, ui, vi) and Pj broadcasted complaint(j, i, uj , vj) with
ui ̸= vj or vi ̸= uj and i, j ̸∈ CONFLICTS.

4. If some Pi broadcasted complaint(i, j, u, v) with j ∈ ZEROS and u ̸= 0 or v ̸= 0 and i ̸∈
CONFLICTS.

It is clear than none of the above conditions hold in the case of an honest dealer, and hence the
honest parties do not output discard. We thus have the following two cases to consider:

1. There exists an honest party which outputs (detect,CONFLICTS) in the real execu-
tion: In such a case, we claim that all the honest parties output (detect,CONFLICTS). Note
that an honest party outputs (detect,CONFLICTS) if and only if |CONFLICTS| > t/2 − d.
The set CONFLICTS is broadcasted by the dealer, hence all the honest parties output (detect,
CONFLICTS). Since the simulator emulates the interaction of the honest parties with the ad-
versary as in the real execution of the protocol, all the simulated honest parties hold the
same set CONFLICTS as the honest parties in the real execution. In this case, the simulator
invokes the functionality with this set, which in turn sends (detect,CONFLICTS) to all the
honest parties in the ideal execution, which is identical to the output of the honest parties in
the real world.

2. No honest party outputs (detect,CONFLICTS) in the real execution: In this case, we
show that each honest party outputs (proceed, S(x, i), S(i, y),CONFLICTS). Observe that
since the set CONFLICTS is broadcasted by the dealer and no honest party outputs detect,
it must hold that |CONFLICTS| ≤ t/2− d. Further, the polynomials S(x, i), S(i, y) held by a
party Pi are sent by the dealer and do not change during the protocol execution. Moreover, as
mentioned, an honest party never belongs to CONFLICTS. Hence, each honest party outputs
the polynomials consistent with the dealer’s polynomial S(x, y). That is, each honest Pi

outputs (proceed, S(x, i), S(i, y),CONFLICTS). As before, since the simulator emulates the
interaction of the honest parties with the adversary as in the real execution of the protocol,
all the simulated honest parties hold the same set CONFLICTS as the honest parties in the
real execution. The simulator invokes the functionality with this set, causing all the honest
parties Pi to output (proceed, S(x, i), S(i, y),CONFLICTS) in the ideal execution. This is
identical to the output of the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS. Simulate running the protocol on behalf of
the honest parties with ZEROS as input.

3. There are three cases to consider:

(a) Discard: If the output of some simulated honest party Pj is discard, then send S(x, y) =
yt+d+1 to the functionality together with CONFLICTS = ∅ (in that case, S(x, y) is being
rejected by the functionality and all honest parties output discard).

(b) Otherwise, if some honest party output (detect,CONFLICTS) then it must hold that
|CONFLICTS| > t/2 − d. Send (S(x, y) = yt+d,CONFLICTS) to the functionality . In
that case, the functionality would output (detect,CONFLICTS) to all parties.
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(c) Otherwise, let J be an arbitrary set of t+d+1 honest parties that are not in CONFLICTS.
Note that since |CONFLICTS| ≤ t/2− d we have at least n− t/2 + d ≥ 2t+ 1 + t/2 + d
parties that are not in CONFLICTS and therefore at least 3t/2 + d + 1 honest parties
not in CONFLICTS. Find the unique bivariate polynomial S(x, y) in degree 3t/2 in x
and t+ d in y such that (a) S(x, j) = fj(x) for every j ∈ J . Send S(x, y) together with
CONFLICTS to the functionality.

Since the simulator emulates the honest parties as in the real execution of the protocol, the
view of the adversary in the real and ideal execution is identical. It thus remains to show that the
output of the honest parties in the real world and ideal world is the same. There are three cases
to consider.

1. There exists an honest party that outputs discard in the real world: An honest
party outputs discard only if verification fails at Step 3b. In this case, all the corresponding
messages are broadcasted and hence all the honest parties output ⊥. Since the real and
simulated executions are identical, all the simulated honest parties also output discard.
Thus the simulator invokes the functionality as in Step 3a of the simulation, causing all the
honest parties to receive discard in the ideal world.

2. There exists an honest party that outputs (detect,CONFLICTS) in the real world:
This implies that for the set CONFLICTS broadcasted by the dealer, it holds that |CONFLICTS|
> t/2 − d. Thus, each honest party outputs (detect,CONFLICTS) in the real world. Given
that the simulated and real executions are identical, the simulated honest parties observe the
same set CONFLICTS. The simulator in this case invokes the functionality as in Step 3b of
the simulation, causing the honest parties to output (detect,CONFLICTS) in the ideal world.

3. No honest party outputs discard or (detect,CONFLICTS) in the real world: In this
case, it means that |CONFLICTS| ≤ t/2−d and parties output proceed in the real execution.
We want to show that all the honest parties j ̸∈ CONFLICTS hold fi(x) and gi(y) consistent
with a unique (3t/2, t+d)-bivariate polynomial S(x, y). Towards that end, observe that since
|CONFLICTS| ≤ t/2 − d holds, we have that at least 3t/2 + d + 1 honest parties are not in
CONFLICTS. Let J be an arbitrary set of t+d+1 honest parties that are not in CONFLICTS,
and reconstruct the (3t/2, t + d)-bivariate polynomial S(x, y) from the set of degree-(3t/2)
univariate polynomials (fj(x))j∈J . We claim that the polynomials of all honest parties, not
belonging to CONFLICTS lie on that polynomial.
To show that, we first claim that the g polynomial of each honest party Pj where j ̸∈
CONFLICTS agrees with S. Specifically, we have two cases here:

• For each honest party j ∈ ZEROS, it holds that gj(y) = S(j, y) = 0. Specifically,
for every k ∈ J ∩ ZEROS it trivially holds that gj(k) = fk(j) = 0. And for every
k ∈ J \ ZEROS, it must hold that gj(k) = fk(j) = 0, as otherwise Pk would have raised
a complaint and if the dealer does not include it in CONFLICTS then it would have been
discarded. Since gj(y) and S(j, y) are both degree-(t + d) polynomials which agree in
t+ d+ 1 points, gj(y) = S(j, y) = 0 holds.

• For each honest party j ̸∈ ZEROS, it holds that gj(y) = S(j, y). Specifically, for every
k ∈ J ∩ ZEROS it must hold that gj(k) = fk(j), as otherwise Pj would have raised
a complaint and thus j ∈ CONFLICTS, which is a contradiction. Similarly, for every
k ∈ J \ ZEROS it must hold that gj(k) = fk(j), as otherwise Pj and Pk would have
raised a joint complaint and thus either j ∈ CONFLICTS or k ∈ CONFLICTS, which is a
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contradiction. Finally, since gj(y) and S(j, y) are both degree-(t+ d) polynomials which
agree in t+ d+ 1 points, gj(y) = S(j, y) holds.

Thus, for each honest j ̸∈ CONFLICTS, it holds that gj(y) is consistent with S(x, y). Note
that since |CONFLICTS| ≤ t/2 − d, we have that the g polynomial of at least 3t/2 + d + 1
honest parties is consistent with S. We now proceed to show that the f polynomial of each
honest party Pj where j ̸∈ CONFLICTS agrees with S. For this, consider an arbitrary set K
of 3t/2 + 1 honest parties that are not in CONFLICTS. Then we have the following,

• For each honest party j ∈ ZEROS, it holds that fj(x) = S(x, j) = 0. Specifically,
for every k ∈ K ∩ ZEROS it trivially holds that fj(k) = gk(j) = 0. And for every
k ∈ K \ ZEROS, it must hold that fj(k) = gk(j) = 0, as otherwise Pk would have raised
a complaint and thus k ∈ CONFLICTS, which is a contradiction. Since fj(x) and S(x, j)
are both degree-(3t/2) polynomials which agree in 3t/2 + 1 points, fj(x) = S(x, j) = 0
holds.

• For each honest party j ̸∈ ZEROS ∪ CONFLICTS, it holds that fj(x) = S(x, j). Specifi-
cally, for every k ∈ K ∩ ZEROS it must hold that fj(k) = gk(j), as otherwise Pj would
have raised a complaint and thus j ∈ CONFLICTS, which is a contradiction. Similarly,
for every k ∈ J \ ZEROS it must hold that fj(k) = gk(j), as otherwise Pj and Pk would
have raised a joint complaint and thus either j ∈ CONFLICTS or k ∈ CONFLICTS, which
is a contradiction. Finally, since fj(x) and S(x, j) are both degree-(3t/2) polynomials
which agree in 3t/2 + 1 points, it holds that fj(x) = S(x, j).

We conclude that if the honest parties output proceed, then each honest j ̸∈ CONFLICTS
holds fj(x) and gj(y) consistent with a unique bivariate polynomial S(x, y). Moreover, since
the set CONFLICTS is broadcasted and it holds that |CONFLICTS| ≤ t/2 − d, each honest
Pj with j ∈ CONFLICTS outputs (proceed,⊥,⊥,CONFLICTS). Since the simulated and real
executions are identical, output of the simulated honest parties is the same as the honest
parties in the real execution. Thus, in this case, the simulator invokes the functionality as
in Step 3c of the simulation, which in turn ensures that the output of the honest parties is
identical in the real and ideal executions.

4.2 Reconstruction of g-Polynomials in CONFLICTS

When invoking this functionality, we are guaranteed that the shares of the honest parties define
a unique bivariate polynomial, and that the number of parties that are not in CONFLICTS is at
least (n − t/2) + d. The goal of this step is to reconstruct the g-polynomials for the parties in
CONFLICTS, while the possible outcomes are: (i) the dealer is discarded; (ii) the dealer detects
additional t/2 parties that it will make ZEROS in the next iteration; (iii) the protocol succeeds and
all honest parties hold gj(y) as output.

Functionality 4.4: Reconstruction of g-Polynomials – Frec-g

1. Input:4 All honest parties send to the functionality Frec-g the sets ZEROS ⊂ [n] and
CONFLICTS ⊂ [n], each honest j ̸∈ CONFLICTS sends (fi(x), gi(y)). Let S(x, y) be the

4If not all honest parties send shares that lie on the same bivariate polynomial, or not all send inputs that satisfy
the input assumptions as described, then no security is guaranteed. This can be formalized as follows. If the input
assumptions do not hold, then the functionality sends to the adversary all the inputs of all honest parties, and lets
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unique bivariate polynomial of degree at most 3t/2 in x and at most t + d in y that satis-
fies fj(x) = S(x, j) and gj(y) = S(j, y) for every j ̸∈ CONFLICTS. Moreover, it holds that
n− |CONFLICTS| ≥ 2t+ 1 + t/2 + d.

2. Frec-g sends (ZEROS,CONFLICTS, (S(x, i), S(i, y))i∈I) to the adversary. If the dealer is cor-
rupted, then Frec-g sends S(x, y) as well.

3. It receives back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then Frec-g sends discard to all parties.

(b) If M = (detect,Bad) with Bad∩ (ZEROS∪CONFLICTS) = ∅ and |Bad| > t/2, and with
Bad ⊆ I in the case of an honest dealer, then Frec-g sends (detect,Bad) to all parties.

(c) If M = proceed, then Frec-g sends:
for each j ∈ CONFLICTS the output (proceed,⊥, S(j, y)), and
for each j ̸∈ CONFLICTS send (proceed, S(x, j), S(j, y)).

Protocol 4.5: Reconstruct g-Polynomials in CONFLICTS – Πrec-g

Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not in CONFLICTS
holds a pair of polynomials (fi(x), gi(y)), and it is guaranteed that all the shares of honest parties
lie on the same bivariate polynomial S(x, y) with degree at most 3t/2 in x and t+ d in y.
The protocol:

1. Every party sets HAVE-SHARES = [n] \ (ZEROS ∪ CONFLICTS).

2. For every j ∈ CONFLICTS:

(a) Each party Pi for i ∈ HAVE-SHARES sends (i, fi(j)) to Pj .

(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i ∈ ZEROS, consider
(i, ui) with ui = 0. Given all (i, ui)i ̸∈CONFLICTS, Pj looks for a codeword of a polynomial
of degree t+ d with a distance of at most t/2 from all the values it received (see Corol-
lary 3.3, item 1). If there is such codeword, set gj(y) to be the unique Reed-Solomon
reconstruction. If there is no such a unique codeword, then Pj broadcasts complaint(j)
and every party Pi for i ∈ HAVE-SHARES broadcasts reveal(i, j, fi(j)).

3. The dealer sets Bad = ∅. For each reveal(i, j, u) message broadcasted, the dealer verifies that
u = fi(j). If not, then it adds i to Bad. The dealer broadcasts Bad.

4. The parties go to Step 6a if one of the following is not true: (i) |ZEROS∪CONFLICTS∪Bad| ≤
t; (ii) Bad ⊂ HAVE-SHARES. The parties go to Step 6b if |Bad| > t/2.

5. Otherwise, for every j ∈ CONFLICTS, if complaint(j) was broadcasted, then the parties
consider all the points Rj = {(i, ui)} such that reveal(i, j, ui) was broadcasted in Step 2b,
and i ∈ HAVE-SHARES \ Bad, or ui = 0 if i ∈ ZEROS. They verify if Rj defines a unique
polynomial of degree t + d. If not, they go to Step 6a. Otherwise, Pj sets gj(y) to be that
unique polynomial.

6. Output:

(a) Discard the dealer: Output discard.

the adversary to singlehandedly determine all outputs of all honest parties. This makes the protocol vacuously secure
(since anything can be simulated).
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(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j ∈ CONFLICTS outputs (proceed,⊥, gj(y)). All other parties Pj

with j ̸∈ CONFLICTS output (proceed, fj(x), gj(y)).

Lemma 4.6. Protocol 4.5, Πrec-g, perfectly securely computes Functionality 4.4, Frec-g, in the
presence of a malicious adversary, controlling at most t < n/3. The protocol requires the transmis-
sion of O(n2 log n) bits over point-to-point channels, and each party broadcasts at most O(n log n)
bits.

Proof. We prove the statement separately for the case of an honest dealer and of a corrupted dealer.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ (ZEROS ∪
CONFLICTS).

2. Receive from the functionality the sets ZEROS,CONFLICTS and the polynomials S(x, i), S(i, y)
for every i ∈ I.

3. Set Bad = ∅. For every i ∈ CONFLICTS: (note that since the dealer is honest, then I ⊆
CONFLICTS. Thus, any such element is also in I)

(a) Simulate party Pj , j ∈ HAVE-SHARES sending (j, i, fj(i)) = (j, i, gi(j)) to the adversary.

(b) If Pi broadcasts complaint(i) then simulate party Pj , for j ∈ HAVE-SHARES broadcasting
reveal(j, i, gi(j)).

(c) Listen to all broadcasts reveal(i′, i, ui) that the adversary sends for some i′ ∈ HAVE-SHARES∩
I. If ui ̸= gi(i

′), then add i′ to Bad.

4. Simulate the dealer broadcasting Bad. If |Bad| > t/2, then send (detect,Bad) to the func-
tionality and halt.

5. Otherwise, send proceed to the functionality , and halt.

When the dealer is honest, we have that CONFLICTS ⊆ I. Moreover, the protocol is deterministic,
and so is the simulator. By inspection, the view of the adversary in the real and ideal executions
is identical. We now show that the output of honest parties is identical in the real and ideal world.

In the real world, first note that an honest dealer is discarded if and only if one of the following
conditions holds:

1. |ZEROS ∪ CONFLICTS ∪ Bad| > t.

2. Bad ̸⊂ HAVE-SHARES.

3. Rj does not define a unique polynomial of degree-(t+ d).

Note that for an honest dealer, an honest party never belongs to Bad and we have that ZEROS ⊆ I
and CONFLICTS ⊆ I. Hence, it is clear that none of the above conditions hold and the dealer is
not discarded. We thus have the following two cases:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold that
|Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it must hold
that all the honest parties output (detect,Bad). Since the simulator emulates the interaction
of the honest parties with the dealer as in the real execution, all the simulated honest parties
hold the same set Bad. In that case, the simulator sends (detect,Bad) to the functionality ,
causing all the honest parties in the ideal world to output the same.
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2. There exists an honest party that outputs proceed: This implies that |Bad| ≤ t/2.
Since this set was broadcasted by the dealer, all the honest parties hold the same set. More-
over, an honest party never belongs to CONFLICTS. Thus, we have that all the honest parties
Pj output (proceed, fj(x), gj(y)), where fj(x) and gj(y) are consistent with a bivariate poly-
nomial S(x, y) by our input assumption. Since the simulator emulates the interaction of the
honest parties with the dealer as in the real execution, all the simulated honest parties hold
the same set Bad. In this case, the simulator sends proceed to the functionality , causing all
the honest parties in the ideal world to output proceed. This is identical to the output of
the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ (ZEROS ∪
CONFLICTS).

2. Receive from the functionality the sets ZEROS,CONFLICTS and the bivariate polynomial
S(x, y).

3. Simulate the protocol where each honest party Pj with j ̸∈ CONFLICTS starts with input
S(x, j), S(j, y), and all parties have the same sets CONFLICTS,ZEROS.

4. Send the message M to the functionality according to the following cases (the proof will show
that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send (detect,Bad)
to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real honest
parties in the real execution, and since the protocol is deterministic, we get that the view of the
adversary is exactly the same in the real and in the ideal.

We now turn to show that the outputs of all honest parties is the same in the real and in the
ideal, conditioned on the view of the adversary.

1. There exists an honest party that outputs discard in the real world: An honest
party outputs discard in one of the following cases:

(a) The dealer broadcasted Bad such that (i) |ZEROS ∪ CONFLICTS ∪ Bad| > t; or (ii)
Bad ̸⊂ HAVE-SHARES. Since all honest parties hold the same sets CONFLICTS and
ZEROS, and since Bad is broadcasted, we get that all honest parties would output
discard.

(b) The dealer broadcasted Bad with |Bad| ≤ t/2, and for which |ZEROS ∪ CONFLICTS ∪
Bad| ≤ t and Bad ⊂ HAVE-SHARES. Moreover, some honest party j ∈ CONFLICTS
broadcasted reveal(j), and when considering all pointsRj = {(i, ui)} such that reveal(i, j, ui)
was broadcasted in Step 2b, and i ∈ HAVE-SHARES \ Bad, or ui = 0 if i ∈ ZEROS, it
holds that Rj does not define a unique polynomial of degree t + d. Since the set Rj

is public, all honest parties will identify that there is no unique reconstruction, and all
would output discard.
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In both cases, in the ideal execution the simulator also sends discard to the functionality
and all honest parties output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad). An honest party outputs
(detect,Bad) if the dealer broadcast Bad such that |ZEROS ∪ CONFLICTS ∪ Bad| ≤ t, and
Bad ⊂ HAVE-SHARES. Moreover, it holds that |Bad| > t/2. Since the message Bad is
broadcast, then all honest parties would output (detect,Bad). In the simulated execution
we will have that the simulator sends to the functionality the message (detect,Bad), and all
honest parties output (detect,Bad).

3. There exists an honest party that outputs proceed. First, if no honest party out-
puts discard and (detect,Bad), then there must be an honest party in HAVE-SHARES
that outputs proceed. We now claim that all honest parties not in CONFLICTS output
(proceed, S(x, j), S(j, y)), and all honest parties in CONFLICTS outputs (proceed,⊥, S(j, y)),
where S(x, y) is the bivariate polynomial that is interpolated by the input shares of the honest
parties and is guaranteed to exist under our input assumption.

(a) All honest parties Pj with j ̸∈ CONFLICTS output (proceed, S(x, j), S(j, y)). Since
an honest party did not output discard and (detect,Bad), we have that |ZEROS ∪
CONFLICTS∪Bad| ≤ t, Bad ⊂ HAVE-SHARES, and |Bad| ≤ t/2. Moreover, for every j ∈
CONFLICTS that broadcast complaint(j), the points Rj that were broadcasted (excluding
the parties in Bad) define a unique polynomial. Since all the messages are broadcast,
if one honest party Pk not in CONFLICTS output (proceed, S(x, k), S(k, y)) then all
honest parties Pj not in CONFLICTS have the exact same public view and also output
(proceed, S(x, j), S(j, y)). Note that the honest parties Pj not in CONFLICTS hold their
respective S(x, j) and S(j, y) polynomials consistent with a bivariate polynomial S(x, y)
according to our input assumptions.

(b) Each honest party Pj with j ∈ CONFLICTS outputs (proceed,⊥, S(j, y)). Here
we have two sub-cases to consider. First, if in Step 2b the party Pj has a unique
reconstruction, then the reconstruction must be S(j, y). Specifically, let gj(y) be the
unique reconstructed polynomial of Pj . It must hold that S(j, k) = gj(k) for at least
t+1+ t/2+ d values of k, since each honest party not in CONFLICTS sent to Pj a point
on S(x, y). Since gj(y) is of degree t + d, and since S(j, y) is also of degree t + d, we
must have that gj(y) = S(j, y).
Second, if in Step 2b the party Pj did not have a unique reconstruction, then it broad-
cast reveal(j). It will receive its polynomial only in Step 5. There must be a unique
reconstruction, as otherwise no honest party would have output proceed. We now claim
that the unique reconstruction must be S(j, y). As before, all honest parties broadcast
values on the polynomial S(j, y). The reconstruct polynomial therefore must agree with
S(j, y) on at least t+1+ t/2+d points, and since this is a polynomial of degree t+d, the
two polynomial must be identical. We conclude that Pj outputs (proceed,⊥, S(j, y)).

To conclude, in the simulated execution the simulator would submit to the functionality the
message proceed. Each honest party j ∈ CONFLICTS would output (proceed,⊥, S(j, y)),
whereas each honest party j ̸∈ CONFLICTS would output (proceed, S(x, j), S(j, y)). This is
exactly as in the real execution.
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4.3 Reconstruction of f-Polynomials in CONFLICTS

The goal of this step is to make each party in CONFLICTS to receive its f -share. This is performed
in a similar manner to that of reconstruction of g. This time, all honest parties hold shares of g,
and thus each party in CONFLICTS receives at least 2t+1 correct values on each its f polynomial.
The f -polynomial is of degree 3t/2, and therefore we fail to reconstruct if the adversary introduces
more than t/2 errors. In that case, we will have detection, in a similar manner to the reconstruction
of g. The full details of the functionality (denoted by Frec-f), the protocol (denoted by Πrec-f),
and the proof are given below.

Functionality 4.7: Reconstruction of f-Polynomials – Frec-f

1. Input: All honest parties send to the functionality the sets ZEROS ⊂ [n] and CONFLICTS ⊂
[n], each honest party Pj for j ̸∈ (CONFLICTS ∪ I) sends (fj(x), gj(y)). Each honest Pj for
j ∈ CONFLICTS sends gj(y). Let S(x, y) be the unique bivariate polynomial of degree 3t/2
in x and t+d in y that satisfies fj(x) = S(x, j) and gj(y) = S(j, y) for every j ̸∈ CONFLICTS
and gj(y) = S(j, y) for every j ∈ CONFLICTS. Moreover, it holds that n − |CONFLICTS| ≥
2t+ 1 + t/2 + d.

2. Send (ZEROS,CONFLICTS, (S(x, i), S(i, y))i∈I) to the adversary. If the dealer is corrupted,
then send also S(x, y).

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ ZEROS = ∅ and |Bad| > t/2, then send (detect,Bad)
to all parties.

(c) If M = proceed then send for each j the output (proceed, S(x, j), S(j, y)).

Protocol 4.8: Reconstruct f-Polynomials in CONFLICTS – Πrec-f

• Input: All parties hold the same set CONFLICTS and ZEROS. Each honest party not in
CONFLICTS holds a pair of polynomials (fi(x), gi(y)), and each honest party in CONFLICTS
holds the polynomial gi(y). It is guaranteed that all the shares of honest parties lie on the
same bivariate polynomial S(x, y) with degree at most 3t/2 in x and t+ d in y.

• The protocol:

1. Set HAVE-SHARES = [n] \ ZEROS.
2. For every j ∈ CONFLICTS:

(a) Each party Pi for i ∈ HAVE-SHARES sends (i, gi(j)) to Pj .

(b) Let (i, ui) be the value Pj received from Pi. Moreover, for every i ∈ ZEROS, consider
(i, ui) with ui = 0. Given all (i, ui), Pj looks for a codeword of distance at most
t/2 from all the values it received. If there is such a codeword, set fj(x) to be
the unique Reed-Solomon reconstruction (see Corollary 3.4, item 1). If there is no
such a unique codeword, then Pj broadcasts complaint(j) and every party Pi for
i ∈ HAVE-SHARES broadcasts reveal(i, j, gi(j)).

3. The dealer sets Bad = ∅. For each reveal(i, j, u) message broadcasted, the dealer verifies
that u = gi(j). If not, then it adds i to Bad. The dealer broadcasts Bad.
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4. Verify that (i) |ZEROS ∪ CONFLICTS ∪ Bad| ≤ t; and (ii) Bad ⊂ HAVE-SHARES. Oth-
erwise, discard – go to Step 7a.

5. If |Bad| > t/2 then there is a large detection – go to Step 7b.

6. Otherwise, for every j ∈ CONFLICTS, if complaint(j) was broadcasted, then consider
all the points Rj = {(i, ui)} such that reveal(i, j, ui) was broadcasted in Step 2b, and
i ∈ HAVE-SHARES \ Bad, or ui = 0 if i ∈ ZEROS. Verify that Rj defines a unique
polynomial of degree 3t/2. If not, go to Step 7a. Otherwise, Pj sets fj(x) to be that
unique polynomial.

7. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j outputs (proceed, fj(x), gj(y)).

Lemma 4.9. The Protocol Πrec-f (Protocol 4.8), perfectly securely computes the Frec-f function-
ality (Functionality 4.7), in the presence of a malicious adversary, controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ ZEROS.
2. Receive from the functionality the sets ZEROS,CONFLICTS and the polynomials S(x, i), S(i, y)

for every i ∈ I.

3. Set Bad = ∅. For every i ∈ CONFLICTS: (note that since the dealer is honest, then
CONFLICTS ⊆ I. Thus, any such element is also in I)

(a) Simulate party Pj , j ∈ HAVE-SHARES sending (j, i, gj(i)) = (j, i, fi(j)) to the adversary.

(b) If Pi broadcasts complaint(i) then simulate party Pj , for j ∈ HAVE-SHARES broadcasting
reveal(j, i, fi(j)).

(c) Listen to all broadcasts reveal(i′, i, ui) that the adversary sends for some i′ ∈ HAVE-SHARES∩
I. If ui ̸= fi(i

′), then add i′ to Bad.

4. Simulate the dealer broadcasting Bad. If |Bad| > t/2, then send (detect,Bad) to the func-
tionality and halt.

5. Otherwise, send proceed to the functionality , and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed that the
view of the adversary in the real and ideal executions is identical. It remains to show that the
output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if one
of the following conditions holds:

1. |ZEROS ∪ CONFLICTS ∪ Bad| > t.

2. Bad ̸⊂ HAVE-SHARES.

3. Rj does not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that ZEROS ⊆ I
and CONFLICTS ⊆ I. It is clear that none of the above conditions hold and the dealer is not
discarded. We thus have the following two cases:
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1. There exists an honest party that outputs (detect,Bad): In this case, it must hold that
|Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it must hold that
all the honest parties output (detect,Bad). The simulator emulates the interaction of the
honest parties with the dealer as in the real execution, hence all the simulated honest parties
hold the same set Bad. In that case, the simulator sends (detect,Bad) to the functionality ,
causing all the honest parties in the ideal world to output the same.

2. There exists an honest party proceed: This implies that |Bad| ≤ t/2. Since this set
was broadcasted by the dealer, all the honest parties hold the same set. Moreover, an
honest party never belongs to CONFLICTS. Thus, we have that all the honest parties Pj

output (proceed, fj(x), gj(y)) where fj(x) and gj(y) are consistent with the bivariate poly-
nomial S(x, y) as guaranteed by our input assumption. As mentioned, the simulator em-
ulates the interaction of the honest parties with the dealer as in the real execution, hence
all the simulated honest parties hold the same set Bad. In this case, the simulator sends
proceed to the functionality , causing all the honest parties Pj in the ideal world to output
(proceed, S(x, j), S(j, y)). This is identical to the output of the honest parties in the real
world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z. Set HAVE-SHARES = [n] \ ZEROS.
2. Receive from the functionality the sets ZEROS,CONFLICTS and the bivariate polynomial

S(x, y).

3. Simulate the protocol where each honest party Pj with j ̸∈ CONFLICTS starts with input
S(x, j), S(j, y), each honest Pj with j ∈ CONFLICTS starts with input S(j, y) and all parties
have the same sets CONFLICTS,ZEROS.

4. Send the message M to the functionality according to the following cases (the proof will show
that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send (detect,Bad)
to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real honest
parties in the real execution, and since the protocol is deterministic, we get that the view of the
adversary is exactly the same in the real and in the ideal. Thus it remains to be shown that the
output of the honest parties is identical in the real and ideal executions. We have the following
cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS ∪ CONFLICTS ∪ Bad| > t; or
(ii) Bad ̸⊂ HAVE-SHARES. Since all honest parties hold the same sets CONFLICTS and
ZEROS, and the set Bad is broadcasted, we get that all honest parties output discard.
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(b) The dealer broadcasted Bad with |Bad| ≤ t/2, and for which |ZEROS ∪ CONFLICTS ∪
Bad| ≤ t and Bad ⊂ HAVE-SHARES. Moreover, some honest party j ∈ CONFLICTS
broadcasted reveal(j), and when considering all pointsRj = {(i, ui)} such that reveal(i, j, ui)
was broadcasted in Step 2b, and i ∈ HAVE-SHARES \ Bad, or ui = 0 if i ∈ ZEROS, it
holds that Rj does not define a unique polynomial of degree 3t/2. Since the set Rj is
public, all honest parties will identify that there is no unique reconstruction, and all
would output discard.

Since the simulated honest parties have the same view as the honest parties, the simulated
honest parties also output discard. In this case, the simulator sends discard to the func-
tionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS∪CONFLICTS∪Bad| ≤ t and Bad ⊂ HAVE-SHARES. Moreover,
it must hold that |Bad| ≥ t/2. Since the corresponding set Bad is broadcast, all the honest
parties hold the same set and hence output (detect,Bad). The simulated honest parties hold
an identical output, and thus the simulator sends (detect,Bad) to the functionality , which
in turn sends the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs proceed in the real world: In this case,
we show that each honest Pj outputs (proceed, S(x, j), S(j, y)) where S(x, y) is the bivariate
polynomial that is interpolated from the input shares of the honest parties and is guaranteed
to exist under our input assumption. We consider the following two cases.

(a) Each honest Pj with j ̸∈ CONFLICTS outputs (proceed, S(x, j), S(j, y)): Since
there exists an honest party that does not output discard or (detect,Bad), it must
hold that |ZEROS ∪ CONFLICTS ∪ Bad| ≤ t, Bad ⊂ HAVE-SHARES and |Bad| ≤ t/2.
Moreover, for every j ∈ CONFLICTS which broadcast complaint(j), the points Rj which
were broadcasted (excluding the points of parties in Bad) define a unique degree-3t/2
polynomial. Since all the corresponding messages were broadcast, all the honest parties
not in CONFLICTS have the same view and hence output (proceed, S(x, j), S(j, y)),
where the polynomials S(x, j) and S(j, y) are consistent with S(x, y) and held by the
parties not in CONFLICTS according to our input assumption.

(b) Each honest Pj with j ∈ CONFLICTS outputs (proceed, S(x, j), S(j, y)): Here we
have two sub-cases to consider. First, note that if Pj has a unique reconstruction in
Step 2b, then the reconstruction must be S(x, j). Specifically, let fj(x) be the unique
degree-3t/2 reconstructed polynomial of Pj . It must hold that S(k, j) = fj(k) for at
least 2t+ 1 values of k, since each honest party Pk sent to Pj a point on S(x, j). Since
both fj(x) and S(x, j) are of degree 3t/2, we have that fj(x) = S(x, j) holds.
Second, if in Step 2b the party Pj did not have a unique reconstruction, then it must be
that Pj broadcast reveal(j). It will thus receive its polynomial only in Step 6. In this case,
it must hold that there is a unique reconstruction of degree-3t/2 polynomial from the
publicly revealed points in Rj which were broadcasted (excluding the points of parties
in Bad), as otherwise no honest party would have output proceed. We now claim that
the unique reconstruction must be S(x, j). As before, all honest parties broadcast values
on the polynomial S(x, j). Moreover, since |Bad| ≤ t/2 (otherwise parties would output
(detect,Bad)), it must hold that the reconstructed polynomial agrees with S(x, j) on
at least 3t/2 + 1 points of the honest parties. Since both the reconstructed polynomial
and S(x, j) are of degree 3t/2, the two polynomial must be identical. We conclude that
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Pj outputs (proceed, S(x, j), S(j, y)), where it is guaranteed to hold S(j, y) due to our
input assumption.

Consequently, in the simulated execution the simulator sends proceed to the functionality.
Each honest party j thus outputs (proceed, S(x, j), S(j, y)) in the ideal execution. This is
exactly as in the real execution.

4.4 Putting Everything Together: Packed Secret Sharing

We view a list of (t/2 + 1)(d+ 1) secrets SECRETS as a (t/2 + 1)× (d+ 1) matrix.

Functionality 4.10: Packed Secret Sharing – FPSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

• Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the dealer is honest
then it is guaranteed that ZEROS ⊆ I.

• Honest dealer: The dealer sends SECRETS to FPSS. The functionality sends ZEROS to the
adversary, which replies with (fi(x), gi(y))i∈I under the constraint that fi(x) = gi(y) = 0 for
every i ∈ ZEROS. The functionality chooses a random bivariate polynomial S(x, y) of degree
3t/2 in x and t+d in y under the constraints that (i) SECRETS is embedded in S (see Section 3
for the meaning of embedding); (ii) S(x, i) = fi(x) for every i ∈ I; (iii) S(i, y) = gi(y).

• Corrupted dealer: The functionality sends ZEROS to the adversary, which replies with
S(x, y). FPSS that verifies that S(x, y) is of degree 3t/2 in x and degree t+ d in y, and that
for every i ∈ ZEROS it holds that fi(x) = gi(y) = 0. If not, FPSS replaces S(x, y) = ⊥.

• Output: FPSS sends to each party Pj the pair of polynomials S(x, j), S(j, y).

We claim that there is always a bivariate polynomial that can be reconstructed. Specifically,
consider for simplicity the case where |I| = t:

1. A bivariate polynomial of degree 3t/2 in x and degree t + d in y is determined by (3t/2 +
1)(t+ d+ 1) values.

2. The adversary sends t pairs of polynomials of degree 3t/2 and t+d. The f polynomials define
t(3t/2 + 1) values. Each g polynomial is already determined in t coordinates, and therefore
we have a total of t(t+ d+ 1− t) = t(d+ 1).

3. SECRETS determines (t/2 + 1) · (d+ 1) values.

Therefore, the number of constraints that we have is (t/2+1)(d+1)+ t(3t/2+1)+ t(d+1), which
is exactly (3t/2 + 1)(t+ d+ 1), the total number of variables in the bivariate polynomial.

Protocol 4.11: Packed Secret Sharing in the (FShareAttempt,Frec-g,Frec-f)-hybrid model –
ΠPSS

Input: The dealer holds SECRETS, and all honest parties hold the same set ZEROS.
The protocol:

1. Dealing the shares:

(a) The dealer chooses a random bivariate polynomial S(x, y) of degree at most 3t/2 in x and
degree t+ d in y that embeds SECRETS, under the constraint that for every i ∈ ZEROS
it holds that S(x, i) = 0 and S(i, y) = 0.
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(b) All parties invoke Functionality 4.1, FShareAttempt, where the dealer inputs S(x, y) and
all parties input ZEROS:
i. If the output is discard, then proceed to Step 4a.

ii. If the output is (detect,CONFLICTS) then set ZEROS = ZEROS ∪ CONFLICTS. If
|ZEROS| > t then proceed to Step 4a. Otherwise, go back to Step 1a.

iii. If the output is (proceed, fi(x), gi(y),CONFLICTS), then proceed to the next step.
Note that it must hold that (a) for parties i ∈ CONFLICTS, fi(x) = gi(y) = ⊥ and
(b) n− |CONFLICTS| ≥ n− (t/2− d).

2. Reconstruct the g-polynomials: The parties invoke Functionality 4.4, Frec-g, where each
party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)).

(a) If the output is discard, then proceed to Step 4a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t then
discard and proceed to Step 4a. Otherwise, go back to Step 1a.

(c) Otherwise, the output is (proceed, fi(x), gi(y)) where every party Pi with i ∈ CONFLICTS
has gi(y) ̸= ⊥, then proceed to the next step.

3. Reconstruct the f-polynomials: The parties invoke Functionality 4.7, Frec-f, where each
party Pi inputs (ZEROS,CONFLICTS, fi(x), gi(y)). Note that for parties in CONFLICTS it
holds that fi(x) = ⊥.

(a) If the output of the functionality is discard, then proceed to Step 4a.

(b) If the output is (detect,Bad) then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t then
discard and go to Step 4a. Otherwise, go back to Step 1a.

(c) Otherwise, let (proceed, fi(x), gi(y)) be the output, where now all parties have fi(x) ̸= ⊥
and gi(y) ̸= ⊥. Go to Step 4b.

4. Output:

(a) Discard: All parties output ⊥.

(b) Successful: Output fi(x), gi(y).

Lemma 4.12. Let t < n/3 and d ≤ t/4. Protocol 4.11, ΠPSS, perfectly securely computes Func-
tionality 4.10, FPSS, in the (FShareAttempt,Frec-g,Frec-f)-hybrid model (Functionality 4.1,4.4,4.7)),
in the presence of a malicious adversary, controlling at most t < n/3.

Proof. We separate between the case of an honest dealer and a corrupted dealer.

The case of an honest dealer. The simulator is as follows:

1. Invoke A on an auxiliary input z.

2. Receive from the functionality the set ZEROS.

3. Set SECRETS arbitrarily as input (say, all zeros) and run the protocol where the dealer
holds SECRETS and all other parties have ZEROS as input. In particular, simulate all inner
functionalities as a functionality would run them.

4. Let S(x, y) be the input of the simulated honest dealer used and sent to the simulated Func-
tionality 4.1 in the last iteration (by iteration, we mean running the protocol from Step 1a
until restarting or concluding the protocol). Send S(x, i), S(i, y) to the functionality for every
i ∈ I.
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We now show that the output of the real and ideal executions are the same. Towards that end,
consider the following games:

• Game1: This is the real execution. We run the protocol where the honest dealer uses SECRETS
as its input. The output of this experiment is the view of the adversary and the output of all
honest parties in the protocol.

• Game2: We run a modified ideal model, in which the simulator receives the same SECRETS
as in Game1 as an advice, and the dealer uses SECRETS as its input to the functionality. The
simulator uses SECRETS as its input instead of all zeros as the description of S. The simulator
runs the protocol where the input of the honest dealer is SECRETS, exactly as the real
execution in Game1. We claim that the dealer is never discarded. Then, the simulator sends
to the functionality the output shares of the corrupted parties in the simulated execution.
The functionality chooses some random polynomial S(x, y) that agrees with the output shares
of the adversary and SECRETS, and gives the honest parties their shares on that polynomial.
The output of this experiment is the view of the adversary as determined by the simulator,
and the output of all honest parties (equivalent to S(x, y)).

• Game3: This is the ideal model. In particular, the simulator receives no advice, and runs as
in Game2, but with input SECRETS = 0.

We show that all the outputs of all games are identically distributed.

The outputs of Game1 and Game2 are identically distributed. The simulator in Game2 runs
the exact same protocol as the real execution in Game1, and therefore the view of the adversary is
identical in both executions. We now turn to the output of the honest parties. We claim that in
that execution, the honest dealer is never discarded. Specifically:

1. The honest dealer chooses a bivariate polynomial that always satisfies the conditions of Func-
tionality 4.1 and therefore that functionality never returns discard. Moreover, CONFLICTS ⊆
I, and therefore we never reach |ZEROS| > t and the dealer is never discarded. Furthermore,
we can reboot the protocol only a constant number of times (see Corollary 4.15).

2. When invoking Functionality 4.4 we have that the shares of the honest parties satisfy the input
assumption of the functionality. Moreover, Bad ⊂ I, and so again Bad ∪ CONFLICTS ⊆ I,
and so the dealer is not discarded. Again, we can reboot the protocol only a constant number
of times (see Corollary 4.15).

3. Finally, when invoking Functionality 4.7 we have that the shares of the honest parties satisfy
the input assumption of the functionality. From a similar reasons as above, the output would
be shares of the reconstructed polynomial, which is the same polynomial as the dealer used
in the beginning of the iteration as its input to FShareAttempt.

We conclude that when the dealer is honest, all parties output shares on the same bivariate poly-
nomial, which is a polynomial S(x, y) that the dealer used in that iteration. In Game1, the output
of all honest parties is shares on that polynomial. In Game2, the simulator sends the shares
(S(x, i), S(i, y))i∈I to the functionality, the functionality samples a new polynomial S′(x, y) under
the constraints that S′(x, i) = S(x, i) and S′(i, y) = S(i, y) for every i ∈ I, and SECRETS is em-
bedded in S′(x, y). The output of all honest parties is then equivalent to just outputting S′(x, y).
We claim that the output is identical via the following claim:
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Claim 4.13. Let SECRETS be any arbitrary sets of (t/2 + 1)(d+ 1) field elements, and let I ⊂ [n]
be a set of cardinality at most t. Then, for every ZEROS ⊆ I the output of the following two
distributions is identical:

Process I
• Choose a random (3t/2, t + d)-
bivariate polynomial S(x, y) that
embeds SECRETS, such that for
every i ∈ ZEROS it holds that
S(x, i) = S(i, y) = 0.

• Output S(x, y).

Process II
• Choose a random (3t/2, t + d)-
bivariate polynomial S(x, y) that
embeds SECRETS, such that for
every i ∈ ZEROS it holds that
S(x, i) = S(i, y) = 0.

• Choose a random (3t/2, t + d)-bivariate
polynomial S′(x, y) that embeds
SECRETS such that for every i ∈ I
it holds that S′(x, i) = S(x, i) and
S′(i, y) = S(i, y).

• Output S′(x, y).

Proof. For the case of |I| = t, we show that S′(x, y) = S(x, y). Let S(x, i) = fi(x) and S(i, y) =
gi(y).

We claim that there is a unique polynomial S′(x, y) that can embed SECRETS and satisfies
for every i ∈ I the conditions S′(x, i) = fi(x) and S′(i, y) = gi(y). Specifically, reconstruct
the polynomials g0(y), . . . , g−t/2(y) of degree t + d each as follows: g−a(−b) = SECRETS(a, b)
for a ∈ {0, . . . , t/2} and b ∈ {0, . . . , d}. Moreover, for every a ∈ {0, . . . , t/2} and i ∈ I we set
g−a(i) = fi(−a). This defines t + d + 1 points on each one of the polynomials g0(y), . . . , g−t/2(y),
and uniquely define polynomials of degree t + d. Now, from Lagrange interpolation there exists a
unique bivariate polynomial S′(x, y) of degree 3t/2 in x and t+d in y that satisfies S′(a, y) = g−a(y)
for every a ∈ {0, . . . , t/2} and S′(i, y) = gi(y) for every i ∈ I. Note that those are t/2 + t + 1
polynomials of degree t + d each, and therefore uniquely define S′(x, y). This polynomial embeds
SECRETS, agrees with gi(y) for every i ∈ I, and also satisfies S′(x, i) = fi(x) for every i ∈ I, since
fi(j) = gj(i) = S(j, i) for every i, j ∈ I, and fi(−a) = g−a(i) = S(−a, i) for every i ∈ {0, . . . , t/2}.
Thus the two univariate polynomials, S(i, y) and fi(y) of degree 3t/2 must agree.

For the case of |I| < t, we can just view process I as first choosing polynomials fi(x), gi(y) for
every i ∈ ZEROS such that fi(x), gi(y) = 0, and then choosing fi(x), gi(y) for every i ∈ I \ ZEROS
uniformly at random under the constraint that fi(j) = gj(i) for every i, j ∈ I. Finally, choose
S(x, y) uniformly at random under the constraint that S(x, i) = fi(x) and Si(y) = gi(y) for every
i ∈ I. The two process are therefore equivalent.

Notice that Process I is equivalent to the choice of the polynomial S(x, y) in Game1. Process II
is equivalent to Game2.

The outputs of Game2 and Game3 are identically distributed. The only difference between the
two games is that in Game2 the simulator uses the same secret SECRETS as the honest dealer uses
in the ideal execution, whereas in Game3 the the simulator uses SECRETS = 0. The following claim
shows that the shares that the corrupted parties receive in the simulated execution is identically
distributed. In both execution, given the shares that the simulator sends to the functionality,
the outputs of the honest parties are defined in exactly the same process (the functionality uses
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SECRETS and the shares sent by the adversary). Therefore it is enough to show that the view is
identically distributed.

Claim 4.14. Let SECRETS1, SECRETS2 be two arbitrary sets of (t/2 + 1)(d + 1) field elements,
and let I ⊂ [n] be a set of cardinality at most t. Then, for every ZEROS ⊆ I the output of the
following two distributions is identical:

Process I
• Choose a random (3t/2, t + d)-
bivariate polynomial S1(x, y) that embeds
SECRETS1, such that for every i ∈ ZEROS
it holds that S1(x, i) = S1(i, y) = 0.

• Output (i, S1(x, i), S1(i, y)) for every i ∈ I.

Process II
• Choose a random (3t/2, t + d)-
bivariate polynomial S2(x, y) that embeds
SECRETS2, such that for every i ∈ ZEROS
it holds that S2(x, i) = S2(i, y) = 0.

• Output (i, S2(x, i), S2(i, y)) for every i ∈ I.

Proof. We show that the probability distributions {{(i, S1(x, i), S1(i, y))}i∈I} corresponding to
Process I and {{(i, S2(x, i), S2(i, y))}i∈I} corresponding to Process II are identical. Towards
that end, we begin by defining the probability ensembles S2 and S1 as follows:

S1 = {{(i, S1(x, i), S1(i, y))}i∈I |S1 embeds SECRETS1 and S1(x, i) = S1(i, y) = 0 ∀i ∈ ZEROS}
S2 = {{(i, S2(x, i), S2(i, y))}i∈I |S2 embeds SECRETS2 and S2(x, i) = S2(i, y) = 0 ∀i ∈ ZEROS}

Given this, we show that S1 ≡ S2. For this, we show that given any set of pairs of degree-3t/2 and
degree-t polynomials Z = {fi(x), gi(y)}i∈I that satisfy fi(j) = gj(i) for every i, j ∈ I, the number
of bivariate polynomials in support of S1 that are consistent with Z are the same as the number of
polynomials in support of S2.

First, observe that if there exist i, j ∈ I such that fi(j) ̸= gj(i), or if there exists some i ∈
I ∩ ZEROS such that fi(x) ̸= 0 or gi(y) ̸= 0, then there does not exist any bivariate polynomial in
support of S1 or S2 that is consistent with Z.

Now consider Z = {fi(x), gi(y)}i∈I such that for every i, j ∈ I, it holds that fi(j) = gj(i).
Moreover, for each i ∈ I ∩ ZEROS, it holds that fi(x) = gi(y) = 0. We begin by counting the
number of polynomials in support of S1 that are consistent with Z. For the case when |I| = t, note
that Z together with SECRETS1 defines exactly one polynomial S(x, y), as we saw in the proof of
Claim 4.13.

When |I| < t, we can first define g−a(y) for each a ∈ {0, . . . , t/2} by choosing t − |I| points
on each of these polynomials uniformly at random (since g−a(y) is degree-(t + d) polynomial, of
which |I| points are already defined by {fi(−a)}i∈I and additionally d + 1 points are defined by
SECRETS1(a, b) for each b ∈ {0, . . . , d}). Following this, the number of polynomials in the support
is |F|(t/2+1)(t−|I|).

A similar argument shows the same calculation for choosing S2 according to S2. Finally, since S1

and S2 are chosen randomly from those consistent with Z and SECRETS1 or SECRETS2 respectively,
the probability that Z is obtained is same in both the cases.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A on the auxiliary input z.

2. Receive from the functionality the set ZEROS.

3. Simulate running the protocol with the adversary when all honest parties hold ZEROS as
input, while also simulating Functionalities 4.1, 4.4, 4.7 to the adversary.
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4. If the output of some simulated honest party is ⊥, then send S(x, y) = x3t/2+1 to the func-
tionality, in which case it sends ⊥ to all parties.

5. Otherwise, let J be a set of t+ d+ 1 honest parties. Reconstruct the unique bivariate poly-
nomial S(x, y) that satisfies S(x, j) = fj(x) for every j ∈ J , where fj(x), gj(y) is the output
of the simulated honest party in the simulated execution. Send S(x, y) to the functionality
and halt.

Since the code of each party in the protocol which is not the dealer is deterministic, and the
functionalities 4.1, 4.4, 4.7 are also deterministic, the view of the adversary is identical in the real
and ideal. Moreover, since the functionality is deterministic, we can separately consider the view
and the outputs of the honest parties. All is left is to show that the output of the honest parties
is the same in the real and in the ideal executions. We have two cases to consider:

1. There exists an honest party that outputs ⊥. That is, the shares are rejected. This
happens if one of the functionalities returns discard, in which case all honest parties receive
the same output and all honest parties output ⊥. Or, it might be the case that the output
of one of the invocations of Functionality 4.1 is (detect,CONFLICTS) and it holds that
ZEROS = ZEROS ∪ CONFLICTS satisfies |ZEROS| > t. Again, since the output of all parties
is the same, and their view of the sets ZEROS and CONFLICTS is the same, all honest parties
output ⊥. In the ideal execution, the simulated honest parties would also have the exact
same output. In that case, the simulator sends x3t/2+1, and the functionality delivers ⊥ to
all honest parties. We conclude that in that case the output of the honest parties is ⊥ both
in the real and in the ideal.

2. One honest party did not output ⊥. In that case, we claim that no honest party
outputs ⊥. This is similar to the previous case. Moreover, by the guarantee of functionali-
ties 4.1, 4.4, 4.7 we have that all honest parties have shares of the same bivariate polynomial
S(x, y). In the ideal execution, the simulated honest parties would also have shares of that
polynomial S(x, y). The simulator chooses an arbitrary set J of t+ d+1 honest parties, and
reconstructs the unique bivariate polynomial that agree with their outputs. It must hold that
this polynomial is S(x, y). It sends this polynomial to the functionality , and each honest
party receives as output the shares S(x, i), S(i, y), exactly as in the real.

Communication and Efficiency Analysis. We conclude the following lemma, proven subse-
quently:

Lemma 4.15. Let t < n/3 and d ≤ t/4. There exists a protocol that implements Functionality 4.10,
has a communication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n)
bits broadcast for sharing O((d + 1)n) values (i.e., O(n(d + 1) log n) bits) simultaneously in O(1)
rounds. Every party broadcasts at most O(n log n) bits.

Proof. By combining Theorems 4.3,4.6, 4.9, and 4.12, we conclude the existence of a protocol that
securely computes Functionality 4.10 in the plain model.

Further, Protocol 4.11 requires a constant number of restarts before it terminates successfully.
To see this, we analyze the case of an honest dealer and corrupt dealer separately.

In the case of an honest dealer, note that a restart may occur at Steps 1(b)ii, 2b or 3b in
Protocol 4.11. In each of the above cases, due to guarantees of functionality 4.1, 4.4 and 4.7, it
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is ensured that a new CONFLICTS set of cardinality more than t/2 − d, t/2 and t/2 respectively
is identified. Since d ≤ t/4, we have that more than t/4 conflicts are identified each time that
the protocol requires a restart. Recall that in the case of the honest dealer, it is guaranteed
that no honest party belongs to CONFLICTS. Thus, each time a CONFLICTS set is identified, a
new set of corrupt parties is identified, which are publicly emulated (by setting their shares to 0)
in the subsequent run. Consequently, after (at most) 3 restarts, it is guaranteed that more than
3t/4 ≥ t/2+d corrupt parties are emulated publicly and hence honestly. Since the number of parties
in conflict with the honest dealer can be at most t, we have that at most t−3t/4, that is < t/4 parties
can misbehave in the subsequent execution of the protocol. Given that each functionality 4.1, 4.4
and 4.7 succeeds in this case, we have that Protocol 4.11 successfully terminates.

For a corrupt dealer, if the protocol terminates after (at most) 3 restarts, then by the guarantees
of the protocol, we have that it computes Functionality 4.10. Otherwise, we are guaranteed that the
dealer is corrupt, and hence can be discarded. The protocol requires the transmission of O(n2 log n)
bits over point-to-point channels, and each party broadcasts at most O(n log n) bits.

5 Batched and Packed Secret Sharing

In this section, we suggest how to keep the broadcast unchanged when running m instances of
the packed secret sharing with the same dealer. That is, if one instance requires O(n2 log n)
bits communicated over point-to-point channels and each party (including the dealer) broadcasts
O(n log n) bits, we have a protocol that requires O(mn2 log n) bits communicated over point-
to-point channels and each party still has to broadcast at most O(n log n) bits (and a total of
O(n2 log n)). We review the changes necessary for each one of the sub-protocols of packed secret
sharing.

Sharing attempt and Batched Complaints. Here the dealer inputs m bivariate polynomials,
but there is one set ZEROS ⊂ [n]. It is assumed that all bivariate polynomials have 0 shares for
the parties in ZEROS.

At Step 2b in Protocol 4.2, every Pi checks consistency in all instances but raises a complaint for
only one of them, say, the minimum index of the instance. A complaint now looks like complaint(i, j,
fi(j), gi(j), α) where α ∈ {1, . . . ,m}. Moreover, if a party broadcasts complaint(i, j, ui, vi) for
j ∈ ZEROS, then the dealer must add Pi to CONFLICTS. Thus, there is no need for Pi to broadcast
such a complaint in each instance that it sees inconsistency with Pj for j ∈ ZEROS, but it is enough
to do it in only one of the instances.

This keeps the broadcast cost O(n2 log n) bits among all m instances combined (as opposed
O(mn2 log n) when running them simultaneously in a black-box manner).

Note that when the dealer is honest, honest parties never complain on one another, and this
holds in all m invocations. Moreover, if the dealer is corrupted and two honest parties have to file
a joint complaint, then both will have the exact same minimal index, and the dealer must have to
add one of them into CONFLICTS, exactly as we have in single instance.

Batched reconstruction of g polynomials in CONFLICTS. Here the change in the protocol
is more delicate than the previous case, and we provide a full modeling and proof. Specifically,
In Step 2b of Protocol 4.5, a party Pj may fail to reconstruct gj in multiple instances. However,
it is enough to pick one instance β (say, the one with minimum index) and complains publicly
with β. Now, rest of the public verification happens with respect to βth invocation. If parties
publicly reveal values that are different than what they revealed privately, then the party knows
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that those parties are corrupted and can try to reconstruct the polynomials without those shares.
In particular, the only case when a party cannot uniquely reconstruct is when the the adversary
introduces more than t/2 errors. However, if the public reconstruction of g in the βth execution is
successful, it can recognize t/2 misbehaving parties by comparing the polynomial that was publicly
reconstruct to the shares sent to it privately. Note that it is possible that a corrupted party sends
some share to Pj privately but makes some other value public. Pj knows for sure that such party is
corrupt, even though Bad that the dealer broadcasts can even be empty. Once Pj recognizes more
than t/2 errors, it can eliminate them in all other private reconstructions, remaining with less than
t/2 errors in all the m executions. The functionality (denoted as Fbatched

rec-g ), the full specification of

the protocol (denoted as Πbatched
rec-g ) as well as the proof are given below.

Functionality 5.1: Batched Reconstruction of g-Polynomials – Fbatched
rec-g

1. Input: All honest parties send to the functionality the sets ZEROS ⊂ [n] and CONFLICTS ⊂
[n], each honest j ̸∈ CONFLICTS sends (f ℓ

i (x), g
ℓ
i (y))ℓ∈[m]. Let S1(x, y), . . . , Sm(x, y) be the

unique bivariate polynomials of degree at most 3t/2 in x and at most t+ d in y that satisfy
f ℓ
j (x) = Sℓ(x, j) and gℓj(y) = Sℓ(j, y) for every j ̸∈ CONFLICTS and ℓ ∈ [m]. Moreover, it
holds that n− |CONFLICTS| ≥ 2t+ 1 + t/2 + d.

2. Send (ZEROS,CONFLICTS, (Sℓ(x, i), Sℓ(i, y))i∈I,ℓ∈[m]) to the adversary. If the dealer is cor-

rupted, then send also (Sℓ(x, y))ℓ∈[m] to the adversary.

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ (ZEROS ∪ CONFLICTS) = ∅ and |Bad| > t/2, and in
case of an honest dealer, then Bad ⊆ I, then send (detect,Bad) to all parties.

(c) If M = proceed then send:
for each j ∈ CONFLICTS the output (proceed,⊥, (Sℓ(j, y))ℓ∈[m])

for each j ̸∈ CONFLICTS send (proceed, (Sℓ(x, j))ℓ∈[m], (S
ℓ(j, y))ℓ∈[m]).

Protocol 5.2: Batched Reconstruction of g-Polynomials in CONFLICTS – Πbatched
rec-g

Input: as in the functionality.
The protocol:

1. Set HAVE-SHARES = [n] \ (ZEROS ∪ CONFLICTS), and localBadi = ∅.
2. For every j ∈ CONFLICTS:

(a) Each party Pi for i ∈ HAVE-SHARES sends (i, j, (f ℓ
i (j))ℓ∈[m]) to Pj .

(b) Let (i, (uℓi)ℓ∈[m]) be the values Pj received from Pi. Moreover, for every i ∈ ZEROS,

consider (i, uℓi) with uℓi = 0. For every ℓ ∈ [m], given all (i, uℓi)i ̸∈CONFLICTS, Pj looks for
a codeword of a polynomial of degree t + d with a distance of at most t/2 from all the
values it received (see Corollary 3.3, item 1). If there is such a codeword, set gℓj(y) to
be the unique Reed Solomon reconstruction.

(c) If there is no such a unique codeword for some ℓ, then Pj broadcasts complaint(j, β),
where β is the minimal index in [m] where reconstruction of gℓ(y) failed.
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(d) Every party Pi for i ∈ HAVE-SHARES broadcasts reveal(i, j, fβ
i (j), β).

3. The dealer sets Bad = ∅. For each reveal(i, j, u, ℓ) message broadcasted, the dealer verifies
that u = f ℓ

i (j) = Sℓ(j, i). If not, then it adds i to Bad. The dealer broadcasts Bad.

4. Verify that (i) |ZEROS ∪ CONFLICTS ∪ Bad| ≤ t; and (ii) Bad ⊂ HAVE-SHARES. Otherwise,
discard – go to Step 8a.

5. If |Bad| > t/2 then there is a large detection – go to Step 8b.

6. Otherwise, for every j ∈ CONFLICTS, if complaint(j, β) was broadcasted, then consider all

the points Rj = {(i, uβi )} such that reveal(i, j, uβi ) was broadcasted in Step 2c, and i ∈
HAVE-SHARES \Bad, or uβi = 0 if i ∈ ZEROS. Verify that Rj defines a unique polynomial of
degree t+ d. If not, discard – go to Step 8a.

7. If the dealer is not publicly discarded, then each Pj sets gℓj(y) to be the unique bivariate

decoding of the points (i, uβi ) as specified in the previous step. It defines the set localBadj as

follows: localBadj = {i ∈ [n] | gβj (i) ̸= uβi where uβi was received in Step 2b}, i.e., it detects
all the parties that provided it wrong values. Then, for every ℓ ∈ [m] it reconstructs (see
Corollary 3.3, item 2) the unique polynomial gℓj(y) from the points (uℓi)i ̸∈localBadj .

8. Output:

(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: Each party j ∈ CONFLICTS outputs (proceed,⊥, (gℓj(y))ℓ∈[m]). All other

parties j ̸∈ CONFLICTS output (proceed, (f ℓ
j (x), g

ℓ
j(y))ℓ∈[m]).

Lemma 5.3. Protocol Πbatched
rec-g (Protocol 5.2), perfectly-securely computes Fbatched

rec-g (Functional-
ity 5.1) in the presence of a malicious adversary, controlling at most t < n/3.

Proof. The analysis is a direct generalization of that of Theorem 4.6 and we omit the description
of the simulator, where the only difference is running it multiple polynomials and not just one. We
just highlight the non-trivial changes in the proof.

As previously, an honest party never belongs to Bad and we have that ZEROS ⊆ I, and the
dealer is never discarded. If there exists an honest party that outputs (detect,Bad) then all honest
party output (detect,Bad). If there exists an honest party that outputs proceed then all honest
parties have their g polynomials. Specifically, consider an honest party in CONFLICTS. It receives
t+1+ t/2+d correct points on each polynomial. Since the output of this iteration is not detect, it
must hold that the dealer sent a set Bad with |Bad| < t/2. However, we claim that |localBadj | ≥ t/2.
If Pj did not succeed to reconstruct the βth instance, then the adversary must have introduced at
least t/2 errors in the private points sent to Pj . Moreover, if |Bad| < t/2, then it must hold that
corrupted parties provided public points reveal that are not the same as they sent privately to Pj .
Thus, Pj must identify at least t/2 parties in localBadj , and they must all be corrupted parties.
Once Pj identifies t/2 corrupted parties, and the number of corrupted parties is bounded by t, the
number of possible errors introduced in each one of the polynomials gℓ(y) for ℓ ∈ [m] is < t/2. Pj

therefore succeeds to find unique decoding for all those polynomials.

The case of a corrupted dealer. The simulator is similar to that in the proof of Theorem 4.6.
Again, if some honest party Pj with j ̸∈ CONFLICTS outputs (proceed, (Sℓ(x, j))ℓ∈[m], (S

ℓ(j, y))ℓ∈[m])
then all honest parties output proceed. Moreover, honest parties not in CONFLICTS output both
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f and g’s shares, and parties in CONFLICTS output the g’s shares. This is because all parties not in
CONFLICTS decide what to output according to the public view. As for the parties in CONFLICTS,
we have a similar argument to that in the case of an honest dealer: once |Bad| < t/2 it must
hold that |localBadj | ≥ t/2, and given that each party have t+ 1 + t/2 + d correct points on each
polynomial, it can always recover the underlying polynomial.

Batched reconstruction of f-polynomials in CONFLICTS. This follows the exact same lines
as the reconstruction of g polynomials. Specifically, if the local reconstruction is not unique, then
it is enough to pick one instance γ ∈ [m] and open it publicly. The public verification happens with
respect to the γth instance. Pj will then be able to reconstruct f ℓ

j for every ℓ ∈ [m].

5.1 Sharing

To conclude, we realize the following functionality putting together the batched version of protocols
for the sharing attempt, reconstruction of g and f polynomials. Referring the protocol as Πbatched

PSS ,
we culminate at the following theorem.

Functionality 5.4: Batched and Packed Secret Sharing – Fbatched
PSS

The functionality is parameterized by the set of corrupted parties I ⊆ [n].

• Input: All parties input a set ZEROS ⊂ [n] such that |ZEROS| ≤ t. If the dealer is honest
then it is guaranteed that ZEROS ⊆ I.

• Honest dealer: The dealer sends (SECRETSℓ)ℓ∈[m] to Fbatched
PSS . The functionality sends

ZEROS to the adversary, who sends back (f ℓ
i (x), g

ℓ
i (y))i∈I,ℓ∈[m] such that f ℓ

i (k) = gℓk(i) for
every i, k ∈ I and ℓ ∈ [m]. Moreover, for every i ∈ ZEROS, fi(x) = gi(y) = 0. For every
ℓ ∈ [m], the functionality chooses a random bivariate polynomial Sℓ(x, y) of degree 3t/2 in x
and t+d in y under the constraints that (i) SECRETSℓ is embedded in Sℓ; (ii) S

ℓ(x, i) = f ℓ
i (x)

for every i ∈ I; (iii) Sℓ(i, y) = gℓi (y).

• Corrupted dealer: For every ℓ ∈ [m], the dealer sends Sℓ(x, y) to Fbatched
PSS that verifies that

Sℓ(x, y) is of degree 3t/2 in x and degree t + d in y, and for every i ∈ ZEROS it holds that
fi(x) = gi(y) = 0. If not, Fbatched

PSS replaces Sℓ(x, y) = ⊥.

• Output: Fbatched
PSS sends to each party Pj the polynomials (Sℓ(x, j), Sℓ(j, y))ℓ∈[m].

Theorem 5.5. Πbatched
PSS securely computes Fbatched

PSS (Functionality 5.4). It requires a communica-
tion complexity of O(mn2 log n) bits over-point-to-point channels and O(n2 log n) bits broadcast for
sharing O((d + 1)mn) values (i.e., O((d + 1)mn log n) bits) simultaneously in O(1) rounds. Each
party broadcasts at most O(n log n) bits.

5.2 Reconstruction

We present the reconstruction protocols for our batched and packed secret sharing. As mentioned
in the introduction, for our detectable secret sharing, we get a detectable reconstruction, a weaker
form of robust reconstruction. For the case of d = 0, we get robust reconstruction, and so verifiable
secret sharing. We start with fully specifying the functionality.
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Functionality 5.6: Detectable Reconstruction for Batched and Packed Secret Sharing
– Fbatched

PSS-Rec
The functionality is parameterized with the set of corrupted parties I ⊂ [n].

1. Input: All honest parties send ZEROS ⊂ [n]. When the dealer is honest, ZEROS ⊆ I. Each
honest party Pj sends (f

k
j (x), g

k
j (y)) for each k ∈ [m] and j ̸∈ I. For each k, let Sk(x, y) be the

unique bivariate polynomial of degree 3t/2 in x and t+ d in y that satisfies fk
j (x) = Sk(x, j)

and gkj (y) = Sk(j, y) for every j ̸∈ I.

2. Send ZEROS and S1(x, y), . . . , Sm(x, y) to the adversary. If d = 0 then go to Step 4c.

3. Receive back from the adversary a message M .

4. Output:

(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with |Bad| > t/2 and Bad ∩ ZEROS = ∅, and in case of an honest
dealer Bad ⊆ I , then send (detect,Bad) to all parties.

(c) If M = proceed then send to each j the output (proceed, S1(x, y), . . . , Sm(x, y)).

Note that if the dealer is honest then discard cannot occur. Moreover, if the dealer is honest
and |ZEROS| > t/2, the (detect,Bad) cannot occur, as |Bad ∪ ZEROS| ≤ t and so we cannot have
|Bad| > t/2. In that case, we always succeed to reconstruct. On the other hand, if the dealer is
honest and |ZEROS| ≤ t/2, the adversary might cause to a failure. In that case, we are guaranteed
to have a mass detection.

The protocol. To reconstruct shared polynomials S1(x, y), . . . , Sm(x, y), the reconstruction pro-
tocol follows a similar structure of that of Protocol 5.2:

1. Each party Pi holds (f
ℓ
i , g

ℓ
i (y))ℓ∈[m] and a set ZEROS ⊂ [n].

2. Each party now sends all its polynomials f1
i (x), . . . , f

m
i (x) over the private channel to all

other parties.

3. The parties try to reconstruct polynomials gℓ1(y), . . . , g
ℓ
n(y) using the polynomials f ℓ

1(x), . . . , f
ℓ
n(x)

(and taking 0 for the parties in ZEROS). E.g., reconstruct gℓj(y) by considering (k, f ℓ
k(j))k ̸∈ZEROS

and adding (k, 0) for k ∈ ZEROS. Try to correct at most t/2 errors, for every ℓ ∈ [m] (see
Corollary 3.5, item 1). If some party fails to decode some polynomial gℓj(y), then it broadcast
complaint(j, ℓ). Note that it is enough to broadcast just a single complaint, say the one with
the lexicographically smallest j, ℓ.

4. We will have a public reconstruction of gℓj(y): Each party broadcasts its point on that poly-
nomial, and the dealer broadcasts a set Bad if there are any wrong values broadcasted. The
parties output (detect,Bad) if |Bad| > t/2. The parties check that when excluding all points
in Bad then all points lie on a single polynomial gℓj(y).

5. Using the public reconstruction, the party Pj can now locate t/2 corruptions and reconstruct
(see Corollary 3.5, item 2) all polynomials gℓ1(y), . . . , g

ℓ
n(y) for every ℓ ∈ [m]. All parties can

now find unique bivariate polynomials Sℓ(x, y) satisfying Sℓ(i, y) = gℓi (y) for every i ∈ [n].
The parties output those polynomials.

There are few properties that we would like to highlight with respect to the above protocol:

1. Note that when d = 0, then we can simply run Reed-Solomon decoding in Step 3 and always
succeed to reconstruct as Reed Solomon decoding returns unique decoding when there are at
most t errors. Thus, there is no need for public resolution.
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2. There are at most n complaints, which lead to each party broadcasting at most O(n log n)
bits to resolve all complaints.

Conclusion: Detectable Secret Sharing. While we provide functionality-based modeling and
proofs, the verifiable secret sharing literature is also full of property based definitions, and some
readers might find such modeling helpful. We provide here such properties for completeness. From
combining Functionalities 5.4 and 5.6, when using d > 0 we obtain a two-phase protocol for parties
P = {P1, . . . , Pn} where a distinguished dealer P ∗ ∈ P holds initial SECRETS, and all honest
parties hold the same set ZEROSP ∗ ⊆ [n] (where no honest party is in ZEROSP ∗ if P ∗ is honest)
such that the following properties hold:

• Secrecy: If the dealer is honest during the first phase (the sharing phase), then at the end
of this phase, the joint view of the malicious parties is independent of the dealer’s input
SECRETS.

• Reconstruction or detection – corrupted dealer: At the end of the sharing phase,
the joint view of the honest parties define values SECRETS′ such that at the end of the
reconstruction phase – all honest parties will output either SECRETS′, or discard the dealer,
or t/2 new values will be added to ZEROSP ∗ .

• Reconstruction or detection – honest dealer: At the end of the sharing phase, the
joint view of the honest parties define values SECRETS′ = SECRETS that the dealer used as
input for the sharing phase. At the end of the reconstruction phase, all honest parties will
output SECRETS, or t/2 new indices, all of corrupted parties, will be added to ZEROSP ∗ . If
ZEROSP ∗ initially contained more than t/2 values during the sharing phase, then the output
of the second phase is always SECRETS.

When |SECRETS| ∈ Ω(n2), the protocol uses O(n4 log n + |SECRETS| log n) communication com-
plexity for both sharing and reconstruction.

Conclusion: Verifiable Secret Sharing. From combining Functionalities 5.6 and 5.6, when
using d = 0 we obtain a verifiable secret sharing: A two-phase protocol for parties P = {P1, . . . , Pn}
where a distinguished dealer P ∗ ∈ P holds initial secrets s1, . . . , st is a Verifiable Secret Sharing
Protocol tolerating t malicious parties and the following conditions hold for any adversary controlling
at most t parties:

• Validity: Each honest party Pi outputs the values si,1, . . . , si,t at the end of the second
phase (the reconstruction phase). Furthermore, if the dealer is honest then (si,1, . . . , si,t) =
(s1, . . . , st).

• Secrecy: If the dealer is honest during the first phase (the sharing phase) then at the end
of this phase, the joint view of the malicious parties is independent of the dealer’s input
s1, . . . , st.

• Reconstruction: At the end of the sharing phase, the joint view of the honest parties
defines values s′1, . . . , s

′
t such that all honest parties will output s′1, . . . , s

′
t at the end of the

reconstruction phase.

When |SECRETS| ∈ Ω(n), the protocol uses O(n4 log n + |SECRETS| · n log n) communication
complexity for both sharing and reconstruction.
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6 Packed Verifiable Triple Sharing

Packed verifiable triple sharing (VTS) allows a dealer to verifiably share t/2 + 1 multiplication
triples at the cost of incurring O(n2) elements of communication over point-to-point channels as
well as broadcast. Precisely, VTS outputs each element of the triples to be Shamir-shared via a
degree-t polynomial. In the next section, we will present the batched version, where O(mn) shared
triplets are prepared with O(mn2) elements of communication over point-to-point channels and the
same broadcast as needed for one instance (i.e. O(n2)). This is an important contribution of this
work that utilizes our both verifiable secret sharing and detectable secret sharing constructions.

Ideally, in a VTS, for an honest dealer, the protocol guarantees privacy of the triples, while
for a corrupt dealer, it ensures correctness of the triples (i.e. they satisfy product relation) if the
dealer is not discarded. However, here we construct only a weak version where it is possible for an
adversary to learn the triples even when the dealer is honest. Interestingly, we show this is sufficient
for our purpose, for there is a way to overcome this shortcoming in the batched version, where we
show how to bound the total number of compromised instances to at most n. Furthermore, the
identities of the compromised instances will be publicly known. Discarding these instances, we will
still have enough ‘safe’ instances that satisfy the desired qualities, when m is sufficiently large.

6.1 The High-Level Idea

In order to explain VTS, we require to break open the bivariate polynomial shared through the
packed secret sharing and interpret the secrets shared through univariate polynomials. Recall
the way the secret-matrix SECRETS is planted in the bivariate polynomial S(x, y): S(−a,−b) =
SECRETS(a, b) for every a ∈ {0, . . . , t/2} and b ∈ {0, . . . , d}. At the end of PSS, every party Pi

holds fi(x), gi(y).

1. Sharing via degree-t polynomial aka. Shamir-sharing: First assume that d = 0 which is the
case for the verifiable PSS: here SECRETS is a (t/2 + 1)-length vector and we can treat that
the ℓth secret in SECRETS is Shamir-shared via the degree-t polynomial g−ℓ(y) = S(−ℓ, y),
for ℓ = {0, . . . , t/2}. Note that every party Pi holds a share on g−ℓ(y) which is fi(−ℓ).

2. Sharing via degree-3t/2 polynomial: Now assume that d = t/4 which is the case for the
detectable PSS: here SECRETS is a (t/2+ 1)× (t/4+ 1) matrix and we can treat the degree-
3t/2 polynomial f−ℓ(x) = S(x,−ℓ) as the packed-sharing of the ℓth column of SECRETS, for
ℓ = {0, . . . , t/4}. Note that every party Pi holds a share on f−ℓ(x) which is gi(−ℓ).

We are now ready to explain the high-level idea of the packed VTS. The goal here is to
generate Shamir-sharing of three vectors of secrets SECRETSa = {a0, . . . , at/2},SECRETSb =
{b0, . . . , bt/2},SECRETSc = {c0, . . . , ct/2}, each of size t/2 + 1 such that ci = aibi holds for each
i ∈ {0, . . . , t/2}. Our packed VTS consists of two phases, of which the latter is the core contribution
here.

• Share degree-(3t/2, t) bivariate polynomials A,B,C which embed t/2 + 1 multiplication
triples via verifiable PSS (Functionality 4.10) with d = 0. Following this, every party Pi

holds A(x, i), A(i, y), B(x, i), B(i, y), C(x, i), C(i, y). The secrets for the triplets appear at
A(−ℓ, 0), B(−ℓ, 0) and C(−ℓ, 0) for every ℓ ∈ {0, . . . , t/2} and are therefore t-shared via
A(−ℓ, y), B(−ℓ, y) and C(−ℓ, y) (see Item 1 above).
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• A proof of product relation for the embedded secrets. The dealer needs to prove that the
product of the secrets Shamir shared via A(−ℓ, y) and B(−ℓ, y) is the secret Shamir shared
via C(−ℓ, y). The constant term of the product polynomial A(−ℓ, y)B(−ℓ, y) must match with
the constant term of C(−ℓ, y). That is, the degree 2t polynomial A(−ℓ, y)B(−ℓ, y)−C(−ℓ, y)
must have zero in its free term. This is the check we want to conduct.
Note that it is possible that this proof leaks an honest dealer’s secrets, in which case the
parties will kill (discard) this instance. But if it does not, then it is perfect proof in zero
knowledge.

E0(y) = e(0,0) e(0,1)y . . . e(0,i)y
i . . . e(0,2t)y

2t
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Figure 1: Pictorial depiction of Packed Verifiable Triple Sharing

To conduct the proof, similar to [2], the dealer finds the unique bivariate polynomial E−ℓ(y) of
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degree (at most) 2t defined by the polynomials

A(−ℓ, y)B(−ℓ, y)− C(−ℓ, y)

for each ℓ ∈ {0, . . . , t/2} (see Figure 1a). Following this, the dealer distributes these polynomials
by sharing its coefficients using the PSS (Functionality 4.10), with d = t/4. Specifically, let ei
denote the vector of the ith coefficients of all the t/2 + 1 E−ℓ(y) polynomials (see Figure 1b).
The dealer views batches of d = t/4 + 1 eis as the secrets, and invokes Functionality 4.10 at most
eight times with d = t/4 (see Figure 1b-1c). This is because there are 2t + 1 eis and each batch
can contain t/4 + 1 eis. After these invocations of PSSs, through the f -polynomials, the parties
hold a degree-3t/2 packed sharing of ei (see Item 2 above). That is, parties hold 2t + 1 packed-
sharings each of degree 3t/2 corresponding to 2t+ 1 coefficient vectors (ei)i∈{0,...,2t}. Denote these
polynomials by fei(x). Using linearity, these packed-sharings allow for local computation of degree
3t/2 packed-sharing of evaluation points on the t/2 + 1 polynomials E−ℓ(y). Let fE(i) denote the
degree 3t/2 polynomial which shares the evaluation of these polynomials at y = i (see Figure 1d).
That is, fE(i) shares the secrets E(i) = (E−t/2(i), . . . , E0(i)). Next assume that each Pi has access

to fE(i), fE(0) or equivalently E(i) and E(0). Then, to verify the product relation, each party Pi

requires to check if the relation E−ℓ(y) = A(−ℓ, y)B(−ℓ, y)−C(−ℓ, y) holds at y = i and y = 0 for
each ℓ ∈ {0, . . . , t/2}. Specifically, it checks if (a) E(0) is t/2-length zero-vector and (b) E(i) is the
same as the vector (A(−ℓ, i)B(−ℓ, i)− C(−ℓ, i))i∈{0,...,t/2}, the latter received in the first phase. If
not, it complains. If no party complains, we have that 2t + 1 honest parties verified the product
relation at distinct evaluation points on polynomials of at most degree 2t, thus ensuring correctness
of the multiplication triples. Otherwise, we must find a way to make the shares of the complaining
party on A,B,C and E polynomials public and verify the product relation publicly.

The remaining tasks are (a) complaint resolution and (b) make sure Pi gets access to E(0), E(i).
We note that both these require reconstruction of 3t/2-degree polynomials: A(x, i), B(x, i), C(x, i),
fE(i)s for the former and fE(i)s for the latter. The former is a public reconstruction, while the
latter is private to every Pi. We therefore design a private and a public reconstruction protocol.
Due to the high degree of 3t/2, robust reconstruction via Reed-Solomon decoding is not an option.
Instead, we design protocols which ensure one of the following outcomes:

• discard the dealer when it is corrupt

• identify a large of conflicts with the dealer (and restart)

• proceed with the successful reconstruction.

For the case of private reconstruction, we get a weaker guarantee wherein apart from the above
three outcomes, there is a fourth possibility that the polynomials to be reconstructed privately to
the honest parties are compromised. It is due to this breach, we have the weaker privacy guarantee
for our VTS, namely an honest dealer’s triplets may be leaked to the adversary.

Lastly, similar to PSS, here too we may have a constant number of restarts of the VTS (precisely
3) before a successful run, where the restarts can happen inside the PSS instances or as a part of
the reconstructions.

Below we discuss our reconstruction protocols, and then move on to the packed VTS protocol.

6.2 Reconstructions

We present two variants of reconstructions– private and public.
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6.2.1 Weak Private Reconstruction

In a private reconstruction functionality, the parties give their respective shares of n + 1 degree-
3t/2 polynomials. The functionality reconstructs these polynomials and sends the 0th and the ith
polynomial privately to Pi. As mentioned earlier, we have four possible outcomes here: discard
the dealer, detect large number of conflicts, kill the instance (in which case the honest parties’
polynomials are compromised) and proceed to successful completion.

Functionality 6.1: Weak Private Reconstruction of 3t/2-Shared Polynomials – FprivRec

• Input: All honest parties send ZEROS ⊂ [n]. When the dealer is honest, ZEROS ⊆ I.
Each honest party Pj inputs shares (h0(j), . . . , hn(j)) on polynomials, each of degree 3t/2 to
FprivRec. The functionality reconstructs the polynomials as h0(x), . . . , hn(x).

• The functionality:

1. If the dealer is honest, then send ZEROS, (h0(i), . . . , hn(i))i∈I and (h0(x), hi(x))i∈I to
the adversary. If the dealer is corrupted, then send ZEROS and h0(x), . . . , hn(x) to the
adversary.

2. Receive a bit leak from the adversary. If leak = 1 and the dealer is honest then send
h0(x), . . . , hn(x) to the adversary.

3. Receive a message M from the adversary.

4. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ ZEROS = ∅ and |Bad| > t/2, and in case of an
honest dealer then Bad ⊆ I, then send (detect,Bad) to all parties.

(c) If M = kill and leak = 1 then send kill to the parties.

(d) If M = proceed and leak = 0 then send (proceed, h0(x), hℓ(x)) to each party Pℓ.

Protocol 6.2: Weak Private Reconstruction of 3t/2-Shared Polynomials – ΠprivRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds shares (h0(j), . . . , hn(j))
on n polynomials h0(x), . . . , hn(x) each of degree 3t/2. It is guaranteed that all the shares of
honest parties lie on the same 3t/2 degree polynomials.

• The protocol:

1. Each Pj sends (j, h0(j), hℓ(j)) to every Pℓ.

2. Let (j, uj , vj) be the value Pℓ received from Pj . For every j ∈ ZEROS, (j, uj , vj) is such
that uj = vj = 0. Given all (j, uj) and (j, vj), Pℓ looks for a codeword of distance at
most t/2 from all the values it received (see Corollary 3.4, item 1). If there is such a
codeword, set h0(x) and hℓ(x) to be the unique Reed-Solomon reconstruction respec-
tively. If there is no such a unique codeword, then Pℓ broadcasts complaint(ℓ) and every
party Pj broadcasts reveal(ℓ, j, h0(j), hℓ(j)).

3. If no party broadcasts complaint(ℓ) then go to Step 8d.

4. The dealer sets Bad = ∅. For each reveal(ℓ, j, u, v) message broadcasted, the dealer
verifies that u = h0(j) and v = hℓ(j). If not, then it adds j to Bad. The dealer
broadcasts Bad.
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5. Verify that (i) |ZEROS ∪ Bad| ≤ t; and (ii) Bad ⊂ [n] \ ZEROS. Otherwise, discard the
dealer and go to Step 8a.

6. If |Bad| > t/2 then there is a large detection and so go to Step 8b.

7. Otherwise, consider all the pointsRℓ = {(j, uj)} and Tℓ = {(j, vj)} such that reveal(ℓ, j, uj , vj)
was broadcasted in Step 2 for j ̸∈ Bad where uj = vj = 0 if j ∈ ZEROS. Verify that each
Rℓ and Tℓ define a unique polynomial of degree 3t/2. If not, go to Step 8a. Otherwise,
go to Step 8c.

8. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Kill: Output kill.

(d) Proceed: Each Pℓ outputs (proceed, h0(x), hℓ(x)).

Lemma 6.3. Protocol 6.2, ΠprivRec, perfectly securely computes Functionality 6.1, FprivRec, in the

presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the sets ZEROS, {(h0(i), . . . , hn(i))}i∈I and (h0(x), hi(x))i∈I .

3. For each i ∈ I, simulate every honest Pj sending (j, h0(j), hi(j)) to Pi. Receive (i, h0(i), hj(i))
from the adversary for each i ∈ I and every honest Pj .

4. If for some honest Pj , (i, ui, vi) sent by the adversary is such that ui ̸= h0(i) or vi ̸= hj(i)
for more than t/2 such i ∈ I then simulate Pj broadcasting complaint(j). Also listen to
all complaint(i) messages broadcasted by the adversary. If some party broadcasts complaint,
then send leak = 1 to the functionality. Receive h0(x), . . . , hn(x) from the functionality. Set
Bad = ∅.

5. For each complaint(ℓ) broadcasted by some Pℓ, simulate broadcasting (ℓ, j, h0(j), hℓ(j)) for
every honest Pj and listen to all the adversary’s broadcasts.

6. For each i ∈ I where (ℓ, i, ui, vi) broadcasted is such that ui ̸= h0(i) or vi ̸= hℓ(i), add i to
Bad.

7. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the func-
tionality and halt.

8. If leak = 1 then send kill to the functionality and halt.

9. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed that
the view of the adversary in the real and ideal executions is identical. It remains to show that the
output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if one
of the following conditions holds:

1. |ZEROS ∪ Bad| > t.
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2. Bad ̸⊂ [n] \ ZEROS.
3. Rℓ or Tℓ do not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that ZEROS ⊆ I.
It is clear that none of the above conditions hold and the dealer is not discarded. We thus have
the following cases to consider:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold that
|Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it must hold that
all the honest parties output (detect,Bad). The simulator emulates the interaction of the
honest parties with the dealer as in the real execution, hence all the simulated honest parties
hold the same set Bad. In that case, the simulator sends (detect,Bad) to the functionality ,
causing all the honest parties in the ideal world to output the same.

2. There exists an honest party that outputs kill: In this case, it must hold that |Bad| ≤
t/2. Moreover, there exists some party Pℓ which complained and each Rℓ and Tℓ define a
unique degree 3t/2 polynomials. Since all the corresponding messages are broadcast, all the
honest parties would output kill. The simulator emulates the honest parties as in the real
execution, hence all the simulated honest parties hold the same set Bad and see the same
complaints. In this case, the simulator sends leak = 1 to the functionality, followed by kill,
causing all the honest parties in the ideal execution to output kill.

3. There exists an honest party proceed: This implies that no party broadcast complaint in
the real execution. Thus, it must hold that each honest party Pℓ obtained a unique reconstruc-
tion in Step 2, which agrees with the shares of all the honest parties. Since the reconstructed
polynomials and h0(x), hℓ(x) defined by the honest parties’ input shares are each of degree
3t/2 and agree in at least 2t+1 points, it must hold that the unique reconstructed polynomi-
als are h0(x), hℓ(x). Hence it must hold that all honest parties output (proceed, h0(x), hℓ(x))
in the real execution. Since the simulated execution is identical to the real execution, all the
simulated honest parties also see that no complaint was broadcast. In this case, the simulator
sends proceed to the functionality, causing all the honest parties in the ideal world to have
an output that is identical to the output of the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, and the polynomials h0(x), . . . , hn(x).

3. Simulate the protocol where each honest party Pj holds h0(j), . . . , hn(j) and all parties have
the same set ZEROS.

4. If some party broadcasts complaint in Step 2 then the simulator sends leak = 1 to the
functionality.

5. Send the message M to the functionality according to the following cases (the proof will show
that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send (detect,Bad)
to the functionality and halt.

(c) If the output of some simulated honest party is kill then send kill to the functionality
and halt.
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(d) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real honest
parties in the real execution, and since the protocol is deterministic, we get that the view of the
adversary is exactly the same in the real and in the ideal executions. Thus it remains to be shown
that the output of the honest parties is identical in the real and ideal executions. We have the
following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS ∪ Bad| > t; or (ii) Bad ̸⊂
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad| ≤ t/2, and for which |ZEROS ∪ Bad| ≤ t
and Bad ⊂ [n] \ ZEROS. However, for Rℓ = {(j, uj)} and Tℓ = {(j, vj)} such that
reveal(ℓ, j, uj , vj) was broadcasted in Step 2 and j ̸∈ Bad, it holds that Rℓ or Tℓ does
not define a unique polynomial of degree 3t/2. Since the set Rℓ and Tℓ are public, all
honest parties will identify that there is no unique reconstruction, and all would output
discard.

Since the simulated honest parties have the same view as the honest parties, the simulated
honest parties also output discard. In this case, the simulator sends discard to the func-
tionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS ∪ Bad| ≤ t and Bad ⊂ [n] \ ZEROS. Moreover, it must hold
that |Bad| ≥ t/2. Since the corresponding set Bad is broadcast, all the honest parties hold
the same set and hence output (detect,Bad). The simulated honest parties hold an identical
output, and thus the simulator sends (detect,Bad) to the functionality , which in turn sends
the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs kill in the real world: In this case, it
must hold that some party Pℓ broadcast complaint(ℓ). Moreover, |Bad| ≤ t/2 and Rℓ and
Tℓ each define a unique degree 3t/2 polynomials. Since all the corresponding messages are
broadcast, it must hold that all the honest parties output kill. In this case, the simulated
honest parties also hold an identical output. Since the simulated honest parties also observe
the complaint(ℓ) broadcast by Pℓ, the simulator sends leak = 1 to the functionality, followed
by M = kill causing all the honest parties in the ideal world to output kill.

4. There exists an honest party that outputs proceed in the real world: In this case,
we show that all honest parties Pℓ output (proceed, h0(x), hℓ(x)) where h0(x), hℓ(x) are the
degree 3t/2 polynomials that are interpolated from the respective input shares of the honest
parties and are guaranteed to exist under our input assumption. Towards that, observe that
since there exists an honest party that does not output discard, (detect,Bad) or kill it
must hold that no party broadcasted complaint in Step 2. Hence, it must hold that each
honest Pℓ has a unique reconstruction and consequently lesser than t/2 errors occurred in
the reconstruction for Pℓ. The reconstructed polynomials agree with the shares of at least
n− t/2 ≥ 5t/2+1 parties, hence they agree with the shares of at least 3t/2+1 honest parties.
Since the reconstructed polynomials and each h0(x), hℓ(x) are of degree 3t/2, it must hold
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that the reconstructed polynomials for each honest Pℓ are h0(x), hℓ(x) consistent with the
input shares of the honest parties. In this case, the simulated honest parties also observe that
no party complains and hence the simulator sends proceed to the functionality, causing all
the honest parties in the ideal world to obtain an output identical to the output in the real
execution.

Lemma 6.4. Let t < n/3. There exists a protocol that implements, Functionality 6.1, FprivRec, has
a communication complexity of O(n2 log n) bits over point-to-point channels and O(n2 log n) bits
broadcast in O(1) rounds. Every party broadcasts at most O(n log n) bits.

6.2.2 Public Reconstruction

Similar to private reconstruction, shares of n degree-3t/2 polynomials are taken as the input by
the functionality. It also receives n flags where ith one indicates if the ith polynomial needs to be
made public.

Functionality 6.5: Public Reconstruction of 3t/2-Shared Polynomials – FpubRec

• Input: All honest parties send ZEROS ⊂ [n] and a binary vector (pub1, . . . , pubn). When
the dealer is honest, ZEROS ⊆ I. Each honest party Pj inputs shares (h1(j), . . . , hn(j)) on n
polynomials, each of degree 3t/2 to FpubRec. The functionality reconstructs the polynomials
as h1(x), . . . , hn(x).

• The functionality:

1. If the dealer is honest, then send ZEROS, (pub1, . . . , pubn), hℓ(i) for each i ∈ I and
every ℓ ∈ [n], hi(x) for every i ∈ I and hℓ(x) for every ℓ ∈ [n] such that pubℓ = 1
to the adversary. If the dealer is corrupted, then send ZEROS, (pub1, . . . , pubn) and
h1(x), . . . , hn(x) to the adversary.

2. Receive a message M from the adversary.

3. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ ZEROS = ∅ and |Bad| > t/2, and in case of an
honest dealer then Bad ⊆ I, then send (detect,Bad) to all parties.

(c) If M = proceed then send (proceed, {hℓ(x)}ℓ s.t. pubℓ=1) to all parties.

Protocol 6.6: Public Reconstruction of 3t/2-Shared Polynomials – ΠpubRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds shares (h1(j), . . . , hn(j))
on n polynomials h1(x), . . . , hn(x) each of degree 3t/2. It is guaranteed that all the shares
of honest parties lie on the same 3t/2 degree polynomials. All parties hold the same binary
vector (pub1, . . . , pubn).

• The protocol:

1. Each Pj broadcasts (ℓ, j, hℓ(j)) for every ℓ such that pubℓ = 1.

2. Let (ℓ, j, uℓ,j) be the value Pj broadcasted. For every j ∈ ZEROS, (ℓ, j, uℓ,j) is such that
uℓ,j = 0.
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3. The dealer sets Bad = ∅. For each (ℓ, j, uℓ,j) message broadcasted, the dealer verifies
that uℓ,j = hℓ(j). If not, then it adds j to Bad. The dealer broadcasts Bad.

4. Verify that (i) |ZEROS ∪ Bad| ≤ t; and (ii) Bad ⊂ [n] \ ZEROS. Otherwise, discard the
dealer and go to Step 7a.

5. If |Bad| > t/2 then there is a large detection and so go to Step 7b.

6. Otherwise, consider all the points Rℓ = {(j, uℓ,j)} such that (ℓ, j, uℓ,j) was broadcasted
in Step 1 for j ̸∈ Bad where uℓ,j = 0 if j ∈ ZEROS. Verify that each Rℓ defines a unique
polynomial of degree 3t/2. If not, go to Step 7a. Otherwise, set hℓ(x) to be this unique
polynomial and go to Step 7c.

7. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Proceed: All parties output (proceed, {hℓ(x)}ℓ s.t. pubℓ=1).

Lemma 6.7. Protocol 6.6, ΠpubRec, perfectly securely computes Functionality 6.5, FpubRec, in the

presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the sets ZEROS, (pub1, . . . , pubn) {hℓ(i)}i∈I and hℓ(x) for each
ℓ such that ℓ ∈ I or pubℓ = 1.

3. For each ℓ such that pubℓ = 1, simulate every honest Pj broadcasting (ℓ, j, hℓ(j)). Listen to
the broadcasts (ℓ, i, hℓ(i)) from the adversary for each i ∈ I. Set Bad = ϕ.

4. For each (ℓ, i, uℓ,i) broadcasted by the adversary, if uℓ,i ̸= hℓ(i) then add i to Bad.

5. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the func-
tionality and halt.

6. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed that the
view of the adversary in the real and ideal executions is identical. Thus, it remains to be shown
that the output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if one
of the following conditions holds:

1. |ZEROS ∪ Bad| > t.

2. Bad ̸⊂ [n] \ ZEROS.
3. Rℓ does not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that ZEROS ⊆ I.
It is clear that none of the above conditions hold and the dealer is not discarded. We thus have
the following two cases to consider:
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1. There exists an honest party that outputs (detect,Bad): In this case, it must hold
that |Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it must
hold that all the honest parties output (detect,Bad). The simulator emulates the the honest
parties as in the real execution, hence all the simulated honest parties hold the same set Bad
and the same output. In this case, the simulator sends (detect,Bad) to the functionality ,
causing all the honest parties in the ideal world to output the same.

2. There exists an honest party proceed: In this case, we show that all the honest parties
output (proceed, {hℓ(x)}ℓ s.t pubℓ=1). For this, note that since there exists an honest party
that does not output discard or (detect,Bad), it must hold that |ZEROS∪Bad| ≤ t, Bad ⊂
[n] \ ZEROS and |Bad| ≤ t/2. Moreover, for every ℓ with pubℓ = 1, the points Rℓ which were
broadcasted (excluding the points of parties in Bad) define a unique degree-3t/2 polynomial
hℓ(x). Since all the corresponding messages were broadcast, all the honest parties have
the same view and hence output (proceed, {hℓ(x)}ℓ s.t pubℓ=1). Since the real and simulated
executions are identical, the simulated honest parties have the same output. In this case, the
simulator sends proceed to the functionality, causing the honest parties in the ideal world to
receive an identical output.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, (pub1, . . . , pubn) and the polynomials h1(x), . . . ,
hn(x).

3. Simulate the protocol where each honest party Pj holds h1(j), . . . , hn(j) and all parties have
the same set ZEROS and (pub1, . . . , pubn).

4. Send the message M to the functionality according to the following cases (the proof will show
that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send (detect,Bad)
to the functionality and halt.

(c) If the output of some simulated honest party is proceed, then send proceed to the
functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real honest
parties in the real execution, and since the protocol is deterministic, we get that the view of the
adversary is exactly the same in the real and in the ideal executions. Thus it remains to be shown
that the output of the honest parties is identical in the real and ideal executions. We have the
following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS ∪ Bad| > t; or (ii) Bad ̸⊂
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad| ≤ t/2, and for which |ZEROS ∪ Bad| ≤ t and
Bad ⊂ [n] \ ZEROS. However, for Rℓ = {(j, uj)} such that (ℓ, j, uℓ,j) was broadcasted
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in Step 1 and j ̸∈ Bad, it holds that Rℓ does not define a unique polynomial of degree
3t/2. Since the set Rℓ is public, all honest parties will identify that there is no unique
reconstruction, and all would output discard.

Since the simulated honest parties have the same view as the honest parties in the real
execution, the simulated honest parties also output discard. In this case, the simulator
sends discard to the functionality causing all the honest parties to output discard in the
ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS ∪ Bad| ≤ t and Bad ⊂ [n] \ ZEROS. Moreover, it must hold
that |Bad| ≥ t/2. Since the corresponding set Bad is broadcast, all the honest parties hold
the same set and hence output (detect,Bad). The simulated honest parties hold an identical
output, and thus the simulator sends (detect,Bad) to the functionality , which in turn sends
the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs proceed in the real world: In this case,
we show that all honest parties Pℓ output (proceed, {hℓ(x)}ℓ s.t pubℓ=1) where each hℓ(x)
is the degree 3t/2 polynomials that is interpolated from the respective input shares of the
honest parties and is guaranteed to exist under our input assumption. Towards that, observe
that since there exists an honest party that does not output discard, (detect,Bad) it must
hold that |ZEROS ∪ Bad| ≤ t, Bad ⊂ [n] \ ZEROS and |Bad| ≤ t/2. Moreover, for each
Rℓ = {(j, uj)} such that (ℓ, j, uℓ,j) was broadcasted in Step 1 and j ̸∈ Bad, it holds that Rℓ

defines a unique polynomial of degree 3t/2. Since |Bad| ≤ t/2, it must thus hold that the
reconstructed polynomial for each ℓ agrees with shares of at least n− t/2 ≥ 5t/2 + 1 parties.
Consequently, the reconstructed polynomial agrees with shares of at least 3t/2 + 1 honest
parties. Since both the reconstructed polynomial and hℓ(x) are of degree 3t/2, it holds that
polynomial obtained from Rℓ is indeed hℓ(x) that is defined by the input shares of the honest
parties. In this case, the simulated honest parties also hold the same output and hence the
simulator sends proceed to the functionality. Thus the output of honest parties in the ideal
execution is identical to their output in the real world.

Lemma 6.8. Let t < n/3. There exists a protocol that implements Functionality 6.5, FpubRec,
and has a communication complexity of O(n2 log n) bits broadcast in O(1) rounds. Every party
broadcasts at most O(n log n) bits.

6.3 Putting Everything Together: Packed VTS

We now present the functionality and the protocol for a packed VTS.

Functionality 6.9: Packed Verifiable Triple Sharing – FPVTS

The functionality is parameterized by a set of corrupted parties I ⊂ [n].

1. Honest dealer:

(a) The dealer sends SECRETSa,SECRETSb, SECRETSc to FPVTS.

(b) The adversary sends (fa
i (x), g

a
i (y))i∈I , (f

b
i (x), g

b
i (y))i∈I , (f

c
i (x), g

c
i (y))i∈I to FPVTS such

that fa
i (k) = gak(i), f

b
i (k) = gbk(i) and f c

i (k) = gck(i) for every i, k ∈ I.
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(c) The functionality chooses random bivariate polynomials A(x, y), B(x, y) and C(x, y) of
degree 3t/2 in x and t in y under the constraints that (i) SECRETSa,SECRETSb, SECRETSc
are embedded in A,B,C respectively; (ii) A(x, i) = fa

i (x), B(x, i) = f b
i (x) and C(x, i) =

f c
i (x) for every i ∈ I; (iii) A(i, y) = gai (y), B(i, y) = gbi (y) and C(i, y) = gci (y) for every
i ∈ I.

2. Corrupted dealer: The dealer sends A(x, y), B(x, y) and C(x, y) to FPVTS that verifies
that (i) A(x, y), B(x, y) and C(x, y) are of degree 3t/2 in x and degree t in y; and (ii)
A(−ℓ, 0) · B(−ℓ, 0) = C(−ℓ, 0) holds for each ℓ ∈ {0, . . . , t/2}. If not, FPVTS replaces each
A(x, y), B(x, y) and C(x, y) with ⊥.

3. The functionality receives from the adversary a message M .

4. Output:

(a) If M = kill, then send kill to all parties and if the dealer is honest, then send
A(x, y), B(x, y), C(x, y) to the adversary.

(b) Otherwise, send to each party Pj the pairs of polynomials A(x, j), A(j, y), B(x, j), B(j, y)
and C(x, j), C(j, y).

Protocol 6.10: Packed VTS in the (FPSS,FprivRec,FpubRec)-Hybrid model – ΠPVTS

Input: The dealer holds three lists SECRETSa = {a0, . . . , at/2}, SECRETSb = {b0, . . . , bt/2},SECRETSc
= {c0, . . . , ct/2}, each of size t/2 + 1 such that ci = aibi holds for each i ∈ {0, . . . , t/2}.
The protocol:

1. All parties set ZEROS = ∅.
2. Dealing the shares of triples: Parties invoke FPSS (Functionality 4.10) three times with

d = 0, where the dealer inputs SECRETSa, SECRETSb,SECRETSc respectively and each party
inputs ZEROS. If the output of any instance is ⊥, then proceed to Step 5a. Otherwise, each
Pi holds f

a
i (x) = A(x, i), gai (y) = A(i, y), f b

i (x) = B(x, i), gbi (y) = B(i, y) and f c
i (x) = C(x, i),

gci (y) = C(i, y).

3. Dealing the shares of product polynomials:

(a) For each ℓ ∈ {0, . . . , t/2}, the dealer defines the polynomials E−ℓ(y) of degree at most 2t
such that E−ℓ(y) = A(−ℓ, y) ·B(−ℓ, y)−C(−ℓ, y) = e(−ℓ,0) + e(−ℓ,1)y + . . .+ e(−ℓ,2t)y

2t.
Define ei = (e(−t/2,i), . . . , e(0,i)) for i ∈ {0, . . . , 2t}, as the vector of ith coefficients of all
the t/2 + 1 polynomials.

(b) The dealer views the coefficients of these t/2+1 polynomials as (at most) eight matrices
SECRETS1, . . . ,SECRETS8, each of size (t/2+1)(t/4+1). Specifically, SECRETSu(., b) =
e(t/4+1)·(u−1)+b where b ∈ {0, . . . , t/4}, u ∈ [8].

(c) All the parties invoke FPSS (Functionality 4.10) (at most) eight times with d = t/4,
where the dealer inputs SECRETSu for each u ∈ [8] respectively and each party inputs
ZEROS. If the output of any instance is ⊥, then proceed to Step 5a. Otherwise, each Pi

holds the degree-(t+ t/2) polynomials fu
i (x) = Eu(x, i) and degree-(t+ t/4) polynomials

gui (y) = Eu(i, y) for all u ∈ [8].

(d) Let fe(t/4+1)·(u−1)+b(x) = Eu(x,−b) for b ∈ {0, . . . , t/4}, u ∈ [8], denote the 3t/2-degree
polynomial that packed-shares the coefficient vector e(t/4+1)·(u−1)+b.

4. Proof of product relation: To check the product relation, each Pi requires to verify
that E−ℓ(i) = A(−ℓ, i) · B(−ℓ, i) − C(−ℓ, i) holds for each ℓ ∈ {0, . . . , t/2}. Let E(i) =
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(E−t/2(i), . . . , E0(i)) and fE(i)(x) =
∑2t

k=0 i
kfek(x) be the 3t/2-degree polynomial that packed-

shares E(i). Note that each fE(i)(x) is a linear combination of the polynomials (fej (x))j∈{0,...,2t}.

(a) Reconstructing E(i) and E(0) towards each Pi: For each party Pi, every party
Pj computes fE(i)(j) =

∑2t
k=0 i

k · fek(j) and fE(0)(j) = fe0(j). Parties invoke FprivRec

(Functionality 6.1) where Pj inputs
(fE(0)(j), fE(1)(j), . . . , fE(n)(j)) and ZEROS.
i. If the output is discard, then proceed to Step 5a.

ii. If the output is (detect,Bad), then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t
then go to Step 5a. Otherwise, go to Step 2.

iii. If the output is kill then go to Step 5b.

iv. Otherwise, Pi sets f
E(0)(x) = h0(x) and fE(i)(x) = hi(x) where (proceed, h0(x), hi(x))

is the output of FprivRec.

(b) Verifying the product relation of each Pi and that E(0) = e0 = (0, . . . , 0) holds:
i. Each Pi verifies that E(i) obtained from reconstructed polynomial fE(i)(x) matches

with (fa
i (−ℓ) · f b

i (−ℓ)− f c
i (−ℓ))ℓ∈{0,...,t/2}. Pi also verifies that fE(0)(−ℓ) = 0 holds

for each ℓ ∈ {0, . . . , t/2}. If not, then Pi broadcasts complaint(i).

ii. Parties construct a binary vector (pub1, . . . , pubn) where pubi = 1 if Pi broadcasted
complaint(i).

iii. Parties invoke FpubRec (Functionality 6.5) five times where each Pj inputs (pub1, . . . ,
pubn), ZEROS in each instance and the following respectively in five instances:
(i) (fE(1)(j), . . . , fE(n)(j)), (ii) (fE(0)(j), . . . , fE(0)(j)), (iii) (gaj (1), . . . , g

a
j (n)), (iv)

(gbj(1), . . . , g
b
j(n)) and (v) (gcj(1), . . . , g

c
j(n)).

For any of the above instances:
A. If the output is discard, then proceed to Step 5a.

B. If the output is (detect,Bad), then set ZEROS = ZEROS∪Bad. If |ZEROS| > t
then go to Step 5a. Otherwise, go to Step 2.

C. Otherwise, when the output is proceed, all parties set fE(i)(x), fE(0)(x) and
fa
i (x), f

b
i (x), f

c
i (x) as the respective output obtained in the corresponding five

instances of FpubRec for each Pi which broadcasted complaint(i).

iv. For each Pi which complained, parties verify the checks as in Step 4(b)i using the
polynomials returned by the instances of FpubRec. If it does not hold for some
complaining party, then go to Step 5a. Otherwise, go to Step 5c.

5. Output:

(a) Discard the dealer: All parties output ⊥.

(b) Kill this instance: All parties output kill.

(c) Successful: Each Pi outputs (fa
i (x), g

a
i (y), f

b
i (x), g

b
i (y), f

c
i (x), g

c
i (y)), where {(fa

i (−ℓ),
f b
i (−ℓ), f c

i (−ℓ))}ℓ∈{0,...,t/2} defines Pi’s shares of the t/2 + 1 multiplication triples.

Lemma 6.11. Let t < n/3. Protocol 6.10, ΠPVTS, perfectly securely computes Functionality 6.9,
FPVTS, in the (FPSS,FprivRec,FpubRec)-hybrid model (Functionality 4.10,6.1,6.5), in the presence of
a malicious adversary, controlling at most t < n/3.

Proof. We consider the case of an honest dealer and a corrupt dealer separately.

53



The case of an honest dealer. The simulator is as follows:

1. Invoke A on an auxiliary input z.

2. Set SECRETSa,SECRETSb, SECRETSc arbitrarily as input (say, all zeros) and run the protocol
where the dealer holds SECRETSa, SECRETSb, SECRETSc and all other parties have no inputs.
In particular, simulate the inner functionalities FPSS, FprivRec and FpubRec as a functionality
would run it.

3. Let A(x, y), B(x, y), C(x, y) be the polynomials used in the simulated functionality FPSS in
the last iteration (by iteration, we mean running the protocol from Step 2 until restarting
or concluding the protocol). Send A(x, i), A(i, y), B(x, i), B(i, y) and C(x, i), C(i, y) to the
functionality for every i ∈ I.

4. If the output of simulated functionality FprivRec is kill, then send kill to the functionality.

We will now show that the output of the real and ideal executions are the same. For this,
similar to the proof of ΠPSS (Lemma 4.12) consider the following games:

• Game1: This is the real execution. We run the protocol where the honest dealer uses
SECRETSa,SECRETSb, SECRETSc as its input. The output of this game is the view of the
adversary and the output of all honest parties in the protocol.

• Game2: Here, we run a modified ideal model, in which the simulator receives the same input =
(SECRETSa, SECRETSb,SECRETSc) as in Game1 as an advice, and the dealer uses input as
its input to the functionality. The simulator uses input as its input instead of all zeros. The
simulator runs the protocol where the input of the honest dealer is input, exactly as the real
execution in Game1. We claim that the dealer is never discarded. Then, the simulator sends
to the functionality the output shares of the corrupted parties in the simulated execution
and a message kill if some party complains in the simulated execution. If the latter holds,
then the functionality sends kill to all. Otherwise, the functionality chooses some random
polynomials A(x, y), B(x, y), C(x, y) that agree with the output shares of the adversary, and
gives the honest parties their shares on these polynomials. The output of this experiment
is the view of the adversary as determined by the simulator, and the output of all honest
parties.

• Game3: This is the ideal execution. In particular, the simulator receives no advice, and runs
as in Game2, but with input SECRETSa, SECRETSb, SECRETSc set to 0.

We will now show that the output of all the games are identically distributed.

The outputs of Game1 and Game2 are identically distributed. The simulator in Game2 runs
the exact same protocol as the real execution in Game1, and therefore the view of the adversary is
identical in both executions. We now turn to the output of the honest parties. We claim that in
that execution, the honest dealer is never discarded. In particular:

1. An honest dealer always chooses bivariate polynomials that satisfy the conditions of Func-
tionality 4.10 and therefore is not discarded.

2. Similarly, by the guarantees of Functionality 6.1, we have that an honest dealer is never
discarded. Moreover, Bad ⊆ I and Bad ∪ ZEROS ⊆ I and hence |ZEROS| ≤ t always holds
and the dealer is not discarded.

3. Finally, for the same reasons as above, during the invocation of Functionality 6.5, we have
that an honest dealer is never discarded.
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Further, if the output of honest parties in Game1 is kill, then it must hold that the output
of simulated honest parties in Game2 is also kill and hence the simulator sends kill to the func-
tionality. All the honest parties in Game2 also output kill. Finally, when the dealer is honest and
parties do not output kill, all parties output shares on the same bivariate polynomials, which are
A(x, y), B(x, y), C(x, y) that the dealer used in that iteration. In Game1, the output of all honest
parties is shares on these polynomials. In Game2, the simulator sends the shares (A(x, i), A(i, y))i∈I ,
(B(x, i), B(i, y))i∈I and (C(x, i), C(i, y))i∈I to the functionality, the functionality samples new poly-
nomials A′(x, y), B′(x, y), C ′(x, y) under the constraints that A′(x, i) = A(x, i), A′(i, y) = A(i, y),
B′(x, i) = B(x, i), B′(i, y) = B(i, y) and C ′(x, i) = C(x, i), C ′(i, y) = C(i, y) for every i ∈ I, and
SECRETSa,SECRETSb, SECRETSc are embedded in A′(x, y), B′(x, y), C ′(x, y) respectively. The
output of all honest parties is then equivalent to just outputting shares on A′(x, y), B′(x, y), C ′(x, y).
Using a similar argument as Claim 4.13, it can be seen that the output of honest parties is identically
distributed.

The outputs of Game2 and Game3 are identically distributed. The only difference between
the two games is that in Game2 the simulator uses the same secrets input as the honest dealer uses
in the ideal execution, whereas in Game3 the honest dealer uses input as all 0. The following claim
shows that the shares that the corrupted parties receives in the simulated execution is identically
distributed. In both execution, given the shares and the message kill that the simulator sends to
the functionality, the outputs of the honest parties are defined in exactly the same process (that is,
the functionality either sends kill to all or uses SECRETSa, SECRETSb, SECRETSc and the shares
sent by the adversary to define the shares of honest parties). Therefore it is enough to show that the
view of the adversary is identically distributed. This can be easily shown using similar argument
as Claim 4.14.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A on the auxiliary input z.

2. Observe that all honest parties have no input to the protocol. Simulate running the protocol
with the adversary, while also simulating Functionalities 4.10, 6.1 to the adversary as the
functionality would run it.

3. If the output of some simulated honest party is ⊥, then send A(x, y) = B(x, y) = C(x, y) =
x3t/2+1 to the functionality, in which case it sends ⊥ to all parties.

4. If the output of some simulated honest party is kill, then sendM = kill to the functionality.

5. Otherwise, let J be a set of t+1 honest parties. Reconstruct the unique bivariate polynomials
A(x, y), B(x, y), C(x, y) that satisfy A(x, j) = fa

j (x), B(x, j) = f b
j (x) and C(x, j) = f c

j (x) for

every j ∈ J , where fa
j (x), g

a
j (y), f

b
j (x), g

b
j(y) and f c

j (x), g
c
j(y) is the output of the simulated

honest party in the simulated execution. Send A(x, y), B(x, y), C(x, y) to the functionality
and halt.

Since the code of each party in the protocol which is not the dealer is deterministic, and the
functionalities 4.10, 6.1 are deterministic, the view of the adversary is identical in the real and
ideal executions. Moreover, since the functionality is deterministic, we can separately consider the
view and the outputs of the honest parties. Thus, all that is left to be shown is that the output of
the honest parties is the same in the real and in the ideal executions. We have the following cases
to consider:

1. There exists an honest party that outputs ⊥ in the real world. An honest party
outputs ⊥ if and only if one of the following conditions holds: (i) FPSS (Functionality 4.10),
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FprivRec or FpubRec returns ⊥, or (ii) |ZEROS ∪ Bad| > t. In the first case, if FPSS, FprivRec

or FpubRec returned ⊥ to one honest party, it implies that all the honest parties received ⊥,
and thus all would output ⊥ in the protocol. For the latter case, due to the guarantees of
the functionalities FPSS, FprivRec and FpubRec, all the honest parties must hold identical sets
Bad and ZEROS. Hence, all would output ⊥ in the protocol. Since the real and simulated
executions are identical, the simulated honest parties must also output ⊥. In this case, the
simulator invokes the functionality with A(x, y) = B(x, y) = C(x, y) = x3t/2+1, causing all
the honest parties to output ⊥ in the ideal execution.

2. There exists an honest party that outputs kill in the real world. An honest party
outputs kill if and only if FprivRec returns kill. By the guarantees of FprivRec, we have
that all the honest parties receive kill from FprivRec and hence all would output kill in the
protocol. Due to identical views of the honest parties in the real and simulated execution,
the same must hold true for each simulated honest party. In this case, the simulator sends
kill to the functionality causing all the honest parties to receive output kill in the ideal
execution. This is exactly the output of the honest parties in the real world.

3. No honest party outputs ⊥ or kill in the real world. In this case, first note that by the
guarantees of FPSS, we have that all the honest parties Pi output shares (f

a
i (x), g

a
i (y), f

b
i (x),

gbi (y), f
c
i (x), g

c
i (y)) consistent with some bivariate polynomials A(x, y), B(x, y) and C(x, y)

respectively. Thus, it remains to show that A(−ℓ, 0) · B(−ℓ, 0) = C(−ℓ, 0) indeed holds for
every ℓ ∈ {0, . . . , t/2}. For this, first note that since no honest party outputs ⊥ or kill,
in the final iteration of the protocol, it must hold that each Pi successfully reconstructs
its fE(0)(x) and fE(i)(x) polynomials in Step 4a which are required to verify the product
relation. We now claim that since the honest parties do not output ⊥ in the final iteration
of the protocol, it must hold that no honest party Pi broadcast complaint(i) in Step 4(b)i of
the final iteration. Suppose some honest party Pi had indeed broadcasted complaint(i) at this
step, all the parties must have invoked FpubRec in Step 4(b)iii. Since this is the final iteration,
we have that FpubRec did not output (detect,Bad) such that |Bad| > t/2, as otherwise the
parties would have rebooted to start a new iteration. Moreover, no party output ⊥ hence
FpubRec did not output discard. Consequently, each party would successfully reconstructed
the f polynomials of the complaining party Pi. Given that the reconstructed polynomials
agree with the shares of at least n− t/2 ≥ 5t/2+1 parties, it must agree with with the shares
of at least 3t/2 + 1 honest parties (since at most t/2 parties may have been identified as Bad
in FpubRec), thus forcing the reconstruction of the dealer’s polynomial committed during the
sharing phase. Thus, all the parties would publicly verify an honest Pi’s complain and as a
result discard the dealer, which is a contradiction. Hence, it must hold that no honest party
Pi broadcast complaint(i) in Step 4(b)i of the final iteration. Since no honest party complains,
it must hold that A(−ℓ, i) · B(−ℓ, i) − C(−ℓ, i) = E−ℓ(i) holds for each honest Pi and every
ℓ ∈ {0, . . . , t/2}. Since each of A(−ℓ, y) ·B(−ℓ, y)− C(−ℓ, y) and E−ℓ(y) are at most degree
2t polynomials, which agree in at least 2t + 1 points corresponding to the honest parties, it
must hold that A(−ℓ, y) ·B(−ℓ, y)−C(−ℓ, y) = E−ℓ(y). Using a similar argument, it can be
clearly seen that E−ℓ(0) holds when the dealer is not discarded. Thus, it can be concluded
that A(−ℓ, 0) ·B(−ℓ, 0) = C(−ℓ, 0) holds. In the simulated execution, the simulator chooses
an arbitrary set of t+1 honest parties and reconstructs the bivariate polynomials that agree
with their output. Since the real and simulated executions are identical, it must hold that
these polynomials are A(x, y), B(x, y) and C(x, y) respectively. The simulator then invokes
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the functionality with these polynomials causing the honest parties in the ideal execution to
output shares that are identical to those in the real execution.

Lemma 6.12. Let t < n/3 and d ≤ t/4. There exists a protocol that implements Functional-
ity 6.9, FPVTS, has a communication complexity of O(n2 log n) bits over point-to-point channels and
O(n2 log n) bits broadcast for sharing O(n) multiplication triples simultaneously in O(1) rounds.
Every party broadcasts at most O(n log n) bits.

7 Batched Verifiable Triple Sharing

In this section, we discuss how to run m instances of our packed VTS while keeping the broadcast
cost unchanged. Specifically, while one instance of the packed VTS requires O(n2 log n) bits com-
munication over point-to-point channels and each party broadcasts O(n log n) bits, we show how to
run m instances together at a cost of O(mn2 log n) bits over point-to-point channels and retain the
same broadcast of O(n log n) bits per party. An important property to note here is that although
an adversary can compromise an instance of packed VTS even for an honest dealer, in the batched
version we ensure that at most n out of the m instances can be compromised. When m > n, our
protocols achieves the properties of a verifiable triple sharing. That is, when the dealer is honest,
our protocol guarantees privacy of triples obtained from the m − n uncompromised instances of
packed VTS. While for a corrupt dealer, as in packed VTS, our zero knowledge proof ensures the
correctness of the triples. We now elaborate on the changes necessary to the packed VTS protocol
and its sub-protocols.

Dealing the shares of triples and product polynomials. The dealer holds m lists of triples,
and one set ZEROS ⊂ [n]. Further, for the parties in ZEROS, the shares of on all the bivariate
polynomials are assumed to be 0. For sharing the triples as well as the coefficients of the product
polynomials ofm instances, batched variant of the packed secret sharing Fbatched

PSS (Functionality 5.4)
is invoked. This ensures a cost of O(mn2 log n) bits over point-to-point channels and a broadcast
of O(n log n) bits per party.

Batched private reconstruction. The change in the protocol here follows closely to the batched
reconstruction of g polynomials defined in Section 5. Specifically, in Step 2, a party Pℓ may fail
to reconstruct h0 or hℓ in multiple instances. However, it suffices for Pℓ to choose one instance
(say the instance with a minimum index β) and complain with respect to β. The complaint for
a party now looks like complaint(ℓ, β). Following this, the public verification happens only for the
βth instance for Pℓ. In the case that the dealer is not discarded and the publicly identified set Bad
has at most t/2 parties, each party is guaranteed to reconstruct its polynomials in all the instances
successfully. This follows similar to the argument described in Section 5. Specifically, using the
publicly identified Bad set, and in addition the locally identified conflicts (by comparing the values
it received over point-to-point channels and those broadcast by parties during public reveal), a
party can recognize more than t/2 errors and correct the remaining (less than t/2) errors across
the m instances. We provide the complete modelling via Fbatched

privRec (Functionality 7.1). The protocol

Πbatched
privRec (Protocol 7.2) and its security proof follow.

Functionality 7.1: Batched Private Reconstruction of 3t/2-Shared Polynomials –
Fbatched
privRec
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• Input: All honest parties send ZEROS ⊂ [n]. When the dealer is honest, ZEROS ⊆ I. Each
honest party inputs shares on m sets of polynomials, each of degree 3t/2 to Fbatched

privRec . It

reconstructs the polynomials as {hk0(x), . . . , hkn(x)}k∈[m].

• The functionality:

1. If the dealer is honest, then send (a) the polynomials hk0(x), . . . , h
k
n(x) for every k ∈ [m]

to the dealer; (b) ZEROS, (hk0(i), . . . , h
k
n(i))i∈I and (hk0(x), h

k
i (x))i∈I for each k ∈ [m] to

the adversary. If the dealer is corrupted, then send ZEROS and hk0(x), . . . , h
k
n(x) to the

adversary for each k ∈ [m].

2. Receive a binary vector leak of length m with at most n 1’s from the adversary. For
every k such that leakk = 1, send {hk0(x), . . . , hkn(x)} to the adversary.

3. Receive a message M from the adversary.

4. Output:
(a) If M = discard and the dealer is corrupted, then send discard to all parties.

(b) If M = (detect,Bad) with Bad ∩ ZEROS = ∅ and |Bad| > t/2, and in case of an
honest dealer then Bad ⊆ I, then send (detect,Bad) to all parties.

(c) If M = kill and leak is not a 0-vector then then send (proceed, hk0(x), h
k
ℓ (x)) to

each party Pℓ for every k where such that leakk = 0. For every other k, send kill

to all the parties.

(d) If M = proceed and leak is a 0-vector then send (proceed, hk0(x), h
k
ℓ (x)) for every

k ∈ [m] to each party Pℓ.

Protocol 7.2: Batched Private Reconstruction of 3t/2-Shared Polynomials – Πbatched
privRec

• Input: All parties hold the same set ZEROS. Each honest party Pj holds m sets of shares
(hk0(j), . . . , h

k
n(j)) for each k ∈ [m] on polynomials hk0(x), . . . , h

k
n(x) each of degree 3t/2. It is

guaranteed that all the shares of honest parties lie on the same 3t/2 degree polynomials.

• The protocol:

1. Each Pj sends (j, hk0(j), h
k
ℓ (j)) for every k ∈ [m] to every Pℓ.

2. Let (j, ukj , v
k
j ) be the value Pℓ received from Pj . For every j ∈ ZEROS, (j, ukj , v

k
j ) is

such that uj = vj = 0. Given all (j, ukj ) and (j, vkj ), Pℓ looks for a codeword of dis-
tance at most t/2 from all the values it received (see Corollary 3.4, item 1). If there
is such a codeword, set hk0(j) and hkℓ (x) to be the unique Reed-Solomon reconstruction
respectively for each k ∈ [m]. If there is no such a unique codeword for some k, then
Pℓ broadcasts complaint(ℓ, β) where β is the minimal index from {1, . . . ,m} and every

party Pj broadcasts reveal(ℓ, β, j, h
β
0 (j), h

β
ℓ (j)). If Pℓ sees some reveal(ℓ, β, j, uβj , v

β
j ) with

a value different than the one sent by Pj then add j to localBadℓ.

3. If no party broadcasts complaint(ℓ, β) then go to Step 9d.

4. The dealer sets Bad = ∅. For each reveal(ℓ, β, j, u, v) message broadcasted, the dealer

verifies that u = hβ0 (j) and v = hβℓ (j). If not, then it adds j to Bad. The dealer
broadcasts Bad.

5. Verify that (i) |ZEROS ∪ Bad| ≤ t; and (ii) Bad ⊂ [n] \ ZEROS. Otherwise, discard – go
to Step 9a.

6. If |Bad| > t/2 then there is a large detection – go to Step 9b.
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7. Otherwise, consider all the points Rℓ = {(j, uβj )} and Tℓ = {(j, vβj )} such that reveal(ℓ, β,

j, uβj , v
β
j ) was broadcasted in Step 2 for j ̸∈ Bad, where uβj = vβj = 0 if j ∈ ZEROS. Verify

that Rℓ and Tℓ each define a unique polynomial of degree 3t/2. If not, go to Step 9a.

8. If the dealer is not publicly discarded, then each Pℓ sets h
k
0(x) and hkℓ (x) for each k ∈ [m]

as the unique decoding of the points (j, ukj ) and (j, vkj ) respectively (see Corollary 3.4,
item 2) for every j ̸∈ Bad ∪ localBadℓ, received in Step 1 and proceed to Step 9c.

9. Output:
(a) Discard the dealer: Output discard.

(b) Detect: Output (detect,Bad).

(c) Leak: Output (proceed, hk0(x), h
k
ℓ (x)) for each k ∈ [m] such that complaint(·, k) was

not broadcasted in Step 2. For every other k, output kill.

(d) Proceed: Each Pℓ outputs (proceed, h
k
0(x), h

k
ℓ (x)) for every k ∈ [m].

Lemma 7.3. Protocol 7.2, Πbatched
privRec, perfectly securely computes Functionality 7.1, Fbatched

privRec , in the

presence of a malicious adversary controlling at most t < n/3.

Proof. We show the case of an honest dealer and a corrupted dealer separately.

The case of an honest dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the sets ZEROS, {(hk0(i), . . . , hkn(i))}i∈I and (hk0(x), h
k
i (x))i∈I

for every k ∈ [m].

3. For each i ∈ I, simulate every honest Pj sending (j, h
k
0(j), h

k
i (j)) to Pi. Receive (i, h

k
0(i), h

k
j (i))

from the adversary for each i ∈ I and every honest Pj , for every k ∈ [m].

4. If for some honest Pj , (i, uki , v
k
i ) sent by the adversary is such that uki ̸= hk0(i) or vki ̸=

hkj (i) for more than t/2 such i ∈ I then simulate Pj broadcasting complaint(j, β) where β is
the minimal index from [m]. Also listen to all complaint(i, β) messages broadcasted by the
adversary. Construct a vector leak of length m such that leakβ = 1 for each β for which
complaint(·, β) was broadcasted by some party, and send leak to the functionality. Receive

{hβ0 (x), . . . , h
β
n(x)} from the functionality for each β where leakβ = 1. Set Bad = ∅.

5. For each complaint(ℓ, β) broadcasted by some Pℓ, simulate broadcasting (ℓ, β, j, hβ0 (j), h
β
ℓ (j))

for every honest Pj and listen to all the adversary’s broadcasts.

6. For each i ∈ I where (ℓ, β, i, uβi , v
β
i ) broadcasted is such that uβi ̸= hβ0 (i) or v

β
i ̸= hβℓ (i), add i

to Bad.

7. Simulate the dealer broadcasting Bad. If |Bad| > t/2 then send (detect,Bad) to the func-
tionality and halt.

8. If leak is not a 0-vector then send kill to the functionality and halt.

9. Otherwise, send proceed to the functionality and halt.

The protocol as well as the simulator is deterministic. Hence, it can be easily observed that
the view of the adversary in the real and ideal executions is identical. It remains to show that the
output of honest parties is identical in the real and ideal world.

Towards that end, note that in the real world, an honest dealer is discarded if and only if one
of the following conditions holds:
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1. |ZEROS ∪ Bad| > t.

2. Bad ̸⊂ [n] \ ZEROS.
3. Rℓ or Tℓ do not define a unique polynomial of degree-3t/2.

Note that for an honest dealer, an honest party never belongs to Bad and we have that ZEROS ⊆ I.
It is clear that none of the above conditions hold and the dealer is not discarded. We thus have
the following cases to consider:

1. There exists an honest party that outputs (detect,Bad): In this case, it must hold that
|Bad| > t/2. Since the corresponding message was broadcasted by the dealer, it must hold that
all the honest parties output (detect,Bad). The simulator emulates the interaction of the
honest parties with the dealer as in the real execution, hence all the simulated honest parties
hold the same set Bad. In that case, the simulator sends (detect,Bad) to the functionality,
causing all the honest parties in the ideal world to output the same.

2. There exists an honest party that outputs kill for some k ∈ [m]: In this case,
it must hold that |Bad| ≤ t/2. Moreover, there exists some party Pℓ which broadcasted
complaint(ℓ, k) and each Rℓ and Tℓ define a unique degree 3t/2 polynomials. Since all the
corresponding messages are broadcast, all the honest parties would output kill for k. The
same holds true for each k for which complaint(·, k) was broadcast. For every other k, it
must hold that each honest party Pℓ is able to reconstruct hk0(x), h

k
ℓ (x) either in Step 2 or in

Step 8 after discarding the shares of (at least t/2 corrupt) parties in Bad ∪ localBadℓ (similar
to batched reconstruction of g polynomials in Section 5). Since these polynomials are degree
3t/2 and agree with the shares of at least 2t+1 honest parties, they are guaranteed to be the
same polynomials defined by the input shares of the honest parties. The simulator emulates
the interaction of the honest parties with the dealer as in the real execution, hence all the
simulated honest parties Pℓ hold the same set Bad, see the same complaints. In this case, the
simulator constructs leak with leakk = 1 for each k such that complaint(·, k) was broadcast
and sends leak to the functionality, followed by kill, causing all the honest parties in the
ideal execution to have the same output as the honest parties in the real execution.

3. There exists an honest party that outputs proceed for all k ∈ [m]: This implies that
no party broadcast complaint in the real execution. Thus, it must hold that each honest party
Pℓ obtained a unique reconstruction in Step 2, which agrees with the shares of all the honest
parties. Since the reconstructed polynomials and hk0(x), h

k
ℓ (x) defined by the honest parties’

input shares are each of degree 3t/2 and agree in at least 2t+1 points, it must hold that the
unique reconstructed polynomials are hk0(x), h

k
ℓ (x). Hence it must hold that all honest parties

output (proceed, hk0(x), h
k
ℓ (x)) for every k ∈ [m] in the real execution. Since the simulated

execution is identical to the real execution, all the simulated honest parties also see that
no complaint was broadcast. In this case, the simulator sends proceed to the functionality,
causing all the honest parties in the ideal world to have an output that is identical to the
output of the honest parties in the real world.

The case of a corrupted dealer. The simulator is as follows:

1. Invoke the adversary A with an auxiliary input z.

2. Receive from the functionality the set ZEROS, and the polynomials hk0(x), . . . , h
k
n(x) for each

k ∈ [m].
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3. Simulate the protocol where each honest party Pj holds hk0(j), . . . , h
k
n(j) for each k and all

parties have the same set ZEROS.

4. If some party Pℓ broadcasts complaint(ℓ, β) in Step 2 then the simulator sets leakβ = 1. It
sends leak = (leak1, . . . , leakm) to the functionality.

5. Send the message M to the functionality according to the following cases (the proof will show
that the cases are mutually-exclusive):

(a) If the output of some simulated honest party is discard, then send discard to the
functionality and halt.

(b) If the output of some simulated honest party is (detect,Bad), then send (detect,Bad)
to the functionality and halt.

(c) If the output of some simulated honest party is kill for some k then send kill to the
functionality and halt.

(d) If the output of some simulated honest party is proceed for all k, then send proceed to
the functionality and halt.

Since the simulator uses the exact same inputs of the simulated honest parties as the real honest
parties in the real execution, and since the protocol is deterministic, we get that the view of the
adversary is exactly the same in the real and in the ideal executions. Thus it remains to be shown
that the output of the honest parties is identical in the real and ideal executions. We have the
following cases to consider:

1. There exists an honest party that outputs discard in the real world: Observe that
an honest party outputs discard if and only if one of the following conditions holds.

(a) The dealer broadcasted Bad such that either (i) |ZEROS ∪ Bad| > t; or (ii) Bad ̸⊂
[n] \ ZEROS. Since all honest parties hold the same set ZEROS, and the set Bad is
broadcasted, we get that all honest parties output discard.

(b) The dealer broadcasted Bad with |Bad| ≤ t/2, and for which |ZEROS ∪ Bad| ≤ t

and Bad ⊂ [n] \ ZEROS. However, for Rℓ = {(j, uβj )} and Tℓ = {(j, vβj )} such that

reveal(ℓ, β, j, uβj , v
β
j ) was broadcasted in Step 2 and j ̸∈ Bad, it holds that Rℓ or Tℓ does

not define a unique polynomial of degree 3t/2. Since the set Rℓ and Tℓ are public, all
honest parties will identify that there is no unique reconstruction, and all would output
discard.

Since the simulated honest parties have the same view as the honest parties, the simulated
honest parties also output discard. In this case, the simulator sends discard to the func-
tionality causing all the honest parties to output discard in the ideal execution.

2. There exists an honest party that outputs (detect,Bad) in the real world: In this
case, it must hold that |ZEROS ∪ Bad| ≤ t and Bad ⊂ [n] \ ZEROS. Moreover, it must hold
that |Bad| ≥ t/2. Since the corresponding set Bad is broadcast, all the honest parties hold
the same set and hence output (detect,Bad). The simulated honest parties hold an identical
output, and thus the simulator sends (detect,Bad) to the functionality , which in turn sends
the same to all the honest parties in the ideal execution.

3. There exists an honest party that outputs kill for some k ∈ [m] in the real
world: In this case, it must hold that some party Pℓ broadcast complaint(ℓ, k). Moreover,
|Bad| ≤ t/2 and Rℓ and Tℓ each define a unique degree 3t/2 polynomials. Since all the
corresponding messages are broadcast, it must hold that all the honest parties output kill
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for k. This must hold for each k for which complaint(·, k) was broadcast by some party.
Further, for every other k, it must hold that each honest party Pℓ is able to reconstruct
hk0(x), h

k
ℓ (x) either in Step 2 or in Step 8 after discarding the shares of (at least t/2) parties in

Bad ∪ localBadℓ (similar to batched reconstruction of g polynomials in Section 5). Note than
an honest party never belongs to localBadℓ set of another honest party Pℓ. Hence, during the
reconstruction of its polynomials, a party may discard shares of at most t/2 honest parties
from Bad. Since these reconstructed polynomials are degree 3t/2 and agree with the shares
of at least 2t + 1 − t/2 ≥ 3t/2 + 1 honest parties, they are guaranteed to be the same
polynomials defined by the input shares of the honest parties. The simulator emulates the
honest parties as in the real execution, hence all the simulated honest parties Pℓ see the same
complaints. In this case, the simulator constructs leak with leakk = 1 for each k such that
complaint(·, k) was broadcast and sends leak to the functionality, followed by kill, causing
all the honest parties in the ideal execution to have the same output as the honest parties in
the real execution.

4. There exists an honest party that outputs proceed for all k ∈ [m] in the real
world: In this case, we show that all honest parties Pℓ output (proceed, h

k
0(x), h

k
ℓ (x)) where

hk0(x), h
k
ℓ (x) are the degree 3t/2 polynomials that are interpolated from the respective input

shares of the honest parties and are guaranteed to exist under our input assumption. To-
wards that, observe that since there exists an honest party that does not output discard,
(detect,Bad) or kill for any k it must hold that no party broadcasted complaint in Step 2.
Hence, it must hold that each honest Pℓ has a unique reconstruction and consequently lesser
than t/2 errors occurred in the reconstruction for Pℓ. The reconstructed polynomials agree
with the shares of at least n − t/2 ≥ 5t/2 + 1 parties, hence they agree with the shares of
at least 3t/2 + 1 honest parties. Since the reconstructed polynomials and each hk0(x), h

k
ℓ (x)

are of degree 3t/2, it must hold that the reconstructed polynomials for each honest Pℓ are
hk0(x), h

k
ℓ (x) consistent with the input shares of the honest parties. In this case, the simulated

honest parties also observe that no party complains and hence the simulator sends proceed
to the functionality, causing all the honest parties in the ideal world to obtain an output
identical to the output in the real execution.

Lemma 7.4. Let t < n/3. There exists a protocol that implements Functionality 7.1 and has a
communication complexity of O(mn2 log n) bits over point-to-point channels and O(n2 log n) bits
broadcast in O(1) rounds. Every party broadcasts at most O(n log n) bits.

Note that in the batched private reconstruction, the public verification happens for one instance
corresponding to each party’s complaint. Thus, in total, we have that the public reveal of shares
is performed for at most n instances out of the total m that are batched together. Consequently,
for an honest dealer, we have that the adversary does not learn any additional information for the
m − n instances where the shares are not publicly revealed. Since private reconstruction is used
for reconstructing distinct points on the product polynomials to each party in the triple sharing
protocol, we have the same privacy guarantee of m− n uncompromised instances carry over to the
batched packed VTS protocol.
Public reconstruction for complaining parties. Similar to private reconstruction, if the
product relation fails to hold during the verification in Step 4b, a party Pi complains only for
one instance, say βi. The public verification proceeds as before via FpubRec (Functionality 6.5),
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with the only difference being that the ith input share of every party corresponds to the shares
of polynomials in βith instance, for which Pi broadcasts a complaint. At the conclusion of this
verification, if the dealer is not discarded then parties either detect more than t/2 conflicts with the
dealer, or successfully reconstruct the polynomials of Pi for the βith instance. In the latter case, the
verification of product polynomial is performed on the reconstructed polynomial and the dealer is
discarded in case of failure. Note that when the dealer is corrupt, it is sufficient for an honest party
to complain in one instance. The “binding” property of Fbatched

PSS guarantees that for any individual
instance, if a polynomial is reconstructed then it is the same polynomial committed to by the dealer
in the sharing phase. Thus if the dealer shares incorrect multiplication triples, causing an honest
party to broadcast complaint in some βith instance such that its polynomials are reconstructed
successfully during Step 4b, then the dealer is guaranteed to be discarded. The functionality for
batched verifiable secret sharing appears below. We provide the protocol for completeness.

Functionality 7.5: Batched and Packed Verifiable Triple Sharing Functionality – Fbatched
PVTS

The functionality is parameterized by a set of corrupted parties I ⊂ [n].

1. Honest dealer:

(a) The dealer sends {SECRETSαa , SECRETSαb ,SECRETSαc }α∈[m] to Fbatched
PVTS .

(b) The adversary sends (fα,a
i (x), gα,ai (y))i∈I , (fα,b

i (x), gα,bi (y))i∈I , (fα,c
i (x), gα,ci (y))i∈I to

Fbatched
PVTS such that fα,a

i (k) = gα,ak (i), fα,b
i (k) = gα,bk (i) and fα,c

i (k) = gα,ck (i) for every
i, k ∈ I and every α ∈ [m].

(c) The functionality chooses random bivariate polynomials Aα(x, y), Bα(x, y) and Cα(x, y)
of degree 3t/2 in x and t in y under the constraints that (i) SECRETSαa ,SECRETS

α
b ,SECRETS

α
c

are embedded in Aα, Bα, Cα respectively; (ii) Aα(x, i) = fα,a
i (x), Bα(x, i) = fα,b

i (x) and

Cα(x, i) = fα,c
i (x) for every i ∈ I; (iii) Aα(i, y) = gα,ai (y), Bα(i, y) = gα,bi (y) and

Cα(i, y) = gα,ci (y) for every i ∈ I.

2. Corrupted dealer: The dealer sends Aα(x, y), Bα(x, y) and Cα(x, y) for each α ∈ [m] to
Fbatched
PVTS that verifies that (i) Aα(x, y), Bα(x, y) and Cα(x, y) are of degree 3t/2 in x and degree

t in y for each α ∈ [m]; and (ii) A(−i, 0) ·B(−i, 0) = C(−i, 0) holds for each i ∈ {0, . . . , t/2}.
If not, Fbatched

PVTS replaces each Aα(x, y), Bα(x, y) and Cα(x, y) with ⊥.

3. Output: Fbatched
PVTS sends to each party Pj the pairs of polynomials Aα(x, j), Aα(j, y), Bα(x, j),

Bα(j, y) and Cα(x, j), Cα(j, y) for every α ∈ [m− n].

Protocol 7.6: Batched and Packed VTS in the (FPSS,Fbatched
privRec ,FpubRec)-hybrid model –

Πbatched
PVTS

Input: The dealer holdsm sets of three lists SECRETSαa = {aα0 , . . . , aαt/2},SECRETS
α
b = {bα0 , . . . , bαt/2},

SECRETSαc = {cα0 , . . . , cαt/2}, each of size t/2+1 such that cαi = aαi b
α
i holds for each i ∈ {0, . . . , t/2}

and each α ∈ [m].
The protocol:

1. All parties set ZEROS = ∅.
2. Dealing the shares of triples: Parties invoke Fbatched

PSS (Functionality 5.4) three times with
d = 0. The dealer inputs (SECRETSαa )α∈[m], (SECRETS

α
b )α∈[m], (SECRETS

α
c )α∈[m] respectively

and each party inputs ZEROS. If the output of any instance is ⊥, then proceed to Step 5a.
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Otherwise, each Pi holds f
α,a
i (x) = Aα(x, i), gα,ai (y) = Aα(i, y), fα,b

i (x) = Bα(x, i), gα,bi (y) =
Bα(i, y) and fα,c

i (x) = Cα(x, i), gα,ci (y) = Cα(i, y).

3. Dealing the shares of product polynomials:

(a) For each ℓ ∈ {0, . . . , t/2} and every α ∈ [m], the dealer defines the polynomials Eα
−ℓ(y)

of degree at most 2t such that Eα
−ℓ(y) = Aα(−ℓ, y) · Bα(−ℓ, y) − Cα(−ℓ, y) = eα(−ℓ,0) +

eα(−ℓ,1)y + . . . + eα(−ℓ,2t)y
2t. Define eαi = (eα(−t/2,i), . . . , e

α
(0,i)) for i ∈ {0, . . . , 2t}, as the

vector of ith coefficients of all the t/2 + 1 polynomials for the αth set of polynomials.

(b) The dealer views the coefficients of these t/2 + 1 polynomials for each of the m sets of
polynomials as (at most) eight matrices SECRETSα1 , . . . ,SECRETS

α
8 , each of size (t/2 +

1)(t/4 + 1). Specifically, SECRETSαu(·, b) = eα(t/4+1)·(u−1)+b where b ∈ {0, . . . , t/4} and

u ∈ [8].

(c) All the parties invoke Fbatched
PSS (Functionality 5.4) (at most) eight times with d = t/4,

where the dealer inputs SECRETSαu for each u ∈ [8] and every α ∈ [m] respectively
and each party inputs ZEROS. If the output of any instance is ⊥, then proceed to
Step 5a. Otherwise, each Pi holds the degree-(t + t/2) polynomials fα,u

i (x) = Eα
u (x, i)

and degree-(t+ t/4) polynomials gα,ui (y) = Eα
u (i, y) for all u ∈ [8] and every α ∈ [m].

(d) Let f
eα
(t/4+1)·(u−1)+b(x) = Eα

u (x,−b) for b ∈ {0, . . . , t/4}, u ∈ [8] and α ∈ [m], denote the
3t/2-degree polynomial that packed-shares the coefficient vector eα(t/4+1)·(u−1)+b.

4. Proof of product relation: To check the product relation, each Pi requires to verify
that Eα

−ℓ(i) = Aα(−ℓ, i) · Bα(−ℓ, i) − Cα(−ℓ, i) holds for each ℓ ∈ {0, . . . , t/2}. Let Eα(i) =

(Eα
−t/2(i), . . . , E

α
0 (i)) and fEα(i)(x) be the 3t/2-degree polynomial that packed-shares of Eα(i).

Note that each fEα(i)(x) is a linear combination of the polynomials (feαj (x))j∈{0,...,2t} for each
α ∈ [m].

(a) Reconstructing Eα(i) and Eα(0) towards each Pi: For each party Pi, every party
Pj computes fEα(i)(j) =

∑2t
k=0 i

k · feαk (j) and fEα(0)(j) = feα0 (j) for each α ∈ [m].
Parties invoke Fbatched

privRec (Functionality 7.1) where Pj inputs (fEα(0)(j), fEα(1)(j), . . . ,

fEα(n)(j))α∈[m].
i. If the output is discard, then proceed to Step 5a.

ii. If the output is (detect,Bad), then set ZEROS = ZEROS ∪ Bad. If |ZEROS| > t
then go to Step 5a. Otherwise, go to Step 2.

iii. Otherwise, Pi sets fEα(0)(x) = hα0 (x) and fEα(i)(x) = hαi (x) for each α ∈ [m] such
that Fbatched

privRec did not output kill.

(b) Verifying the product relation of each Pi and that Eα(0) = eα0 = (0, . . . , 0) holds:
i. Each Pi verifies that E

α(i) obtained from reconstructed polynomial fEα(i)(x) matches

with (fα,a
i (−ℓ) · fα,b

i (−ℓ)− fα,c
i (−ℓ))ℓ∈{0,...,t/2}. Pi also verifies that fEα(0)(−ℓ) = 0

holds for each ℓ ∈ {0, . . . , t/2} and each α ∈ [m] for which Fbatched
privRec did not output

kill. If not, then Pi broadcasts complaint(i, βi) where βi is the smallest α for which
the verification fails.

ii. Parties construct a binary vector (pub1, . . . , pubn) where pubi = 1 if Pi broadcasted
complaint(i, βi).

iii. Parties invoke FpubRec (Functionality 6.5) five times where each Pj inputs (pub1, . . . ,
pubn), ZEROS in every instance and the following shares respectively in the five in-

stances: (i) (fEβ1 (1)(j), . . . , fEβn (n)(j)), (ii) (fEβ1 (0)(j), . . . , fEβn (0)(j)), (iii) (gβ1,a
j (1),
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. . . , gβn,a
j (n)), (iv) (gβ1,b

j (1), . . . , gβn,b
j (n)) and (v) (gβ1,c

j (1), . . . , gβn,c
j (n)). For Pi

which did not broadcast complaint(i, βi), each Pj sets the ith share to be 0 in the
five instances above. For any of the above instances:
A. If the output is discard, then proceed to Step 5a.

B. If the output is (detect,Bad), then set ZEROS = ZEROS∪Bad. If |ZEROS| > t
then go to Step 5a. Otherwise, go to Step 2.

C. Otherwise, when the output is proceed, all parties set
fEβi (i)(x), fEβi (0)(x) and fβi,a

i (x), fβi,b
i (x), fβi,c

i (x) as the respective output ob-
tained in the corresponding five instances of FpubRec for each Pi which broad-
casted complaint(i, βi).

iv. For each Pi which complained, parties verify the checks as in Step 4(b)i using the
polynomials returned by the instances of FpubRec. If it does not hold for some
complaining party, then go to Step 5a. Otherwise, go to Step 5b.

5. Output:

(a) Discard: All parties output ⊥.

(b) Successful: Each Pi outputs (fα,a
i (x), gα,ai (y), fα,b

i (x), gα,bi (y), fα,c
i (x), gα,ci (y)) for each

α ∈ [m] for which Fbatched
privRec did not output kill in Step 4a. Here, {(fα,a

i (−ℓ), fα,b
i (−ℓ),

fα,c
i (−ℓ))}ℓ∈{0,...,t/2} defines Pi’s shares of the multiplication triples.

Theorem 7.7. Protocol 7.6, Πbatched
PVTS , perfectly securely computes Functionality 7.5, Fbatched

PVTS , in
the presence of a malicious adversary controlling at most t < n/3. It requires a communication
complexity of O(mn2 log n) bits over-point-to-point channels and O(n2 log n) bits broadcast, and
O(1) rounds. Each party broadcasts at most O(n log n) bits.

Note that since (at most) n instances can be compromised (due to kill as output from Fbatched
privRec ),

the dealer shares O((m − n)n) multiplication triples. Consequently, we have that when m − n =
O(n), the dealer generates O(n2) triples at an amortized cost of O(n log n) bits over point-to-point
channels and O(1) bits of broadcast per triple.

8 Linear Perfectly Secure MPC

In this section, we first give details of the additional building blocks necessary for MPC such
as reconstruction of degree-t polynomials, and Beaver triple generation. We conclude with our
complete MPC protocol relying on these building blocks, the packed secret sharing (Sections 4, 5)
and the verifiable triple sharing (Sections 6, 7). In the following, we use ⟨v⟩ to denote the degree-t
Shamir-sharing of a value v among parties.

8.1 Secret Reconstruction

Since the outcome of our VSS is secrets in Shamir-shared format, we discuss how such sharing can
be reconstructed efficiently. We use two standard ways of reconstruction:

Private reconstruction. Here, the secret is reconstructed privately to a specified party. This can
be achieved by simply letting all the parties disclose the shares to the party who applies RS error
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correction for recovering the secret. We denote this protocol as ΠRec. This requires O(n log n) bits
communication.

Batched public reconstruction. Näıvely, reconstructing t + 1 secrets that are Shamir-shared
requires (t + 1)n private reconstructions (via ΠRec), resulting in O(n3 log n) communication5. On
the other hand the batch reconstruction protocol, first presented in [26], allows parties to robustly
reconstruct t + 1 Shamir-shared values at a cost of communicating O(n2 log n) bits, ensuring an
amortized cost of O(n log n) bits per reconstruction.

In particular, given ⟨v0⟩, . . . , ⟨vt⟩, parties translate them to n sharings non-interactively, say
⟨v′1⟩, . . . , ⟨v′n⟩, using a linear error correcting code, such as Reed-Solomon code which tolerates up
to t errors. To be specific, (v′1, . . . , v

′
n) can be thought of as n points on a t-degree polynomial

p(x) =
∑t

i=0 vix
i. Following this, of the n sharings, one sharing ⟨v′i⟩ is reconstructed towards

each party Pi via private reconstruction protocol ΠRec who obtains v′i. At this stage, the parties
essentially hold ⟨v0⟩. Therefore, n instances of private reconstruction enables every party to recover
p(x), the polynomial used to share v0, whose coefficients are the desired output. This requires a
total communication of O(n2 log n) bits. The protocol ΠbPubRec appears below for completeness.

Protocol 8.1: Batched Public Reconstruction Protocol – ΠbPubRec

Common input: The description of a field F, n non-zero distinct elements 1, . . . , n.
Input: Parties hold the univariate degree-t sharings ⟨v0⟩, . . . , ⟨vt⟩.

1. Let p(x) = v0 + v1x+ v2x
2 + . . .+ vtx

t.

2. For each Pi, parties locally compute ⟨v′i⟩ = ⟨p(i)⟩ = ⟨v0⟩+ ⟨v1⟩ · i+ ⟨v2⟩ · i2 + . . .+ ⟨vt⟩ · it.
3. For each party Pi, parties invoke ΠRec with ⟨v′i⟩ as input to enable Pi to privately reconstruct

v′i = p(i). Note that parties now hold ⟨p(0)⟩.
4. For each party Pi, parties invoke ΠRec with ⟨p(0)⟩ as input to enable Pi to privately reconstruct

the polynomial p(x). Upon reconstructing, each Pi outputs the t+1 coefficients v0, v1, . . . , vt
of p(x).

Lemma 8.2. Protocol 8.1, ΠbPubRec, has a communication complexity of O(n2 log n) bits over
point-to-point channels and no broadcast for publicly reconstructing O(n) values (i.e., O(n log n)
bits) simultaneously in 2 rounds.

8.2 From the PSS and VTS to MPC

We now give the road-map for our MPC. Excluding the PSS and the VTS, the existing tools are
taken from [23]. Our protocol has two phases: (a) preparation of Beaver triples (⟨al⟩, ⟨bl⟩, ⟨cl⟩)l∈C ,
where C is the number of multiplication gates in circuit to be evaluated; (b) batched evaluation of
the multiplication gates consuming the Beaver triples. Let us start with the latter.

Batched Beaver Multiplication. This protocol relies on the well known technique of Beaver’s
circuit randomization [10], which, given a pre-computed t-shared random and private multiplication
triple (⟨a⟩, ⟨b⟩, ⟨c⟩), reduces the computation of ⟨xy⟩ from ⟨x⟩ and ⟨y⟩ to two public reconstructions.
Towards this, parties first locally compute ⟨d⟩ = ⟨x⟩ − ⟨a⟩ and ⟨e⟩ = ⟨y⟩ − ⟨b⟩, followed by public

5Alternatively, (t + 1)n elements of broadcasts. Broadcasts are expensive and would require a minimum of
O(n3 logn) communication and a minimum of constant expected inflation in the round complexity.
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reconstruction of d and e. Since z = xy = ((x−a)+a)((y−b)+b) = (d+a)(e+b) = de+db+ea+ab,
parties can locally compute ⟨z⟩ = ⟨xy⟩ using the shared multiplication triple and the publicly
reconstructed values d and e. Specifically, parties locally compute ⟨xy⟩ = de+ d⟨b⟩+ e⟨a⟩+ ⟨c⟩.

To leverage the efficiency benefits offered by the batch public reconstruction protocol, the pro-
tocol handles a batch of l multiplications together, each requiring 2 reconstructions. The 2l public
reconstructions are thus batched together in groups of t + 1 to invoke ΠbPubRec and ensure an
amortized communication complexity of O(n log n) bits per reconstruction. The resultant com-
munication complexity of ΠbBeaver for handling l multiplications is O((n2 + nl) log n). The formal
description appears in Protocol 8.3.

Protocol 8.3: Batched Beaver Multiplication – ΠbBeaver

Input: Parties hold l degree-t shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for every i ∈ [l] and l degree-t shared
pairs of values (⟨xi⟩, ⟨yi⟩) to be multiplied.

1. For each i ∈ [l], parties locally compute ⟨di⟩ = ⟨xi⟩ − ⟨ai⟩ and ⟨ei⟩ = ⟨yi⟩ − ⟨bi⟩.
2. Let 2l = k(t + 1). Parties execute k parallel instances of ΠbPubRec and publicly reconstruct

{di, ei} for every i ∈ [l].

3. For each i ∈ [l], parties locally compute ⟨zi⟩ = ⟨xiyi⟩ = diei + di⟨bi⟩+ ei⟨ai⟩+ ⟨ci⟩.

Lemma 8.4. Protocol 8.3, ΠbBeaver, has a communication complexity of O((ln + n2) log n) bits
over point-to-point channels and no broadcast for the multiplication of l pairs of shared values in 2
rounds.

Preparing Beaver triples. This task is further phrased in two tasks. First, a verifiable triple
sharing (VTS) is used to make a dealer Shamir-share three values (a, b, c) such that c = ab. Second,
a triple extraction protocol that takes n verified triples, ith one contributed by Pi and extracts t/2
triples that are unknown to the adversary.

Verifiable Triple Sharing. During this phase, each party shares verified multiplication triples
which are subsequently consumed to extract random triples (unknown to any party) required for
circuit evaluation via Beaver’s trick [10]. Towards that, each party invokes Fbatched

PVTS (Functional-
ity 7.5) in parallel to generate the desired number of triples in a batched manner. The exact number
of triples that a party has to share depends on the number of multiplication gates in the circuit,
and we provide a cost analysis in Lemma 8.10. We thus have that there are n parallel instances of
Fbatched
PVTS , where in each instance a party broadcasts n log n bits. Considering all the n instances,

each party broadcasts n2 log n in parallel. For this, we use the parallel broadcast primitive Fparallel
BC

(Functionality 3.6). Thus, for the parallel batched verifiable triple sharing, we have the following.

Lemma 8.5. Parallel batched verifiable triple sharing requires a communication of O(mn3 log n)
bits over point-to-point channels and O(n3 log n) bits broadcast in O(1) rounds. Each party broad-
casts O(n2 log n) bits in parallel.

Using the broadcast realisation of [1], we have that the parallel batched verifiable triple sharing
requires O(mn3 log n+ n4 log n) bits over point-to-point channels.

At the termination of this phase, we have n sets of triples, one shared by each party. Note that
for each corrupt party which was discarded during Fbatched

PVTS , all parties assume default sharing of
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some publicly known triples. Given this, the next phase “merges” the triples shared by, and known
to each party respectively to extract random triples.

Triple Extraction. Our last component is a triple extraction protocol that consumes one (ver-
ified) multiplication triple, say (⟨ai⟩, ⟨bi⟩, ⟨ci⟩), shared by each party Pi in the prior stage and
extracts O(n) random triples not known to any party at the cost of O(n2) point to point communi-
cation. In particular, the protocol extracts h+ 1− t multiplication triples, where h = ⌊n−1

2 ⌋ using
n triples, one shared by each party. At a high level, the protocol proceeds as follows. First, the
parties “transform” the n random shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for each i ∈ [n] into n correlated
triples (⟨xi⟩, ⟨yi⟩, ⟨zi⟩) for every i ∈ [n] such that the values {xi, yi, zi}i∈[n] lie on the polynomials
X(·), Y (·) and Z(·) of degree h, h and 2h respectively where X(·) ·Y (·) = Z(·). Specifically, for each
i ∈ [n], it holds that X(i) = xi, Y (i) = yi and Z(i) = zi where 1, . . . , n are publicly known distinct
elements from F. Furthermore, the transformation ensures that the adversary knows {xi, yi, zi}
only if Pi is corrupt. This implies that the adversary may know t points on each of the polynomials
X(·), Y (·) and Z(·) of degree h, h and 2h respectively, thus guaranteeing a degree of freedom of
h + 1 − t = t/2 in X(·), Y (·) (and thus Z(·)). Parties thus output the shared evaluation of these
polynomials at h+1−t publicly known points β1, . . . , βh+1−t as the extracted shared multiplication
triples.

The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci for
i ∈ {1, . . . , h+1}. Next, ⟨xi⟩ and ⟨yi⟩ for every i ∈ {h+2, . . . , n} can be computed non-interactively
by taking linear combination of {xi, yi}i∈[h+1]. Following this, ⟨zi⟩ for every i ∈ {h + 2, . . . , n} is
computed using Beaver’s trick where the inputs are ⟨xi⟩ and ⟨yi⟩ and the triple (⟨ai⟩, ⟨bi⟩, ⟨ci⟩).
Clearly, if Pi is corrupt then xi, yi, zi is known to the adversary as claimed. To conclude, we note
that triple extraction reduces to running a batch of O(n) Beaver multiplications which requires
O(n2 log n) bits communication using ΠbPubRec. The formal description appears in Protocol 8.6.

Protocol 8.6: Triple Extraction – ΠtripleExt

Common input: The description of a field F, n = 2h+ 1 non-zero distinct elements 1, . . . , n and
h+ 1− t non-zero distinct elements β1, . . . , βh+1−t.
Input: Parties hold the degree-t shared triples (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for every i ∈ [n] such that (ai, bi, ci)
is known to party Pi.

1. For each i ∈ [h+ 1], parties locally set ⟨xi⟩ = ⟨ai⟩, ⟨yi⟩ = ⟨bi⟩ and ⟨zi⟩ = ⟨ci⟩.
2. LetX(·) and Y (·) be the degree-h polynomials defined by the points {xi}i∈[h+1] and {yi}i∈[h+1]

respectively such that X(i) = xi and Y (i) = yi for all i ∈ [h+ 1].

3. For each i ∈ {h+ 2, . . . , n}, parties locally compute ⟨xi⟩ = ⟨X(i)⟩ and ⟨yi⟩ = ⟨Y (i)⟩.
4. Parties invoke ΠbBeaver with {⟨xi⟩, ⟨yi⟩, ⟨ai⟩, ⟨bi⟩, ⟨ci⟩}i∈{h+2,...,n} and obtain {⟨zi⟩}i∈{h+2,...,n}

where zi = xiyi for every i ∈ {h+ 2, . . . , n}.
5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i∈[n] such that Z(i) = zi for

all i ∈ [n].

6. Parties locally compute ⟨ai⟩ = ⟨X(βi)⟩, ⟨bi⟩ = ⟨Y (βi)⟩ and ⟨ci⟩ = ⟨Z(βi)⟩ for every i ∈
[h+ 1− t].

Lemma 8.7. Protocol 8.6, ΠtripleExt, has a communication complexity of O(n2 log n) bits over point-
to-point channels and no broadcast for sharing O(n) random multiplication triples in 2 rounds.
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8.3 The MPC Protocol

The protocol ΠMPC and the corresponding functionality FMPC are provided below. As described,
at a high level, the protocol is divided into the following two phases:

1. Beaver triple generation: In this phase, parties generate C number of degree-t Shamir-shared
multiplication triples where, C denotes the number of multiplication gates in the circuit.
Towards that, each party first generates triples using our VTS protocol. Subsequently, a
triple extraction protocol “merges” the triples generated by all parties and “extracts” random
triples (not known to any party) which will be consumed in the second phase. For sufficiently
large circuits, specifically for circuits of size Ω(n3), this phase incurs an amortized cost of
O(n log n) bits point-to-point communication per triple.

2. Circuit computation: Upon sharing of inputs by the input holding parties, in this phase the
computation of the circuit proceeds by parties performing shared evaluation of the circuit.
Since our sharing is linear, the linear operations of addition and multiplication by a constant
are local. For multiplication of shared values, parties consume the Beaver triples generated
in the prior phase. This is followed by the reconstruction of the outputs to the designated
parties to complete the circuit evaluation.

Functionality 8.8: MPC – FMPC

Input: Each Pi holds input xi ∈ F ∪ {⊥}.
Common Input: An n-party function f(x1, . . . , xn).

1. Each Pi sends xi to the functionality. For any Pi, if xi is outside the domain or Pi did not
send any input, set xi to a predetermined default value.

2. Compute (y1, . . . , yn) = f(x1, . . . , xn) and send yi to Pi for every i ∈ [n].

Protocol 8.9: MPC – ΠMPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n = 2h+ 1. Let m = ⌈ C

h+1−t⌉.
Input: Parties hold their inputs (belonging to F ∪ {⊥}) to the circuit.
(Beaver triple generation:)

1. Each Pi chooses m+n(t/2+1) random multiplication triples and executes Πbatched
PVTS (Section 7,

Protocol 7.6) batching ⌈ m
(t/2+1)⌉ + n instances each with t/2 + 1 triples. Let (⟨aji ⟩, ⟨b

j
i ⟩, ⟨c

j
i ⟩)

for j ∈ [m] denote the triples shared by Pi.

2. Parties execute m instances of ΠtripleExt (Protocol 8.6) with (⟨aji ⟩, ⟨b
j
i ⟩, ⟨c

j
i ⟩) for every i ∈ [n] as

the input for the jth instance. Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) for i ∈ [C] denote the randommultiplication
triples generated.

(Circuit computation:)

1. (Input) Each party Pi holding ki inputs to the circuit executes Πbatched
PSS (Section 5) batching

⌈ ki
t/2+1⌉ instances to share its inputs.
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2. (Linear Gates) Parties locally apply the linear operation on their respective shares of the
inputs.

3. (Multiplication Gates) Let (⟨ai⟩, ⟨bi⟩, ⟨ci⟩) be the multiplication triple associated with the
ith multiplication gate with shared inputs (⟨xi⟩, ⟨yi⟩). Parties invoke ΠbBeaver (Protocol 8.3)
with {⟨xi⟩, ⟨yi⟩, ⟨ai⟩, ⟨bi⟩, ⟨ci⟩} for all gates i at the same layer of the circuit and obtain the
corresponding ⟨zi⟩ as the output sharing for every gate i.

4. (Output) For each output gate j with the associated sharing ⟨vj⟩, parties execute ΠRec

towards every party Pi who is supposed to receive the output vj .

Theorem 8.10. Let t < n/3. Protocol 8.9 securely implements FMPC (Functionality 8.8) and
has a communication complexity of O((Cn + Dn2 + n4) log n) bits over point to point channels
and O(n3 log n) bits broadcast for evaluating a circuit with C gates and depth D in expected O(D)
rounds. Every party broadcasts O(n2 log n) bits.

Proof. The circuit evaluation requires C random multiplication triples. We analyse the cost of the
two phases separately.

Beaver triple generation. Note that the triple extraction protocol (ΠtripleExt) generates O(n)
(specifically, h+1−t where h = ⌊n−1

2 ⌋) such random triples by consuming one verified multiplication
triple per party. Thus, we need O(C/n) instances of the triple extraction protocol, which incurs a
cost of O(Cn log n+ n2 log n) bits over point-to-point channels. Each instance of triple extraction
consumes one verified multiplication triple per party. This requires each party to ensure the sharing
of a set of O(C/n) verified multiplication triples. Since our verified triple sharing packs O(n)
(specifically, t/2 + 1) triples in one instance, this corresponds to each party parallelly running
O(C/n2)+n instances of packed verifiable triple sharing in a batched manner, where the additional
n accounts for the (at most) n instances that the adversary can compromise in Fbatched

PVTS . This phase
incurs a cost of O(Cn log n + n4 log n) bits of communication over point-to-point channels and
O(n3 log n) bits of broadcast, where every party broadcasts O(n2 log n) in parallel.

Circuit computation. In this phase, parties batched the multiplication gates at the same level
in the circuit and invoke the batched Beaver multiplication protocol (ΠbBeaver) for evaluating them.
Given Ci is the number of gates per level of the circuit, this stage incurs a cost of O(Ci · n log n+
n2 log n) bits communication over point-to-point channels. Consequently, we have that the circuit
computation requires

∑D
i=1O(Ci ·n log n+n2 log n) = O(Cn log n+Dn2 log n) bits communication

over point-to-point channels.
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