
Concrete Quantum Cryptanalysis of Binary Elliptic Curves via
Addition Chain∗

Ren Taguchi† Atsushi Takayasu‡

August 3, 2023

Abstract

Thus far, several papers reported concrete resource estimates of Shor’s quantum algorithm for solving
the elliptic curve discrete logarithm problem (ECDLP). In this paper, we study quantum FLT-based
inversion algorithms over binary elliptic curves. There are two major algorithms proposed by Banegas
et al. and Putranto et al., where the former and latter algorithms achieve fewer numbers of qubits and
smaller depths of circuits, respectively. We propose two quantum FLT-based inversion algorithms that
essentially outperform previous FLT-based algorithms and compare the performance for NIST curves
of the degree n. Specifically, for all n, our first algorithm achieves fewer qubits than Putranto et al.’s
one without sacrificing the number of Toffoli gates and the depth of circuits, while our second algorithm
achieves smaller depths of circuits without sacrificing the number of qubits and Toffoli gates. For example,
when n = 571, the number of qubits of our first algorithm is 74 % of that of Putranto et al.’s one, while
the depth of our second algorithm is 83 % of that of Banegas et al.’s one. The improvements stem
from the fact that FLT-based inversions can be performed with arbitrary sequences of addition chains
for n− 1 although both Banegas et al. and Putranto et al. follow fixed sequences that were introduced
by Itoh and Tsujii’s classical FLT-based inversion. In particular, we analyze how several properties of
addition chains, which do not affect the computational resources of classical FLT-based inversions, affect
the computational resources of quantum FLT-based inversions and find appropriate sequences.

∗This is the full version of [TT23]. This research was in part conducted under a contract of “Research and Development for
Expansion of Radio Wave Resources 　 (JPJ000254)” the Ministry of Internal Affairs and Communications, Japan, and JSPS
KAKENHI Grant Numbers JP19K20267 and JP21H03440, Japan.

†Graduate School of Information Science and Technology, the University of Tokyo, Japan. rtaguchi-495@g.ecc.u-tokyo.ac.jp
‡Graduate School of Information Science and Technology, the University of Tokyo, Japan, and National Institute of Advanced

Industrial Science and Technology, Japan. takayasu-a@g.ecc.u-tokyo.ac.jp

Contents
1 Introduction 1

1.1 Background . 1
1.2 Our Contribution . 1
1.3 Technical Overview . 2
1.4 Organization . 3

2 Preliminaries 3
2.1 Elliptic Curve Discrete Logarithm Problem . 4
2.2 Shor’s Algorithm for Binary ECDLP . 4
2.3 Quantum Computation in F2n . 4

3 FLT-based Inversion 5
3.1 Classical FLT-based Inversion . 5
3.2 Putranto et al.’s Quantum FLT-based Inversion Algorithm 5
3.3 Banegas et al.’s Quantum FLT-based Inversion Algorithm . 6

4 Our Method 7
4.1 Addition Chain . 7
4.2 Basic Algorithm . 8
4.3 Extended Algorithm . 10

5 Comparison 12
5.1 Our Choice of Addition Chains . 13
5.2 Comparison in a Quantum Inversion Computation . 13
5.3 Quantum Resources Trade-off in Extended Algorithm . 14
5.4 Comparison in Shor’s Algorithm . 18

6 Windowing 19
6.1 Quantum Read Only Memory . 19
6.2 Point Addition Using Windowing . 19

7 Conclusion 20

1 Introduction

1.1 Background
RSA [RSA78] and elliptic-curve cryptography (ECC) [Kob87,Mil85] are public-key cryptosystems that are
the most widely used in practice. RSA and ECC are believed to be secure since there are no known polynomial
time algorithms for solving the factorization problem and elliptic curve discrete logarithm problem (ECDLP).
NIST [CP13] recommends elliptic curves for ECC over a prime field Fq and a binary field F2n . Specifically,
degrees n = 163, 233, 283, and 571 are recommended for binary elliptic curves. However, Shor [Sho94]
proposed a quantum algorithm that solves the factorization problem and ECDLP in polynomial time. Then,
designing post-quantum public key cryptosystems (PQC) has been paid much attention and the timing of
the transition to PQC has been actively discussed.

Despite the theoretical effectiveness, Shor’s algorithm is currently not efficient in practice. For example,
there are several reports of the quantum algorithm to solve the factorization problem [ASK19, DLQ+20,
LBC+12, LBYP07, MLLL+12, LWL+07, MNM+16, PMO09, SSV13, VSB+01]; however, the target compos-
ite integers are mainly 15 and 21, while the classical factorization of 795-bit composite integers has been
reported [BGG+20]. The situation stems from the fact that physical realizations of large-scale quantum com-
puters have a lot of technical barriers. Thus, there are several papers [GE21,GS21,HLH22,VBE96, Zal98,
Bea03,FMMC12,HRS17,TK06,Kun05] that estimate the concrete resource estimates of quantum factoring
and its improvements in terms of the number of qubits, the number of quantum gates, and depth of circuits.

Compared with the situation of quantum factoring, the quantum resource estimates of the ECDLP were
not studied until recently. Although the first attempt was given by Proos and Zalka [PZ03], their analysis
lacks the implementation of elliptic curve additions that are the most dominant step to run Shor’s quantum
algorithm. Roetteler et al. [RNSL17] showed the first concrete resource estimates of ECDLP over a prime field
Fq by indicating how to perform elliptic curve additions quantumly. Subsequently, Banegas et al. [BBvHL20]
gave the alternative results for a binary field F2n and the work was followed by Putranto et al. [PWLK22].

In this paper, we focus on binary elliptic curves. We especially study an inversion in F2n , where the
computation is the most dominant operation to realize elliptic curve additions. For this purpose, Banegas et
al. [BBvHL20] proposed two quantum methods for inversion in F2n , i.e., an extended GCD-based inversion
and FLT-based inversion1 inspired by Bernstein and Yang’s inversion [BY19] and Itoh and Tsujii’s inver-
sion [IT88], respectively. Their results indicate that the extended GCD-based inversion requires fewer qubits,
while the FLT-based inversion requires fewer Toffoli gates and a smaller depth of circuits. Although Banegas
et al. [BBvHL20] tried to minimize the required number of qubits, Putranto et al. [PWLK22] revisited the
analysis to minimize the depth of circuits. Then, Putranto et al. proposed a quantum FLT-based inversion
algorithm that works with a smaller depth of circuits and larger qubits than Banegas et al.’s FLT-based
inversion algorithm, while the numbers of Toffoli gates are unchanged.

1.2 Our Contribution
In this paper, we propose two quantum FLT-based inversion algorithms. We concretely analyze quantum
resources for the algorithms over NIST-recommended curves. Then, we show that our proposed algorithms
improve previous FLT-based inversion algorithms by Banegas et al. [BBvHL20] and Putranto et al. [PWLK22]
for all degrees n = 163, 233, 283, and 571. Briefly speaking, our first and second algorithms are based on FLT-
based inversion algorithms by Putranto et al. and Banegas et al., respectively. Intuitively, our algorithms
successfully overcome the disadvantages of previous FLT-based inversion algorithms. Indeed, for all degrees
n, our first and second algorithms require fewer qubits and smaller depth of circuits than Putranto et al.
and Banegas et al., respectively. Moreover, we want to claim two further benefits of our algorithms. At first,
our algorithms do not sacrifice the advantages of previous FLT-based inversion algorithms in the sense that
the number of qubits, number of Toffoli gates, and depth of circuits of our first and second algorithms do not
exceed those of Putranto et al. and Banegas et al., respectively. Next, our algorithms successfully reduce
the number of Toffoli gates of previous FLT-based inversion algorithms for n = 571. In other words, our
algorithms improve all three factors of previous FLT-based inversion algorithms for n = 571. For example,
our first (resp. second) algorithm for n = 571 requires 74%, 93%, and 97% (resp. 93%, 93%, and 79%)

1FLT is the abbreviation of Fermat’s little theorem

1

of qubits, Toffoli gates, and depth of Putranto et al.’s algorithm (resp. Banegas et al.’s algorithm). We
also apply windowing to our algorithms. Windowing is a way for reducing Toffoli gates by using quantum
read-only memory (QROM). Both Banegas et al. [BBvHL20] and Putranto et al. [PWLK22] also estimated
the number of Toffoli gates when windowing is applied.
Difference from Preliminary Version. In the preliminary version [TT23], we use quantum multi-
plication by Hoof [Igg19] to estimate quantum resources. Recently, Kim et al. [KKKH22] proposed a new
quantum multiplication that has an advantage over Hoof’s one in terms of the number of Toffoli gates and
depth. Therefore, in this version, we use Kim et al.’s quantum multiplication to estimate quantum resources.

1.3 Technical Overview
Both previous quantum FLT-based inversion algorithms by Banegas et al. [BBvHL20] and Putranto et
al. [PWLK22] are modifications of Itoh and Tsujii’s classical FLT-based inversion algorithm [IT88]. Given
f ∈ F∗

2n , both classical and quantum FLT-based inversion algorithms compute f−1 ∈ F∗
2n based on the fact

that f2n−2 = f−1. Itoh and Tsujii’s inversion finally computes f−1 by
(
f2n−1−1

)2
= f2n−2 and the main

step of the algorithm is a computation of f2n−1−1. Here, we describe how to compute f2n−1−1 = f2162−1 when
n = 163. Observe that 162 has Hamming weight three in binary, where 162 = 128 + 32 + 2 = 27 + 25 + 21.
We start from f = f22

0
−1 and compute each f22

1
−1, f22

2
−1, . . . , f22

7
−1. Specifically, given f22

k−1
−1 for

k = 1, 2, . . . , 7 = ⌊log 162⌋, we can compute f22
k
−1 by

f22
k−1

−1 ×
(
f22

k−1
−1

)22
k−1

= f22
k−1

−1 × f22
k
−22

k−1

= f22
k
−1

with seven field multiplications. Then, we compute f22
7+25−1 and f22

7+25+21−1 = f2162−1 by

(
f22

7
−1
)225

× f22
5
−1 = f22

7+25−22
5

× f22
5
−1 = f22

7+25−1,(
f22

7+25−1
)221

× f22
1
−1 = f22

7+25+21−22
1

× f22
1
−1 = f22

7+25+21−1,

with two field multiplications. Thus, nine field multiplications in total are required for computing f2162−1.
In general, Itoh and Tsujii’s inversion requires ⌊log(n− 1)⌋+ t− 1 field multiplications, where t denotes the
Hamming weight of n− 1 in binary.

Next, we explain how to perform FLT-based inversion quantumly. Putranto et al.’s algorithm [PWLK22]
is simpler than Banegas et al.’s algorithm [BBvHL20] since Banegas et al.’s algorithm can be viewed as a
modification of Putranto et al.’s algorithm by clearing garbages and reduces the required number of qubits.
Therefore, we use Putranto et al.’s algorithm to explain an overview of quantum FLT-based inversion.
For simplicity, we focus on the number of qubits to perform Putranto et al.’s algorithm. At first, we
describe how to compute compute each f22

1
−1, f22

2
−1, . . . , f22

7
−1. A point to note is that when given

f22
k−1

−1 as a quantum superposition in i-th register, we cannot efficiently compute f22
k
−1 in the next

register. In turn, we apply CNOT gates and copy f22
k−1

−1 in an (i + 1)-th register. Then, we apply

CNOT gates to the i-th register and obtain
(
f22

k−1
−1
)2k−1

= f22
k
−22

k−1

in the i-th register. Finally, we

apply Toffoli gates to the i-th and (i + 1)-th registers and obtain f22
k−1

−1 × f22
k
−22

k−1

= f22
k
−1 in the

(i + 2)-th register. Thus, when given f = f22
0
−1 in the first register, 2⌊log 162⌋ + 1 = 15 registers, i.e.,

15n qubits, are required so far. Next, we explain how to compute f22
7+25−1 and f22

7+25+21−1 = f2162−1.
When given f22

7
−1 in i-th register and f22

5
−1 in j-th register, we apply CNOT gates to the i-th register

and obtain
(
f22

7
−1
)225

= f22
7+25−22

5

in the i-th register. Then, we apply Toffoli gates to the i-th and

j-th registers and obtain f22
7+25−22

5

× f22
5
−1 = f22

7+25−1 in the 16-th register. Similarly, we can compute

2

f22
7+25+21−1 = f2162−1 to the 17-th register. Finally, we apply CNOT gates to the 17-th register and obtain

= f2163−2 in the 17-th register. Therefore, 17 registers, i.e., 17n qubits, are required in total. In general,
Putranto et al.’s quantum FLT-based inversion algorithm requires (2⌊log(n− 1)⌋+ t)n qubits.

Summarizing the above discussion, given f = f22
0
−1 and the previous FLT-based inversion algorithms

for n = 163 computes f22
1
−1, f22

2
−1, . . . , f22

7
−1, f22

7+25−1, and f22
7+25+21−1 = f2162−1. The first key

observation of our improvement is that the exponents of 2 during the calculation, i.e.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162},

is an addition chain for n−1 = 162. In general, an addition chain for N is a sequence p0 = 1, p1, . . . , pℓ = N ,
where ps = pi + pj holds for some 0 ≤ i, j < s. Here, ℓ is called a length of an addition chain. We show
that f2n−1−1 can be computed with an arbitrary addition chain for n − 1 by following the similar steps of
Putranto et al.’s algorithm. For example, there is another addition chain

{1, 2, 4, 8, 16, 32, 33, 65, 97, 162}

for 162. Keen readers may think that the observation is not interesting since the relation between
FLT-based inversion and addition chain has been already discussed in the context of classical computa-
tion [RHCCS05, GP02, CKA21, AJD12, HGWC15]. These papers mentioned that the computational cost
of FLT-based inversion relates to the length of addition chains in the sense that the number of field
multiplications ⌊log(n− 1)⌋ + t − 1 is the same as the length of addition chains. Similarly, the compu-
tational cost of quantum FLT-based inversion relates to the length of addition chains in the sense that
the number of Toffoli gates is determined by the length of addition chains. Here, the length of an ad-
dition chain {1, 2, 4, 8, 16, 32, 33, 65, 97, 162} is nine which is the same as that of previous addition chain
{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.

However, we show that the computational cost of quantum FLT-based inversion also depends on other
properties of addition chains. Hereafter, for an addition chain {ps}ℓs=0, we call ps a doubled term if it is
computed by ps = pi + pi for some 0 ≤ i < s and an added term otherwise. In the above example for
n = 163, 21, 22, . . . , 27 are doubled terms and 27+25, 27+25+21 are added terms for {20 = 1, 21, 22, . . . , 27,
27+25, 27+25+21 = 162} whereas {2, 4, 8, 16, 32} are doubled terms and {33, 65, 97, 162} are added terms for
{1, 2, 4, 8, 16, 32, 33, 65, 97, 162}. For an addition chain {ps}ℓs=0, let d and m denote the number of doubled
terms and added terms, where ℓ = d + m. Then, we show that the number of qubits (2⌊log(n− 1)⌋ +
t)n for Putranto et al.’s algorithm is essentially described by (2d + m + 1)n. In other words, even if
the lengths of addition chains are the same, the computational costs of the quantum FLT-based inversion
algorithm may not be the same depending on other properties of addition chains. Indeed, an addition chain
{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162} has seven doubled terms and two added terms whereas
{1, 2, 4, 8, 16, 32, 33, 65, 97, 162} has five doubled terms {2, 4, 8, 16, 32} and four added terms {33, 65, 97, 162}.
Therefore, quantum FLT-based inversion based on the latter addition chain requires fewer qubits than
that on the former. Based on the discussion and more, we find more appropriate addition chains for all
n = 163, 233, 283, 571 and obtain our improvements.

1.4 Organization
In Section 3, we review previous FLT-based inversion algorithms. In Section 4, we propose quantum FLT-
based inversion algorithms. In Section 5, we compare our proposed algorithms and previous quantum
algorithms. In Section 6, we apply windowing to our algorithms.

2 Preliminaries
In Section 2.1, we review binary elliptic curves and the binary elliptic curve discrete logarithm problem
(ECDLP). Then, we briefly explain Shor’s algorithm for binary ECDLP in Section 2.2. We also describe an
overview of quantum computing on the field F2n in Section 2.3.

3

2.1 Elliptic Curve Discrete Logarithm Problem
Let n be a positive integer. A binary elliptic curve of degree n is given by y2 + xy = x3 + ax2 + b, where
a ∈ F2n and b ∈ F∗

2n . In general, the set of rational points on an elliptic curve along with a special point O
called a point at infinity forms a group under point addition, where O is a neutral element. Let P = (x1, y1)
and Q = (x2, y2) denote points on a binary elliptic curve. When P ̸= Q, a point addition P +Q = (x3, y3)
is given by

x3 = λ2 + λ+ x1 + x2 + a, y3 = (x2 + x3)λ+ x3 + y2

with λ = (y1+y2)/(x1+x2). Let [k]P denote P + · · ·+P that is a sum of k P ’s under point addition. Then,
[2]P = (x3, y3) is given by

x3 = λ2 + λ+ a, y3 = x2
1 + (λ+ 1)x3

with λ = x1 + y1/x1. It is known that only basic arithmetic in F2n is sufficient for computing point addition
on a binary elliptic curve. Then, the task of the binary ECDLP is computing k from P and [k]P .

2.2 Shor’s Algorithm for Binary ECDLP
Shor’s algorithm for the binary ECDLP of degree n consists of two parts, i.e., the point addition part and
Quantum Fourier Transform part. The point addition part requires 2n+2 times point additions with O(n3)
gates, while the Quantum Fourier Transform part requires O(n2) gates. Therefore, the point addition part
is dominant in Shor’s algorithm. As we mentioned in Section 2.1, an inversion in F2n , i.e., computation of
λ, is required for performing point addition P + Q. Moreover, several works [RNSL17,HJN+20,PWLK22,
BBvHL20] indicate that the inversion computation requires the largest quantum resources in point addition.
Therefore, the efficiency of quantum inversion computations greatly affects the total quantum resources for
Shor’s algorithm.

2.3 Quantum Computation in F2n

In quantum computation, we use a “qubit” represented by |0⟩ , |1⟩ and their superposition. We represent an
element of F2n by n qubits. Here, we use the fact that for m(x) ∈ F2[x] which is an irreducible polynomial
of degree n, it holds that F2n ≃ F2[x]/(m(x)). Thus, we can express an element of F2n as a polynomial of
degree at most n− 1 with its coefficients 0 or 1.

In quantum circuits, we use some quantum gates that are similar to NOT, AND, and OR in classical
circuits. In this paper, we consider only CNOT gates, Toffoli (TOF) gates, and swap gates. Let a, b, and c
denote quantum states of one-qubit. Then, CNOT, TOF, and swap operations are given by

CNOT(a, b) = (a, a⊕ b), TOF(a, b, c) = (a, b, c⊕ (a · b)),
swap(a, b) = (b, a),

respectively. The swap gate consists of three CNOT gates, while the TOF gate is more expensive than a
CNOT and swap gate.

We summarize known quantum algorithms which we will use for performing basic arithmetic in F2n . Let
ADD and SQUARE denote Banegas et al.’s algorithms [BBvHL20] for addition and squaring, respectively, while
MODMULT denote Kim et al.’s algorithm [KKKH22] for multiplication. Let f, g, and h be quantum states of
elements in F2n . Then, the algorithms are described as follows:

ADD(f, g) = (f, f + g), SQUARE(f) = f2,

MODMULT(f, g, h) = (f, g, h+ fg).

Similarly, we also use a SQUARE−1 operation given by

SQUARE−1(f2) = f.

4

Here, ADD, SQUARE, and SQUARE−1 are based on only CNOT gates. Specifically, the number of CNOT gates
are n for ADD, and at most n2 − n for SQUARE or SQUARE−1. In contrast, MODMULT requires not only CNOT
gates but also TOF gates. Throughout the paper, ADD and MODMULT may take only specific inputs. Let 0
denote a quantum state of a zero element in F2n . Then, when we set g = 0 as the input of ADD, given f and
ADD(f,0) = (f, f) copy f to a new n-qubit register. Similarly, when we set h = 0 as the input of MODMULT,
given f, g and MODMULT(f, g,0) = (f, g, fg) writes fg in a new n-qubit register.

3 FLT-based Inversion
In this section, we review previous FLT-based inversion algorithms. In Section 3.1, we briefly explain Itoh
and Tsujii’s classical FLT-based inversion [IT88]. Then, in Sections 3.2 and 3.3, we review Putranto et
al.’s [PWLK22] and Banegas et al.’s [BBvHL20] quantum FLT-based inversion algorithm.

3.1 Classical FLT-based Inversion
Let f be an element of F∗

2n . For simplicity, we use a notation

⟨α⟩ := fα

hereafter. The task of inversion is computing ⟨−1⟩ from ⟨1⟩. Based on the extended Fermat’s little theorem,
the FLT-based inversion method performs inversion by computing ⟨2n−2⟩ = ⟨−1⟩. For this purpose, we use
the following three relations:

⟨22
k−1

− 1⟩ × ⟨22
k−1

− 1⟩2
2k−1

= ⟨22
k

− 1⟩, (1)

⟨2α − 1⟩2
β

× ⟨2β − 1⟩ = ⟨2α+β − 1⟩, (2)

⟨2n−1 − 1⟩2 = ⟨2n − 2⟩. (3)

Let t denote the Hamming weight of n−1 in binary. Then, we have n−1 =
∑t

s=1 2
ks with k1 = ⌊log2(n−1)⌋ >

k2 > · · · > kt ≥ 0. The FLT-based inversion consists of three steps as follows.

First Step: The step computes ⟨221 − 1⟩, ⟨222 − 1⟩, . . . , ⟨22k1 − 1⟩ from ⟨220 − 1⟩ = ⟨1⟩. For this purpose,
we apply (1) to ⟨22i−1 − 1⟩ and obtain ⟨22i − 1⟩ for i = 1, 2, . . . , k1 sequentially.

Second Step: The step computes ⟨2n−1−1⟩ from ⟨22k1 −1⟩, ⟨22k2 −1⟩, . . . , ⟨22kt −1⟩ which were computed
in the first step. For this purpose, we apply (2) to ⟨22ki+1 − 1⟩ and ⟨2

∑i
s=1 2ks − 1⟩, and obtain

⟨22ki+1 − 1⟩ × ⟨2
∑i

s=1 2ks − 1⟩22
ki+1

= ⟨2
∑i+1

s=1 2ks − 1⟩ for i = 1, 2, . . . , t− 1 sequentially, where the last
output is ⟨2

∑t
s=1 2ks − 1⟩ = ⟨2n−1 − 1⟩.

Third Step: The step applies (3) to ⟨2n−1 − 1⟩ and obtain ⟨2n − 2⟩ = ⟨−1⟩.

Since the procedure may be complicated at the first glance, we describe the above procedure in a case of
n = 163. In this case, it holds that n−1 = 162 = 27+25+21, where t = 3 and k1 = 7, k2 = 5, k3 = 1. In the
first step, we compute ⟨221−1⟩, ⟨222−1⟩, . . . , ⟨227−1⟩ from ⟨220−1⟩ = ⟨1⟩. For this purpose, we apply (1) to
⟨220−1⟩, ⟨221−1⟩, . . . , ⟨226−1⟩ and obtain ⟨221−1⟩, ⟨222−1⟩, . . . , ⟨227−1⟩, respectively. In the second step,
we compute ⟨227+25−1⟩ and ⟨227+25+21−1⟩ = ⟨2162−1⟩ from ⟨227−1⟩, ⟨225−1⟩, ⟨221−1⟩. For this purpose,
we first apply (2) to ⟨227 − 1⟩ and ⟨225 − 1⟩, and obtain ⟨227 − 1⟩22

5

× ⟨225 − 1⟩ = ⟨227+25 − 1⟩. Then, we
apply (2) to ⟨227+25 − 1⟩ and ⟨221 − 1⟩, and obtain ⟨227+25 − 1⟩22

1

×⟨221 − 1⟩ = ⟨227+25+21 − 1⟩ = ⟨2162− 1⟩.
Finally, in the third step, we apply (3) to ⟨2162 − 1⟩ and obtain ⟨2163 − 2⟩ = ⟨−1⟩.

3.2 Putranto et al.’s Quantum FLT-based Inversion Algorithm
We explain Putranto et al.’s quantum FLT-based inversion algorithm [PWLK22] that is a simple quantum

translation of Itoh and Tsujii’s classical FLT-based inversion [IT88]. Putranto et al.’s algorithm is given in
Algorithm 1. The algorithm saves the number of TOF gates by using SQUARE which uses only CNOT gates.
Here, we explain the main parts of Algorithm 1, i.e., the loop from line 1 to 5 and from line 6 to 9.

5

Algorithm 1 Putranto et al.’s quantum FLT-based inversion algorithm

Input: An irreducible polynomial m(x) ∈ F∗
2n of degree n，k1, . . . , kt as explained in Section 3.1，kp =

2k1 + t− 1, a polynomial f0 = f ∈ F∗
2n of degree up to n− 1，polynomials f1, · · · , fkp

initialized to an
all-|0⟩ state.

Output: fkp = f−1

1: for i = 1, . . . , k1 do
2: ADD(f2(i−1), f2(i−1)+1)
3: for j = 1, . . . , 2i−1 do
4: SQUARE(f2(i−1)+1)
5: MODMULT(f2(i−1), f2(i−1)+1, f2(i−1)+2)
6: for i = 1, . . . , t− 1 do
7: for j = 1, . . . , 2ki+1 do
8: SQUARE(f2k1+i−1)
9: MODMULT(f2ki+1

, f2k1+i−1, f2k1+i)
10: if t = 1 then
11: swap(fk1

, fkp
)

12: SQUARE(fkp)

Loop from line 1 to 5: The loop performs the first step of Itoh and Tsujii’s FLT-based inversion. Specif-
ically, for i = 1, 2, . . . , k1, the i-th loop takes f2(i−1) = ⟨22

i−1 − 1⟩ as input and outputs ⟨22i − 1⟩ by
applying (1). For this purpose, we first apply ADD to copy f2(i−1) = ⟨22

i−1−1⟩ in a new register f2(i−1)+1.

Then, we apply the SQUARE operation 2i−1 times to f2(i−1)+1 = ⟨22i−1 − 1⟩ and obtain ⟨22i−1 − 1⟩22
i−1

in the same register. Finally, we apply MODMULT to f2(i−1) = ⟨22
i−1−1⟩ and f2(i−1)+1 = ⟨22i−1−1⟩22

i−1

,
and obtain ⟨22i −1⟩ in a new register f2(i−1)+2. Therefore, we use the MODMULT operation k1 times and
new 2k1 registers, i.e., 2k1n qubits.

Loop from line 6 to 9: The loop performs the second step of Itoh and Tsujii’s FLT-based inversion.
Specifically, for i = 1, 2, . . . , t−1, the i-th loop takes f2ki+1 = ⟨22ki+1−1⟩ and f2k1+i−1 = ⟨2

∑i
s=1 2ks−1⟩

as input, and outputs ⟨2
∑i+1

s=1 2ks−1⟩ by applying (2). For this purpose, we first apply the SQUARE opera-

tion 2ki+1 times to f2k1+i−1 = ⟨2
∑i

s=1 2ks−1⟩ and obtain ⟨2
∑i

s=1 2ks−1⟩22
ki+1

in the same register. Then,

we apply MODMULT to f2ki+1 = ⟨22ki+1−1⟩ and f2k1+i−1 = ⟨2
∑i

s=1 2ks−1⟩22
ki+1

, and obtain ⟨2
∑i+1

s=1 2ks−1⟩
in a new register f2k1+i. Therefore, we use MODMULT operation t− 1 times and new t− 1 registers, i.e.,
(t− 1)n qubits. We note that the last output of the loop is fkp = ⟨2

∑t
s=1 2ks − 1⟩ = ⟨2n−1 − 1⟩.

Although we omit the detail, the line 12 performs the third step of Itoh and Tsujii’s FLT-based inversion.
To sum up, Algorithm 1 applies the MODMULT operation k1 + t− 1 times and uses new (2k1 + t− 1)n = kpn
qubits.

We note that we use Algorithm 1 two times for an inversion computation each. The second operation
uncomputes the ancillary qubits.

3.3 Banegas et al.’s Quantum FLT-based Inversion Algorithm
We explain Banegas et al.’s quantum FLT-based inversion algorithm [BBvHL20] that is a fewer-qubit

variant of Putranto et al.’s algorithm. Banegas et al.’s algorithm is given in Algorithm 2 by clearing garbages.
Algorithm 2 is similar to Algorithm 1 except the additional step in from line 6 to 8. To demonstrate the
effectiveness of the step, we again focus on Algorithm 1. From line 1 to 5, for i = 1, 2, . . . , k1, the i-th loop
takes f2(i−1) = ⟨22

i−1 − 1⟩ as input and outputs f2(i−1) = ⟨22
i − 1⟩. During the computation, we also use a

register f2(i−1)+1 that results in f2(i−1)+1 = ⟨22i−1 − 1⟩22
i−1

. A point to note is that the register f2(i−1)+1

is used only for the computation and remains as it is. Therefore, Algorithm 2 initializes the register and

6

Algorithm 2 Banegas et al.’s quantum FLT-based inversion algorithm

Input: An irreducible polynomial m(x) ∈ F∗
2n of degree n，k1, . . . , kt as explained in Section 3.1，kb =

max(k1 + t − 1, k1 + 1), a polynomial f0 = f ∈ F∗
2n of degree up to n − 1，polynomials f1, · · · , fkb

initialized to an all-|0⟩ state.
Output: fkb

= f−1

1: for i = 1, . . . , k1 do
2: ADD(fi−1, fkb

)
3: for j = 1, . . . , 2i−1 do
4: SQUARE(fkb

)
5: MODMULT(fi−1, fkb

, fi)
6: for j = 1, . . . , 2i−1 do
7: SQUARE−1(fkb

)
8: ADD(fi−1, fkb

)
9: for i = 1, . . . , t− 1 do

10: for j = 1, . . . , 2ki+1 do
11: SQUARE(fk1+i−1)
12: MODMULT(fki+1 , fk1+i−1, fk1+i)
13: if t = 1 then
14: swap(fk1

, fkb
)

15: SQUARE(fkb
)

successfully reduce the qubits by applying SQUARE−1. On the other hand, due to the additional procedure,
Algorithm 2 requires larger depth and more CNOT gates than Algorithm 1. We explain the loop from line
1 to line 8 in Algorithm 2 below.

Loop from line 1 to 8: The loop performs the same step of the loop from line 1 to 5 in Algorithm 1. In
particular, fki−1

, fkb
, and fi in Algorithm 2 play the same role as fk2(i−1)

, f2(i−1)+1, and f2(i−1)+2 in
Algorithm 1, respectively. Thus, the loop takes fi−1 = ⟨22i−1 − 1⟩ as input and results in fi−1 =

⟨22i−1 −1⟩, fkb
= ⟨22i−1 −1⟩22

i−1

, and fi = ⟨22
i −1⟩ by line 5. Then, we apply the SQUARE−1 operation

2i−1 times to fkb
= ⟨22i−1 − 1⟩22

i−1

and obtain ⟨22i−1 − 1⟩ in the same register. Finally, we apply
ADD to fi−1 = ⟨22i−1 − 1⟩ and fkb

= ⟨22i−1 − 1⟩, and initialize fkb
. Since fkb

in Algorithm 2 plays
the same role as f2(i−1)+1 in Algorithm 1 for all i = 1, 2, . . . , k1, Algorithm 2 reduces k1 − 1 registers,
i.e., (k1 − 1)n qubits. Therefore, we use the MODMULT operation k1 times and new k1 + 1 registers, i.e.,
(k1 + 1)n qubits.

Although we omit the detail, fkb
is also used to store the outputs of second and third steps. Thus,

Algorithm 2 reduces one more register, i.e., n qubits. To sum up, Algorithm 2 applies the MODMULT operation
k1 + t− 1 times and use new (k1 + t− 1)n = kbn qubits.

We repeatedly claim that we use Algorithm 2 two times in each inversion computation.

4 Our Method
In this section, we propose quantum FLT-based inversion algorithms. In Section 4.1, we review the notion
of addition chain which is a core tool of our improvement. In Sections 4.2 and 4.3, we propose our basic
algorithm and extended algorithm that are improvements of Putranto et al.’s algorithm [PWLK22] and
Banegas et al.’s algorithm [BBvHL20], respectively.

4.1 Addition Chain
Let N and ℓ be non-negative integers. An addition chain for N of length ℓ is given by p0 = 1, p1, p2, . . . , pℓ =
N with the following property:

7

• for all s = 1, 2, . . . , ℓ, there exist i and j which satisfy 0 ≤ i, j < s and ps = pi + pj .

If there are no i and j such that i ̸= j satisfying ps = pi + pj , ps should be computed by ps = 2pi for some
0 ≤ i < s. We call such ps a doubled term. Otherwise, we call ps including p0 an added term. For an
addition chain {ps}ℓs=0, we define two sets

D := {s ∈ {1, 2, . . . , ℓ} | ps is a doubled term} ,
M := {s ∈ {1, 2, . . . , ℓ} | ps is an added term} ,

such that D ∩M = ∅. We also introduce two sequences {as}ℓs=1 and {bs}ℓs=1 that satisfy ps = pas
+ pbs for

all 1 ≤ s ≤ ℓ. Intuitively, the sequences indicate how each term ps is computed. We note that the sequences
may not be unique for an addition chain {ps}ℓs=0.

Aw we explained in Section 1.3, there is relation between the FLT-based inversion and addition chains.
In the first and second steps of Algorithms 1 and 2, we start from ⟨220 − 1⟩ and compute ⟨221 − 1⟩, ⟨222 −
1⟩, . . . , ⟨227−1⟩, ⟨227+25−1⟩, and ⟨227+25+21−1⟩ = ⟨22162−1⟩ when n = 163. Here, we focus on the exponents
of 2, i.e,.,

{20 = 1, 21, 22, . . . , 27, 27 + 25, 27 + 25 + 21 = 162}.

We find that the sequence of numbers is an addition chain for 162. Moreover, 21, 22, . . . , 27 are doubled
terms and 27+25, 27+25+21 = 162 are added terms. In general, Algorithms 1 and 2 are based on the same
addition chain for n − 1 following Itoh and Tsujii’s FLT-based inversion. Moreover, the first ⌊log2(n − 1)⌋
elements excluding 20 = 1 are always doubled terms and the last t − 1 elements are always added terms.
Hereafter, we call the sequence Itoh and Tsujii’s addition chain.

4.2 Basic Algorithm
We find that previous quantum FLT-based inversion algorithms [PWLK22,BBvHL20] are based on Itoh and
Tsujii’s addition chains that are automatically determined by the value n− 1. Here, we show that Putranto
et al.’s algorithm [PWLK22] can use arbitrary addition chains and does not necessarily have to be specific
to Itoh and Tsujii’s addition chains.

At first, we introduce some properties that arbitrary addition chains inherently satisfy. These properties
enable us to prove the main theorem later.

Lemma 1. For an arbitrary addition chain {p′s}ℓs=0 for N of length ℓ, there exists an addition chain {ps}ℓs=0

for the same N and ℓ so that the latter addition chain satisfies following properties.

(i) Both {ps}ℓs=0 and {p′s}ℓs=0 consist of the same elements although the order may not be the same. In
other words, for all 0 < s < ℓ, there exists 0 < s′ < ℓ such that ps = p′s′ . Specifically, p0 = p′0 = 1 and
pℓ = p′ℓ = N hold.

(ii) A sequence consisting of only added terms of {ps}ℓs=0 are monotonically increasing. In other words,
for all i, j ∈M such that i < j, it holds that pi < pj.

(iii) An element for computing a doubled term appear just before the doubled term. In other words, for all
i ∈ D, it holds that pi = 2pi−1.

Proof. It is clear that for an arbitrary addition chain {p′s}ℓs=0 for N of length ℓ, there is a unique sequence
{ps}ℓs=0 that satisfy all properties (i)–(iii). What we have to show is that {ps}ℓs=0 is an addition chain for
N of length ℓ. Due to the property (i), p0 = 1 and pℓ = N hold. We complete the proof by showing that for
all s = 1, 2, . . . , ℓ, there exist i and j which satisfy 0 ≤ i ≤ j < s and ps = pi + pj . If s ∈ D, it holds that
ps = 2ps−1 = ps−1 + ps−1 due to the property (iii).

Hereafter, we consider the case of s ∈M such that ps = pi + pj . To prove the claim, we show that for all
1 ≤ s < v ≤ ℓ, it holds that ps < pv. If the statement holds, there exist i and j which satisfy 0 ≤ i ≤ j < s
and ps = pi + pj since pi < ps and pj < ps hold. If v ∈ M holds, then it holds that ps < pv due to the
property (ii). If v ∈ D, then there exists an index v′ ∈ M such that s ≤ v′ < v and pv = 2v−v′

pv′ . Due to
the property (ii), it holds that ps ≤ pv′ < 2v−v′

pv′ = pv. Thus, we complete the proof.

8

We are ready for providing the existence of quantum an FLT-based inversion algorithm that uses an
arbitrary addition chain.

Theorem 1. Let f be an element of F∗
2n and {ps}ℓs=0 be an addition chain for n − 1 of length ℓ satisfying

the properties (i)–(iii) of Lemma 1. Let d and m denote the numbers of doubled terms and added terms in
{ps}ℓs=0, respectively. There exists a quantum algorithm that takes f = ⟨1⟩ and {ps}ℓs=0 as input and outputs
⟨2n−1 − 1⟩ with new (2d+m+ 1)n = (ℓ+ d+ 1)n qubits and MODMULT operations ℓ times.

We note that an algorithm given in Theorem 1 is an extension of Putranto et al.’s algorithm [PWLK22]
for an arbitrary addition chain. In other words, when the algorithm takes Itoh and Tsujii’s addition chain
as input, then the efficiency is the same as Putranto et al.’s algorithm since it holds that d = ⌊log2(n− 1)⌋
and m = t− 1 for Itoh and Tsujii’s addition chain.

Proof. In this proof, we assume pas
≤ pbs , where {as}ℓs=1 and {bs}ℓs=1 are sequences that satisfy ps = pas

+pbs
for all 1 ≤ s ≤ ℓ as we introduced in Section 4.1. Hereafter, we are given ⟨2p0 − 1⟩ = f and compute
⟨2p1 − 1⟩, . . . , ⟨2pℓ − 1⟩ sequentially. We show the proof by mathematical induction. Specifically, we show
how to compute ⟨2pu − 1⟩ for 1 ≤ u ≤ ℓ by assuming that ⟨2p1 − 1⟩, . . . , ⟨2pu−1 − 1⟩ have been computed.

At first, we discuss the simplest case. In particular, we show how to compute ⟨2pu − 1⟩ by assuming that
⟨2pau − 1⟩ and ⟨2pbu − 1⟩ are stored as they are. We divide the situation into two cases, i.e., u ∈ D and
u ∈M , and explain separately.

Case of u ∈ D: We can compute ⟨2pu − 1⟩ in essentially the same way as in the loop from line 1 to 5 in
Algorithm 1. Let ⟨2pau − 1⟩ be stored in i-th register. We first apply ADD to copy ⟨2pau − 1⟩ in a new
j-th register. Then, we apply the SQUARE operation 2pau times to j-th register and obtain ⟨22pau−2pau ⟩
in the same register. Finally, we apply MODMULT to ⟨2pau − 1⟩ in the i-th register and ⟨22pau − 2pau ⟩
in the j-th register, and obtain ⟨222pau − 1⟩ in a new k-th register. Due to u ∈ D, it holds that
pu = pau + pau = 2pau , i.e., ⟨222pau − 1⟩ = ⟨2pu − 1⟩. Here, we use the MODMULT operation once and
new two registers (j-th and k-th register), i.e., 2n qubits.

Case of u ∈M : We can compute ⟨2pu − 1⟩ in essentially the same way as in the loop from line 6 to 9 in
Algorithm 1. Let ⟨2pau − 1⟩ and ⟨2pbu − 1⟩ be stored in i-th register and j-th register, respectively. We
first apply the SQUARE operation 2pbu times to ⟨2pau − 1⟩ in i-th register and obtain ⟨2pau+pbu − 2pbu ⟩
in the same register. Then, we apply MODMULT to ⟨2pau+pbu − 2pbu ⟩ in the i-th register and ⟨2pbu − 1⟩
in the j-th register, and obtain ⟨2pau+pbu − 1⟩ = ⟨2pu − 1⟩ in a new k-th register. Here, we use the
MODMULT operation once and new one register (k-th register), i.e., n qubits.

After the computation, ⟨2pau − 1⟩ is still stored as it is if u ∈ D; however, ⟨2pau − 1⟩ becomes ⟨2pau −
1⟩2

pbu = ⟨2pau+pbu − 2pbu ⟩ if u ∈M . In other words, an assumption that ⟨2pau − 1⟩ and ⟨2pbu − 1⟩ are stored
as they are does not always hold. We note that the assumption always hold if u ∈ D since au = u − 1 due
to the property (iii) of Lemma 1.

Next, we show how to compute ⟨2pu − 1⟩ for u ∈M in general. Let cu and du be non-negative integers.
Then, we show how to compute ⟨2pu − 1⟩ from ⟨2pau+pcu − 2pcu ⟩ and ⟨2pbu+pdu − 2pdu ⟩. We should consider
three cases, i.e., the case of (cu, du) = (0, 0), the case of cu > 0 ∧ du = 0, and the case of du > 0. When
(cu, du) = (0, 0), we can compute ⟨2pu − 1⟩ as explained above since ⟨2pau − 1⟩ and ⟨2pbu − 1⟩ are stored as
they are. Hereafter, we show how to compute ⟨2pu − 1⟩ if cu > 0 ∧ du = 0 by following the same way as the
case of (cu, du) = (0, 0). Moreover, we show that the case of du > 0 never happens.

Case of cu > 0 ∧ du = 0: Let ⟨2pau+pcu − 2pcu ⟩ and ⟨2pbu − 1⟩ be stored in i-th register and j-th register,
respectively. We first apply the SQUARE operation 2pbu−pcu times to ⟨2pau+pcu−2pcu ⟩ in the i-th register
and obtain ⟨2pau+pbu − 2pbu ⟩ in the same register. Then, we apply MODMULT to ⟨2pau+pbu − 2pbu ⟩ in the
i-th register and ⟨2pbu − 1⟩ in the j-th register, and obtain ⟨2pau+pbu − 1⟩ = ⟨2pu − 1⟩ in a new k-th
register. Here, we use the MODMULT operation once and new one register (k-th register), i.e., n qubits.
Here, we should check that pbu − pcu > 0 holds. As we have described so far, ⟨2pau − 1⟩ becomes
⟨2pau+pcu −2pcu ⟩ when we compute ⟨2pau+pcu −1⟩. If pau

+pcu is a doubled term and pau
= pcu holds,

⟨2pau − 1⟩ is still stored as they are; in other words, cu = 0 holds. Thus, pau
+ pcu is an added term.

In this case, since ⟨2pau+pcu − 1⟩ was already computed, it holds that pau + pcu < pbu + pcu due to the
property (ii) of Lemma 1.

9

Algorithm 3 Basic algorithm

Input: An irreducible polynomial m(x) ∈ F∗
2n of degree n，an addition chain {ps}ℓs=0 for n− 1 of length ℓ

(composed of d doubled terms and m added terms) and related {as}ℓs=1, {bs}ℓs=1, {Qs}ℓs=1, a polynomial
g0 = f ∈ F∗

2n of degree up to n− 1，polynomials g1, . . . , gd+m initialized to an all-|0⟩ state.
Output: gd+m = f2n−2

1: dcount← 0
2: for s = 1, . . . , d+m do
3: if s ∈ D then
4: ADD(gas , hdcount)
5: for i = 1, . . . , Qs do
6: SQUARE(hdcount)
7: MODMULT(gas

, hdcount, gs)
8: dcount← dcount+ 1
9: else {s ∈M}

10: for i = 1, . . . , Qs do
11: SQUARE(gas

)
12: MODMULT(gas

, gbs , gs)
13: SQUARE(gd+m)

Case of du > 0: As we have described so far, ⟨2pbu − 1⟩ becomes ⟨2pbu+pdu − 2pdu ⟩ when we compute
⟨2pbu+pdu − 1⟩. Let u′ be an index such that pu′ = pbu + pdu

. Then, it hold that au′ = bu and bu′ = du.
Since ⟨2pbu+pdu −1⟩ was already computed, it holds that pbu +pdu

< pau
+pbu ⇔ pdu

< pau
due to the

property (ii) of Lemma 1. Moreover, as we mentioned at the beginning of this proof, pas ≤ pbs holds
for all s. Thus, it hold that pau ≤ pbu = pau′ ≤ du = pbu′ . This is the contradiction. Thus, du > 0
never happens.

To sum up, when we compute ⟨2pu − 1⟩, we always apply MODMULT once and use 2n and n new qubits
if u ∈ D and u ∈ M , respectively. Therefore, we apply MODMULT operation d + m = ℓ times and use new
(2d+m+ 1)n qubits.

We describe our basic algorithm based on Theorem 1 in Algorithm 3. We note that Algorithm 3 takes not
only an addition chain {ps}ℓs=0 but also {as}ℓs=1, {bs}ℓs=1, and {Qs}ℓs=1 as input. Here, we explain the roles
of the additional inputs. We proved Theorem 1 by assuming pas < pbs ; however, the algorithm becomes less
efficient since we apply SQUARE operation 2pbs times to ⟨2pas − 1⟩ and obtain ⟨2pas+pbs − 2pbs ⟩ for computing
⟨2pas+pbs − 1⟩ from ⟨2pas+pbs − 2pbs ⟩ and ⟨2pbs − 1⟩. In other words, we can save the number of SQUARE if we
apply the operation 2pas times to ⟨2pbs − 1⟩ and obtain ⟨2pas+pbs − 2pas ⟩ for computing ⟨2pas+pbs − 1⟩ from
⟨2pas+pbs − 2pas ⟩ and ⟨2pas − 1⟩. Therefore, the restriction pas

< pbs results in more CNOT gates and larger
depth. However, the restriction is required for proving the existence of a quantum algorithm for arbitrary
addition chains. In contrast, we focus on specific binary curves recommended by NIST. Thus, Algorithm 3
takes {as}ℓs=1 and {bs}ℓs=1 as input, where it is interesting that pas ≥ pbs hold for most s. The last input
{Qs}ℓs=1 describes the numbers of SQUARE to be applied in each step.

4.3 Extended Algorithm
As we explained in Section 3.3, Banegas et al. [BBvHL20] reduced the required qubits from Putranto et al.’s
algorithm [PWLK22] by clearing garbages and sacrificing the number of CNOT gates and the depth. In the
same way, we can reduce required qubits of our Algorithm 3 as described in Algorithm 4. What is more, we
introduce a trade-off parameter L, where Algorithm 4 with the larger L requires fewer qubits, more CNOT,
and larger depth. We can further save one register, i.e, n qubits, to store the output ⟨2n − 2⟩ if the last
element n − 1 of an addition chain is an added term, where we can find such an addition chain for NIST
recommended curves for all n. The performance of Algorithm 4 is described as follows.

10

Algorithm 4 Extended algorithm

Input: An irreducible polynomial m(x) ∈ F∗
2n of degree n，an addition chain {ps}ℓs=0 for n − 1 of length

ℓ (composed of d doubled terms and m added terms) and related {as}ℓs=1, {bs}ℓs=1, {Qs}ℓs=1, {cℓt}dt=0, a
polynomial g0 = f ∈ F∗

2n of degree up to n − 1，polynomials g1, . . . , gd+m−1, h0, . . . , hd−L−1 initialized
to an all-|0⟩ state, an array pl that members are initialized to −1.

Output: hd = f2n−2

1: dcount← 0
2: for s = 1, . . . , d+m do
3: if s ∈ D then
4: if pl[dcount] ̸= −1 then
5: GARBAGECLEAR(cℓdcount, pl[dcount], dcount)
6: ADD(gas

, hdcount)
7: for i = 1, . . . , Qs do
8: SQUARE(hdcount)
9: MODMULT(gas , hdcount, gs)

10: pl[dcount]← as
11: dcount← dcount+ 1
12: else {s ∈M}
13: for i = 1, . . . , Qs do
14: SQUARE(gas)
15: MODMULT(gas , gbs , gs)
16: if pl[d] ̸= −1 then
17: GARBAGECLEAR(cℓd, pl[d], d)
18: for i = 1, . . . , Qd+m do
19: SQUARE(gad+m

)
20: MODMULT(gad+m

, gbd+m
, hd)

21: SQUARE(hd)

Theorem 2. Let f be an element of F∗
2n and {ps}ℓs=0 be an addition chain for n − 1 of length ℓ satisfying

the properties (i)–(iii) of Lemma 1 and ℓ ∈ M . Let d and m denote the numbers of doubled terms and
added terms in {ps}ℓs=0, respectively. There exists a quantum algorithm that takes f = ⟨1⟩, {ps}ℓs=0, and
L ∈ {0, 1, . . . , d − 1} as input and outputs ⟨2n−1 − 1⟩ with new (2d + m − L)n = (ℓ + d − L)n qubits and
MODMULT operations ℓ times.

Algorithm 4 takes pl and {cℓt}dt=0 as addition input. An array pl has d−L members, and stores indices
of the polynomials g which are used for ADD to clear garbages. The sequence {cℓt}ts=0 describe the number
of times to applying SQUARE or SQUARE−1 for clearing garbages. More precisely, we apply SQUARE cℓt times if
cℓt > 0 and SQUARE−1 −cℓt times if cℓt < 0. We set cℓ0 = 0 and x := x mod (d−L). Garbages are stored in
h0, . . . , hd−L−1 in turn and clearing is performed by initializing them to 0 from h0 to hd−L−1 in this order.
We describe the algorithm for clearing garbages in Algorithm 5. We note that the case of L = 0 is different
from basic algorithm since clearing to store ⟨2n−1−1⟩ is still performed. When L = d−1, we only prepare a
polynomial h0 for garbages, however, initializing is performed whenever we compute ⟨2ps − 1⟩, where s ∈ D.
In general, each time L increases by 1, we apply an additional clearing, that implicates the trade-off between
the number of qubits and the number of CNOT gates, and the depth.

Algorithm 3 and Algorithm 4 are also applied two times for an inversion computation each. We uncompute
the ancillary qubits by the second operation.

11

Algorithm 5 GARBAGECLEAR(c, k, ℓ)

Input: Integers c，k，ℓ.
1: if c > 0 then
2: for i = 1, . . . , c do
3: SQUARE(hℓ)
4: if c < 0 then
5: for i = 1, . . . ,−c do
6: SQUARE−1(hℓ)
7: ADD(gk, hℓ)

Table 1: d，m，ℓ of Itoh and Tsujii’s addition
chains

n 163 233 283 571
d 7 7 8 9
m 2 3 3 4
ℓ 9 10 11 13

Table 2: d，m，ℓ of our choice of addition
chains

n 163 233 283 571
d 5 4 3 4
m 4 6 8 8
ℓ 9 10 11 12

Table 3: Our choice of addition chains {ps}ℓs=0 with the sequences {as}ℓs=1, {bs}ℓs=1, and {Qs}ℓs=1

n sequences

163

ps : 1, 2, 4, 8, 16, 32, 33, 65, 97, 162
as : 0, 1, 2, 3, 4, 5, 5, 7, 8
bs : 0, 1, 2, 3, 4, 0, 6, 5, 7
Qs : 1, 2, 4, 8, 16, 1, 32, 32, 65

233

ps : 1, 2, 4, 8, 16, 24, 40, 56, 96, 136, 232
as : 0, 1, 2, 3, 4, 4, 4, 7, 8, 8
bs : 0, 1, 2, 3, 3, 5, 6, 6, 6, 9
Qs : 1, 2, 4, 8, 8, 16, 16, 40, 40, 96

283

ps : 1, 2, 4, 6, 12, 18, 30, 48, 78, 126, 204, 282
as : 0, 1, 2, 3, 4, 4, 6, 6, 8, 8, 8
bs : 0, 1, 1, 3, 3, 5, 5, 7, 7, 9, 10
Qs : 1, 2, 2, 6, 6, 12, 18, 30, 48, 78, 78

571

ps : 1, 2, 4, 8, 16, 18, 34, 50, 84, 134, 218, 352, 570
as : 0, 1, 2, 3, 4, 4, 4, 7, 7, 9, 9, 11
bs : 0, 1, 2, 3, 1, 5, 6, 6, 8, 8, 10, 10
Qs : 1, 2, 4, 8, 2, 16, 16, 34, 50, 84, 134, 218

5 Comparison
In this section, we compare our proposed quantum FLT-based inversion algorithms with previous
ones [PWLK22, BBvHL20]. In Section 5.1, we find addition chains for our algorithms. In Section 5.2,
we compare the quantum resources for computing inversion. In Section 5.3, we show the effectiveness of
the trade-off parameter L of our extended algorithm. In Section 5.4, we compare the quantum resources for
point addition and Shor’s algorithm.
Difference from Preliminary Version. As mentioned in Section1.2, we use quantum multiplication by
Hoof [Igg19] in [TT23], however, we use one by Kim et al. [KKKH22] in this version. Therefore, we update
the number of quantum resources in Tables and Figures by Kim et al.’s multiplication.

12

Table 4: Comparison of the number of TOF gates, qubits, and CNOT gates and the depth in an inversion
between ours and prior work

n
basic algorithm extended algorithm

TOF qubits CNOT depth TOF qubits CNOT depth
163 18, 848 2, 771 1, 557, 528 300, 920 18, 848 1, 956 1, 579, 944 310, 830
233 30, 261 3, 961 3, 345, 540 434, 995 30, 261 3, 029 3, 353, 750 437, 747
283 41, 032 4, 811 5, 489, 296 837, 096 41, 032 3, 962 5, 502, 090 840, 612
571 95, 325 10, 849 23, 458, 648 3, 433, 263 95, 325 8, 565 23, 514, 068 3, 456, 469

n
PWLK22-FLT BBHL21-FLT

TOF qubits CNOT depth TOF qubits CNOT depth
163 18, 848 3, 097 1, 558, 180 300, 924 18, 848 1, 956 1, 601, 716 342, 516
233 30, 261 4, 660 3, 346, 938 435, 001 30, 261 3, 029 3, 374, 430 459, 709
283 41, 032 6, 226 5, 492, 126 837, 106 41, 032 3, 962 5, 644, 678 985, 710
571 102, 951 14, 275 25, 189, 566 3, 556, 815 102, 951 9, 136 26, 043, 772 4, 401, 901

n
BBHL21-GCD

TOF qubits CNOT depth
163 438, 766 1, 156 414, 586 510, 628
233 823, 095 1, 646 834, 256 992, 766
283 1, 194, 498 1, 997 1, 222, 600 1, 449, 098
571 4, 434, 315 4, 014 4, 857, 244 5, 602, 181

5.1 Our Choice of Addition Chains
As we showed in Theorems 1 and 2, the quantum resource of FLT-based inversion depends on d,m, ℓ of
addition chain. Table 1 summarizes d,m, ℓ Itoh and Tsujii’s addition chain for all n recommended by NIST.
We find addition chains for all n in order of priority the number of TOF and qubits. In other words, we first
find addition chains with the minimum length ℓ, then find the one with minimum doubled terms d among
them. Table 2 summarizes d,m, ℓ our choice of addition chains and Table 3 summarizes the concrete addition
chains {ps}ℓs=0 with the sequences {as}ℓs=1, {bs}ℓs=1, and {Qs}ℓs=1 which are input of our algorithms. We
can find addition chains with shorter length ℓ for n = 571. Moreover, we can find addition chains with fewer
doubled terms d for all n. Our choice of addition chains work well with our algorithms. Indeed, we can save
CNOT gates since pas

≥ pbs holds for most s as we discussed at the end of Section 4.2. Similarly, we can
save one register for Algorithm 4 since n− 1 is an added term as we discussed in Section 4.3.

5.2 Comparison in a Quantum Inversion Computation
Table 4 compares quantum resources among the following algorithms:

• basic algorithm: our proposed Algorithm 3

• extended algorithm: our proposed Algorithm 4 for L = d− 1

• PWLK22-FLT: Putranto et al.’s FLT-based algorithm

• BBHL21-FLT: Banegas et al.’s FLT-based algorithm

• BBHL21-GCD: Banegas et al.’s GCD-based algorithm

in terms of the number of TOF, qubits, CNOT, and depth.
We compare the quantum resources for computing h + gf−1 from f, g, h with two inversions and one

modular multiplication. Here, the depth of ADD is 1. We calculate the number of CNOT gates and the
upper bound of the depth of SQUARE by using LUP decomposition which Banegas et al.’s [BBvHL20] used.
The number of TOF gates and CNOT gates and the upper bound of the depth of MODMULT are given by

13

Table 5: Quantum resources of extended algorithm in each L

(a) n = 163

qubits CNOT depth
basic 2, 771 1, 557, 528 300, 920

L

0 2, 608 1, 558, 514 300, 920
1 2, 445 1, 560, 486 301, 584
2 2, 282 1, 563, 452 302, 906
3 2, 119 1, 569, 058 305, 548
4 1, 956 1, 579, 944 310, 830

(b) n = 233

qubits CNOT depth
basic 3, 961 3, 345, 540 434, 995

L

0 3, 728 3, 346, 398 434, 995
1 3, 495 3, 348, 114 435, 391
2 3, 262 3, 350, 148 436, 177
3 3, 029 3, 353, 750 437, 747

(c) n = 283

qubits CNOT depth
basic 4, 811 5, 489, 296 837, 096

L
0 4, 528 5, 491, 032 837, 096
1 4, 245 5, 494, 504 838, 270
2 3, 962 5, 502, 090 840, 612

(d) n = 571

qubits CNOT depth
basic 10, 849 23, 458, 648 3, 433, 263

L

0 10, 278 23, 463, 104 3, 433, 263
1 9, 707 23, 472, 016 3, 436, 581
2 9, 136 23, 486, 414 3, 443, 211
3 8, 565 23, 514, 068 3, 456, 469

Hoof [Igg19]. We also calculate the depth considering parallel computation by ourselves, although we do not
describe it in detail. However, since paralleling is not complete, the depth is upper bound in each case.

As we described in Sections 4.2 and 4.3, our algorithms achieve the same performance when we use Itoh
and Tsujii’s addition chain. However, we find better addition chains with smaller ℓ and/or d for all n as we
claimed in Section 5.1. Thus, our basic and extended algorithms are strictly better than PWLK22-FLT and
BBHL21-FLT, respectively. Indeed, Algorithm 3 and Algorithm 4 successfully reduce all quantum resources
of PWLK22-FLT and BBHL21-FLT, respectively. Moreover, our extended algorithm achieves smaller depth
than PWLK22-FLT when n = 571. Compared with BBHL21-GCD, although BBHL21-GCD achieves fewer
qubits than our algorithms by two, our algorithms achieve much fewer TOF than BBHL21-GCD by ten.

Remark 1. In the preliminary version [TT23], addition chains given in Table 3 are different from the ones
which are used for quantum resource estimation. In this version, we correctly describe addition chains used
for estimation in Table 3.

Remark 2. After the publication of the preliminary version [TT23], Kim and Hong proposed a quantum
GCD-based inversion algorithm [KH23] which achieves slightly fewer qubits and fewer TOF gates than Bane-
gas et al.’s GCD-based inversion algorithm. However, we do not list the algorithm in Table 4 since Kim and
Hong did not estimate the number of CNOT gates and the depth and the analysis of their GCD-based algo-
rithm is out of scope of this paper. We note that Kim and Hong’s GCD-based algorithm does not violate the
advantage of FLT-based algorithms since the number of TOF gates of the former algorithm is close to that
of Banegas et al.’s GCD-based inversion algorithm and much larger than those of FLT-based ones.

5.3 Quantum Resources Trade-off in Extended Algorithm
We describe the quantum resources of Algorithm 4 (extended algorithm) for all possible trade-off parameters
L. As we discussed in Section 4.3, the extended algorithm for L = 0 is not the case of basic algorithm,
but the case that only n qubits for storing the computation results are reduced. Figures 1–8 illustrate the
trade-off with respect to L. Throughout the comparisons, we do not consider the number of TOF since L
does not affect it. In all Figures 1–8, the round points which are placed on the rightmost represent basic
algorithm, then L = 0, 1, 2, . . . from the right to the left. We can see that the number of qubits decreases and
the number of CNOT gates and the depth increase for the larger L. However, we can see the same depth in
the case of basic algorithm and L = 0 although the numbers of CNOT gates are not the same. The reason

14

is that we can completely parallelize clearing garbage for storing ⟨2n−1 − 1⟩. Although we may be able to
parallelize other clearing procedures and will get better upper bounds of the depth, we leave it as a future
work.

(a) qubit-CNOT (b) qubit-depth

Figure 1: Quantum resources trade-off in extended algorithm where n = 163.

(a) qubit-CNOT (b) qubit-depth

Figure 2: Quantum resources trade-off in extended algorithm where n = 233

15

(a) qubit-CNOT (b) qubit-depth

Figure 3: Quantum resources trade-off in extended algorithm where n = 283

(a) qubit-CNOT (b) qubit-depth

Figure 4: Quantum resources trade-off in extended algorithm for n = 571

(a) qubit-CNOT (b) qubit-depth

Figure 5: Quantum resources trade-off in FLT-based inversion algorithms where n = 163

16

(a) qubit-CNOT (b) qubit-depth

Figure 6: Quantum resources trade-off in FLT-based inversion algorithms where n = 233

(a) qubit-CNOT (b) qubit-depth

Figure 7: Quantum resources trade-off in FLT-based inversion algorithms where n = 283

(a) qubit-CNOT (b) qubit-depth

Figure 8: Quantum resources trade-off in FLT-based inversion algorithms for n = 571

17

Table 6: Comparison of the number of TOF gates, qubits, and CNOT gates and the depth in Shor’s
algorithm between ours and prior works

n
basic algorithm

TOF qubits CNOT depth
163 13, 175, 432 2, 772 1, 072, 118, 184 204, 448, 960
233 30, 000, 204 3, 962 3, 276, 928, 512 423, 198, 828
283 49, 121, 208 4, 812 6, 491, 648, 712 977, 034, 976
571 228, 787, 416 10, 850 55, 651, 292, 840 8, 000, 884, 320

n
extended algorithm

TOF qubits CNOT depth
163 13, 175, 432 1, 957 1, 086, 823, 080 210, 949, 920
233 30, 000, 204 3, 030 3, 284, 613, 072 425, 774, 700
283 49, 121, 208 3, 963 6, 506, 182, 696 981, 029, 152
571 228, 787, 416 8, 566 55, 778, 093, 800 8, 053, 979, 648

n
PWLK22-FLT

TOF qubits CNOT depth
163 13, 175, 432 3, 098 1, 072, 545, 896 204, 451, 584
233 30, 000, 204 4, 661 3, 278, 237, 040 423, 204, 444
283 49, 121, 208 6, 227 6, 494, 863, 592 977, 046, 336
571 246, 235, 704 14, 276 59, 611, 633, 224 8, 283, 571, 296

n
BBHL21-FLT

TOF qubits CNOT depth
163 13, 175, 432 1, 957 1, 101, 105, 512 231, 735, 936
233 30, 000, 204 3, 030 3, 303, 969, 552 446, 331, 132
283 49, 121, 208 3, 963 6, 668, 162, 664 1, 145, 860, 480
571 246, 235, 704 9, 137 61, 566, 056, 552 10, 217, 128, 064

n
BBHL21-GCD

TOF qubits CNOT depth
163 288, 641, 640 1, 157 322, 348, 232 342, 017, 408
233 772, 092, 828 1, 647 926, 366, 688 945, 272, 484
283 1, 359, 458, 584 1, 998 1, 644, 682, 056 1, 672, 269, 248
571 10, 156, 396, 536 4, 015 13, 091, 280, 488 12, 963, 368, 704

5.4 Comparison in Shor’s Algorithm
Table 4 compares quantum resources among Shor’s algorithm based on our proposed FLT-based inversion
algorithms and previous inversion algorithms as in Table 4 in terms of the number of TOF, qubits, CNOT,
and depth. To perform 2n+2 point additions, we use Banegas et al.’s point addition algorithm [BBvHL20].
A point addition computation contains two quantum inversion computations. We simply add the numbers
in Table 4 for counting the quantum resources. Banegas et al.’s point addition algorithm contains some
computations which we do not summarize. We refer to the paper [BBvHL20] for counting the number
of TOF gates and CNOT gates for those computations. We consider parallel quantum computing and
calculate the depth of them by ourselves. Since we use semiclassical Fourier transform [GN96] in a part of
Shor’s algorithm, we use only another control qubit to point additions, therefore the whole number of qubits
increases by 1 from the number of qubits used in a single inversion. Table 6 shows the number of quantum
resources in Shor’s algorithm. Our two algorithms still perform better like a comparison in an inversion
algorithm, since inversion computations occupy the largest part of a point addition computation in a view
of the number of qubits and quantum gates. However, Banegas et al.’s point addition algorithm initializes
λ, and this leads us to compute two inversions. If we prepare other n qubits for λ in each point addition,
we can save up an inversion and the number of TOF gates and CNOT gates and the depth will be about a
half of the values summarized in Table 6. Then, the number of qubits increases by (2n+ 1)n.

18

Table 7: Optimal window size w and the number of TOF gates for Shor’s algorithm

n
basic algorithm extended algorithm
w TOF w TOF

163 9 1, 781, 025 9 1, 781, 025
233 9 3, 679, 975 9 3, 679, 975
283 10 5, 765, 145 10 5, 765, 145
571 11 23, 390, 601 11 23, 390, 601

n
PWLK22-FLT BBHL21-FLT BBHL21-GCD
w TOF w TOF w TOF

163 9 1, 781, 025 9 1, 781, 025 13 26, 303, 013
233 9 3, 679, 975 9 3, 679, 975 14 64, 402, 483
283 10 5, 765, 145 10 5, 765, 145 15 108, 252, 597
571 11 24, 976, 809 11 24, 976, 809 16 704, 590, 641

6 Windowing
We briefly explain the quantum read-only memory (QROM) in Section 6.1. Then we describe point addition
using windowing by Häner et al. [HJN+20] and show the optimal window size and the number of TOF gates
in each case in Section 6.2.

6.1 Quantum Read Only Memory
Quantum read-only memory (QROM) allows classical memory to be accessed by giving an index, which can
be represented by superposition. Let A denote the number of data stored in QROM. We explain data as |di⟩
for i = 0, 1, . . . , A− 1. Then, the QROM operation is given by

QROM

(
A−1∑
i=0

αi |i⟩ |Si⟩

)
=

A−1∑
i=0

αi |i⟩ |Si + di⟩ , (4)

where |i⟩ is the index, αi ∈ C is the amplitude of |i⟩, and |Si⟩ is the arbitrary quantum state. For constructing
QROM, we require some quantum resources, including TOF gates. Babbush et al. [BGB+18] gave a T -depth-
less QROM construction, and they made use of 2(A− 1) TOF gates. We note that several ancillary qubits
are also required for QROM, however, we do not count them because we only focus on the number of TOF
gates in this section. Generally, QROM is used for skipping some quantum computations and saving the
quantum gates. Therefore, we should carefully analyze the balance between the required TOF gates for
QROM and the reduced TOF gates.

6.2 Point Addition Using Windowing
Quantum computation using QROM has been discussed. For example, Gidney [Gid19] explained several
quantum basic arithmetics with QROM. Those ways of using QROM for looking up some data are called
windowing. Häner et al. [HJN+20] indicated that point addition on elliptic curves using windowing is also
possible, and Banegas et al. [BBvHL20] and Putranto et al. [PWLK22] made use of that method. We
describe the outline below. Let w be an non-negative integer, and A = 2w. Then, QROM stores [i]U for
i = 0, 1, . . . , 2w − 1, where U is a point on a binary elliptic curve. Point addition algorithm which uses
LOOKUP to access the above QROM is explained by Banegas et al. [BBvHL20]. We can decrease the times of
point addition from 2(n + 1) to 2⌈n+1

w ⌉ + 12, therefore the number of TOF gates decreases with increasing
w. However, the number of TOF gates to construct a QROM is 2(2w − 1).

Now we find an optimal w, which minimizes the number of TOF gates, about each n for each algorithm.
Then, we calculate the total number of TOF gates and compare our algorithms to prior works. We show
the result in Table 7. Our two algorithms and prior FLT-based algorithms bring the same results for

2A point addition for canceling is contained. See Banegas et al.’s paper [BBvHL20] for detailed information.

19

n = 163, 233, 283. For n = 571, we can see the advantage of our algorithms over PWLK22-FLT and BBHL21-
FLT. However, the optimal w of BBHL21-GCD are larger than others. That is because BBHL21-GCD uses
much more TOF gates than FLT-based algorithms, then windowing performs better.

7 Conclusion
In this paper, we reconsidered quantum FLT-based inversion algorithms from the viewpoint of addition
chains. In purpose of analyzing the quantum resources for quantum computation, we described the number
of TOF gates, qubits, and CNOT gates and the depth change depending on the addition chain. Also, we
showed the existence of a quantum FLT-based inversion algorithm whose input contains an arbitrary addition
chain. Then, we constructed two algorithms, basic algorithm corresponding to Putranto et al.’s algorithm
and extended algorithm corresponding to Banegas et al.’s algorithm. Moreover, we reduce the number of
TOF gates and the number of qubits preferentially in this order and optimized addition chains. As a result,
basic algorithm and extended algorithm purely improve Putranto et al.’s algorithm and Banegas et al.’s
algorithm, respectively. That stems from the existence of better addition chains, whose length is shorter,
or d is smaller than Itoh and Tsujii’s addition chains. We can say that our results gave a more precise
estimation of quantum resources used to solve binary ECDLP with NIST recommending n.

We get some optimized addition chains that perform the same as addition chains in Table 3, therefore we
can choose an addition chain that depth is also reduced the most. We have already chosen addition chains
that achieve less depth, however, it is extremely hard to optimize the depth since that requests a complete
analysis of parallel quantum computation. We leave it to future work. Also, there may be a better way to
clear all qubits used in inversion algorithms.

References
[AJD12] R. Azarderakhsh, K. Järvinen, and V. Dimitrov. Fast inversion in gf(2m) with normal basis

using hybrid-double multipliers. IEEE Trans. computers, 63(4):1041–1047, 2012.

[ASK19] Mirko Amico, Zain H. Saleem, and Muir Kumph. Experimental study of shor’s factoring algo-
rithm using the ibm q experience. Phys. Rev. A, 100:012305, Jul 2019.

[BBvHL20] Gustavo Banegas, Daniel J. Bernstein, Iggy van Hoof, and Tanja Lange. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Trans.CHES, 2021(1):451–472, Dec. 2020.

[Bea03] S. Beauregard. Circuit for shor’s algorithm using 2n+3 qubits. Quantum Inf. Comput., 3:175–
185, 2003.

[BGB+18] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru
Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits
with linear t complexity. Physical Review X, 8(4), oct 2018.

[BGG+20] Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Heninger, Emmanuel Thomé, and
Paul Zimmermann. Comparing the difficulty of factorization and discrete logarithm: A 240-digit
experiment. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, volume
12171 of Lecture Notes in Computer Science, pages 62–91. Springer, 2020.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and modular inver-
sion. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):340–398, 2019.

[CKA21] Alvaro Cintas Canto, Mehran Mozaffari Kermani, and Reza Azarderakhsh. Crc-based error
detection constructions for flt and ita finite field inversions over GF(2m). IEEE Trans. VLSI
Systems, 29(5):1033–1037, 2021.

[CP13] F.Kerry Cameron and D.Gallagher Patrick. Fips pub 186-4 Digital Signature Standard (dss).
In NIST, pages 92–101, 2013.

20

[DLQ+20] Zhao-Chen Duan, Jin-Peng Li, Jian Qin, Ying Yu, Yong-Heng Huo, Sven Ḧofling, Chao-Yang
Lu, Nai-Le Liu, Kai Chen, and Jian-Wei Pan. Proof-of-principle demonstration of compiled
Shor ’s algorithm using a quantum dot single-photon source. Optics Express, 28:18917–18930,
2020.

[FMMC12] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface
codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, 2012.

[GE21] Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million
noisy qubits. Quantum, 5:433, 2021.

[Gid19] Craig Gidney. Windowed quantum arithmetic, 2019.

[GN96] Robert B. Griffiths and Chi-Sheng Niu. Semiclassical fourier transform for quantum computa-
tion. Physical Review Letters, 76(17):3228–3231, apr 1996.

[GP02] Jorge Guajardo and Christof Paar. Itoh-tsujii inversion in standard basis and its application in
cryptography and codes. Designs, Codes and Cryptography, 25(2):207–216, 2002.

[GS21] Élie Gouzien and Nicolas Sangouard. Factoring 2048-bit rsa integers in 177 days with 13 436
qubits and a multimode memory. Phys. Rev. Lett., 127:140503, 2021.

[HGWC15] Jingwei Hu, Wei Guo, Jizeng Wei, and Ray CC Cheung. Fast and generic inversion architectures
over GF(2m) using modified itoh–tsujii algorithms. IEEE Transactions on Circuits and Systems
II: Express Briefs, 62(4):367–371, 2015.

[HJN+20] Thomas Häner, Samuel Jaques, Michael Naehrig, Martin Roetteler, and Mathias Soeken. Im-
proved quantum circuits for elliptic curve discrete logarithms. In Jintai Ding and Jean-Pierre
Tillich, editors, Post-Quantum Cryptography, pages 425–444, Cham, 2020. Springer Interna-
tional Publishing.

[HLH22] Jinyoung Ha, Jonghyun Lee, and Jun Heo. Resource analysis of quantum computing with noisy
qubits for shor’s factoring algorithms. Quantum Inf. Process., 21(2):60, 2022.

[HRS17] Thomas Haener, Martin Roetteler, and Krysta M. Svore. Factoring using 2n + 2 qubits with
toffoli based modular multiplication. Quantum Information and Computation, 18(7-8):673–684,
2017.

[Igg19] van Hoof Iggy. Space-efficient quantum multiplication of polynomials for binary finite fields
with sub-quadratic toffoli gate count. CoRR, abs/1910.02849, 2019.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplicative inverses in GF(2m)
using normal bases. Information and computation, 78(3):171–177, 1988.

[KH23] Hyeonhak Kim and Seokhie Hong. New space-efficient quantum algorithm for binary elliptic
curves using the optimized division algorithm. Quantum Information Processing, 22(6), 2023.

[KKKH22] SUNYEOP Kim, INSUNG Kim, Seonggyeom Kim, and Seokhie Hong. Toffoli gate count opti-
mized space-efficient quantum circuit for binary field multiplication. Cryptology ePrint Archive,
Paper 2022/1095, 2022.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,
1987.

[Kun05] Noboru Kunihiro. Exact analyses of computational time for factoring in quantum computers.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 88-A(1):105–111, 2005.

[LBC+12] E. Lucero, R. Barends, Y. Chen, J. Kelly, M. Mariantoni, A. Megrant, P. O ’Malley, D. Sank,
A. Vainsencher, J. Wenner, T. White, Y. Yin, A. N. Cleland, and J. M. Martinis. Computing
prime factors with a Josephson phase qubit quantum processor. Nature Physics, 8:719–723s,
2012.

21

[LBYP07] Chao-Yang Lu, Daniel E. Browne, Tao Yang, and Jian-Wei Pan. Demonstration of a com-
piled version of Shor ’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett.,
99:250504, 2007.

[LWL+07] B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James, A. Cilchrist,
and A. G. White. Experimental demonstration of a compiled version of Shor’s algorithm with
quantum entanglement. Phys. Rev. Lett., 99:250505, 2007.

[Mil85] Victor S. Miller. Use of elliptic curves in cryptography. In Hugh C. Williams, editor, CRYPTO
’85, volume 218 of Lecture Notes in Computer Science, pages 417–426. Springer, 1985.

[MLLL+12] E. Martin-Lopez, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien. Experimental
realisation of Shor’s quantum factoring algorithm using qubit recycling. Nature Photon, 6:773–
776, 2012.

[MNM+16] T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L.
Chuang, and R. Blatt. Realization of a scalable Shor algorithm. Science, 351:1068–1070, 2016.

[PMO09] A. Politi, J. C. F. Matthews, and J. L. O ’Brien. Shor ’s quantum factoring algorithm on a
photonic chip. Science, 325:1221, 2009.

[PWLK22] Dedy Septono Catur Putranto, Rini Wisnu Wardhani, Harashta Tatimma Larasati, and Howon
Kim. Another concrete quantum cryptanalysis of binary elliptic curves. Cryptology ePrint
Archive, Paper 2022/501, 2022.

[PZ03] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for elliptic curves.
Quantum Information & Computation, 3(4), 2003.

[RHCCS05] F. Rodriguez-Henriquez, N. Cruz-Cortes, and N.A. Saqib. A fast implementation of multiplica-
tive inversion over GF(2m). In ITCC’05, volume 1, pages 574–579. IEEE, 2005.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M. Svore, and Kristin Lauter. Quantum resource
estimates for computing elliptic curve discrete logarithms. In ASIACRYPT 2017, pages 241–270,
2017.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In FOCS
1994, pages 124–134, 1994.

[SSV13] John A. Smolin, Graeme Smith, and Alexander Vargo. Oversimplifying quantum factoring.
Nature, 499:163–165, 2013.

[TK06] Yasuhiro Takahashi and Noboru Kunihiro. A quantum circuit for shor’s factoring algorithm
using 2n + 2 qubits. Quantum Inf. Comput., 6(2):184–192, 2006.

[TT23] Ren Taguchi and Atsushi Takayasu. Concrete quantum cryptanalysis of binary elliptic curves
via addition chain. In Topics in Cryptology – CT-RSA 2023, pages 57–83, 2023.

[VBE96] Vlatko Vedral, Adriano Barenco, and Artur Ekert. Quantum networks for elementary arithmetic
operations. Phys. Rev. A, 54:147–153, 1996.

[VSB+01] L. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang. Ex-
perimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance.
Nature, 414:883–887, 2001.

[Zal98] Christof Zalka. Fast versions of shor’s quantum factoring algorithm, 1998.

22

	Introduction
	Background
	Our Contribution
	Technical Overview
	Organization

	Preliminaries
	Elliptic Curve Discrete Logarithm Problem
	Shor's Algorithm for Binary ECDLP
	Quantum Computation in F2n

	FLT-based Inversion
	Classical FLT-based Inversion
	Putranto et al.'s Quantum FLT-based Inversion Algorithm
	Banegas et al.'s Quantum FLT-based Inversion Algorithm

	Our Method
	Addition Chain
	Basic Algorithm
	Extended Algorithm

	Comparison
	Our Choice of Addition Chains
	Comparison in a Quantum Inversion Computation
	Quantum Resources Trade-off in Extended Algorithm
	Comparison in Shor's Algorithm

	Windowing
	Quantum Read Only Memory
	Point Addition Using Windowing

	Conclusion

