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Abstract

In this paper, we study the compartment-based and hierarchical delegation of signing power of

the verifiable accountable subgroup multi-signature (vASM). ASM is a multi-signature in which the

participants are accountable for the resulting signature, and the number of participants is not fixed.

After Micali et al.’s and Boneh et al.’s ASM schemes, the verifiable-ASM (vASM) scheme with a

verifiable group setup and more efficient verification phase was proposed recently. The verifiable

group setup in vASM verifies the participants at the group setup phase. In this work, we show that

the vASM scheme can also be considered as a proxy signature in which an authorized user (original

signer, designator) delegates her signing rights to a single (or a group of) unauthorized user(s) (proxy

signer). Namely, we propose four new constructions with the properties and functionalities of an

ideal proxy signature and a compartment-based/hierarchical structure. In the first construction, we

apply the vASM scheme recursively; in the second one, we use Shamir’s secret sharing (SSS) scheme;

in the third construction, we use SSS again but in a nested fashion. In the last one, we use the

hierarchical threshold secret sharing (HTSS) scheme for delegation. Then, we show the affiliation

of our constructions to proxy signatures and compare our constructions with each other in terms of

efficiency and security. Finally we compare the vASM scheme with the existing pairing-based proxy

signature schemes.

Keywords: accountable subgroup multi-signatures, proxy signatures, threshold secret sharing, del-

egation

1 Introduction

Signatory authorities carry out their transactions by assigning a deputy to use this power of signing

authority for periods when they cannot be present at their organization. While they can appoint a single

deputy among their subordinates, there may also be cases in which they authorize different proxies

on different issues. In the literature, several notions define solutions for delegating signing capability to

unauthorized users by authorized ones in an organization. Proxy signature, which allows an unauthorized

user (proxy signer) to sign on behalf of an authorized user (original signer), was first defined by Mambo

et al. [28] in 1996. After its first proposal, proxy signatures have been studied in [1, 4, 19, 20, 21,
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27, 30, 35, 40, 42]. Moreover the proxy multi-signatures [41], the multi-proxy signatures [17], and the

multi-proxy multi-signatures [16] were proposed according to the number of proxies and original signers

in the constructions. Among these variants, proxy multi-signature is a notion related to the delegation

of signing authority, and it was first proposed by Yi et al. [41] in 2000. It is a multi-signature scheme in

which a designated proxy signer generates a signature on a common message on behalf of several original

signers. Hwang and Shi [17] proposed the concept of the multi-proxy signature scheme in which an

original signer can authorize a group of proxy signers as a proxy agent, and a valid multi-proxy signature

can be generated only with the participation of all proxy signers. Another proxy signature concept is

multi-proxy multi-signatures proposed by Hwang and Chen [16] in 2004. In a multi-proxy multi-signature

scheme, only the cooperation of a group of original signers designates a group of proxy signers. Then,

only the cooperation of all members of the proxy group can generate a valid signature on behalf of the

group of original signers. Several proxy signatures also exist, such as threshold, blind, and ring variants

[15, 23, 25, 43]. Most of the proposals in the literature either show that the previous ones were insecure

or propose a modified one because of the lack of a standard security model. The security properties of

an ideal proxy signature are defined in [28] and extended in [21]. These properties are as follows:

• Verifiability: A proxy signature should convince any verifier that the original signer agrees with it.

• Strong unforgeability: Except for the designated proxy signer, no one can create a valid proxy

signature.

• Strong identifiability: From a proxy signature, any verifier should identify the identity of the proxy

signer.

• Strong undeniability: A proxy signature should have non-repudiation property.

• Prevention of misuse: Ensuring that a proxy signing key can be used only proxy signing process,

no other purposes.

Boldyreva et al. [4] stated that the above security properties were defined informally and needed to

be formalized. For this reason, they first defined a formal security model for the proxy signature schemes

and defined the functionalities a proxy signature should have. In this work, we show that the verifiable

accountable subgroup multi-signature (vASM) scheme [2] can also be used as a proxy signature scheme.

The vASM scheme also supports one or more proxies and original signers. In addition, we also show that

the signing power of vASM authority can be delegated via appropriate threshold secret sharing schemes

[12, 18, 33, 36, 37].

Consider an organization with a complex topology consisting of many compartments; each has many

sub-compartments and multi-level hierarchical structures. In this case, the issue of who will deputize

for whom would emerge as a challenging problem. In this paper, we propose four constructions using

the vASM scheme and several threshold secret sharing schemes to present alternative solutions to the

problem of delegation of signing authority problem. We propose that one can have the functionalities

of a proxy signature scheme via accountable subgroup multi-signature schemes [2, 5, 29], in particular

via the vASM scheme [2], or a combination of the vASM scheme with some proper threshold secret

sharing schemes [12, 18, 33, 36, 37]. Assume a scenario that there exists an organization with lots

of compartments, and each has an authorized signer and many unauthorized users, just like managers

and their subordinates in a hierarchical organizational structure. The authorized signers have signing
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rights on behalf of their compartments (also on behalf of the entire organization). They want to assign

proxies among unauthorized users in their compartments. To solve this assignment problem, firstly, we

apply the vASM scheme recursively. The authorized signer (original signer) and the unauthorized users

(proxy signer candidates) jointly participate in a vASM group setup. At the end of this setup phase,

each unauthorized user has a compartment membership key which can be used to sign on behalf of the

authorized user and the entire organization. Then we combine the methods from threshold signatures

[3, 9, 13, 14] and vASM scheme to construct solutions for the delegation that supports one or more

original/proxy signers and provides accountability at the same time. As a second method, we consider

that the authorized users share their membership key via Shamir’s secret sharing (SSS) scheme [33] with

unauthorized users in their compartment. Then unauthorized users can sign with the sum of their shares

and secret keys. Thirdly, we assume a trusted user exists in each compartment and apply Shamir’s SSS

in a nested fashion. The authorized users first share their membership key via a 2-out-of-2 Shamir’s SSS,

give one of the shares to the trusted user in their compartment, and then recursively apply another SSS

to the second share. At the end of this nested SSS protocol, each unauthorized user has a compartment

membership key to sign a proxy signature on behalf of the authorized signer. Finally, we consider a

hierarchical structure and think the trusted user(s) are in the first level of the compartment. In this

case, the authorized signers share their membership keys via a hierarchical threshold secret sharing

(HTSS) scheme [18, 36, 37]. Each unauthorized user can sign on behalf of the authorized signers in an

accountable way. After describing the constructions, we see that they all have the main functionalities

of a proxy signature according to [4].

The outline of the paper is as follows. In Section 2 we give preliminary information, including defi-

nitions of proxy signature schemes, bilinear pairings, computational co-DHP/ψ-co-DHP, Shamir’s secret

sharing scheme (SSS) [33], Feldman’s verifiable secret sharing (VSS) protocol [12], hierarchical threshold

secret sharing scheme (HTSS) [18, 36, 37], security discussion of threshold secret sharing schemes and

definition of the verifiable-ASM (vASM) scheme [2]. Then we give our proposed constructions in Section

3. In the same section, we also provide remarks about the security of the constructions. In Section

4, we compare our constructions in terms of the number of operations required in the phases of our

proposed constructions. Then we compare the vASM scheme with the existing proxy signatures, proxy

multi-signatures, multi-proxy signatures and multi-proxy multi-signatures in terms of their efficiency.

2 Preliminary

In [4] the authors give a detailed definition of a proxy signature and define the first formal security model

for this notion. Below we give the formal definitions of the digital signature scheme and proxy signature

scheme according to [4].

Definition 2.1 (Digital signature scheme [4]). A digital signature scheme DS = (G,K,S,V) is specified
by four algorithms which are defined below:

• G(1λ) takes 1λ, where λ is the security parameter as input, and outputs the public system param-

eters par including security parameter, hash functions, cyclic groups, generators, etc.

• K(par) takes system parameters par as input, and outputs a secret-public key pair (sk, pk).
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• S(par,M, sk) takes system parameters par, message M , and secret key sk as inputs, and returns

a signature σ.

• V(par,M, pk, σ) takes system parameters par, message M ∈ {0, 1}∗, public key pk, a signature σ

as inputs, and outputs accept or reject.

Definition 2.2 (Proxy signature scheme [4]). A proxy signature scheme is a tuple

PS = (G,K,S,V, (D,P),PS,PV, ID), where DS = (G,K,S,V) are as defined in Definition 2.1, and the

other components are defined below:

• (D,P) is an interactive proxy-designation protocol composed of a pair of algorithms, i.e., D and

P. Let i, j be the designator and the proxy, respectively.

– D(pki, ski, j, pkj , ω) takes both sides’ public keys, the designator’s secret key, the proxy’s

identity, and the message space ω as inputs, and gives no local outputs.

– P(pkj , skj , pki) takes public keys of both sides and the secret key of the proxy and outputs

proxy signing key skp after the interaction with D.

• PS(skp,M) takes proxy signing key skp and the message M as inputs, and outputs a proxy

signature pσ.

• PV(pk,M, pσ) takes public key pk, a message M , and a proxy signature pσ as inputs, and outputs

accept or reject.

• ID(pσ) takes a proxy signature pσ and outputs an identity of a signer i or ⊥.

We will compare the properties of our constructions with the functionalities given in Definition 2.2

in Section 4.

Definition 2.3. Let G1,G2 be cyclic additive groups of prime order q. Let GT be another cyclic group

that is multiplicative and of the same order. A pairing is a map e : G1 × G2 −→ GT which satisfies the

bilinearity and non-degeneracy properties:

• Bilinearity: e(Aα, Bβ) = e(A,B)αβ for all α, β ∈ Z, A ∈ G1 and B ∈ G2.

• Non-degeneracy: e ̸= 1.

The definitions of underlying hard problems of the vASM scheme, i.e. computational co-DHP, and

computational ψ-co-DHP are given below.

Definition 2.4 (Computational co-Diffie-Hellman Problem [7]). For groups G1 = ⟨g1⟩ and G2 = ⟨g2⟩ of
prime order q, define Advco-CDHG1,G2

of an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− A(gα1 , g

β
1 , g

β
2 )

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A (τ, ϵ)-

breaks the co-CDH problem if it runs in time at most τ and has Advco-CDHG1,G2
≥ ϵ. co-CDH is (τ, ϵ)-hard

if no such adversary exists.
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Definition 2.5 (Computational ψ-co-Diffie-Hellman Problem [5]). For groups G1 = ⟨g1⟩ and G2 = ⟨g2⟩
of prime order q, let Oψ(.) be an oracle that on input gx2 ∈ G2 returns gx1 ∈ G1. Define Advψ-co-CDHG1,G2

of

an adversary A as

Pr

[
y = gαβ1 : (α, β)

$←− Z2
q, y ←− AOψ(.)(gα1 , g

β
1 , g

β
2 )

]
,

where the probability is taken over the random choices of A and the random selection of (α, β). A
(τ, ϵ)-breaks the ψ-co-CDH problem if it runs in time at most τ and has Advψ-co-CDHG1,G2

≥ ϵ. ψ-co-CDH is

(τ, ϵ)-hard if no such adversary exists.

2.1 Shamir’s Secret Sharing (SSS) Scheme

Shamir’s secret sharing (SSS) scheme [33] is a protocol that is used for sharing a secret among some

predetermined players. Assume that we have n players. Let Fq be a finite field with prime order q. The

dealer delivers the shares as follows:

• Chooses a polynomial over Fq of degree t− 1 < q,

f(x) = αt−1x
t−1 + . . .+ α1x+ α0

with αk ∈ Fq for k = 0, . . . , t− 1, where α0 is the secret to be shared.

• Sends f(i) to the i-th player for i = 1, 2, . . . , n.

If at least t or more players perform Lagrange interpolation with their shares, they can uniquely determine

the secret polynomial f(x) and f(0) will yield the secret.

2.2 Feldman’s Verifiable Secret Sharing (VSS) Scheme

Feldman’s verifiable secret sharing (VSS) scheme [12] is a protocol that is used for sharing a secret in a

verifiable fashion, where Shamir’s secret sharing scheme [33] is directly used to share and reconstruct the

secret. In addition to Shamir’s scheme, the shares can be checked for consistency in Feldman’s scheme.

To this end, the dealer computes commitments with the coefficients of the secret polynomial so that

users can verify that they receive consistent shares from the dealer.

Assume that we have n players. Let Fq be a finite field with prime order q and g be a primitive

element in Fq. The dealer shares a secret as follows:

• Chooses a polynomial over Fq of degree t− 1 < q,

f(x) = αt−1x
t−1 + . . .+ α1x+ α0

with αk ∈ Fq for k = 0, . . . , t− 1, where α0 is the secret to be shared.

• Computes a set of commitments COM = {Ck : Ck = gαk , k = 0, 1, . . . , t− 1}.

• Sends f(i) and COM to the i-th player for i = 1, 2, . . . , n.

After receiving a share and the set of commitments, the i-th player checks

gf(i)
?
=

t−1∏
k=0

Ci
k

k . (2.1)
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The received share is consistent only if (2.1) is satisfied. The reconstruction of the secret is identical to

Shamir’s secret sharing scheme. The users can uniquely determine the secret polynomial by applying

the Lagrange interpolation if and only if threshold t is satisfied.

Definition 2.6 (Lagrange Interpolation). Given t points (xi, yi) for distinct xi’s and i = 1, . . . , t, the

unique polynomial of degree t − 1 which satisfies all the points is the linear combination of Lagrange

basis polynomials, and given by the equation

P (x) =

t−1∑
i=1

yiℓi(x), (2.2)

where the Lagrange basis polynomial ℓi(x) is given by the equation

ℓi(x) =
∏

0≤k≤t−1
i ̸=k

x− xk
xi − xk

(2.3)

.

Now we define another notion called the Lagrange coefficient, which we will use in the signature

aggregation and verification phases of our constructions in Section 3.2 and 3.3.

Definition 2.7 (Lagrange Coefficient). Given a set of t points (xi, yi) for distinct xi’s and i = 1, . . . , t,

the Lagrange coefficient λi is the evaluation of the the Lagrange basis polynomial ℓi(x) at 0, i.e.

λi = ℓi(0) =
∏

0≤k≤t−1
i ̸=k

−xk
xi − xk

. (2.4)

2.3 Hierarchical Threshold Secret Sharing Scheme

Hierarchical threshold secret sharing schemes in[18, 36, 37] were proposed for sharing secrets in a par-

titioned structure of users. Assume that we have a set G of n players, which is composed of m disjoint

subsets, G =
m⋃
i=1

Gi where Gi ∩ Gj = ∅ for i ̸= j. Let 0 < k1 < . . . < km be a sequence of integers. The

access structure Γ of the hierarchical threshold secret sharing scheme in [18] is

Γ = {V ⊂ G : |V ∩ (

i⋃
j=1

Gj)| ≥ ki|∀i ∈ {1, 2, . . . ,m}}

Like in Shamir’s SSS, the dealer delivers the shares as follows:

• Chooses a random polynomial of degree km

f(x) =

km∑
i=0

αix
i

such that α0 = s.

• Sends a share (xu, f
(ki−1+1)(xu)) to the user u ∈ Gi, where f (ki−1+1) is the (ki−1 +1)-th derivative

of f , k0 = −1 and xu ∈ Fq is a part of the share corresponding to the user u.

The secret reconstruction is performed by Birkhoff interpolation defined below only if the level-specific

thresholds are satisfied.

Definition 2.8 (Birkhoff Interpolation). Let the triplet ⟨X,E,C⟩ be as follows:
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• X = {x1, . . . , xk} be a given set of points in R, where x1 < x2 < . . . < xk,

• E = (ei,j) for i = 0, . . . , k and j = 0, . . . , ℓ be a matrix with binary entries, I(E) = {(i, j) : ei,j = 1},
d = |I(E)|, and

• C = {ci,j : (i, j) ∈ I(E)} be a set of d real values (we assume hereafter that the right-most column

in E is nonzero).

Then, the Birkhoff interpolation problem that corresponds to the triplet ⟨X,E,C⟩ is the problem of

finding a polynomial P (x) ∈ Rd−1[x] that satisfies the d equalities

P (j)(xi) = ci,j , (i, j) ∈ I(E). (2.5)

The matrix E is called the interpolation matrix [36].

We summarize the Birkhoff interpolation method as described in [11]. Let ϕ = {g0, g1, . . . , gd−1}
be a system of linearly independent, d − 1 times continuously differentiable real-valued, functions and

I ′(E) = {αi : i = 1, . . . , d} be a vector that is obtained by lexicographically ordering of entries of I(E).

Furthermore, let αi(1) and αi(2) denote the first and second elements of the pair αi ∈ I ′(E). Finally, let

C ′ = {c′i : i = 1, . . . , d} be another vector obtained by lexicographically ordering entries of C (according

to the indexes of elements in C).

According to the above definition and clarifications, the Birkhoff interpolation problem is solved by

the below equation:

P (x) =

d−1∑
j=0

det(A(E,X, ϕj))

det(A(E,X, ϕ))
gj(x), (2.6)

where

A(E,X, ϕj) = (θij)d×d, (2.7)

θij = g
(αi(2))
j−1 (xαi(1)) for i, j = 1, . . . , d, and A(E,X, ϕ) can be computed by replacing (j + 1)-th column

of matrix (2.7) with C ′. An explicit example of the application of Birkhoff interpolation using (2.6) can

be found in [11].

Although the Birkhoff interpolation problems can be solved by (2.6), we cannot directly use this

method. In our constructions, we use Birkhoff interpolation for signature aggregation and verification of

the aggregated signature. In order to compute (2.6), any combiner and verifier need to know the sufficient

number of shares. However, our constructions require only the shareholders to know their shares, and

no one should learn the shares of others. To this end, we use the modified version of (2.6), which is also

given in [11]:

P (x) =

d−1∑
i=0

c′i+1

( d−1∑
j=0

(−1)(i+j) det(Ai(E,X, ϕj))
det(A(E,X, ϕ))

gj(x)

)
(2.8)

Now we can define the Birkhoff coefficient, which we will use in the signature aggregation and verifi-

cation phases of our last construction in Section 3.4.

Definition 2.9. Let the triplet ⟨X,E,C⟩ be in Definition 2.8 then the Birkhoff coefficient βi is the

evaluation of the polynomial

Pi(x) =

d−1∑
j=0

(−1)(i+j) det(Ai(E,X, ϕj))
det(A(E,X, ϕ))

gj(x),

at 0, i.e. βi = Pi(0).
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2.4 Security of the secret sharing schemes

Shamir’s secret sharing (SSS) scheme [33] is known to be information-theoretically secure, i.e. secure

against even computationally unbounded adversaries. The hierarchical threshold secret sharing scheme

(HTSS) [18, 36, 37] is a generalization of Shamir’s SSS and is also information-theoretically secure.

However, suppose an adversary can behave like a shareholder and interact actively with real shareholders.

In that case, he can obtain the secret as described in [38] by Tompa and Woll. The attack works as

follows. Consider an adversary behaving actively. He chooses a random false share and performs an

interaction for reconstruction with t − 1 honest shareholders. As a result, he will not obtain the secret

because there are t − 1 true shares where there must be at least t. However, he obtains a value, let

us say s′. Then he interacts with another group of t − 1 honest shareholders and gets another value ŝ.

He can compute the secret without having a genuine share using the values s′ and ŝ and corresponding

Lagrange coefficients. To avoid this attack, one should force the shareholders to behave passively. For

example, using Feldman’s verifiable secret sharing (VSS) scheme [12] would be a solution. Before the

reconstruction phase, one checks whether the shares to be interpolated are consistent with the shared

secret. This will avoid the active adversary attack defined in [38]. On the other hand, Feldman’s VSS

has its own security risks.

As we stated before, Feldman’s VSS scheme uses SSS, and so it has the same security arguments

about sharing and reconstruction phases. However, in the committing phase, it is not information-

theoretically secure anymore. The commitment set contains C0 = gs, where g is the generator for the

cyclic group, and s is the secret to be shared. This commitment may leak information about the secret

s. The security of the commitments depends on the Discrete Logarithm Problem (DLP), defined over

cyclic groups. In some cyclic groups, even with a large order, DLP may not be as hard as it is supposed

to be. Therefore the space that we are working in should be chosen carefully. In this paper, all the

schemes that we propose are pairing-based constructions. In the literature, there are many secure and

efficient pairing-friendly curves that we can choose.

2.5 vASM Scheme

Accountable subgroup multi-signature (ASM) schemes were studied by [2, 5, 29]. For instance, the

Schnorr-based ASM scheme was proposed in 2001 by Micali et al. [29], and the BLS-based ASM scheme

was given in 2018 by Boneh et al. [5]. Then, the verifiable-ASM (vASM) scheme was proposed recently in

[2] with a different group setup method and more efficient verification. It is also a BLS-based scheme, and

its security depends on the hardness of computational co-DHP and computational ψ-co-DHP problems

which are given in Definitions 2.4 and 2.5. In the vASM scheme, each user generates her secret and

public key pair independently. Then all users jointly perform a group setup in which they participate

in a verifiable secret sharing (VSS) protocol [12]. At the end of this procedure, each user obtains a

membership key and a membership public key, which satisfy a common public commitment generated in

the group setup phase. Then each user signs a common message M and sends her individual signature

to the designated combiner. This combiner could be either one of the signers or a specifically assigned

party.

Let G1,G2 be cyclic additive groups of prime order q. Let GT be another cyclic group that is multi-

plicative and of order q. Let e be an efficient bilinear pairing, defined over the groups G1,G2, and GT
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as in Definition 2.3. Let H be a hash function such that H : {0, 1}∗ −→ G1. Finally, assume that we have

a group G of n potential signers, and the subgroup S ⊆ G is the set of τ signers among those n potential

ones. Below we give the steps of the vASM scheme given in [2].

1. Key Generation: Each user i ∈ G picks a secret key ski
$←− Zq, and computes the public key

pki ←− gski2 , where g2 is a generator of G2.

2. Group Setup: Each user i ∈ G proceeds as follows:

• Chooses a polynomial fi(x) = α
(i)
n−1x

n−1 + . . . + α
(i)
1 x + α

(i)
0 ∈ Zq[x], where α(i)

0 = ski and

α
(i)
k ’s are all nonzero and distinct, for k = 1, . . . , n− 1.

• Computes the set of commitments COMi := {C(i)
k = g

α
(i)
k

2 |k = 0, . . . , n− 1}.

• Sends (fi(j),COMi) to j-th user in G, for j = 1, . . . , n.

• After receiving (fj(i),COMj),

– computes the membership key mki =
∑
j∈G

fj(i).

– computes COM := {Ck =
∏
j∈G

C
(j)
k |k = 0, . . . , n− 1}.

• Checks:

(a) C0
?
=
∏
i∈G

pki

(b) gmki2
?
=
n−1∏
k=0

Ci
k

k

• If either (a) or (b) fails, then she aborts. Else, she defines MPK = {mpki = gmki2 }i∈G , and

makes MPK and COM public.

3. Signature Generation: A signer i ∈ G computes his/her individual signature si = H0(m)mki on the

message m and sends si to the combiner.

4. Signature Aggregation: After receiving the individual signatures of the signers, the combiner first

forms the set of signers S ⊆ G. Then, she computes the aggregated subgroup multi-signature

σ =
∏
i∈S

si.

5. Verification: Anyone, who is given {par,MPK,COM,S,m, σ}, can verify the signature σ by check-

ing

e
(
H0(m),

∏
i∈S

mpki
) ?
= e(σ, g2). (2.9)
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Correctness of the vASM scheme follows from the following equation array.

e
(
H0(m),

∏
i∈S

mpki
)
= e(H0(m),

∏
i∈S

gmki2 )

= e(H0(m), g

∑
i∈S

mki

2 )

= e(H0(m)

∑
i∈S

mki
, g2)

= e(
∏
i∈S

H0(m)mki , g2)

= e(
∏
i∈S

si, g2)

= e(σ, g2)

Remark 2.10. Since all users share their secret keys, the first commitments in their individual commit-

ment set have to be equal to their public key. Therefore, the first check in the group setup phase shows

that users share their secret keys, not rogue ones [6].

Remark 2.11. The second check is the standard consistency check of Feldman’s VSS scheme as described

in Section 2.2, whose purpose is to check whether the shares received from other users are consistent

with the shared secrets.

Detailed information about the vASM scheme, including security proof, efficiency comparison, and

remarks, can be found in [2].

3 Compartment-based and Hierarchical Threshold Delegation

of vASM Authority

In general, the delegation of signing capability can be achieved by giving a power of attorney. For

example, consider an organization with a sophisticated and complicated nature whose structure expands

in vertical and horizontal directions. In such a case, signing authorities may need to assign multiple

proxies simultaneously. In this section, we propose four constructions. In the first one, we apply the

vASM scheme recursively. In the second construction, we use Shamir’s secret sharing scheme (SSS) [33]

directly among the users of each compartment. In the third one, we assume the existence of at least

one trusted user in each compartment, and we share the vASM authority by a secret sharing scheme

in a nested fashion. In the last one, we use the hierarchical threshold secret sharing scheme [18, 36]

to delegate the vASM signing authority of an authorized users to the unauthorized users in the same

compartment, which is partitioned hierarchically.

Consider a group of users G =
m⋃
i=1

Ui which is a union of distinct compartments Ui for i = 1, . . . ,m.

Without loss of generality, we assume that only one authorized user (or original signer) exists in each

compartment Ui, that is AUi. Assume that each authorized user AUi ∈ Ui participates in a vASM group

setup, obtains her membership key mki, and wants to delegate his vASM signing authority to some

unauthorized users (or proxy signers) in her compartment, i.e. uij ∈ Ui for j = 1, . . . , ki, where ki ∈ Z is

the number of proxy candidates (unauthorized users) in the i-th compartment. In the remaining part,

we use the notation above. Let the functions e and H be as in Section 2.5.
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3.1 Recursive vASM as a proxy signature

The output of a vASM group setup is a membership key and a membership public key for each participant,

which are used for signing and verification, respectively. Consider an authorized user AUi ∈ Ui has her
membership key mki that she calculated with the other authorized users AUj ∈ Uj , for j = 1, . . . ,m,

in a group setup as described in Section 2.5. Moreover, they also publish a set of membership public

keys MPK, and a global commitment set COM at the end of that group setup. Assume that AUi

wants to delegate the signing power of her membership key to a certain number of unauthorized users

in her compartment. Let Ii be the union of the indices of AUi and the set of unauthorized users in

i-th compartments that AUi wants to designate as proxies. To that end, the authorized user AUi and

the unauthorized users uij ∈ Ii jointly participate in another vASM group setup, which we call as

compartment setup. Each unauthorized participant uij ∈ Ii joins the compartment setup protocol with

his secret key skij for j = 1, . . . , ki. However, the authorized user AUi participates in the compartment

setup with her membership key mki. At the end of this compartment setup, each unauthorized user

uij ∈ Ii obtains a compartment membership key cmkij for j = 1, . . . , ki, along with compartment public

key set CPK := {cpkj : j = 1, . . . , ki}, a proxy commitment set PCS := {PCj : j = 1, . . . , ki} that

contains the commitments of the VSS protocol they participate in, see Figure 1. Here the compartment

membership keys can be seen as proxy signing keys, and the compartment public keys in CPK can be

seen as the proxy verification keys. Below we give the steps of this construction.

Figure 1: Membership key generation of recursive vASM

1. Key Generation:

• The authorized user AUi has her membership key mki, membership public key mpki, and

corresponding commitment set COM by performing a group setup with other authorized

11



users.

• Each unauthorized user uij ∈ Ii has their secret and public key pairs skij , pkij as described

in Section 2.5.

2. Compartment Setup: Both AUi and uij ∈ Ii proceed as follows, see also Figure 1:

• Choose a polynomial fj(x) = α
(j)
ki−1x

ki−1 + . . . + α
(j)
1 x + α

(j)
0 ∈ Zq[x], where α(j)

0 = skij (or

mki for AUi) and α
(j)
w ’s are all nonzero and distinct, for w = 1, . . . , ki − 1.

• Compute the set of commitments PCSj := {PC(j)
w = g

α(j)
w

2 |w = 0, . . . , ki − 1}.

• Send (fj(z),PCSj) to z-th user in Ii, for z = 1, . . . , ki.

• After receiving (fz(j),PCSz),

– computes the membership key cmkij =
∑
z∈Ii

fz(j), and

– computes PCSi := {PCw =
∏
z∈Ii

PC
(z)
w |w = 0, . . . , ki}.

• Checks:

(a) PC0
?
= mpki ·

∏
j∈Ii

pkij (mpki ∈ MPK is the membership public key of the authorized user

AUi)

(b) g
cmkij
2

?
=
ki−1∏
w=0

(PCw)
jw

• If either (a) or (b) fails, then they abort. Else, define CPKi = {cpkij = g
cmkij
2 }j∈Ui , and make

CPKi and PCSi public.

3. Signature Generation: A designated proxy signer (among the unauthorized users) uij ∈ Ii com-

putes his individual signature sij = H(M)cmkij on the message M and sends sij to the designated

combiner.

4. Signature Aggregation: After receiving the individual signatures of the proxy signers, the des-

ignated combiner first forms the subgroup of proxy signers Si ⊆ Ii. Then, she computes the

aggregated subgroup multi-signature σi =
∏
j∈Si

sij .

5. Verification: Anyone, who is given {par,CPKi,Si,M, σi}, can verify the signature σi by checking

e
(
H(M),

∏
j∈Si

cpkij
) ?
= e(σi, g2). (3.1)

Verification satisfies correctness as given below:

e(σi, g2) = e(
∏
j∈Si

sij , g2)

= e(H(M)

∑
j∈Si

cmkij

, g2)

= e(H(M), g

∑
j∈Si

cmkij

2 )

= e(H(M),
∏
j∈Si

cpkij).

Security. Note that this is indeed a vASM signature scheme. The only difference from the known

vASM is the secret that is shared in the compartment setup phase. The authorized user AUi shares
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his membership key mki from the previous group setup with the other authorized users of the other

compartments (see Figure 1) while the unauthorized users share their secret keys. Hence, the security

of the construction follows from the security of the vASM scheme.

For the compartment setup phase, we should clarify the purpose of consistency checks. There are two

consistency checks in the compartment setup. The first check is performed to ensure that the participants

know their shared secret. Since the first proxy commitment PC
(j)
0 = g

α
(j)
0

2 , and α
(j)
0 = skj(or mkj), the

aggregation of the first commitments PC0 = mpki ·
∏
j∈Ii

pkij is nothing but the aggregation of the

public keys pkij of the corresponding shared secret keys skij(and mpki for mki). The second check is a

standard consistency check for the VSS used in group setup, i.e., to guarantee that the received shares

are consistent with the shared secrets. On the other hand, threshold solutions require a trusted combiner

and honest majority assumption because any sufficient number (threshold) of malicious users can forge

a valid signature. However, using the vASM scheme, each signer is responsible only for his signature.

Even if all the unauthorized users (proxy) come together, they cannot forge the membership key of the

authorized user.

Remark 3.1. Any authorized user can assign a proxy via a vASM signature scheme. If she wants to

delegate her own or organizational signing power, she participates in the compartment setup with her

secret or membership key, respectively.

Remark 3.2. One can also consider sharing the membership key mki of the authorized user AUi via a

verifiable secret sharing scheme instead of an interactive compartment setup. However, in this case, one

should be aware of the need for honest majority assumption.

In the following, we propose three more constructions in which we consider the authorized user AUi to

share her membership key mki with different threshold SSS solutions with a trusted user and/or honest

majority assumption.

3.2 Shamir’s Secret Sharing Scheme Based Delegation

In this construction of the delegation, each authorized user AUi ∈ Ui delegates her signing authority by

sharing her membership key mki to a subset of unauthorized users uij ∈ Ui via (ti, ki)-Shamir’s SSS for

j = 1, . . . , ki, where ti is the threshold and ki is the number of users in compartment Ui as shown in

Figure 2.

Then, the unauthorized users uij ∈ G for i = 1, 2, . . . ,m and j = 1, 2, . . . , ki sign as follows.

1. Key Generation: Each user uij ∈ G picks uniformly at random a secret key skij
$←− Zq, and

computes the public key pkij ←− g
skij
2 , where g2 is a generator of G2.

2. Compartment Setup: Each AUi shares her membership key mki via a (ti, ki)-Shamir’s SSS [33]

to a subset of unauthorized users uij ∈ Ui as shown in Figure 2. At the end of this secret sharing

procedure, each user uij ∈ Ui obtains a compartment membership key cmkij = fi(uij).

3. Signature Generation: Each user uij ∈ Ui computes his individual signature on the message M

as sij = H(M)skij+cmkij , and sends it to the combiner.

4. Signature Aggregation: After receiving the individual signatures from the users, the combiner

13



Figure 2: Shamir’s Secret Sharing Scheme Based Delegation

(a) forms the subgroup of signers S := {S1, . . . ,Sm}, where Si is the subgroup of signers from

compartment Ui, for i = 1, . . . ,m.

(b) computes σ =
m∏
i=1

∏
j∈Si

s
λij
ij , where λij is the appropriate Lagrange coefficient as described in

Definition 2.7.

5. Verification: If |Si| ≥ ti for i = 1, . . . ,m, any verifier given (par,MPK,PK,S,M, σ) can verify

the signature by checking the below equation

e

(
H(M),

m∏
i=1

mpki
∏
j∈Si

pk
λij
ij

)
?
= e(σ, g2).

The verification equation satisfies correctness as given below:

e(σ, g2) = e(

m∏
i=1

∏
j∈Si

s
λij
ij , g2)

= e(H(M)

m∑
i=1

∑
j∈Si

λijskij+λijcmkij

, g2)

= e(H(M), g

m∑
i=1

∑
j∈Si

λijskij+λijcmkij

2 )

= e(H(M), g

m∑
i=1

∑
j∈Si

λijcmkij

2 g

m∑
i=1

∑
j∈Si

λijskij

2 )

= e(H(M),

m∏
i=1

mpki
∏
j∈Si

pk
λij
ij ).

Security. In this scenario, each user uij signs a common message M with the sum of his secret

and compartment membership keys, i.e. skij + cmkij . The resulting individual signature of user uij is
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sij = H(M)skij+cmkij which can be seen as a BLS signature [7] on messageM with the key skij+cmkij .

Since skij is sampled randomly and the cmkij is computed via an information-theoretically secure SSS

scheme, the signing key skij + cmkij will also be random-looking. Assume that the membership key

cmkij is somehow obtained by an adversary. Even in this case, if the secret key skij is secure, the

individual signature sij of the user uij cannot be forged. On the other hand, if a sufficient number of

unauthorized users are corrupted, then they can reconstruct the membership key mki of the authorized

user AUi. Therefore, we assume for this scenario that the number of corrupted users is less than threshold

t. Assigning a trusted user is a solution to this problem. In the following constructions, unauthorized

users cannot obtain the membership key of the authorized user AUi without compromising with the

trusted user(s).

3.3 Trusted User Based Delegation

In this construction, each authorized user AUi ∈ Ui delegates her signing authority by sharing her

membership key mki to a certain number of unauthorized users uij ∈ Ui, including at least one trusted

user. For simplicity, we assume that exactly one trusted user exists in each compartment. Note that one

can also consider a group of trusted users. The authorized user AUi ∈ Ui uses Shamir’s SSS in a nested

way as described in Figure 3. Without loss of generality, we assume that ui1 ∈ Ui is the trusted user in

the i-th compartment.

The authorized user AUi ∈ Ui chooses two polynomials and distributes the shares as follows:

1. Chooses fi1(x) = aix+mki for a random secret ai ∈ Zq.

2. Sends fi1(1) to the trusted user ui1.

3. Chooses fi2(x) = a
(i)
ti−2x

ti−2 + . . .+ a
(i)
1 x1 + fi1(2), where a

(i)
k ∈ Zq for k = 1, . . . , ti − 2.

4. Sends fi2(uij) to the user uij for j = 2, . . . , ki.

With the first polynomial evaluation, the authorized user AUi shares her membership key mki via

(2, 2)-Shamir’s SSS and sends one of the shares to the trusted user. For the second share, she applies one

more (ti−1, ki−1)-Shamir’s SSS, where ti is the threshold, and ki is the number of users in compartment

Ui.
The unauthorized users uij ∈ G for i = 1, 2, . . . ,m and j = 1, 2, . . . , ki sign as follows.

1. Key Generation: Each user uij ∈ G picks uniformly at random a secret key skij
$←− Zq, and

computes her public key pkij ←− g
skij
2 , where g2 is a generator of G2.

2. Compartment Setup: Each authorized user AUi shares her membership key mki via Shamir’s

SSS [33] (first (2, 2)-Shamir’s SSS, then (ti− 1, ki− 1)-Shamir’s SSS) as shown in Figure 3. At the

end of this nested secret sharing procedure, each user in Ui obtains a compartment membership

key cmkij .

3. Signature Generation: Each user uij ∈ Ui computes his individual signature on the message M

as sij = H(M)skij+cmkij , and sends it to the combiner.

4. Signature Aggregation: After receiving the individual signatures from the users, the combiner
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Figure 3: Trusted User Based Delegation

(a) forms the subgroup of signers S := {S1, . . . ,Sm}, where Si is the subgroup of signers from the

compartment Ui, for i = 1, . . . ,m.

(b) computes σ =
m∏
i=1

sγi1i1
( ∏
j∈Si
j ̸=1

s
λij
ij

)γi2
, where γi1, γi2 and λij are the appropriate Lagrange co-

efficients as described in Definition 2.7, for the first and the second secret sharing scheme,

respectively.

5. Verification: If the thresholds are satisfied and the trusted users participate in the signing, then

any verifier given (par,MPK,PK,S,M, σ) can verify the signature by checking the below equation

e

(
H(M),

m∏
i=1

mpki · pkγi1i1
( ∏
j∈Si
j ̸=1

pk
λij
ij

)γi2) ?
= e(σ, g2)

The verification equation satisfies correctness as given below:
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e(σ, g2) = e

( m∏
i=1

sγi1i1
( ∏
j∈Si
j ̸=1

s
λij
ij

)γi2
, g2

)

= e

(
H(M)

m∑
i=1

γi1ski1+γi1cmki1+
m∑
i=1

γi2(
∑
j∈Si
j ̸=1

λijskij+λijcmkij)

, g2

)

= e

(
H(M), g

m∑
i=1

γi1ski1+γi1cmki1+
m∑
i=1

γi2(
∑
j∈Si
j ̸=1

λijskij+λijcmkij)

2

)

= e

(
H(M), g

m∑
i=1

γi1ski1+
m∑
i=1

γi2(
∑
j∈Si
j ̸=1

λijskij)+
m∑
i=1

γi1cmki1+
m∑
i=1

γi2(
∑
j∈Si
j ̸=1

λijcmkij)

2

)

= e

(
H(M), g

m∑
i=1

γi1ski1+
m∑
i=1

γi2(
∑
j∈Si
j ̸=1

λijskij)+
m∑
i=1

mki

2

)
= e

(
H(M),

m∏
i=1

mpki · pkγi1i1
( ∏
j∈Si
j ̸=1

pk
λij
ij

)γi2)

Security. Security of this construction similarly follows from the security discussion of the previous

construction. In this scenario, like in the previous one, each user uij signs a messageM with the sum of his

secret and membership keys, i.e. skij+cmkij . The resulting individual signature is sij = H(M)skij+cmkij

which can also be seen as a BLS signature [7] on the messageM under the key skij+cmkij . Because skij

is sampled uniformly at random, and cmkij is computed via the SSS scheme, the signing key skij+cmkij

will be uniformly random. Moreover, computing membership keys are done in a nested way. Namely, the

membership key mki of the authorized user AUi is partitioned into two parts. The first one is given to

the trusted unauthorized user, and the other one is shared again among the other untrusted unauthorized

users. Assume for a moment that the untrusted unauthorized users are corrupted, and they gather their

membership keys cmkij . Even in this case, since the trusted user has the other half, corrupted users

cannot forge the membership key mki of the authorized user AUi.

We can assign a group of trusted users instead of a single one, and instead of using SSS recursively,

we can use a hierarchical threshold secret sharing scheme for the same purpose.

3.4 Hierarchical Threshold Secret Sharing Scheme Based Delegation

Consider an organization with m compartments G =
m⋃
i=1

Ui and each compartment Ui has a hierarchical

structure with r levels as shown in Figure 4. Assume that each authorized user AUi ∈ Ui delegates her
signing capability to the unauthorized users via the hierarchical threshold secret sharing (HTSS) scheme

proposed in [18] as defined in Section 2.3.

The unauthorized users uij ∈ G for i = 1, 2, . . . ,m and j = 1, 2, . . . , ki sign as follows.

1. Key Generation: Each user uij ∈ G picks uniformly at random a secret key skij
$←− Zq, and

computes her public key pkij ←− g
skij
2 , where g2 is a generator of G2.

2. Compartment Setup: Each AUi shares her membership key mki via a HTSS scheme [18] as

described in Figure 4. She sends compartment membership keys cmkij = f
(kl−1+1)
i (uij) to each

user uij ∈ Ui, for j = 1, . . . , ki, and where l = 1, . . . , r is the level of the user uij belongs to.

17



Figure 4: Hierarchical Threshold Secret Sharing Scheme Based Delegation

3. Signature Generation: Each user uij computes his individual signature on the message M as

sij = H(M)skij+cmkij , and sends it to the combiner.

4. Signature aggregation: After receiving the individual signatures from the users, the combiner

(a) forms the subgroup of signers S := {S1, . . . ,Sm}, where Si is the subgroup of signers from the

compartment Ui, for i = 1, . . . ,m.

(b) computes σ =
m∏
i=1

∏
j∈Si

s
βij
ij , where βij is the appropriate Birkhoff coefficients as described in

Definition 2.9.

5. Verification: If the level-specific thresholds are satisfied, then any verifier given (par,MPK,PK,S,M, σ)

can verify the signature by checking the below equation

e

(
H(M),

m∏
i=1

mpki
∏
j∈Si

pk
βij
ij

)
?
= e(σ, g2)
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The verification equation satisfies correctness as given below:

e(σ, g2) = e(

m∏
i=1

∏
j∈Si

s
βij
ij , g2)

= e(H(M)

m∑
i=1

∑
j∈Si

βijskij+βijcmkij

, g2)

= e(H(M), g

m∑
i=1

∑
j∈Si

βijskij+βijcmkij

2 )

= e(H(M), g

m∑
i=1

∑
j∈Si

βijcmkij

2 g

m∑
i=1

∑
j∈Si

βijskij

2 )

= e(H(M),

m∏
i=1

mpki
∏
j∈Si

pk
βij
ij ).

Security. Like in the previous ones, each user uij signs a common message M with a combination of

his secret and compartment membership keys, i.e. skij+cmkij . Then the signature sij = H(M)skij+cmkij

can be also seen as a BLS signature [7] on the messageM with the key skij+cmkij . Because skij is picked

uniformly at random and the cmkij is computed in an HTSS scheme, the signing key skij + cmkij will

also be random. Moreover, the authorized user AUi chooses a secret polynomial such that the constant

term is her membership key mki and shares it among unauthorized users (subordinates) according to

their levels. The unauthorized users in the first level get their shares like in Shamir’s SSS. Other users

in the following levels get their shares from the polynomials’ evaluations, which are some certain order

derivatives of the first level polynomial. Since an order d > 0 derivative kills the constant term, the users

in the lower levels cannot obtain the mki without cooperating with the first level (i.e. trusted) users.

Therefore, while distributing the shares, the authorized user AUi assumes that her trusted subordinates

are in the first level.

Remark 3.3. In the original vASM scheme, the messages are signed by using only the membership

keys. However, in our constructions, we assume that messages are signed using the sum of secret keys

and compartment membership keys. In this way, we discard the natural anonymity of threshold secret

sharing schemes; and ensure accountability.

Remark 3.4. Notice that the methods we give above, except Section 3.1, provide conditional security.

If enough shareholders are corrupted, they can easily forge the membership key of the authorized user

in their compartment. Since it is an accountable subgroup multi-signature, they can sign on behalf of

the entire organization. Therefore one should be aware of the need for a trusted user/combiner in each

construction except the one in Section 3.1.

4 Comparison

4.1 Comparison of the proposed constructions

We compare our proposed constructions with each other and give the number of operations in each phase

of the proposed schemes in Table 1. The number of main operations, such that group operations and bi-

linear pairings are the same for Shamir’s SSS-based, Trusted user-based, and HTSS-based constructions.

The main difference between these three constructions emerges in computing Lagrange and Birkhoff

coefficients. For Shamir’s SSS-based and trusted user-based delegation, Lagrange coefficients should be
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computed in the signature aggregation and in the verification phase by the designated combiner and the

verifier, respectively. For HTSS-based delegation, Birkhoff coefficients should also be computed for the

same phases. One needs to perform simple integer addition and multiplication to compute the Lagrange

coefficients, whereas additional matrix operations should be conducted to compute the Birkhoff coeffi-

cients. Finally, since they all use threshold schemes, they all are secure when an adversary can corrupt

up to t signers, where t is the threshold of the construction.

The number of operations required by the recursive vASM construction is less than the others.

Only the compartment setup phase requires more operation than the others constructions. Since it is

a one-time setup, it can be omitted. Moreover, the recursive vASM construction has a more robust

assumption regarding the number of users an adversary can corrupt. Since the group setup is performed

via an interactive (n, n)-VSS scheme, only one honest participant (possibly the authorized user or original

signer) suffices to ensure the system’s security.

Table 1: Comparison of the methods given in Section 3
.

Phases
Recursive vASM

(Section 3.1)

Shamir’s SSS based

(Section 3.2)

Trusted user based

(Section 3.3)

HTSS based

(Section 3.4)

Key Generation 1 ExpG2
1 ExpG2

1 ExpG2
1 ExpG2

Compartment Setup
m + 2ki ExpG2
m + ki(ki + 1) − 2 MulG2

(ti, ki)-SSS
(2, 2)-SSS

(ti − 1, ki − 1)-SSS
HTSS with m levels

Signature Generation
1 Hash

1 ExpG1

1 Hash

1 ExpG1

1 Hash

1 ExpG1

1 Hash

1 ExpG1

Signature Aggregation ki − 1 MulG1

l ExpG1
l − 1 MulG1
l Lagrange Coef.

l ExpG1
l − 1 MulG1
l + 1 Lagrange Coef.

l ExpG1
l − 1 MulG1
l Birkhoff Coef.

Verification

1 Hash

ki − 1 MulG2
2 pairings

1 Hash

m + l ExpG2
m + l − 1 MulG2
2 pairings

l Lagrange Coef.

1 Hash

m + l ExpG2
m + l − 1 MulG2
2 pairings

l + 1 Lagrange Coef.

1 Hash

m + l ExpG2
m + l − 1 MulG2
2 pairings

l Birkhoff Coef.

ExpGi : Exponentiation in group Gi, i ∈ {1, 2}
MulGi : Multiplication in group Gi, i ∈ {1, 2}
ki : Number of signers in Ui, i.e. i-th compartment

m : Number of compartments in the organization G
l : Number of all signers in the organization G, i.e. l = m · ki

4.2 Comparison with the existing proxy signature schemes

In literature, many proxy signature schemes and variants of this notion have similar but not the same

definitions. There are mainly three parties in all kinds of proxy signatures, i.e., the original signer, the

proxy signer, and the verifier. Here is the high level description of existing proxy signatures. An original

signer (or a set of original signers) generates and signs a warrant that contains detailed information

about the delegation, such as proxy IDs, validity time, etc. Then the original signer sends this warrant

signature to the proxy signer (or a set of proxy signers). The proxy signer signs on behalf of the original

signer using this warrant signature and the corresponding public keys of the two sides. However, the

verifier’s job is the same as in standard signature schemes, with the difference that the warrant signature

needs to be verified along with the signature on a message.

Boldyreva et al. formally defined the proxy signatures in [4] for the first time, and defined what

functionalities a proxy signature scheme should provide to the users. We compare the functionalities of

the formal definition of proxy signature that is given in Section 2.2 with our constructions.

1. Proxy-designation protocol (D,P) functionality: In the recursive vASM construction, instead

of the protocols D and P, we use a compartment setup in which all the original signers and the
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proxy signers jointly participate in an interactive Feldman’s VSS. In the end, proxy signers get

their compartment membership keys cmkij as an analog of proxy signing keys skp. In the other

constructions, we use secret sharing schemes in the compartment setup phases, and the outputs of

these phases are the compartment membership keys used for proxy signing.

2. Signing and verification functionalities: Analogy between signing and verification function-

alities are straightforward.

3. Identification functionality: All of our constructions have accountability properties because of

the underlying signature scheme, i.e. vASM. The verifiers should know the identities of the proxy

signers to verify the proxy signature properly.

Although the vASM scheme is an accountable subgroup multi-signature scheme, it provides the

functionalities of a proxy signature with a flexible number of original and proxy signers. It can serve

as several types of proxy signatures according to the number of original and proxy signers (n and l,

respectively) as follows:

• vASM signature scheme can serve as a proxy signature (n = l = 1). To that end the

original signer and the proxy signer generate their secret and public keys, participate in a group

setup and obtain their membership keys. Then the proxy signer-using his membership key- can sign

any message on behalf of the original signer in an accountable way. We compare vASM scheme with

existing proxy signatures in Table 2. We choose the best -up to our knowledge- pairing-based proxy

signature schemes for comparison. It can be seen from the table that the proxy key generation

(group setup) of vASM scheme requires less operations than the existing ones which require at

least one or more pairings and a number of elliptic curve additions, scalar multiplications and hash

computations. In signature generation and the verification phases, vASM requires less operations

than most of the schemes but not all. In terms of the signature size, vASM is better than all

other schemes. The size of a vASM signature is just one group element whereas all others have

more than one. Note that the actual efficiency depends on the system parameters (e.g., elliptic

curve groups, hash functions, etc.) that are used to instantiate the schemes. Moreover, we also

add the Schnorr-based scheme proposed by Boldyreva et al. [4] to the table. Although it is not

a pairing-based one we add it in our table to make the readers able to compare the number of

operations.
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Table 2: Comparison with the existing proxy signature schemes

.

Schemes
Proxy key generation

Signature generation Verification
Signature

sizeOriginal signer Proxy signer

Boldyreva

et al.(∗)
[4]

1 Exp (mod p)

1 HZq

2 Exp (mod p)

3 HZq

1 Mul (mod q)

1 Exp (mod p)

3 HZq

3 Exp (mod p)

1 HZq

3 Mul (mod q)

3|Zp|+ |Zq |+ |Mw|

Lee et al. [22]

1 P
1 ExpG

1 HG

1 P
1 HG

2 P
2 ExpG

1 HZq

1 ExpGT

1 P
1 ExpG

1 HZq

|G|+ |GT |

Shim [34]
1 ExpG

1 HG

2 P
1 ExpG

1 MulG

2 HG

1 P
1 ExpG

1 MulG

1 HG

2 P
2 ExpG

1 MulG

3 HG

1 MulGT

|GT |+ |Mw|

Zhang

et al.
[44]

3 ExpG

2 MulG

2 HG

4 P
1 ExpG

2 MulG

4 HG

2 MulGT

2 ExpG

1 MulG

2 HG

5 P
2 MulG

5 HG

3 MulGT

3|G|+ |Mw|

Seo et al. [32]

2 ExpG

1 MulG

1 HG

1 HZq

3 P
1 ExpG

2 MulG

1 HG

1 MulGT

2 ExpG

1 MulG

1 HG

1 HZq

4 P
2 ExpG

3 MulG

4 HG

2 HZq

2 MulGT

3|G|+ |Mw|

Verma &

Singh
[39]

1 ExpG

1 HG

2 P
1 HG

1 ExpG

1 HZq

2 P
1 ExpG

1 MulG

1 HG

1 HZq

|G|+ |Mw|

vASM [2]
4 ExpG2

4 MulG2

1 HG1

1 ExpG1

2 P
1 MulG2

1 HG1

|G1|

Note that since the group operations determine the efficiency numbers we ignore the integer operations.

(*) Notice that all the schemes except [4] are pairing-based schemes.

P: Bilinear pairing operation.

ExpA: Exponentiation in group A, where A ∈ {G,G1,G2,GT }.
MulA: Multiplication in group A, where A ∈ {G,G1,G2,GT }.
HA: Hash onto the set A, where A ∈ {G,G1,Zq}.
|Mw| : Size of the warrant in bits.

|A| : Size of the elements of the set A, where A ∈ {G,G1}

• vASM signature scheme can serve as a proxy multi-signature (n > 1 and l = 1).

n original signers and the proxy signer jointly participate in the group setup of vASM scheme.

This way, each original signer authorizes the proxy signer to sign on behalf of himself. We give

an efficiency comparison of vASM and the existing pairing-based proxy multi-signature schemes

in Table 3. It can be easily seen that vASM scheme is much more efficient than the existing

pairing-based proxy multi-signature schemes in terms of all comparison parameters. vASM does
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not require pairing operations for proxy key generation phases, whereas the others require many

pairings. vASM has also better computational efficiency than the others in terms of signature

generation and verification phases. The signature size of vASM is only one group element, while

others result in more.

Table 3: Comparison with the existing proxy multi-signature schemes

.

Schemes
Proxy key generation

Signature generation Verification
Signature

sizeOriginal signer Proxy signer

Li & Chen [24]

3 ExpG

n MulG

1 HZq

3n P
1 ExpG

n MulG

1 HZq

n ExpGT

n MulGT

1 P
2 ExpG

1 MulG

1 HZq

1 ExpGT

3 P
n MulG

2 HZq

2 ExpGT

2 MulGT

2|G|+ |Zq |+ |Mw|

Du & Wen [10]

3 ExpG

(n+ 1) MulG

2 HG

4n P
(2n− 1) MulG

2n HG

2n MulGT

3 ExpG

3 MulG

2 HG

6 P
(2n− 1) MulG

4 HG

4 MulGT

3|G|+ |Mw|

vASM [2]
2n ExpG2

(n2 + n− 2) MulG2

1 HG1

1 ExpG1

2 P
(n− 1) MulG2

1 HG1

|G1|

Note that since the group operations determine the efficiency numbers we ignore the integer operations.

P: Bilinear pairing operation.

ExpA: Exponentiation in group A, where A ∈ {G,G1,G2,GT }.
MulA: Multiplication in group A, where A ∈ {G,G1,G2,GT }.
HA: Hash onto the set A, where A ∈ {G,G1,Zq}.
n : Number of original signers.

|Mw| : Size of the warrant in bits.

|A| : Size of the elements of the set A, where A ∈ {G,G1}

• vASM signature scheme can serve as a multi-proxy signature (n = 1 and l > 1). If an

original signer participates in a group setup procedure with l proxy signers, he authorizes the proxy

signers by sharing his own secret key in the group setup (for details see Section 2.5). In Table 4, we

compare the vASM scheme with existing pairing-based multi-proxy signature schemes. In general,

vASM scheme requires less number of operations that are hard to compute (e.g. bilinear pairings).

But the other schemes may have better computational efficiency as the number of proxies increase.

For example, for a very large l, the cost of proxy key generation (group setup) of vASM requires

more time than a few pairings which are required by the other schemes in the same phase. But for

other comparison parameters, i.e. signature generation, aggregation, verification and signature size,

vASM has better efficiency numbers than the other existing pairing-based multi-proxy signature

schemes.

• vASM signature scheme can serve as a multi-proxy multi-signature (n > 1 and l > 1).

To this end, n original signers and l proxy signers jointly perform a group setup. As a result of

this group setup, each proxy signer has a membership key, which can be used as a proxy key. Any

number of proxy signers can sign on behalf of the original signers using these membership keys. We
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Table 4: Comparison with the existing multi-proxy signature schemes

.

Scheme
Proxy key generation Signature

generation
Aggregation Verification

Signature

sizeOriginal signer Proxy signer

Li & Chen [24]

3 ExpG

1 MulG

1 HZq

3 P
2 ExpG

3 MulG

1 HZq

1 ExpGT
1 MulGT

3 ExpG

l MulG

1 HZq

3l P
(l− 1) MulG

l HZq

l ExpGT
l MulGT

3 P
l ExpG

(3l− 1) MulG

(l + 1) HG

2 HZq

1 ExpGT

3|G| + |Mw|

Cao & Cao [8]

2 ExpG

1 MulG

1 HG

3 P
1 ExpG

1 MulG

2 HG

1 HZq

2 ExpG

l MulG

1 HG

5 P
(l− 1) MulG

2 HG

1 HZq

1 ExpGT
3 MulGT

5 P
3 ExpG

l MulG

2 HG

1 HZq

3 MulGT

3|G| + |Mw|

Liu et al. [26]
7 ExpG

2|Mw| MulG

2 P
|Mw| MulG

2 MulGT

3 P
5 ExpG

(2|Mw| + 7) MulG

3 MulGT

3l P
(4l− 2) MulG

3 MulGT

3 P
2|Mw| MulG

(l + 2) MulGT

3|G| + |Mw|

vASM [2]
2l ExpG2

(l2 + l− 2) MulG2

1 HG1

1 ExpG1

(l− 1) MulG1

2 P
(l− 1) MulG2

1 HG1

|G1|

Note that since the group operations determine the efficiency numbers we ignore the integer operations.

P: Bilinear pairing operation.

ExpA: Exponentiation in group A, where A ∈ {G,G1,G2,GT }.
MulA: Multiplication in group A, where A ∈ {G,G1,G2,GT }.
HA: Hash onto the set A, where A ∈ {G,G1,Zq}.
l : Number of proxy signers

|Mw| : Size of the warrant in bits.

|A| : Size of the elements of the set A, where A ∈ {G,G1}

compare the vASM scheme with the existing pairing-based multi-proxy multi-signature schemes in

Table 5. vASM scheme has slightly better efficiency numbers than the other schemes.

Remark 4.1. Note that vASM scheme provides only a general delegation of signing rights. Since there

is no warrant-like information the delegation is valid until it is canceled (by invalidating the commitment

set COM.).

Remark 4.2. One important property of vASM is that it has aggregation property. For N distinct

vASM signatures, one can aggregate all signatures into one which is a single G1 element. In this case,

verification of the aggregated vASM signature requires N + 1 pairing operations instead of 3N + 1.

Further information about aggregation of vASM signatures can be found in [2].

5 Conclusion

In this work, we propose four constructions of compartment-based and hierarchical delegation of vASM

signing authority for different organizational scenarios. We show that applying the vASM scheme recur-

sively and combining the functionalities of threshold secret sharing schemes with the vASM scheme can

solve an organizational problem of delegating the signing power of authorized users to single/multiple

proxies in an accountable fashion. We present the comparison of our constructions with the existing proxy

signatures in the literature in terms of their properties and functionalities. Our constructions provide us
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Table 5: Comparison with the existing multi-proxy multi-signature schemes
.

Scheme
Proxy key generation Signature

generation
Aggregation Verification

Signature

sizeOriginal

signer

Proxy

signer
Chairman

Li &

Chen
[24]

3 ExpG
(n + l) MulG

1 HZq

3 ExpG
(n + l) MulG

1 HZq

3(n + l) P
(n + l − 1) MulG

1 HZq
(n + l) ExpGT
(n + l) MulGT

3 ExpG
l MulG

1 HZq

3l P
(l − 1) MulG

l HZq
l ExpGT
l MulGT

6 P
(n + 2l − 2) MulG

2 HZq
2 ExpGT
2 MulGT

4|G| + |Mw|

Sahu &

Padhye
[31]

2 ExpG
(n − 1) MulG
1 HZq

2n P
(n + l) ExpG
(n + l − 1) MulG
(n + 1) HZq

NA

1 P
2 ExpG
1 MulG
1 HZq
1 ExpGT
(l − 1) MulGT

2 P
l ExpG
(nl + l − 1) MulG
l HZq
l ExpGT
l MulGT

2 P
2 ExpG
(nl − 1) MulG
2 HZq
1 ExpGT
1 MulGT

3|G| + |Mw|

vASM [2]
2(n + l) ExpG2

((n + l)2 + (n + l) − 2) MulG2

1 HG1
1 ExpG1

(l − 1) MulG1

2 P
(n + l − 1) MulG2
1 HG1

|G1|

Note that since the group operations determine the efficiency numbers we ignore the integer operations.

P: Bilinear pairing operation.

ExpA: Exponentiation in group A, where A ∈ {G, G1, G2, GT }.
MulA: Multiplication in group A, where A ∈ {G, G1, G2, GT }.
HA: Hash onto the set A, where A ∈ {G, G1, Zq}.
n : Number of original signers.

l : Number of proxy signers

|Mw| : Size of the warrant in bits. |A| : Size of the elements of the set A, where A ∈ {G,G1}

with all the functionalities of the proxy signatures that are defined in [4]. We also compared our construc-

tions with each other according to the number of computations required and the security assumptions.

Shamir’s SSS-based and trusted user-based delegations require nearly the same number of computations,

whereas HTSS-based delegation requires more operations than the others because of the determinant

operations performed in signature aggregation and verification phases. On the other hand, all three

constructions are insecure in case of an adversary that can corrupt t+1 signers, where t is the threshold

of the secret sharing schemes used in the constructions. However, our proposed recursive vASM con-

struction provides a much more efficient solution for delegating the vASM signing authority. Moreover,

it is more secure than the other constructions based on the threshold secret sharing schemes. Existence

of at least one honest participant during the one-time compartment setup is enough to ensure the secu-

rity of recursive vASM construction. Since the authorized signer (original signer/designator/delegator)

also participates in the compartment setup, even though all the unauthorized users are corrupted, they

cannot reconstruct the membership key of the authorized user. In contrast, our constructions using

threshold secret sharing schemes require at least one trusted unauthorized user. Finally we compare

the vASM scheme with the existing pairing-based proxy signature variants, i.e. proxy signatures, proxy

multi-signatures, multi-proxy signatures, multi-proxy multi-signatures, in terms of efficiency. vASM

scheme can be used as a flexible and practical proxy signature scheme because of its simple structure.

On the other hand it provides a general delegation, i.e. it doesn’t have a warrant that gives detailed

information about the delegation, such as validity time, delegation context, etc.
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