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Abstract. The universal thresholdizer, introduced at CRYPTO’18, is a cryptographic scheme
that transforms any cryptosystem into a threshold variant, thereby enhancing its applica-
bility in threshold cryptography. It enables black-box construction of one-round threshold
signature schemes based on the Learning with Errors problem, and similarly, facilitates
one-round threshold ciphertext-attack secure public-key encryption when integrated with
non-threshold schemes.

Current constructions of universal thresholdizer are fundamentally built upon linear secret
sharing schemes. One approach employs Shamir secret sharing, which lacks compactness and
results in ciphertext sizes of O(N logN), where N is the number of parties involved in the
threshold system, and another approach uses the {0, 1}-linear secret sharing scheme ({0, 1}-
LSSS), which is compact but induces high communication costs due to requiring O(N5.3)
secret shares.

In this work, we introduce a communication-efficient universal thresholdizer by revising the
linear secret sharing scheme. We propose a specialized linear secret sharing scheme, called
TreeSSS, which reduces the number of required secret shares to O(N3+o(1)) while maintaining
the compactness of the universal thresholdizer.

TreeSSS can also serve as a subroutine for constructing lattice-based t-out-of-N threshold
cryptographic primitives such as threshold fully homomorphic encryptions and threshold
signatures. In this context, TreeSSS offers the advantage of lower communication overhead
due to the reduced number of secret shares involved.

Keywords: Threshold Cryptography, Threshold Fully Homomorphic Encryption, Universal
Thresholdizer, Shamir Secret Sharing

1 Introduction

The t-out-of-N threshold cryptography [26, 27, 29] is a public-key cryptosystem that enables the
distribution of secret keys among N parties. To obtain plaintext from a ciphertext encrypted
with this system, t or more parties are required to collaborate. However, even if t − 1 parties are
compromised, they cannot gain any information about the plaintext.

The universal thresholdizer (UT) [14] is a tool for constructing threshold cryptosystems. It
acts as a compiler, taking an existing cryptosystem and converting it into a threshold variant. UT
provides simple constructions of threshold cryptographic primitives such as threshold signatures,
CCA threshold PKE, and function secret sharing.

A black-box construction of UT was proposed that leverages compact threshold fully homomor-
phic encryption (TFHE) from learning with errors (LWE), non-interactive zero-knowledge proof
with preprocessing (PZK) [41,49], and a non-interactive commitment scheme [11]. This construction
resolves a long-standing open question in lattice-based cryptography by constructing a one-round
threshold signature using lattices.

There are two constructions of TFHE: Shamir secret sharing-based TFHE and {0, 1}-linear
secret sharing scheme (LSSS) based TFHE. The Shamir-based TFHE uses rational numbers, known
as Lagrange coefficients, to distribute homomorphic encryption. However, this leads to a large
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scaling factor, resulting in a size of q that is not compact. Note that the size of scaling factor is
O(N !2), so the bit-size of q is O(N logN).4

The TFHE based on {0, 1}-LSSS solves the limitation by using a different approach to secret
sharing. It adopts the monotone Boolean formula secret sharing scheme, as established by Valiant
in [35, 53], which employs binary coefficients to recover the secret from the distributed secret
shares instead of the Lagrange coefficients used in Shamir’s scheme. This allows compactness, with
log q = O(logN). However, this also leads to a high number of required secret shares, which can
result in substantial communication overhead with a cost of O(N5.3 logN).

1.1 This work

We propose a communication-efficient UT by constructing an efficient linear secret sharing scheme
for t-out-of-N threshold access structure, called TreeSSS. The linear secret sharing scheme reduces
the number of shared keys compared to {0, 1}-LSSS in [14], leading to less secret shares being shared
in the setup algorithm of TFHE. Thus, this reduction in shared keys also reduces communication
costs during the partial decryption algorithm of TFHE. Additionally, the compactness property of
TFHE allows the primitive to be used in constructing a compact UT. The reduced communication
overhead makes it a promising candidate for various applications. These include but are not limited
to threshold signatures [2], threshold multi-key FHE schemes [5], and decentralized Attribute-Based
Encryption (ABE) [54].

TreeSSS is devised through the iterative application of s-out-of-2s − 1 Shamir secret sharing
scheme, where s ≪ N . This result exactly matches the optimal amplification used to construct
large input majority function from small input majority functions [37]. The results are given in
Table 1.

Lastly, we address a previously overlooked probability issue that was not fully considered in the
construction of the share matrix M using {0, 1}-LSSS. This issue originates from Valiant’s mono-
tone Boolean formula in [53], which serves as the foundation structure for {0, 1}-LSSS. According
to Valiant’s formula, as detailed in Lemma 3.4, there is a guarantee that a generated circuit will
corresponds to a majority circuit with at least 1/2 probability. This implies that a matrix M,
generated through {0, 1}-LSSS, has at least 1/2 probability of being a properly constructed share
matrix as intended.

To verify the correctness of M, we need to check every case where the secret key is recover-
able by t or more parties, and not recoverable by less than t parties. This verification requires
O(N t) = O(

(
N
t

)
) offline cost, leading to exponential time for large t. To address this, we adjust

our construction to ensure the desired share matrix M is achieved with probability 1− 2−κ, where
κ is a predetermined integer. Then, the base for the number of secret shares increases from N to
N + κ. Further details and modifications are discussed in Section 4.5.

Secret Sharing Scheme Structure O(log q) # of keys

Previous
Shamir SS

t-out-of-N
O(N logN) N

{0, 1}-LSSS5 O(logN) O(N5.3)

TreeSSS
SS(3, 2)

t-out-of-N
O(logN) O(N4.3)

SS(2s− 1, s) O(s log s · logN) O(N
3+ 2.3

log s )

Table 1: The comparison results between the previous TFHE and ours. The column ‘structure’
indicates the access structure of secret sharing schemes. SS(N, t) indicates Shamir secret sharing
scheme for t-out-of-N threshold. The final row, which corresponds to SS(2s− 1, s), represents the
asymptotic behavior as N tends to infinity, with s being constant and N being sufficiently large.

4 To put it simply, the property of compactness is maintained when the magnitude of q is bounded by a
polynomial function of N .

5 [14, 40] propose the definition of {0, 1}-LSSS for arbitrary access structure, but they only instantiated
{0, 1}-LSSS for t-out-of-N .
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Remark 1 (Another Compiler). [14, Section 8.4] additionally provides another compiler for con-
structing a compact UT based on non-compact UT nUT and a compact FHE FHE. Here, non-
compact UT is built from a non-compact TFHE nTFHE built from Shamir secret sharing. More
precisely, they built a compact TFHE from nUT and FHE, which implies the compact UT. However,
we believe that this construction is quite infeasible in current nTFHE and FHE parameters.

To this end, we briefly introduce how to compile TFHE from nUT and FHE. First of all,
TFHE.Setup is instantiated by two parts: 1) sample (fhepk, fhesk) ← FHE.Setup, and 2) sam-
ple (utpp, {ski}Ni=1) ← nUT.Setup(AN,t, fhesk), where AN,t is t-out-of-N access structure. More
precisely, utpp ⊂ TFHEpp contains a set of ciphertexts {ncti}ki=1, where k is the bit-length of
fhesk ∈ Zn

q . By definition, fhesk can be regarded as n log q-bit string. In fact, for every i-th bit of
fheski, ncti ← nTFHE.Enc(fheski) is a public parameter TFHE.pp of TFHE. In summary, TFHE.pp
at least consists of n log q nTFHE ciphertexts.

Fortunately, TFHE.Enc(·) and TFHE.Eval(·) are the identical to FHE.Enc(·) and FHE.Eval(·),
respectively, even though TFHE.Setup takes a long time. However, by construction in [14, Sec-
tion 8.4], TFHE.ParDec(·) is infeasible. More precisely, TFHE.ParDec(ski, ct) is to sample pi ←
nUT.Eval(utpp, ski, Cct), where a circuit Cct satisfies Cct(fhesk) = FHE.Dec(fhesk, ct). Since nUT.Eval

has to run nTFHE.Eval(Cct, {nct}n log q
i=1 ), this step is so far from the practicality, regardless of (t,N).6

For example, according to the recent guidance of FHE parameters [15], to allow a depth 5
circuits for BGV FHE scheme, a parameter (n, log q) = (214, 424) is recommended to achieve 128-
bit security. That is, to construct TFHE by combining nUT with BGV scheme, at least 214·424 ≈ 222

nTFHE ciphertexts are required to TFHE.Setup. Last, one can instantiate a compact UT, cUT from
TFHE, PZK and a non-interactive commitment scheme.

Even more, this compiler performs more worse than TreeSSS-based TFHE and UT when N is
large since it needs N times of nTFHE.Eval(Cct, ·), where it can be considered as a bootstrapping
algorithm of FHE. It is well known that bootstrapping algorithm is the most intensive part FHE
schemes.

Fig. 1: Comparison the number of secret shares: Ours, {0, 1}-LSSS, and Shamir secret sharing.
Log-size of the number of secret shares according to number of parties N .

1.2 Related work

We briefly introduce related works of TFHE to present potential applications of our TFHE.

Comparison between Concurrent Work. Our approach to construct efficient TFHE is en-
tirely distinct from that of the recent papers [6, 16, 24, 42]. Our focus is on directly improving

6 nTFHE.Eval(Cct, {ncti}) can be regarded as bootstrapping step of nTFHE.
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(a) Log-size of decryption error bound
according to number of parties N . The
purple line indicates Shamir secret shar-
ing scheme.

(b) (Zoom in) Log-size of decryption error
bound except for Shamir secret sharing
scheme.

Fig. 2: Comparison decryption error bound: Ours, {0, 1}-LSSS, and Shamir secret sharing

{0, 1}-LSSS, while [16] uses it as is. We thus believe our TreeSSS and the technique in [16] can be
combined to create an efficient TFHE and UT construction. We further note that [42] improved the
bootstrapping technique of FHEW/TFHE to achieve threshold FHE, while [16,24] both achieved a
polynomial modulus-to-noise ratio TFHE from LWE using Rènyi divergence and the noise flooding
technique. [24] was specialized for Torus-FHE [23], while [16] can be built from any FHE scheme.
These schemes are built from {0, 1}-LSSS, and require approximately N t ≈

(
N
t

)
operations dur-

ing the setup protocol. This adjustment is intended to boost practical performance, particularly
when working with small N and t. In contrast, our algorithm focuses on achieving asymptotic
improvements for arbitrary N and t. Therefore, these schemes are not within the scope of this
paper. Nevertheless, in Figure 1, we gave a graphical comparison of number of secret shares for
ours, {0, 1}-LSSS, and Shamir secret sharing to indirectly support the superiority of TreeSSS for
arbitrary N and t.

Threshold Circuits. A majority circuit is equivalent to an N/2-out-of-N threshold circuit. Re-
search has shown how to create monotone Boolean formulas for majority functions [35,37]. However,
these constructions are not useful for threshold circuits similar to TFHE. For example, [35] showed
that the depth of a three-variable majority function’s monotone Boolean formula is 3, leading to a
total number of secret shares close to O(N7), which is inefficient compared to circuit representa-
tions [53]. A paper [6] introduces specialized fields with a characteristic of 2, focusing specifically
on the threshold structures of 2-out-of-N and (N − 1)-out-of-N . [39] improved upon the result in

[53], which had a size of O(n1+
√
2). However, [16] argued that it is unclear how to construct TFHE

using the improved result in [39] because of their circuit construction.
[37] found that the optimal formula for general majority can be expressed with the (2s − 1)-

variable majority function in O(N3+O(1/ log s)) for some s, which matches our main result.

Threshold Signature. The threshold signature is a protocol that uses the threshold property in
a signature scheme. There have been many efforts to build this scheme [12, 13, 20, 25, 31–34, 44,
46, 52], but most of them are based on pre-quantum objects like ECDSA. There have only been
two round-optimal threshold signature schemes from lattices [2, 14]. The first one was built from
UT via compact TFHE [14], and the latter [2] improved efficiency through a concrete signature
scheme and optimal noise flooding, providing a stronger security level using the random oracle
model. Subsequent to this paper, [38] introduces two-round lattice-based threshold signature from
threshold linearly linear encryption.

N-out-of-N TFHE. N -out-of-N TFHE is a special case of TFHE and falls into the category of
multikey FHE [4, 19, 36, 45, 47, 48]. It is a non-interactive protocol that allows for homomorphic
computations on encrypted data using independently sampled keys, solving key management issues.
It is considered a good solution for round-optimal secure multi-party computations [47] and on-
the-fly MPC property [45].

Ramp secret sharing. Ramp secret sharing was first introduced in [10]. This scheme differentiates
between the number of reconstruction parties, τc, who can recover the secret, and the number of
privacy parties, τp, who gain no information about the secret. As such, ramp secret sharing serves
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as a more efficient, albeit weaker, variant of traditional secret sharing schemes. Recently, there are
several studies using ramp setting such as weighted threshold cryptosystems [8, 30] and blackbox
near-threshold secret sharing [3]. However, it’s crucial to acknowledge that the ramp setting may
not be applicable to all practical scenarios. This limitation arises from the ‘gray area’ where the
number of participating parties falls within the interval (τc, τp). In such cases, neither correctness
nor reconstruction can be guaranteed by the scheme.

2 Technical Overview

This section provides a technical overview of a new secret sharing scheme, called TreeSSS. We
further provide how to construct TFHE from TreeSSS.

2.1 Current State of Threshold Fully Encryption Scheme from Secret Sharing
Scheme

We provide a concise overview of TFHE from current secret sharing schemes—Shamir secret sharing
[50] and {0, 1}-LSSS [14, 40]—to describe the improvements of new TFHE and UT induced by
TreeSSS.

Assume a LWE based fully homomorphic encryption scheme FHE such as [17, 18, 21, 28] is
given. Let ct be a ciphertext of a message m ∈ {0, 1} and sk ∈ Zn

q be a secret key of FHE with
respect to LWE parameters n and q. The decryption algorithm of FHE takes ct and sk as input
and returns a message via computing an inner product ⟨ct, sk⟩ ∈ Zq and returns a message m after
some modifications of the inner product.

Suppose that sk is distributed into shares ski ∈ Zn
q among parties. The shares satisfy sk =∑

i ci · ski for some coefficient ci ∈ Zq. Then, the decryption process of FHE can be interpreted as
follows:

⟨ct, sk⟩ = ⟨ct,
∑
i

ci · ski⟩ =
∑
i

ci · ⟨ct, ski⟩ mod q.

The linear secret sharing scheme enables us to compute a pair (ci, ski) and securely share the secret
share ski to each party. Thus, through linear secret sharing scheme, one can construct t-out-of-N
threshold FHE. Unfortunately, it leaks the information of the secret share ski from ⟨ct, ski⟩. To
avoid this leakage, the decryptor injects small noises ei to ⟨ct, ski⟩, so the decryption process is
performed as follows:∑

i

ci(⟨ct, ski⟩+ ei) mod q = ⟨ct, sk⟩+
∑
i

ci · ei mod q.

It is easy to confirm that
∑

i ci · ei should be small for the correctness.
In this scenario, Shamir secret sharing scheme [50] produces a pair (ci, ski), where the recovery

coefficient ci is the Lagrange coefficient λi ∈ Q. Notably, the Lagrange coefficient λi turns into an
integer uopn being multiplied by N !. Therefore, to integrate Shamir secret sharing scheme with
FHE, it is necessary to multiply Ni by ei to ensure ci · (N ! · ei) = (λi · N !) · ei lies over Zq. This
requirement indicates that q must exceed N ! ·λi, leading the construction that log q = O(N logN).

On the other hand, {0, 1}-LSSS [14,40] ensures that the recovery coefficient ci is binary, thereby
achieving the compactness of TFHE. Consequently, log q sets to O(logN). However, {0, 1}-LSSS
requires a significant number of secret shares. Specifically, for the correctness and privacy of {0, 1}-
LSSS, O(N5.3) secret shares are distributed, a considerable increase compared Shamir secret shar-
ing scheme, which distributes only N secret shares.

2.2 Toy Example of TreeSSS: Iterative construction

This section gives a example of iterative construction of secret sharing scheme, which implies
TreeSSS later section. More precisely, we consider the example that an iteration of the Shamir
secret sharing scheme can be also a secret sharing scheme.

For positive integers N and t, SS(N, t) be a t-out-of-N Shamir secret sharing scheme, and let
sk ∈ Zq be a secret. We concretely provide how to construct SS(5, 3) iteratively using SS(3, 2).
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Given a secret sk, we splits sk into sk
(1)
1 , sk

(1)
2 , sk

(1)
3 by applying SS(3, 2), where two secret

shares can be used to recover the secret sk. Then, applying SS(3, 2) repeatedly, we divide sk
(1)
i

into {sk(2)3i−2, sk
(2)
3i−1, sk

(2)
3i } and sk

(2)
j into {sk(3)3j−2, sk

(3)
3j−1, sk

(3)
3j }. Now, we distribute secret shares

{sk(3)j }j∈{1,...,27} to 5 parties as follows7:

P1 : {sk(3)1 , sk
(3)
6 , sk

(3)
11 , sk

(3)
16 , sk

(3)
21 , sk

(3)
26 }, P2 : {sk(3)3 , sk

(3)
8 , sk

(3)
13 , sk

(3)
18 , sk

(3)
23 },

P3 : {sk(3)2 , sk
(3)
7 , sk

(3)
12 , sk

(3)
17 , sk

(3)
22 , sk

(3)
27 }, P4 : {sk(3)4 , sk

(3)
9 , sk

(3)
14 , sk

(3)
19 , sk

(3)
24 },

P5 : {sk(3)5 , sk
(3)
10 , sk

(3)
15 , sk

(3)
20 , sk

(3)
25 }.

In this case, we observe that any three parties can recover the secret and any two parties cannot
recover the secret sk.

For example, {P2, P4, P5} can reconstruct {sk(2)2 , sk
(2)
3 , sk

(2)
5 , sk

(2)
7 , sk

(2)
8 } using their own secret

shares. Consequently, they can also derive {sk(1)1 , sk
(1)
3 }. Finally, using {sk

(1)
1 , sk

(1)
3 }, they can recover

the secret sk.
In contrast, {P1, P3} can only reconstruct {sk(2)1 , sk

(2)
4 , sk

(2)
6 , sk

(2)
9 }, limiting them to the recovery

of {sk(1)2 } only. Thus, they are unable to recover the secret sk. Moreover, due to the privacy property
of Shamir secret sharing, {P1, P3} cannot get any information about the secret sk. This observation
will be used later in the proof of the privacy properties of our TreeSSS.

2.3 TreeSSS: Tree Secret Sharing Scheme for t-out-of-N Threshold Access
Structure

Section 2.2 provides an example of iterative construction of Shamir secret sharing. However, we
do not know how many iterations are required to build a secret sharing structure for t-out-of-N
threshold accesses, and why the iteration method succeeds.

This section provides an overview of an iteration method for t-out-of-N threshold structure,
called a TreeSSS. In other words, we provide how to generate TreeSSS for the N+1

2 -out-of-N
threshold access structure, where N is an odd number. Subsequently, we expand this concept to
develop a tree secret sharing scheme for any t-out-of-N threshold access structure (see Section 4.3).

Our construction is motivated by a majority circuit and its composition. For a clear explanation,
we briefly introduce basic definitions and properties of majority circuits. The detailed discussion
of majority circuits will be given in Section 3.1.

Majority Circuits. A majority circuit/gate MAJN : {0, 1}N → {0, 1} is a function defined as
follows:

MAJN (x) =

{
1 wt(x) ≥ N/2

0 otherwise,

where wt(x) is the number of nonzero bits in x = x1x2 . . . xN .
Valiant [53] demonstrated that one can construct O(N5.3)-size monotone Boolean formula to

compute the majority function MAJN with at least 1/2 probability for odd N . (For details, see
Lemma 3.4.) This probabilistic construction was directly applied to build {0, 1}-LSSS for N+1

2 -out-
of-N threshold access structure using a folklore conversion from a monotone Boolean formula to a
matrix [14]. The transformation is based on the insight that MAJN resembles a secret sharing for
N+1
2 -out-of-N threshold structure if we regard MAJN (x) = 1 as recovery of the secret. Similarly,

when MAJN (x) = 0, it can be considered as a set of participants of size less than N
2 cannot recover

the secret.
Thus, one can expect that whenMAJN can be constructed with nice properties, then it might be

considered as building a linear secret sharing scheme for N+1
2 -out-of-N threshold access structure.

One of well known methodology to buildMAJN is to iteratively exploit small input majority circuits

7 In this case, we define a particular partition that may not appear to be randomly distributed. However,
if we repeat the process of secret key distribution in sufficient detail, [53] assures us that a linear secret
sharing scheme can be successfully constructed for a threshold structure, provided that secret shares are
distributed randomly among the parties.
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MAJ2s−1, where s ≪ N , proved by Gupta and Mahajan [37]. Unfortunately, Goldreich [35] has
already argued that the folklore conversion in [14] is not effective to make MAJN : One can only
generates O(N7)-size monotone Boolean formula for MAJN , which results in a worse asymptotic
size than O(N5.3). (For details, refer to Lemma 3.5.)

Initial Observation. We again delve into a relation that MAJN can be built from the small input
majority circuits, denote by MAJ2s−1, where s ≪ N . We further consider s-out-of-2s − 1 Shamir
secret sharing, SS(2s − 1, s) instead of MAJ2s−1. This insight is not obvious, but we deduce a
relation as follows:

• We observe that the building block of Valiant’s threshold circuit [53] can be represented by a
small matrix, called a unit matrix. The whole circuit is also obtained by iterations of the unit
matrix. (For details, refer to Appendix B.)

• Shamir secret sharing deploys the Vandermonde’s matrix.

• We plug the Vandermonde’s matrix into the iterative process of the matrices, rather than using
the unit matrix.

• Indeed, we can generate SS(5, 3) from SS(3, 2) using 3 iterations.

The observation presents a new t-out-of-N linear secret sharing scheme, called the TreeSSS.

Fig. 3 gives a high-level overview of TreeSSS: Given the secret key sk = sk
(0)
1 at the root of the

tree, a key dealer generates secret shares along the tree using s-out-of-2s−1 Shamir secret sharing
SS(2s − 1, s), and then distributes leaves nodes to the participants. Working backwards from the
leaf nodes of the tree to root, we can reconstruct the secret sk.

sk
(0)
1

sk
(1)
1

sk
(2)
1

...

sk
(L)
1 sk

(L)
2 · · · sk

(L)
2s−1

sk
(2)
2

...

· · · sk
(2)
2s−1

...

sk
(L)
∗ · · · sk

(L)
∗∗

· · · · · · · · · · · · · · · sk
(1)
2s−1

· · · · · · sk
(2)

(2s−1)2

...

sk
(L)

(2s−1)L−2s+2
· · · sk

(L)

(2s−1)L

Distribute level-L secret shares {sk(L)
i } to each party 8

Fig. 3: High-level Overview of TreeSSS

As an example, we describe how TreeSSS works using 2-out-of-3 Shamir secret sharing scheme
SS(3, 2). Let sk be a secret key that we want to share. For the leveled secret sharing, we re-

gard sk as level-0 secret share sk
(0)
1 . Suppose that level-i secret shares {sk(i)j }j∈[3i] are given.

For each 0 ≤ i < L, by applying SS(3, 2) to each sk
(i)
j , we obtain level-(i + 1) secret shares of

the form {sk(i+1)
j }j∈[3i+1] for priory defined parameter L. More precisely, for every i, j, SS(3, 2)

can split sk
(i)
j into {sk(i+1)

3j−2 , sk
(i+1)
3j−1 , sk

(i+1)
3j }. By iteratively using SS(3, 2), we obtain level-L se-

cret shares {sk(L)
j }j∈[3L]. Last, a dealer distribute level-L secret shares {sk(L)

j }j∈[3L] to N parties
P = {P1, . . . , PN}.

Here, a parameter L, which determines the correctness of the TreeSSS algorithm, exactly
matches the results proved by [37]. Indeed, the correctness of TreeSSS is inspired by the following
lemma.

8 The method for distributing level-L secret shares is exactly the same as {0, 1}-LSSS. Informally, the
distributor randomly partitions the set 1, . . . , (2s− 1)L into N subsets, and sends the level-L secret
shares corresponding to the indices within these N subsets to each respective party. We leave the
detailed method in Section 4.2.

7



Lemma 2.1 ([37]) Given an odd number N , one can construct the majority function MAJN from
small majority gates MAJ2s−1 with at least 1/2 success probability. This construction requires
iteratively applying MAJ2s−1-gates up to level logcs(N) + logs N +O(1), where cs =

2s−1
22s−2 ·

(
2s−2
s−1

)
.

Consequently, it is evident that the number of secret shares equals (2s−1)L, which can asymp-

totically estimated as O(N3+ 2.3
log s ) as in Table 1.

TreeSSS for t-out-of-N structures.We can easily extend our construction to t-out-of-N TreeSSS
by slightly modifying the number of parties and the threshold. The conversion process involves con-
structing a TreeSSS for a different t and N that satisfies the desired conditions. For instance, when
t > N+1

2 , we start by constructing a TreeSSS for t-out-of-(2t−1). If 2t−1 > N , we simply disregard

the extra secret shares. Similarly, if t < N+1
2 , we generate a TreeSSS for (t + r)-out-of-(N + r)

where r satisfies N+r+1
2 = t+ r. In the case where t = N

2 , and N is even, it suffices to construct a

TreeSSS for (N2 + 1)-out-of-(N + 1). The detailed construction can be found in Section 4.3.

2.4 TreeSSS Meets Fully Homomorphic Encryption

We further remark that the simple replacement of a secret sharing scheme has an unexpected
impact on the simulation security proof of TFHE. We recall the concept of the partial decryption
algorithm. The algorithm works by taking the secret shares ski and computing sk =

∑
i ci · ski,

where ci are the recovery coefficients and sk is the master secret key. The decryption process is
performed as follows:

⟨ct, sk⟩ = ⟨ct,
∑
i

ci · ski⟩ =
∑
i

ci⟨ct, ski⟩ mod q

Consequently, the partial decryption algorithm can be regarded as follows9:

⟨ct, ski⟩ = (c−1i mod q) ·

⟨ct, sk⟩ −∑
i ̸=j

⟨ct, skj⟩ mod q

 mod q.

The observation is critical in the simulation security proof as it enables the simulator to simulate
the partial decryption algorithm without having any knowledge of the secret shares ski. This issue
is not relevant in the case of {0, 1}-LSSS, as the recovery coefficients ci and their inverse elements
c−1i are binary. However, in the TreeSSS approach, the coefficients are product of Lagrange’s
coefficients, which implies that there is no guarantee of the smallness of the inverse elements of
Lagrange’s coefficients.

Therefore, to adapt the simulation security proof for TFHE, it is necessary to provide an upper
bound on the inverse of the Lagrange’s coefficients. This enables us to overcome the smallness
issue, which is a major concern in the simulation security proof of linear secret sharing schemes.
We remark that in [40], the authors proposed {0, 1}-LSSS to avoid the smallness issue, which is
one of the ways to overcome this challenge in the simulation security proof.

To conclude, we revisit and slightly modify the previous results of the Lagrange coefficients
presented in [1,51]. The result is a new lemma which completes the security proof for the proposed
construction.

Lemma 2.2 (Adaptation from [14]) Let P = {P1, . . . , PN} be a set of parties and AN,t a t-
out-of-N threshold access structure on P . Consider Shamir secret sharing scheme SS over the secret
space Zq, where q is a prime number such that (N !)2 ≤ q. Then, for any set S ⊆ [N ] ∪ {0} of size
t and for any indices i, j ∈ [N ], the following properties hold:

– |N ! · λS
i,j | ≤ (N !)2,

∣∣∣N ! · 1
λS
i,j

∣∣∣ ≤ (N !)2,

– N ! · λS
i,j , N ! · 1

λS
i,j

are integers

9 To prevent information leakage, the large error should be added. However, we omit the error for sim-
plicity.
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where λS
i,j is the Lagrange coefficient.

Proof (of Lemma 2.2). For j ∈ [N ] and S⊂[N ]∪{0} with the threshold value t, the Lagrange coeffi-

cient λS
i,j can be represented by

∏
m∈S\{i}

j −m

i−m
for all i ∈ S. Then, the numerator and denominator

of Lagrange coefficient λS
i,j have the following properties: ∏

m∈S\{i}

(j −m)


 ∏

m∈N\{j}

(j −m)

 = (−1)N−jj! · (N − j)!

N !,

 ∏
m∈S\{i}

(i−m)


 ∏

m∈N\{i}

(i−m)

 = (−1)N−ii! · (N − i)!

N !.

Therefore, N ! · λS
i,j , and N ! · 1

λS
i,j

are both integers and their bound are (N !)2.

3 Preliminaries

Notations. We use bold uppercase letters for matrices and bold lowercase letters for vectors. The
set [n] = 1, 2, . . . , n is used to denote a positive integer n. log is used to represent the logarithm
function base 2. The size of a finite set S is represented by |S| and its power set is represented by
P(S). a← S means that a is randomly selected from the finite set S.

Vandermonde Matrix. We use the Vandermonde matrix, a special matrix widely used in Shamir
secret sharing scheme, and denote it as VN,t, where it is a N × t matrix. The entries in VN,t are
defined as:

VN,t =


1 1 12 · · · 1t−1

1 2 22 · · · 2t−1
...
...

...
. . .

...

1 N N2 · · · N t−1

 .

For convenience, we also use the shorthand notation Vs to refer to V2s−1,s.

Statistical Distance. The statistical distance between two distributions D1 and D2 over a count-
able support X is defined as

∆(D1, D2) =
1

2

∑
e∈E

∣∣∣∣ Pr
e←D1

(D1(e))− Pr
e←D2

(D2(e))

∣∣∣∣ .
D1 ≈s D2 means that the distribution D1 is statistically indistinguishable from distribution D2.

The noise flooding technique, also known as noise smudging, is commonly used to mask infor-
mation by adding a large error.

Lemma 3.1 (Noise Flooding Technique [4, 7, 47]) Let B1, B2 be positive integers and e1 be
an integer in the interval [−B1, B1]. Let U be a uniform distribution over the interval [−B2, B2].
Then, it holds that ∆(U,U + e1) ≤ B1

B2
.

Learning with Errors (LWE). The Learning with Errors (LWE) problem is a fundamental prob-
lem in lattice-based cryptography, often used in the construction of fully homomorphic encryption
schemes [18,21,23].

Given positive integers n,m, and q and a noise distribution χ over Zq, the LWE(n,m, q, χ)
problem involves an adversary attempting to distinguish between two distributions: (A,As + e)
and (A,u). Here, A is chosen uniformly at random over Zm×n

q , s is chosen from Zn
q , e is chosen

from χm, and u is randomly chosen from Zm
q .
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3.1 Majority Circuits

We briefly introduce definitions and previous results for majority functions which are equivalent
to threshold functions.

Definition 3.2 (Monotone Boolean formula [14]) A Boolean circuit C : {0, 1}N → {0, 1} is
called a monotone Boolean formula if it satisfies the following conditions:

• It has a single output gate.
• Each gate is either an AND or an OR gate with a fan-in of 2 and a fan-out of 1.
• The input wires may have multiple connections to other gates

Definition 3.3 (Majority Function/Gate) A majority function/gate MAJN : {0, 1}N → {0, 1}
is a function defined as follows:

MAJN (x) =

{
1 wt(x) ≥ N/2

0 otherwise,

where wt(x) is the number of nonzero bits in x = x1x2 . . . xN

We now provide a summary of results that demonstrate the construction of majority functions
from monotone Boolean formulas, as proven by [35, 37, 53]. However, please refer to the original
papers for a full understanding and proof of these results.

Lemma 3.4 ([53]) Let γ = 2(3 −
√
5) ≈ 1.52, and N be an even number of parties. If the

unit circuit φ = (φ1 ∧ φ2) ∨ (φ3 ∧ φ4) is iteratively constructed with an iteration number L ≥
logγ N + logN + O(1), then there exists an O(N5.3)-size monotone formula for computing the
majority function MAJN .

Note that the construction presented in Lemma 3.5 involves converting the MAJ3 gate into
a formula consisting only of AND/OR gates, which results in a larger formula compared to the
construction in [53]. The conversion of the MAJ3 gate into AND/OR gates involves replacing
MAJ3(F1, F2, F3) with (F1 ∧ F2) ∨ (F2 ∧ F3) ∨ (F3 ∧ F1). However, this conversion is necessary as
there is currently no known way to convert majority gates in circuits into matrices, unlike AND/OR
gates, which can be converted via the folklore algorithm.

Lemma 3.5 ([35]) Let N be the number of parties with odd value. Then, there exists a construc-
tion of the majority function MAJN using the small majority gate MAJ3. Specifically, MAJN can
be constructed from MAJ3 with a total of L ≥ log1.5(N) + log2 N + O(1) iterations. As a result,
there exists a monotone Boolean formula for computing MAJN of size O(N7).

In our analysis, we will demonstrate a new secret sharing approach that utilizes Shamir secret
sharing and the above lemma, bypassing the need for the folklore lemma. This will be presented
in section 4

3.2 Fully Homomorphic Encryption

We recall the definition of fully homomorphic encryption and its properties.

Definition 3.6 (Fully homomorphic encryption) An FHE scheme is described by a set of
algorithms with the following properties:

• The setup algorithm FHE.Setup(1λ, 1d) takes as input the security parameter λ, and a depth
bound d, and outputs a pair of the public key pk and secret key sk.

• The encryption algorithm FHE.Enc(pk, µ) takes as input pk and a message µ ∈ {0, 1}, and
outputs a ciphertext ct.

• The evaluation algorithm FHE.Eval(C, ct1, . . . , ctl, pk) takes as input l-input circuit C with less
than or equal depth d, a bunch of ciphertexts ct1, . . . , ctl and pk, and outputs an evaluated
ciphertext ĉt.
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• The decryption algorithm FHE.Dec(pk, sk, ĉt) takes as input pk, sk and ĉt, and outputs a mes-
sage µ ∈ {0, 1}.

Hereafter, we use notations from Definition 3.6.

Definition 3.7 (Evaluation Correctness) We say FHE scheme is correct if for any evaluated
ciphertext ĉt generated by FHE.Eval(C, ct1, . . . , ctl, pk) satisfies

Pr[FHE.Dec(pk, sk, ĉt) = C(µ1, . . . , µl)] = 1− negl(λ)

Definition 3.8 (Compactness) We say FHE scheme is compact if for any ciphertext ct generated
from the algorithm of FHE.Enc, there is a polynomial poly such that |ct| ≤ poly(λ, d).

Definition 3.9 (Semantic security) We say that FHE is secure if for all security parameter λ
and depth bound d, the following holds: for any PPT adversary A, the experiment ExptA,FHE(1

λ, 1d)
outputs 1 except for negligible probability:

ExptA,FHE(1
λ, 1d) :

1. Given (λ, d), the challenger runs (pk, sk) ← FHE.Setup(1λ, 1d) and ct ← FHE.Enc(pk, b) for
b← {0, 1}.

2. The challenger sends (pk, ct) to A.
3. A outputs a guess b′.

4. The experiment outputs 1 if b = b′.

Definition 3.10 (Special FHE) We say that a FHE scheme is a special FHE scheme if it satisfies
the following properties:

• The setup algorithm Setup(1λ, 1d) takes as input the security parameter λ and a depth bound
d, and outputs (pk, sk), where pk contains a prime q, and sk ∈ Zn

q for some n = poly(λ, d).

• The decryption algorithm Dec consists of two functions (Dec0,Dec1) defined as follows:
• p ← Dec0(sk, ct): p is of the form µ · ⌊ q2⌉ + e for a noise e ∈ [−cB, cB] with the noise
bound B = B(λ, d, q). Here, e is an integer multiple of c. This c is called the multiplicative
constant.

• µ← Dec1(p): Given p, return µ =

{
0 if p ∈ [−⌊ q4⌉, ⌊

q
4⌉]

1 otherwise.

• Dec0 is a linear function over Zq such as inner product and matrix multiplication in the secret
key sk.

3.3 Non-interactive Zero Knowledge Proof and Commitments

This section introduces the building blocks for constructing the universal thresholdizer, which are
not defined in the main body of this paper. The descriptions of these schemes are based on [14].

These building blocks have been utilized in the construction of a universal thresholdizer in a
black-box manner.

Definition 3.11 (Non-interactive Zero Knowledge Proof with pre-processing) A non-iterative
zero-knowledge proof with pre-processing (PZK) for a language L with a relation R is a tuple of
PPT algorithms PZK = (PZK.Pre,PZK.Prove,PZK.Verify). The output of the pre-processing al-
gorithm PZK.Pre(1λ) is a pair of systems (σP , σV ). The PZK scheme must satisfy the following
properties:

• Completeness: For every (x,w) ∈ R, the probability that the verifier will accept a proof
generated by the prover is 1, i.e.

Pr[PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1

• Soundness: For every x /∈ L, the probability of the existence of a proof π ← PZK.Prove(σP , x, w)
such that Pr[PZK.Verify(σV , x, π) = 1] is negligible in λ.
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• Zero knowledge: There is a PPT simulator S such that for any (x,w) ∈ R, no one can
computationally distinguish two distributions:

{σV ,PZK.Prove(σP , x, w)} ≈ {S(x)}

Lemma 3.12 ([41,49]) PZK can be constructed from one-way functions.

We now introduce a new component for the universal thresholdizer, as described in [9, 14].

Definition 3.13 (Non-interactive Commitment [11]) We say that C = (C.Com) is a non-
interactive commitment scheme if the following holds: Let com be a string in {0, 1}∗ outputted by
C.Com(x; r) for a message x ∈ {0, 1}∗ with randomness r ∈ {0, 1}λ. Then,

• Perfect binding: For any security parameter λ ∈ N, and randomness r0, r1 ∈ {0, 1}λ, if
C.Com(x0; r0) = C.Com(x1; r1), then it holds that x0 = x1.

• Computational hiding: For any security parameter λ ∈ N and x0,x1 ∈ {0, 1}poly(λ), no PPT
adversary can distinguish the following distributions:

{com0 : r← {0, 1}λ, com0 ← C.Com(x0; r)}
≈ {com1 : r← {0, 1}λ, com1 ← C.Com(x1; r)}

Lemma 3.14 ([11]) A non-interactive commitment can be built from injective one-way functions.

4 The Tree Secret Sharing Scheme for t-out-of-N threhold function

This section presents a key technical contribution of this paper, called the tree secret sharing
scheme (TreeSSS).

4.1 Preliminaries for Secret Sharing Scheme

This section provides several relevant definitions for secret sharing schemes as a representative. For
this purpose, we adopt definitions/notations from [14].

Definition 4.1 (Threshold Structure) Given a set of parties P = {P1, . . . , PN} and a thresh-
old value t such that 1 ≤ t ≤ N , the t-out-of-N threshold structure AN,t ⊆ P(P ) is defined as the
collection of all subsets S ∈ P(P ) with a size of at least t. The subsets in AN,t are referred to as
“valid sets,” and the subsets in P(P ) \ AN,t are referred to as “invalid sets.” We say that S ⊂ P
is a maximal invalid party if S /∈ AN,t, but it holds S ∪ {Pi} for every Pi ∈ P \ S.

Now, we define the linear secret sharing scheme for the threshold structure.

Definition 4.2 (Linear Secret Sharing Scheme (LSSS)) Let K be the secret key space. The
linear secret sharing scheme SS is defined as a pair of PPT algorithms, (SS.Share,SS.Combine):

• SS.Share(sk,AN,t): There exists a share matrix M ∈ Zd×n
q with positive integers d, n and as-

sociate a partition Ti of [d] to each party Pi. For a given secret sk ∈ Zq, the sharing algo-
rithm samples random values r2, . . . , rn ← Zq and generates a vector (share1, . . . , shared)

T =
M · (sk, r2, . . . , rn)T . The share for Pi is a set of entries ski = {sharej}j∈Ti

.

• SS.Combine(B): For any S ∈ AN,t, one can efficiently find the coefficient {cSj }j∈⋃Pi∈S Ti
such

that ∑
j∈

⋃
Pi∈S Ti

cSj ·M[j] = (1, 0, . . . , 0).

Then, S can recover a secret key sk by computing sk =
∑

j∈
⋃

Pi∈S Ti
cSj · sharej. The coefficients

{cSj } are called recovery coefficients.

A linear secret sharing scheme must satisfy the following properties.
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Definition 4.3 (Correctness) For every S ∈ AN,t, sk ∈ K, and a set of shares {ski}i∈[N ] ob-
tained by the share algorithm which takes as input sk and AN,t, the following holds without negligible
probability:

SS.Combine({ski}i∈S) =

{
sk for S ∈ AN,t

⊥ for S /∈ AN,t

Definition 4.4 (Privacy) For all S /∈ AN,t and sk0, sk1 ∈ K, two sets of shares (skb,1, . . . , skb,N )←
SS.Share(skb,AN,t) for b ∈ {0, 1} follow the identical distribution

{sk0,i}i∈S ≈ {sk1,i}i∈S .

4.2 TreeSSS from Shamir Secret Sharing

We propose a Tree Secret Sharing Scheme for t-out-of-N threshold structure (TreeSSS). TreeSSS
is based on a number of iterations of Shamir secret sharing scheme, and its intuition is inspired by
classical results on threshold circuits from the literature [35, 37]. TreeSSS allows us to construct
t-out-of-N threshold access structure from Shamir secret sharing for s-out-of-ℓ threshold functions,
where s≪ N and ℓ = 2s− 1.

We first provide how to build TreeSSS for N+1
2 -out-of-N threshold functions and extend it to

arbitrary t-out-of-N threshold access structure. As in Definition 4.2, TreeSSS also consists of two
algorithms, called TreeSSS.Share and TreeSSS.Combine.

Before introducing TreeSSS, we first recall SS.Share. The final step of this algorithm involves
generating a vector

(share1, . . . , shared)
T = M · (sk, r2, . . . , rn)T ,

where M ∈ Zd×n
q . Each party Pi receives a secret share comprised of the set {sharej}j∈Ti

, where
Ti is partition of the index set [d] corresponding to party Pi. To construct a share matrix M, we
deploy a core algorithm, called a TreeSS algorithm (Algorithm 1). Then, the following proposition
holds. We defer its proof to Section 4.3.

Proposition 4.5 Let s ≥ 3, and ℓ = 2s − 1. Let L ≥ 1. Then, given L-TreeSS algorithm (Algo-

rithm 1) and sk ∈ Zq, there exists a matrix M(L) ∈ ZℓL×kL
q such that

(share
(L)
1 , . . . , share

(L)

ℓL
)T = M(L) · (sk, r2, . . . , rkL

)T

where {share(L)
i }i∈[ℓL] is an output of Algorithm 1, ri ← Zq for every i, kL = 1 + (s− 1) · ℓ

L−1
ℓ−1 =

1 + (s− 1) · (1 + ℓ+ ℓ2 + · · ·+ ℓL−1).

Algorithm 1: TreeSS Algorithm

Input : Shamir secret sharing scheme for s-out-of-ℓ threshold access structure SS(ℓ, s) where
s ≥ 3 and ℓ = 2s− 1,
Secret key sk,
Iteration number L

Output: Output the set of secret shares {sharej}j∈[ℓL].

1 (share
(1)
1 , . . . , share

(1)
ℓ )← SS(ℓ, s)(sk)

2 for i = 2 to L do
3 for j = 1 to ℓi−1 do

4 (share
(i)

ℓ·(j−1)+1, . . . , share
(i)

ℓ·(j−1)+ℓ)← SS(ℓ, s)(share
(i−1)
j )

5 end for

6 end for

7 return A set of secret shares {share(L)
j }j∈[ℓL].

For a partition Ti ⊂ [ℓL] associated with parties P , a dealer distributes ski = {sharej}j∈Ti
to

Pi for each i. Consequently, TreeSSS.Share consists of two parts:
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1. For a predefined parameter L and the secret sk, run the TreeSS algorithm (Algorithm 1) to
generate level-L secret shares, and

2. Distribute all level-L secret shares among the parties. Here, distribute refers to conduct-
ing ℓL(= poly(N)) experiments as follows: For i-th experiment with i ∈ [ℓL], a distribu-
tor randomly (allowing repetition) samples k ← [N ] and add i to Tk, which means that

skPk
← skPk

∪ {share(L)
i }. After ℓL experiments, a distributor forwards the set of shares

skk = skPk
= {share(L)

i }i∈Tk
to each corresponding party Pk.

The TreeSS algorithm works by applying the secret sharing scheme repeatedly in a tree-like manner.

It starts by considering the secret key sk as the unique level-0 secret share, denoted by share
(0)
1 . For

each 0 ≤ i ≤ L, one can generates level-i secret shares from level-(i−1) secret shares as follows: The
level-(i−1) secret shares, share

(i−1)
j , are split into level-i secret shares, {share(i)k }k∈{ℓ·(j−1)+1,...,ℓ·j}.

This process is repeated until level-L secret shares, {share(L)
j }j∈[ℓL], are obtained and distributed

randomly to each party. The details of the TreeSSS.Share is provided in Algorithm 2.

TreeSSS.Combine is to repeatedly reconstruct level-i secret shares from level-(i + 1) secret
shares. This process is repeated until we obtain the level-0 share sk. The full algorithm is given
by Algorithm 3. Here, we note that the existence of recovery coefficients cSj such that sk =∑

j∈
⋃

Pi∈S Ti
cSj · share

(L)
j as in Definition 4.2. In addition, cSj is a product of Lagrange coefficients

of the form λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
for some proper ji and S

(i)
ji

.

Algorithm 2: TreeSSS.Share

Input : Parties P = {P1, . . . , PN} with odd N , secret key sk,
N+1

2
-ouf-of-N threshold access structure A

N,N+1
2

Output: Output the set of secret shares {sharej}j∈[ℓL].

1 Choose s ≥ 3 and ℓ = 2s− 1, and calculate the iteration number L such that

L ≥ logcs N + logs N +O(1) where cs = ℓ
2ℓ−1 ·

(
ℓ−1
s−1

)
2 Generate a partition Ti ⊂ [ℓL] associated with parties P = {P1, . . . , PN}
3 for i = 1 to ℓL do
4 Sample k ← [N ], and i ∈ Tk

5 end for

6 Compute {share(L)
i }i∈[ℓL] ← L-TreeSS(SS(ℓ, s), sk) (Algorithm 1).

7 Define ski = {share(L)
j }j∈Ti and a dealer sends it to Pi

8 return A set of secret shares ski
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Algorithm 3: TreeSSS.Combine

Input : B: a set of secret shares {share(L)
j }j∈⋃Pi∈S Ti

where S is a subset of

P = {P1. . . . , PN}.
Output: Recovered secret key ŝk.

1 if S /∈ AN,N+1
2

then

2 return ⊥
3 end if
4 for k = L downto 0 do
5 Compute the following sets:

T (k) = {jk | share(k)jk
can be recovered by B}

S
(k)
jk

= {share(k)jk
| share(k)jk

recovers share
(k−1)
jk−1

for every jk−1 ∈ T (k−1)}

Compute the Lagrange coefficients λ
S

(k)
jk

jk,0
= λ

S
(k)
jk

jk
of SS(ℓ, s)

6 end for

7 if T (0) = ∅ then
8 return ⊥
9 end if

10 Compute ŝk =
∑

jL∈T (L) λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· share(L)

jL

11 return ŝk.

In summary, we obtain the following theorem.

Theorem 4.6 Let N be an odd number and P = {P1, . . . , PN} be a set of parties. Let s be a small
positive integer such that s ≪ N , and ℓ = 2s − 1. Given Shamir secret sharing SS(ℓ, s) and the
iteration number L ≥ logcs N+logs N+O(1) where cs =

ℓ
2ℓ−1 ·

(
ℓ−1
s−1
)
, L-TreeSSS for N+1

2 -out-of-N
threshold structure satisfies the correctness (Definition 4.3) and the privacy (Definition 4.4) with
at least 1/2 success probability and the number of secret shares is ℓL = O(N logcs

ℓ+logs ℓ).

4.3 Proofs of TreeSSS

This section provides proofs of TreeSSS, especially Proposition 4.5 and Theorem 4.6. We first

remark that ŝk equals to sk, input of Algorithm 2. By definition of T (k), S
(k)
jk

and λ
S

(k)
jk

jk
, we easily

verify the following equations when level-k sets, and Lagrange coefficients are well computed for
every k. More precisely, we can get following equation for every k and jk−1 ∈ T (k−1) by using
Lagrange coefficients.

share
(k−1)
jk−1

=
∑

jk∈S(k)
jk

λ
S

(k)
jk

jk
· share(k)jk

.

Now, we show that ŝk can be sequentially calculated to result in share
(0)
1 , which is same as our

target secret key sk.

ŝk =
∑

jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· share(L)

jL

=
∑

jL−1∈T (L−1)

λ
S

(1)
j1

j1
· · ·λ

S
(L−2)
jL−2

jL−2
· λ

S
(L−1)
jL−1

jL−1
· share(L−1)jL−1

= · · ·

=
∑

j2∈T (2)

λ
S

(1)
j1

j1
· λ

S
(2)
j2

j2
· share(2)j2
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=
∑

j1∈T (1)

λ
S

(1)
j1

j1
· share(1)j1

= share
(0)
1 = sk.

For the correctness, we need to show that the 0-level share set T (0) = {sk}, which can be recovered
by B, is not empty.

Then, in order to show that L-TreeSSS is a linear secret sharing scheme that satisfies Proposi-
tion 4.5 and Theorem 4.6, it suffices to prove that

• The existence of a share matrix M(L) that satisfies Definition 4.2.
• Correctness of TreeSSS (Definition 4.3)
• Privacy of TreeSSS (Definition 4.4).

We now show the existence of a share matrix M(L) as in Proposition 4.5.

Proof (of Proposition 4.5). We use the mathematical induction on L. For L = 1, it is obvious
since we just take the Vandermonde’s matrix Vs = M(1). Suppose that there exists a matrix

M(L−1) ∈ ZℓL−1×kL−1
q such that

(share
(L−1)
1 , . . . , share

(L−1)
ℓL−1 )T = M(L−1) · (sk, r2, . . . , rkL−1

)T ,

where {share(L−1)i } is a set of secret shares obtained by (L− 1)-TreeSS algorithm.

By Algorithm 1, level-L secret shares share
(L)
i can be obtained as follows: For each j, when a

dealer conducts SS(ℓ, s)(share
(L−1)
j ), then ℓ level-L secret shares {share(L)

ℓ(j−1)+1, . . . , share
(L)
ℓ·j } are

obtained. By definition of SS(ℓ, s), we observe that for every j, it satisfies that

(share
(L)
ℓ(j−1)+1, . . . , share

(L)
ℓ·j )

T = Vs · (share(L−1)j , r
(L−1)
2,j , r

(L−1)
3,j , . . . , r

(L−1)
s,j )T .

For simple description, we define some notations

r
(L−1)
j = (r

(L−1)
2,j , r

(L−1)
3,j , . . . , r

(L−1)
s,j )T ∈ Zs−1

q

r(L−1) = ((r
(L−1)
1 )T , (r

(L−1)
2 )T , . . . , (r

(L−1)
ℓL−1 )T )T ∈ Z(s−1)·ℓL−1

q

s
(L−1)
j = (share

(L−1)
j , r

(L−1)
j ) ∈ Zs

q

share
(L)

j = (share
(L)
ℓ(j−1)+1, . . . , share

(L)
ℓ·j )

T ∈ Zℓ
q

for every L > 1 and j. We thus write the above equation by

share
(L)

j = Vs · s(L−1)j

for every L and j. Hence, it holds that

share
(L)

1

share
(L)

2

share
(L)

3

...

share
(L)

ℓL−1


=



Vs

Vs

Vs

. . .

Vs

 ·


s
(L−1)
1

s
(L−1)
2

s
(L−1)
3
...

s
(L−1)
ℓL−1


Then, there exists a permutation matrix P such that

share
(L)

1

share
(L)

2

share
(L)

3

...

share
(L)

ℓL−1


=



Vs

Vs

Vs

. . .

Vs

 ·P
−1 ·P



s
(L−1)
1

s
(L−1)
2

s
(L−1)
3
...

s
(L−1)
ℓL−1


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=



Vs

Vs

Vs

. . .

Vs

 ·P
−1 ·



share
(L−1)
1

share
(L−1)
2
...

share
(L−1)
ℓL−1

r(L−1)


where r(L−1) is a vertical concatenation of r

(L−1)
j for every j. By the mathematical hypothesis, it

satisfies that 
share

(L−1)
1

share
(L−1)
2
...

share
(L−1)
ℓL−1

 = M(L−1) ·


sk

r2
...

rkL−1

 .

Thus, it holds that 

share
(L−1)
1

share
(L−1)
2
...

share
(L−1)
ℓL−1

r(L−1)


=

(
M(L−1)

I

)
·



sk

r2
...

rkL−1

r(L−1)

 .

Finally, we have

share
(L)
1

share
(L)
2

share
(L)
3

...

share
(L)

ℓL


=



share
(L)

1

share
(L)

2

share
(L)

3

...

share
(L)

ℓL−1



=



Vs

Vs

Vs

. . .

Vs

 ·P
−1 ·

(
M(L−1)

I

)

︸ ︷︷ ︸
M(L)

·



sk

r2
...

rkL−1

r(L−1)

 .

Then we compute the number of input value {sk, r1, . . . , rkL−1
, (r(L−1))T }.

kL−1 + (s− 1) · ℓL−1 = 1 + (s− 1)
ℓL−1 − 1

ℓ− 1
+ (s− 1) · ℓL−1

= 1 + (s− 1)
ℓL − 1

ℓ− 1

= kL.

We easily confirm that M(L) ∈ ZℓL×kL
q . By the mathematical induction, we complete the proof.

⊓⊔

Remark 2. The proof of Proposition 4.5 does not give the closed form of M(L). However, since it
is a constructive proof of M(L), the output of Algorithm 1 can be regarded as a matrix.

Motivated by Lemma 2.1, we prove that L-TreeSSS is a linear secret sharing scheme for N+1
2 -

out-of-N threshold structure, where L is sufficiently large.
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Proof (of Theorem 4.6). Let L ≥ logcs N + logs N + O(1) where cs = ℓ
2ℓ−1 ·

(
ℓ−1
s−1
)
. Then, by the

size of M(L), we easily confirm that ℓL = O(N logcs
ℓ+logs ℓ) is the total number of secret shares,

which is approximated to O(N3+2.3/ log s).10

Correctness. In order to prove the correctness of L-TreeSSS, it suffices to show that the probability
of T (0) ̸= ∅ is at least 1/2. Before proceeding with the proof, we introduce two lemmas.

Lemma 4.7 Let BS be a set of secret shares {share(L)
j }j∈⋃Pi∈S Ti

for some subset S ⊂ P and

L ≥ logcsN + logsN +O(1). For any S ⊂ P of size N+1
2 or more, it holds that

Pr[⊥← TreeSSS.Combine(BS)] <
1

2N+1
. (1)

In addition, for any S′ ⊂ P of size less than N+1
2 , it satisfies that

Pr[ŝk← TreeSSS.Combine(BS′)] <
1

2N+1
. (2)

This lemma implies that all subset of P satisfy the correctness of the TreeSSS with a probability of
at least 1− 1

2N+1 .

According to this Lemma 4.7, we can compute the lower bound of the probability that TreeSSS
satisfies the correctness as follows:

Pr[Correctness] ≥ 1−
∑

S⊂P,|S|≥N+1
2

Pr[⊥← TreeSSS.Combine(BS)]

−
∑

S′⊂P,|S′|<N+1
2

Pr[ŝk← TreeSSS.Combine(BS′)]

≥ 1− 2N · 1

2N+1
= 1/2.

Before proving Lemma 4.7, we introduce one more lemma.

Lemma 4.8 ([37]) Let X1, . . . , X2s−1 ← {0, 1} be independent identically distributed random
variables, and p := Pr[Xi = 1] for all i and s ≥ 2. Then, following properties hold:

1. p′ := Pr[
∑2s−1

i=1 Xi ≥ s] =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j.

2. p′ ≥ p when p ≥ 0.5, p′ ≤ p when p ≤ 0.5
3. δ := p− 0.5, it holds that p′ = 0.5 + (cs −O(δ)) · δ where cs =

ℓ
2ℓ−1 ·

(
ℓ−1
s−1
)
.

4. 1− p′ < 8s−1 · (1− p)s.
5. p′ < 8s−1 · ps.

Proof (of Lemma 4.8). The proof of each item is straightforward.

1. By definition of p′, we directly calculate the following

p′ = Pr[

2s−1∑
i=1

Xi ≥ s]

=

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j .

2. To prove inequalities, we define a function f and differentiate it as follows:

f(p) =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j − p,

10 The detailed computation of approximations will be given by Appendix A.
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f ′(p) =

s−1∑
j=0

(
2s− 1

j

)
· (p2s−2−j(1− p)j−1) · ((2s− 1− j)(1− p)− j · p)− 1

= (2s− 1)

s−1∑
j=0

(
2s− 2

j

)
· p2s−2−j(1− p)j

− (2s− 1)

s−1∑
j=1

(
2s− 2

j − 1

)
· p2s−1−j(1− p)j−1 − 1

= (2s− 1)

(
2s− 2

s− 1

)
ps−1(1− p)s−1 − 1,

f ′′(p) = (2s− 1)

(
2s− 2

s− 1

)
(s− 1)ps−2(1− p)s−2(1− 2p).

We know that f(0) = f(0.5) = f(1) = 0. When 1 ≥ p ≥ 0.5, f ′′(p) ≤ 0. Then, f is a concave
function so that f(p) ≥ 0 if 1 ≥ p ≥ 0.5. Similarly, When 0.5 ≥ p ≥ 0, f ′′(p) ≥ 0. Then, f is a
convex function so that f(p) ≤ 0 if 0.5 ≥ p ≥ 0.

3. Since p = 0.5 + δ, it holds that

p′ =

s−1∑
j=0

(
2s− 1

j

)
·
(
1

2
+ δ

)2s−1−j (
1

2
− δ

)j

=

s−1∑
j=0

(
2s− 1

j

)
·
(

1

22s−1
+ (2s− 1− j) · 1

22s−2
· δ − j · 1

22s−2
· δ −O(δ2)

)

=
1

2
+

s−1∑
j=0

2s− 1

22s−2
·
((

2s− 2

j

)
· δ −

(
2s− 2

j − 1

)
· 1

22s−2
· δ
)
−O(δ2)

=
1

2
+

(
2s− 1

4s−1
·
(
2s− 2

s− 1

)
−O(δ)

)
· δ.

4. By the basic combinatorics, it holds that

1− p′ =

s−1∑
j=0

(
2s− 1

j

)
· (1− p)2s−1−jpj

<

(
2s− 1

s− 1

)
(1− p)s ·

s−1∑
j=0

(
s− 1

j

)
· (1− p)s−1−jpj

=

(
2s− 1

s− 1

)
(1− p)s =

(
2s− 2

s− 1

)
· 2s− 1

s
(1− p)s

< 4s−1 · 2 · (1− p)s = 22s−1 · (1− p)s

≤ 23s−3 · (1− p)s = 8s−1 · (1− p)s.

5. By the basic combinatorics, it holds that

p′ =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−j(1− p)j

<

(
2s− 1

s− 1

)
ps ·

s−1∑
j=0

(
s− 1

j

)
· ps−1−j(1− p)j

=

(
2s− 1

s− 1

)
ps

< 22s−1 · ps ≤ 23s−3 · ps = 8s−1 · ps.
⊓⊔

We are ready to prove Lemma 4.7 to finish the proof of the correctness.
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Proof (of Lemma 4.7). Without loss of generality, it suffices to prove Eq. (1), especially |S| = N+1
2 .

In other words, given BS and L as above, we will prove that

Pr[⊥← TreeSSS.Combine(BS)] <
1

2N+1
.

By construction of TreeSSS.Share, a family of level-L secret shares {share(L)
j }j∈[ℓL] is uniformly

distributed to each party. Thus, the probability that S has a specific secret share share
(L)
j is easily

computed by

Pr[S has share
(L)
j ] =

N + 1

2N
=

1

2
+

1

2N
for every j ∈ [ℓL].

Let pi,j be the probability that S has a secret share share
(i)
j for every j ∈ [ℓi] and 1 ≤ i ≤ L.

Then, it obviously holds that pL,j = 1
2 + 1

2N for every j. We now compute pi,j for every i and j.

By construction of TreeSS algorithm (Algorithm 1), a secret share of the form share
(i)
ℓ·(j−1)+k with

k ∈ [ℓ] is obtained by SS(ℓ, s)(share
(i−1)
j ) for every i, j. In other words, when S has a proper set of

level-i secret shares, then S can reconstruct a level-(i− 1) share
(i−1)
j by the correctness of SS(ℓ, s).

On the other hand, reconstructing share
(i−1)
j from s level-i secret shares can be regarded as∑

i Xi ≥ s defining Xk as follows.

Xk =

{
1 if share

(i)
ℓ·(j−1)+k ∈ S

0 otherwise.

for k ∈ [ℓ]. The privacy of SS(ℓ, s) guarantees that Xk’s are identical and independent. Thus,
we directly apply Lemma 4.8 to compute pi−1,j . Fortunately, for every i, we easily observe that
pi,ji = pi,j′i even if ji ̸= j′i since we already know pL,jL = 1

2 +
1

2N for every index jL. By combining
the above equation, it implies pL−1,jL−1

= pL−1,j′L−1
for every jL−1, j

′
L−1. We can therefore simplify

pi,j by pj , regardless of an index j. That is, we obtain

pi−1 =

s−1∑
k=0

(
2s− 1

k

)
· p2s−1−ki (1− pi)

k.

Furthermore, by adapting Lemma 4.8 again, we also have

pi−1 = 0.5 + (cs −O(δi)) · δi,

where cs =
ℓ

2ℓ−1 ·
(
ℓ−1
s−1
)
and δi = pi − 0.5. From this observation, we have

pL =
1

2
+

1

2N

pL−1 =
1

2
+

(
cs −O

(
1

2N

))
· 1

2N

pL−i =
1

2
+

i−1∏
j=0

(cs −O (δL−j))

 · 1

2N
.

According to the first property of Lemma 4.8, we can compute pi−1 as follows:

pi−1 =

s−1∑
j=0

(
2s− 1

j

)
· p2s−1−ji (1− pi)

j .

By the third property of Lemma 4.8, pi−1 also holds the following equation:

pi−1 = 0.5 + (cs −O(δi)) · δi,
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where cs =
ℓ

2ℓ−1 ·
(
ℓ−1
s−1
)
and δi = pi−0.5. So, we can amplify the probability from 1

2 +
1

2N to 15/16.
To compute the number of levels, we provide the lower bound of pL−i as follows:

pL =
1

2
+

1

2N

pL−1 =
1

2
+

(
cs −O

(
1

2N

))
· 1

2N

pL−i =
1

2
+

i−1∏
j=0

(cs −O (δL−j))

 · 1

2N

If pL−i is lower than
15
16 , then all {δL−j}0≤j≤i−1 is less than 7

16 by the second property of Lemma 4.8.

Therefore, pL−i ≥ 1
2 + (cs −O(1))

i · 1
2N until pL−i ≤ 15

16 . Then, we can compute the lower bound
of levels i to exceed 15

16 as follows:

1

2
+ (cs −O(1))

i · 1

2N
≥ 15

16

(cs −O(1))
i ≥ 7N

8

i ≥ logcs−O(1)

(
7N

8

)
≈ logcs N +O(1)

Now, we will amplify the probability from 15
16 to 1− 1

2N+1 . Let pL−i be
15
16 . By the fourth property

of Lemma 4.8, we can get inequalities as follows:

8(1− pL−i−j) ≤ (8(1− pL−i−j+1))
s ≤ . . . ≤ (8(1− pL−i))

sj ≤
(
1

2

)sj

.

Since 1−pL−i−j ≤ 1

2s
j+3

, we can compute the lower bound of levels j to exceed 1− 1
2N+1 as follows:

sj + 3 ≥ N + 1

j ≥ logs(N − 2) ≈ logs N +O(1).

Since L ≥ logcs N + logs N +O(1), p0 ≥ 1− 1
2N+1 . Therefore, Eq. (1) holds. Similarly, Eq. (2) also

holds.

Privacy. Now, we demonstrate that the privacy holds. Given a subset S ⊂ P with |S| < N+1
2

and two secret keys sk0, sk1, we consider the following pairs of shares obtained by executing
TreeSSS.share(skb,SS(ℓ, s), L)→ (skb,1, . . . , skb,N ) for b ∈ 0, 1:

{sk0,i}i∈S and {sk1,i}i∈S

We will show that these two pairs of shares are drawn from the same distribution. To this end,
we use a mathematical induction on the level L. For the base case of L = 1, TreeSSS is equivalent
to Shamir secret sharing scheme, which is known to satisfy the privacy of secret sharing. Hence,
the two sets of secret shares {sk0,i}i∈S , {sk1,i}i∈S follow the same distribution when L = 1.

To continue the proof, we assume that a (k+1)-level TreeSSS, with each sub-tree corresponding
to a k-level TreeSSS, satisfies the privacy. Then, it suffices to demonstrate that privacy also holds
on (k + 1)-level TreeSSS.

For easy explanation, we define a family of level-i secret shares S
(i)
b by

S
(i)
b = {share(i)b,j | share

(i)
b,j can be recovered by S}

for every i ∈ [k+1]. By definition, {skb,i}i∈S = S
(k+1)
b , so we will prove that S

(k+1)
0 and S

(k+1)
1 are

indistinguishable. Moreover, due to iterative constructions, the level-k secret shares S
(k)
0 , S

(k)
1 can

be viewed as the output of k-TreeSSS. Thus, S
(k)
0 and S

(k)
1 have the identical distributions because

of the induction hypothesis.

Now, we divide S
(k+1)
b into two subsets:
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– S
(k+1)
b,P : a set of secret shares which can be used to recover S

(k)
b secret shares.

– S
(k+1)
b,I : a set of secret shares which cannot be used to recover S

(k)
b secret shares.

By definition, a set of level-(k + 1) secret shares S
(k+1)
b,P is derived from level-k secret shares in

S
(k)
b by using Shamir secret sharing for every b. Since nobody can distinguish between S

(k)
0 , S

(k)
1 ,

it obviously holds S
(k+1)
0,P , S

(k+1)
1,P also follow the identical distribution.

Moreover, S
(k+1)
0,I , S

(k+1)
1,I both come from Shamir secret sharing and cannot recover level-k

secret shares. Therefore they also follow the identical distribution because Shamir secret sharing

satisfies the privacy of secret sharing. Thus, (k+1)-TreeSSS satisfies the privacy because of S
(k+1)
b =

S
(k+1)
b,P

⋃
S
(k+1)
b,I .

As a result, by the mathematical induction, we conclude that L-TreeSSS satisfies the privacy
for all positive integer L.

⊓⊔

4.4 TreeSSS for t-out-of-N for arbitrary t

Theorem 4.6 indicates that there is TreeSSS for N+1
2 -out-of-N threshold access structure for

an odd N . In this section, we generate TreeSSS for t-out-of-N threshold access structure, for any
integers t and N .

For simple description, we denote TreeSSS for t-out-of-N threshold access structure by TreeSSS(N, t)
and prove its correctness and privacy. Assume that there exists TreeSSS(N, N+1

2 ) for an odd integer
N .

Case 1) TreeSSS(N, t) for t > N+1
2 and odd N .

• TreeSSS.Share(sk,AN,t) :
1. Sample {sharei}i ← TreeSSS(2t−1, t) by assuming the existence of ephemeral 2t−1 parties.

Suppose that each ephemeral party obtains a set of shares Sk = {sharei} for k ∈ [2t− 1].

2. A dealer distributes Sk to each Pi for every k ∈ [N ].

• TreeSSS.Combine(B): Run a combine algorithm of TreeSSS(2t− 1, t) given a set of shares B.

The correctness is evident because of 2t − 1 > N . Furthermore, the privacy of TreeSSS(N, t) is
directly derived from that of TreeSSS(2t− 1, t).

More precisely, the following holds:

Correctness. The correctness of TreeSSS(2t−1, t) ensures that for any set S ⊂ {P1, . . . , P2t−1}
of size t or more, sk can be recovered among parties in S. Otherwise, sk can not be recovered.
Accordingly, for any S′ ⊂ {P1, . . . , PN} of size t or more, sk can be also recovered among
parties in S′. Therefore, TreeSSS(N, t) satisfies the correctness.

Privacy. The privacy of TreeSSS(2t− 1, t) ensures that for any subset S ⊂ {P1, . . . , P2t−1} of
size less than t, and for any secret key sk0, sk1 in key space, two family of shares follow the
identical distribution

{sk0,i}i∈S ≈ {sk1,i}i∈S
where skk,i is a secret share of ski. Since {P1, . . . , PN} ⊂ {P1, . . . , P2t−1}, for any subset S′ ⊂
{P1, . . . , PN} of size less than t, S′ automatically satisfies the privacy. Therefore, TreeSSS(N, t)
satisfies the privacy, directly.

Case 2) TreeSSS(N, t) for t < N+1
2 and odd N .

• TreeSSS.Share(sk,AN,t) :
1. Sample {sharei} ← TreeSSS(N + r, t+ r = N+r+1

2 ) by assuming the existence of ephemeral
N + r parties, where r = N − 2t + 1. Suppose each ephemeral party gets a set of shares
Sk = {sharei} for k ∈ [N + r].

2. A dealer distributes Sk to each Pi for every k ∈ [N ] and publicly broadcasts the remaining
r subset of shares {SN+1, . . . , SN+r}.
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• TreeSSS.Combine(B): GivenB′ = B∪{SN+1, . . . , SN+r}, run a combine algorithm of TreeSSS(N+
r, t+ r).

Since B′ can be regarded as a collection of t+ r parties, so the correctness is guaranteed by that
of TreeSSS(N + r, t+ r). Similarly, the privacy also holds because of that of TreeSSS(N + r, t+ r).

More precisely, the following holds:

Correctness. The correctness of TreeSSS(N + r, t + r) ensures that for any subset S ⊂
{P1, . . . , PN+r} of size of t + r or more, sk can be recovered. Otherwise, sk can not be re-
covered.
Moreover, for any S′ ⊂ {P1, . . . , PN} of size t or more, each party in S′ additionally knows
{SN+1, . . . , SN+r} because they are public information. Thus, if |S′| ≥ t, the collective infor-
mation held by parties can be represented as S′ ∪

⋃
{PN+1, . . . , PN+r}. This means that the

total number of involved parties could be t+r or more. Consequently, S′ can recover sk because
of the correctness of TreeSSS(N + r, t+ r).

Privacy. The privacy of TreeSSS(N + r, t+ r) ensures that for any subset S ⊂ {P1, . . . , PN+r}
of size less than t, and for any secret key sk0, sk1 in key space, two family of shares follow the
identical distribution

{sk0,i}i∈S ≈ {sk1,i}i∈S
where skk,i is a secret share of ski. Since {P1, . . . , PN} ⊂ {P1, . . . , PN+r}, for any subset

S′ ⊂ {P1, . . . , PN} of size less than t, |S̃ = S′
⋃
{SN+1, . . . , SN+r}| is still smaller than t + r.

Therefore, if one can break the privacy of TreeSSS(N, t), then TreeSSS(N + r, t + r) is also
broken, which contradicts to the assumption. Therefore, TreeSSS(N, t) satisfies the privacy.

Case 3) TreeSSS(N, t) for any t and N is even.

• TreeSSS.Share(sk,AN,t) :
1. Sample {sharei} ← TreeSSS(N + 1, t + 1) by assuming the existence of ephemeral N + 1

parties. Suppose each ephemeral party gets a set of shares Sk = {sharei} for k ∈ [N + 1].
2. A dealer distributes Sk to each Pi for every k ∈ [N ] and publicly broadcasts the unique

remaining set SN+1.
• TreeSSS.Combine(B): Given B′ = B∪SN+1, run a combine algorithm of TreeSSS(N +1, t+1).

In this case, TreeSSS(N, t) satisfies the correctness and privacy in the similar way as Case 2).

Remark 3. For each case, the total number of parties is less than 2N . Therefore, the number of
secret shares is still O(N logcs

ℓ+logs ℓ) with constant integer s and ℓ = 2s − 1. As a result, we can
generate TreeSSS(N, t) for arbitrary t and N while preserving the number of secret shares.

4.5 (Exponential) Offline cost: Concealed probability in {0, 1}-LSSS

{0, 1}-LSSS described in [14, 40] depends on the probabilistic construction of monotone Boolean
formulas proposed by Valiant [53]. Lemma 3.4 (for {0, 1}-LSSS) and Theorem 4.6 (for TreeSSS)
argue that that the probability of constructing the circuits is at least 1/2.

This only ensures that we can construct {0, 1}-LSSS and TreeSSS with at least 1/2 probability
depending on the distribution of secret shares. Therefore, a dealer should check whether a share
matrix M is correctly generated. If so, the dealer generates secret shares using M, and distributes
secret shares to each party. Otherwise, the dealer re-generates a share matrix in the proper man-
ner. Consequently, for usage of these schemes, it is necessary to verify that the share matrix M
as intended in the offline phase. However, the time complexity of the offline verification step is
exponential in N , making it impractical for large N . Suppose that a matrix M is constructed using
{0, 1}-LSSS for t-out-of-N threshold access structure, and the secret sk is distributed to N parties.
Roughly speaking, to achieve the security of {0, 1}-LSSS, any group of t− 1 parties cannot recover
the secret, whereas any group of t or more parties can successfully recover sk. On the other hand,
the total number of valid parties is at least

(
N
t

)
, which is exponential in N . Thus, to confirm the

validity of {0, 1}-LSSS, it takes exponential time in N .
This verification step is included in our TreeSSS since our scheme also depends on the proba-

bilistic construction Theorem 4.6, resulting in additional time costs.

23



To address this issue, we revisit the lemmas related to success probability (at least 1/2). The
success probability (at least 1/2) of Theorem 4.6 stems from Lemma 4.7 and Lemma 4.8.

To mitigate the extra computational overhead, we make a minor adjustment to Lemma 4.7
and the iteration level L, it leads to increase success probability of a threshold structure. More
precisely, we add an additional parameter κ. If the failure probability of each cases is less than
2−N−κ−1, a suitable formed share matrix M can be acquired with a probability of 1− 1

2κ with an

additional levels logs
(
N+κ
N

)
.

Proposition 4.9 Given Shamir secret sharing SS(ℓ, s) and the iteration number L ≥ logcs N +

logs(N + κ) + O(1) where cs = ℓ
2ℓ−1 ·

(
ℓ−1
s−1
)
, L-TreeSSS for N+1

2 -out-of-N threshold structure

satisfies the correctness (Definition 4.3) and the privacy (Definition 4.4) with at least 1 − 1
2κ

success probability and the number of secret shares is ℓL = O(N logcs
ℓ · (N + κ)logs ℓ).

We now prove the Proposition 4.9. The proof is almost the same as the proof of Lemma 4.7.

Proof (of Proposition 4.9). We change upper bounds in Lemma 4.7. Let BS be a set of secret

shares {share(L)
j }j∈⋃Pi∈S Ti

for some subset S ⊂ P and L ≥ logcsN + logs(N + κ) + O(1). Then,

we will prove the following inequalities:

Pr[⊥← TreeSSS.Combine(BS)] <
1

2N+κ+1
for any S ⊂ P of size N+1

2 or more,

Pr[ŝk← TreeSSS.Combine(BS′)] <
1

2N+κ+1
for any S′ ⊂ P of size less than N+1

2 .

If we get above inequalities, then the following holds

Pr[TreeSSS.Combine satisfies the correctness] ≥ 1− 1

2κ
,

which completes the proof.
To this end, we revisit a previous proof Lemma 4.7. In this case, we want to amplify the

probability from 15
16 to 1

2N+κ+1 .
Therefore, lower bound of levels j to exceed 1− 1

2N+κ+1 as follows:

sj + 3 ≥ N + κ+ 1

j ≥ logs(N + κ− 2) ≈ logs(N + κ) +O(1).

Therefore, if L ≥ logcs N + logs(N + κ) +O(1), the inequalities we want to prove hold. ⊓⊔

Secret Sharing Scheme Structure O(log q) # of keys

Previous
Shamir SS

t-out-of-N
O(N logN) N

{0, 1}-LSSS O(log(N + κ)) O(N3.3 · (N + κ)2)

TreeSSS

SS(3, 2)

t-out-of-N

O(log(N + κ)) O(N2.72 · (N + κ)1.58)

SS(19, 10) O(log(N + κ)) O(N2.34 · (N + κ)1.28)

SS(99, 50) O(log(N + κ)) O(N2.22 · (N + κ)1.17)

SS(2s− 1, s) O(s log s · log(N + κ)) O(N2+ε · (N + κ)1+ε)11

Table 2: The comparison results between the previous TFHE and ours after the modification.

Consequently, the number of shares can be changed into O(N logcs
(2s−1) · (N + κ)logs(2s−1))),

which is asymptotically equivalent to the number of shares in Theorem 4.6. We also note that
in case of {0, 1}-LSSS, O(N5.3) is changed into O(N3.3 · (N + κ)2). Table 2 gives results of this
modifications.

For the purpose of clearer presentation, we opt not to use κ throughout this paper, despite its
probabilistic constraints.

11 ε = O(1/ log s).
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Remark 4. We note that κ is only appearing at logs(·). The proof of Proposition 4.9 consists of two
parts. First, amplifying the probability from 1

2 + 1
2N to 15

16 . Next, amplifying the probability from
15
16 to 1− 1

2N+κ+1 . In first step, one needs logcs(N) + O(1) iterations of the Shamir secret sharing
SS(2s − 1, s). On the other hand, to obtain the probability 1 − 1

2N+κ+1 , one additionally needs
logs(N + κ) +O(1) iterations of SS(2s− 1, s). In our computation, the total number of iterations
is represented as follows.

logcs(N) +O(1)︸ ︷︷ ︸
First step of amplification

+ logs(N + κ) +O(1)︸ ︷︷ ︸
Second step of amplification

This is bounded by logcs(N) + logs (N + κ) +O(1).

5 Theshold Fully Homomorphic Encryption

This section describes definitions of threshold fully homomorhpic encryption (TFHE) and its con-
struction based on TreeSSS.

5.1 Definitions

This section presents the definitions and properties of the threshold fully homomorphic encryption.
We follow presentations of the original paper [14].

Definition 5.1 (Threshold Fully Homomorphic Encryption (TFHE)) Let λ be the security
parameter and d be a depth bound. Let P = {P1, . . . , PN} be a set of parties, and let AN,t be a
threshold structures on P . A threshold fully homomorphic encryption scheme for AN,t is a tuple of
PPT algorithms TFHE = (TFHE.Setup,TFHE.Enc,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) that
satisfies the following properties:

• The setup algorithm TFHE.Setup(1λ, 1d,AN,t) takes as input the security parameter λ, a depth
bound d, and a threshold structure A, and outputs (pk, sk1, . . . , skN ), where pk is a public key
and {ski} is a set of secret shares.

• The encryption algorithm TFHE.Enc(pk, µ) takes as input a public key pk and a message µ ∈
{0, 1}, and outputs ciphertext ct.

• The evaluation algorithm TFHE.Eval(C, ct1, . . . , ctl, pk) takes as input a circuit of which depth
is less than or equal d, a tuple of ciphertexts ct1, . . . , ctl and a public key pk, and outputs an
evaluated ciphertext ĉt.

• The partial decryption algorithm TFHE.PartDec(pk, ski, ĉt) takes as input a public key pk, a
secret key share ski and the ciphertext ĉt and outputs a partial decryption pi related to the
party Pi.

• The final decryption algorithm TFHE.FinDec(pk, B) take as input a public key pk, and a set
B = {pi}i∈S for some S ⊂ P , and outputs a message µ̂ ∈ {0, 1,⊥}.

Hereafter, we use notations from Definition 5.1.

Definition 5.2 (Correctness of Evaluation) We say TFHE scheme is correct if for any eval-
uated ciphertext ĉt generated by TFHE.Eval(C, ct1, . . . , ctl, pk) satisfies

Pr[FinDec(pk, {TFHE.PartDec(pk, ski, ĉt)}i∈S) = C(µ1, . . . , µl)] = 1− negl(λ).

Definition 5.3 (Compactness) We say TFHE scheme is compact if for any ciphertext ct gen-
erated from the algorithm of TFHE.Enc and the partial decryption pi obtained by TFHE.PartDec,
there are polynomials poly1, poly2 such that for any j ∈ [N ], it holds that

|ct| ≤ poly1(λ, d) and |pi| ≤ poly2(λ, d,N).

TFHE requires two types of security notions. One is the semantic security for encryption algo-
rithm, and the simulation security is needed for partial decryption.
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Definition 5.4 (Semantic security) Given the security parameter λ and a depth bound d, for
any PPT adversary A, the following experiment ExptA,TFHE(1

λ, 1d) outputs 1 with 1
2 probability

except for negligible probability:

ExptA,TFHE(1
λ, 1d) :

1. For every security parameter λ and a depth bound d, the adversary A outputs a threshold
structure AN,t where 1 ≤ t ≤ N .

2. The challenger C runs TFHE.Setup(1λ, 1d,AN,t)→ (pk, sk1, . . . , skN ), and gives pk to A.
3. A outputs a set S ⊂ {P1, . . . , PN} such that S /∈ AN,t.
4. The challenger runs TFHE.Enc(pk, b)→ ct and provides {ct, {ski}i∈S} to A .
5. A outputs a guess b′.
6. The experiment outputs 1 if b = b′.

Definition 5.5 (Simulation Security) For any security parameter λ, a depth bound d, and a
threshold structure AN,t, the following holds. There exists a stateful PPT algorithm S = (S1,S2)
such that for any PPT adversary A, the following experiments ExptA,Real(1

λ, 1d) and ExptA,Ideal(1
λ, 1d)

are indistinguishable:

ExptA,Real(1
λ, 1d) :

1. For every security parameter λ and a depth bound d, the adversary A outputs a threshold
structure AN,t where 1 ≤ t ≤ N .

2. The challenger C runs TFHE.Setup(1λ, 1d,AN,t)→ (pk, sk1, . . . , skN ), and gives pk to A
3. A outputs a maximal invalid set S∗ ⊂ {P1, . . . , PN} and messages µ1, . . . , µk ∈ {0, 1}.
4. C provides a family of key shares and ciphertexts {{ski}i∈S∗ , {TFHE.Enc(pk, µi)}i∈[k]} to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊂ {P1, . . . , PN}, C) for cir-

cuits C : {0, 1}k → {0, 1} of depth at most d. For each query, C computes ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk)
and provides {TFHE.PartDec(pk, ski, ĉt)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d) :

1. Same as the first step of ExptA,Real(1
λ, 1d)

2. The challenger C runs S1(1λ, 1d,AN,t)→ (pk, sk1, . . . , skN , st), and gives pk to A.
3. Same as the 3rd step of ExptA,Real(1

λ, 1d)
4. Same as the 4th step of ExptA,Real(1

λ, 1d)
5. A issues a polynomial number of adaptive queries of the form (S ⊂ {P1, . . . , PN}, C), where

C : {0, 1}k → {0, 1} is a circuit of depth at most d. For each query, C runs the simulator

{S2(C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, st)→ {pi}i∈S

and sends {pi}i∈S to A.
6. At the end of the experiment, A outputs a distinguishing bit b.

5.2 TFHE using TreeSSS

Let P = {P1, . . . , PN} be a set of parties. Then, the communication efficient TFHE can be built
from the following primitives:

• Let FHE be a special fully homomorphic encryption scheme (Definition 3.10) with noise bound
B and multiplicative constant ((2s − 1)!)L where L ≥ logcs N + logs N + O(1) and cs is
2s−1
4s−1 ·

(
2s−2
s−1

)
for a positive integer s ≥ 2.

• Let TreeSSS be a level-L tree secret sharing scheme built from s-out-of-2s − 1 Shamir secret
sharing scheme (Section 4.2).

The construction presented in this paper is similar to the one in [14], except that we utilize a
TreeSSS as opposed to a {0, 1}-LSSS instantiated by [40]. As a result, most of the security proofs
are similar in both cases, with the exception of Theorem 5.10, which forms the core of this paper.
Consequently, we only include the proof for this theorem in the main text, while the remaining
proofs can be found in the supplementary material.
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Construction 5.6 We can construct a tuple of PPT algorithms as follows:

• (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d,AN,t) :
1. Sample (fhepk, fhesk)← FHE.Setup(1λ, 1d).

2. Compute (share
(L)
1 , . . . , share

(L)

(2s−1)L)← TreeSSS.Share(fhesk,AN,t).

3. Distribute the secret shares to each party Pi and define a index set of each party Ti :=

{j | Pi has share
(L)
j }.

4. Return pk = fhepk and ski = {share(L)
j }j∈Ti

for i ∈ [N ].

• ct← TFHE.Enc(pk, µ): Sample ct← FHE.Enc(pk, µ) and return ct.

• ĉt← TFHE.Eval(C, ct1, . . . , ctk, pk): Compute ĉt← FHE.Eval(C, ct1, . . . , ctk, pk) and return ĉt.

• pi ← TFHE.PartDec(pk, ski, ĉt):
1. Sample a noise flooding error error ej ← [−Bsm, Bsm] and compute

p̂
(L)
j = FHE.Dec0(share

(L)
j , ct) + ((2s− 1)!)Lej ∈ Zq

for every j ∈ Ti.

2. Return pi = {p̂(L)
j }j∈Ti

as its partial decryption.

• µ̂← TFHE.FinDec(pk, B):
1. Check if S ∈ AN,t or not: If S /∈ AN,t, return ⊥.
2. If S ∈ AN,t, compute a minimal valid share set T ⊂ ∪i∈STi and µ← FHE.Dec1(

∑
j∈T cSj ·

p̂
(L)
j ).

3. Return µ̂.

Theorem 5.7 (Compactness) Suppose FHE is a compact fully homomorphic encryption scheme.
Then, the TFHE scheme in Construction 5.6 satisfies compactness.

Proof (of Theorem 5.7). It is obvious that the encryption (evaluation) of TFHE is equal to the
encryption of FHE. Thus, the compactness of TFHE automatically holds whenever FHE satisfies
the compactness. ⊓⊔

Theorem 5.8 (Correctness) Suppose FHE is a special fully homomorphic encryption scheme
that satisfies correctness with noise bound B and TreeSSS is a level-L tree secret sharing scheme,
where L ≥ logcs N+logs N+O(1), in Section 4.2 that satisfies the correctness. Then, TFHE scheme
in Construction 5.6 with respect to parameter regime Bsm such that B + ((2s− 1)!)2L · (2s− 1)L ·
Bsm ≤ ⌊ q4⌉ satisfies the correctness.

Proof (of Theorem 5.8). By Construction 5.6, the following satisfies:

• Given the secret key of fully homomorphic encryption fhesk, it is splitted as follows:

(share
(L)
1 , · · · , share(L)

(2s−1)L)← TreeSSS.Share(fhesk,At).

• The setup algorithm returns pk = fhepk and ski = {share(L)
j }j∈Ti

for i ∈ [N ].

• The partial decryption algorithm outputs pi = {p̂j
(L)}j∈Ti , where

p̂
(L)
j = FHE.Dec0(share

(L)
j , ct) + ((2s− 1)!)L · ej ∈ Zq

for every j ∈ Ti = {j | Pi has share
(L)
j } and any (valid) ciphertext ct.

Let T (L) ⊆ ∪i∈STi be the minimal valid share set for S ∈ At. Then, {share(L)
j }j∈T (L) can be

recovered to the secret key sk using TreeSSS built from SS(2s− 1, s) proposed by Section 4.2.

Let T (i) be a family of indices defined as follows: for any 1 ≤ i ≤ L, T (i) = {k | share(i)k can be recovered by {share(L)
j }j∈T (L)}.

Then, the correctness of TreeSSS, fhesk can be expressed as follows:

fhesk = share(0)
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=
∑

j1∈T (1)

λ
S

(1)
j1

j1
· share(1)j1

=
∑

j2∈T (2)

λ
S

(1)
j1

j1
· λ

S
(2)
j2

j2
· share(2)j2

...

=
∑

jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· share(L)

jL
,

where jk is an index of level-k secret shares which uses share
(L)
j to recover itself, S

(k)
jk

is a set of

level-k secret shares including share
(k)
jk

which recover a level-(k − 1) secret share share
(k−1)
jk−1

, and

the Lagrange coefficient λ
S

(k)
jk

jk
are obtained from the Lagrange polynomial of Shamir secret sharing

SS(2s− 1, s).

On top of this construction, the linearity of FHE.Dec0 provides the following relation:

∑
jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· p̂(L)

jL

=
∑

jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
·
(
FHE.Dec0(share

(L)
jL

, ct) + ((2s− 1)!)LejL

)

= FHE.Dec0

 ∑
jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· share(L)

jL
, ct


+

∑
jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· ((2s− 1)!)LejL

= FHE.Dec0(fhesk, ct) +
∑

jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· ((2s− 1)!)LejL

= µ⌊q
2
⌉+ e+

∑
jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· ((2s− 1)!)LejL .

Consequently, FHE.Dec1(
∑

jL∈T (L) λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
·λ

S
(L)
jL

jL
· p̂(L)

jL
) returns the correct messages when

the error term is appropriately bounded because of Definition 3.10.

Let esm be a noise smudging error of the form

∑
jL∈T (L)

λ
S

(1)
j1

j1
· · ·λ

S
(L−1)
jL−1

jL−1
· λ

S
(L)
jL

jL
· ((2s− 1)!)LejL .

By Lemma 2.2, it holds that |esm| ≤ ((2s − 1)!)2L · (2s − 1)L · Bsm, and it implies |e + esm| ≤
B + ((2s − 1)!)2L · (2s − 1)L · Bsm ≤ ⌊ q4⌉. Thus, FHE satisfies the its correctness, which directly
implies that TFHE also satisfies the correctness. ⊓⊔

Theorem 5.9 (Security) Suppose FHE is a fully homomorphic encryption scheme that satisfies
security and TreeSSS is a tree secret sharing scheme that satisfies the correctness. Then, TFHE
scheme from Construction 5.6 satisfies semantic security.

Proof (of Theorem 5.9). The encryption in TFHE is equivalent to that in FHE. As per the privacy
of secret sharing, if a set of partial secret shares {ski}i∈S are kept confidential, then they do not
reveal any information about the secret key sk when S /∈ AN,t. This means that the security of
FHE implies the semantic security of TFHE. ⊓⊔
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Theorem 5.10 (Simulation security) Suppose FHE is a fully homomorphic encryption scheme
that satisfies security and TreeSSS is a tree secret sharing scheme that satisfies correctness and
privacy. Then, TFHE scheme from Construction 5.6 with parameter Bsm such that B · ((2s −
1)!)L/Bsm = negl(λ) satisfies simulation security where L ≥ logcs N + logs N +O(1).

Proof (of Theorem 5.10). We adapt the security proof in [14] according to the our construction.
We define a series of the hybrid experiments between an adversary A and a challenger C.

• H0: This is a real experiment ExptA,Real(1
λ, 1d) of TFHE in Definition 5.5.

• H1: Same as H0 except for C simulates the partial decryption for A’s queries. More precisely,

C first computes the maximal invalid secret shares {share(L)
j }j∈T∗ where T ∗ is the union of all

Ti for i ∈ S∗. Then, C can obtain the partial decryption TFHE.PartDec(pk, ĉt, ski) for i ∈ S by

using {share(L)
j }j∈T∗ and C(µ1, . . . , µk) for each query (S,C). The partial decryption algorithm

takes in (pk, ĉt, ski) and outputs pi = {p̂(L)
j }j∈Ti

, based on the following conditions:

(Case 1) j ∈ T ∗: In this case, C already has share
(L)
j , so C can compute p̂

(L)
j as follows:

p̂
(L)
j = FHE.Dec0(share

(L)
j , ĉt) + ((2s− 1)!)L · ej ,

where ej is uniformly sampled from [−Bsm, Bsm].

(Case 2) j /∈ T ∗: By definition of T ∗ that is a maximal invalid secret shares, T̄ = T ∗ ∪ {j}
should be a set of valid shares. Hence, there are multiples of Lagrange coefficients for each

k ∈ T̄ such that
∑

k∈T̄ ck · share(L)
k = fhesk. Then, C returns

p̂
(L)
j = (cj)

−1 · C(µ1, . . . , µk) ·
q

2

−
∑

j′∈T∗

(cj)
−1cj′ · FHE.Dec0(share(L)

j′ , ĉt) + ((2s− 1)!)L · ej ,

where ej is uniformly sampled from [−Bsm, Bsm].

• H2: Same asH1 except that C randomly samples ski. This is an ideal experiment ExptA,ideal(1
λ, 1d)

of TFHE in Definition 5.5.

Now, we will prove that hybrid experiments, H0,H1,H2, are statistical indistinguishable.

Lemma 5.11 H0 ≈s H1

Proof (of Lemma 5.11). The only difference between H0 and H1 is an algorithm of partial de-

cryption p̂
(L)
j for j /∈ T ∗. Due to the correctness of FHE and definition of special FHE, it holds

that q
2 · C(µ1, . . . , µk) = FHE.Dec0(sk, ĉt) + ẽ where an error ẽ is sampled uniformly at random in

[−cB, cB] and c = ((2s− 1)!)L.

As a result, we can reinterpret p̂
(L)
j

p̂
(L)
j = (cj)

−1C(µ1, . . . , µk) ·
q

2
−
∑

j′∈T∗

(cj)
−1cj′FHE.Dec0(share

(L)
j′ , ĉt) + c · ej

= (cj)
−1(FHE.Dec0(sk, ĉt) + ẽ)−

∑
j′∈T∗

(cj)
−1cj′FHE.Dec0(share

(L)
j′ , ĉt) + c · ej

= FHE.Dec0

(cj)
−1 ·

sk−
∑

j′∈T∗

cj′ · sharej′

 , ĉt

+ (cj)
−1 · ẽ+ c · ej

= FHE.Dec0(sharej , ĉt) + (cj)
−1 · ẽ+ c · ej .

In partial decryption in H1, there is an extra error term (cj)
−1 · ẽ. Since ẽ is a multiple of

((2s−1)!)L and cj is a multiple of Lagrange coefficient, it follows from Lemma 2.2 that |(cj)−1 · ẽ| ≤
((2s−1)!)2L ·B. The bound Bsm satisfies (B ·((2s−1)!)L)/Bsm = negl(λ), making the experiments
H0 and H1 indistinguishable due to the noise flooding technique (Lemma 3.1).

⊓⊔
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Lemma 5.12 H1 ≈s H2

Proof (of Lemma 5.12). The difference betweenH1 andH2 lies in the method of sampling the secret
keys {ski}i∈S∗ , where S∗ is an invalid set. The privacy of the secret sharing scheme ensures that no
party can distinguish between the two distributions of secret keys for any invalid set. Therefore, an
adversary cannot distinguish between H1 and H2 if the secret sharing scheme provides the desired
privacy. ⊓⊔

Lemma 5.11 and Lemma 5.12 say that H0 is also statistically indistinguishable to H2. As a
result, Construction 5.6 achieves the simulation security. ⊓⊔

6 Communication Efficient Universal Thresholdizer

As shown in Table 2, our TFHE shows superiority over previous compact TFHE in terms of small
share key sizes. This implies to lower communication costs during partial decryption.

Building a communication-efficient universal thresholdizer can then be achieved by combining
our TFHE with other primitives, as proven by [14] through the following theorems.

Theorem 6.1 ([14]) Suppose that there are cryptographic schemes that satisfies the following:

• Threshold fully homomorhpic encryption that satisfies compactness (Definition 5.3), correct-
ness of evaluation (Definition 5.2), semantic security (Definition 5.4) and simulation security
(Definition 5.5).

• Zero knowledge proof system with pre-processing which satisfies zero-knowledge and soundness.
• Non-interactive commitment scheme that holds perfect binding and computational hiding.

Then, one can generate an universal thresholdizer scheme such that compactness, evaluation cor-
rectness, verification correctness and security.
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4. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel
Wichs. Multiparty computation with low communication, computation and interaction via threshold
fhe. In Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 483–501. Springer, 2012.

5. Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure mpc: Laziness
leads to god. In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT
2020, pages 120–150, Cham, 2020. Springer International Publishing.
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A About Approximation

We first introduce a useful inequalities to provide an approximation that we used. According to
[22], cs is bounded by

1√
π
· 2s− 1√

s− 1/2
<

2s− 1

4s−1
·
(
2s− 2

s− 1

)
<

1√
π
· 2s− 1√

s− 1

Then, we have the following series of inequalities. From an upper bound of cs, we get

logcs(2s− 1) + logs(2s− 1) ≤ log
2

√
s−1/2

π

(2s− 1) + logs(2s)

Since 2s−1 is represented by
√

s−1/2
π

2

·π2 and logs(2s) = 1+logs 2, the right-hand side is represented

by
2 + log

2

√
s−1/2

π

(π/2) + (1 + logs 2).

Since we only consider s ≥ 2, it holds that (s−1/2)
π ≥ s/4, which implies

2

√
s− 1/2

π
≥
√
s.

Thus, we have

2 + log
2

√
s−1/2

π

(π/2) + (1 + logs 2) ≤ log√s(π/2) + 3 +
1

log s
.

Last, using log π
2 = 0.65149612947, we have

log√s(π/2) + 3 +
1

log s
≤ 1.30299

log s
+ 3 +

1

log s

≤ 3 +
2.30299

log s
.

Consequently, we have
1√
π
· 2s− 1√

s− 1/2
≤ 3 +

2.30299

log s

B Observation of {0, 1}-LSSS with [53] construction

{0, 1}-LSSS is a family of linear secret sharing schemes that utilizes binary coefficients to recover
the shared secret from secret shares, as defined in [14]. The use of monotone Boolean formulas
[43] was proposed as an instantiation of {0, 1}-LSSS. However, the polynomial-sized expression of
threshold functions was proven by Valiant and Goldreich [35, 53]. Recently, [40] proposed using a
folklore algorithm to demonstrate that monotone Boolean formulas are a part of {0, 1}-LSSS. We
briefly summarize the construction of threshold functions.

We focus on a threshold function with N/2-out-of-N parties, where N is even, for simplicity.
Let φ be a level-0 formula which takes N bit-strings as input and returns one of the i-th input bits
with some probability, where i is randomly chosen, or returns 0. For each i ≥ 1, the level-(i + 1)
formula is defined as φ = (φ1∧φ2)∨ (φ3∧φ4), with φ1, φ2, φ3, φ4 randomly selected from a family
of level-i formulas. Note that to maintain independence, the level-i formulas will not be duplicated.

In classic works [35, 53], it was proved that with O(N5.3) level-0 formulas, a N/2-out-of-N
threshold function can be expressed with a level-t formula with non-negligible probability, where
t = O(logN). Building upon this result, [40] showed that this level-t formula can be converted into
a {0, 1}-LSSS for threshold functions.

To share a secret key sk ∈ Zq, {0, 1}-LSSS constructs a matrix M ∈ Zℓ×m
q , called the share

matrix, with m, ℓ≫ N , and distributes a subset of {wi}i∈[ℓ] to each party. The vector w = (wi) =
M · (sk, r2, . . . , rm)T is computed using randomly sampled ri ← Zq. The size of ℓ is equal to the
size of level-t formula, O(N5.3), and m is one more than the number of AND gates in level-t
formula. This results in a total of O(N5.3) secret shares. {0, 1}-LSSS for threshold functions in [40]
is constructed as follows:
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1. Consider level-0 formulas φi, where i ∈ [O(N5.3)].
2. Create a level-(i+ 1) formula φ by combining φ1 ∧ φ2 and φ3 ∧ φ4 through an OR operation,

where φ1, φ2, φ3, φ4 are randomly selected level-i formulas.
3. Repeat the process until i reaches t, which results in a level-t formula that is equivalent to the

N/2-out-of-N threshold function with non-negligible probability.
4. Use the folklore algorithm to convert the level-t formula into a share matrix M.

Note that throughout this paper, the folklore algorithm is considered a black-box method that
converts circuits consisting of only AND and OR gates into matrices, except for this section. For
more insightful discussion on the algorithm, please refer to [14,40].

Input: A special monotone Boolean formula C : {0, 1}n → {0, 1}.
Output: A share matrix M induced by C.

1. Assign the label (1) to the root node of the tree, which represents a vector of
length one.

2. Set a counter count = 1. Then, proceed to label each node m in the tree, starting
from the top and moving downwards.

3. For each non-leaf node m of the tree:
(a) If m is an OR gate, assign the same label to its children as that of node m.
(b) If m is an AND gate, first consider the labeled vector v on m. If required,

pad v with 0’s at the end to make it of the length count. Call the new vector
v′. Then label one child node with the vector (v′, 1) and the other child node
with the vector (0, . . . , 0,−1) which has length count+ 1.

4. Once all nodes in the tree are labeled, the vectors assigned to the leaf nodes form
the rows of the matrix M. If the lengths of these vectors differ, then pad the
shorter ones with zeros at the end to make them have the same length.

Fig. 4: Folklore Algorithm in [40].

B.1 Regarding {0, 1}-LSSS as iterations of matrices

We reinterpret a secret sharing algorithm for threshold functions by utilizing the iterative steps
of Boolean formula construction described in [53]. This allows us to construct a share matrix M
through iterative matrix multiplications.

[53] proves that the threshold circuit is an iterative construction of the Boolean monotone

formulas: For i, the level-(i+1) formula φ(i+1) is generated from four level-i formulas, φ
(i)
1 , φ

(i)
2 , φ

(i)
3

and φ
(i)
4 . Specifically, φ(i+1) = (φ

(i)
1 ∧ φ

(i)
2 ) ∨ (φ

(i)
3 ∧ φ

(i)
4 ).

We first claim that the relation between φ(i+1) and {φ(i)
j }j∈{1,2,3,4} can be represented as a

binary tree of depth 2, as in the structure shown in Fig. 5. Since this binary tree is composed of
AND and OR gates, we can directly apply the folklore algorithm to the tree. As a result, there exists

a small matrix D that corresponds to this binary tree, with the leaf nodes being {φ(i)
j }j∈{1,2,3,4}.

Here, D is defined by

D =


1 1

1 1

0 −1
0 −1

 ∈ Z4×2
q .

Furthermore, the correspondence between the binary tree and the matrix is established through
the relationship 

sk
φ

(i)
1

sk
φ

(i)
2

sk
φ

(i)
3

sk
φ

(i)
4

 = D ·

[
skφ(i+1)

r

]
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Fig. 5: Boolean formula corresponds to secret share

where r ∈ Zq is a random integer. Thus, the operation φ(i+1) = (φ
(i)
1 ∧ φ

(i)
2 ) ∨ (φ

(i)
3 ∧ φ

(i)
4 ) can be

viewed as a matrix multiplication with D. Similarly, the representation of the formula φ(i+1) from
16 φ(i−1) formulas can be represented as a matrix I4 ⊗D ∈ Z16×8, where I4 is the 4-dimensional
identity matrix. Consequently, there is a matrix M which corresponds to circuit representations of
level-t formula φ(t) from level-0 φ(0) formulas.

By the mathematical induction, we obtain a share matrix M of {0, 1}-LSSS.12 Furthermore,
Share algorithm of {0, 1}-LSSS is regarded by computing M · v for some v.

12 The proof is exactly the same as that of Proposition 4.5 except for using D rather than Vs.
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