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Abstract. Gadget decomposition is widely used in lattice based cryptography, especially homomorphic
encryption (HE) to keep the noise growth slow. If it is randomized following a subgaussian distribution,
it is called subgaussian (gadget) decomposition which guarantees that we can bound the noise contained
in ciphertexts by its variance. This gives tighter and cleaner noise bound in average case, instead of the
use of its norm. Even though there are few attempts to build efficient such algorithms, most of them
are still not practical enough to be applied to homomorphic encryption schemes due to somewhat high
overhead compared to the deterministic decomposition. Furthermore, there has been no detailed analysis
of existing works. Therefore, HE schemes use the deterministic decomposition algorithm and rely on a
Heuristic assumption that every output element follows a subgaussian distribution independently.
In this work, we introduce a new practical subgaussian gadget decomposition algorithm which has the
least overhead (less than 14%) among existing works for certain parameter sets, by combining two
previous works. In other words, we bring an existing technique based on an uniform distribution to a
simpler and faster design (PKC’ 22) to exploit parallel computation, which allows to skip expensive
parts due to pre-computation, resulting in even simpler and faster algorithm. When the modulus is
large (over 100-bit), our algorithm is not always faster than the other similar work. Therefore, we give a
detailed comparison, even for large modulus, with all the competitive algorithms for applications to
choose the best algorithm for their choice of parameters.

Keywords: Subgaussian Decomposition, Randomized Gadget Decomposition, Homomorphic Encryp-
tion

1 Introduction

Gadget decomposition algorithm is an essential building block for lattice based cryptography which leads to
various applications such as identity based encryption (IBE) [GPV08,CM15], attributed based encryption
(ABE) [DDP+18,BGG+14], homomorphic encryption (HE) [GSW13] and more. A Gadget matrix is defined
as G = In ⊗ g, where g := (1, b, b2, . . . , bk−1) is called a gadget vector, and In is a n-by-n identity matrix for
some positive integer n. A gadget decomposition algorithm was firstly introduced by Micciancio et al. [MP12]
as preimage sampling for fG(x) = Gx mod q. For an input u, the algorithm samples a point x in Λ⊥

u (G)
which is a coset of Λ⊥

q (G). We consider the case n = 1 so that the algorithm samples a point in Λ⊥
u (g

t) for
an input u ∈ Zq. Depending on a distribution which the output follows, applications may differ. Specifically,
if the output x is a subguassian random variable, we call it a subgaussian gadget decomposition (subgaussian
sampling for short, throughout this paper).

The subgaussian distribution has an important role in lattice based cryptosystems due to its Pythagorean
additivity. Informally, any distribution of which tails are bounded by tails of a Gaussian distribution is a
subgaussian distribution. Therefore, a discrete Gaussian distribution also belongs to a subgaussian distribution.
In particular, the property, Pythagorean additivity, enables to tightly analyze the noise growth of average case
in many lattice based homomorphic encryption (HE) schemes like [BGV12,FV12,GSW13,DM15,CGGI20,
BIP+22]. A ciphertext of HE schemes has the noise term which becomes larger whenever homomorphic
evaluation is performed, leading to decryption failure if it is not refreshed at some point. Therefore, Gentry
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et.al. [GSW13] firstly introduce the use of the gadget decomposition to keep the noise growth small, hence,
their scheme allows more operations before decryption failure occurs. Towards more practical use, there have
been many HE schemes [DM15,CGGI20,BIP+22] which basically were built on top of this strategy, and
they have been called GSW-like schemes in the related literatures. If such schemes use a randomized gadget
decomposition, there are more advantages for them: 1) one can analyze the noise contained in ciphertexts
with cleaner and tighter bound than the use of other measures such as Euclidean/infinite norm [AP14], and
2) circuit privacy can be achieved almost for free [BdMW16]. That is why we need practical randomized
gadget decomposition since FHE schemes and their applications are becoming more practical.

Analyzing the noise growth precisely as much as possible in homomorphic encryption is highly important
since the noise growth is closely related to choosing the right parameters of applications based on HE schemes
to achieve the best performance. Moreover, one can estimate how many homomorphic operations are possible
before decryption fails based on the analysis. More importantly, the parameters of HE schemes determine the
bit security of the schemes based on well known attacks. Therefore, the noise analysis can be a tool to justify
their choice of parameters which makes the schemes safe from the attacks as in [BIP+22].

1.1 Subgaussian sampling in homomorphic encryption

GSW-like schemes [GSW13,DM15,CGGI16,BIP+22] which implement gate operations consisting of linear
operation over ciphertexts can model their noise coefficient as subgaussian random variable due to linearity.
Hence, Ducas and Micciancio [DM15] started to use subgaussian analysis to estimate how much the noise
grows after evaluating a complicated circuit on average. Nevertheless, the follow-up schemes heuristically
assume that their final noise elements independently follow a subgaussian distribution (called independence
Heuristic in [CGGI16]), then use a deterministic gadget decomposition in their implementation for the
sake of practical performance3. The main reason is that 1) subgaussian sampling was studied only in a
theoretical way previously so that such work did not receive much attention in practical fields and 2) the only
existing algorithm they could employ for their randomized decomposition algorithm was discrete Gaussian
sampling [GM18,MP12] which might cause huge computational overhead in implementations. Afterwards, all
the follow-up works and applications based on HE keep relying on the Heuristic assumption and using the
deterministic algorithm in their implementations. Therefore, it had seemed that this was the only solution to
achieve both practicality and such tight noise analysis until Genise et al. [GMP19] presented the first efficient
randomized digit decomposition, recently. We denote their algorithm by GMP19 in this paper.

They focus on subgaussian sampling itself which can be implemented more efficiently than the discrete
Gaussian sampling in practice mainly due to its relaxed probability condition. As a result, they presented the
first subgaussian sampling which outperforms existing discrete Gaussian sampling, so that it became closer
to practical algorithm for GSW-like schemes [GSW13,DM15,CGGI16,BIP+22]. Despite of their efforts, the
computational overhead, which is the extra running time after running deterministic decomposition algorithm,
is not negligible. Later, Jeon, Lee, and Park [JLP21] observed that the main two subalgorithms of GMP19
were sequential so that they parallelized the two with a uniform distribution and showed that their uniform
distribution is subgaussian. With this approach, one algorithm can be considered as a pre-computation, hence,
their solution performs over 50% better than GMP19.

Moreover, Zhang and Yu [ZY22] also improved GMP19 when q is not a power of b, introducing a plausible
idea by calling the simpler algorithm of [GMP19] for q = bk for some positive integer k as a subalgorithm. In
more detail, Genise et al. presented two different subgaussian samplings depending on the relation between
q and b due to different basis structures of the lattice. The algorithm when q ̸= bk has more complicated
steps than the other one for q = bk, hence it takes more time than the other. Zhang and Yu focused on the
similarity of the two bases. In other words, the two bases look exactly same up to the (k − 1)-th column,
and the last column of them only differs. Therefore, they run the faster algorithm to obtain the result up
to the (k − 1)-th digit of the final result by reducing the modulus q such that bk−1 < q < bk to q′ = bk−1,
then determine the last digit by checking all the previous outcome. Due to the use of simpler and faster

3 Note that the deterministic gadget decomposition takes a uniform random ciphertext, hence its output follows a
uniform random distribution.
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algorithm, they could have better computation time than GMP19. However, the algorithm is still not practical
enough in terms of the actual computation time. In reality, the main computation overhead of evaluating a
homomorphic circuit would be caused by this randomized gadget decomposition algorithm. Furthermore, no
detailed comparison between the two different techniques [ZY22,JLP21], both of which outperform [GMP19],
has been addressed in any literature. In fact, it is important to compare these existing algorithms to see the
trade-offs in different parameter settings for those who is interested in HE and its applications. It is because
the performance of the gadget decomposition and the noise growth of the output highly depend on the choice
of b and k for a fixed q. In detail, the larger k, the lower noise is added to the output ciphertext, but also the
slower computation time the algorithm has.

1.2 Our Contribution

In this work, we present a faster randomized gadget decomposition (subgaussian sampling) with the least
computation overhead compared to the deterministic decomposition among the existing works. We bring
the technique of Zhang-Yu [ZY22](denoted by ZY22 for short) to the subgaussian sampling of Jeon-Lee-
Park [JLP21] (denoted by JLP21) which uses a uniform distribution, so that we can fully exploit the advantage
of precomputation of JLP21 in the structure of ZY22. In other words, we replace the call of GMP19 by the call
of JLP21 in Zhamg-Yu’s structure, so we could already gain a little improvement because JLP21 is faster
than GMP19. And the last step of this algorithm, which checks all the previous outcome to determine the last
digit, becomes simpler than ZY22 since we can skip this step by checking the only one precomputed value.
Consequently, our results range between 5x to 14x faster compared to Zhang-Yu’s.

In addition, we give a detailed analysis and comparison among the existing such algorithms [GMP19,
ZY22,JLP21], which has not been covered in the previous literature. In more detail, our experimental result
shows that our algorithm outperforms ZY22 and slightly faster than JLP21 for small q (≈ 260). We note
that the value k increases as b decreases for a fixed q. Our algorithm is 82% faster than ZY22 at most and
35% faster than JLP21 with the large k. JLP21 becomes similar to ours as k gets smaller since one of its
subalgorithms which depends on k becomes faster than one of ours which takes constant time. Also, we have
the least computational overhead (from 2% to 14% depending on k) among existing works, which means that
it takes only a little bit longer time than deterministic algorithm.

For larger q such as q ≈ 2102, the computation cost of four different algorithms are almost same due to
the use of BigInteger type which represents a number over 64-bit in implementation. However, both JLP21

and our algorithm are slightly faster thanks to the uniform distribution. When q is large and k is small,
JLP21 outperforms our algorithm due to the same reason as q is small. Hence, it is suitable for applications
which require low multiplication depth when the modulus q is large. We note that most of applications of
HE which require large q such as [BGV12,CKKS17] use CRT/RNS technique to avoid multi-precision as
discussed in [GMP19], so that the result with smaller q would be more helpful for such applications.

We also note that the tighter bound of the noise is still preserved when non-centered distribution is used
in HE since the extra term is much smaller than the dominant term in the variance (discussed in Section 4.2).
Therefore, the non-centered case has slightly larger size of output, so does the noise in ciphertexts of HE, but
it does not directly influence on the most significant bit of the noise.

1.3 Technical Overview

Let’s say that we want to obtain a decomposition of u ∈ Zq where q ̸= bk, given a gadget vector g =
(1, b, b2, . . . , bk−1). JLP21 works as follows: 1) sample a vector y uniformly at random and 2) compute
(x0, . . . , xk−1) =: x = Sqy+u, where u is a deterministic digit decomposition of u. Since sampling y is totally
independent of the input u in their algorithm, this step can be computed previously as a preprocessing. We
observed that the last component of y, say yk−1, determines if x is a decomposition of u or u− q in JLP21

since yk−1 is a coefficient of the last column of the basis. Therefore, the algorithm already knows that whether
the composed value will be u or u− q by checking the precomputed value yk−1.

Then, we let the algorithm fix a value denoted by u′ for depending on yk−1, that is, u
′ = u mod bk−1 if

yk−1 = 0 and u′ = u− q mod bk−1 if yk−1 = −1. Next, we use the trick of ZY22 to compute from x0 to xk−2
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of x by running the subgaussian sampling of JLP21 for power of b case taking u′ and q′ = bk−1 on input.
Now, it is time to decide the last component of x, xk−1. As [ZY22] observed already, the last component
xk−1 is determined by the value of ⟨x′,g′⟩, where x = (x′, xk−1) and g = (g′, bk−1).

Due to sequential process of ZY22, it is necessary to compute the dot product, however, we can already
check the value by checking the second last component of the precomputed vector y, yk−2, by our observation
of JLP21 structure. Consequently, we can more quickly determine the last component of x than the previous
work.

2 Preliminaries

Notation: Numbers are denoted as small letters, such as a ∈ Z, vectors as bold small letters, a ∈ Zn, and
matrices as capital bold letters, A ∈ Rn×n. We denote the inner product of two vectors v,w by ⟨v,w⟩. We use
the ℓ2 norm as a default norm for a vector x. [u]kb = (u0, . . . , uk−1) denotes a vector, where ui ∈ {0, . . . , b−1},
which is b-ary decomposition of u such that

∑
i b

iui = u for an integer base b > 0. A notation a
$←− S means

that a is chosen uniformly from a set S.

2.1 Subgaussian Random Variables

We explain subgaussian random variables and their significant properties in this section. We describe the
general definition for a univariate δ-subgaussian random variable for some δ ≥ 0 as in [MP12].

Definition 1. A random variable V over R is δ-subgaussian (δ ≥ 0) with parameter s > 0 if its moment
generating function satisfies

E[exp(2πtV )] ≤ exp(δ) exp(πs2t2)

for all t ∈ R.

We call the parameter s the standard parameter. It is easy to see that if X is δ-subgaussian with parameter
s, then cX is also δ-subgaussian with parameter |c|s for any c ∈ R. In addition, if a random variable V is
centered at 0 and bounded with B, then V is 0-subgaussian with parameter B

√
2π [Str94]. If there exists

a 0-subgaussian random variable, we can make it into a δ-subgaussian random variable for nonzero δ by
shifting the variable with some real number as stated in Lemma 1. Therefore, we can deal with δ-subgaussian
distribution by considering a shifted centered subgaussian distribution.

Lemma 1. (Lemma 7 in [MP19]) If V is a 0-subgaussian with parameter s, then the real-valued shifted
random variable V = V + α for α ∈ R is a δ-subgaussian with parameter s such that s > s for some
non-negative real-valued δ such that δ ≥ α2π/(s2 − s2).

In other words, a subgaussian distribution centered at nonzero is δ-subgaussian where δ > 0. Informally
speaking, a distribution is more centered at 0 if δ is closer to 0.

Lemma 2 says that δ(> 0)-subgaussian random variable with parameter s has variance bounded by s2.
Informally, the tails of V are dominated by a Gaussian function with standard deviation s.

Lemma 2. (Lemma 8 in [MP19]) If V is a univariate real-valued δ-subgaussian with parameter s ≥ 0,
then Var(V ) ≤ s2, where Var(V ) is the variance of V .

The sum of independent subgaussian variables is easily seen to be subgaussian. It is also proved that the
sum of subgaussian variables is also subgaussian even when random variables are conditioned on the other
random variables. And we use this property to prove that our algorithm follows a subgaussian distribution.

Lemma 3. (Claim 2.1 in [LPR13]) Let δi, si ≥ 0 and Xi be random variables for i = 1, . . . , k. Suppose
that for every i, when conditioning on any values of X1, . . . , Xi−1, the random variable Xi is δi-subgaussian
with parameter si. Then

∑
Xi is

∑
δi-subgaussian with parameter

√∑
s2i .
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Using Lemma 3, we can prove that a vector with subgaussian coordinates is also subgaussian, which is a
general extension from Lemma 2.2 in [GMP19]. To do this, we use the fact that a random vector x ∈ Rn is
δ-subgaussian with parameter s > 0 if ⟨x,u⟩ is δ-subgaussian with parameter s for all unit vectors u, given
in [MP12].

Lemma 4. (The general version of Lemma 2.2 in [GMP19]) Let x be a discrete random vector over
Rn such that each coordinate xi is δi-subgaussian with parameter si given the previous coordinates take any
values. Then x is a

∑
δi-subgaussian vector with parameter maxi{si}.

Proof. The moment generating function of ⟨x,u⟩ is

E[exp(2πt⟨x,u⟩)] = E[exp(2πt
∑

xiui)]

≤ exp(
∑

δi) exp(πt
2
∑

s2iu
2
i )(∵ Lemma 3)

≤ exp(
∑

δi) exp(πt
2(max si)

2
∑

u2
i )

= exp(
∑

δi) exp(πt
2(max si)

2||u||2)

= exp(
∑

δi) exp(πt
2(max si)

2(∵ unit vector u).

2.2 Gadget and Lattices

We use the same gadget g = (1, b, . . . , bk−1) defined in [MP12] for a positive integer b. A lattice Λ with the
rank k and basis B = [b1, . . . ,bk] is a set of all linear combinations of the basis vectors with coefficients
in Z. A coset of a lattice Λ is a set c + Λ = {c + z : z ∈ Λ}. In this work, we focus on the gadget lattice
Λ⊥
q (g

t) = {z ∈ Zk
q : ⟨g, z⟩ = 0 mod q} for q ≤ bk. For any u ∈ Zq, Λ

⊥
u (g

t) = {z ∈ Zk : ⟨g, z⟩ = u mod q} is
a coset of Λ⊥

q (g
t) since Λ⊥

u (g
t) = u+ Λ⊥

q (g
t) where u is a vector such that ⟨g,u⟩ = u mod q. A basis of the

gadget lattice Λ⊥
q (g

t) is like the following:

Sq =


b q0
−1 b q1

. . .
...

b qk−2

−1 qk−1

 =

 S′

−1

q



=


b
−1 b

. . .

b
−1 b




1 d0
1 d1
. . .

...
1 dk−2

dk−1

 = SD ∈ Zk×k,

where q is a b-decomposition of q, and S′ ∈ Z(k−1)×(k−1) and S ∈ Zk×k is a basis of the gadget lattice for
q = bk−1 and q = bk respectively. The efficiency of the algorithm highly depends on the structure of the
basis of the gadget lattice. When q < bk, which is the general case, the basis Sq looks similar to S, but has
additional elements on its last column, hence the sampling algorithm is more complicated than the special
case when q is a power of b. Therefore, [GMP19] uses the factorization Sq = SD where S and D are sparse
and triangular matrix. And then the algorithm requires the linear transformation.
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3 New Practical Subgaussian Sampling

In this section, we present our new gadget subgaussian decomposition algorithm for the general case when
q < bk. We substitute the call of GMP19 in Zhang- Yu’s structure by the call of JLP21 when the modulus q is
reduced to q′ = bk−1.

x = u+ Sqy

=


u0

...
uk−2

uk−1

+


b q0

−1
. . .

...
. . . b qk−2

−1 qk−1




y0
...

yk−2

yk−1



=


u0

...
uk−2

uk−1

+ yk−1


q0
...

qk−2

qk−1

+


b

−1
. . .

. . . b
−1


 y0

...
yk−2


= u+ yk−1q+ [S′y′| − yk−2]

(1)

We observed that the last component of y, denoted by yk−1 actually determines whether the output is
going to be a decomposition of u or u− q in JLP21. Here each component of y is chosen as either −1 or 0
at uniformly random. If q = bk and yk−1 is −1, the last component of Sqy(= Sy) has −b term as seen in
equation (1) (especially red part of Sq). So when it is composed to an integer in Zq with the gadget vector g,
it contains −bk which is −q. Moreover, when q < bk and yk−1 = −1, it influences on every component of Sqy
due to the structure of Sq (see the purple part of the equation (1)). In other words, each component of Sqy
has a decomposition element q, and then it outputs −q after the inner product with g. Therefore, the last
column means that a composition value becomes u− q.

Now, we use the above observation for our algorithm to improve the efficiency. Our algorithm firstly
samples y by running Algorithm 1 in advance and employ it for online phase as JLP21 does. Like ZY22, we
also sample x′ where x := (x′, xk−1) for the reduced modulus q′ = bk−1. To do this, we first need to fix u′

and a, which are an input and the candidate of xk−1, by checking yk−1. In other words, u′ = u mod bk−1

and a = ⌊ u
bk−1 ⌋ if yk−1 = 0, u′ = u− q mod bk−1 and a = ⌊ u−q

bk−1 ⌋ otherwise. It is because the last component
of y determines if the final output x is going to be a decomposition of u or u− q due to the structure of the
base of Λ⊥

q (g
t) as we observed above.

Next it runs Subgaussian′(Algorithm 2), which is JLP21 for a power-of-base modulus, on input (b, q′, u′)
and the first k − 1 components of y. Then we obtain x′ from Subgaussian′. Since the subgaussian sampling
is a randomized decomposition, x′ can be such that ⟨g′,x′⟩ = u′ or u′ − bk−1 where g′ = (1, b, . . . , bk−2). It
is correct for the reduced modulus bk−1 since u′ − bk−1 ≡ u′ mod bk−1. However, what we want to obtain
is the vector for the modulus q which is not a power of b. Hence, we should compute the last component
with a. To determine the last component of output x, ZY22 verifies whether ⟨g′,x′⟩ = u′ or u′ − bk−1 by
computing the dot product. Unlike their approach , we can verify this by only checking yk−2 based on the
same observation. As a result, we can skip the last step of ZY22 which computes ⟨g′,x′⟩, thus we can quickly
determine xk−1 based on yk−2.

We show that our algorithm outputs a δ-subgaussian vector with a standard parameter which is slightly
larger compared to the previous sequential algorithms in Theorem 1.

Theorem 1. Let b, q ∈ N, k = ⌈logb q⌉, and u ∈ Zq. Then the output vector x of Algorithm 3 is k+3
6 -

subgaussian with parameter b
√
2π.

Proof. First, we will show that xk−1 is a subgaussian and find the parameter for xk−1. xk−1 has four possible
value {a0, a0+1, a1, a1+1}. Since we use a uniform distribution, E[xk−1] =

1
4 (a0+a0+1+a1+a1+1) = a0+a1+1

2 .
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Algorithm 1 Precompute(b, q)

Input: q, b
Output: k = ⌈logb q⌉, y ∈ {−1, 0}k, z = Sy

1: k = ⌈logb q⌉
2: for i← 0, . . . , k − 1 do

3: yi
$←− {−1, 0}

4: end for
5: z← Sy
6: return k,y, z

Algorithm 2 Subgaussian′(b, q, k,y, u): subgaussian sampling for q = bk of [JLP21]

Input: u ∈ Zq, (k,y, z)← Precompute(b, q)
Output: x ∈ Λ⊥

u (g
t) distributed uniformly in a bounded set.

1: Let u := [u]kb ([u]kb is u’s b-ary decomposition)
2: x← z+ u
3: return x

Algorithm 3 Subgaussian(b, q, k,y, u): our subgaussian sampling for q < bk

Input: u ∈ Zq, (k,y, z)← Precompute(b, q)
Output: x ∈ Λ⊥

u (g
t) distributed uniformly in a bounded set.

1: if yk−1 = 0 then
2: u′ ← u mod bk−1

3: a← ⌊ u
bk−1 ⌋

4: else
5: u′ ← u− q mod bk−1

6: a← ⌊ u−q

bk−1 ⌋
7: end if
8: x′ = Subgaussian′(b, bk−1, k − 1,y′, u′) where y = (y′, yk−1)
9: if yk−2 = 0 then
10: return x = (x′, a)
11: else
12: return x = (x′, a+ 1)
13: end if

7



Let α = E[xk−1] =
a0+a1+1

2 , then |α| ≤ b− 1
2 ≤ b since −b ≤ a0, a1 < b. Let x = xk−1−α, then x is a random

variable centered at 0 (i.e., E[x] = 0) and |x| ≤ b
2 . Hence x is 0-subgaussian with parameter s = b

2

√
2π. By

Lemma 1, if s > s and δ ≥ α2π/(s2 − s2), then xk−1 is δ-subgaussian with parameter s. Since

α2π

s2 − s2
≤ b2π

b22π − (b2/4)2π
=

2

3
,

xk−1 is 2
3 -subgaussian with parameter b

√
2π.

Since x′ is the output of Subgaussian′(b, bk−1, k−1,y, u), and in proof of Theorem 1 of [JLP21], x0, . . . , xk−2

are 1
6 -subgaussian with parameter b

√
2π. Analogously to the proof of Lemma 4,

E[exp(2πt⟨x,u⟩)] = E[exp(2πt
∑

xiui)]

= E[exp(2πt
k−2∑
i=0

xiui + 2πtxk−1uk−1)]

≤ exp(
k − 1

6
+

2

3
) exp(πt2 max(s2i ))

= exp(
k + 3

6
) exp(πt2(b

√
2π)2).

Therefore, x = (x′, xk−1) is
k+3
6 -subgaussian with parameter b

√
2π.

4 Comparison with Previous Works

Experimental Setup All experiments are performed on a laptop with Apple M1 @ 3.2 GHz (8 cores). We
used PALISADE Library [pal22] to implement our algorithm.

4.1 Randomness

GMP19 uses k log q = O(k2 log b) random bits to sample an output with a certain probability. It is better to
generate less number of random bits to achieve faster implementation result. ZY22 has improved the number
of random bits which is O(k log b) due to the randomness-efficient subroutine for a modulus bk−1. Since our
algorithm follows a uniform distribution over {−1, 0}, we only generate k log 2 = O(k) random bits. Therefore,
we have faster implementation result than the others. However, in the offline phase when we sample y, we
store k random bits for being used in the online phase, hence we have additional small memory overhead.

4.2 Magnitude Comparison

Remark 1. Unlike other previous works employing centered distributions, the output of our algorithm has
non-zero mean value. Therefore, we note that the noise analysis with our algorithm in homomorphic encryption
is less simple than the one with centered distribution. In more detail, the (average-case) noise analysis of HE
(especially GSW-like schemes) highly relies on the variance of the product of two independent polynomials
x, y of degree N . The two random variable x and y are δ-subgaussian with parameter s. Then the variance of
x · y is bounded as follows: Var(x · y) ≤ N · Var(x) · Var(y) + E(x)2 · Var(y) + E(y)2 · Var(x). If x and y have
both zero mean, then it has clear and simple bound (the last two terms are eliminated). However, in our
case, the mean of x and y are non-zero but less than b (since it is a digit decomposition with the base b). In
GSW-like schemes [CGGI20,BIP+22], for example, N ≫ b and Var(x) · Var(y) is the dominant term of the
noise after homomorphic operation. After bootstrapping of TFHE, the final noise contained in the output has
the variance of the sum of

∑
i∈[n] Var(xi · yi), hence the dominant term is still unchanged, where xi’s and yi’s

are independent subgaussian variables, where |E(xi)| ≤ b and |E(yi)| = 0 for all i. As a result, the bound is
still tighter than the bound of worst-case with Euclidean/infinite norm.
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Fig. 1. the magnitude average of 10000 runs with b = 2, uniform random input u, and different moduli.

As we see from the remark above, the variance of the noise will have slightly larger bound if an FHE
scheme uses a δ-subgaussian distribution, than the one using 0-subgaussian distribution, but the tighter
bound is still preserved. We show the size of output in each case in the figure above.

Figure 1 shows the magnitude of output of each algorithm. We executed the experiment for 10000 runs
with the base b = 2, and an uniform random input u by increasing the modulus q. In Section 3, we show
that our algorithm outputs a δ-subgaussian vector with the parameter δ = k+3

6 and the standard parameter

s = b
√
2π.

Our standard parameter s is similar to other algorithms, and s is the upper bound of the standard
deviation of the distribution. The variance of ours is also bounded by standard parameter 2b2π by Lemma 2
like other non-uniform algorithms. Since our δ is nonzero unlike other sequential algorithms GMP19 and ZY22,
the mean of the distribution is also nonzero. Therefore, ours is expected to have larger size of output than
the others since ours has slighltly larger mean (still less than b).

The experimental result shows that the magnitude of the output is a little bit larger than them as we
expected. But, in practice, we see that the output is much smaller than the least upper bound b

√
k of

Euclidean norm of outputs. Moreover, we have similar magnitude to JLP21 because we have the similar values
of δ and s due to the use of the same uniform distribution. As discussed in [ZY22], GMP19 has slightly larger
s than ZY22 with the same δ = 0, hence they have smaller magnitude in general.

4.3 Complexity Comparison

In order to analyze the complexity of each subgaussian algorithm in detail, we divide each into its main
subalgorithms and compute complexity of each subalgorithm in terms of the number of bit operations (see
Table 1).

First, we briefly recall the subalgorithms of each algorithm. GMP19 consists of Decomposition, Transformation,
Sampling, and Addition. Decomposition is the deterministic algorithm which outputs b-ary decomposition of u.
Transformation computes t = S−1u where u is the output of Decomposition to use D. Sampling chooses a
vector in Λ⊥

q (g
t) with a subgaussian distribution centered at −u. Addition combines the output vectors of

Decomposition and Sampling to obtain a vector in Λ⊥
u (g

t).
JLP21 consists of Sampling, Decomposition, and Addition. Here, Sampling, of which the complexity is

O(k), is done during offline due to a uniform distribution. Hence, it is not included in the time cost. Our
algorithm also have the same algorithm, Algorithm 1, in offline phase. We divide ZY22 into four subalgorithms;
Probability, Compute, Subgaussian′, and Check. The algorithm Probability computes the first probability u

q to

determine which u′ and a are used. Compute computes u′ and a which is same with the line 2-3 or 5-6 in
Algorithm 3. Subgaussian′ randomly outputs a vector x′ such that ⟨g′,x′⟩ = u′ mod bk−1.

In fact, the algorithm Subgaussian′ is the power-of-base algorithm in [GMP19] which is efficient and easy
to be implemented. Check checks whether ⟨g′,x′⟩ = u′ or u′ − bk−1. Ours follows the structure in [ZY22],
thus we also have the same process as Compute of ZY22 does but our algorithm is much simpler. In addition,
Subgaussian′ of our case is the power-of-base algorithm in [JLP21].
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Decomposition Sampling Transformation Addition

GMP19 O(k2(ℓ2 + ℓ)) k · P k · T k(ℓ2 + 3ℓ)
JLP21 O(k2(ℓ2 + ℓ)) N/A N/A k(2ℓ2 + 5ℓ)

Subgaussian′ Probability Compute Check

ZY22 O(k2(ℓ2 + ℓ) + kℓ) p c1 O(kℓ)
Ours O(k2(ℓ2 + ℓ) + kℓ) N/A c2 N/A

Table 1. The number of bit operations of the subalgorithms of each sampler for fixed q ≈ bk, where k = ⌈logb q⌉ and
ℓ = log2 b. T is the running time for computing each entry of t. P denotes the computation time of sampling from
given distribution. p denotes the computation time of computing the probability of ZY22. c1, c2 are for computing u′

and a of the modulus reduction sampler. P, p, c1, c2 are constants which do not depend on k for given u and q.

Decomposition has the complexity O(k2(ℓ2 + ℓ)) in terms of the number of bit operations since they
compute each component of a k-dimensional vector using u and q whose the bit length is k times bit lengths
of b (i.e., k times computation with kℓ bit lengths numbers). Subgaussian′ runs Decomposition up to the
(k− 1)-th component of the output for the modulus bk−1. Additionally, it contains the addition of two vectors
of dimension of k − 1.

On the other hand, Addition and Check require k times arithmetic operations over Zb, so that they depend
on k and log b. Transformation and Sampling also require computation of each component of k-dimensional
vector, but of floating-point operations which consume constant cost. The operations are independent of a
fixed q, hence, we denote the complexity of floating-point operations in Transformation and Sampling constant,
denoted by T and P respectively, for convenience.

Similarly, the complexity of Probability, Compute of ZY22, and our Compute is denoted by constants p, c1
and c2 respectively, since both only compute u

q , u
′ and a on floating-point numbers. Subgaussian′ of ZY22

consists of Decomposition, Sampling, and Addition which adds the output of Decomposition and Sampling
of GMP19’s power-of-base case, whereas the one of ours consists of Decomposition and Addition of JLP21’s
power-of-base case.

Overall, the dominant complexity comes from Decomposition , which is highly depends on the choice of
parameters ℓ and k. Moreover, ZY22 and ours has constant factor in one of subalgorithms, in practice, the
constant time can be a key factor which decides shortest running time in total.

4.4 Computation Cost Comparison

We compare the actual time cost of existing subgaussian decomposition algorithms [JLP21,ZY22] and ours.
We do not include the experimental result of GMP19 for small modulus q since the comparison to GMP19 is
already covered in [ZY22,JLP21]. For larger modulus q ≥ 2100, we included GMP19 as well since there has
been no analysis about the algorithm with such q. We note that all our experiments consider the case that
the modulus q is not a power of the base b (general case).

b k = ⌈logb q⌉ ZY22[µs] JLP21[µs] Ours[µs]

21 60 1.2709 0.5439 0.3539
22 30 0.6634 0.1888 0.1547
23 20 0.4723 0.1077 0.1008
24 15 0.3650 0.0762 0.0692
26 10 0.2628 0.0502 0.0477
28 8 0.1431 0.0441 0.0412

Table 2. Average runtimes for 10000 runs of subgaussian sampling for log2 q ≈ 60 and uniformly random input u ∈ Zq

with the different base b.
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(b, k) (2, 60) (22, 30) (24, 15) (28, 8)

ZY22[µs] Subgaussian′ 1.2163 0.6152 0.3165 0.0959
Compute 0.0192 0.0170 0.0167 0.0163
Check 0.0180 0.0156 0.0152 0.0154

Probability 0.0174 0.0156 0.0167 0.0154

JLP21[µs] Decomposition 0.3355 0.1349 0.0553 0.0263
Addition 0.2084 0.0540 0.0210 0.0178

Ours[µs] Subgaussian′ 0.3358 0.1383 0.0529 0.0253
Compute 0.0181 0.0163 0.0163 0.0159

Table 3. Average runtimes of 10000 runs of each subalgorithm for log2 q ≈ 60 and uniformly random input u with
the different b(as a result with the different k).

For small modulus q As we already checked the complexity in Table 1, Decomposition has the dominant
complexity, so it takes the dominant time in our experimental result. We can see that Decomposition of JLP21
and Subgaussian′ of both ZY22 and Ours takes the dominant time in the detailed time cost of Table 2 and
Table 3. Despite of all the plausible tricks of ZY22, the computation time of JLP21 outperforms ZY22 due to
the benefit of the precomputation.

Even though Subgaussian′ of Ours runs one less iterations of deterministic decomposition algorithm,
it includes additional operations (we refer Algorithm 1 of [JLP21]), hence it takes slightly longer than
Decomposition of JLP21. However, when k is large, Addition of JLP21 is significantly slower than our other
subalgorithm Compute which is independent of k. That is why there is the biggest performance gap between
JLP21 and Ours with the largest k, i.e., our algorithm is 35% faster than JLP21. As k decreases, the
computation time of Addition becomes small as k decreases, even similar to Compute of Ours. Therefore,
there becomes almost no difference between JLP21 and Ours as k significantly decreases.

The reason why Ours is faster than ZY22 is that our algorithm makes use of precomputed value as JLP21
does, hence the dominant part, Subgaussian′ of Ours, is faster than the one of ZY22. Moreover, Ours has
faster Compute, and it does not need additional subalgorithms like Check and Probability. As a result, our
algorithm is 77% ∼ 82% faster than ZY22.

Many applications of homomorphic encryption [PT20,CCR19,CDPP22,MCR21] use various value of k to
achieve both the best performance and correctness. As we explained in Section 1, increasing k in subgaussian
sampling causes lower noise growth resulting in supporting more homomorphic operations, but also slower
performance at the same time. Therefore, the choice of parameter k is highly depends on the application.
With our experimental result, we can conclude that for those applications which uses large k for q ≈ 260, our
algorithm is highly recommended.

b k = ⌈logb q⌉ GMP19[µs] ZY22[µs] JLP21[µs] Ours[µs]

21 102 20.6274 22.3322 19.3688 19.0677
22 51 12.1608 13.5447 11.5216 11.3985
23 34 9.6771 10.7968 9.1633 9.1606
24 26 6.4006 7.2784 6.0475 6.0294
26 17 4.9778 5.6145 4.7116 4.7783
28 13 3.2420 3.6676 3.0062 3.0776

Table 4. Average runtimes for 10000 runs of subgaussian sampling for BigInteger q such that log2 q ≈ 102 and
uniformly random input u with the different base b.
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(b, k) (2, 102) (22, 51) (24, 26) (28, 13)

GMP19[µs] Decomposition 18.9774 11.3175 5.9694 2.9893
Sampling 1.1783 0.6206 0.3133 0.1758

Transformation 0.3864 0.1813 0.0923 0.0568
Addition 0.0854 0.0413 0.0256 0.0200

ZY22[µs] Subgaussian′ 22.0206 13.2311 6.9424 3.3370
Compute 0.2743 0.2793 0.3024 0.2970
Check 0.0161 0.0159 0.0155 0.0154

Probability 0.0212 0.0184 0.0181 0.0182

JLP21[µs] Decomposition 18.9793 11.3154 5.9718 2.9814
Addition 0.3896 0.2062 0.0757 0.0248

Ours[µs] Subgaussian′ 18.7783 11.0823 5.7161 2.7584
Compute 0.2895 0.3162 0.3132 0.3192

Table 5. Average runtimes of 10000 runs of each subalgorithm for BigInteger q such that log2 q ≈ 102 and uniformly
random input u with the different b(as a result with the different k).

For large modulus q Zhang and Yu [ZY22] and Jeon et al. [JLP21] compared the running time of their
algorithm and GMP19 only when q ≈ 260. We provide the experimental result with larger q ≈ 2102, which
shows that ZY22 is not always faster than GMP19 with such larger modulus.

The total running time increases significantly compared to the smaller q case. It is mainly because
computation over numbers of BigInteger type, which was used in PALISADE library [pal22], takes more
time than the other smaller bit length setting. Therefore, Decomposition which deals with large bit length has
the dominant computation time, so do Subgaussian′ of ZY22 and Ours. However, Sampling of GMP19 deals
with floating-point numbers which has the length less than 64-bits, so that there is a huge computation gap
between Sampling and Decomposition of GMP19. Subgaussian′ of ZY22 contains Sampling and Decomposition
of GMP19. But Sampling in their implementation is done over larger integer type BigInteger to compute
probability, hence it takes longer time than GMP19. Therefore, ZY22 is slower than GMP19 with larger q in
total when k is small.

Apart from ZY22, all the algorithms take similar time, it is because Sampling which samples a bit for each
element takes negligible time comparing to Decomposition for large q, so the precomputation does not make
any difference in this case. Interestingly, Compute of Ours takes more time than the case when q is small
since it depends of q. Consequently, as mentioned above, there is a point that Addition of JLP21 becomes
faster than Compute when k is small. This small difference makes JLP21 take the shortest time in total.

However, since all implementations of homomorphic encryption we are aware of use RNS technique to use
64-bit machine language for large ciphertext modulus in practice, the result of Table 2 is helpful for such
cases.

b k Decomposition[µs] ZY22[µs] JLP21[µs] Ours[µs]

21 60 640.7155 2418.6132 1050.4242 647.5024
22 30 311.9202 1346.4805 395.8116 315.4322
24 15 145.9810 695.3398 162.1303 148.0831
28 8 50.0841 381.8072 73.8022 57.6720

Table 6. Comparison of performance results between the deterministic decomposition and subgaussian samplings.
The number of trial: 10000 for a 60-bits modulus q and n-dimensional input where n = 2048, with the different base b.

The gadget decomposition of homomorphic encryption takes n-dimensional vector u on input and outputs
x such that Gx = u for G = In ⊗ gt. We run the deterministic decomposition, which is same with
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Decomposition, and subgaussian algorithms for a 60-bits modulus q and a 2048-dimensional input with
the different base b (see Table 6). We note that these parameters are commonly used in many HE based
applications [PT20,CCR19,CDPP22,ACLS18,CDNP23] to achieve high security level (larger than 110 bits of
security). Obviously, the subgaussian algorithms take more time than the deterministic decomposition since
they need more process to sample a random output.

We can check the computational overhead which shows how much the extra step costs than just running
deterministic decomposition in order to see which one is suitable for the practical use. As we can see that
from the table above, ZY22 has the largest computational overhead, whereas Ours has the least overhead in
any choice of k. The overhead varies from 2% to 14% depending on k.

5 Conclusion

We propose a faster subgaussian decomposition by combining ZY22 and JLP21. To incorporate ZY22 and
JLP21, we replace the call of GMP19 by the call of JLP21 in the structure of ZY22. And we also prove that a
bounded uniform distribution is also subgaussian in the structure of ZY22. Previous works, GMP19, JLP21,
and ZY22, also output actual subgaussian vectors so that they can be applied to HE schemes to analyze the
noise growth without a Heuristic assumption. However, in the perspective of efficiency, they are too slower
than the deterministic decomposition as shown in Table 6. In contrast, our algorithm has the lowest overhead
only in the range from 2% to 14% to obtain actual subgaussian outputs. In addition, we give a detailed
comparison, even for large modulus, with all the competitive algorithms, allowing applications to choose the
best algorithm for their choice of parameters.

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea
government(MSIT) (No. NRF-2021R1A2C1094821). The third-listed author (J.Park) has been supported by
CyberSecurity Research Flanders with reference number VR20192203.

References

ACLS18. Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and
amortized query processing. In 2018 IEEE Symposium on Security and Privacy, pages 962–979. IEEE
Computer Society Press, May 2018.

AP14. Jacob Alperin-Sheriff and Chris Peikert. Faster bootstrapping with polynomial error. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 297–314. Springer,
Heidelberg, August 2014.
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