HLG: A framework for computing graphs in
Residue Number System and its application in
Fully Homomorphic Encryption

Shuang Wu! and Chunhuan Zhao?, Ye Yuan'!, Shuzhou Sun?, Jie Li?, Yamin
Liu!

! Huawei International, Singapore [wu.shuang, yuanye44,liuyamin3]@huawei.com
2 Huawei Technologies, China [zhaochunhuan, sunshuzhou, 1ijie303] @huawei . com

Abstract. Implementation of Fully Homomorphic Encryption (FHE) is challenging.
Especially when considering hardware acceleration, the major performance bottleneck
is data transfer. Here we propose an algebraic framework called Heterogenous Lattice
Graph (HLG) to build and process computing graphs in Residue Number System
(RNS), which is the basis of high performance implementation of mainstream FHE
algorithms.

There are three main design goals for HLG framework:

e Design a dedicated IR (HLG IR) for RNS system, where splitting and com-
bination of data placeholders has practical implications in an algebraic sense.
Existing IRs cannot efficiently support these operations.

e Lower the technical barriers for both crypto researchers and hardware engineers
by decoupling front-end cryptographic algorithms from the back-end hardware
platforms. The algorithms and solutions built on HLG framework can be written
once and run everywhere. Researchers and engineers don’t need to understand
each other.

e Try to reduce the cost of data transfer between CPU and GPU/FPGA /dedicated
hardware, by providing the intermediate representation (IR) of the computing
graph for hardware compute engine, which allows task scheduling without help
from CPU.

We have implemented CKKS algorithm based on HLG framework, together with a
compute engine for multiple CPU cores. Experiment shows that we can outperform
SEAL v3 Library in several use cases in multi-threading scenarios.

Keywords: Fully Homomorphic Encryption, Residue Number System, Computing
Graph, Heterogenous Computing, Intermediate Representation

1 Introduction

Fully homomorphic encryption (FHE) used to be the holy grail of cryptography. By allowing
computations on Ciphertext, FHE algorithm can lead to new paradigm of computing.
When computations can happen in insecure environments like public cloud, novel solutions
can be designed to support privacy protection and data processing at the same time, which
seems to be impossible with conventional encryption schemes.

Since Gentry et al. proposed the first generation of FHE [18] in 2009, many improved
schemes such as BFV [6,16] and BGV [7] have been proposed as leveled designs which
are called second-generation FHE algorithms. In these schemes, in order to control
the propagation of noise, polynomials with multi-precision coefficients are used. Bigger

mailto:[wu.shuang,yuanye44,liuyamin3]@huawei.com
mailto:[zhaochunhuan,sunshuzhou,lijie303]@huawei.com

2 iacrtans

coefficients allow more multiplication levels. However the parameters have to been chosen
after the required multiplication level is known. Besides that, bootstrapping operation
can refresh noise level in a ciphertext and turn the somewhat homomorphic encryptions
scheme above into a fully homomorphic encryption scheme.

In 2013, Gentry, Sahai and Waters [20] proposed a FHE scheme which avoids the compli-
cated relinearization technique, with the following up works FHEW [15] and TFHE [11-13]
which support fast bootstrapping for the evaluation of homomorphic Boolean gates are
called third-generation. Chillotti et al. extended the TFHE scheme and proposed pro-
grammable bootstrapping techniques(PBS) [14] which enables the homomorphic evaluation
of any function((including non-linear functions) of the message within 8-bit precision.

Many people have formed a consensus that FHE will be play a very important role
for data security in the future. However, FHE is still suffering from the low performance.
We believe that algorithm breakthrough and hardware acceleration are two key factors to
improve FHE performance. In the next section, we will introduce the motivation for the
design of HLG framework, especially challenges in both researches and implementations of
FHE.

1.1 Qur Contributions

In this paper, we propose a framework called Heterogenous Lattice Graph (HLG) for
development and transformation of computing graphs for FHE. Inside HLG framework, we
also designed a new IR system called HLG IR, whose data placeholders can be arbitrarily
split and combined.

Basically, HLG framework aims for specific use cases of computing graphs with following
features:

e Arbitrary splitting and combinations of data placeholders.

e Customizable operator expansion function: automatically removing higher-level
operator and replace with one or multiple lower-level operators.

e Customizable granularity of operator expansion: user can define when the operator
expansion ends by providing a set of primitive operators: this will allow the same
front-end code to support different instruction sets on different hardware platforms.

e Does not support control flow at the graph level: computing graphs on ciphertexts
won’t contain any control flow.

The HLG framework is extendible. User can define customized data (operand) types and
operators into this framework and develop any computing graphs for their specific domain.

We created operand types and operators for Ring Learning With Error (RLWE) related
algebra, i.e., polynomials, including operators for algorithms in RNS system as extension
plug-ins to HLG framework. Then based on these RLWE components, CKKS algorithm
is implemented, including operand types of Plaintext, Ciphertext, RelinKey, GaloisKey
and related operators such as Encode/Decode, KeyGen, Encrypt/Decrypt, Addition,
Multiplication, Relinearization, Rotation and Bootstrapping etc. These operands and
operators can be provided to developers to help them develop computing graphs for their
own applications.

In addition, we built compute engines with support for multiple CPU cores. The
computing graph generated by HLG framework can be loaded and executed by these
compute engines. The compute engines support automatic parallel task scheduling and
memory management to ensure that the computing powers of CPU cores are fully used.

We have compared performance of both HLG and SEAL in different scenarios such
as MNIST digit recognition, calculation of square root etc. According to our benchmark
results, HLG-CKKS library can outperform SEAL v3 library in multi-thread executions.
Details can be found in section 6.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 3

1.2 Organization of this paper

This paper is organized as follows.

e Section 2: Describes the design rationale of HLG framework, especially the challenges
HLG intended to solve in both research and implementation.

e Section 3: Details of the components in HLG framework are introduced in this
section.

e Section 4: if the reader just want to learn how to use HLG-CKKS library, he can
skip top this section to check the operand/operator types and other user interfaces
provided to cryptographers and developers.

e Section 5: details of implementation and optimization of the underlying primitive
operators in HLG are introduced.

e Section 6: Details benchmark results of HLG with a comparison to SEAL library
is introduced in this section. We also introduce an interesting observation of the
performance bottleneck with multiple CPU cores.

e Section 7: we conclude this paper and look to the future plan in the last section.

2 Design Rationale of HLG

HLG is designed to address the challenges in both researches and implementations of FHE.

2.1 Challenges in researches of FHE
2.1.1 Deep technology stack for FHE

When talking about "researches" of FHE, we could refer to different levels:

e Design of application solution for FHE. Hybrid solution with FHE, MPC and more.
e Domain-specific application-level compiler.

e Design and improvement of FHE algorithm. Such as boosted key switch and improved
bootstrapping algorithm.

e Design and improvement of algorithms at algebraic level. Such as RNS algorithms
in double CRT form.

e Software framework for development.
e Implementation on specific hardware platform, i.e. GPU, FPGA etc.
e Hardware-level graph optimization and compiler.

e Dedicated hardware designed for accelerating FHE.

This is a deep technology stack.

If the goal of research is to publish papers only, working on single layer in the stack is
enough. However, in order to promote practical applications for different use cases, we
have to consider multiple layers or even all layers at the same time. This is the reason why
research of FHE is extremely hard: all layers in this stack are tightly coupled together and
formed a complex system. In order to achieve practical performance, one has to consider
algorithm, parameter selection, application solution and hardware acceleration. Very few
people can have expertise in multiple layers at the same time, which means progress in
extending practical use cases of FHE would be very slow. In our opinion, this is the
primary obstacle to large-scale adoption of homomorphic encryption.

4 iacrtans

2.1.2 Need for decoupling of technology stack for FHE

In order to promote the rapid progress of FHE research, decoupling is necessary. Imagine
if cryptographers and hardware engineers can work independently in their respective areas
of expertise and somehow their work can be magically integrated together with little effort,
then experts in a single domain can efficiently participate in the collaboration on research
of FHE without need to understand how things work in other domains.

To achieve this goal of decoupling, we can refer to the technology stack of Al: we
may need a framework like Tensorflow [3] or PyTorch [27]. With similar framework as
development tool, cryptographers can focus on the algorithm level and implement new
algorithms and solutions without considering where these code would be executed and how
to make it efficient. On the other hand, hardware engineers do not have to understand
how algebraic algorithms in the RNS system work and how does bootstrapping works.
They only need to consider how to finish the computations of given computing tasks as
fast as possible.

In the project of openFHE [4], there is already a design for decoupling. The Hardware
Abstraction Layer (HAL) is used to switch between different back ends for implementation of
primitive operators for polynomials. With this HAL layer, developers can write code without
considering optimization for specific hardware platform. However, there is limitation in
the framework of openFHE: Although it allows user to switch between hardware platforms,
it is assumed that the task scheduling is done by CPU. Then it is still necessary to
transfer data between CPU and heterogenous hardware, which would be the performance
bottleneck. Besides, the granularity of primitive operators is fixed and not easy to change.
The flexibility to change level of primitive operators might be necessary if we need to allow
the same front-end code to run on different types of hardware in the future.

2.2 Challenges in Implementations of FHE
2.2.1 RNS system for multi-precision arithmetic

Trivial implementation of operations on multi-precision polynomials are slow. For example,
multiplication of multi-precision integers has time complexity of O(I?), where [is the
bit length of an integer. By introducing Residue Number System (RNS), which is based
on Chinese Remainder Theorem (CRT), modular addition and multiplication of multi-
precision polynomial are equivalently transformed into parallel modular operations on
single-precision polynomials. The complexity of both addition and multiplication becomes
O(1). Furthermore, by introducing Number Theoretic Transform (NTT) with complexity
of O(nlog(n)), where n is degree of the polynomial, addition and multiplication of single-
precision polynomial are transformed into element-wise operations. Thus the complexity
has been reduced to O(n), if we keep the polynomials in NTT form. After putting
polynomial with multi-precision coefficients in CRT form (type name CRTPoly in hlg) into
NTT transformation, we will get output polynomial in double-CRT (CRT+NTT) form
(type name CRTPolyNTT in hlg), which is necessary in state-of-the-art high-performance
implementations of FHE algorithms.

x; = x mod p;

P = pop1P2P3 X

P’ =pip3

Splitting Combination

Figure 1: Algebraic implication of data splitting and combination in RNS system

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 5

In an RNS system, the operations of data splitting and combination have algebraic
implications, as shown in Fig. 1:

1. Split multi-precision coefficient into single-precision coeflicients: stands for modulo
operation regarding single-precision modulus.

2. Combine multiple single-precision coefficients into one: stands for change of RNS
base where the target base is a subset of the original base.

In addition, in the implementation of many algebraic operators, data splitting and
combinations are also required. For example: Rescale [9], Fast Basis Conversion [5],
Boosted Key Switch [19,21,22] and many other operators in RNS algorithms.

2.2.2 Hardware acceleration is necessary for FHE

Computation on ciphertext is slow even with state-of-the-art FHE algorithms: it is more
than dozens of thousand times slower than computation on plaintext, on average. A
breakthrough on the algorithm level is becoming more and more challenging. There is a
growing consensus in both academia and industry that hardware acceleration is necessary
in order to allow FHE to reach practical performance and be widely adopted by real
applications.

In 2020 [1], DARPA has published a call for proposal for project DPRIVE. This project
is aiming at creating novel technology stacks dedicated for FHE from scratch: hardware,
compiler and tools for development.

2.2.3 Data transfer is the main performance bottleneck for FHE

However, hardware implementation of FHE is also difficult: existing hardware platforms
are not quite suitable for FHE. Almost all existing hardware architectures cannot process
high dimensional NTT transformation very efficiently, due to its all-to-all data access
pattern. Data transfer between CPU and heterogenous hardware takes more than 80% of
end-to-end time consumption, which is the main bottleneck.

2.2.4 Need for Dedicated Intermediate Representation

There could be multiple ways to reduce cost of data transfer in heterogenous computing
scenarios. One possible way is to leave the burden of task scheduling to the hardware
itself, without help form CPUs. Then the data transfer between CPU and the hardware
can be greatly reduced. In order to instruct the hardware on how to schedule the tasks,
an Intermediate Representation of the computing graph is required.

However, existing IR systems (such as LLVM IR [24], MLIR [25]) cannot support
splitting and combination of data placeholders natively. In these traditional IR system,
data placeholders are always defined and used as a whole piece throughout its life cycle.!
For RNS system, we need a brand new IR, which supports splitting and combinations of
placeholders in a natural way.

3 Description of HLG framework

3.1 Components and work flow of HLG framework

There are four components in the library of HLG-CKKS now:

1 Note that there may be alternative solution to express computing graphs in RNS as a dialect of
MLIR. However, HLG is an independent exploration. When the paper of MLIR is published, we have
already written a lot of code. We have to finish the code in order to verify if the idea works. In the future,
we will consider to migrate to MLIR in order to reuse existing tool chain.

6 iacrtans

e HLG framework: including definition of raw data placeholder, base class of operand
and operator, pre-defined templates for development of customized derived operand
classes, etc. Also, it provides the Context which is used throughout the process
of defining and processing the computing graph. Details of the Context will be
introduced in section 3.7

e Extension plugins: Custom operand types and operators, such as CRTPoly(multi-
precision), RNSPoly(single-precision) and related operators like NTT, BasisExtension
etc. at RLWE level. operand types Plaintext, Ciphertext, RelinKey, GaloisKey
and operators like Encode/Decode, KeyGen, Encrypt/Decript, Multiplication, Relin-
earization, Rotation etc. at CKKS algorithm level.

e Work builder: transforming original computing graph with high-level operand
types and operators into a "work", which is an optimized (such as reduplicated and
pruned) and simplified graph of tasks in the form of HLG IR.

e Compute engine on CPUs: universal execution engine which can load and execute
works in the form of HLG IR, with support for automatic task scheduling on multiple
cores and memory management.

The work flow of HLG framework is as follows:

1. Build original high-level computing graph with pre-defined or customized operand
types and operators, with help from basic functionalities from the framework itself.

2. Use work builder to expand higher-level operators into lower-level operators by calling
the expansion function defined for each operator, until only primitive operators left.
During this process of operator expansion, the placeholders might be split into pieces
too.

3. Transform and generate simplified computing graph with primitive operators only as
the "work", which can stay in memory in the form of an object of protobuf [32] data
type "ProtoWork", or be serialized as a binary file.

4. Automatic pre-computation and pruning of the original work. If all input operands
of an operator are constant or pre-computable, this operator can be pre-computed
and its output operand is pre-computable.

5. Load the work into a compute engine for initialization. Run the compute engine
providing input data and the engine will output result data after the execution ends.

The components in HLG framework and workflow is shown in Fig. 2.

Note that after initialization, the engine can run with different input data for multiple
times. The user can also choose which compute engine to use in steps 5. If we choose
a single-thread CPU engine, this work will be executed with one thread. If we choose a
multi-thread CPU engine, this work will be executed with multiple threads and automatic
task scheduling strategy.

For example: HLG library has provided two multi-thread CPU engines: MyEngine
and LockFreeEngine. MyEngine is implemented with mutex and LockFreeEngine is
implemented with lock-free queue. They have different strategies for task scheduling and
memory management. Their performance may vary for different types of works, but their
difference remain within a limited range.

We also plan to support compute engines for GPU, FPGA and other platforms in the
future. For these compute engines on heterogenous platforms, we don’t need to change the
code written in step 1 above. However, we may change the parameters a little bit for the
work builder in step 2. Hardware-specific compiling and graph optimization might also be
included between step 2 and 3.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 7

Workflow
Reusable components Extendable components
Basic Components Pre-defined
P Operand types RLWE CKKS
Determini
[Operand][Parameters] eGeIromb;mg (" Y4 RNSBase Message N New operand
Parameters SingleUnit CRTConst Plaintext types for
Front- Vector RNSPoly Ciphertext BFV,BGV.
OperandConfi Double RelinKey Lo
Construction of _ J\L Y,)
[Placeholder][Task] 2 @itz iy]
iven Pre-defined
R parameters Operator types RLWE CKKS
[Work][TaskBundle] 4 N\ s-rfor Poly (" Encode/Decode)
/ for Doubl NTT/INTT Encrypt/Decrypt New operators
*,/ for Double ModSwitch KeyGen
RandomUniform Rescale Boosted KeySwitch > for BQIC'BGV'
RandomGaussian BasisConversion Relinearization -
Templates for new operand types e usst ModDown Rotation
high-level . AN N\ J
OperandWrapper OperandArray computing
graph Context Constant
— 4 Management
(0] dTupl i
perandiuple e Placeholder ID Operator ID S ES
Allocation Allocation
CKKSContext
) Operator =
WorkBuilder expaﬁsion and Default Config Operator GetConstantOperand —> BFVContext
transforming to For Operands Deduplication FromValue
Leveled operator Automatic Work
expansion Pre-computation |

Serialization & Compression

SaveWork
ToFile

LoadWork
FromFile

Serialization and
Deserialization of
Work and Data

ToFile

SaveRawData
FromFile

LoadRawData]

HLG framework
Extension Plugins
WorkBuilder

[CPU engines

Task Scheduling
by the compute
engine

Execution of
primitive
operators

!

[Creation and registration of

GetConstantValue
Operand Objects FromOperand

Multi-CPU compute engines Customized compute
—> engine with new task

scheduling strategy

[MyEngine][LockFreeEngine]

API for Implementation of
primitive operators

Customized
—> implementation of
] primitive operators

[SizedPointer][VirtualSpan]

[DataAccessAPIBase

Figure 2: Overview of components in HLG framework and related workflow

3.2 Placeholder and operand Types: data split and combination

3.2.1 Definition of Placeholder representing raw data

The core design goal of HLG IR is to support arbitrary splitting and combination of
placeholders. We assume there is a virtual memory space as a sequence of unit cells with
infinite length, where each cell stands for a data unit with fixed length. The placeholder
can be defined as a continuous segment in this sequence. Name each unit cell as an integer
index number, starting from 0 to infinite. Then one placeholder can be written in 3
equivalent forms: range form, set form and normal form.

e Range Form: [left, right)

e Set Form: {left,left+ 1,left+2,...,right — 1}

e Normal Form: Ph{ptr = left, size = right — left}

For example: the placeholder [2,7) = {2,3,4,5,6} = ph{ptr = 2, size = 5} includes 5 unit
cells at positions from index 2 to 6. With this definition, splitting placeholder become
simple: [2,7) can be split into smaller segments {[2,3),[3,5),[5,7)}.

There are several notes about placeholders:

e Note 1: It is not necessary to specified the bit size of each unit cell in the placeholder
during the process of creation and transformation of the computing graph. When we

8 iacrtans

want to execute the computing graph, we can specify the size of one unit cell. For
example: if we want each unit cell to be 64 bits = 8 bytes, we can allocate 5 x 8 = 40
bytes of memory for the placeholder [2,7) above.

e Note 2: The HLG framework does not recognize types of data represented by
placeholders. Only when these raw data enters the implementation of primitive
operators, these operators can recognize the data types.

e Note 3: The same index of unit cell in the placeholder indicates the same real
memory space. The memory allocated for placeholders without overlapped unit cells
would be different. However, the memory allocated for adjacent placeholders in the
virtual space may not be adjacent in real memory.

e Note 4: In HLG framework, placeholders are allocated in a continuous way in
the virtual memory space. However, some intermediate placeholders would be
discarded during creation and transformation of the computing graph. So, in the
final computing graph, the complete placeholder set may not be continuous.

3.2.2 Operand as typed placeholder with meta data

Using placeholder directly is hard and error-prone. In order to improve usability of
placeholder, HLG framework support user-defined operand types. First, each operand type
should have a default placeholder as the raw data. Second, it can also have meta data to
help define data type and specify how to split and combine the placeholder it represents.

For example: operand type CRTPoly has a placeholder that stores the coefficients of
the polynomial and also another member of type RNSBase:

CRT Poly{placeholder = [3,3L + 3),rns_base = RNSBase{0,1,2}}

where L is polynomial degree and the RNS base does not represents the raw data of
the CRTPoly. However, it can be used as meta data in at least two use cases:

1. When we want to split one CRTPoly into multiple child RNSPolys, the meta data
can provide enough information on how it should work. The CRTPoly above can be
split into:

RN SPolyl{placeholder = [3, L + 3), modulus = SingleUnit{0}}
RN S Poly2{placeholder = [L + 3,2L + 3), modulus = SingleUnit{1}}
RN S Poly3{placeholder = [2L + 3,3L + 3), modulus = SingleUnit{2}}

We call these RNSPolys as child operands of the parent operand CRTPoly here.

2. When we call NTT operator on RNSPoly1, its member modulus can tell operator
NTT to choose from the pre-computed tables of twiddle factor for the given modulus
stored in placeholder {0}. So the interface of NTT operator can be as simple as
NttRns(RN SPolyl) without the modulus as the input parameter as well.

3.2.3 Birth parent, step parent and virtual placeholder

In the example of section3.2.2, the placeholder of the CRTPoly is split into small pieces
and each child RNSPoly has inherit one of them. We call CRTPoly the "birth parent" of
these child RNSPolys.

We can combine RNSPolyl and RNSPoly3 to form a new CRTPoly2 with smaller
RNSBase:

CRT Poly2{placeholder = virtual,rnsyase = RN SBase{0, 2},
children = {RNSPolyl, RNSPoly3}}

Shuang Wu and Chunhuan Zhao, Ye Yuan,

Shuzhou Sun, Jie Li, Yamin Liu 9

Case 1: Operand without children

New Operand has no children.

Case 2: Birth parent
« Birth parent describes data splitting.

« After calling x.GetChild(i) or x[i], children of

x are born.
RNSPolyNTT
[]
CRTPOlyNTT CRTPOIyNTT
[x |
[Placeholdert | [Praceholderb |

Placeholder c

x.GetFullPlaceholderList() = {a} x.GetFullPlaceholderList() = {t}
- t={a,b,c}, where a,b and c are continuous

Case 3: Step parent Case 4: child as step parent too

Both birth and step parents can be recursive.
RNSPolyNTT

Step parent describes data combination.

Placeholdera
Placeholder b

| Placeholder c |

SingleUnit

CRTPolyNTT

! virtual
L

RNSBase ckks::Ciphertext

| [x

Placeholder b

Placeholder ¢

x.GetFullPlaceholderList() = {a,b,c}
- a,b and c may not be continuous

Placeholdere

x.GetFullPlaceholderList() = {a,b,c,d,e}
- Full placeholder list is always flattened
- Order in Full placeholder list matters

Figure 3: Operand as birth parent and step parent

Here CRTPoly2’s placeholder has to be virtual, which means it does not have its own
original placeholders. The placeholder list of CRTPoly2 are determined by its children, i.e.
RNSPolyl and RNSPoly3. In this case, we call CRTPoly2 the "step parent" of RNSPolyl
and RNSPoly3. Refer to Fig. 3 as examples of birth parent and step parent.

In order to allow users to check the real placeholder list, we have provided a method
"GetFullPlaceholderList()" for the operand types, which will collect all non-virtual place-
holders from the operands themselves and their children recursively. Here we have several
examples:

3,3L +3)}

CRT Poly.GetFull Placeholder List() [
RN SPolyl.Get Full Placeholder List() [3,L+3)}
RN SPoly2.GetFull Placeholder List() = {[L + 3,2L + 3)}
0 =Al
(

{
{
{
RN S Poly3.GetFull Placeholder List {2L +3,3L +3)}
CRT Poly2.GetFull Placeholder List() = {[3, L + 3),[2L + 3,3L + 3)}

Note that the order of placeholders in the full placeholder list matters, which defines the
order how the fragmented placeholder/data pieces are combined.

Here CRTPoly2 cannot have its own placeholder since it is a step parent and its
placeholder should be defined by its children. Since the placeholders of its children are not

10 iacrtans

continuous, we set step parent’s placeholder to virtual to avoid inconsistency. CRTPoly
can have its placeholder as long as it is consistent with the sub placeholders of its child
RNSPolys. This can help us avoid excessive fragmentation of placeholders and reduce
memory consumption for representation of the computing graph.

However, sometimes the placeholder of some child RNSPoly could be changed and it
would no longer be consistent with its birth parent. Then we would set the placeholder
of its birth parent to virtual, in order to resolve the inconsistency. We refer this to the
"Absorb" operation in section 3.2.5.

3.2.4 Raw data size of an operand

We define the raw data size of an operand as the sum of the sizes of all placeholders in its
full placeholder list. In the examples defined in section 3.2.3:

RNSPolyl.RawDataSize() = Size([3,L +3)) =L
CRTPoly.RawDataSize() = Size([3,3L + 3)) = 3L
CRTPoly2.RawDataSize() = Size([3,L + 3)) + Size([2L + 3,3L + 3)) = 2L

3.2.5 The Absorb operation for operands

HLG framework supports a useful operation called "Absorb". It is used to merge two
different operand objects’ placeholders into one. The two operand objects should have the
same type and raw data size.

The operation of operand a "absorbs" operand b can be written in several equivalent
forms:

a <<=b;
a.Absorb(b);
Absorb(a,b);

For example: Suppose that a = ¢+ d and b = NTT(e) are the computing graphs we
have created. After calling "a <<=b": 1) Now both a and b refers to the same operand
object. The original operand object a has disappeared unless it has other references store
somewhere else. 2) The placeholder of b is discarded and replaced by the placeholder of a,
which means, in the execution of this operator NT'T, the output data will be stored in the
memory allocated for a’s placeholder, instead of b’s original placeholder.

The absorb operation is useful in the implementation of operator expansion, which will
be introduced in details in section 3.3.4.

3.2.6 Delayed pointer synchronization and PtrSyncer<O> type

This functionality is used to implement the "Absorb" operation defined in the last section.
From the definition of Absorb operation, we know that the goal is to make two operand
objects merge as one. However, there is a major problem that both operand a and b might
have multiple references somewhere else. But in the Absorb function, we only have "local"
perspective. There is no way we can get the "global" view and figure out where and how
many these references to a and b are. In order to solve this problem, we introduced two
features: 1) registration of operand objects 2) delayed pointer synchronization.

Every time a new operand object is created, we store it in a map inside the Context
object with the operand’s hash value? as the key in the map. When we need to store a
pointer of an operand object, we use the PtrSyncer<O> instead.

2The definition of the have function of an Operand is introduced in section 3.3.3

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 11

The PtrSyncer<O> type has a smart pointer to object of operand type O and also
a hash value. Every time we call its Ptr() method, it will try to check if the hash value
stored in PtrSyncer<O> object is the same as the hash value in the operand object. If
the hash values are different, PtrSyncer<O> object will find the correct operand object in
the operand map in the Context object, using its hash value as the key. Then update its
smart pointer to the correct object. If the hash values are consistent, it just returns the
smart pointer directly.

We call this "delayed pointer synchronization", since the synchronization does not
happen when we change the hash value of the operand object. The algorithm is described
in Alg. 1. Tt is only when we call the Ptr() method of PtrSyncer<O>, the synchronization
will happen. Then in the implementation of Absorb operation, we only need to set the
hash value of some operand object a to hash value of b, which is still an possible operation
with "local" perspective only. After that, when we try to get the pointer to operand object
a again, the PtrSyncer<O> will give us the pointer to operand object b instead. Then the
problem of implementing Absorb operation is solved.

Algorithm 1 Delayed pointer synchronization

Assumption 1: ObjMap is a global map which stores all objects of operands.
Assumption 2: PtrSyncer object has two members: Operand Ptr and Hash.
Input: PtrSyncer ps. Triggered by calling PtrSyncer.GetPtr() interface.
Output: Synchronized pointer to correct operand object

1: if ps.Hash # ps.Ptr.Obj.Hash then
2 p < ObjMap|ps.Ptr.Obj.Hash|

3 ps.Ptr < p

4: ps.Hash < p.Obj.Hash

5. end if

6: return ps.Ptr

Finally, we have a working algorithm for the Absorb operation. The pseudo code is as
follows:

Algorithm 2 Absorb operation: src <<= tar, or src absorbs tar

Input 1: Operand src, the source operand
Input 2: Operand tar, the target operand

: ph < src.Placeholder

—_

2: parent < src.BirthParent

3: for i = 0 to tar.Children.Size do > will do nothing if no children exist
4: src.Children[i] <<= tar.Children[i] > recursively absorb each of the children
5: end for

6: ch < src.Children

7. src.Hash < tar.Hash © src and tar will be merged as one by triggering PtrSyncer
8: tar.Placeholder < ph

9: tar.Children < ch

10: p < tar.BirthParent

11: while p is not null AND p.Placeholder is not virtual do

12: p.Placeholder < virtual > recursively setting all ancestors of tar to virtual
13: p < p.BirthParent

14: end while

15: tar.BirthParent < parent > fixing the birth parent

12 iacrtans

3.2.7 Template OperandWrapper<O>

Since we have registration of operand objects in a map of Context object, we should not
store the pointer of the operand object in anywhere else. In order to allow users to use
PtrSyncer<O> type easily, we introduced template Operand Wrapper<O> with an internal
pointer of PtrSyncer<O>, which provides many useful functions such as operator-> and
allow user to use OperandWrapper like a raw pointer to the operand object. The wrapper
object can be stored on the stack, while all operand object should stay in the map in the
Context object.

In HLG, all operand types (derived from class Operand) are named as "XXXImpl",
whose wrapper type are defined as "XXX". For example, we can define customized Operand
type and its wrapper type as:

class CiphertextImpl: public Operand;
class Ciphertext: public OperandWrapper<CiphertextImpl>;

Only the class Ciphertext is provided to users at the application level. The object of
CiphertextImpl can only be created using constructors of Ciphertext.

3.2.8 Pre-defined templates for implementation of customized operand types

HLG framework provides several pre-defined templates to help user define their own
operand types:

1. OperandArray<O>: Define a new operand type as an "array" of operand type
O, where user can specify the array size. In an OperandArray<O> object, each
child operand (of type O) should have the same raw data size. This is similar to
std::vector<X> in c++.

2. OperandTuple<O,P,Q...>: Define a new operant type as a tuple of O, P, Q...
(variadic template), where type and raw data size of each child operand can be
different. This is similar to std::tuple<X,Y,Z> in c++.

3. SingleOperand<O>: A specialized derived class of OperandArray<O> with fixed
array size of 1, which means it will have only 1 child operand of type O.

Note that object of type SingleOperand<O> and its only child will have the same full
placeholder list. They are actually referring to the same placeholder, i.e. data. They
just provide us different ways of looking at the same piece of placeholder. The template
SingleOperand<O> is supposed to be used to define "inheritance" between operand types
in HLG framework, where original inheritance of c++ does not work correctly here?.

3.3 Operator Type

An operator has the following members:
e Type of operator defined as int type or enum type.
e ID of the operator as distinct integer number with type uint64_ t.
e The input operands of the operator. The number of inputs can be zero.

Note that the operator type does not have a member as the output operand.
In HLG framework, in order to allow multiple equivalent copies of the output operand,
there is an assumption that each operator should have only one output operand. We give

30riginal class inheritance of c4+ will fail when delayed pointer synchronization (defined in section
3.2.6) is triggered. However, inheritance using SingleOperand<O> can avoid this problem.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 13

the operand type a member called SourceOp(), which is a pointer to its source operator
which indicates that this operand is the output of this operator.

The other assumption of HLG is that all output operands of the operators stand for
real data, which we need to allocate memory for. The input operands of the operators
are just full or partial reference to some other output operands, which we don’t need to
allocate memory for.

In the definition of each operator, we need specification of the following functions:

1. Operator creation function: creates new operators with given input operands, the
output operand of this new operator will also be new. This is provided to the
developers.

2. Operator expansion function: defines how a higher-level operator will be expanded
to how-level operators. Crypto researchers or developers at the algorithm/algebra
level This is provided to the work builder for auto expansion of operators.

3.3.1 Categories of operators

There are several different categories of operators:

1. Normal operator: stands for normal computational operator, which will be either
expanded into lower-level operators or be implemented as the primitive operator.

2. INPUT operator: if output->SourceOp() is an INPUT operator, this output
operand is one of the input parameters of the whole computing graph(work), where
the real data provided to Engine::Run(...) interface will be assigned to the memory
allocated for these operand with INPUT operators. We will talk about design of the
execution engines in section 3.10.

3. CONSTANT operator: the original constant values and the pre-computed values
will be stored in the memory for these operands with SourceOp() equals CONSTANT
operator. Constant operator will trigger automatic pre-computation in hlg framework,
which we will talk about in section 3.6.

4. RANDOM operator: A special category of operator, which is not pre-computable
and cannot be deduplicated. There are only two types of primitive random op-
erators: RANDOM UNIFORM and RANDOM GAUSSIAN now. For more
complicated random operator, user can define their own new operator based on these
primitive ones.

3.3.2 Creation and deduplication of operators

HLG framework provides a function MakeOperator, which is the unified interface for
creating operators. The interface looks like:

MakeOperator(Context, OP_TY PE, output, inputy, inputy , inputa, ...)

After calling this interface, a new operator of type OP_TY PFE will be created, with the
given input operands {input;}. The pointer output->SourceOp() will also point to this
new operator.

Note that this MakeOperator function supports deduplication of operators. If
we call MakeOperator with the same OP_TY PE and input operands twice, only one
operator will be created, as they have perfectly the same content. Furthermore, if duplicated
operators are detected, the output parameter will be overwritten as the output of existing
operator. For example:

14 iacrtans

void TestDeduplication(){
CRTPoly a,b; //CRTPoly a and b with default parameters
CRTPoly d(a->RnsBase()); //create new CRTPoly with a’s RnsBase
CRTPoly e(a->RnsBase()); //create new CRTPoly with a’s RnsBase

// mow d!=e, since they have different placeholders
MakeOperator (a->Context (), ADD_CRT_POLY, d, a, b);
MakeOperator (a->Context (), ADD_CRT_POLY, e, a, b);

// now d==e, because of deduplication, e was overwritten as d

}

In order to implement this deduplication, we need to design an hash function of the
operand.

3.3.3 Definition of hash function of an operand object

If an operand’s SourceOp() is null or of type INPUT or CONSTANT, we define its hash
value as
Hash(operand__type, ph.ptr, ph.size)

where ph is the operand’s placeholder. We can distinguish different operands with different
placeholders with this definition of hash function.
In the other cases, the hash function of an operand is defined as:

Hash(operand_type, OP_TY PE, Hash(inputy), Hash(inputy), Hash(inputs), ...)

where input; = SourceOp().Input[i]. This is a recursive definition, since the inputs of the
source operator pare also operands. Note that the placeholder of the output operand is
ignored here, which is necessary when we want two different output operands to have the
same hash values as long as they have the same source operator type and input operands.

3.3.4 Levels of Operators and expansion of operators

As we mentioned in section 3.1, in step 2 of the work flow of HLG, the work builder will
"expand" higher-level operators to lower-level operators. This process can be designed to
be executed layer by layer, then each layer becomes simpler, as shown in Fig. 4. Here we
explain how it works in more details.

Recall that we have used operator NttRns(RNSPoly) as an example in section 3.2.2.
Based on this operator NttRns at the level of RNSPoly, we can define another NTT
operator at the level of CRTPoly: NttCrt(CRT Poly). The developer only need to write
code with NttCrt operator. HLG framework, together with the expansion function defined
for NttCrt, will automatically remove this higher-level operator and replace with lower-level
operators NttRns on each of the child RNSPoly of the CRTPoly object.

Suppose we have b = F'(a) and we would like to expand operator F as b = F(a) =
H(G(a)). Basically, we will create new intermediate operands as: ¢ = G(a) and d = H(c).
In HLG framework there is an assumption that when creating a new operator, a new
placeholder will always be allocated for the output operand of this operator. As a result,
operands d and b would have different placeholders. In case that operand d (or its
children) has been used by other Operators as input, we need to update these references
to placeholder of d for synchronization in order to avoid inconsistency. More specifically,
we would like to keep the original placeholder of b, but as the output operand of operator
H. We can achieve this by using the Absorb operation "b <<=d", or "b <<= H(G(a))"
defined in section 3.2.5.

There is an example for operator expansion: operator ADD_MOD_ CRTPOLY is
split into multiple lower-level operators of type ADD_MOD_ RNSPOLY. The number of
generated lower-level operators here is determined by the CRTPoly’s RNS size, i.e. the
number of prime modulus number of children.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 15

D = RESCALE_CRT_POLY_NTT
High-level
Operator

CRTPolyNTT » D CRTPOlyNTT

D3 = SCALAR MUL MOD CRT POLY
D2 = ADD_MOD_CRT POLY R
CRTPolyNTT » D2 # D3 ——»{ CRTPolyNTT

D1 ———»{ cRrpopIT

D1 = MOD_SWITCH_RNS2CRT NTT

1st expansion

D3[i] = SCALAR MUL MOD _RNS_POLY

RNSPolyNTT > D2(0] D3(0] »[RNSPolyNTT
A
RNSPolyNTT » D2[1] D3(1]

nd i
2 expansion RNSPolyNTT [p1(i] = MOD_SWITCH_RNS_NTT|
———D1[0] RNSPolyNTT

d po

-1

p3’ mod p;

D2[i] = ADD_MOD_RNS_POLY t A
RNSPOlyNTT » D2[2] D3[2]
pa]li

——D1[1] RNSPolyNTT

p3' mod p,

—D1[2] RNSPolyNTT

D3[i] = SCALAR MUL MOD _RNS_POLY

RNSPolyNTT o 0] »[RNSPolyNTT
D2[i] = ADD_MOD_RNS_POLY N
RNSPolyNTT o211 o311) RNSPolyNTT
rd i
3d expansion RNSPOlyNTT hapl e RNSPOlyNTT

H

INT > Med s T RNSPolyNTT
INTT > Med — NT RNSPOIlyNTT
INTT = Mod N RNSPolyNTT

D3[i] = SCALAR MUL MOD _RNS_POLY

RNSPolyNTT » D200] 31— RNSPOIYNTT |
D2(i] = ADD_MOD_RNS_POLY s
RNSPolyNTT 02| ozm
Operator 4 . y
.. RNSPolyNTT » 0202 Ds[z]
deduplication

for INTT —
/ swith —> NTT RNSPolyNTT
\NW< d & NIT RNSPolyNTT

Ma
Switch

Mod
switeh —> NTT RNSPolyNTT

Figure 4: Leveled operator expansion in HLG

void ExpAddModCrtPoly (CRTPoly ret, CRTPoly a, CRTPoly b) {
for (uint32_t i = 0; i < ret->RnsSize(); i++) {
// al[i] and b[i] are RNSPolys, children of CRTPoly a and b.
ret[i] <<= al[i] + b[il; //ret[i] absorbs the sum of ali] and b[i]

e Note 1: the 1st input ret of the expansion function is the output operand of the
original operator. The following inputs ¢ and b are the input parameters of the
original operator. In HL.G framework, expansion function should be implemented
with this format.

e Note 2: we can split the original output operand ret into pieces(children) and absorb
different other operands of the same type.

3.3.5 Customization of granularity for operator expansion

In order to support switch between different granularity of primitive operators by just
changing parameters for the work builder, we need some preparation work.

16 iacrtans

Table 1: Flexible-level operators

Operator | expansion function | implementation note
OP, yes no high-level operator
OP, yes yes flexible-level operator
OP; no yes primitive-level operator

As shown in table 1:

e OP; is always a high-level operator which will be expanded every time. We don’t
need to define its implementation function.

e OP; is always a primitive-level operator which will not be expanded. We don’t need
to define its expansion function. Instead, it has to be implemented.

e OP, is a flexible-level operator, which has both expansion and implementation
functions. If we set it as primitive operator, its implementation function will be
called during execution. Otherwise its expansion function will be called.

For example, there is an algorithm called four-step NTT, which aims to improve
performance of NTT operator in hardware platforms with limited cache size (or narrow
bandwidth for data transfer). In the four-step ntt algorithm, operator NTTg5536(RNSPoly-
level) is split into multiple operators of NTTs56(lower-level) and transposes. When we
implement NttRns on these platforms, it is not primitive and will be expanded. However
when we need to implement it on mainstream CPUs, we want it to be primitive, since
four-step NT'T is slower than normal implementation of NttRns on CPUs. NttRns should
be a flexible-level operator in this case.

Suppose that we have built an application based on HLG framework which has been
tested on CPUs. Not a single line of code needs to be changed when we want to migrate it
to other hardware platforms. What we need to do is to change the parameters of the work
builder at the front end. We also need another compute engine on the target hardware
platform, however these work can be independent with the code at the front end. Thus
we can achieve decoupling of application-level code with hardware platforms, which can
greatly reduce the effort of implementation and experiment for designing and applications
of FHE.

3.3.6 Recovery of dependency between operators by checking overlapping of place-
holder after expansion of operators

As we introduced in section 1.1, HLG is designed to support the following features at
the same time: 1) arbitrary splitting and combination of placeholders 2) customizable
granularity of operator expansion. In section 3.2.3, we also mentioned about the need
to keep tracking parent and children of an operand, which would be convenient for the
developers. Then we found some contradictions between these requirements.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 17

4. Fragments of different output
placeholders may be combined

and used as a whole piece
Placeholder RNSPolyNTT
CRTPOIyNTT Rescal CRTPolyNTT CRTPolyNTT Rescale CRTPOlyNTT
Placeholder

CRTPolyNTT

i Placeholder :7
XXX CRTPOIYNTT (| Placeholder
Before expansion of operators P placeholder_j4— RNSPolyNTT |
After expansion of operators 1. Fragmented reference to a
single piece of output placeholder
st [seaesior EERRED)
CRTPOYNTT f—————————————— - —— * CRTPOIyNTT
CRTPOIyNTT S— CRTPOIyNTT
1 oo surci 2
[S e

MOD SWITCH

[

CRTPOIyNTT
Rnsacrr T P CRTPOly! 3. Fragmentedjoutput
3 D .
EL placeholdersbeing
referenced as a whole piece
CRTPoly-level operator 2. Inconsistent fragmentation as [(RnspoyNTT H——t ——+[RspopNTT |
RNSPoly-level operator input for the same output e
o o) —— XX e
SingleUnit-level operator placeholder
[l comans (g} o]

Figure 5: Corner cases where parent/child relationship is not enough

In Fig. 5, we described several corner cases where the same output placeholder(s)
are used with different granularity of fragmentation when referred by different operators
as input. These inconsistent fragmentation is beyond the expressive power of simple
parent-child relationships. The only choice we found is to give up tracking dependency
between operators during the process of operator expansion. After the expansion is finished,
we can recovery the dependency between the final set of primitive operators, by checking
the overlapping of their input and output placeholders: if input placeholder of operator B
is overlapping with output placeholder of operator A, we know that operator B depends
on operator A and operator A should be executed before operator B.

The overlapping of placeholders can be defined as whether the intersection of the
placeholders (as a set of unit cells) is not empty, which is very intuitive. However, for
better performance and less memory requirement, we need to figure out how to find
overlapping placeholder in the range form efficiently. Range form of placeholder is defined
in section 3.2.1.

The idea is to use binary search. First, we collect the set of all output placeholders of
all the primitive operators and sort them in ascending order. Then, for each of the input
placeholder, we can have a quick algorithm to find ALL overlapping output placeholders
in the sorted list. The algorithm is described in Alg. 3.

Algorithm 3 Find all overlapping placeholders of target placeholder ph in a sorted list L

Input 1: Target placeholder ph = [I,r)

Input 2: Sorted List L of Placeholders in ascending order, where |L| = n and L; = [l;, ;)
is the i-th placeholder in L

Output: Sub-list L' = {L; € L|L; is overlapping with ph}

Complexity: O(log(n))

1: Find the smallest index min such that 7, > [> binary search, O(log(n))
2: Find the smallest index max such that l,,q. > 7 > binary search, O(log(n))
3: L' + {L € Limin <t < max} > L' can be empty
4: return L'

Note that the placeholders in the sorted list L will not overlap with each other, or the
assumption of HLG framework will be broken: all operators should have distinct output
placeholders.

18 iacrtans

3.4 Task, Work and WorkBuilder

After the expansion of operators, we have a list of primitive operators only, which is an
equivalent form of the original computing graph. Now we need to define a compact format
to store the graph. Here we introduce several concepts:

e Task: A compact form of an operator without any unnecessary meta data, which has
vector<vector<PlaceholderPtr>> as input and vector<PlaceholderPtr> as output.

Notel: The ID of a task is the same with the ID of the original operator. Task is
the compact form of primitive operator.

Note2: Here vector<PlaceholderPtr> is the compact form of an operand. It can be
extracted using Operand::GetFullPlaceholderList() interface. If the placeholder of
an operand is a whole piece, size of the vector<PlaceholderPtr> would be 1.

e TaskBundle: A compact form defining a computing graph with multiple tasks,
including: 1) A full set of all tasks 2) dependency relationship between the tasks
3) list of initial tasks and other tasks 4) sorted list of all output placeholders of all
tasks 5) map of each placeholder’s parent placeholder.

Note: Data of items 2) to 5) of TaskBundle above can be extracted from the full set of
tasks. We store these auxiliary data here for the convenience of the compute engines,
since these data would be useful for task scheduling and memory management.

e Work: A work includes: 1) a TaskBundle 2) input and output placeholders of the
work 3) constant value pool for the const placeholders. A work has all required
information to define a complete computation work.

e WorkBuilder: The tool to transform the original computing graph with operands
and operators into a Work, i.e. the final compact form, which will be loaded by
compute engines.

3.5 Graph Optimization: Removal of useless branches

In the computation on ciphertexts of a leveled HE scheme, we always find such a situation:
mismatch of remaining levels in the two ciphertexts that will be added or multiplied
together. In this case, we need to drop some extra moduli and their related RNSPolys of
the ciphertext with higher level. In this case, some of the computation to generate the
higher-level ciphertext would be wasted.

WorkBuilder in HLG framework has a basic graph optimization feature: removal of
useless branches in the computing graph. Once we allow operator expansion to RNSPoly
level, we can solve the wasted computation problem with little effort. As shown in Fig.
6, once we need to remove some modulus and related RNSPoly, all the extra computing
graph generating the removed RNSPoly would be automatically removed. Thus we can
save some computational cost automatically.

3.6 Automatic pre-computation in HLG framework

HLG framework supports automatic pre-computations. The constant operators/tasks
set by user will be propagated to its successors and mark them as pre-computable. The
pre-computation algorithm is as shown in Fig. 7.

This feature of pre-computation is very handy when we develop new operands and
operators: it allows user to manage the pre-computation tables with little effort. For
example, NTT operator requires pre-computed table to store the twiddle factors. For each
of the different prime modulus, we need to generate different tables. The following code
shows how we can use both features of pre-computation and operator deduplication to
achieve easy management of pre-computed tables.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 19

Figure 6: Automatic removal of useless branches in computing graph

RNSPolyNTT NttRns (RNSPoly a)

{
RNSPolyNTT ret(a->Modulus());
//The table below will be deduplicated and pre-computed automatically
Vector table = ModifiedNttLutPreComputation(a->Modulus());
MakeOperator (a->ContextPtr (), RlweOPType::NTT_LAZY_SCOTT_RNS_POLY,

ret, a->Modulus (), table, a);

return ret;

}

In the example above, we call operator ModifiedNttLutPreComputation() on the
modulus from input RNSPoly a and generated the output table. Then the pre-computation
table will be used as one of the input when we construct the NTT operator. Then we can
find that:

e There will always be one table only for each modulus, even if the NttRns function has
been called many times. This is because of operator deduplication we has introduced
in section 3.3.2.

e The data of the pre-computation table for each modulus will be automatically
pre-computed and stored as part of the constants in the generated work. The pre-
computation is triggered by the fact that the NTT moduli are already set as output
of CONSTANT operators in CKKSContext by default.

As you can see from this example, the user of HLG doesn’t need to care 1) how and
when to pre-compute these table 2) where to store them and 3) how to find the correct table
from the given modulus. We can also apply this trick when we implement Montgomery
reduction [26], Shoup scalar multiplication [31] and other operators as long as they need
pre-computation tables.

iacrtans

3. Execute the pruning of the original

Original work
9 work: Keep edge constant tasks

const const const const

/ Y m
NWAN /N

N\
/
NN W
VAANVAR VA

Pre-computable tasks

const

=
/N

Original constant tasks

const

Removable constant tasks

const

const const

/NS N\

const const

Edge
constant
tasks

1. Find all pre-computable tasks: A task
is pre-computable if all its dependent
tasks are constant or pre-computable.

2. Find edge and removable constant
tasks: removable constant tasks are no
longer needed.

Figure 7: Automatic pre-computation by propagation of constant tasks

3.7 Parameters and Context

The Parameters and the Context in HLG framework can both store information related to
the computing graph under construction. However, there functionalities are different. The
Parameters stores static settings which are universal and not related to specific computing
graph. While the Context provides basic functionalities for the specific computing graph

in construction. For example:

e Parameters: We can store RNS modulus in parameters. Since the same value of

the modulus can be used to construct different computing graphs, the value of RNS
modulus is considered to be "static".

Note: here we can provide more examples of information which are considered "static"
and can be stored in Parameters: polynomial degree, default relinearization key size,
rotation index root, fft roots, level ranges for boosted key switch and pre-computation
table for bit reversal, etc.

Context: The Context contains a global map to store unique operand objects, which
use the hash value of an operand object as the key. Then we can implement absorb
operation and operator deduplication based on this global map. Since this map
of unique operand objects is dependent on the construction process of the specific
computing graph, it is not "static" and we should store it in the Context instead of
the Parameters.

Note: more examples of "non-static" information which are suitable to be stored in

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 21

the Context: constant pool(mapping operand object to constant value), default scale
factor, default RNS base, default configurations for operand types such as Ciphertext,
Plaintext and RelinKey, etc.

We will explain functionalities of the Context in the following sections below.

3.7.1 Allocation of new placeholder

Context::NewPlaceholder() in the basic and unified interface to allocate placeholders, which
is not supposed to be called by the user directly.

//size is the number of units in the placeholder
PlaceholderPtr NewPlaceholder (uint64_t size,
const std::string &name = "",
const std::string &description = "");

Besides that, HLG also provides another template function New<T> as a higher level
interface to allocate placeholders.

template<class OperandType>

inline PlaceholderPtr New(ContextPtrType context,
const OperandConfig &config,
const std::string &name = "",

const std::string &description = "")
{
ASSERT_BASE_TYPE (Operand, OperandType);
CHECK_NULLPTR (context) ;
auto size = Size<OperandType>(context, config);
auto ret = context->NewPlaceholder(size, name, description);
return ret;
}

The function New<T> will call Context::NewPlaceholder() interface, where the size of the
placeholder is calculated from another template function Size<T>(). When implementing
new operand types in HL.G, we need to proved specialized template function of Size<T>
(such as Size<ckks::Ciphertext>), and Config type (such as ckks::CiphertextConfig) too.

3.7.2 Creating new operators and allocate operator IDs

Context::NewOperator() is the basic and unified interface to create new operator in HLG,
which is also not supposed to be called by user directly.

inline OperatorPtr NewOperator (int type,
const std::vector<PtrSyncerBasePtr> &inputs);

where the inputs are the PtrSyncer of the input operands for this operator. The Context
will update the allocated operator ID each time this NewPperator() interface is called.
HLG also provide another variadic template interface MakeOperator, which is already

introduced in section 3.3.2. Here we introduce more details of the interface itself.
template <class T, class... Args>
void MakeOperator (const ContextWeakPtrType &context,

int op_type,

OperandWrapper <T> &output,

const OperandWrapper <Args> &...inputs);

Note 1: This interface accepts one output and variant number of inputs (zero input
is also acceptable). As mentioned in section 3.3.2, MakeOperator will trigger operator
deduplication.

Note 2: The type of output and inputs are OperandWrapper<T>. As mentioned in
section 3.2.7, all types provided to the user are derived from OperandWrapper<T>. You
can put SingleUnit, RNSBase, RNSPoly, CRTPoly, ckks::Ciphertext as the output or the
inputs. But after this operator is transformed into a Task by the WorkBuilder (introduced

22 iacrtans

in section 3.4), all operand types will disappear and the output and inputs will become
raw placeholders.

3.7.3 Providing default configurations for constructing operand types

Another useful functionality of the Context is to provided default configurations, so that
we can write code in a more clean style. For example, after setting a Context as the
Operand::DefaultContext() using interface Operand::SetDefaultContext(), we can construct
ckks::Ciphertext, ckks::Plaintext and ckks::RelinKey without providing configurations.

/%
* @brief Define a wrapper of class CiphertextImpl on the stack
*/
class Ciphertext : public OperandWrapper <CiphertextImpl> {
public:
DEFINE_WRAPPER_METHODS (Ciphertext)

explicit Ciphertext(
const CiphertextConfig &config =
Operand::DefaultContext <CKKSContext >() ->DefaultCiphertextConfig(),
const std::string &name = "",

const std::string &description = "")
{
// default Ciphertext size = 2
NewImplObj (config.rnsBase->ContextPtr (),
config, name, description);
}

}

//usage of ckks:Ciphertext
//using default CiphertextConfig from default context
ckks::Ciphertext c;

Note that in this example, the method named as NewImplObj() is introduced in the next
section.

3.7.4 Creating and registering all operand objects

The Context also provide functionality to create and register operand objects in a map of
all unique operand objects, which will be used for operator deduplication.

//Update context’s unique operand map according to operand object’s hash
value
//Side effect: 4if entry already ezist, PtrSyncer’s OperandPtr will be set to
the existed one, for deduplication
bool RegisterUniqueOperand (OperandPtr &ptr);

//Template to create and register Operand objects, which will call
RegisterUniqueOperand () for deduplication
//Returns ptr to operand object

template<class OperandImplType, class... Args>
inline auto NewOperandAndRegister (Args... args);
//Usage

ckks::CiphertextConfig config = Operand::DefaultContext<CKKSContext>()->
DefaultCiphertextConfig () ;
auto ptr = context->NewOperandAndRegister <ckks::CiphertextImpl>(config);

When defining OperandWrapper types, user can use the macro defined in hlg def.h:
DEFINE_WRAPPER_METHODS(XXX). In this macro, the method NewImplObject is
defined as:

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 23

template <class... Args>
void NewImplObj (const ContextWeakPtrType &context, Args... args)
{

CHECK_NULLPTR (context) ;

//create shared_ptr from weak_ptr

auto ctx = context.lock();

//create and register operand object and set pointer for the wrapper

SetPtr (ctx->template NewOperandAndRegister <ImplType>(args...));
}

The user can just use NewImplODbj interface to implement customized operand types,
without using basic interface of the Context directly.

3.7.5 Constant management

There are three ways to set some operand as constants:

e The first way is to use WorkBuilder<T>::SetConstants() interface. This interface is
used after construction of the original computing graph. Before we build the work
from the original graph, we can set some input operand as constants by providing the
constant value. Note that setting constant operand will trigger auto pre-computation.
We can find this usage in the example of ckks hello_world.cpp

/Y =eem==s define high-level algebraic objects —---------
ckks::Plaintext PI, cl, cO;

ckks::Ciphertext x;

ckks::RelinKey rlk;

/Y ===s=ssssoss=o= define computation graph --------------

JY) cccmemccosososos prepare constants -—-—-—-——-——-——-——-—-—————-
ckks::Encoder encoder (params);
// msg encode for constants
ckks::PlaintextData PI_data = encoder.EncodeDoubleConst (3.1415926) ;
ckks::PlaintextData cl1_data = encoder.EncodeDoubleConst (0.4);
ckks::PlaintextData cO_data = encoder.EncodeDoubleConst (1.0);
/) ==cmssoms build work from computing graph -----------
WorkBuilder<uint64_t> builder (context);
auto work = builder.SetInput(x, rlk)

.SetConstant (PI, PI_data)

.SetConstant (cl, cl_data)

.SetConstant (cO, cO_data)

.SetOutput (output, output->ScaleFactor())

.Build) ;

e The second way to set constant operand is to use Context::SetConstants() method.
This method is used before WorkBuilder<T>::Build(). However, it will temporarily
store the operand and the const value in a const pool and the WorkBuilder will call
SetConstant() method for each pair in the constant pool automatically.

//set constant for single-unit sized operand

template<class T, class ValueType>

inline void SetConstants (const OperandWrapper <T> &oprd,
const ValueType &value);

//set constant for multi-unit sized operand

template<class T, class UnitType>

inline void SetConstants (const OperandWrapper<T> &oprd,
const std::vector<UnitType> &vec);

//Usage

ckks::Plaintext p;

context->SetConstants (p, encoder.Encode(2.0));

WorkBuilder<uint64_t> builder (context);

24 iacrtans

//no need to call SetConstant () for p again here
auto work = builder.SetInput(...)

.Build () ;

e The third way to set constant operand is to use Context::GetConstantOperandFromValue()

methods. This method will create new operand and then set them as constants by
calling Context::SetConstants(), which is easier to use. Note: the ValueType here
must be 64-bit now, such as uint64 t, int64 t and double etc. Otherwise there will
be problems, since we only support 64-bit unit cells for the placeholder now.

//Get constant operand from single wvalue
template<class OperandType, class ValueType>
OperandType GetConstantOperandFromValue (const ValueType &value) ;

//Get constant operand from value vector for multiple placeholder units
template<class OperandType, class ValueType>
OperandType GetConstantOperandFromValueVector (

const std::vector<ValueType> &vec);

//Get constant operand from std::complez<T>-typed values
template<class OperandType, class ValueType>
OperandType GetConstantOperandFromValueVector (

const std::vector<std::complex<ValueType>> &vec);

//Usage: type of BitReverselVector is std::<uint64_t>, each unit cell <is
64-bit long
auto para = context->Parameters();
auto BIT_REVERSE_VEC = context->GetConstantOperandFromValueVector<
Vector>(para->BitReverseVector) ;

Note that the new operand BIT REVERSE_VEC created in this example will be
deduplicated if it is created by calling GetConstantOperandFromValueVector<T>()
again using the same Operand type Vector and the same constant value para-
>BitReverseVector;

There are also very useful methods to read constant value from constant operand:

//Get constant wvalue from constant operand (placeholder size == 1)
template<class ValueType, class OperandType>
ValueType GetConstantValueFromOperand (const OperandType &oprd);

//Get constant wvector from constant operand (placeholder size > 1)
template<class ValueType, class OperandType>
std::vector<ValueType> GetConstantVectorFromOperand (const OperandType &oprd)

H

//Get constant wvector of std::complex<T> type from constant operand

template<class ValueType, class OperandType>

std::vector<std::complex<ValueType>> GetConstantComplexVectorFromOperand (
const OperandType &oprd);

There is an example of reading value from constant operand to switch between different
versions of implementations of INTT operator depending on the bit-length of the modulus
value. For non-constant operand, we cannot obtain their value during the process of
construction of the computing graph.

//Usage: example from implementation of INTT operator

RNSPoly InttRns (RNSPolyNTT a)

{

RNSPoly ret(a->Modulus());
Vector table = ModifiedNttLutPreComputation(a->Modulus());

auto context = a->ContextPtr ();

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 25

auto polyDegree = static_cast<uint64_t>(context->Parameters()->
polyDegree);
//read value of modulus from constant operand a->Modulus ()
auto modVal = context->GetConstantValueFromOperand<uint64_t >(a->Modulus
(ODN
//use the walue in the 4if statement
if (LogTwo(modVal) + LogTwo(polyDegree) >= MODIFIED_INTT_THRESHOLD) {
MakeOperator (a->ContextPtr (), RlweOPType::INTT_HYBRID_RNS_POLY_NTT,
ret, a->Modulus (), table, a);
} else {
MakeOperator (a->ContextPtr (), RlweOPType::INTT_SCOTT_RNS_POLY_NTT,
ret, a->Modulus(), table, a);
}

return ret;

3.8 Serialization and compression of data
3.8.1 Raw data for Plaintext, Ciphertext and Keys

Serialization is relatively simple in HLG framework. From the perspective of the framework
itself, all data are regarded as raw data of UnitType, which is uint64_t or uint32_t, etc.
We have defined types for these raw data: PlaindextData, CiphertextData, RelinKeyData,
etc., which are all derived from std::vector<UnitType>. We only need to consider endians
on different platforms when we serialized data of UnitType.

Only when these raw data are used as input in the implementation of primitive operators,
these implementations will recognize specific types of the raw data, which is implemented
using std::reinterpret cast<T*>() of c++.

In HLG framework, we provide interfaces to serialize and deserialize raw data:

//serialization
void SerializeToOstream(const std::vector<uint64_t> &data,
std::ostream &os);
void SaveRawDataToFile(const std::vector<uint64_t> &data,
const std::string &filename);
//deserialization
std::vector<uint64_t > DeserializeRawDataFromIstream(std::istream &is);
std::vector<uint64_t> LoadRawDataFromFile (const std::string &filename) ;

3.8.2 Serialization of work

Serialization of work is implemented using the library of ProtoBuffer by google [32]. We
defined data type ProtoWork with ProtoBuffer as the serializable alternative form of Work,
we also provided interfaces to serialize work:

//serialization
void ToProto(ProtoWork &ret, const Work<uint64_t> &work);
void SerializeToOstream(const Work<uint64_t> &work, std::ostream &os);
void SaveWorkToFile(const Work<uint64_t> &work,
const std::string &filename);

//deserialization
ProtoWork DeserializeProtoWorkFromIstream(std::istream &is);
ProtoWork LoadProtoWorkFromFile (const std::string &filename);

Note 1: HLG does not support converting ProtoWork back to Work, since this seems
unnecessary now.

Note 2: The CPU engines in HLG framework can support interfaces to load from a
Work and a ProtoWork.

26 iacrtans

3.8.3 Compression of raw data

Almost all data in 2"%-generation FHE are polynomials, whose coefficients are modular.
We have to use uint64_t to store their value, even if the modular prime is only 40-bit
or less. So compression is necessary to remove those zeros in the MSBs of the 64-bit
values, which is also good for reducing the data size transferred through internet. The data
compression and decompression in HLG is implemented using third-party library Zlib [17].

In serialization and deserialization of the work mentioned before, compression and
decompression are also supported.

3.9 APIs for implementation of primitive operators

In HLG framework, implementation of primitive operators is also decoupled with the
strategy for task scheduling and memory management in CPU compute engines. In order
to achieve this, the CPU engines should provide unified interface DataAccessAPI to the
implementation code for primitive operators, from which the underlying code can obtain
address of the memory allocated for the input and output placeholders of the operator.

The memory access obtained from DataAccessAPI will be a custom type Virtu-
alSpan<T>. In order to define VirtualSpan<T>, we need to define SizedPointer<T>
first.

3.9.1 SizedPointer<T>: secure pointer type

SizedPointer<T> is a secure pointer type, with members of the raw pointer of type T*

and a data size. Usage of a SizedPointer<T> p is similar to raw pointer: *p, p[2], p++,

etc. However there is additional check for range boundary. Basically, SizedPointer<T>

can be regarded as a lightweight data view of a continuous range of memory space, which

is similar to std::span in C++20. Copy of SizedPointer<T> will always be shallow copy.
The examples of usage of SizedPointer<T> is as follows:

//original data vectors and arrays
std::vector<uint64_t> a{0,1,2,3};

int b[4] = {4,5,6,7};
std::array<uint64_t> c = {8,9,10,11};

//construction of StizedPointer from wvector
SizedPointer<uint64_t> spl(a);

//construction of SizedPointer from raw pointer and size
SizedPointer<uint64_t > sp2(b, 4);

//construction of SizedPointer from std::array
SizedPointer <uint64_t> sp3(c);

//get raw pointer

assert (spl.Ptr()==a.data());
assert (sp2.Ptr()==b);

assert (sp3.Ptr()==c.data());

//access by operator[], complezity 0(1)
assert (spl[1]==1);
assert (sp2[1]==5);
assert (sp3[1]1==9);

//access as a pointer

*spl = 2; //write to spl[0]
assert (spl[0]==2);

assert (*x(spl+2)==2); //*(sp1+2)=spl[2]
spl+=3;

assert (¥spl1==3);

//will trigger error: out of range
auto v = spil[4];

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 27

3.9.2 VirtualSpan<T>: a virtual continuous memory range

Since HLG supports customizable granularity of operator expansion, sometimes the input
and/or the output of an operator can be either a whole piece, or fragmented pieces. In
order to make the life of developer easier, we need a unified interface to support both cases
with the same interface for memory access.

In order to support this, we introduce another type VirtualSpan<T>, which can
be constructed using a whole piece of memory or several memory pieces. However, the
interface to access the data in a VirtualSpan is unified:

//definitions of wectors
std::vector<uint64_t> a{0,1,2,3};

std::vector<uint64_t> b{4,5,6,7};
std::vector<uint64_t> c{8,9,10,11};

//construct sized pointer from wector c
SizedPointer <uint64_t> spa(a);
SizedPointer<uint64_t> spb(b);
SizedPointer<uint64_t> spc(c);

//definition of VirtualSpan from multiple vectors and sized pointers
VirtualSpan<uint64_t> vs(a,b,spc);

//access by operator[], complezity O0(log(n))

assert (vs [2]==2); //vs [2]==a[2]
assert (vs [6]==5) ; //vs [5]==b[2]
assert (vs [9]==9) ; //vs [9]==sp [2]==c [2]

//access by titerator

auto it = vs.begin();

uint64_t i = 0;

for(;it!=vs.end();it++){
//complexzity of it++ is 0(1)
assert (xit==i++);

}

//access by range for loop

i = 0;

for (auto &v:vs){ //implicit: complexity of 4t++ ts 0(1)
assert (v==i++) ;

}

//access by zip range of multiple VirtualSpans
VirtualSpan<uint64_t> vs2(spa,spb,c); //another wvirtual span
//loop by Zip range will terminate when any one of the range reaches the end
for (auto &&[vl, v2]:Zip(vsl, vs2)){
assert (vi==v2);

}

In addition, we also support custom MemCopy function between SizedPointers and
between VirtualSpans. However, VirtualSpan will have worse performance comparing
to SizedPointer. We will only consider using VirtualSpan in non-performance-critical
operators, such as operators which will always be used in pre-computation phase, such as
InvModRnsBase2Crt and other operators computing constants from modulus values.

3.9.3 DataAccessAPIBase<T>: unified interface for implementation of primitive
operators

DataAccessAPIBase<T> is the base class which provides interface to obtain input and
output data as SizedPointer<T> or VirtualSpan<T>. The following interfaces are
provided:

e GetOutput<T>(): get output SizedPointer<T>, which is writable.

28 iacrtans

e GetInput<T, U, V, ...>(): get multiple SizedPointers as a tuple of types const T,
const U, const V, ... which are read-only.

e GetOutputV<T>(): get output VirtualSpan<T>, which is writable.

e GetInputV<T, U, V, ...>(): get multiple VirtualSpans as a tuple of types const T,
const U, const V, ... which are read-only.

Here we use implementation of primitive operator AddModRnsPoly as an example:

void OpAddModRnsPoly(const DataAccessAPIBase& api) {
//ret is a SizedPointer<uint64_t>, where we can write to output data
auto ret = api.GetOutput<uint64_t>(); // --- mont_form

//modulus, polyl and poly2 are SizedPointer<const uint64_t> (read-only)
auto [modulus, polyl, poly2]
= api.GetInput<uint64_t, uint64_t, uint64_t>();

assert (polyl.Size() == poly2.Size());
assert (polyl.Size() == ret.Size());

//use SizedPointer as raw pointer / origimal array in C++
for (size_t i = 0; i < polyl.Size(); i++) {

ret[i] = FastAddMod(poly1[il, poly2[il, #*modulus);
}

Note that in existing CPU engines of HLG, all implementation of operators are required
to support the same interface as OpAddModRnsPoly above.

3.10 Compute engines for multiple CPU cores

The compute engines of HLG are designed to be generic. They need to support all kinds of
computing graphs, i.e. works, with automatic task scheduling and memory management.

In the data structure of the Work, we have defined dependency set and notification set
of a task ¢, which are useful for task scheduling and memory management.

In HLG framework, we provide two different implementations of CPU engines: MyEngine
and LockFreeEngine, which follow similar strategies for task scheduling. However MyEngine
is using mutex when updating dependency and notification counters and allocating memory,
etc, while LockFreeEngine is implemented based on lock-free queues. The end-to-end
performance of MyEngine and LockFreeEngine are similar. Their performance may vary
for different kind of works. We will need experiments to find out which engine is better for
the given work.

The usage of both engines are the same. The interfaces are as follows:

//step 0: Initialization. Create contexzt for computing graph.

//step 1: Construct high-level computing graph
ckks::Ciphertext a,b;
ckks::Ciphertext ¢ = axb | ckks::Relin | ckks::Rescale;

//step 2: Build work wusing WorkBuilder
//context contains the entire high-level computing graph
WorkBuilder <uint64_t> builder (context);
//build work
auto work = builder.SetInput(a,b)
.SetOutput (c)
.Build () ;

//step 3: Ezecute the work using given cpu engine

//define MyEngine with 8 threads

MyEngine<uint64_t> engine(8); //or LockFreeEngine<uint64_t> engine (8);
//load work into engine

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 29

engine.load (work) ;

//run engine with real input data

//data_a and data_b: real input data for operand a and b
auto output = engine.Run(data_a, data_b);

//type of output %is std::vector<std::wector<uint64_t>>
//data_c is the real output data for operand c
ckks::CiphertextData data_c = output [0];

The user of HLG may also implement their own engines with different strategies for
task scheduling and memory management, since the architecture of compute engine is also
decoupled from the front-end algorithm and implementation of primitive operators.

3.10.1 Description of MyEngine

The dependency set of the task ¢ stores the IDs of all the tasks which task ¢t depends on,
which means those tasks need to be executed before task ¢. The strategy of task scheduling
and memory management is as follows:

1. Find all tasks with empty dependency set (the executable tasks) and push these
tasks into the queue of the thread pool.

2. For each of the worker thread in the thread pool, take one task from the task queue,
allocate memory for their output placeholders and execute the task by calling the
implementation code of this task.

3. After execution of the task t is finished, we can notify the tasks in the notification set
of t. Then these successor tasks of ¢ can update their dependency set by removing ¢
from it. If the dependency set of any successor task become empty, we also push the
successor task into the thread pool.

4. Also, after execution of task ¢, we can ask the predecessor tasks in the dependency
set of task ¢ to remove ¢ from their notification set. Once the notification set of any
predecessor task becomes empty, it means that the output data of this task is no
longer needed. Thus we can deallocate the memory for their output placeholders.

Note that we have to exclude task types INPUT, CONSTANT operators and also
the output tasks of the work when deallocating memory.

In MyEngine, all threads in the thread pool are equivalent. They will perform compu-
tation of the assigned task and memory management, updating of counters and pushing
tasks into thread pool alternatively. In short, it is a multi-producer and multi-consumer
design. When the threads in the thread pool are working, the main thread would be idle,
waiting for them to finish. The architecture of MyEngine is illustrated in Fig. 8.

3.10.2 Description of LockFreeEngine

For the other CPU engine LockFreeEngine in HLG framework, these strategies of task
scheduling are similar. However there is a main thread in LockFreeEngine in charge of three
operations: 1) allocating memory 2) updating reference and notification counters and push
tasks into runnable task queue 3) releasing memory. The architecture of LockFreeEngine
is introduced in Fig. 9.

4 Implementation of CKKS based on HLG framework

Base on HLG framework, we have implemented operand types for RLWE and higher-level
types for CKKS. The hierarchy among operand types are illustrated in Fig. 10. Note that
parent types are at higher position.

30

iacrtans

No lock
required

Memory pool

Thread 1

Thread 2

Lock +

|
|

Obtaining Task from task
queue

Allocate memory for output
of the task

Execute task

Update the depCount of the
successor tasks.

If depCount==0, push task
to the thread pool.

Update the refCount of the
predecessor tasks.

Obtaining Task from task
queue

Allocate memory for output
of the task

Execute task

Update the depCount of the
successor tasks.

If depCount==0, push task
to the thread pool.

Update the refCount of the
predecessor tasks.

Thread 3

Obtaining Task from task
queue

Allocate memory for output
of the task

Execute task

Update the depCount of the
successor tasks.

If depCount==0, push task
to the thread pool.

Update the refCount of the
predecessor tasks.

‘ If refCount==0, release ‘

If refCount==0, release
memory for the task

If refCount==0, release
memory for the task

memory for the task

Task Queue of the thread pool ‘

Figure 8: Architecture of MyEngine

As is shown in the bottom of Fig. 10, primitive operand types are provided in HLG
framework, including SingleUnit, Double, Complex and Vector type. As their name show,
the SingleUnit refers to an operand with raw data size being 1, and Vector type is defined
as an array of SingleUnit. Double is the data type in HLG corresponding to the double
value, for example, the scale factor in CKKS is of type Double in our framework. Complex
type is an array of Double, with size being 2.

Based on the basic types, we defined new data types and operators to support for
RLWE related algorithms. Unlike these basic operand types, the data types in RLWE and
CKKS require more complex information. For example, the design of CRTPolyNTT needs
the RNS base information, and the ckks::Ciphertext that inherits from CRTPolyNTT
requires the RNS base, the scale factor and the size of a ciphertext. Therefore we define
the corresponding xxxConfig struct to describe the required configuration, and it helps in
defining a new type and calculating the size of placeholder. The diagrams of xxxConfig is
similar with the operand type dependencies.

For the construction of an operand, there are the following methods that are applicable
to different scenarios.

e Construct from its config. This construction mode is applicable to the scenario
where a new operand needs to be created. For example, when defining the input
operand of a task, we usually use this construction method.

e Construct from children. It is used to create a new operand, i.e. the "step parent"
from the collection of existing children. Note its placeholder must be virtual.

e Construct from existing placeholder and children’s Config. This constructor
is called during the execution of MakeChildren(), that is to cut a small piece from
the placeholder that has been allocated by the birth parent and assign it to the child
operand. Note that besides the placeholder input, the additional Config of the child
operand is also required.

e Construct from base class object. For example, we can use a CRTPolyNTT
object to construct a CRTPoly.

Based on the defined operands, we define the related operators that are illustrated in
Fig.11. Note that the operators in red are primitive and implemented. As is shown in the

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu

31

Memory pool

Thread 1 Thread 2 Thread 3
Lock free Obtaining Task from task queue Obtaining Task from task queue Obtaining Task from task queue
from Runnable task queues from Runnable task queues from Runnable task queues
No lock
re(q)uﬁZd Execute task Execute task Execute task
After the task calculation is Push the task to the finished task Push the task to the finished task
Lock Free complete, push the task to the queue after the task calculation is queue after the task calculation is
finished task queue. complete. complete.
Single-producer Runnable <":| Lock-free |:“> Finished Muiti-producer
Multi-consumer ta:k queue Queues task queue Single-consumer
main thread Update the Update the
depCount of the refCount of the
@ Allocate memory for @ successor tasks. predecessor tasks.
output of the task ¢ #

I

Local

depCount= = 0? refCount= = 0?
Local 1——)

Runnable Releasing Memory Release|
task queue memory task queue

Figure 9: Architecture of LockFreeEngine

bottom of Fig.11, we provide the pre-defined basic operators to support the generation of
random value, add/substraction of Double and Vector type. On top of this, we extend the
operators of RLWE and CKKS. We give the description of main operators in the following
subsections and the reader can refer to the code for comprehensive introduction of all

operators.

4.1 Operand Types and Operator Types for RLWE
4.1.1 Operand Types for RLWE

¢ RNSBase and CRTConst. The RNSBase type is defined as an array of SingleUnit
that has a placeholder to store the RNS modulus. It can be constructed either from
the RNSBaseConlfig, i,e, the raw data size information or from its children, i.e. vector

of SingleUnit. For example, we can construct a RNSBase of size 4 as follows.

RNSBase baseO(4); //construct from raw data size

SingleUnit a,b,c,d;
RNSBase basel({a,b,c,d}); //construct from children

The methods provided by RNSBase type includes the combination and extraction

related functions. For example,

//get index-th Modulus of an RNSBase object
SingleUnit GetModulus (uint32_t index);

//construct a new RNSBase with the remaining modulus
RNSBase RemoveRnsBase (const RNSBase &base);

//find intersection (as RNSBase-type) of this RNSBase with target base

RNSBase Intersection(const RNSBase &base);

//append modulus in base to current modulus set
RNSBase Append(const RNSBase &base);

RNSBase FirstN(uint32_t n); // Get first n modulus as a new RNSBase

32 iacrtans
Compact Compact ; '
Galoiskey > Relinkey GaloisKey > RelinKey Equivalent (using A=B)
l l <+—— OperandArray
C t f " " " " .
operand types Re‘inKe‘;’;‘iEstnum RelinKeyFixedDnum <«——— "Inheritance” by SingleOperand
for CKKS
l OperandTuple
CompactKSKey KSKey <+—— Customized. None of the above.
C t C t))] M
ng’;;y > Ci;}""e':f: " Publickey <> Ciphertext Plaintext <> SecretKey C:;‘;gi Message
|
v
operand types CRTPoly ——— CRTPOlyNTT
for RLWE l
RNSBase CRTConst RNSPoly ——— RNSPolyNTT

HLG basic N / v
operand types Vector Complex

y v

SingleUnit Double

Figure 10: Hierarchy of operand types for CKKS

For more comprehensive information, the reader can refer to the code.

Similar with the RNSBase type, the CRTConst type is defined as an array of
SingleUnit. The CRTConst type is defined to store the CRT representation of a
constant which is related with the RNS base. We list an example of the construction
of a CRTConst here.

RNSBase base (4);
CRTConst r(base); //construct from RNS base

The operator [] is also given to get the i-th child, i.e. a SingleUnit of modulus.

¢ RNSPolyNTT and CRTPolyNTT. The RNSPolyNTT type is inherited from

the SingleOperand template of Vector type and defined to represent the NTT form of
a RNS polynomial. Compared to a single Vector, it requires an additional modulus
to construct and the vector size is fixed which is equal to the polynomial degree.

The definition of CRTPolyNTT is to store the NTT form of a CRT polynomial and its
children is RNSPolyNTTs. Note that we do not use OperandArray<RNSPolyNTT >
to define the type, since the template OperandArray requires the configuration of
each child to be the same. But for CRTPolyNTT, each child is of different modulus,
and we define CRTPolyNTT from Operand directly.

We also give the methods of CRTPolyNTT to support splitting and combination
friendly, for example,

//remove given RNSBase related RNSPolyNTT’s
CRTPolyNTT RemoveRnsBase (RNSBase base) ;

//remove last n related RNSPolyNTT’s and return a new CRTPolyNTT object
CRTPolyNTT RemoveLastNMod (uint32_t n);

RNSPolyNTT GetSubRnsPolyNttByModulus (SingleUnit modulus) ;

¢ RNSPoly and CRTPoly. Since the NTT form and non-NTT form of a polynomial

are all involved in FHE algorithm, we also define the RNSPoly and CRTPoly type that
are inherited from RNSPolyNTT and CRTPolyNTT respectively. Similar methods
of splitting and combination are provided.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu

Encode and Decode Key Generation Encrypt and Decrypt Base Rotation
Fncode KeyGenRelinKey Conversion Rotate
EncodeComplex KeyGenGaloisKey =5 _ RotateConjugate
Decode 1 Decrypt | | Enct i Chang
DecodeComplex B - e DecryptPublic | [EncryptAsymmetric|
CKKS P yp ModDown RotateFixedDnum
eyFixedDnum — " o
operators IftComplexDecompose] _ Basic [RelinearizeFixedDnum| [RotateCt Dnum|
IfftDecompose ' EncryptZeroSymmetric 5 o F
B i [Permutation]
ComposeFft ReyGenPublicKey] [ReyGenksKey EncryptZeroAsymmetriq | |———— S cermatiar |
Y KeySwitch
ComplexComposeFft -
Uniform CRTPoly Basic Arithmetic Base Conversion
InvModUnit2Crt FastBasisConv
CRT RandomUniformCrtPoly ModSwitchRns2Crt ctBasisConv
Level RandomUniformCrtPolyNtt NTT i TNt oo
IntVecToCrtPoly Nttert ModSwitchRns2CrtDirect ChangeRnsBase
IntVecToCrtPolyNtt s ModswitchRnsNtt2CrtNttDirect RescaleCrtPolyNtt
RLWE
operators
—— Base Conversion
Y FastBasisConv
UlljtvflceTc(;ET:n:(;‘Z:;‘/“ olyNtt ExactBasisCon Automorphism
T ——_ i olyNttDirect = fonRnsPol
RNSI ntVecToRusH0lY ModswitchRnsPolyDirect BasisConvinversevec PermutationRnsPolyNtt
Level Sampling NTT ModSwitchRnsPoly COanNS'\ia;eRT B.‘ =z Iy
InvModUnit nvModRnsBase2Crt
I;anomai; NttRns ModRnsBase2Crt
ndom| InttRns CenterModRnsBase2Crt
NegCenterModRnsBase2Crt
. Sampling For Double and Vect
Pre-defined SetRandor form or 2o _”/" ecor
Operator SetRandomUniformWithSeed AddDoubleVec
SetRandomGaussian RoundDoubleVector
Remark: Op s in red are primitive-level op sand are i d. Other are high-level operators which will be expanded.

Figure 11: Operator Hierarchy Diagram

4.1.2 Operator Types for RLWE

We defined the commonly used operators for the operands. Note the operator of RN-
SPoly/RNSPolyNTT is primitive-level and implemented. Based on that, the high-level
operators, such as operators of CRTPoly, are further given.

e Modular addition/negation/multiplication. We define the basic operators for

each operand and provide the convenient representation by using operator +, —, *,
that is for operand T,R € {RNSPoly, RNSPolyNTT,CRT Poly, CRT PolyNTT'},
we construct the following operators.

T operator+(T a, R b);
T operator-(T a, R Db);
T operator-(T a);

T operator*(T a, R Db);

Take the multiplication of CRTPolyNTT as an example, the user can write as follows.

CRTPolyNTT a;
CRTPolyNTT b;
CRTpolyNTT ret = a * b;

Note that when we deal with two operands, they should have same context and
matching modulus.

¢ NTT/INTT. As for the transformation between NTT form and non-NTT form,
we provide the NTT/INTT operator for RNSPoly and CRTPoly.
RNSPolyNTT NttRns (RNSPoly a);
RNSPoly InttRns (RNSPolyNTT a);

CRTPolyNTT NttCrt (CRTPoly a);
CRTPoly InttCrt (CRTPolyNTT a);

e Mod Switch. We implement the following two operators of RNSPoly.

34

iacrtans

The ModSwitchRNSPoly operator is used for mod switching for RNSPoly with tuning
of symmetric range, i.e. we consider the coefficient in the range of (—(¢ —1)/2, (¢ —
1)/2] instead of [0, ¢) where ¢ is a modulus.

As a contrast, the ModSwitchRNSPolyDirect operator considers the coefficient in
the range of [0, ¢) and its expand function is defined by setting a new mod.

RNSPoly ModSwitchRNSPolyDirect (RNSPoly a, SingleUnit mod);
RNSPoly ModSwitchRNSPoly (RNSPoly a, SingleUnit mod);

The user can choose the corresponding switch operator due to the noise control
requirement.

Based on the two operators, the high-level mod switch operators are also given. We
list the ModSwitch operators here. And the ModSwitchDirect’s high level operators
are similar.

//mod switch to RNSPolyNTT, from RNSPolyNTT
RNSPolyNTT ModSwitchRNSPolyNtt (RNSPolyNTT a, SingleUnit mod);

//mod switch to CRTPoly, for CRTPoly
CRTPoly ModSwitchRns2Crt (RNSPoly a, RNSBase base);

//mod switch to CRTPolyNTT, for RNSPolyNTT
CRTPolyNTT ModSwitchRnsNtt2CrtNtt (RNSPolyNTT a, RNSBase base);

Rescale. The rescale operator for CRTPolyNTT is shown in Fig.4 and it is assembled
by defined operators such as modular addition, NTT/INTT and mod switch etc.

CRTPolyNTT RescaleCrtPolyNtt (CRTPolyNTT a);

Basis Conversion. We define the RNS base conversion related operators to switch
the poly from its original RNSBase to a new RNSBase.

— Fast Basis Conversion. The FastBasisConv operator is defined to converse a
CRTPoly into a RNSPoly with a new modulus. Recall the fast basis conversion
algorithm [5], it firstly performs a scalar multiplication for each CRT component,
then calculate the scalar multiplications and additions under the new modulus.
Our assembly function of FastBasisConv is consistent with that and is shown
in Fig.12.

RNSPoly FastBasisConv (CRTPoly a, SingleUnit mod);

RNSPoly * RNSPoly
RNSPol * RNSPol
o [+ —» e

RNSPoly * RNSPoly

Scalar mul under the new mod

ISUoDLYD

Figure 12: The detail chart of FastBasisConv operator

— Exact Basis Conversion. Note that the fast basis conversion would introduce
approximation error and the exact basis conversion may needed in some cases.
We provide the ExactBasisConv operator to meet the requirements. We imple-
ment the following primitive operator and assemble it into high-level operators
similarly.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu

35

RNSPoly ExactBasisConv (CRTPoly a,

SingleUnit mod);

— RNS Base Change. We define the ChangeRnsBase related operators to
switch the poly from its original RNSBase to a new RNSBase. Regardless of
whether the new base and the original base have intersections, ChangRnsBase
operator is supported and is shown in Fig.13.

CRTPoly ChangeRnsBase(CRTPoly a, RNSBase new_base);

* For each mod in the new_base,
if it is contained in a’s RNSBase, the corresponding
RNSPoly is retained;
And if not, call the FastBasisConv(CRTPoly a, SingleUnit

CRTPolyNTT ChangeRnsBase(CRTPolyNTT a, RNSBase new_base);
¢ For each mod in the new_base,
if it is contained in a’s RNSBase, the corresponding
RNSPolyNTT is retained;
And if not, call the FastBasisConv(CRTPolyNTT a, SingleUnit

mod) operator.

mod) operator.

RNSPolyNTT FastBasisConv(CRTPolyNTT a, SingleUnit mod);
* Note that the RNSBase of a can’t contain the input mod.
« Its expand func is defined by NTT(FastBasisConv(INTT(a), mod));

/

RNSPoly FastBasisConv(CRTPoly a, SingleUnit mod);

* Note that the RNSBase of a can’t contain the input mod.

* If a has only one modulus, invoke the ModSwitchRnsPolyDirect
operator to return the result; Otherwise, carry out the
implemented fast basis conversion related operations.

Figure 13: ChangeRnsBase operators

We take an example to interpret the definition and implementation as is shown
in Fig. 14. For a CRTPoly a with its RNSbase being pg, p1, p2, p3 and it needs to
be changed into new RNSBase pg, q1, g2, the returned CRTPoly would retain the
RNSPoly a[0] and generate the RNSPoly of ¢1, g2 by carrying on FastBasisConv

operators.
High-level
— — >
Operator CRTPoly ChangeRnsBase CRTPoly
GetSubRnsPolyByModult » RNSPoly
. RNSPoly ’_’ FastBasisConv » RNSPoly
eXPanSIon RNSPoly L FastBasisconv RNSPoly
oy |

Figure 14: The expansion of ChangeRnsBase operator

e Mod Down. For a CRT poly a with modulus being PQ, the mod down function is
to calculate $ which can be seen as a general Rescale, since the divided modulus can
be composed of several RNS modulus, instead of a single modulus. We provide the
following interfaces. And its expanding process is shown in Fig. 15. Note that we can
select FastBasisConv or ExactBasisConv to perform intermediate basis conversion
due to the requirements of noise control.

//the move_base should be included in a’s RNS base.

CRTPoly ModDown (CRTPoly a, RNSBase move_base);
CRTPolyNTT ModDown (CRTPolyNTT a, RNSBase move_base);

36 iacrtans
- RNSPoly RNSPoly RNSPoly RNSPoly
‘ RNSPoly RNSPoly N N - N RNSPoly RNSPoly
Q a RNSPoly RNSPoly RNSPoly RNSPoly
A
RNSPoly RNSPoly RNSPoly RNSPoly
- RNSPoly RNSPoly
RNSPoly RNSPoly
P FastBasisConv RNSPoly RNSPoly
— RNSPoly RNSPoly — > or
e RNSPoly RNSPoly CRTConst
xactConv
RNSPoly RNSPoly P—1 mod Q
RNSPoly RNSPoly

Figure 15: The expansion of ModDown operator

4.2 Operand Types and Operator Types for CKKS
4.2.1 Operand Types of CKKS

Based on the operand types of RLWE, we construct the CKKS algorithm related types as
shown in Fig. 10. In addition to the operands specified, all other operands class support
three main types of constructors, that is construct from Config, construct from its children,
and construct from the existing placeholder and its child config.

Message and MessageComplex. The Message is the operand that corresponds
to the double message and it is defined as an array of Double. Similarly, the
MessageComplex is defined as array of Complex and is for the complex messages.
The user can choose the corresponding operand according to the type of message.

The MessageConfig/MessageComplexConfig is inherited from VectorConfig and the
size of message is needed. Note that in the construction of Message/MessageComplex,
we only need the constructor from the config. And the default Message/Message-
Complex config is the slot size.

Plaintext. The plaintext of CKKS algorithm is in the NTT form by default, and
the Plaintext class is defined by inheriting from the SingleOperand template of CRT-
PolyNTT. Besides the RNS base, the scale factor is also required in PlaintextConfig.

Note that the default constructor of Plaintext is to use the default PlaintextConfig
that provided by DefaultPlaintextConfig() method in CKKSContext, i.e. we can
write as follows to construct a Plaintext.

//here it is with the default RNSBase and the default Scale factor.
ckks::Plaintext p;

Note that in the definition of the CKKS operands,such as Plaintext,Ciphertext, KSKey
etc, the commonly used methods of splitting and combination, for example removing
a part or matching the RNS base, are all provided. Note that we also provide the
method for setting scale factor.

//Set the scale factor of a Plaintext

std::function<ckks::Plaintext (ckks::Plaintext)> SetScaleP (Double
scale_factor);

For more information, the reader can refer to the code.

SecretKey. The SecretKey operand is equivalent with Plaintext that this alias is
used to represent the secret key conveniently.

Ciphertext. The Ciphertext operand is defined by inheriting from OperandArray
template of CRTPolyNTT. Since besides the RNS base, the ciphertext size and the
scale factor are also required in describing a ciphertext, they are all included in the
CiphertextConfig and the member of Ciphertext class. If we want to construct a
default Ciphertext, we can write as follows.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 37

//here it is with the default RNSBase, the default Scale factor and the
default ciphertexzt size.
ckks::Ciphertext c;

Remark that the RandomSeed of type Vector is also a member of Ciphertext class,
and it is only used for fresh symmetric encrypted ciphertexts, i.e. we can use
RandomSeed() to get the seed of the random part of a Ciphertext.

e PublicKey. The PublicKey is equivalent to Ciphertext operand as it is an fresh
ciphertext of encrypting zero.

e KSKey. The KSKey operand is defined for the switching keys. Recall that the
switching key is composed of several ciphertexts, the KSKey class is defined as an
array of Ciphertext operand.

To support the boosted key switching and automatically select the corresponding key
to switch, the following information is included in describing the KSKey configuration.

/%%
*@param extra_key_rns_base_, the extra base in the switching key;
*@param ciphertext_rns_base_, the nmormal ciphertext rns base;

*@param ciphertext_size_ ,
the size of CRTPolyNTTs 4in each child Ciphertext of a KSKey
*@param scale_factor_, used for the ciphertexzt setting
*@param dnum, represents the digit number of the KSKey, the digit can
range from 1 to L+1.
*@param max_level, shows the max level that the KSKey support.
* %/
KSKeyConfig (RNSBase extra_key_rns_base_,
RNSBase ciphertext_rns_base_,
uint32_t ciphertext_size_,
const Double scale_factor_,
const uint32_t dnum,
const uint32_t max_level)

Note that the digit number and the support switching max level are used for the
carry on the key switching correctly. We give more interpretation of the maxz_ level
parameter. For example, for ciphertexts of total level being 10, if the maz_ level of
a KSKey is 6, then it can only support the ciphertext of level [0, 6] to carry on the
key switching.

e RelinKeyFixedDnum and RelinKey. The RelinKeyFixedDnum operand is
defined for the relinearization key of a fixed digit number. Based on this, the
RelinKey type is defined which is composed of several RelinKeyFixedDnum. The
type is defined to support automatically match the corresponding key.

For example, for the CKKS parameters with total level being 10, the user may need
the relinearization key of digit 2 for ciphertexts with level ranging from 0 to 6, and
the relinear key of digit 1 for ciphertexts with level ranging from 7 to 10. Then we
can define two RelinKeyFixedDnum operands with digit being 2 and 1 respectively,
and the two RelinKeyFixedDnum operands form a RelinKey.

Note GaloisKey is the type that equivalent to RelinKey.

Since a portion of the key is randomly generated, we also provide the compact operand to
reduce the storage. For example, for a fresh ciphertext (cg, c1), the compact ciphertext
operand store the seed of ¢; instead of ¢;. The compact version of operand is shown in
Figure 10 and they are consistent with the non-compact operands.

e CompactCiphertext. The CompactCiphertext operand is inherited from the
OperandTuple template of Vector and CRTPolyNTT where the random part of

38

iacrtans

a ciphertext is stored in a seed of Vector type. We provide the default construct
method from configuration. That is, we can write as follows.

ckks::CompactCiphertext c;

To support the conversion between CompactCiphertext and Ciphertext, we define
the Pack and UnPack operators.

//decompress a CompactCiphertext, i.e. generating the random part of
ciphertext using stored seed.
ckks::Ciphertext ckks::Unpack(ckks::CompactCiphertext cc);

//0nly for fresh symmetric encrypted ciphertexzt, the random part of a
Ciphertexzt would be stored in a seed.
ckks::CompactCiphertxt ckks::Pack(ckks::Ciphertext c);

e CompactKSKey, CompactRelinKeyFixedDnum and CompactRelinKey.

Similarly, the corresponding CompactXXXKey operands are also defined. Note
that the Pack() and UnPack() operators are also given.

4.2.2 Operator Types of CKKS

We provide the basic homomorphic operators to perform the calculations, such as the basic
modular arithmetic, encoding, encrypting, key switching, rotation etc. Note that we do
not introduce the operators in detail and the reader can get more information through the
code. Here we will only list some operators that need to be explained.

e Encode/Decode. The Encode and Decode operators for input Message/Message-

Complex are provided as follows.

//Encode and Decode operator for Message.
ckks::Plaintext ckks::Encode (ckks::Message msg, Double scaleFactor);
ckks::Message ckks::Decode(ckks::Plaintext p);

//Encode and Decode operator for MessageComplez.

ckks::Plaintext ckks::EncodeComplex(ckks::MessageComplex msg,
Double scaleFactor);

ckks::MessageComplex ckks::DecodeComplex (ckks::Plaintext p);

Encrypt and Decrypt. Both symmetric and asymmetric encrypt operators are
provided named as ckks:EncryptSymmetric() and ckks::EncryptAsymmetric(). For
decrypting a Ciphertext, the ckks::Decrypt() is provided. Note that we also give the
ckks::DecryptPublic() operators for the setting that the output can be obtained by a
party besides the secret key owner.

Key Generation. We define the commonly key generation operators,such as
ckks::KeyGenPublicKey(), ckks::KeyGenRelinKey(), ckks::KeyGenGaloisKey() etc.
Note that we also provided the corresponding compact supporting versions, i.e. the
generated key support the ckks::Pack() function.

Boosted Key Switching. The KeySwitch operator takes the KSKey and the
CRTPolyNTT as input, and make the key switching according to the information of
the KSKey.

//key switching, note that the rns size of CRTPolyNTT should not be
bigger than the kskey supported maz level
ckks::Ciphertext ckks::KeySwitch(CRTPolyNTT poly, ckks::KSKey kskey,
Double scale_factor);

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu

39

The expansion function of KEY_SWITCHING operator would take the configuration
of the KSKey(i.e. the digit number and the blocking information) to make the

corresponding calculations.

¢ Relinearization.The user can take the key and ciphertext as inputs, and make the
relinearization by call the ckks::Relinearize() operator. And its expansion is shown

as follows.

ckks::Ciphertext ckks::Relinearize (ckks::Ciphertext c, ckks::RelinKey rlk);
* Note the rlk includes several RelinKeyFixedDnum, we would calculate the
corresponding key based on the level of c. That is, we would call
ckks::RelinearizeFixedDnum(c, rlk[index])
where the index is calculated from the level of c.

ckks::Ciphertext ckks::RelinearizeFixedDnum (ckks::Ciphertext c, ckks::RelinKeyFixedDnum rlk);
* Note the RelinKeyFixedDnum rlk is of specific digit number, it would carry out according to the
corresponding algorithm.

ckks::Ciphertext ckks::KeySwitch (CRTPolyNTT poly, ckks::KSKey kskey, Double scale_factor);

Figure 16: Relinear operators

e Rotation. We provide the rotation related operators as follows.

//the parameter step is a value that refers to a rotation step, a

positive integer % indicates rotation to the left by © positions
and a negative integer indicates a rotation of 4 positions to the

right.

ckks::Ciphertext ckks::Rotate(ckks::Ciphertext c, ckks::GaloisKey glk,

int step);

//the conjugate rotation operator
ckks::Ciphertext ckks::RotateConjugate (ckks::Ciphertext c,
ckks::GaloisKey glk);

Here we show an example to use the operators in CKKS. Assume we want to define
the computing graph a2 + const * Rotate(x), the parameters and CKKS Context are well

generated. Then we can write as follows.

Double scaleFactor = context->DefaultEncoderScaleFactor () ;
ckks::Message msg;

ckks::Message msgConst;

//the Encode operator support encoding of Message.
ckks::Plaintext p = ckks::Encode(msg, scaleFactor);
ckks::Plaintext pConst = ckks::Encode(msgConst, scaleFactor);

ckks::SecretKey sk;

40 iacrtans

ckks::PublicKey pk;
//the EncryptAsymmetric () support the asymmetric encryption.
ckks::Ciphertext ctO = ckks::EncryptAsymmetric(pk, p);

ckks::RelinKey rlk;

ckks::GaloisKey glk;

//calculate the multiply of the ctO, then make relinearization and rescaling
ckks::Ciphertext ctSquare = ctO * ctO | ckks::RELIN(rlk) | ckks::Rescale;
//set the scale factor

ctSquare->SetScaleFactor (scaleFactor);

int step = 5;

//calculate the pconst * Rotate(xz), then rescaling.

ckks::Ciphertext tmp = (pConst * ckks::Rotate(ctO, glk, step)) | ckks::
Rescale;

tmp->SetScaleFactor (scaleFactor) ;

ckks::Ciphertext ct = tmp + ctSquare;

//decrypt and decode

ckks::Plaintext pt = ckks::Decrypt(ct, sk);

ckks::Message msg2 = ckks::Decode(pt);

4.3 User Interfaces

The calculation of FHE algorithms involves preparations such as parameter setting and
key generation, we provide the user-friendly interfaces in ckks/user_ interface.h.

4.3.1 The real data types

In the process of building a computational graph, we define the above operands that
represent the placeholders instead of the real data. In ckks/user_interface.h, we provide
the data types that store real data and allows users to define strongly typed application
interfaces. They are all inherited from std :: vector < wint64_t > and shown in Fig. 17.

Operand types that represent Data types that store the datas
only placeholders

‘ ckks:Message ‘ ‘ ckks::MessageData }»,

‘ ckks:MessageComplex ‘ ‘ ckks:MessageComplexData ‘

| ckks::Plaintext | | ckks::PlaintextData | . i

The data types are all inherited

| ckks::Ciphertext | | ckks::CiphertextData | from std::vector< uint64_t>
% r ‘ std:vector<uint64_t> ‘

| ckks::SecretKey | | ckks::SecretKeyData |

| ckks::PublicKey | | ckks::PublicKeyData

| ckks::RelinKey | | ckks::RelinKeyData |

| ckks::GaloisKey | | ckks::GaloisKeyData |>‘

Figure 17: The real data types of CKKS algorithms

The xxxData types can be used to easily define interfaces. For example, in the
KeyGenerator class, the data of relinear key, i.e. of RelinKeyData type can be generated
by GetRelinKey() interface, then if we define a work that takes ckks::RelinKey as input,
we can put the generated RelinKeyData object into the engine to run.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 41

4.3.2 Parameter Generation

As for the parameters generation of CKKS algorithm, we provide three interfaces for
various purposes. These interfaces return a pointer of the class CKKSParameters with
different implementations.

e The GenerateCkksParameters function generates a group of parameters that the
switching keys are same for ciphertexts of different levels. As shown in list 4.3.2, its
input includes the following parameters.

e poly_degree, the polynomial degree, for example 1024,2048,...,16384 etc. Note that
we only support the cyclotomic ring Ry = Z4[X]/(X™ + 1) currently, polynomial
degree should be the power of 2. Support for more general cyclotomic rings is the
future work.

e rns_mod_ size, the vector of rns modulus bits, for example, {60, 40,40} refers to
generate the ciphertext modulus with 60,40,40 bits prime numbers.

e extra_rns_mod, the vector of extra rns modulus bits that generate extra modulus
used in key switching.

e encoder_scale, the scale factor of encoding, note that we define the default scale
factor as 240.

e relinKeyFixedDnumSize, the size of relinear key, where the default choice is to
generate a single key of encrypting s2. If relinearization of {s2, s, ..., 5"} need to be
supported, this parameter can be set to be kK — 1. And the default size is 1, i.e. only
support relinearization of {s?}

e rotate_ steps, the vector of rotation steps that for generating corresponding keys. The
default choice {} refers to generating a GaloisKey that supports arbitrary rotations
by combining the fundamental rotations. If the specific keys needed to be generated,
we can set the rotate_steps parameter as the step vector. For example, if we want
to generate the rotation keys that corresponding to the steps {1,4} only, we can set
the parameter as {1,4}.

CKKSParametersPtr ckks::GenerateCkksParameters(uint32_t poly_degree,
const std::vector<uint32_t >& rns_mod_size,
const std::vector<uint32_t>& extra_rns_mod,
double encoder_scale = DEFAULT_CKKS_ENCODER_SCALE_FACTOR,

uint32_t relinKeyFixedDnumSize = DEFAULT_RELIN_KEY_FIXED_DNUM_SIZE,
const std::vector<int64_t>& rotate_steps = {})

e In some scenarios, ciphertexts of different levels may use different switching keys.
For example, in CraterLake [29], they use various dnum kskeys to achieve optimal
overall performance. The GenerateCkksParametersDnum interface is provided to
meet such requirements.

It need a type of std::vector<std::tuple<uint32_t, uint32_t, std::vector< wint32_t¢ >>>
to define dnum related parameters. Each element of the vector refers to the configu-
ration of a KSKey. The first element in a tuple indicates the maximum ciphertext
level supported by this KSKey, and the second parameter shows the dnum of the
KSKey, and the last element refers to the KSKey’s extra rns modulus.
CKKSParametersPtr ckks::GenerateCkksParametersDnum(uint32_t
poly_degree,
const std::vector<uint32_t>& rns_mod_size, const
std::vector<std::tuple<uint32_t, uint32_t, std::vector<uint32_t>>>&

blkConfInput, double encoder_scale =
DEFAULT_CKKS_ENCODER_SCALE_FACTOR,

42 iacrtans

uint32_t relinKeyFixedDnumSize = DEFAULT_RELIN_KEY_FIXED_DNUM_SIZE,
const std::vector<int64_t>& rotate_steps = {})

We take an example to make a detailed interpretion. Let the polynomial degree be
16384, and the ciphertext modulus be {60, 40, 40, 40, 40, 40,40} where the max level
is 6. If a KSKey with dnum 3 would be used for the ciphertext with level 6, and
for ciphertext with level 5 and 4, a KSKey with dnum 2 need to be generated. Also
there is a KSKey with dnum 1 for ciphertext with level ranging from 0 to 3, we can
write the blkConfInput as follows:

auto blkConfInput = {{3,1,{60,60,61}}, {5,2,{60,60,21}},{6,3,{60,61}}

Note that three various dnum KSKey would be generated with different extra
modulus, and they would be used for the ciphertexts with corresponding levels.

e As the configuration of KSKey is complex, we also provide the GenerateCkksParame-
tersAuto function to make an automatic generation and more detailed implementation
is shown in our code.

CKKSParametersPtr ckks::GenerateCkksParametersAuto (
uint32_t poly_degree,
const std::vector<uint32_t >& rns_mod_size,
double encoder_scale = DEFAULT_CKKS_ENCODER_SCALE_FACTOR,

uint32_t relinKeyFixedDnumSize = DEFAULT_RELIN_KEY_FIXED_DNUM_SIZE,
const std::vector<int64_t>& rotate_steps = {})

4.3.3 Key Generation

We define a class KeyGenerator to generate the keys. It is constructed by CKKSParameters
and provides common interfaces. For example, the GetSecretKey(), GetPublicKey(),
GetRelinKey() function would return the data of secret key, public key, relinear key
respectively.

Note that we also provide the compact way to store the keys that the interface’s
name is in the form of GetCompactXXXKey(). For example, the GetCompactPublicKey/()
interface would return a public key with its random part storing with a seed, instead of
the random coefficients. The user can call this interface when saving data transmission
and storage are needed.

4.3.4 Encoder

The encoding of messages is provided in the Encoder class. For encoding messages,
it gives different interfaces to adapt to various message types, including the type of
std::vector<double>, std::vector<std::complex<double>>, double etc. Note that if sparse
encoding is needed, the SparseEncode() and SparseEncodeComplex() functions can be
used.

For decoding the plaintext, the decode interface is similar to that of encoding and the
user can select the corresponding function based on the type of the output message.

4.3.5 Encryptor

For encrypting a plaintext, the user can call the Encryptor class. If symmetric encryption
would be used, it should construct the Encryptor by the secret key, while the public key
would be used when constructing the Encryptor of asymmetric encryption.

For decrypting a ciphertext, our decrypt function support for various ciphertext size.

PlaintextData Decrypt(const CiphertextData &ciphertext,
uint32_t ciphertext_size = 2);

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 43

For example, if the ciphertext is under encryption of s, s2, s%, then its size is 4 and we
can write the decrypt function as follows.

PlaintextData pt = Decrypt(ciphertext, 4);

Note that [LM20] shows that if the output of the decryption algorithm can be obtained
by a party besides the secret key owner, then it is possible to carry out a passive key
recovery attack on CKKS. To avoid the attack, we provide the “DecryptPublic” interface
to add a noise at the end of decryption, for further protection in such scenario.
PlaintextData DecryptPublic(const CiphertextData &ciphertext,

uint32_t error_bound_bits,
uint32_t ciphertext_size = 2);

The error__bound_ bit parameter is the bounding bits of noise that added into the right
plaintext and the user can set this parameter according to different requirements.

5 NTT and element-wise multiplication in HLG

In the section, we introduce our optimization of the calculation of NTT/INTT butterflies
and element-wise multiplication in HLG. To perform efficient polynomial operations with
higher degrees, we follow the state-of-the-art and implement Number theoretic transform
(NTT), which has asymptotic complexity O(nlogn).

Given a prime integer ¢ = 1 mod 2n where n is a power of 2, let R, = Z4[z]/(z™ + 1),
a = (a[0],a[l],...,a[n — 1]) € R,. We store the powers of 2n-th primitive root of unity
Y (Y = Jw) € Zq as a look-up table U,.,. All the coefficients of input and output
polynomials are in standard order and bit-reversed order, respectively.

Let a = (a[0],a[1],...,a[n — 1]), a = (a[0],%a[l],...,9" ta[n — 1]) € R,;. To compute
the polynomial multiplication ¢ = ab € R,;, we pre-compute and store the powers
of ¥y~ € Z, as a look-up table ¥, ! ' then output the negative wrapped convolution
c= (1,91, ...,p~ (" 1) o NTT"!(NTT(a) o NTT(b)) = ab € R,, where NTT~! and o denote
the inverse of NTT and point-wise multiplication, respectively.

The related algorithms are shown in [28].

5.1 Lazy reduction

Let two non-negative integers a, b be congruent modulo a modulus ¢. If a € [0, ¢) is the
reminder and b > a, we call the integer b lazy with respect to . We have b = (k—1)g+a €
Zyq where the integer k > 1.

An alternative efficient modular multiplication is the so-called Shoup method proposed
by [31] if we knew one of multipliers which is smaller than the modulus in advance. We
use Shoup method to calculate the lazy modular multiplication of butterflies, such that
the intermediate data could be kept in lazy state. Hence, we will be able to remove all
adjustments and branches of butterflies to further improve the performance of NTT/INTT.

Let 8 be a positive integer, and ¢ < /2 be a modulus. We define a function Quo(a)
that takes an integer a € Z, as input and outputs an integer equal to |af/¢]. In our case,
the return value of Quo(a, ¢, 8) is a 64-bit unsigned integer.

Definition 5.1 (Shoup method). For two given integers x € Z and y € Z,, we define
r = ShoupModMul(z, y, q)

= xy — ql@ * Quo(y, ¢, #)/B] mod 8
= xy mod 2q.

Since the output of Quo(%, ¢, 8) can be pre-computed where 9 is an element of the
NTT/INTT LUTs, Shoup method is a good idea for the modular multiplications in
NTT/INTT butterflies. In our case, we address delayed evaluation in NTT/INTT via

44 iacrtans

Shoup method. We follow an optimized method proposed by [30] which is based on
Harvey’s butterfly introduced in [23] and can remove all the branches from NTT/INTT
butterflies. We don’t use modular addtion/subtraction for NTT/INTT butterflies, which
means that the increase of the value of the intermediate data will not be reduced until it
may cause overflow.

lLx'«x+y
2.ifx' > pthenx’' «x'—p lLx' «x+y
(precomputed lazyfactor)
B.tex—y 2.if x' > 2p thenx' « x' —2p
1Lx' <x+y
4. ift<Othent«t+p B.tex—y+2p
- ‘ , ‘2. t « x + lazyfactor xp —y
5.q < [w't/B] 4.q < |w't/B] ,
40% faster 20% faster 3. y' < ShoupLazyModMul(¢t, w)
6.y" < wt—qpmodp onCPU 5. y' « wt — gp mod on CPU
4. return x',y’
7.ify' = ptheny <y —p 6. return x’,y’
8. return x’,y’

Classical butterfly Harvey’s butterfly Scott's butterfly

Figure 18: By following Scott’s optimized method, the last branch in Harvey’s butterfly
can be also removed

It should be noted that the NTT butterfly computes addtion/subtraction after multi-
plication, that is, lazy reduction, whereas the INTT butterfly has the opposite process.
Therefore, the optimization of lazy evaluation for INTT will be more complicated.

5.2 Montgomery modular multiplication

Montgomery modular multiplication is an efficient method for large integer multiplication.
Given two non-negative integers z, y and a modulus ¢, Montgomery modular multiplication
will output a g-residue that equal to zyr—! mod ¢, where the auxiliary parameter r € Z
is larger than ¢ and satisfies ged(r, ¢) = 1.

Definition 5.2 (Montgomery form and Montgomery reduction). For a given non-negative
integer a € Z4, we define Montgomery reduction that inputs an integer a € Z, and outputs
an integer that equal to ar~! mod ¢. We also define by a’ = ar mod ¢ the Montgomery
form of a.

In our case, a non-negative integer which is equal or congruent to a’, for instance,
a’ + kq (k > 0), can also be considered as in Montgomery form of a, because Montgomery
reduction will output the same result if inputting different values which has congruence
relation.

The mapping m(x) : ¢ € Z, — &’ € Z, is a bijection and a field isomorphism of Z,.
We can also convert such integer between ordinary domain and Montgomery domain via
Montgomery reduction. We implemented the radix-2¢ Montgomery modular multiplication
introduced in [33] by splitting an arbitrary n-bit multiplier into s = |n/w] blocks.

In conclusion, we perform Shoup method to address lazy reduction for NTT/INTT
butterflies, and hence all branches in butterflies can be removed. Our NTT operator
outputs a polynomial whose coefficients are in Montgomery form, such that we can compute
the element-wise multiplication via Montgomery modular multiplication.

6 Benchmark

For now, HLG only supports multi-CPU compute engine as back end. Here we only provide
benchmark results for both HLG and SEAL v3 in multi-threading scenarios.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 45

Encoding

Encoding Plaintext
Message Scale | Plaintext Plaintext
Complgx<DoubIe> m; = a(i) Non-NTT domain Non-NTT domain NTT NTT domain
n - Non-Mont form decomposition | Non-Mont form Mont form
eC2 S:?,Z!'Sﬁ‘g € [=0/2,9:/2] €10,9) €10,q)
l Encrypt
Cipher text INTT Cipher text
Non-NTT domain NTT domain
Non-Mont form Mont form
€10,q:) €[0,q)
' NTT '

Decodi ng Decrypt

i i Plaintext
Message i Pol Plaintext CRT Plaintext
Com Iegx<DoubIe> Decoding Dolilble Scale | Non-NTT domain Non-NTT domain INTT NTT domain
np Canonical n Non-Mont form C Non-Mont form Mont form
«C2 €[0,1Tq) €1[0,q:) €[0,q1)

embedding

Figure 19: The data states of CKKS implementation in HLG

6.1 Example of execution trace of multi-CPU compute engine of HLG

In our current implementation, the computation of ciphertexts of CKKS only need 8 prim-
itive operators: op_ permutation ntt(Galois automorphism), op_add, op_ neg, op_ mul,
op_ scalar _mul, op_ ntt, op_ intt, op_ mod_ switch.

Fig. 20 shows the execution trace of HLG’s MyEngine with 7 threads. Note that the
colored block indicates primitive operators and the white gaps are the overhead of task
scheduling.

« Process 0
75946960

1362367737
11400502179
1630771191
2435454808
3519235539
3874281567

Figure 20: Example of execution trace of multi-CPU compute engine

It is easy to find that HLG framework can use multiple threads very efficiently: none of
the threads stay idle for a very long time. This is because when we expand the operators
to RNSPoly level, we can fully utilize the natural parallelism provided by RNS system.

6.2 Test cases for benchmark
6.2.1 Case with high parallelism: Digit recognition on MNIST data set

The first test case is digit recognition on ciphertext. The data set is MNIST. The solution
we implemented is Lola from [8]. Note that this test case has very high parallelism in its
shape of computing graph as shown in Fig. 21.

The comparison of performance of Lola with SEAL and HLG is shown in Fig. 22,
where MyFEngine is used for HLG.

Note that HLG is slower than SEAL with 1 thread only. The reason is that current
implementation of multi-CPU compute engine has overhead on dynamic task scheduling.
When the number of threads increases, HLG’s performance becomes better than SEAL.
This is because that HLG allows operator expansion to a smaller granularity, while seal
can only support manual task scheduling at the level of ciphertext/plaintext interfaces by
hand. As a result, HLG can use multiple cpu cores and threads more effectively. In this
case, with 20 threads, HLG can be 24.4% faster than SEAL.

46 iacrtans

$393%¢s3sessgsresseessess

) T ®

66 ;609
o 06 0 0 ¢

o 06 0 © d
J

® 06 0 ¢ ¢

0O O ¢
e R
1

I Ciphertext 16 &
| ® CT-PT multiplication | ¢

X,

6 6 ¢
d © @ ¢

6O
@0
o

]
D

OO
O

oo
—emor

Figure 21: Shape of computing graph of Lola

4000 8
- 3500 75 500 The numizrsof thread = 20
E 3000 6t 24.4% |
> 2500 52 | 2 400
‘E 2000 43 £ \329
= 1500 3 ;’,’_ 2 300

1000 2 £

500 1 =

Dl 200

1 3 5 7 9 11 13 15 17 19 -\- 100
Threads
I SEAL - SEAL / SEAL with 1 thread 0
HLG - HLG / SEAL with 1 thread SEAL HLG

Figure 22: Comparison of performance of Lola with SEAL and HLG

6.2.2 Case with low parallelism: Calculating square root

The second test case is calculating square root on ciphertext. We choose an iterated
algorithm from [10], which only supports input value in [0, 1] as in Fig. 23.

The comparison of performance of SQRT with SEAL and HLG is shown in Fig. 24,
where MyEngine is used for HLG.

In this case, HLG is much faster than SEAL, up to 85.6%. Since SEAL only provides
interfaces at ciphertext/plaintext level, we can use at most 3 threads by hand. Since
HLG can support auto parallel task scheduling at RNSPoly level, we can still use multiple
threads very efficiently.

6.3 Other cases where HLG is slower than SEAL
We have also tested other cases where HLG is slower than SEAL.

e The first example is 32 parallel rotation of ciphertexts. In this case, the computing
graph is perfect for manual task scheduling for SEAL, while HLG still has overhead
for dynamic task scheduling at the level of RNSPoly.

e The second example is matrix multiplication where the matrix is plaintext while the
vector is ciphertext. In this case, all primitive operators are scalar multiplications,
which is much cheaper than NTT, Montgomery Multiplication and other operators.
As a result, the proportion of the overhead of task scheduling is significantly higher
than that of conventional computing tasks.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 47

Input: x € [0,1]

Initialize:a =x,b=x—1
Iterated the following 5 times
Output: a

Figure 23: Shape of computing graph of iterated SQRT algorithm

1400 12
1200 100 900 833.227
£ 1000 s 2| = 700 85.6% 4
>
g %0 6% = 0o 425,894
E 600 & 2500 :
4 | E 400
400 = 300
200 2 200 120.183

2099000099900

100
0 |

1T 3 5 7 9 11 13 15 17 19
SEAL: 3 threads

Threads
W SEAL -« SEAL / SEAL with 1 thread HLG: 3 threads
HLG < HLG / SEAL with 1 thread B HLG: 18 threads

Figure 24: Comparison of performance of SQRT with SEAL and HLG

There are multiple ways for optimization: we can either change the level of primitive
operator to higher level (such as ciphertext/plaintext level), or develop a better compiling
strategy for execution with 1 thread only. Both requires extension of current HLG
framework in multiple aspects. We will consider these as part of the future plan.

6.4 An observation on the performance bottleneck with multiple CPU
cores

During of tests and experiments of HLG in different use cases, we had an interesting
observation on the acceleration ratio of HLG’s multi-CPU compute engines with different
number of threads on different hardware platforms. We believe we have confirmed the
performance bottleneck of FHE with multiple CPU cores: the memory 10 bandwidth.

In the beginning, we had a confusing observation: The acceleration ratio never exceeds
10 on our linux server, no matter how many threads we use with MyEngine. The first
guess is that maybe this is because we have used too many mutexs.

In order to verify the initial idea, we tried to implement LockFreeEngine, where no
mutex is used. However, the problem still exists: the curve of acceleration ratio of
MyEngine and LockFreeEngine are very similar as the number of threads increases. Both
of the two curves approach the acceleration ratio of 10 times and never goes beyond that.
It is not about the mutex.

48 iacrtans

We looked at the benchmark results of the primitive operators, which shows that the
time cost of NttRns and InttRns operators increases dramatically when we use more
threads in both MyEngine and LockFreeEngine. This is even more mind-boggling.

In order to find out why this happens, we decided to implement the same test case using
SEAL with multiple threads. Then we found a similar curve as HLG, where acceleration
ratio never exceeds 10. The curves of acceleration ratio of MyEngine, LockFreeEngine and
SEAL is shown in Fig. 25.

Acceleration ratio with multiple threads

10.00

Reached maximum

9.00
memory |0 bandwidth

8.00
7.00
6.00
5.00
4.00
3.00
2.00

1.00

0.00
12345678 91011121314151617181920212223242526272829303132

HLG-MyEngine e===HLG-LockFreeEngine — em===SEAL

Figure 25: Comparison of acceleration ratio of MyEngine, LockFreeEngine and SEAL
with different number of threads

By observing these curves, we can easily find that when the number of threads is small,
overall performance increases linearly with the number of threads.

Note 1: the maximum acceleration ratio and the threshold number of threads may vary
for different use cases.

Note 2: the value of the acceleration ratio becomes unpredictable after reaching the
limitation. The curves will look random every time we run the tests.

Now we can have a conclusion that when we use more than 8 threads, we have reached
the maximum memory IO bandwidth of our linux server. The linux server’s parameters
are: X86 instruction set, L1 cache size 16KB per core, 512GB memory.

To further verify the conclusion, we switch to another server with openEuler OS and
KunPeng 920 CPU. Then the maximum acceleration ratio increases to about 16 with about
19 threads on this new hardware platform. Detailed parameters of this new platform are:
ARM instruction set, L.1 cache 64KB per core, 512GB memory. It seems that larger L1
cache size and higher memory 10 bandwidth indeed contributes to the overall end-to-end
performance of both HLG and SEAL.

The reason why NttRns and InttRns operators becomes slower is also because: when
running with multiple threads, many threads need to access the memory at the same time

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 49

and it is easier to reach the maximum IO bandwidth. In this case, Ntt/Intt operators with
large polynomial degrees will become slower since they require a lot of data access beyond
L1 cache, to L2/L3 cache or even to the memory.

6.5 HEBench results?

In HEBench framework [2] all test cases are implemented with hard-coded task scheduling
strategy. This may be constraint to the ability of HLG framework which allows customized
task scheduling strategies.

The other problem is that benchmark of some unit tests does not lead to reliable
estimation of end-to-end performance for some complicated use cases. We may need more
end-to-end test cases instead of unit tests like matrix multiplications only.

Thus we propose to use a more abstract way to describe the test cases, instead of
hard-coded framework with only static task scheduling with 1 thread. For example, we
can describe a test case as a computing graph with HLG IR and save it as a binary work
file. Then the engineers are free to choose any task scheduling strategies they want for
overall optimization.

6.6 Benchmark results for other hardware platforms

[TBD] We don’t support other hardware platforms yet!

7 Conclusion and Future Plan

In this paper, we described HLG, a framework for RNS system supporting decoupling
of front-end algebraic algorithm and back-end hardware. The core of HLG framework
is HLG IR, which allows splitting and combination of data placeholders and make the
development of RNS algorithm easier.

To sum it up:

e Basic functionalities and design rationale of HLG framework and HLG IR

e Details of customized operand and operator types based on HLG at the level of
RLWE and CKKS

e Details of implementation of primitive operators
e Benchmark of HLG-CKKS and comparison to SEAL v3.

So far, we have verified the effectiveness of HLG framework and HLG IR for the RNS
system by exploring its application in researches and implementation of FHE algorithm.

In the future, there are multiple possibilities to improve HLG framework, including
but not limited to:

e Changing HLG’s front-end from C++ to python and support dynamic graph genera-
tion, in order to support better experience for debugging.

Note: now HLG shares the same weakness as Tensorflow 1.0 since they both supports
static graph only.

e Migrating HLG’s customized algebraic IR to MLIR. Need to solve the problem of
how to express computing graphs in RNS, especially, how to support combination
and splitting of placeholders.

e Supporting more FHE algorithms. Such as BFV, BGV, TFHE and other new
algorithms.

50 iacrtans

Im===-=========7 1
Application Framework MindSpore 1 TensorFlow i H PyTorch i
1 e -

| B et | B
D i ifi il CKKS+ Neural 1 g !
omain-specific compiler Network Compiler P e ! L e !

A A
) ICKKS Neural Network 1BFV+XXX Appiicationi BGV+XXX Applicatior!
Solution based on FHE :____§o_lutio_n_____: {____§o_|t_thio_n_____|
v y
. . jmmmm e Yoo
homolmor_ij:lc It?Ecryptlon | — | | f— | : BGV i
algorithm library L7] L a2
g y l Lomm oo

2Ve

HLG extension plugins:
: H Basic Operators:
Basic Algebraic Structures Rellei CpaieE
and Operators ==

A A
Computing graph
generation and
transformationm
I

Unified interface between
front-end and back-end e U

HLG Algebraic Framework:
Similar to Tensorflow for Al

HLG Algebraic Framework

v v
CPU engines x86 cpu ARM cpu-
compute engine compute engine
Hardware-side compiler | Hardware compiler |
and tool chain tool ICham
Different hardware platforms FPOA orA G ﬁ; '

Dedicated compute engines | compute engine compute engine | |compute engine

| Finished | | Ongoing | | Planning |

Figure 26: Our vision for the technology stack of HLG in the future

e Supporting for more different hardware platforms. Such as GPU, FPGA, Al chips,
etc.

e Hardware/application-level compiler for better programmability and optimization.

e Middleware solutions for variant use cases based on HLG. Such as Linear/Logistic
regression training, XGBoost federated learning, etc.

e Extension to support MPC operators and even more. To form a unified development
tool for Hybrid solution of FHE and MPC, with similar experience as developing
local application.

e Integration into high-level application framework such as Al frameworks: MindSpore,
Tensorflow, PyTorch, etc.

Our ultimate goal is to form a complete software stack from hardware to application as
shown in Fig. 26. Since HLG framework can play a similar role as Tensorflow for Al, we
would like to collaborate with both academia and industry to explore and improve HLG
framework continuously.

Thanks

Thanks to our ex-colleague Tianyi Ai and our intern Zhengyu Shi who have made decent
contribution to the implementation of compute engine and boosted key switch in HLG
framework.

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 51

References

[1]
2]

[10]

[11]

[12]

https://www.darpa.mil/news-events/2021-03-08

Homomorphic encryption benchmarking framework - hebench (release v0.9). Online:
https://github.com/hebench/frontend (Nov 2022), algorand Foundation, Crypto-
Lab, Deloitte, Duality, IBM Research, Intel, KU Leuven, Microsoft Research, Tune
Insight SA

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat,
S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning.
In: OSDI. vol. 16, pp. 265-283 (2016)

Badawi, A.A., Bates, J., Bergamaschi, F., Cousins, D.B., Erabelli, S., Genise, N.,
Halevi, S., Hunt, H., Kim, A., Lee, Y., Liu, Z., Micciancio, D., Quah, 1., Polyakov, Y.,
Saraswathy, R.V., Rohloff, K., Saylor, J., Suponitsky, D., Triplett, M., Vaikuntanathan,
V., Zucca, V.: Openfhe: Open-source fully homomorphic encryption library. IACR
Cryptol. ePrint Arch. p. 915 (2022), https://eprint.iacr.org/2022/915

Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like
somewhat homomorphic encryption schemes. In: International Conference on Selected
Areas in Cryptography. pp. 423-442. Springer (2016)

Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical
gapsvp. In: Annual Cryptology Conference. pp. 868-886. Springer (2012)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption
without bootstrapping. ACM Transactions on Computation Theory (TOCT) 6(3),
1-36 (2014)

Brutzkus, A., Elisha, O., Gilad-Bachrach, R.: Low latency privacy preserving inference.
CoRR abs/1812.10659 (2018), http://arxiv.org/abs/1812.10659

Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology —
ASTACRYPT 2017. pp. 409-437. Springer International Publishing, Cham (2017)

Cheon, J.H., Kim, D., Kim, D., Lee, H.H., Lee, K.: Numerical method for com-
parison on homomorphically encrypted numbers. Cryptology ePrint Archive, Pa-
per 2019/417 (2019), https://eprint.iacr.org/2019/417, https://eprint.iacr.
org/2019/417

Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: international conference on
the theory and application of cryptology and information security. pp. 3-33. Springer
(2016)

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for tfhe. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 377-408.
Springer (2017)

Chillotti, I., Gama, N., Georgieva, M., Izabachéne, M.: Tfhe: fast fully homomorphic
encryption over the torus. Journal of Cryptology 33(1), 34-91 (2020)

Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: International Symposium on
Cyber Security Cryptography and Machine Learning. pp. 1-19. Springer (2021)

https://www.darpa.mil/news-events/2021-03-08
https://github.com/hebench/frontend
https://eprint.iacr.org/2022/915
http://arxiv.org/abs/1812.10659
https://eprint.iacr.org/2019/417
https://eprint.iacr.org/2019/417
https://eprint.iacr.org/2019/417

52

iacrtans

[15]

[20]

[21]

[23]

[24]

[25]

Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Annual international conference on the theory and applications of
cryptographic techniques. pp. 617-640. Springer (2015)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. TACR
Cryptol. ePrint Arch. 2012, 144 (2012)

Gailly, J., Adler, M.: zlib compression library (2022), https://zlib.net/

Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the
forty-first annual ACM symposium on Theory of computing. pp. 169-178 (2009)

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology - CRYPTO 2012 -
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings. Lecture Notes in Computer Science, vol. 7417, pp. 850-867. Springer
(2012),https://doi.org/lO.1007/978-3—642—32009—5_49

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual Cryptology
Conference. pp. 75-92. Springer (2013)

Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomor-
phic encryption scheme. In: Matsui, M. (ed.) Topics in Cryptology - CT-RSA 2019 -
The Cryptographers’ Track at the RSA Conference 2019, San Francisco, CA, USA,
March 4-8, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11405, pp.
83-105. Springer (2019), https://doi.org/10.1007/978-3-030-12612-4_5

Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption.
In: Jarecki, S. (ed.) Topics in Cryptology - CT-RSA 2020 - The Cryptographers’
Track at the RSA Conference 2020, San Francisco, CA, USA, February 24-28, 2020,
Proceedings. Lecture Notes in Computer Science, vol. 12006, pp. 364—390. Springer
(2020),https://doi.org/lO.1007/978—3—030—40186—3_16

Harvey, D.: Faster arithmetic for number-theoretic transforms. Journal of Symbolic
Computation 60, 113-119 (2014)

Lattner, C., Adve, V.: Llvm: A compilation framework for lifelong program analysis
and transformation. In: CGO ’04: Proceedings of the international symposium on
Code generation and optimization. p. 75. IEEE Computer Society, Washington, D-
C, USA (2004), http://portal.acm.org/citation.cfm?id=977395.977673&coll=
GUIDE&d1=GUIDE&CFID=48424181&CFTOKEN=16724426

Lattner, C., Pienaar, J.A., Amini, M., Bondhugula, U., Riddle, R., Cohen, A.,
Shpeisman, T., Davis, A., Vasilache, N., Zinenko, O.: MLIR: A compiler infrastructure
for the end of moore’s law. CoRR abs/2002.11054 (2020), https://arxiv.org/abs/
2002.11054

Montgomery, P.L.: Modular multiplication without trial division. Mathematics of
Computation 44(170), 519-521 (1985)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., K7pf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: Pytorch: An imperative style, high-performance deep learning library (2019),
http://arxiv.org/abs/1912.01703, cite arxiv:1912.01703Comment: 12 pages, 3
figures, NeurIPS 2019

https://zlib.net/
https://doi.org/10.1007/978-3-642-32009-5_49
https://doi.org/10.1007/978-3-030-12612-4_5
https://doi.org/10.1007/978-3-030-40186-3_16
http://portal.acm.org/citation.cfm?id=977395.977673&coll=GUIDE&dl=GUIDE&CFID=48424181&CFTOKEN=16724426
http://portal.acm.org/citation.cfm?id=977395.977673&coll=GUIDE&dl=GUIDE&CFID=48424181&CFTOKEN=16724426
https://arxiv.org/abs/2002.11054
https://arxiv.org/abs/2002.11054
http://arxiv.org/abs/1912.01703

Shuang Wu and Chunhuan Zhao, Ye Yuan, Shuzhou Sun, Jie Li, Yamin Liu 53

28]

[29]

Poppelmann, T., Oder, T., Gineysu, T.: High-performance ideal lattice-based cryp-
tography on 8-bit atxmega microcontrollers. In: Cryptology - LATINCRYPT 2015.
vol. 9230, pp. 346-365 (2015)

Samardzic, N., Feldmann, A., Krastev, A., Manohar, N., Genise, N., Devadas, S.,
Eldefrawy, K., Peikert, C., Sdnchez, D.: Craterlake: a hardware accelerator for efficient
unbounded computation on encrypted data. In: Salapura, V., Zahran, M., Chong, F.,
Tang, L. (eds.) ISCA ’22: The 49th Annual International Symposium on Computer
Architecture, New York, New York, USA, June 18 - 22, 2022. pp. 173-187. ACM
(2022), https://doi.org/10.1145/3470496.3527393

Scott, M.: A note on the implementation of the number theoretic transform. TACR
Cryptol. ePrint Arch. p. 727 (2017), https://eprint.iacr.org/2017/727

Shoup, V.: Ntl: A library for doing number, http://www.shoup.net/ntl/

Varda, K.: Protocol buffers: Google’s data interchange format. Tech.
rep., Google (6 2008), http://google-opensource.blogspot.com/2008/07/
protocol-buffers-googles-data.html

Yuan, Y., Fukushima, K., Xiao, J., Kiyomoto, S., Takagi, T.: Memory-constrained
implementation of lattice-based encryption scheme on standard java card platform.
IET Information Security 15(4), 267281 (2020)

https://doi.org/10.1145/3470496.3527393
https://eprint.iacr.org/2017/727
http://www.shoup.net/ntl/
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html
http://google-opensource.blogspot.com/2008/07/protocol-buffers-googles-data.html

	Introduction
	Our Contributions
	Organization of this paper

	Design Rationale of HLG
	Challenges in researches of FHE
	Challenges in Implementations of FHE

	Description of HLG framework
	Components and work flow of HLG framework
	Placeholder and operand Types: data split and combination
	Operator Type
	Task, Work and WorkBuilder
	Graph Optimization: Removal of useless branches
	Automatic pre-computation in HLG framework
	Parameters and Context
	Serialization and compression of data
	APIs for implementation of primitive operators
	Compute engines for multiple CPU cores

	Implementation of CKKS based on HLG framework
	Operand Types and Operator Types for RLWE
	Operand Types and Operator Types for CKKS
	User Interfaces

	NTT and element-wise multiplication in HLG
	Lazy reduction
	Montgomery modular multiplication

	Benchmark
	Example of execution trace of multi-CPU compute engine of HLG
	Test cases for benchmark
	Other cases where HLG is slower than SEAL
	An observation on the performance bottleneck with multiple CPU cores
	HEBench results?
	Benchmark results for other hardware platforms

	Conclusion and Future Plan

