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Abstract.  This  report  addresses  the  development  of  a   pseudo  random  bit
generator (PRBG) for  constraint silicon  devices. NIST.SP800-22 "Statistical test suite
for Pseudo Random Generators" suggests a suite of tests that can confirm or deny the
randomness of a given bit sequence. However, although providing a “pass / fail” criteria
for the property of randomness of an arbitrary sequence, it is hard to get from the NIST
suite the sense for the “level of randomness”  for a given sequence, a measure that is
sometimes required for the development process of PRBG. This post suggests a tool that
can measure randomness, and therefore allows gradual changes in the PRBG algorithm,
that helps  trading power /  time /  area  constraints  versus quantifiable measure of the
resulting randomness.

Keywords:  Binomial  distribution,  commutative  distribution  function  (CDF),
PRBG, Bernoulli density

 1 Introduction
Implementing standard techniques for the construction of Pseudo Random Bit Generators (PRBG) in
low power or constraint devices is challenging: The cost of implementing a standard RBG, like in [3]
for instance, may be quite high in terms of silicon area and time / power consumption.

Furthermore,  a standard level RBG is not always required: For instance,  the Common Criteria [4]
security standard requires that only cryptographic functions that are exposed to the customer of a chip,
or appear in chip’s security feature list for customer use, will be standard compliant cryptographic
functions. Within  a typical chip, there might be a lot of cryptographic mechanisms that are not directly
used  externally  by  the  chip’s  customers.  The  compliance  of  those  cryptographic  mechanisms is  a
somewhat weaker requirement, even for a pretty high  Evaluation Assurance Level (EAL).

These  facts,  and  especially  the  need  for  power  and  silicon  area  saving,  sometimes  motivates  the
development of an RBG mechanism with a pretty good randomness, and relatively low power / silicon
area. However, this raises the question of  what is “pretty good randomness”, and how algorithms for
RBG may compare to each other.

The development  of  RBG algorithms is  an iterative  process  composed of  steps  of  changes  in  the
algorithm, and measuring the effect of this change on the resulting pseudo random bit sequence. Once a
change in an RBG algorithm is done, the developer would like to know whether this change improved
or disproved the quality of the random sequence.

The difficulties with the NIST random test suite. Using the NIST random test suite for this purpose
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is not easy. The NIST test suite includes 15 independent tests. During the RBG development process,
once a change in the RBG algorithm is done, it usually happens that some of the 15 tests give better
randomness  indication,  while  other  tests  give  worse  randomness  indication.  So  it's  hard  to  know
whether the algorithm is improved or disproved.

TRNG vs. PRNG. TRNG can be constructed by adding an entropy source to a PRNG. This requires an
entropy source, and a PRNG that can be initialized by this entropy source and can generate a Pseudo
Random Bit Sequence with a cycle longer than the chip's life span. This report refers only to PRBG. 
 
This report describes a practical criterion that was used to measure the amount of randomness of a
sequence of bits that is generated by PRBG (2). This tool was used to develop an HW based  low-
power and low-area PRBG for constraint devices.

 2 Background
Suppose a PRBG generates a pseudo random sequence of bits R,  of length n, {r1,r2...rn}, where
ri∈ {0,1 } for i=1...n. Then for  R to be a “good” random sequence, the following requirements
should be fulfilled: ri ~ Bernoulli(½), that is, p(ri=1) = p(ri=0) = ½. 
A “good” pseudo random sequence R is a finite sequence of binary random variables that take
two values, 0 or 1, with equal probability. The Bernoulli random variables components of the
sequence ri should be  identically distributed and statistically independent.

The test sequence
Let's look at a random bit sequence L (The Test Sequence) of length l, where l << n, such that
L={a1,a2...al}, where ai∈ {0,1 } for i=1...l, And let's define the random variable x, that counts the
number of matches between the elements of L to the elements of the sequence under test, R, at
location (i):

x(i ,l)=∑
j=1

j=l

¬(ri+ j⊕ai+ j)

  
Where  x⊕ y  is  Boolean XOR of x and y and  ¬x indicates the inverse of  x. The sigma is an
algebraic sum. The random variable x(i,l) gets any integer value between 0 to l: 

x (i ,l )∈[0 , l]

Its probability density for  a real random sequence R can be calculated as follows:

Pr (x=k )=( l
k) pk

(1−p)
l−k

Where p is the probability that ri+ j=a j . For R to be a pseudo random sequence, p=1/2, regardless of
the distribution of a j , and the probability density of x is independent of i  and is given by:
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Binomial( l , 1 /2) : Pr (x=k)=( l
k )2

−l

That is, if R is a pseudo random sequence of bits, X ~ Binomial (l,1/2), that is, the random variable x
has a binomial probability distribution with length l and p=1/2. The distribution of x is not dependent in
the distribution of the bits of the sequence L, but only in the length of L: For all sequences  L with the
same length it has the same binomial distribution, if R is a pseudo random sequence. 
 

 2.1 Statistical measure for randomness 

We are given a  PRNG, that generates a sample sequence of bits,  R, that is hopefully very close to
pseudo random sequence. We want to measure how far is this sample sequence from a pseudo random
sequence.  As  we saw,  the  random variable  x  defined above  a  binary  sequence  R has  a  Binomial
distribution with parameter ½, if it is constructed over good pseudo random sequence. Therefore, we
can measure the level of randomness of the sample sequence generated of the PRNG under test by
constructing the sample random variable x̂  above the sequence under test, and calculate the distance
of the sample distribution of  x̂   from   the reference  random variable  x with  Binomial(l,  ½)
distribution.   

 2.2 Kolmogorov–Smirnov test

One of the well known tests used to compare between sample probability distribution to reference
probability distributions is  the Kolmogorov Smirnov test  (K-S test)  [5].  The Kolmogorov-Smirnov
statistics  quantifies  the  distance  between  the  empirical  cumulative  distribution function  of  the
samples  of  a  random  variable  x̂ ,  and  the  cumulative  distribution  function of  the  reference
distribution function. 

The K-S statistics for a cumulative distribution function F(x) is given by:

DK−S=maxx|F n(x )−F (x)|

Where Fn( x) is the empirical cumulative distribution function, n is the number of samples,  max  is

the maximal distance over the random variable x, and DK−S is the Kolmogorov Smirnov distance.

The randomness measure tool described here is using the K-S test in order to measure the distance
between the sample cumulative probability distribution P̂( x̂=k ) calculated over a sample pseudo
random sequence generated by the PRNG mechanism under test of length n, to the  reference ideal
cumulative Binomial(l, ½)  distribution.

 3 Construction of a PRBG surveyor  
A “surveyor” is an operator applied to an input bit sequence, that generates a measure of the distance of
this input sequence from a pseudo random sequence. The surveyor applies the Kolmogorov-Smirnove
(K-S) tests to the input sample sequence, and outputs the K-S distance of the input bit sequence to the
reference distribution.

In our case, the reference distribution is the binomial probability distribution Binomial(l, ½), and the
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sample probability distribution is the measured sample distribution of x (i ,l )∈[0 , l] . 

The sample probability distribution is given by:

 P̂( x̂=k)=(
1
n
)∑

i=1

n

( x̂i=k)k=0. ...l

that counts all the locations i , i=1. ..n in the random sequence under test R  for which the value of
x(i ,l)=k and divide it by n, the length of the pseudo random sequence.

The sample cumulative distribution is given by:

Sample CDF (K ,l )=P̂( x̂⩽K )=∑
j=0

j=K

P̂( x̂= j)=∑
j=0

K

(
1
n
)∑

i=1

n

( x̂i= j)k=0. ...l

The  reference cumulative distribution is given by:

BinomialCDF (K ,l )=P̂( x̂⩽K )=∑
j=0

j=K

P(x= j )=∑
j=0

j=K

( l
k)2−l

The K-S distance is given by:

DK−S(l )=max K|SampleCDF (K , l)−BinomialCDF (K , l)k=0. ..l|

DK−S(l) expresses the maximum distance between the sample cumulative distribution function to
the reference binomial cumulative distribution function over all values of K, for a given test sequence
of length l bits.

The reference  cumulative  distribution  function,  SampleCFF(K,l),  depends  on  the  sample  sequence
L={a1,a2...al}. As a result, DK−S(l ) also depends on the sample sequence L={a1,a2...al}. Since we
want to find the maximal distance from the ideal binary  cumulative distribution function, we look for

the  L={a1,a2...al} that  brings  DK−S(l) to  its  maximum  value.  There  are  2l
sequences

L={a1,a2...al},  so  we  calculate  DK−S(l) for  all  2l
values  of  L={a1,a2...al}.  The  sequence

L={a1,a2...al} for which DK−S(l ) get a maximal value for a given pseudo random sequence
{r1,r2...rn} under test, is called the “Lackmus sequence of  {r1,r2...rn}”. The  maximum value  of

DK−S(l) is marked by Dmax(l , R) . It is a function of the  sequence under test R, and the
length of the sample sequence L={a1,a2...al}.

The Lackmus sequence associated with a given  sequence under test R, and the K-S distance
DK−S(l) that  is  associated with this  sequence Dmax(l , R) ,  can be viewed as the  best

distinguisher of R from ideal pseudo random sequence of length l bits. 

 4 Refinement of the “measure of randomness”
The values of Dmax(l , R)  are always between 0 to 1: It is 0 when the sequence under test R has
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exact  Binomial  distribution,  reflecting  the  best  possible  randomness,  and  its  1  when  the
sequence under test R, is deterministic, e.g., all its bits are either 0 or 1, reflecting the lowest
level  of  randomness.  So,  it  makes  sense  to  compare  the  level  of  randomness  of  various
sequences under test R according to 1/ Dmax(l , R) . Instead of using this quantity as a basis
for comparison, we can use -log( Dmax(l , R) ) as a measure, to improve the sensitivity of the
measure for smaller values of Dmax(l , R) . 

In this way, the measure of randomness for a deterministic sequence is 0 (i.e., not random at
all)

 4.1 Normalization of the measure of randomness to AES-128

Any stream cipher can be used as a PRNG. Specifically, the AES cipher [5] in counter lock
mode is a standard stream cipher, and therefore can be used as a pseudo random sequence
generator. As AES is one of the most popular ciphers available and used in the industry, we
defined the randomness of the sequence R, generated by AES_128(Key=0, IV=0, Counter) to
be 100, for a sequence under test R of length 1Mbit, and calibrate the measures done on other
PRNG according to this point. So the level of randomness of a general sequence under test R is
given by:

Randomness Mark (RM )of sequence R=
−log [Dmax (l , R)] x100

log [Dmax (l , AES(0,0 ,CNT ))]

 5 Expectations and Requirements 
In order for the randomness mark to be useful, we require it to fulfill some properties:

 5.1 Longer sample sequences

The  measure  of  randomness  of  a  good  PRBG  is  expected  to  be  monotonically   increasing  with
sequence length. For a real random binary sequence, or for a very good pseudo random sample binary
sequence, it is expected that  the longer the sequence, its randomness  mark is higher. This is because if
the PRNG generates more bits, it should get closer to the ideal Bernoulli(1/2) distribution.

 5.2 Cyclic Bit Sequences

Some PRNG may happen to generate a cyclic bit sequences, or a bit sequence with high correlation to
previous bits. Since the statistics of cyclic sequence is also cyclic, in the case of cyclic sample bit
sequence, when the length of the sequence exceeds the cycle of the sequence, the randomness mark is
first drops, due to the fact that the test sequence  L becomes longer, and finally it is asymptotically
constant, and does not changed as the length of the sample bit sequence becomes larger. In some cases,
it even decreases when the length of the test sequence, l, becomes larger, as more bits of the sequence
under test R are tested simultaneously.
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 5.3 Comparison to NIST random tests

When the length of the test sequence L is l=1, the test is similar to the frequency test of the NIST suit.
For any other l, the test considers the run length test of length l. 

A fundamental difference between this test and the NIST test suit in[1] is that The approach is different.
While NIST tests measure the sampled probability of a certain event, and compare it to a threshold, the
approach presented here compares between two bit sequences and says who is harder to distinguish
from random sequence. 

The  test  takes  into  account  statistical  dependency,  linear  dependency,  and  cyclic  correlation,  as
explained below. 

 5.4 Statistical dependency

Let's  assume  that  a  PRBG generates  a  pseudo  random sequence  of  bits  R,   of  length  n,
{r1,r2...rn},  where  ri∈ {0,1 } for  i=1...n.  Then  for  R  to  be  a  “good”  random  sequence,  the
following requirements should be fulfilled: ri ~ Bernoulli(½), that is, p(ri=1) = p(ri=0) = ½. If
there is statistical dependency, the distribution function of  ri depends on the values of some
other bits in the sequence, and the result will be that the distribution function of x(i,l) in:

x(i ,l)=∑
j=1

j=l

¬(ri+ j⊕ai+ j)

  Will deviate from the expected binomial distribution of x(i,l):

Binomial( l , 1 /2) : Pr (x=k)=( l
k )2

−l

which assumes that ri  are independent random Bernoulli variables. and this will result in a larger K-S 
distance. That is, the K-S distance is relative to the level of statistical dependency in the bit sequence R.

 6 Measure of randomness for various PRBG
The measure of randomness for the following PRBG are compared in this report:

Deterministic sequences A sequence of 1’s and 0’s.

The following primitive polynomial LFSR constructions used in order to generate PRBG with cycle

2degree
−1 :

LFSR-5, defined by the generator polynomial G(x)=x5
+x3

+1

LFSR-8, defined by the generator polynomial G(x)=x 8
+x6

+x5
+x+1

LFSR-17, defined by the generator polynomial G(x)=x17
+x3

+1

LFSR-31, defined by the generator polynomial G(x)=x31
+x 3

+1

05/12/14         6



LFSR-127, defined by the generator polynomial G(x)=x127
+x+1

The following ciphers:

AES-128, AES in CNT block mode, with Key=0x0, and IV=0x0 | 32 bit counter

CHACHA 8/20, CHACHA cipher, 256 bit key of 0, IV 96 bit of 0, 32 bit counter, 8 rounds out of 20 
rounds

CHACHA 4/20, CHACHA cipher, 256 bit key of 0, IV 96 bit of 0, 32 bit counter, 4 rounds out of 20 
rounds

CHACHA 20/20, CHACHA cipher, 256 bit key of 0, IV 96 bit of 0, 32 bit counter, 20 rounds out of 20
round

Randomness Mark for various PRBG

 7 Observations
• The measure of randomness for sequences generated by AES-128(0,0,Counter) for the length of

1m bits is 100, as expected by construction of the measure of randomness.

• The measure of randomness for sequences of constant bit (all 0 or all 1) is 0. This is expected
by construction of the measure of randomness.

• LFSR5

◦ The randomness mark is pretty low (45-25)

◦ The PRBG generated by LFSR5 has a cycle of 25
−1=31 . The randomness mark fails

from 45 to 33 for 10,000 bit  sequence,  and further to 25 for 100,000 bits  sequence,  as
expected when the length of the sequence is much longer than the cycle

◦ The measure of randomness for LFSR5, is asymptotically 25, and is not changed when the
sequence length increased. This is expected as the cycle of this sequence is 31 

• LFSR8

◦ The randomness mark is medium (75-49). 
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◦ The cycle is 255. 

◦ The mark for  short sequence is 75, and then it decreases to 66, 51 and 49 as the seuence
becomes longer, indicating statistical dependency 

• LFSR17

◦ The cycle is 131071

◦ The randomness mark is improved up to 400Kb, then starts to decreases

◦ LFSR17 presents  a  randomness  mark  better  then  this  of  AES,  and this  means  that  the
sequence  generated  by  LFSR17  is  closer  to  random  sequence  then  this  of  AES.
Nevertheless,  it  start  to  decrease  for  large  length,  as  opposed  to  AES  that  is  always
monotonically increasing.

• LFSR31 

◦ Cycle is  231
−1 ,  pretty large (the same as the cycle of the PRBG that are based on

ciphers that is using 32 bit counter block mode)

◦ As  expected,  the  randomness  mark  is  monotonically  increased  with  the  length  of  the
sequence under test R, although the marks are lower than those of LFSR17

• LFSR127

◦ Cycle  is  2127
−1 ,  pretty  high,  larger  than  the  cipher  based PRNG. Nevertheless,  its

randomness mark is relatively low, in the range of LFSR8.

• AES-128(0,0,CNT)

◦ AES with 128 bit key of value 0, and IV of 0 concatenated with 32 bit counter. Cycle is

232

◦ The randomness mark of AES is monotonically increasing with the length of the sequence
under test, as expected from PRNG with cycle higher than the length of the sequence under
test  R. For length of 1e6 bits, the randomness mark is 100, as dictated  by the way the
randomness mark is calculated

• CHACHA20

◦ In 2014, ChaCha20 was selected as one of the cipher suites for use in the Transport Layer
Security  (TLS)  protocol  by  the  Internet  Engineering  Task  Force  (IETF).  Specifically,
ChaCha20  was  chosen  for  use  with  the  Poly1305  message  authentication  code,  which
together provide a high level of security and performance in TLS.

◦ CHACHA8/20 refers to the number of rounds used in the algorithm. Specifically, it means
that the ChaCha20 algorithm is used with 8 rounds of processing for small devices with
limited resources

◦ CHACHA4/20 means that the ChaCha20 algorithm is used with 4 rounds of processing for
small devices with limited resources

◦ ChaCha 20 illustrates very nice behavior. Its randomness mark is consistently increasing
when the length of R increased. Its grade in length of 1Mbit is 96, slightly less than AES
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with grade of 100. 

◦ Surprisingly, ChaCha 8/20 introduces higher randomness almost in all length, with grade of
103 at 1Mbit

◦ Chacha 4/20 introduces pretty good randomness with mark of 98 at 1Mbit

 7.1 Cipher based PRBG vs. LFSR based PRBG

It can be seen from the table that the cipher based PRBG demonstrates higher randomness grade than
the LFSR based PRBG, and consistent monotonic randomness grade that is increased when the length
of the  sequence increased. Exception is LFSR17, that demonstrates excellent randomness grade and
characteristics, however, its PRBG is not monotonically increased with sequence length, an indication
for statistical dependency as expected by its relatively low cycle. 

 8 Conclusions  
A practical tool that used for the development of PRBG in constraint devices was introduced. For the
generation of internal pseudo random sequences in a constraint silicon devices, either for a use as a
streaming key, or other purposes, LFSR is the simplest and cheapest construction. LFSR17 is shown to
produce excellent  pseudo random binary sequence with the cost of just 17 flops and 3 XOR gates.

However, LFSR has a security disadvantage: once a partial pattern of the output stream of an LFSR is
known, the entire bit sequence can be calculated. This can weaken the security of certain systems. 

The security disadvantage of LFSR can be overcome by PRBG that are based on ciphers. All ciphers
are inherently more complex and more costly than LFSR, but there are examples of very simple cipher
implementations,  like  CHACHA 8/20  and  CHACHA 4/20,  that  produces  PRBG  with  very  high
randomness. 

There  are  additional  simplifications  that  can  be  done  in  CHACHA */20  that  can  simplify  the
implementation and decrease the cost of implementation significantly which could not be described in
this report, with randomness grade higher than 96 (the randomness grade of ChaCha 20/20, which is a
standard cipher [8]). 
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