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Abstract

The hardness of solving the quadratic residuosity problem is the basis for establishing the security of
many cryptographic schemes. Two of these are the public key encryption scheme and the identity-based
encryption scheme proposed by Cocks. In this paper, we introduce a new computational problem: the
problem of distinguishing between the Jacobi symbols of the solutions of a quadratic congruence modulo
an RSA integer. We show that the security of the two encryption schemes is equivalent to the hardness
of this problem, while the quadratic residuosity problem reduces to this new problem. We then special-
ize the problem to roots of quadratic residues and establish several computational indistinguishability
relationships.

Keywords: Jacobi symbol, quadratic congruence, hard problem, identity-based encryption,
computational indistinguishability

1. Introduction

A problem is called hard if there is no probabilistic algorithm of polynomial time complexity to solve
it with non-negligible probability. There is no mathematical proof for the hardness of a mathematical
problem. Unsuccessful attempts to efficiently solve certain problems eventually led to the assumption
that those problems are hard. Among them are the factorization or discrete logarithm problem. Notice,
however, that a hardness assumption is not a mathematical argument and so, some believed-to-be-hard
problems might become easy in the future.

The security of a cryptographic construction S is studied within some security model SM that specifies
a security goal to be achieved by S, and an attack model against which the security goal is to be achieved.
Then, S is SM -secure if the problem SM(S) of breaking S’s security goal through the attack model
specified by SM is hard. This is where the hardness assumptions and the reduction technique come into
play. More exactly, to prove that S is SM -secure we do as follows:

� Choose a problem H for which there is a hardness assumption;

� Reduce H to SM(S) in the sense that if breaking the SM -security of S would be easy, then H
becomes easy.

The conclusion then is that S achieves SM -security provided that H is hard.
The quadratic residuosity problem (QRP) is one of the seemingly hard problems. This problem in-

volves deciding whether an integer with the Jacobi symbol +1 is a quadratic residue. Since all attempts to
solve it efficiently failed, the assumption was adopted that no probabilistic algorithm of polynomial time
complexity can distinguish with a non-negligible probability between quadratic residues and quadratic
non-residues with the Jacobi symbol +1. This assumption is known as the quadratic residuosity as-
sumption (QRA). It and the problem of quadratic residuosity are of great importance in cryptography
[18, 11, 12, 3, 8, 6, 2, 7, 13, 10, 9].
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Contribution. Cocks’s public-key encryption (CPKE) and identity-based encryption (CIBE) schemes [8]
are two well-known cryptographic schemes that achieve IND-CPA security, provided that QRP is hard.
That is, QRP reduces to the IND-CPA security of any of the two schemes (in the sense we have already
discussed: if breaking the IND-CPA security of any of the two schemes is easy, then QRP is easy).

The question now is whether the IND-CPA security of the two Cocks’ schemes reduces to QRP .
In other words, the question is whether the IND-CPA security of any of these schemes is equivalent
to QRP . The equivalence between the security of a cryptographic scheme and a hard computational
problem can have multiple advantages:

� Computational problems are usually formulated more simply, eliminating details that are not of
algorithmic importance (which may appear in the description of a cryptographic scheme);

� Allows easy correlation with other computational problems;

� Provides a clearer picture of the security level of the cryptographic scheme;

� May facilitate security comparisons between cryptographic schemes.

We introduce a new hard computational problem in this paper, called the Jacobi symbol problem for
quadratic congruences (JSP (QC)), and we show that:

1. The IND-CPA security of any of the two Cocks’ schemes is equivalent to JSP (QC);

2. QRP reduces to JSP (QC).

The second item tells that JSP (QC) is at least as hard as QRP . We claim that JSP (QC) is, in fact,
strictly harder than QRP .

We then specialize JSP (QC) to roots of quadratic residues modulo anti-Blum integers. We divide the
quadratic residues into two classes according to the Jacobi symbol of their roots, which in turn induces a
partition into two classes of the integers with the Jacobi symbol +1 but which are not quadratic residues.
We then establish computational indistinguishable relationships between these distributions. Thus, we
refine the problem of distinguishing between quadratic residues and non-residues depending on the Jacobi
symbol of the roots.

Paper structure. Our paper is structured into six sections, the first one being an introduction. The second
section establishes the basic notation and terminology for the entire paper. Then, we present some results
about quadratic congruences. The fourth section is dedicated to the computational problem we propose,
namely the Jacobi symbol problem for quadratic congruences. Connections between this problem, the
quadratic residuosity problem, and the security of Cocks’ schemes are established. The fifth section
specializes the Jacobi symbol problem for quadratic congruences to roots of quadratic congruences and
establishes several computational indistinguishability results. The conclusions of our work are presented
in the sixth section.

2. Preliminaries

We recall here the basic notation and terminology used in the paper. For details the reader is referred
to [1, 17, 19, 20, 16].

Number theory. We use Z to denote the set of integers and (a, b) for the gcd of the integers a and b (it will
be clear from context when (a, b) is of the pair of the two integers and not their gcd). When (a, b) = 1,
the integers a and b are called co-prime. Zn stands for {0, . . . , n− 1} and Z∗

n = {a ∈ Zn | (a, n) = 1}, for
any positive integer n.

Two integers a and b are congruent module an integer n, denoted a ≡ b mod n or a ≡n b, if n divides
a− b. When n ̸= 0, the remainder of the integer division of a by n is expressed a mod n or (a)n.

An RSA integer, also called RSA modulus, is a product n = pq of two distinct odd primes p and q (as
a matter of convention, we allays assume p < q).

Given a system of congruences in the non-determinate x,

x ≡ bi mod mi for all 1 ≤ i ≤ n,
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the Chinese Remainder Theorem (CRT) [17, 19] states that the system has a unique solution modulo
m1 · · ·mn, whenever m1, . . . ,mn are pairwise co-prime.

Given two co-prime integers a and n, we say that a is a quadratic residue modulo n if a ≡n x2, for
some integer x; the integer x is called a square root of a modulo n.

Given an odd prime integer p, the Legendre symbol of an integer a modulo p, denoted
(

a
p

)
, is 1 when

a is a quadratic residue modulo p, 0 when p divides a, and −1, otherwise. The extension to odd moduli
n > 0, called the Jacobi symbol, is 1 when n = 1 and(a

n

)
=

(
a

p1

)e1

· · ·
(

a

pm

)em

if n = pe11 · · · pemm is the prime factorization of n. For ease of expression, we will use the term “Jacobi
symbol” both in the case of prime and composite modules.

Let QRn (QNRn, J
+
n , J−

n ) be the set of quadratic residues (quadratic non-residues, integers with the
Jacobi symbol +1, integers with the Jacobi symbol −1, respectively) from Z∗

n. The following facts are
well-known [1, 16, 17]:

1. |QRn| = |QNRn| when n is an odd prime integer;

2. For any integer n > 0, a ∈ Z∗
n is a quadratic residue modulo n if and only if is is a quadratic residue

modulo any prime factor of n;

3. For any RSA modulus n = pq, |J+
n | = |J−

n | and |QRn| = |J+
n |
2 ;

4. For any RSA modulus n = pq, if we split J−
n into two subsets J±

n = {a ∈ J−
n |

(
a
p

)
= 1 and

(
a
q

)
=

−1} and J∓
n = {a ∈ J−

n |
(

a
p

)
= −1 and

(
a
q

)
= 1}, then QRn, J

+
n \ QRn, J

±
n , and J∓

n partition

Z∗
n into four subsets of equal size. These subsets are called the quadrants of Z∗

n.

Probabilistic algorithms. Probabilistic polynomial time (PPT) algorithms [20] play an important role in
cryptography. For such an algorithm A, b ← A(D) means that b is an output of A on some input from
D, and P (b← A(D)) stands for the probability with which A outputs b. An oracle for A can be viewed
as a black box f that can perform a particular computation whenever it is queried by A. We do not
care about f ’s implementation or how it works. We only assume that f returns the computation result
in O(1) time complexity. The notation Af is used to specify that A may query the oracle f .

A positive function f(λ) is negligible if for any polynomial function poly(λ) there is λ0 such that
f(λ) < 1/poly(λ), for any λ ≥ λ0. If 1− f(λ) is negligible, then f(λ) is called overwhelming.

When a problem cannot be solved by any PPT algorithm, except with negligible probability, we will
say that it is hard; otherwise, it will be called easy. The problem A reduces to the problem B, denoted
A ⪯ B, if A’s hardness implies B’s hardness (equivalent to say, assuming B easy implies A easy). If
A ⪯ B and B ⪯ A, then A and B are called equivalent, denoted A ∼ B.

Probability distributions and indistinguishability. A PPT algorithm A that on inputs from a probability
distribution D outputs a bit b ∈ {0, 1} is called a distinguisher. The advantage of of a PPT A on two
families of probability distributions X = (Xλ)λ and Y = (Yλ)λ, denoted AdvA,X,Y (λ), is the function

AdvA,X,Y (λ) = |P (1← A(Xλ))− P (1← A(Yλ))|

When AdvA,X,Y is negligible for any distinguisher A, X and Y are called computationally indistinguish-

able, denoted
c
≈.

Publc-key encryption. A public-key encryption (PKE) scheme is a triple of algorithms S = (G, E ,D),
where:

� G is a PPT algorithm that takes as input a security parameter λ and outputs a pair (pk, sk)
consisting of a public key pk and a symmetric key sk;

� E is a PPT algorithm that takes as input a public key pk and a message m and outputs a ciphertext;

3



� D is a deterministic polynomial-time (DPT) algorithm that takes as input a private key sk and a
ciphertext c and outputs a message m or a special symbol ⊥ denoting failure. It is required that
D(sk, E(pk,m)) = m, for all pairs (pk, sk) output by G and any message m.

To define the IND-CPA security of a PKE scheme S, consider the following probabilistic experiment,
where A is a PPT algorithm and b ∈ {0, 1}.

IND-CPA experiment PKEcpa-b
A,S (λ)

1. (pk, sk)← G(λ);

2. (m0,m1)← AE(λ, pk) with m0 ̸= m1 and |m0| = |m1|;

3. c← E(pk,mb);

4. b′ ← AE(c, σ);

5. Return b′.

(σ denotes state information).
We say that S has indistinguishable encryptions under chosen plaintext attack or that it is IND-CPA

secure if the advantage of A is negligible for any PPT A, where

AdvA,S(λ) = |P (1← PKEcpa-0
A,S (λ))− P (1← PKEcpa-1

A,S (λ))|.

We will denote by IND-CPA(S) the problem of breaking the IND-CPA security of S (in fact, this is
the problem to distinguish between two oracles).

Identity-based encryption (IBE) is a form of PKE, where the public key can be computed by sender,
while the corresponding private key has to be computed by a dedicated key generator. So, an IBE scheme
consists of four PPT algorithms S = (Setup,G, E ,D) as follows:

1. Setup is a PPT algorithm that takes as input a security parameter λ and outputs the system public
parameters PP together with a master key Msk;

2. G is a PPT algorithm that takes as input an identity ID together with the master key Msk and
outputs a private key associated to ID;

3. E is a PPT algorithm that, starting with the public parameter PP , an identity ID, and a message
m, encrypts m into some ciphertext c (the encryption key is ID or some binary string derived from
ID);

4. D is a DPT algorithm that a ciphertext c into a message or a special symbol ⊥ (denoting failure)
by using the private key associated to ID (and delivered by G).

The concept of IND-CPA security can be extended to IBE schemes as well by means of the following
experiment.

IND-ID-CPA experiment IBEcpa-b
A,S (λ)

1. (PP,Msk)← Setup(λ);

2. (m0,m1, ID)← AE,G(λ, PP ) with m0 ̸= m1 and |m0| = |m1|;

3. c← E(PP, ID,mb);

4. b′ ← AE,G(c, σ);

5. Return b′.

(σ denotes state information. It is assumed that the identity ID in step 3 was never queried for private
key extraction in steps 2 and 4).

We say that S has indistinguishable encryptions under chosen plaintext attack or that it is IND-ID-CPA
secure if the advantage of A is negligible for any PPT A, where

AdvA,S(λ) = |P (1← IBEcpa-0
A,S (λ))− P (1← IBEcpa-1

A,S (λ))|

We will denote by IND-ID-CPA(S) the problem of breaking the IND-ID-CPA security of S (in fact,
this is the problem to distinguish between two oracles).
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3. Quadratic congruences

We present in this section some results on solving quadratic congruences modulo a prime and an RSA
integer. For the completeness of the presentation, some known results are recalled and accompanied by
brief proof sketches.

3.1. Quadratic congruences modulo a prime integer

We will focus on solving quadratic congruences

a2x
2 + a1x+ a0 ≡ 0 mod p, (1)

where p is an odd prime integer and a0, a1, a2 ∈ Zp. For the congruence not to degenerate into a linear
one, we will ask for (a2, p) = 1. Under this requirement, we may multiply the quadratic congruence by
a−1
2 mod p without changing its solutions. So, we may consider the quadratic congruence in the equivalent

form x2 + cx+ a ≡ 0 mod p. For technical reasons, we write the congruence in the form:

x2 − cx+ a ≡ 0 mod p, (2)

where a, c ∈ Zp. If a = 0, the congruence becomes x(x − c) ≡ 0 mod p, which trivially leads to the
solutions 0 and c in Zp. As a result, we will avoid this case and, in what follows, we assume a ∈ Z∗

p.
Although not presented in this form, the following result is part of any standard textbook on number

theory, such as [1, 17].

Proposition 1 (Solving quadratic congruences). Let p be an odd prime integer, a ∈ Z∗
p, c ∈ Zp, and

∆ = (c2 − 4a) mod p.

1. If ∆ ∈ QRp, then:

(a) The congruence (2) has two distinct solutions in Z∗
p, namely (c +

√
∆)/2 mod p and (c −√

∆)/2 mod p, where
√
∆ is an arbitrary root modulo p of ∆;

(b) If t ∈ Z∗
p is one of the solutions for (2), then the other solution in Z∗

p is at−1 mod p;

(c) The two solutions in Z∗
p for (2), t and at−1 mod p, satisfy(

at−1

p

)
=

(
a

p

)(
t

p

)
.

Therefore, they have the same Jacobi symbol modulo p if and only if a ∈ QRp;

2. If ∆ = 0, then:

(a) a ≡ (c/2)2 mod p, and so a ∈ QRp and c ∈ Z∗
p;

(b) The congruence (2) has a (double) solution in Z∗
p, namely t = c/2 mod p, which is also one of

the two roots in Z∗
p of a;

3. If none of the above occurs, the congruence (2) has no solution.

Proof. According to the hypothesis, the congruence (2) is equivalent to

4x2 − 4cx+ 4a ≡ 0 mod p, (3)

which in turn can be re-written as
(2x− c)2 ≡ ∆ mod p. (4)

It is now clear that the congruence (2) has solutions only if ∆ = 0 or ∆ ∈ QRp. This answers the last
item of Proposition 1.

1. Let us assume that ∆ is a quadratic residue modulo p. Then, (4) leads to

p|(2x− c−
√
∆)(2x− c+

√
∆),

from which follows that (c +
√
∆)/2 mod p and (c −

√
∆)/2 mod p are solutions in Zp for (2). It is

straightforward to check that they are non-congruent modulo p. If we assume that p divides one of them,
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then p divides their product and so, p|a, which is a contradiction. Therefore, both solutions are in Z∗
p,

and thus 1(a) is proved.
1(b) requires only a simple check, and 1(c) follows from the basic properties of the Jacobi symbol.
2. If ∆ = 0, then a ≡ (c/2)2 mod p, and so a ∈ QRp (remark that a ∈ Z∗

p by the hypothesis).
Moreover, c ∈ Z∗

p. Therefore, 2(a) is proved.
To prove 2(b), remark that (4) becomes (2x − c)2 ≡ 0 mod p, which leads to the (double) solution

c/2 mod p in Z∗
p.

Each solvable congruence x2 − cx+ a ≡ 0 mod p is precisely defined by:

1. The odd prime integer p;

2. a ∈ Z∗
p, which is the product modulo p of the solutions in Z∗

p, including the case of a double solution;

3. c ∈ Zp, which is the sum modulo p of the solutions in Zp, including the case of a double solution.

Therefore, we can count the solvable quadratic congruences by counting the subsets {t, at−1} with a, t ∈
Z∗
p (remark that t ≡ at−1 mod p if and only if a ∈ QRp and t is a square root of a modulo p.
Given an odd prime p, a ∈ Z∗

p, and s ∈ {−,+}, define the set

QCs
p,a = {c ∈ Zp | x2 − cx+ a ≡ 0 mod p is solvable and all its solutions have the Jacobi symbol s}.

Proposition 2. Let p be an odd prime integer and a ∈ QRp. Then,

||QC+
p,a| − |QC−

p,a|| =

{
1, if p ≡ 1 mod 4

0, otherwise.

Proof. Let a ∈ QRp. In this case, a has two non-congruent roots in Z∗
p.

Any t1 ∈ Z∗
p that is not a root of a defines uniquely a solvable quadratic congruence with the distinct

solutions t1 and at−1
1 mod p. If t2 ∈ Z∗

p is not congruent to t1 and at−1
1 mod p, then at−1

2 mod p is not

congruent to t1 and at−1
1 mod p. So, {t1, at−1

1 } and {t2, at−1
2 } are disjoint sets that define two distinct

solvable quadratic congruences.
According to Proposition 1(1c), t1 ∈ QRp if and only if at−1

1 ∈ QRp and so, their sum modulo p is in
QC+

p,a. Likewise, t1 ∈ QNRp if and only if at−1
1 ∈ QNRp and so, their sum modulo p is in QC−

p,a.
Therefore, pairs in QRp define values c in QC+

p,a, while pairs in QNRp define values c in QC+
p,a.

Moreover, |QRp| = |QNRp|.
To end the proof, it remains for us to clarify the situation of the two roots in Z∗

p of a. Each such root
defines a value c. If p ≡ 1 mod 4, both roots have the same Jacobi symbol and, therefore, both are either
in QRp or QNRp. So one of the sets QC+

p,a or QC−
p,a will have an extra value c. If p ≡ 3 mod 4, both

roots of a have opposite Jacobi symbols. In this case, QC+
p,a or QC−

p,a will have the same cardinal.

Remark 1. If we do not include in QC+
p,a and QC−

p,a the values c obtained from the roots of a, then
|QC+

p,a| = |QC−
p,a| no matter of the odd prime integer p (please see the proof of Proposition 2).

A brief discussion on the complexity of computing the solutions of a quadratic congruence modulo a
prime integer concludes the section.

Remark 2. The calculation of solutions for the congruence (2) requires first to decide whether the
discriminant ∆ is a quadratic residue modulo p. This can be decided in polynomial time O(log2 p) by
computing the Jacobi symbol of ∆ modulo p [19]. If ∆ ∈ QRp, its roots can be computed in polynomial
time O(log3 p + h(log h)(log2 p)), where p − 1 = 2hm for some odd m [19]. This gives also the final
complexity to compute the solutions.

3.2. Quadratic congruences modulo a composite integer

Solving quadratic congruences in which the modulus is a composite integer appeals to the Chinese
remainder theorem (CRT) and Hensel’s lifting lemma [1, 17]. In the following, we will refer only to RSA
moduli that are integers of the form n = pq, where p and q are distinct odd prime integers. In addition,
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to be consistent with the assumption in the previous section, the free (constant) coefficient will always
be co-prime with n. As a result, the only fundamental tool we need is CRT. According to it, solving

x2 − cx+ a ≡ 0 mod pq, (5)

where a ∈ Z∗
pq, is reduced to solving the congruences (2) and

x2 − cx+ a ≡ 0 mod q (6)

and then combining their solutions by CRT. As a result, if (2) and (6) are solvable, they may have
each one or two solutions in Z∗

p and Z∗
q , respectively, which implies that (5) may have one, two, or four

solutions in Z∗
pq. Thus, if u ∈ Z∗

p is a solution for (2) and v ∈ Z∗
q is a solution for (6), then the unique

modulo pq solution of the system {
x ≡ u mod p

x ≡ v mod q
(7)

is a solution for (5). In addition, distinct pairs (u, v) ∈ Z∗
p × Z∗

q as above give rise to distinct solutions
modulo pq for (5), and all solutions modulo pq for (5) are obtained in this way [1, 17].

The system (7) has exactly one solution modulo pq, whose form is shown below.

Lemma 1. Let p and q be two odd and distinct prime integers, u ∈ Zp, and v ∈ Zq. Then, the unique
modulo pq solution for the system (7) has the form

x = (ue1 + ve2) mod pq (8)

where e1 = (q−1 mod p)q and e2 = (p−1 mod q)p. Moreover,(
x

p

)
=

(
u

p

)
,

(
x

q

)
=

(
v

q

)
, and

(
x

pq

)
=

(
u

p

)(
v

q

)
. (9)

Proof. The first part of this lemma simply follows from the Chinese remainder theorem [1, 17]. For the
second part, remark that

e1 ≡

{
1 mod p

0 mod q
(10)

and

e2 ≡

{
1 mod q

0 mod p
(11)

Then, apply basic computation rules for the Jacobi symbol.

To decide if a quadratic congruence has one, two, or four solutions, modulus factorization is not
necessary.

Lemma 2. Let n = pq be an RSA modulus. If the congruence (5) is solvable, we can efficiently decide
whether it has one, two, or four solutions in Z∗

n without knowing the factorization of n.

Proof. Let ∆ = (c2 − 4a) mod n. One can easily check that:

� The congruence (5) has exactly one solution in Z∗
n when ∆ = 0;

� The congruence (5) has exactly two solution in Z∗
n when ∆ ̸= 0 but

(
∆
n

)
= 0;

� The congruence (5) has exactly four solution in Z∗
n when the first two cases are not met (remark

that our hypothesis stipulates that the congruence is solvable).

The proof ends by observing that we can efficiently compute the Jacobi symbol without knowing the
factorization of n.

The following two propositions make beneficial connections between a’s residuosity and the Jacobi
symbol of the solutions for (5).
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Proposition 3. Let n = pq be an RSA modulus. Assume that the quadratic congruence (5) is solvable
and a ∈ Z∗

n. Then, a ∈ QRn if and only if all solutions in Z∗
n for (5) have the same Jacobi symbol.

Proof. If (5) is solvable, then both x2− cx+a ≡ 0 mod p and x2− cx+a ≡ 0 mod q are solvable (each of
them having one or two solution in Z∗

p and Z∗
q , respectively). So, (5) may have one, two, or four solutions

in Z∗
n.
The solutions for (5) have the same Jacobi symbol if and only if the solutions for the congruence modulo

p have the same symbol Jacobi and the solutions for the congruence modulo q have the same symbol
Jacobi. According to Proposition 1(1c), this is equivalent to saying that (a)p ∈ QRp and (a)q ∈ QRq,
which in turn is equivalent to a ∈ QRn.

Proposition 4. Let n = pq be an RSA modulus. Assume that the quadratic congruence (5) is solvable
and a ∈ Z∗

n. Then:

1. a ∈ QNRn if and only if the congruence (5) has two or four non-congruent solutions in Z∗
n, half of

them having the Jacobi symbol +1 and the other half, −1.

2. a ∈ J+
n \QRn if and only if the congruence (5) has four non-congruent solutions in Z∗

n, distributed
one by one in the four quadrants of Z∗

n.

Proof. If (5) is solvable, both (2) and (6) are solvable.
1. Assume that a ∈ QNRn. Then, (a)p ∈ QNRp or (a)q ∈ QNRq. Therefore, at least one of

the two congruences (2) and (6) have two non-congruent solutions (in Z∗
p or Z∗

q) of opposite Jacobi
symbols (Proposition 1(1c)). The other congruence may have two solutions of opposite or the same
Jacobi symbols, or it may have one solution (Proposition 1(2)). So, (5) has two or four solutions in Z∗

n,
having the distribution of Jacobi symbols as specified in the proposition.

Conversely, the hypothesis shows that at least one of the two congruences modulo p and q has two
non-congruent solutions of opposite Jacobi symbols. Suppose that this is the congruence modulo p. Then
(a)p ∈ QNRp (Proposition 1(1c)). As with respect to (a)q, this may be in QRq or QNRq. As a result,
a ∈ QNRn.

To prove 2 we do a similar reasoning to that above. Remark first that each of the congruences modulo
p and q has two non-congruent solutions (in Z∗

p and Z∗
q , correspondingly) of opposite Jacobi symbols

(because (a)p ∈ QNRp and (a)q ∈ QNRq). It is then straightforward to see that CRT will generate
solutions to (5) with the distribution specified in the proposition.

Vice versa, the fact that the congruence (5) has four solutions in Z∗
n distributed one by one in the four

quadrant of Z∗
n shows that each of the two congruences modulo p and q must have two non-congruent

solutions of opposite Jacobi symbols. As a result, a must be in J+
n \QRn.

Let n = pq be an RSA modulus, a ∈ Z∗
n, and s ∈ {−,+}. Extending the notation from the previous

section to RSA moduli, denote by QCs
n,a the set

QCs
n,a = {c ∈ Zp | x2 − cx+ a ≡ 0 mod n is solvable and all its solutions have the Jacobi symbol s}.

Proposition 5. Let n = pq be an RSA modulus and a ∈ QRn. Then,

||QC+
n,a| − |QC−

n,a|| ≤ 1.

Proof. Each pair of integers

(c1, c2) ∈ QC+
p,(a)p

×QC+
q,(a)q

∪QC−
p,(a)p

×QC−
q,(a)q

produces a unique integer c ∈ QC+
n,a, and each integer c ∈ QC+

n,a comes from a single pair of integers
(c1, c2) as above (Lemma 1).

Likewise, each pair of integers

(c1, c2) ∈ QC+
p,(a)p

×QC−
q,(a)q

∪QC−
p,(a)p

×QC+
q,(a)q

produces a unique integer c ∈ QC−
n,a, and each integer c ∈ QC−

n,a comes from a single pair of integers
(c1, c2) as above.

From Proposition 2, by a simple computation, we arrive at the proposition’s conclusion.
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Remark 3. If we do not include in QC+
p,a, QC−

p,a, QC+
q,a, and QC−

q,a the values c obtained from the roots
of a (modulo p and q, correspondingly), then |QC+

n,a| = |QC−
n,a| (please see Remark 1).

A brief discussion on computing the solutions for a quadratic congruence modulo an RSA integer
concludes the section.

Remark 4. The calculation of solutions for the congruence (5) requires the factorization of n = pq. If it
can be done in polynomial time, then the solutions can be computed in polynomial time (we compute the
solutions for (2) and (6) and then combine them with the CRT). However, factorization of large RSA
moduli is a hard problem and no other method that avoids it is known to compute solutions for (5).

4. The Jacobi symbol problem for quadratic congruences

The Jacobi symbol problem for quadratic congruences, abbreviated JSP (QC), is the problem to
compute the Jacobi symbol of the solutions to a solvable quadratic congruence whose free coefficient is
a quadratic residue with respect to an RSA modulus. JSP (QC) appears to be a hard problem in the
sense that no PPT algorithm can solve it with non-negligible probability.

We formalize below JSP (QC) as a distinguishing problem between two probability distributions.
Let RSA Gen be an RSA moduli generator, that is, on some input λ, it outputs (n, p, q), where p and
q are two odd distinct primes of the same size λ and n = pq. In what follows, we will simple write
n ← RSA Gen(λ) instead of (n, p, q) ← RSA Gen(λ), whenever it is not necessary to emphasize the
prime integers p and q.

We define now four families of probability distributions QCs = (QCsλ)λ and QNCs = (QNCsλ)λ, where
s ∈ {−,+}, as follows:

QCsλ = {(n, a, c) | n← RSA Gen(λ), a← QRn, t← Js
n, c = t+ at−1 mod n}

QNCsλ = {(n, a, c) | n← RSA Gen(λ), a← J+
n \QRn, t← Js

n, c = t+ at−1 mod n}

We may say that QCsλ is the probability distribution of solvable quadratic congruences (5) whose
solutions have the same Jacobi symbol s (see also Proposition 3). So, JSP (QC) is the problem to
distinguish between QC+ and QC−.

The probability distributions QNC+λ and QNC−λ will be technically necessary. According to Propo-
sition 4, they are identical.

4.1. JSP (QC) and QRP

We prove here that the quadratic residuosity problem reduces to JSP (QC).
Let RSA Gen be an RSA moduli generator. This generator gives rise to two probability distributions

QR = (QRλ)λ and QNR = (QNRλ)λ of quadratic residues and non-residues, as follows:

QRλ = {(n, a) | n← RSA Gen(λ), a← QRn}

QNRλ = {(n, a) | n← RSA Gen(λ), a← J+
n \QRn}

The quadratic residuosity problem (QRP ) is the problem to distinguish between QR and QNR [15].
This is considered a hard problem. More precisely, the following assumption is adopted.

Definition 1. We say that the quadratic residuosity asumption (QRA) holds for a generator RSA Gen
if the distributions QR and QNR, defined by means of RSA Gen, are computationally indistinguishable.

The following result shows that JSP (QC) is harder than QRP .

Theorem 1. QRP ⪯ JSP (QC).

Proof. Assume that QRA holds for a generator RSA Gen. Then, the following relationships hold:

QC+λ = {(n, a, c) | n← RSA Gen(λ), a← QRn, t← J+
n , c = t+ at−1 mod n}

c
≈ {(n, a, c) | n← RSA Gen(λ), a← J+

n \QRn, t← J+
n , c = t+ at−1 mod n}

= QNC+λ
≡ QNC−λ
= {(n, a, c) | n← RSA Gen(λ), a← J+

n \QRn, t← J−
n , c = t+ at−1 mod n}

c
≈ {(n, a, c) | n← RSA Gen(λ), a← QRn, t← J−

n , c = t+ at−1 mod n}
= QC−λ

9



So, QC+ and QC− are computationally indistinguishable.

4.2. JSP (QC) and Cocks’ PKE scheme

In the following, we will connect JSP (QC) and the IND-CPA security of Cocks’ PKE (CPKE)
scheme [8].

The CPKE scheme encrypts bits in {−1,+1}. It uses quadratic residues as public keys, while their
roots are the secret keys. The scheme is presented in Figure 1. Its correctness follows easily from the
congruence c+ 2r ≡ t(1 + rt−1)2 mod n (please see the scheme for the meaning of the parameters).

G(λ): public key: pk = (n, a), where

(n, p, q)← RSA gen(λ)

a = r2 mod n with r ← Z∗
n

private key: sk = (p, q, r)

E(pk,m): t← Z∗
n with

(
t
n

)
= m

output c = t+ at−1 mod n

D(sk, c): output m =
(
c+2r
n

)
Figure 1: Cocks’ PKE scheme

A straightforward analysis of the scheme shows that its IND-CPA security is equivalent to the
indistinguishability of the distributions QC+ and QC−.

Theorem 2. JSP (QC) ∼ IND-CPA(CPKE).

4.3. JSP (QC) and Cocks’ IBE scheme

Cocks’ IBE (CIBE) scheme [8] has a setup phase where an RSA modulus n, a random integer e ∈
J+
n \ QRn, and a hash function h are published. The function h returns elements in J+

n , whenever it is
applied to identities. As a = h(ID) is either a quadratic residue or an element in J+

n \QRn, exactly one
of a and ea is a quadratic residue. So, the CIBE scheme encrypts as CPKE does, but with both “public
keys”, a and ea (Figure 2).

Setup(λ): PP = (n, e, h), where

(n, p, q)← RSA gen(λ)

e← J+
n \QRn

h hash function mapping identities to J+
n

Msk = (p, q)

G(Msk, ID): a = h(ID)

private key: random square root r of a or ea

E(PP, ID,m): a = h(ID)

t0, t1 ← Z∗
n with

(
t0
n

)
= m =

(
t1
n

)
output c0 = t0 + at−1

0 mod n and c1 = t1 + eat−1
1 mod n

D(r, (c0, c1)): set b ∈ {0, 1} such that eba ≡n r2

output m =
(
cb+2r

n

)
Figure 2: Cocks’ IBE scheme

A simple analysis of the CIBE scheme shows that its IND-ID-CPA security is equivalent to the
indistinguishability of the distributions CIBE+ = (CIBE+λ )λ and CIBE− = (CIBE−λ )λ given by:

CIBEsλ = {(n, e, a, c1, c2) | n← RSA Gen(λ, e← J+
n \QRn, a← J+

n , (12)

t1, t2 ← Js
n, c1 = t1 + at−1

1 mod n, c2 = t2 + uat−1
2 mod n},

where s ∈ {−,+}, by adversaries that are allowed to query the hash function and the private key
generator.

Now, we are ready to prove the following theorem.

10



Theorem 3. IND-ID-CPA(CIBE) ⪯ JSP (QC). Under the assumption that the hash function in
CIBE is implemented as a random oracle, the converse reduction also holds.

Proof. First, assume that JSP (QC) is easy and prove that IND-ID-CPA(CIBE) is easy. As QRP ⪯
JSP (QC), the hypothesis shows that QRP is easy. So, there exists an adversary A that has a non-
negligible advantage against QRP and an adversary B that has a non-negligible advantage against
JSP (QC).

Define a distinguisher D that on an IND-ID-CPA(CIBE) instance (n, e, a, c1, c2), where n ←
RSA Gen(λ) for some λ, does as follows:

1. Run A to decide with non-negligible probability whether a or ea is a quadratic residue;

2. Run B on (n, a, c1) if the answer of A is 1 (that is, a is a quadratic residue), and on (n, ea, c2),
otherwise;

3. D outputs what B outputs.

(remark that D does not need to query any oracle for h or private key generation).
Clearly, D has a non-negligible advantage to distinguish from which of the two distributions CIBE+λ

or CIBE−λ the instance (n, e, a, c1, c2) comes. So, IND-ID-CPA(CIBE) is easy.
Vice versa, assume that IND-ID-CPA(CIBE) is easy and let A be an adversary that has non-

negligible advantage against it. Moreover, assume that the hash function used to compute public keys
from identities is a random oracle.

Let (n, a, c) be a JSP (QC) instance, where n ← RSA Gen(λ) for some λ. Recall that a ∈ QRn.
Define a distinguisher B that on (n, a, c) does as follows:

1. e← J+
n ;

2. t̄← Z∗
n;

3. Compute c̄ = t̄+ eat̄−1 mod n;

4. Run A on (n, e, a, c, c̄), simulating for it a random oracle for hash function h and an oracle for
private key calculation as follows:

� When A queries h on the identity ID for the first time, B randomly generates v ← J+
n and

a bit b ← {0, 1}, returns h(ID) = ebv2 mod n to A and also stores (ID, v, b) in its internal
database.

For any other ID query, B will return the same value;

� When A queries a private key for the identity ID and (ID, v, b) is in its database for some v
and b, B will return v, if b = 0, and ev, otherwise.

If the ID private key query is for the first time, B first computes h(ID) as above and then
answers to the private key query.

It is quite clear that h implemented in this way is a random oracle.

5. B returns what A returns.

Two cases are to be analyzed.
Case 1: e ∈ J+

n \ QRn. Then, B has the same probability A has to guess the Jacobi symbol of the
solutions.

Case 2: e ∈ QRn. Then, B has the probability 1/2 to guess the Jacobi symbol of the solutions because
each of them is equally probable.

Therefore,

AdvB,QC+,QC−(λ) = 2
∣∣P (s← B(QCsλ) | s← {−,+})− 1

2

∣∣
= 2 |P (s← B(QCsλ) | s← {−,+}, Case 1)P (Case 1)

+P (s← B(QCsλ) | s← {−,+}, Case 2)P (Case 2)− 1
2

∣∣
= 2

∣∣ 1
2P (s← A(CIBEsλ) | s← {−,+}) + 1

2 ·
1
2 −

1
2

∣∣
=

∣∣P (s← A(CIBEsλ) | s← {−,+})− 1
2

∣∣
= 1

2AdvA,CIBE+,CIBE−(λ).

So, B has a non-negligible advantage against JSP (QC), showing that this problem is easy.
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5. The Jacobi symbol problem for square roots

We specialize the results from the previous section to square roots of a ∈ QRn or, equivalently,
solutions to the congruence

x2 − a ≡ 0 mod n (13)

But for that, we need a little discussion on the integer -1.

Remark 5. It is well-known that, given an odd prime p, −1 ∈ QRp if and only if p ≡ 1 mod 4 [17].
Based on this, the following equivalences can easily be established:

1. For any odd positive integer n > 2, −1 ∈ QRn if and only if p ≡ 1 mod 4, for any prime factor p
of n.

Therefore, if at least one prime factor of n is congruent to 3 modulo 4, −1 is not a quadratic residue
modulo n.

2. For any RSA modulus n = pq, −1 ∈ J+
n \QRn if and only if p, q ≡ 3 mod 4.

RSA moduli n = pq with the property p, q ≡ 3 mod 4 are called Blum integers [4, 5, 14]. To have
appropriate terminology for the opposite case, we refer to the RSA moduli n = pq with p, q ≡ 1 mod 4, as
anti-Blum integers.

Remark 6. Let n = pq be an RSA modulus and a ∈ QRn. Then, from Remark 5 we obtain the following
properties:

1. −a ∈ QRn if and only if n is an anti-Blum integer;

2. −a ∈ J+
n \QRn if and only if n is a Blum integer.

Now, from Propositions 3 and 4, and Remark 6 we obtain the following result.

Corollary 1. Let n = pq be an RSA modulus and a ∈ QRn.

1. All four roots of a modulo n have the same Jacobi symbol if and only if n is an anti-Blum integer.

2. The four roots of a modulo n are distributed one by one in the four quadrants of Z∗
n if and only if

n is a Blum integer.

Given n an anti-Blum integer and s ∈ {−,+}, define the following set of quadratic residues modulo
n:

QRs
n = {a ∈ QRn|(∃t ∈ Js

n)(a ≡ t2 mod n)}.

As n is an anti-Blum integer, all roots of a ∈ QRs
n have the same Jacobi symbol s.

Proposition 6. Let n be an anti-Blum integer. Then, the following properties hold:

1. If a, b ∈ QR+
n or a, b ∈ QR−

n , then (ab)n ∈ QR+
n ;

2. If a ∈ QR+
n and b ∈ QR−

n , then (ab)n ∈ QR−
n ;

3. If a ∈ QRs
n, then (a−1)n ∈ QRs

n, for any s ∈ {−,+};

4. QR+
n and QR−

n are disjoint, have the same cardinality, and their union is QRn.

Proof. 1 and 2 follow easily from the definition of the sets QR+
n and QR−

n .
3. Let a ∈ QRs

n and s ∈ {−,+}. If t ∈ Js
n is a root of a modulo n, (t−1)n is a root of a−1 modulo n.

Moreover,
(

t−1

n

)
=

(
t
n

)
= s. So, (a−1)n ∈ QRs

n.

4. Directly from the definition follows that QR+
n and QR−

n are disjoint, and their union is QRn. To
prove that they have the same cardinality, remark that |J+

n | = |J−
n | and exactly four integers from Js

n

define a distinguished integer in QRs
n, for any s ∈ {−,+}.

Given b ∈ Z∗
n and s ∈ {−,+}, define the set b ·QRs

n by

b ·QRs
n = {(ba)n|a ∈ QRs

n}.
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Proposition 7. Let n be an anti-Blum integer. Then, the following properties hold:

1. The sets b ·QR+
n and b ·QR−

n are disjoint, have the same cardinality, and their union is J+
n \QRn,

for any b ∈ J+
n \QRn.

2. b1 ·QRs
n = b2 ·QRs

n, for any b1, b2 ∈ J+
n \QRn with (b1b2)n ∈ QR+

n and any s ∈ {−,+}.

3. b1 ·QR+
n = b2 ·QR−

n , for any b1, b2 ∈ J+
n \QRn with (b1b2)n ∈ QR−

n .

Proof. 1. It is trivial to check that the two sets are disjoint and their union is J+
n \ QRn, for any b ∈

J+
n \QRn. It is also immediately verified that |b ·QRs

n| = |QRs
n|, for any s ∈ {−,+}. As |QR+

n | = |QR−
n |

(Proposition 6(4)), it follows that |b ·QR+
n | = |b ·QR−

n |.
2. Let b1, b2 ∈ J+

n \QRn with (b1b2)n ∈ QR+
n and s ∈ {−,+}. We show that for any a1 ∈ QRs

n there
exists a2 ∈ QRs

n such that b1a1 ≡n b2a2. This will prove that b1 · QRs
n ⊆ b2 · QRs

n, and the converse
inclusion would follow a similar proof line.

Indeed, if we take a2 = b1b
−1
2 a1 mod n we obtain b1a1 ≡n b2a2. Therefore, we only need to prove that

a2 ∈ QRs
n. But that comes down to showing that (b1b

−1
2 )n ∈ QR+

n . The congruence

b1b
−1
2 ≡ b1b2(b

−1
2 )2 mod n

shows that tb−1
2 mod n is a root of b1b

−1
2 modulo n, for any root t of b1b2 modulo n. As(

tb−1
2

n

)
=

(
t

n

)(
b−1
2

n

)
= 1 · 1 = 1,

it follows that (b1b
−1
2 )n ∈ QR+

n .
3. The proof is similar to that in item 2, except that this time we will prove that (b1b

−1
2 )n ∈ QR−

n .

Example 1. Let p = 5 and q = 13. Then, n = 65 is an anti-Blum integer. The set QRn has 12 integers,
distributed as follows:

QR+
n = {1, 4, 16, 49, 61, 64}

QR−
n = {9, 14, 29, 36, 51, 56}

If we take b1 = 7 ∈ J+
n \QRn, we obtain:

7 ·QR+
n = {7, 18, 28, 37, 47, 58}

7 ·QR−
n = {2, 8, 32, 33, 57, 63}

As b2 = 8 ∈ J+
n \QRn and (b1b2)n ∈ QR−

n , 8 ·QR+
n = 7 ·QR−

n and 8 ·QR−
n = 7 ·QR+

n .

Given n an anti-Blum integer, the set J+
n is partitioned into 4 equally sized subsets as shown in Figure

3. The subsets b · QR+
n and b · QR−

n can change each other depending on b and the source from where
they come (QR+

n or QR−
n ), but not as content (Proposition 7(3)).

QR+
n QR−

n b ·QR+
n b ·QR−

n

QRn J+
n \QRn

J+
n

Figure 3: Partition of J+
n , for some b ∈ J+

n \QRn

We now introduce the Jacobi symbol problem for square roots, abbreviated JSP (SR), as the problem
to compute the Jacobi symbol of the square roots of a quadratic residue modulo an anti-Blum integer.
The problem can be formalized as a distinguishing problem between two probability distributions.
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Let aBlum Gen be an anti-Blum integer generator. Define two families of probability distributions
QRs = (QRs

λ)λ, where s ∈ {−,+}, as follows:

QRs
λ = {(n, a) | n← aBlum Gen(λ), a← QRs

n}

So, JSP (SR) is the problem to distinguish between QR+ and QR−.
It is believed that QRP is hard even for Blum integers. There is no argument that QRP would be

easy for anti-Blum integers. As a result, we will postulate that this sub-problem of QRP , abbreviated
aBQRP , is also hard. Similar assumptions to QRA (Definition 1) can be formulated for Blum and
anti-Blum generators.

The partition J+
n in Figure 3 allows us to refine the problem of distinguishing between quadratic

residues and non-residues depending on the Jacobi symbol of the roots.
Let b = (bn)n be a sequence of integers with the property bn ∈ J+

n \QRn, whenever n is an anti-Blum
integer. Define another two families of probability distributions b · QRs = (b · QRs

λ)λ, where s ∈ {−,+},
as follows:

b · QRs
λ = {(n, (bna)n) | n← aBlum Gen(λ), a← QRs

n}.

Then, the following results follow immediately.

Proposition 8. Let b = (bn)n be a sequence of integers as above and s, s′ ∈ {−, 1}. Then, the following
properties hold:

1. QR+ c
≈ QR− if and only if b · QR+ c

≈ b · QR−;

2. If QRs c
≈ b · QRs′ then QR

c
≈ QNR.

We believe that the converse of Proposition 8(2) also holds.

6. Conclusions

When the free coefficient of a quadratic congruence modulo an RSA integer is a quadratic residue, all
solutions of the congruence have the same Jacobi symbol. Distinguishing between the two possible Jacobi
symbols without knowing the factorization of the modulus appears to be a hard problem. We called it
the Jacobi symbol problem of quadratic congruences (JSP (QC)) and showed that the following hold:

QRP ⪯ JSP (QC)

∼ IND-CPA(CPKE)

∼ IND-ID-CPA(CIBE)

(the random oracle model is needed for the last equivalence).
We believe that JSP (QC) is strictly harder than QRP .
Specializing JSP (QC) to congruences x2 − a ≡n 0, where n is an anti-Blum integer and a is a

quadratic residue, we obtain the Jacobi symbol problem for quadratic residues (JSP (QR)). QRn is then
partitioned into two subsets of quadratic residues whose roots have the Jacobi symbol +1 (QR+

n ) and
quadratic residues whose roots have the Jacobi symbol -1 (QR−

n ). This partition induces a corresponding
partition on J+

n \QRn. QRP can then be nuanced, taking into account the Jacobi of the roots.
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