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ABSTRACT

In 2022, Kuang and Perepechaenko introduced a new digital signature scheme called MPPK/DS, claiming it to be a quantum-
safe multivariate scheme. In this paper, we conduct a cryptanalysis of MPPK/DS and present a method to forge signatures for
arbitrary chosen messages. Our analysis reveals that the security of MPPK/DS can be compromised through the solution of a
system of linear modular congruences. By using only the free online Magma Calculator, we successfully forge signatures in
under 0.03 seconds for their level 1-5 parameters, indicating a significant vulnerability in the scheme’s design.

1 Introduction
In the past 40 years, there have been significant advancements in the field of public-key cryptography, driven by the need for
secure communication over untrusted networks. Unlike traditional symmetric cryptography, which relies on pre-established
secret key exchange through trusted channels, public-key cryptography employs a key pair consisting of a public key and a
secret key. The public key can be openly shared on the Internet, enabling encrypted messages to be sent by others without
being vulnerable to potential adversaries.

Popular public-key cryptographic algorithms such as RSA, DSA, and Diffie-Hellman Key Exchange have formed the
backbone of modern communication. However, in 1994, Peter Shor introduced Shor’s Algorithm1, which can efficiently
factor large integers and solve discrete logarithm problems using quantum computers. With the advent of quantum computers
and their potential threat to current cryptographic systems, there is an urgent need to transition to post-quantum public-key
cryptosystems.

In response to this concern, NIST initiated a post-quantum cryptography standardization effort in 2016, aiming to replace
vulnerable algorithms like RSA, DSA, and elliptic curve cryptosystems with quantum-resistant alternatives. After three
rounds of submission, NIST announced the first four selected algorithms for standardization2, three of which are lattice-based
(Dilithium, KYBER, FALCON), and one is hash-based (SPHINCS+). Additionally, NIST called for proposals of additional
digital signature schemes, with a preference for general-purpose signature schemes not based on structured lattices.

Another significant type of post-quantum cryptography is multivariate cryptosystems, alongside lattice-based and hash-
based cryptosystems. Multivariate public-key cryptosystems are constructed through a bipolar approach3, involving a system
F : Fn → Fm of m multivariate quadratic polynomials in n variables (the central map), which can be easily inverted. Two linear
(affine) invertible maps S : Fm → Fm and T : Fn → Fn are used to mix the variables and polynomials, resulting in a quadratic
public key P = S ◦F ◦T : Fn → Fm (see Figure 1). This public key is challenging to distinguish from a randomly generated
quadratic map.
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Figure 1. General workflow of bipolar schemes

The security of multivariate cryptosystems relies on the hardness of solving polynomial systems over finite fields. For
instance, when the base field is GF(2), solving quadratic systems was proved by Fraenkel and Yesha4 to be NP-complete. Since
higher degree polynomials can be transformed into quadratic polynomials by adding more variables, it is sufficient to solve



quadratic systems over finite fields, known as the MQ (Multivariate Quadratic) problem. The MQ problem has even been
utilized in the design of hash functions and stream ciphers, such as MQ-HASH5 and QUAD6.

One of the early multivariate public-key cryptosystems is the Matsumoto-Imai cryptosystem7. It constructs the central map
as an easily invertible map with low Hamming weight terms over the extension field. By utilizing the isomorphism between the
extension field and the base field, the central map is transformed into a quadratic map in a general-like form. However, Patarin8

fully attacked the Matsumoto-Imai system in 1995, leading to the development of the Oil and Vinegar cryptosystem. These two
systems represent the two main types of multivariate public-key cryptosystems to date: BigField type and UOV type.

BigField type cryptosystems encompass Hidden Fields Equation (HFE)9 and its numerous variants (e.g., GeMSS10, which
was attacked by Tao et al.11). On the other hand, UOV type cryptosystems were originally represented by Rainbow12, a Round
3 finalist that was later attacked by Beullens13. Currently, UOV type remains an active research topic with various UOV-like
cryptosystems such as QR-UOV14, MAYO15, and NOVA16.

In the present day, multivariate cryptosystems are often employed as digital signatures because the solution of a polynomial
system is easy to verify and transfer. Despite the disadvantage of having a large public key size, the need for repetitive
transmissions is usually not required, and the public key size does not significantly impact the signature’s efficiency.

Regarding MPPK/DS, it was first introduced in17 and later in18. The authors claimed to have proposed a new quantum-safe
digital signature algorithm known as the Multivariate Polynomial Public Key Digital Signature. Their algorithm is based on
Fermat’s Little Theorem, which states that if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p).
As a result, the exponent can be viewed as an element in Z/ϕ(p)Z. They utilize this property by taking polynomial powers
of nontrivial elements in GF(p), allowing for pure exponent addition/subtraction on Z/ϕ(p)Z after fixing a generator g of
GF(p)×. The variables in their polynomials are divided into the message variable X0 and the noise variables X1, . . . ,Xm. For a
chosen message x0 ∈ Z/ϕ(p)Z, the signature must satisfy certain polynomial equations over X1, . . . ,Xm, enabling arbitrary
noise x1, . . . ,xm to be plugged in for verification. As a result, forging a signature boils down to finding suitable coefficients for
monomials in X1, . . . ,Xm.

In this article, we present an analysis of the MPPK/DS digital signature scheme, with a focus on its vulnerabilities in
the key generation process and the system of linear modular congruence equations. Moreover, we provide insights into the
forging process, outlining the steps to forge a signature in the scheme. Through a toy example, we illustrate how these
weaknesses can be exploited to forge signatures successfully. We believe that MPPK/DS is not a traditional Multivariate
scheme, given the identified vulnerabilities and its departure from the conventional approach. Experimental results validate
these vulnerabilities across different security levels. Finally, we emphasize the importance of refining the MPPK/DS scheme
and fostering collaboration within the cryptography community to enhance cryptographic security.

2 Cryptanalysis
2.1 MPPK/DS
This subsection describes the MPPK/DS digital signature scheme, partially following the notation used in18. MPPK/DS utilizes
an odd prime p of the form p = 2x ·q+1 where q is also an odd prime and 2x and q have the same length in binary form. It is
well-known that when p is prime, GF(p)×, the collection of units of GF(p) (which is just GF(p)∖{0}), forms a cyclic group
of order ϕ(p) = p−1 = 2x ·q, where ϕ(p) is Euler’s totient function for p. We denote R = Z/ϕ(p)Z.

The public key consists of four polynomials over R[X0;X1, . . . ,Xm]: Nconst, Nlead, P, Q, where Nconst has X0-degree 0. The
signature for a message x0 ∈ R will be denoted as σ = (x0,A,B,C,D) where A,B,C,D ∈ GF(p) are numbers to be determined
later.

2.1.1 Key Generation
The signer performs the following steps to generate the public and private keys:

1. Choose two univariate polynomial f and h in R[X0] with degree λ , i.e.,

f (X0) =
λ

∑
k=0

fkXk
0 (1)

h(X0) =
λ

∑
k=0

hkXk
0 (2)

2. Select a multivariate polynomial B ∈ R[X0;X1, . . . ,Xm] which is linear in X1, . . . ,Xm and degree n in X0, namely

B(X0;X1, . . . ,Xm) =
n

∑
k=0

Bk(X1, . . . ,Xm)Xk
0 (3)
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3. Compute the polynomials Φ(X0;X1, . . . ,Xm) and Ψ(X0;X1, . . . ,Xm) as follows:

Φ(X0;X1, . . . ,Xm) = f (X0)B(X0;X1, . . . ,Xm)− f0B0(X1, . . . ,Xm)− fλ Bn(X1, . . . ,Xm) (4)
Ψ(X0;X1, . . . ,Xm) = h(X0)B(X0;X1, . . . ,Xm)−h0B0(X1, . . . ,Xm)−hλ Bn(X1, . . . ,Xm) (5)

4. Generate noise polynomials

Nconst(X1, . . . ,Xm) = RconstB0(X1, . . . ,Xm) (6)

Nlead(X0;X1, . . . ,Xm) = RleadBn(X1, . . . ,Xm)Xn+λ

0 (7)

for some randomly chosen Rconst ,Rlead ∈ R.

5. Randomly choose invertible elements α,β ∈ R×.

6. Compute the public key polynomials as:

P(X0;X1, . . . ,Xm) = αRconstΦ(X0;X1, . . . ,Xm) (8)
Q(X0;X1, . . . ,Xm) = βRleadΨ(X0;X1, . . . ,Xm) (9)

The public key is then composed of P, Q, Nconst, and Nlead, while the private key consists of f , h, Rconst , Rlead , α , and β . The
polynomial B can be discarded after key generation.

2.1.2 Signing Process
To sign a message x0 (or its hash), the signer performs the following steps using the private key:

1. Calculate the values a(x0), b(x0), c(x0), and d(x0) as follows:

a(x0) = β
−1Rconst f (x0) (10)

b(x0) = α
−1Rleadh(x0) (11)

c(x0) = Rlead [h(x0) f0 − f (x0)h0] (12)
d(x0) = Rconst [h(x0) fλ − f (x0)hλ ] (13)

2. Randomly choose a generator g ∈ GF(p)×.

3. Calculate the signature components A, B, C, and D as:

A = ga(x0) mod p (14)

B = gb(x0) mod p (15)

C = gc(x0) mod p (16)

D = gd(x0) mod p (17)

4. The signature σ is then presented as σ = (x0,A,B,C,D).

2.1.3 Verification
To verify the signature σ for a message x0, the verifier performs the following steps:

1. Randomly choose values x1, . . . ,xm ∈ R.

2. Use the public key to check if the equation (18) holds:

AQ(x0;x1,...,xm) ≡ BP(x0;x1,...,xm)CNconst(x1,...,xm)DNlead(x0;x1,...,xm) (mod p) (18)

3. If equation (18) holds for several trials with different values of x1, . . . ,xm, the verifier considers the signature to be valid.
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2.2 Conversion from Forging Signature to Solving System of Linear Modular Congruences
MPPK/DS has a notable vulnerability that allows forging signatures by solving a system of linear modular congruence equations.
This vulnerability arises due to the multilinear property of B, which extends to P, Q, Nconst, and Nlead.

Given a public key (P,Q,Nconst,Nlead) and a target message x0, the attacker wants to forge a signature (x0,A,B,C,D) for x0.
Let R=Z/ϕ(p)Z. Since B is multilinear in X1, . . . ,Xm, the public key polynomials can be represented as linear combinations

of constant values for a fixed message x0 ∈ R:

P(x0;X1, . . . ,Xm) =
m

∑
k=1

Pk(x0)Xk (19)

Q(x0;X1, . . . ,Xm) =
m

∑
k=1

Qk(x0)Xk (20)

Nconst(x0;X1, . . . ,Xm) =
m

∑
k=1

Nconst,k(x0)Xk (21)

Nlead(x0;X1, . . . ,Xm) =
m

∑
k=1

Nlead,k(x0)Xk (22)

where Qk(x0), Pk(x0), Nconst,k(x0), and Nlead,k(x0) are constant values for a fixed message x0.
To forge a signature for a given message x0, the attacker needs to find a common solution in R of the following system of

linear modular congruence equations:

V1Pk(x0)−V2Qk(x0)−V3Nconst,k(x0)−V4Nlead,k(x0) = 0 (23)

for all 1 ≤ k ≤ m.
If the attacker successfully finds a suitable set of V1,V2,V3,V4 ∈ R that satisfy the system of equations, they can then forge a

signature for the target message x0. The forged signature will be (x0,A,B,C,D), where:

A = gV1 mod p (24)

B = gV2 mod p (25)

C = gV3 mod p (26)

D = gV4 mod p (27)

where g is a randomly chosen generator of GF(p)×.

3 Experiment Results and Toy CounterExamples

We used the free online Magma calculator19 to simulate the key generation, signing process, forging process, and verification
for various security levels (1-5) provided by the authors ((log2 q,x, log2 p,n,λ ,m) = (32,32,64,6,3,2)). The results were
obtained in less than 0.5 seconds, which demonstrates the weakness of this digital signature scheme.

To illustrate the vulnerability in MPPK/DS, let’s consider the following example based on the public key provided by18:
Public key:

P(X0;X1,X2) = (152X0 +318X2
0 +234X3

0 )X1 +(140X0 +344X2
0 +216X3

0 )X2 (28)

Q(X0;X1,X2) = (48X0 +240X2
0 +340X3

0 )X1 +(232X0 +248X2
0 +96X3

0 )X2 (29)
Nconst(X1,X2) = 248X1 +204X2 (30)

Nlead(X0;X1,X2) = (140X1 +336X2)X4
0 (31)

Let’s suppose we want to forge a signature for x0 = 48. The attacker aims to find suitable values V1,V2,V3,V4 ∈ R that
satisfy the following system of linear modular congruence equations:{

96V1 −256V2 −248V3 −288V4 = 0 (mod 352)
128V1 −0V2 −204V3 −128V4 = 0 (mod 352)

(32)
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Magma reveals that (V1,V2,V3,V4) = (51,283,200,186) is a solution to the system of equations. With this solution, the
attacker can forge a signature for x0 = 48 as follows:

A = g51 mod 353 (33)

B = g283 mod 353 (34)

C = g200 mod 353 (35)

D = g186 mod 353 (36)

where g = 3 is a randomly chosen generator of GF(353)×.
The forged signature is (48,A,B,C,D) with A = 112, B = 316, C = 88, and D = 255.
Now, let’s see how the verifier verifies the forged signature for x0 = 48 twice. The verifier randomly chooses two different

values x1, . . . ,xm = (51,121) and x1, . . . ,xm = (259,324) in R and uses the public key to check if the following equation holds:

AQ(48;X1,X2) ≡ BP(48;X1,X2)CNconst(X1,X2)DNlead(48;X1,X2) (mod 353) (37)

For Trial 1, when (x1, . . . ,xm) = (51,121), P = 32, Q = 320, Nconst = 20, Nlead = 256, and:

112320 = 337 = 256×337×131 = 31632 ×8820 ×255256

For Trial 2, when (x1, . . . ,xm) = (259,324), P = 128, Q = 160, Nconst = 88, Nlead = 256, and:

112160 = 185 = 58×1×131 = 316128 ×8888 ×255256

Since the equation (37) holds for both trials, the verifier mistakenly believes that the signature (48,112,316,88,255) is
valid for x0 = 48 in both cases, and the forged signature successfully deceives the verification process. The signature given by18

is (48,262,187,22,159).

4 Conclusion
In this study, we conducted a comprehensive analysis of the MPPK/DS digital signature scheme and revealed its susceptibility
to forgery attacks. By carefully examining the key generation process and the underlying system of linear modular congruence
equations, we identified critical vulnerabilities that allow an adversary to forge signatures for arbitrary messages.

The results from our illustrative toy example demonstrated how an attacker can exploit these weaknesses to forge a signature
for a specific message x0 = 48. Through the solution of the system of linear modular congruence equations, the attacker
successfully obtained a forged signature that deceives the verification process. This example highlights the significance of
robust security evaluations for cryptographic schemes to ensure their resilience against potential attacks.

Our experimental results, generated using only the free online Magma calculator, further emphasized the weaknesses in the
MPPK/DS digital signature scheme across various security levels. These findings underscore the urgency for improvements
and the need for more secure cryptographic designs.

We believe that the MPPK/DS scheme does not follow the traditional multivariate scheme approach, which further raises
concerns about its overall security. The vulnerabilities identified in this study call for further research and refinement to enhance
the robustness and reliability of the MPPK/DS scheme.

Response from the MPPK/DS team
We have contacted the authors of MPPK/DS, and they have acknowledged our attack and expressed their intention to make
improvements to address it.

Disclaimer
Certain commercial products or company names are identified here to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to
imply that the products or names identified are necessarily the best available for the purpose.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary information files.
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