
Non-interactive privacy-preserving naïve Bayes classifier
from leveled fully homomorphic encryption∗

Jingwei Chen Yong Feng Yang Liu Wenyuan Wu Guanci Yang

March 23, 2023

Abstract

In this paper, we propose a non-interactive privacy-preserving naive Bayes classifier from leveled fully homomor-

phic encryption schemes. The classifier runs on a server that is also the model’s owner (modeler), whose input is the

encrypted data from a client. The classifier produces encrypted classification results, which can only be decrypted

by the client, while the modeler’s model is only accessible to the server. Therefore, the classifier does not leak any

privacy on either the server’s model or the client’s data and results. More importantly, the classifier does not require

any interactions between the server and the client during the classification phase. The main technical ingredient is an

algorithm that computes the maximum index of an encrypted array homomorphically without any interactions. The

proposed classifier is implemented using HElib. Experiments show the accuracy and efficiency of our classifier. For

instance, the average cost can achieve about 34ms per sample for a real data set in UCI Machine Learning Repository

with the security parameter about 100 and accuracy about 97%.

Keywords: privacy-preserving machine learning, naïve Bayes classifier, fully homomorphic encryption, leveled fully

homomorphic encryption, BGV, HElib.

1 Introduction
Over the past ten years, Machine Learning as a Service (MLaaS) has been involved in various fields, from academia

to industry. A typical application scenario is that the model vendor collects a large amount of data to train the

model and then uses the trained model to infer/predict some results based on clients’ new data. However, as security

incidents continue to occur (such as data breaches), the demand for privacy-preserving MLaaS is rapidly increasing.

On the one hand, the model owner does not want to leak information about the model. On the other hand, the data

owner is also reluctant to leak any information about the data. To resolve this contradiction, the community studies

privacy-preserving machine learning.

model classifier samples

results

server (S) client (C)

Figure 1: Framework of privacy-preserving classifiers

In this paper, we consider the framework presented in [BPTG15] for privacy-preserving classifiers. As shown in

Fig. 1, each shaded box indicates private data that should be accessible to only one party: the model to the server and

the sample data and classification result to the client. The framework in Fig. 1 happens quite often in practice. For

instance, the server might be a big-data service provider with a predictive model for a specific disease, and the client

∗
Jingwei Chen. Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent Technology,

Chinese Academy of Sciences, Chongqing 400714, China; Chongqing College, University of Chinese Academy of Sciences, Chongqing 400714,

China. Email: chenjingwei@cigit.ac.cn

Yong Feng, Wenyuan Wu. Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and Intelligent

Technology, Chinese Academy of Sciences, Chongqing 400714, China; Chongqing College, University of Chinese Academy of Sciences, Chongqing

400714, China. Email: {yongfeng, wuwenyuan}@cigit.ac.cn

Yang Liu (Corresponding author). Information Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China. Email:

liuyang13@cqjtu.edu.cn

Guanci Yang. Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou Universityy, Guiyang 550025, China.

Email: guanci_yang@163.com

1

might be a hospital that needs to diagnose many potential cases every day. Following the framework, the hospital

first sends the encrypted samples to the service provider for a diagnosis. The service provider runs the classifier with

input as its model and the received encrypted samples to obtain an encrypted diagnosis result, and sends it to the

hospital. The hospital decrypts it to disclose the diagnosis result.

In particular, we present a privacy-preserving naïve Bayes classifier (Protocol 1) based on leveled fully homomor-

phic encryption schemes. The leveled fully homomorphic encryption schemes used in Protocol 1 allow us to evaluate

functions with a bounded multiplicative depth on encrypted data, such as BGV [BGV14] and BFV [Bra12, FV12].

These schemes are based on the Learning With Errors over Rings (RLWE) assumption [LPR13] and hence thought to

be post-quantum safe. Based on the RLWE assumption and the underlying leveled fully homomorphic encryption

schemes, we prove that Protocol 1 is correct and secure in the honest-but-curious (semi-honest or passive) model.

Protocol 1 is a minimally interactive protocol. The sample owner (client) encrypts its data 𝑥 to be predicted as a

ciphertext 𝑐 and sends 𝑐 to the model owner (server). After receiving the ciphertext 𝑐 , the server evaluates the model

using the client’s public key, with input as the encrypted data 𝑐 . The server sends the resulting ciphertext to the client,

and the client decrypts the ciphertext using itself’s secret key to specify in which class 𝑥 lies. Thanks to an algorithm

that computes a ciphertext of the maximum index (i.e., the index of the maximum) of an encrypted array (Algorithm

3), no interaction between the client and the server happens during the classification phase (Step 3 in Protocol 1).

We implement Protocol 1 using the C++ homomorphic encryption library HElib [HEl21] and test for the Iris

and Wisconsin Breast Cancer (WBC) data set in UCI Machine Learning Repository [DG17]. Experiments show

that Protocol 1 is comparable to existing privacy-preserving naïve Bayes classifiers in literature. For example, with

security parameter 100, the average cost of our classifier is 214ms and 34ms per sample for the Iris and WBC data

sets, respectively.

Related work It seems challenging to list all literature on privacy-preserving protocols for classifiers. We refer to

[BPTG15, SYZ
+
20, WNK20] for good surveys. Here we only focus on those privacy-preserving naïve Bayes classifiers

based on homomorphic encryption.

Naïve Bayes classifiers is a simple but powerful algorithm to predict the category label of unclassified samples; see,

e.g., [DP97]. Bost et al. proposed in [BPTG15, Sec. VI] the first efficient privacy-preserving protocols for naïve Bayes

classifier based on the Quadratic Residuosity (QR) [GM82] and Paillier [Pai99] cryptosystems, which are known to be

broken by quantum computers. Li et al. proposed in [LZW16] a secure naïve Bayes classifier for four parties, without

experimental results reported. Later on, Kim et al. [KOH+18] adapted Li et al.’s framework using the homomorphic

encryption scheme presented by Brakerski, Gentry, and Vaikuntanathan (BGV) [BGV14]. Yasumura et al. [YIY19]
and Sun et al. [SZL+20] also gave privacy-preserving protocols for naïve Bayes classification based on BGV. In

addition, Wood et al. presented in [WSNK19] a private nav̈e Bayes classifier based on a private fully homomorphic

encryption scheme proposed by Gribov, Kahrobaei, and Shpilrain [GKS18]. While all of these privacy-preserving

naïve Bayes classifiers require interactions among participants during the classification phase (the classifier in Fig.

1), Protocol 1 presented in this paper does not require any interactions at all. For most of them, interactions are

needed to compute the maximum index of an encrypted array. Instead, we present a non-interactive algorithm

(Algorithm 3), which makes our protocol non-interactive. Furthermore, being different from those protocols based on

non-quantum-resistant assumptions, our used leveled fully homomorphic cryptosystem is BGV or BFV, which are

based on the RLWE assumption [LPR13] and hence thought to be post-quantum safe.

We note that this paper is an extened version of [CFL
+
22]. In this extended version, a rigorous proof for the

security of Protocol 1 and an extensive experimental study on the performance are supplemented.

Road-map In Section 2, we give a brief introduction to the naïve Bayes classifier, homomorphic encryption, and

adversarial model. We present several building blocks in Section 3 for our classifier, including the main technical

ingredient, Algorithm 3. In Section 4, we propose a privacy-preserving naïve Bayes classifier and prove its correctness

and its security in the passive (or honest-but-curious [Gol04]) model. In Section 5, we report extensive experimental

results on our implementation of Protocol 1.

2 Preliminaries
In this section, we give some backgrounds useful for the rest of this paper.

2.1 Naïve Bayes classifier
Naïve Bayes classifier is based on the assumption that all features are conditional independent. Consider a data set

with 𝑠 categories 1, · · · , 𝑠 and 𝑛 features 𝑋1, · · · , 𝑋𝑛 , where each feature 𝑋𝑘 has at most 𝑡 different values 1, 2, · · · , 𝑡 .

2

Under the conditional independence assumption, the classification of a sample 𝒙 = (𝑥1, · · · , 𝑥𝑛) is

𝑠∗ = arg max

𝑖=1,...,𝑠
Pr[𝑌 = 𝑖]

𝑛∏
𝑘=1

Pr[𝑋𝑘 = 𝑥𝑘 |𝑌 = 𝑖],

where Pr[𝑌 = 𝑖] is the probability that each class 𝑖 occurs, i.e., the prior probability, and Pr[𝑋𝑘 = 𝑥𝑘 |𝑌 = 𝑖] is the
probability of the 𝑘th feature 𝑋𝑘 to be 𝑥𝑘 ∈ {1, 2, · · · , 𝑡} when 𝒙 belongs to category 𝑖 , i.e., the likelihood. As in
[BPTG15], we only deal with the case that the domain of the feature values (the 𝑥𝑖 ’s) is discrete and finite, so the

Pr[𝑋𝑘 = 𝑥𝑘 |𝑌 = 𝑖]’s are probability masses.

In addition, it is a common choice to use the Laplacian correction (see, e.g., [33, page 162]) for smoothing the

probability estimation.

2.2 The RLWE assumption
The security of many efficient FHE schemes, including BGV [BGV14], BFV [Bra12, FV12], CKKS [CKKS17], depends

on the RLWE assumption or its variants. For more details, we refer the reader to [LPR13].

Definition 1 (RLWE). For security parameter 𝜆, let Φ𝑚 (𝑥) be the𝑚-th cyclotomic polynomial with degree 𝑛 = 𝜑 (𝑚).
Let 𝑅 = Z[𝑥]/⟨Φ𝑚 (𝑥)⟩ and let 𝑅𝑞 = 𝑅/𝑞𝑅. Let 𝜒 be a distribution over 𝑅. The R-LWE𝑚,𝑞,𝜒 problem is to distinguish

between the following two distributions: In the first distribution, one samples (𝑎𝑖 , 𝑏𝑖) uniformly from 𝑅2𝑞 . In the

second distribution, one first draw 𝑠 ← 𝑅𝑞 uniformly and then sample (𝑎𝑖 , 𝑏𝑖) ∈ 𝑅2𝑞 by sampling 𝑎𝑖 ← 𝑅𝑞 uniformly,

𝑒𝑖 ← 𝜒 , and setting 𝑏𝑖 = 𝑎𝑖 · 𝑠 + 𝑒𝑖 . The R-LWE𝑚,𝑞,𝜒 assumption is that the R-LWE𝑚,𝑞,𝜒 problem is infeasible.

2.3 Leveled fully homomorphic encryption
Fully homomorphic encryption schemes allow arithmetic circuits to be evaluated directly on ciphertexts [RAD78,

Gen09]. Since Gentry’s seminal work [Gen09], multiple HE schemes have been designed, such as BGV [BGV14], BFV

[Bra12, FV12], CKKS [CKKS17], FHEW [DM15], TFHE [CGGI20]. Each of them has its features. For instance, BGV

and BFV are good at performing large vectorial arithmetic operations, CKKS supports floating-point computations,

and FHEW and TFHE run bootstrapping for one bit extremely fast but slow for arithmetic operations. As naïve Bayes

classifiers require many integer arithmetic operations, we choose BGV or BFV as the leveled fully homomorphic

encryption schemes, with parameters supporting integer arithmetic circuits of a certain bounded depth.

For completeness, we briefly describe the leveled fully homomorphic encryption schemes used in this paper.

We restrict to those RLWE-based schemes. In such schemes, the plaintext space is 𝑅𝑝 = Z𝑝 [𝑥]/⟨Φ𝑚 (𝑥)⟩ and the

ciphertext space is 𝑅𝑞 = Z𝑞 [𝑥]/⟨Φ𝑚 (𝑥)⟩, where Φ𝑚 (𝑥) is the𝑚-th cyclotomic polynomial, 𝑝 is a prime number, and

𝑞 ≫ 𝑝 is an integer. Both of the BGV [BGV14] and the BFV [Bra12, FV12] schemes have this structure.

Typically, a leveled fully homomorphic encryption scheme FHE can be described by the following randomized

algorithms:

• FHE.Setup(1𝜆). Given a security parameter 𝜆 as input, outputs parms.

• FHE.KeyGen(parms). Output a secret key sk = 𝒔 and the corresponding public key pk. (For convenience, we
let pk also include one or more evaluation keys ek.)

• FHE.Encpk (𝑏). Given a message 𝑏 ∈ 𝑅𝑝 , outputs a ciphertext 𝑐 ∈ 𝑅𝑞 .

• FHE.Decsk (𝒄). Given a ciphertext 𝑐 ∈ 𝑅𝑞 , outputs a message 𝑏 ∈ 𝑅𝑝 .

• FHE.Evalpk (𝐶, (𝑐1, · · · , 𝑐𝑘)). Given an arithmetic circuit𝐶 of a function 𝑓 with𝑘 input wires, and input 𝑐1, · · · , 𝑐𝑘
with 𝑐𝑖 ← FHE.Encpk (𝑏𝑖), outputs a ciphertext 𝑐 such that Pr[FHE.Decsk (𝑐) ≠ 𝑓 (𝑏1, · · · , 𝑏𝑘)] = negl(𝜆).

FHE is said to be compact if the size of the output of FHE.Eval is not more than polynomial in 𝜆 and is independent

of 𝑓 . FHE is said to be secure if it is IND-CPA secure and weakly circular secure, which means that the scheme remains

secure even if the adversary is given encryptions of the bits of the secret key. We say that FHE achieves circuit privacy
if the distribution of the outputs of any fixed homomorphic evaluation is indistinguishable from the distribution of

fresh encryptions of the plaintext outputs.

2.3.1 Homomorphic evaluation

Let 𝑐1 and 𝑐2 be two ciphertexts of two plaintexts 𝑏1 and 𝑏2 under the same secret key sk. Suppose that the noise of 𝑐1
and 𝑐2 is bounded from above by 𝐵. The addition (FHE.add) of the two ciphertexts is typically 𝑐+ = 𝑐1 + 𝑐2, which is a

ciphertext of 𝑏1 + 𝑏2 under the secret key sk. The noise of 𝑐+ is at most 2𝐵. For multiplication (FHE.Mul), 𝑐× = 𝑐1 ⊗ 𝑐2
is typically a ciphertext of 𝑏1 · 𝑏2 under a new secret key sk ⊗ sk with larger dimension, where ⊗ is the usual tensor

3

product. The noise of 𝑐× can only be bounded from above by 𝐵2. To keep the dimension of the secret key and to

decrease the noise of evaluated ciphertext, a refresh procedure FHE.Refresh (consisting of key switching and modulus

switching) follows every homomorphic addition and multiplication. Of course, one can call FHE.Refresh only if

necessary for efficiency. Note that the public key pk of FHE also includes all keys for FHE.Refresh. Theoretically,
the cost of each homomorphic addition or multiplication increases fast as 𝐿 grows, where 𝐿 is the circuit depth

of the function 𝑓 to be evaluated. Besides, FHE also supports plaintext-ciphertext addition (FHE.AddConst) and
plaintext-ciphertext multiplication (FHE.MulConst).

2.3.2 Batching

Recall the plaintext space 𝑅𝑝 = Z𝑝 [𝑥]/⟨Φ𝑚 (𝑋)⟩. Let 𝑑 be the multiplicative order of 𝑝 modulo𝑚, and 𝜙 (𝑚) be the
Euler’s totient function. Then 𝑑 divides 𝜙 (𝑚) and 𝑅𝑝 � Fℓ𝑝𝑑 with ℓ = 𝜙 (𝑚)/𝑑 . Therefore each plaintext can be seen

as a packed message with ℓ slots. From this view, each homomorphic operation on a ciphertext is equivalent to the

same operation on all slots independently and simultaneously. This batching technique [GHS12, SV14] significantly

decreases the amortized cost (i.e., the total cost divided by ℓ) of homomorphic encryption schemes based on RLWE. For

batching, FHE usually supports data packing (FHE.Encode), data rotating (FHE.Rotate), and data shifting (FHE.Shift).
Based on these operations, one can build some advanced functions. For instance, FHE.TotalSum converts a ciphertext

that encrypts (𝑧1, · · · , 𝑧𝑡) into a ciphertext that encrypts (𝑦, · · · , 𝑦) with 𝑦 =
∑𝑡

𝑖=1 𝑧𝑖 .

2.4 Adversarial model
Our protocol only involves the client and the server, labeled as parties 𝐶 and 𝑆 , respectively. To show Protocol 1

preserves the privacy of both parties, we work in the honest-but-curious (semi-honest or passive) model as described

in [Gol04, Sec. 7.2]. The materials presented here are mainly taken from the full version of [BPTG15].

Let 𝑓 = (𝑓𝐶 , 𝑓𝑆) be a (probabilistic) polynomial function and Π a protocol computing 𝑓 . 𝐶 and 𝑆 want to compute

𝑓 (𝑎, 𝑏) where 𝑎 is 𝐶’s input and 𝑏 is 𝑆 ’s input, using Π and with the security parameter 𝜆. The view of party 𝐶 during

the execution of Π is the tuple 𝑉𝐶 (𝜆, 𝑎, 𝑏) = (1𝜆 ;𝑎; 𝑟𝐶 ;𝑚𝐶
1
, · · · ,𝑚𝐶

𝑡) where 𝑟 is 𝐶’s random tape and𝑚𝐶
1
, · · · ,𝑚𝐶

𝑡 are

the messages received by 𝐶 . We define the view of 𝑆 similarly. The outputs of parties 𝐶 and 𝑆 for the execution of Π
on input (𝑎, 𝑏) as OutputΠ

𝐶
(𝜆, 𝑎, 𝑏) and OutputΠ

𝑆
(𝜆, 𝑎, 𝑏), which is implicit in the party’s own view of the execution,

and the global output as OutputΠ (𝜆, 𝑎, 𝑏) = (OutputΠ
𝐶
(𝜆, 𝑎, 𝑏),OutputΠ

𝑆
(𝜆, 𝑎, 𝑏)).

To ensure security, we have to show that whatever 𝐶 can compute from its interactions with 𝑆 can be computed

from its own input and output, which leads us to the following security definition.

Definition 2 ([Gol04, Def. 7.2.1]). The two-party protocol Π securely computes the function 𝑓 if there exist two

probabilistic polynomial-time algorithms 𝑆𝐶 and 𝑆𝑆 such that for every possible input 𝑎, 𝑏 of 𝑓 ,

{𝑆𝐶 (1𝜆, 𝑎, 𝑓𝐶 (𝑎, 𝑏)), 𝑓 (𝑎, 𝑏)}
≡𝑐 {𝑉𝐶 (𝜆, 𝑎, 𝑏),OutputΠ (𝜆, 𝑎, 𝑏)}

and

{𝑆𝑆 (1𝜆, 𝑏, 𝑓𝑆 (𝑎, 𝑏)), 𝑓 (𝑎, 𝑏)}
≡𝑐 {𝑉𝑆 (𝜆, 𝑎, 𝑏),OutputΠ (𝜆, 𝑎, 𝑏)}

where ≡𝑐 means computational indistinguishability against probabilistic polynomial time adversaries with negligible

advantage in the security parameter 𝜆.

To simplify the notation and proof, we omit the security parameter. As we only consider deterministic functions

𝑓 , we can simplify the distributions we want to show being indistinguishable: when 𝑓 is deterministic, to prove the

security of Π that computes 𝑓 , we only have to show that

𝑆𝐶 (𝑎, 𝑓𝐶 (𝑎, 𝑏)) ≡𝑐 𝑉𝐶 (𝑎, 𝑏),
𝑆𝑆 (𝑏, 𝑓𝑆 (𝑎, 𝑏)) ≡𝑐 𝑉𝑆 (𝑎, 𝑏).

(1)

3 Building blocks
We now describe a few necessary building blocks that will be used to build our classifier. Note that all the following

algorithms will be executed on the server and that the owner of pk (the public key) in these algorithms is not the

server but the client since we follow the framework given in Fig. 1. For simplicity, we use the functions without

explicitly showing the name of the scheme FHE in the rest of this paper. For instance, we use add to replace FHE.add.

4

3.1 Plaintext matrix-encrypted vector multiplication
Matrix-vector multiplication is reasonably common in practice. Here we focus on plaintext matrix-encrypted vector

multiplication. Given a plaintext matrix 𝑨 ∈ Z𝑠×𝑡 and ciphertexts of a vector 𝒛 ∈ Z𝑡 , our goal is to obtain ciphertexts

of 𝑨𝒛. We present two methods based on different ways to encode a vector.

3.1.1 Naïve encoding

To encrypt a vector 𝒛 = (𝑧𝑖)𝑖≤𝑡 ∈ Z𝑡 , one can encrypt each entry 𝑧𝑖 of 𝒛 to a ciphertext. The encryption of 𝒛 is a
vector 𝒄 ′ = (𝑐′𝑖)𝑖≤𝑡 ∈ 𝑅𝑡𝑞 of ciphertexts, whose 𝑖-th entry 𝑐′𝑖 is a ciphertext of 𝑧𝑖 . Algorithm 1 computes a vector in 𝑅𝑠𝑞
as the encryption of 𝑨𝒛. Obviously, Algorithm 1 costs no multiplicative depth.

Algorithm 1 Naïve plaintext matrix-encrypted vector multiplication

Input: 𝒄 ′ = (𝑐′𝑖)𝑖≤𝑡 ∈ 𝑅𝑡𝑞 (𝑐′𝑖 encrypts the 𝑖th entry of 𝒛 = (𝑧𝑖)𝑖≤𝑡), and public key pk; 𝑨 = (𝑎𝑖, 𝑗) ∈ Z𝑠×𝑡 .
Output: (𝑐𝑖)𝑖≤𝑠 with 𝑐𝑖 = Encpk (

∑𝑡
𝑗=1 𝑎𝑖, 𝑗𝑧 𝑗).

1. For 𝑖 = 1, · · · , 𝑠 do the following:

(a) 𝑐𝑖 ← Encpk (0);
(b) For 𝑗 = 1, · · · , 𝑡

i. Update 𝑐𝑖 := addpk (𝑐𝑖 ,MulConstpk (𝑎𝑖, 𝑗 , 𝑐′𝑗)).

2. Return (𝑐𝑖)𝑖≤𝑠 .

3.1.2 Packed encoding

Instead of the above element-wise method, we can pack the vector 𝒛 ∈ Z𝑡 into 𝑡 slots of one plaintext for batching in

Sec. 2.3.2, and encrypt it to only one ciphertext 𝑐 ∈ 𝑅𝑞 , which leads to Algorithm 2. Note that FHE.TotalSum costs no

multiplicative depth since it uses only FHE.Rotate and FHE.add, and FHE.Rotate costs no multiplicative depth (see,

e.g., [HS20]). Thus, Algorithm 2 costs no multiplicative depth as well.

Algorithm 2 Pakced plaintext matrix-encrypted vector multiplication

Input: 𝑐 ∈ 𝑅𝑞 that encrypts 𝑢 ∈ 𝑅𝑝 with 𝑢 = Encode(𝒛), and public key pk; 𝑨 = (𝑎𝑖, 𝑗) ∈ Z𝑠×𝑡 .
Output: (𝑐𝑖)𝑖≤𝑠 with 𝑐𝑖 = Encpk (

∑𝑡
𝑗=1 𝑎𝑖, 𝑗𝑧 𝑗).

1. For 𝑖 = 1, · · · , 𝑠 do the following:

(a) Encodes the 𝑖-th row 𝒂𝑖 of 𝑨 as 𝑣𝑖 = Encode(𝒂𝑖);
(b) Computes 𝑐𝑖 = TotalSumpk (MulConstpk (𝑣𝑖 , 𝑐))).

2. Return (𝑐𝑖)𝑖≤𝑠 .

3.2 Argmax of an encrypted array
We first recall a recent comparator presented by Iliashenko and Zucca in [IZ21], which supports comparison operations

for BGV and BFV, and then present our method to compute the index of the maximum of an encrypted array.

3.2.1 Comparison

Essentially, the comparison method for encrypted arrays presented in [IZ21] homomorphically evaluates the Lagrange

interpolated polynomial of the less-than function over 𝑆 = [0, (𝑝 − 1)/2] defined as follows:

LT𝑆 (𝑥,𝑦) =
{
1, if 0 ≤ 𝑥 < 𝑦 ≤ (𝑝 − 1)/2,
0, if 0 ≤ 𝑦 ≤ 𝑥 ≤ (𝑝 − 1)/2.

It can be interpolated by the following polynomial over F𝑝 of degree 𝑝 − 1 by [IZ21, Thm. 3]:
𝑝+1
2
(𝑥 − 𝑦)𝑝−1 +∑𝑝−2

𝑖=1,𝑜𝑑𝑑

(∑ 𝑝−1
2

𝑎=1
𝑎 𝑝−1−𝑖

)
· (𝑥 − 𝑦)𝑖 . This polynomial can be evaluated within

√︁
𝑝 − 3 + 3

2

log
2
(𝑝 − 3) +𝑂 (1) (2)

5

multiplicative depth.

3.2.2 Argmax

Based on the less-than function LT, we now present an algorithm (Algorithm 3) to compute the maximum index of an

encrypted array, denoted argmax.

For a given array 𝒛 = (𝑧1, · · · , 𝑧𝑠), Algorithm 3 firstly computes a comparison matrix 𝑳 = (ℓ𝑖, 𝑗) with

ℓ𝑖, 𝑗 =


1 − LT(𝑧𝑖 , 𝑧 𝑗) if 𝑖 < 𝑗,

1 if 𝑖 = 𝑗,

LT(𝑧 𝑗 , 𝑧𝑖) if 𝑖 > 𝑗 .

For instance, if 𝒛 = (7, 6, 2, 4, 5) the matrix 𝑳 ∈ {0, 1}5×5 is given by

©­­­­­«
1 1 1 1 1

0 1 1 1 1

0 0 1 0 0

0 0 1 1 0

0 0 1 1 1

ª®®®®®¬
.

It is easy to see that there exists only one rowwith all entries one, and the index of that row is argmax𝑖 (𝒛). Equivalently,
we have

argmax

𝑖
(𝑧𝑖)1≤𝑖≤𝑠 =

𝑠∑︁
𝑗=1

𝑗 ·
𝑠∏

𝑘=1

ℓ𝑗,𝑘 ,

which results in Algorithm 3.

Note that it requires at most 𝑠 (𝑠 − 1)/2 comparisons to construct the comparison matrix 𝑳. Furthermore, one

would better use some recursive methods in practice to compute the encrypted product in Step 2a of Algorithm 3 for

saving multiplicative depth. From Eq. (2), Algorithm 3 costs at most⌈
log

2
𝑠
⌉
+

√︁
𝑝 − 3 + 3

2

log
2
(𝑝 − 3) +𝑂 (1)

multiplicative depth to compute the argmax of an encrypted array.

Algorithm 3 Encrypted maximum index of an encrypted array

Input: 𝒄 = (𝑐1, · · · , 𝑐𝑠) ∈ 𝑅𝑡𝑞 (𝑐𝑖 encrypts the 𝑖-th entry of 𝒛 = (𝑧1, · · · , 𝑧𝑠)) and public key pk.
Output: A ciphertext 𝑐 ∈ 𝑅𝑞 that encrypts argmax(𝒛).

1. Set 𝑐 ← Encpk (0).

2. For 𝑖 = 1, · · · , 𝑠 do the following:

(a) Set 𝑐′ to be

𝑠∏
𝑘=1,𝑘≠𝑗

AddConstpk (1,MulConstpk (−1, LTpk (𝑐 𝑗 , 𝑐𝑘))) .

(b) Update 𝑐 := addpk (𝑐,MulConstpk (𝑗, 𝑐′)).

3. Return 𝑐 .

4 Privacy-preserving naïve Bayes classification
In this section, we present our privacy-preserving naïve Bayes classifier and prove its correctness and security.

4.1 Preparing the model
If the domain of the feature values is continuous, we first find a bound 𝐵 on the values and then discretize them by

splitting [−𝐵, 𝐵] into several equal intervals. For example, if the domain of the 𝑘th feature𝑋𝑘 is continuous on [−1, 1],
then one can discretize 𝑋𝑘 as 𝑋𝑘 = 0 if 𝑋𝑘 ∈ [−1, 0) and 𝑋𝑘 = 1 if 𝑋𝑘 ∈ [0, 1]. This discretization technique enables

our classifier to deal with continuous features as well, possibly at the cost of decreasing the prediction accuracy.

6

For convenience, we limit the values of features 𝑥1, · · · , 𝑥𝑛 in {1, 2, · · · , 𝑡}. Furthermore, for numerical stability,

we work with the logarithm of the probability:

𝑠∗ = arg max

𝑖=1,...,𝑠

{
log Pr[𝑌 = 𝑖] +

𝑛∑︁
𝑘=1

log Pr[𝑋𝑘 = 𝑥𝑘 |𝑌 = 𝑖]
}
, (3)

where 𝑥𝑘 ∈ {1, · · · , 𝑡}. Another convenient simplification is to take the numbering of the 𝑠 classes as contiguous

integers from 1 to 𝑠 . Then 𝑠∗ is precisely the index of the maximum over the 𝑠 values in (3).

Additionally, since the BGV encryption scheme works with integers, one needs to convert each logarithm of

probability in (3) to an integer by multiplying it with a certain number 𝐾 > 0 and rounding it to the closest integer. A

similar shifting technique is already used and analyzed in, e.g., [TRMP12, BPTG15].

In summary, for a data set with 𝑠 categories and 𝑛 features (each feature has at most 𝑡 different values), the prior

probability in the model will be converted into a vector 𝒃 = (𝑏1, · · · , 𝑏𝑠) ∈ Z𝑠 , where 𝑏𝑖 is obtained by rounding

𝐾 · log(Pr[𝑌 = 𝑖]) for an appropriate scaling integer 𝐾 . The likelihoods will be converted into 𝑛 matrices 𝑨𝑘 ∈ Z𝑠×𝑡
for 𝑘 = 1, · · · , 𝑛, where the (𝑖, 𝑗)-entry of 𝑨𝑘 is derived by rounding 𝐾 · log Pr[𝑋𝑘 = 𝑗 |𝑌 = 𝑖] with the same integer 𝐾 .

4.2 Privacy-preserving Naïve bayes Classifier
To resolve the privacy concerns, the client should only obtain the classification result 𝑠∗ without learning any

information about the prior probability and likelihood, and the server should learn nothing about the client’s data 𝒙 .
The client has data 𝒙 = (𝑥1, · · · , 𝑥𝑛) with 𝑥𝑘 ∈ {1, · · · , 𝑡} and wants the server to predict which class 𝒙 is in using

a naïve Bayes classifier without leaking any information about 𝒙 . One choice of the client is to encrypt 𝒙 using

himself’s public key. However, since 𝒙 is encrypted, the server cannot decide which entry of 𝑨𝑘 should be chosen.

For instance, the first feature of 𝒙 is 𝑥1, i.e., 𝑋1 = 𝑥1. To access the information about Pr[𝑋1 = 𝑥1 |𝑌 = 𝑖] in 𝑨1, we

need to select the (𝑖, 𝑥1) entry of 𝑨1. However, as the first entry of 𝒙 , 𝑥1 is only available in encrypted form on the

server-side. To get around this obstacle, one can encode the sample 𝒙 as a 0-1 matrix

𝑿 = (𝒆𝑥1 , · · · , 𝒆𝑥𝑛) ∈ {0, 1}𝑡×𝑛, (4)

where 𝒆 𝑗 is the 𝑡-dimensional vector whose 𝑗th entry is one and all others are zero. Now, to select the 𝑥𝑘 -th row of a

matrix 𝑨𝑘 ∈ Z𝑠×𝑡 is just to compute 𝑨𝑘𝒆𝑥𝑘 . If 𝒆𝑥𝑘 is in encrypted form, this is a plaintext matrix-encrypted vector

multiplication discussed in Section 3.

Now we are ready to present our privacy-preserving naïve Bayes classifier as Protocol 1, assuming that FHE
achieves circuit privacy. Clearly, the classification phase (Step 3) of Protocol 1 does not require any interactions

between the server and the client.

We prove the security of our protocol using the secure two-party computation framework for passive adversaries.

Roughly speaking, a passive adversary tries to learn as much private information as possible from the other party;

however, this adversary faithfully follows the prescribed protocol.

Proposition 1. Protocol 1 is correct and secure in the honest-but-curious model.

Proof. The correctness follows directly from that what the server does is to evaluate the following procedure

homomorphically:

1. Set 𝒚 := 𝒃 , the information of the prior probability.

2. For 𝑘 = 1, · · · , 𝑛, set 𝒚 := 𝒚 +𝑨𝑘 · 𝒆𝑥𝑘 .

3. Return 𝑦 as the index of the maximum entry of 𝒚 = (𝑦𝑖)0≤𝑖≤𝑠−1.

We prove the security by Eq. (1). The client’s view is

𝑉𝐶 = (pk, sk, 𝒙 ; 𝑐,𝑦).

The simulator 𝑆𝐶 , on input (pk, sk, 𝒙, 𝑦′) with

𝑦′ = arg max

𝑖=1,...,𝑠

(
𝑛∑︁

𝑘=1

𝑨𝑘𝒆𝑥𝑘 + 𝒃
)
,

generates a ciphertext 𝑐′ = Encpk (𝑧), where 𝑧 is a random integer and outputs (pk, sk, 𝒙 ; 𝑐′, 𝑦′). As the integer 𝑦 that

the client receives is its output, and as the given FHE scheme is semantically secure and achieves circuit privacy, the

distributions 𝑆𝐶 = (pk, sk, 𝒙 ; 𝑐′, 𝑦′) and 𝑉𝐶 = (pk, sk, 𝒙 ; 𝑐,𝑦) are computationally indistinguishable.

The view of the server is

𝑉𝑆 = ((𝑨𝑘)𝑘 , 𝒃, pk;𝑿 ′, 𝑐),
where 𝑿 ′ is ciphertexts that encrypt 𝑿 . The simulator 𝑆𝑆 , on input ((𝑨𝑘)𝑘 , 𝒃, pk),

7

- generates a random 0-1 matrix 𝒀 of size 𝑡 × 𝑛 and computes the ciphertexts 𝒀 ′ that encrypt 𝒀 ,

- generates a ciphertext 𝑐′ = Encpk (𝑧), where 𝑧 is a random integer,

- outputs ((𝑨𝑘)𝑘 , 𝒃, pk; 𝒀 ′, 𝑐′).

The distributions 𝑉𝑆 and 𝑆𝑆 are computationally indistinguishable, because of the same reason for 𝑉𝐶 and 𝑆𝐶 . This

completes the proof.

Protocol 1 Privacy-preserving naïve Bayes classifier

Input of the client: A sample 𝒙 = (𝑥1, · · · , 𝑥𝑛) to be classified, the secret and public key sk and pk.
Input of the server: Themodel consisting of the likelihood information (𝑨𝑘)𝑘≤𝑛 and the prior information 𝒃 = (𝑏𝑖)𝑖≤𝑠 ,
and the client’s pk.

1. The client encodes 𝒙 to a matrix 𝑿 as in (4).

2. The client encrypts the column vectors 𝒆𝑥𝑘 of 𝑿 for 𝑘 = 1, · · · , 𝑛 and sends the ciphertexts to the server.

3. The server do the following:

(a) For 𝑖 = 1, · · · , 𝑠 , set 𝑐𝑖 ← Encpk (0) and update 𝑐𝑖 := AddConstpk (𝑐𝑖 , 𝑏𝑖).
(b) For 𝑘 = 1, · · · , 𝑛, calling Algorithm 1 or 2 with input as 𝑨𝑘 , pk, and the ciphertexts of 𝒆𝑥𝑘 received from

the client, outputs (𝑐′𝑖)𝑖≤𝑠 .
(c) Update 𝑐𝑖 := addpk (𝑐𝑖 , 𝑐′𝑖) for 𝑖 = 1, · · · , 𝑠 .
(d) Calling Algorithm 3 with input as 𝒄 = (𝑐𝑖)𝑖≤𝑠 and pk returns 𝑐 .

4. The server sends 𝑐 to the client.

5. The client decrypts 𝑐 to 𝑦 = Decsk (𝑐) and outputs 𝑦.

Protocol 1 assumes that FHE is with circuit privacy. For fully homomorphic encryption schemes, circuit privacy

can be achieved using, e.g., the techniques of [DS16]. In practice, the slightly weaker notion of (statistical) function
privacy [GHV10] suffices, and is easier to achieve in the leveled fully homomorphic encryption setting using re-
randomization and noise flooding, where the server re-randomizes the output ciphertexts by homomorphically adding

a ciphertext of zero with a large noise [Gen09, DS16].

5 Implementation and experiments
We have implemented three variants of Protocol 1 in C++ using HElib (v2.1.0) [HEl21]. The first two variants come

from the different choices in Step 3b of Protocol 1. These two variants deal with only one sample at a time. The third

variant comes from the batching technique (see Section 2.3.2), which we call the batching variant. It is based on the

same encoding scheme as Algorithm 1. Assume that the selected parameters support ℓ plaintext slots. In the batching

variant, we pack the information of a sample into one slot to deal with at most ℓ samples at a time.

In this section, we will report the prediction accuracy, communication cost and calculation time of our implemen-

tations of Protocol 1. All experiments run serially (using only one thread) on a laptop with a Ubuntu 20.04 OS as

Windows Subsystem for Linux, 2.60 GHz Intel Core i7-10750H CPU (64 bit) with 16 GB RAM.

5.1 Data set
The Iris Wisconsin Breast Cancer (WBC), and Lymphography data sets in UCI Machine Learning Repository [DG17]

were used in this experiment.

The Iris data set has 150 samples classified into three categories (i.e., 𝑠 = 3). Each sample has four features (i.e.,

𝑛 = 4), and each feature takes at most five different values (i.e., 𝑡 = 5). Our experiment used 120 samples (80%) for

training the model and the remaining 30 samples for prediction.

For WBC, the dataset has 683 effective samples, classified into two categories, i.e., 𝑠 = 2. There are nine features

for each sample, and each feature may take at most ten different values, i.e., 𝑛 = 9 and 𝑡 = 10. Among these 683

samples, 478 samples are used for training (70%), and the remaining 205 samples are used to test.

For Lymphography, the dataset has 148 samples. The number of categories 𝑠 = 4. There are 18 features for each

sample, and each feature may take at most eight different values, i.e., 𝑛 = 18 and 𝑡 = 8. We used 104 samples (72.2%)

for training and 44 for testing.

8

5.2 Parameter setting
For Iris, the scaling factor in Section 4.1 is set to be one, i.e., 𝐾 = 1, which leads that the entries of the rounded

logarithm of likelihood 𝑨𝑘 for 𝑘 = 1, · · · , 4 are integers between −4 and 0, and the entries of the rounded logarithm

of the prior probability are bounded by 1. Hence the resulting integers to be compared must be at most 4 · 4 + 1 = 17,

which implies that 𝑝 = 37 is enough for our purpose. In addition,𝑚 is fixed to 14539. In this setting, each plaintext in

𝑅𝑝 has ℓ = 1980 slots.

For WBC, 𝐾 is also set to be 1. Hence the entries of the rounded logarithm of likelihood 𝑨𝑘 for 𝑘 = 1, · · · , 9 are
integers between −6 and 0, and the entries of the rounded logarithm of the prior probability are bounded by 2. Hence

the resulting integers to be compared must be at most 6 · 9 + 2 = 56, which implies that 𝑝 = 113 is enough for our

purpose. In addition,𝑚 is fixed to 12883. In this setting, each plaintext in 𝑅𝑝 has ℓ = 3960 slots.

For Lymphography, 𝐾 = 1. Similarly, we choose 𝑝 = 113,𝑚 = 19351 so that ℓ = 522 and the security parameter

achieves 136.

For all data sets, the standard deviation 𝜎 of the error distribution in the encryption scheme is fixed to the default

value in HElib, i.e., 𝜎 = 3.2, which is an approximation of 8/
√
2𝜋 .

5.3 Accuracy
Our experiment shows that the classification accuracy of our implementation of Protocol 1 based on HElib is about

97% for both Iris and WBC and for all three variants. Note that this accuracy is almost the same as the plaintext

(unencrypted) naïve Bayes classifier. The accuracy for the Lymphography data set is about 84%, which is concordant

with the report in [CN87].

5.4 Communication
Although Protocol 1 does not require interactions between the server and client during the classification phase, it

does require one interaction, which consists of that the client sends the encrypted data to the server and that the

server sends the encrypted result to the client.

Table 1: Communication cost (KB) of Protocol 1

Data Result Data per sample Result per sample

Iris 40,980 2877 1366 96

WBC 180,875 1633 882 8

Table 1 counts the communication cost of the batching variant. The column labeled “Data” gives the size of the

ciphertext file for all samples to be classified (i.e., 30 samples for Iris and 205 samples for WBC), and the “Result”

column gives the size of the resulting ciphertext for all samples. For Iris and WBC, the amortized communication

costs of the batching variant are 22.15K and 46.09KB, respectively. Table 2 compares the transferred data sizes among

the batching variant of Protocol 1 and some other existing privacy-preserving naïve Bayes classifiers. The star mark

(∗) means that the data is taken directly from the corresponding reference. For communication cost, Protocol 1 is

not as good as the privacy-preserving naïve Bayes classifier presented in [BPTG15] (based on the QR and Paillier

cryptosystems) but is better than that in [YIY19] (based on BGV).

Table 2: Total communication cost for each sample of WBC

[BPTG15] [YIY19] Protocol 1

Transferred data size (KB) 74∗ 4096
∗

890

5.5 Timing
In Step 3b of Protocol 1, there are two choices (Algorithm 1 and Algorithm 2) for plaintext matrix-encrypted vector

multiplication. We test them all, together with the batching variant, and record their performance. The row named

“naïve” (“packed” resp.) is the performance of Protocol 1 based on Algorithm 1 (Algorithm 2 resp.), and the row named

“batching” is the performance of the batching variant of Protocol 1 using SIMD. The columns with “Each sample”

give the average execution time for each sample. All timings with the star mark (∗) are directly taken from the the

literature, in which the taken timings are the best ones reported. Note that the framework used in the literature may

not be the same as in Fig. 1.

It can be observed from Tables 3 and 4 that the naïve variant is more efficient than the packed one, although

the timing for encryption is worse. Overall, the batching variant is the most efficient one among the three variants

of Protocol 1. The average cost of the batching variant for each sample of Iris and WBC is about 214ms and 34ms,

9

Table 3: Timing for Iris (s)

log𝑞 𝜆 Enc Argmax Dec Total Each sample

naïve 387 100 16.641 36.457 3.147 93.778 3.126

packed 488 74 4.191 32.299 6.09 405.181 13.506

batching 387 100 0.556 4.571 0.024 6.423 0.214
[KOH

+
18] – – – – – – 18,180

∗

respectively. Since the “batching” variant can classify ℓ = 1980 (3960 resp.) samples simultaneously, the amortized

cost in our setting can be less than 4ms (2ms resp.) per sample for Iris (WBC resp.).

Table 4: Timing for WBC (s)

log𝑞 𝜆 Enc Argmax Dec Total Each sample

naïve 382 100 464.654 338.236 12.555 1332.812 6.502

packed 476 76 54.299 321.292 23.046 1814.817 8.853

batching 382 100 2.376 1.58 0.397 7.033 0.034
[BPTG15] – 100 – – – – 0.479

∗

[YIY19] – 119 – – – – 0.732
∗

[WSNK19] – – – – – – 0.402
∗

[SZL
+
20] – 55 – – – – 0.141

∗

We also compare our implementation with several existing privacy-preserving naïve Bayes classifiers in Tables 3

and 4. For the Iris data set, Kim et al. [KOH+18] reported that their proposed privacy-preserving naïve Bayes classifier
takes 17h40m on a single CPU core and 5h03m on four CPU cores. For WBC, Bost et al. [BPTG15] reported that their

classifier takes about 0.479s and 14 interactions per sample. The computation time of the modified protocol presented

in [YIY19] is about 0.732s per sample. Wood et al. reported that their classifier takes about 0.402s for each sample. The

classifier presented by Sun et al. [SZL+20] takes about 0.141s per sample with SIMD for WBC. Note that the classifiers

presented in [YIY19] and [SZL
+
20] are also implemented using HElib. Overall, although with a not-so-good total cost,

Protocol 1 is comparable to existing protocols, especially when the client has a lot of samples to be classified at a time.

5.6 Data set with categories more than three
We also apply our implementation to the Lymphography data set, for which the number of categories 𝑠 = 4. We only

give the performance of the batching version in Table 5. Table 5 shows that the total cost increases much compared

to the WBC and Iris data sets. The reasons may include the following:

• The number of features for Lymphography is 18, larger than the other two data sets (4 for Iris and 9 for WBC).

The more features to be dealt with, the more noise accumulation, and hence the more multiplicative depth we

may need. Thus, for correctness, we need to use the ciphertext modulus much larger (See the “log𝑞” column

in Table 3–5). However, for the security (say, achieving a security at least 100 bits), with a larger modulus

𝑞, we have to increase the parameter𝑚 so that the polynomial degree 𝜙 (𝑚) increases as well. Since all HE
computations are essentially operations on polynomials of degree at most 𝜙 (𝑚). The total cost increases as
𝜙 (𝑚) increases.

• Additionally, Lymphography needs 𝑠 (𝑠 − 1)/2 = 6 comparisons, while WBC and Iris only need 1 and 3

comparisons, respectively. From Table 3–5, we can observe that the most costly part of all computations is to

homomorphically compute the argmax function. The more categories to be classified, the more time required,

concordant with the analysis of Algorithm 3.

Table 5: Timing for Lymphography (s)

log𝑞 𝜆 Enc Argmax Dec Total Each sample

batching 466 136 6.977 22.845 0.256 38.707 0.880

5.7 The cost of noise management
The number of multiplicative depths is one of the most important parameters to measure the cost of homomorphicaly

encrypted computation. However, HElib (v2.1.0) does not supply a function to count the consumed multiplicative

10

depths. Instead, the column named log𝑞 in Table 3–5 can be seen as “an analog” of the multiplicative depths since the

ciphertext modulus is a product of a set of primes, each with 55–60 bits. During homomorphic computation, it may

automatedly remove a prime from the set of primes if modulus switching is necessary; see [HS20, Section 5.3] for

details. Table 6 counts the theoretical multiplicative depths and the number of bits of ciphertext modulus consumed

in practice for the batching variant (i.e., Algorithm 2 is revoked in Step 3b of Protocol 1).

Theoretically, since Algorithm 2 costs no multiplicative depth, the multiplicative depth of Protocol 1 is the same

as that of Algorithm 3, i.e.

⌈
log

2
𝑠
⌉
+√𝑝 − 3 + 3

2
log

2
(𝑝 − 3) +𝑂 (1), Table 6 shows that the consumed bits of ciphertext

modulus in practice are not proportional to the multiplicative depths in theory. The possible reason is that the noise

bound in practice is usually heuristic, while the theoretical bound is usually analyzed from the average case or even

from the worst case.

Table 6: Multiplicative depth and consumed bits of ciphertext modulus for Iris, WBC, and Lymphography

Iris WBC Lymphography

Multiplicative depth in theory 16 22 23

Consumed bits of ciphertext modulus 374 349 454

6 Conclusion
In this paper, we attempt to design privacy-preserving classifier protocols in the client-server setting. The server

owns the model, which should not be accessible to any other, and the client also needs to preserve the privacy of the

data to be predicted. As a result, we propose a privacy-preserving naïve Bayes classifier (Protocol 1) based on leveled

fully homomorphic encryption schemes, such as BGV and BFV. We show that the classifier is correct and secure in

the honest-but-curious model. The main feature of our classifier is that it does not require any interaction between

the client and the server during the classification phase. According to experiments with our implementation based on

HElib, the efficiency of Protocol 1 is comparable to existing ones. An intriguing direction is to extend the framework

in Fig. 1 to more classifiers such as decision trees, nearest neighbor classifier, etc.

Declarations
Acknowledgment An early version of this paper was presented in part at the 4th EAI International Conference on

Security and Privacy in New Computing Environments [CFL
+
22]. This research was supported partly by National Key

R & D Project of China (2020YFA0712303), Chongqing Science and Technology Program (cstc2021-jcyj-msxmX0821,

cstc2020yszx-jcyj-X0005, cstc2021yszx-jcyjX0004, 2022YSZX-JCX0011CSTB).

Conflicts of interest The authors declare that they have no conflict of interest.

Availability of data and material The datasets generated during and/or analysed during the current study are

available in the UCI Machine Learning Repository (http://archive.ics.uci.edu/ml).

Code availability The code is available at https://github.com/velenchan/BGVNaiveBayesPredictor.

Authors contribution statement The authors contributed equally to this work.

References
[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption

without bootstrapping. ACM Transactions on Computation Theory, 6(3):13:1–13:36, 2014. https://doi.org/
10.1145/2633600. 2, 3

[BPTG15] Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine learning classification over

encrypted data. In Proceedings of the 22nd Annual Network and Distributed System Security Symposium
(February 8-11, 2015, San Diego, USA). The Internet Society, Reston, 2015. https://doi.org/10.14722/ndss.
2015.23241. 1, 2, 3, 4, 7, 9, 10

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In

Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – Proc CRYPTO 2012 (August
19–23, 2012, Santa Barbara, CA, USA), volume 7417 of Lecture Notes in Computer Science, pages 868–886.
Springer, Heidelberg, 2012. http://doi.org/10.1007/978-3-642-32009-5_50. 2, 3

11

http://archive.ics.uci.edu/ ml
https://github.com/velenchan/BGVNaiveBayesPredictor
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://doi.org/10.14722/ndss.2015.23241
https://doi.org/10.14722/ndss.2015.23241
http://doi.org/10.1007/978-3-642-32009-5_50

[CFL
+
22] Jingwei Chen, Yong Feng, Yang Liu, Wenyuan Wu, and Guanci Yang. Non-interactive privacy-preserving

naïve Bayes classifier using homomorphic encryption. InWenbo Shi, Xiaofeng Chen, and Kim-Kwang Ray-

mond Choo, editors, Proceedings of the 4th EAI International Conference on Security and Privacy in New
Computing Environments (Virtual Event, December 10–11, 2021), volume 423 of Lecture Notes of the Institute
for Computer Sciences, Social Informatics and Telecommunications Engineering, pages 192–203. Springer,
Cham, 2022. https://doi.org/10.1007/978-3-030-96791-8_14. 2, 11

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast fully homo-

morphic encryption over the torus. Journal of Cryptology, 33(1):34–91, 2020. https://doi.org/10.1007/
s00145-019-09319-x. 3

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic

of approximate numbers. In T. Takagi and T. Peyrin, editors, Proceedings of ASIACRYPT 2017 – 23rd
International Conference on the Theory and Applications of Cryptology and Information Security (December
3-7, 2017, Hong Kong, China), Part I, volume 10624 of Lecture Notes in Computer Science, pages 409–437.
Springer, Heidelberg, 2017. https://doi.org/10.1007/978-3-319-70694-8_15. 3

[CN87] P. Clark and T. Niblett. Induction in noisy domains. In Ivan Bratko and Nada Lavrac, editors, Proceedings
of the 2nd European Machine Learning Conference (EWSL, May, 1987, Bled, Yugoslavia), pages 11–30. Sigma

Press, Wilmslow, 1987. 9

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. http://archive.ics.uci.edu/ml. 2, 8

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in less than a second.

In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - Proceedings of EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Part
I (April 26-30, 2015, Sofia, Bulgaria), volume 9056 of Lecture Notes in Computer Science, pages 617–640.
Springer, Heidelberg, 2015. https://doi.org/10.1007/978-3-662-46800-5_24. 3

[DP97] Pedro Domingos and Michael Pazzani. On the optimality of the simple Bayesian classifier under zero-one

loss. Machine Learning, 29(2):103–130, 1997. https://doi.org/10.1023/A:1007413511361. 2
[DS16] Léo Ducas and Damien Stehlé. Sanitization of FHE ciphertexts. In Marc Fischlin and Jean-Sébastien

Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I (Vienna, Austria, May 8-12, 2016),
volume 9665 of Lecture Notes in Computer Science, pages 294–310. Springer, Heidelberg, 2016. https:

//doi.org/10.1007/978-3-662-49890-3_12. 8

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology

ePrint Archive https://eprint.iacr.org/2012/144, 2012. 2, 3

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher, editor,

Proceedings of the forty-first annual ACM symposium on Theory of computing (May 31 - June 2, 2009,
Bethesda, USA), pages 169–178. ACM, New York, 2009. https://doi.org/10.1145/1536414.1536440. 3, 8

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In Reihaneh

Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – Proc CRYPTO 2012 (August 19–23, 2012,
Santa Barbara, USA), volume 7417 of Lecture Notes in Computer Science, pages 850–867. Springer, Heidel-
berg, 2012. https://doi.org/10.1007/978-3-642-32009-5_49, updated implementation in 2015 is available

from http://eprint.iacr.org/2012/099. 4

[GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. 𝑖-Hop homomorphic encryption and rerandomiz-

able Yao circuits. In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010 (Santa Barbara, USA, August
15-19, 2010), volume 6223 of Lecture Notes in Computer Science, pages 155–172. Springer, Heidelberg, 2010.
https://doi.org/10.1007/978-3-642-14623-7_9. 8

[GKS18] Alexey Gribov, Delaram Kahrobaei, and Vladimir Shpilrain. Practical private-key fully homomorphic en-

cryption in rings. Groups Complexity Cryptology, 10(1):17–27, 2018. https://doi.org/10.1515/gcc-2018-0006.
2

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental poker keeping secret all

partial information. In Tal Rabin, editor, STOC ’82: Proceedings of the fourteenth annual ACM symposium
on Theory of computing (San Francisco, USA, May 5 - 7, 1982), pages 365–377. ACM, New York, 1982.

https://doi.org/10.1145/800070.802212. 2

[Gol04] Oded Goldreich. Foundations of Cryptography – Volume II Basic Applications. Cambridge University Press,

Cambridge, 2004. 2, 4

[HEl21] HElib:. An implementation of homomorphic encryption, Accessed in August, 2021. https://github.com/

homenc/HElib. 2, 8

[HS20] Shai Halevi and Victor Shoup. Design and implementation of HElib: a homomorphic encryption library.

Cryptology ePrint Archive https://eprint.iacr.org/2020/1481, 2020. 5, 11

[IZ21] Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations for BGV and BFV. Proceed-
ings on Privacy Enhancing Technologies, 2021(3):246–264, 2021. https://doi.org/10.2478/popets-2021-0046.
5

12

https://doi.org/10.1007/978-3-030-96791-8_14
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-319-70694-8_15
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1023/A:1007413511361
https://doi.org/10.1007/978-3-662-49890-3_12
https://doi.org/10.1007/978-3-662-49890-3_12
https://eprint.iacr.org/2012/144
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_49
http://eprint.iacr.org/2012/099
https://doi.org/10.1007/978-3-642-14623-7_9
https://doi.org/10.1515/gcc-2018-0006
https://doi.org/10.1145/800070.802212
https://github.com/homenc/HElib
https://github.com/homenc/HElib
https://eprint.iacr.org/2020/1481
https://doi.org/10.2478/popets-2021-0046

[KOH
+
18] Sangwook Kim, Masahiro Omori, Takuya Hayashi, Toshiaki Omori, Lihua Wang, and Seiichi Ozawa.

Privacy-preserving naive Bayes classification using fully homomorphic encryption. In Long Cheng,

Andrew Chi Sing Leung, and Seiichi Ozawa, editors, Neural Information Processing – Proceedings of
the 25th International Conference on Neural Information Processing (Siem Reap, Cambodia, December
13–16, 2018), volume 11304 of Lecture Notes in Computer Science, pages 349–358. Springer, Cham, 2018.

https://doi.org/10.1007/978-3-030-04212-7_30. 2, 10

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over

rings. Journal of ACM, 60(6):43:1–35, 2013. https://doi.org/10.1145/2535925. 2, 3

[LZW16] Xingxin Li, Youwen Zhu, and Jian Wang. Secure naïve bayesian classification over encrypted data in

cloud. In Liqun Chen and Jinguang Han, editors, Proceedings of the 10th International Conference on
Provable Security (Nanjing, China, November 10-11, 2016), volume 10005 of Lecture Notes in Computer
Science, pages 130–150. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-47422-9_8. 2

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Jacques Stern,

editor, Advances in Cryptology – EUROCRYPT ’99 (May 2–6, 1999, Prague, Czech Republic), volume 1592 of

Lecture Notes in Computer Science, pages 223–238. Springer, Heidelberg, 1999. https://doi.org/10.1007/
3-540-48910-X_16. 2

[RAD78] Ronald Rivest, Leonard Adleman, and Michael Dertouzos. On data banks and privacy homomorphisms.

In Richard A. DeMillo, David P. Dobkin, Anita K. Jones, and Richard J. Lipton, editors, Foundations of
Secure Computation, pages 165–179. Academic Press, Atlanta, 1978. 3

[SV14] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations. Designs, Codes and
Cryptography, 71(1):57–81, 2014. https://doi.org/10.1007/s10623-012-9720-4. 4

[SYZ
+
20] Xiaoqiang Sun, F. Richard Yu, Peng Zhang, Weixin Xie, and Xiang Peng. A survey on secure computation

based on homomorphic encryption in vehicular ad hoc networks. Sensors, 20(15):4253:1–31, 2020. https:
//doi.org/10.3390/s20154253. 2

[SZL
+
20] Xiaoqiang Sun, Peng Zhang, Joesph K. Liu, Jianping Yu, and Weixin Xie. Private machine learning

classification based on fully homomorphic encryption. IEEE Transactions on Emerging Topics in Computing,
8(2):352–364, 2020. https://doi.org/10.1109/TETC.2018.2794611. 2, 10

[TRMP12] Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, and Franz Pernkopf. Bayesian network

classifiers with reduced precision parameters. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors,

Proceedings of ECML PKDD 2012: Joint European Conference on Machine Learning and Knowledge Discovery
in Databases (Bristol, UK, September 24-28, 2012), volume 7523 of Lecture Notes in Computer Science, pages
74–89, Heidelberg, 2012. Springer. https://doi.org/10.1007/978-3-642-33460-3_10. 7

[WNK20] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. Homomorphic encryption for machine

learning in medicine and bioinformatics. Journal of ACM Computing Surveys, 53(4):70:1–35, 2020. https:
//doi.org/10.1145/3394658. 2

[WSNK19] Alexander Wood, Vladimir Shpilrain, Kayvan Najarian, and Delaram Kahrobaei. Private naive bayes

classification of personal biomedical data: Application in cancer data analysis. Computers in Biology and
Medicine, 105:144–150, 2019. https://doi.org/10.1016/j.compbiomed.2018.11.018. 2, 10

[YIY19] Yoshiko Yasumura, Yu Ishimaki, and Hayato Yamana. Secure naïve Bayes classification protocol over

encrypted data using fully homomorphic encryption. In Maria Indrawan-Santiago, Eric Pardede, Ivan Luiz

Salvadori, Matthias Steinbauer, Ismail Khalil, and Gabriele Anderst-Kotsis, editors, Proceedings of the
21st International Conference on Information Integration and Web-Based Applications & Services (Munich,
Germany, December 2–4, 2019), pages 45–54. ACM, New York, 2019. https://doi.org/10.1145/3366030.

3366056. 2, 9, 10

13

https://doi.org/10.1007/978-3-030-04212-7_30
https://doi.org/10.1145/2535925
https://doi.org/10.1007/978-3-319-47422-9_8
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.3390/s20154253
https://doi.org/10.3390/s20154253
https://doi.org/10.1109/TETC.2018.2794611
https://doi.org/10.1007/978-3-642-33460-3_10
https://doi.org/10.1145/3394658
https://doi.org/10.1145/3394658
https://doi.org/10.1016/j.compbiomed.2018.11.018
https://doi.org/10.1145/3366030.3366056
https://doi.org/10.1145/3366030.3366056

	1 Introduction
	2 Preliminaries
	2.1 Naive Bayes classifier
	2.2 The RLWE assumption
	2.3 Leveled fully homomorphic encryption
	2.3.1 Homomorphic evaluation
	2.3.2 Batching

	2.4 Adversarial model

	3 Building blocks
	3.1 Plaintext matrix-encrypted vector multiplication
	3.1.1 Naive encoding
	3.1.2 Packed encoding

	3.2 Argmax of an encrypted array
	3.2.1 Comparison
	3.2.2 Argmax

	4 Privacy-preserving naive Bayes classification
	4.1 Preparing the model
	4.2 Privacy-preserving Naive bayes Classifier

	5 Implementation and experiments
	5.1 Data set
	5.2 Parameter setting
	5.3 Accuracy
	5.4 Communication
	5.5 Timing
	5.6 Data set with categories more than three
	5.7 The cost of noise management

	6 Conclusion

