On the Possibility of a Backdoor in the Micali-Schnorr Generator

Hannah Davis* Matthew Green’ Nadia Heninger* Keegan Ryan* Adam Suhl*

Abstract

In this paper, we study both the implications and potential impact of backdoored parame-
ters for two RSA-based pseudorandom number generators: the ISO-standardized Micali-Schnorr
generator and a closely related design, the RSA PRG. We observe, contrary to common under-
standing, that the security of the Micali-Schnorr PRG is not tightly bound to the difficulty of
inverting RSA. We show that the Micali-Schnorr construction remains secure even if one re-
places RSA with a publicly evaluatable PRG, or a function modeled as an efficiently invertible
random permutation. This implies that any cryptographic backdoor must somehow exploit the
algebraic structure of RSA, rather than an attacker’s ability to invert RSA or the presence of
secret keys. We exhibit two such backdoors in related constructions: a family of exploitable
parameters for the RSA PRG, and a second vulnerable construction for a finite-field variant of
Micali-Schnorr. We also observe that the parameters allowed by the ISO standard are incom-
pletely specified, and allow insecure choices of exponent. Several of our backdoor constructions
make use of lattice techniques, in particular multivariate versions of Coppersmith’s method for
finding small solutions to polynomials modulo integers.

1 Introduction

In 2013, a collection of leaks due to Edward Snowden revealed the existence of a large-scale U.S.
government effort called the SIGINT Enabling Project., intended to compromise the integrity of
cryptographic systems. Equipped with a $200M annual budget, the project sought to “insert
vulnerabilities into commercial encryption systems” and to “influence policies, standards and spec-
ification for commercial public key technologies” [SIGI3|]. These leaks also revealed that the U.S.
National Security Agency authored and maintained sole editorial control of the 2005 ISO 18031
standard on random bit generation [PLS13], a standard that was largely incorporated into the U.S.
ANSI X9.82 standard. The ANSI standard in turn forms the basis for the U.S. National Institute
for Standards and Technology’s NIST Special Publication 800-90A, which defines requirements for
random bit generation in government-approved cryptographic products.

Even before the Snowden leaks, the NIST/ANSI and ISO standards have drawn scrutiny for
their inclusion of a number-theoretic PRG known as the Dual Elliptic Curve Deterministic Random
Bit Generator (Dual EC DRBG), a construction that is exploitable by a party that generates
the system public parameters and retains a secret trapdoor [SFO7]. The Snowden leaks inspired
renewed investigation of this standard and its deployment, revealing that Dual EC was more widely
deployed than many academic researchers had realized. Moreover, later investigation revealed that
TLS and IPsec implementations incorporating Dual EC [CNET14, |ICMG™16| also made specific

*University of California San Diego, hdavis@ucsd.edu, nadiah@cs.ucsd.edu, {kryan,asuhl}@ucsd.edu
fJohns Hopkins University, mgreen@cs. jhu.edu

implementation decisions that coincidentally rendered them practically exploitable by an adversary
who possesses the Dual EC trapdoor.

Even if the standardized parameters were not deliberately backdoored, the mere possibility of
such parameters poses a threat to users of a standardized PRG. In one noteworthy case, an un-
documented implementation of Dual EC in Juniper NetScreen’s firewalls appears to have been
exploited in practice; in 2012 an outside group compromised the NetScreen codebase and replaced
Juniper’s Dual EC constants with parameters of their own devising [CMG™16|. These parameters
were in place for over three years, presumably enabling the outside group to decrypt the communi-
cations of Juniper NetScreen customers, which at the time included the U.S. Federal Government.
Demonstrating the existence, or ruling out the possibility, of methods to backdoor the parameter
generation process is the only way to mitigate the risk of parameter substitution attacks which
otherwise undermine the security of commercial encryption technology.

The MS DRBG generator. While Dual EC is the only number-theoretic generator adopted
as a NIST standard, the current draft of ISO 18031 (and early drafts of the ANSI X9.82 standard)
also include a second public-key generator that has received surprisingly little analysis. Based
on a design by Micali and Schnorr [MS90, MS91], the MS DRBG algorithm is a pseudorandom
number generator whose security is purportedly related to the hardness of breaking RSA. In brief,
the algorithm is instantiated using a state sp and an RSA public key (N, e), and at each stage the
algorithm applies the RSA function to the state to obtain an integer z;y1 = s{ mod N. The most
significant bits of z;411 become the new state s;41 for the next iteration of the algorithm, and the
least significant bits of z;41 are the output b;y; of the pseudorandom number generator for that
iteration.

While RSA (and Rabin)-based pseudorandom generators have been studied in the academic
literature for many years [BBS86), IMS90), IMS91l, [F'S97, [FS00, [SPW06], two aspects of the MS DRBG
standard draw attention. First, in contrast with common practice for RSA-based generators, the
generator outputs as many as 1 — 2/e of the bits (or up to 864 bits for a 1024-bit modulus with a
claimed 80-bit security level.)E] More critically, the MS DRBG standard includes a design choice
that is reminiscent of the Dual EC generator: namely, it incorporates a series of recommended
public parameters that are intended to be used in production as the modulus N. As with Dual EC,
the provenance of these moduli is not documented in the standard. However, correspondence from
the ANSI standards process (revealed under the Freedom of Information Act [Natlh]) supports
the conclusion that both Dual EC and MS DRBG were authored by the National Security Agency,
which also generated the parameters for both specifications. Unlike the Dual EC parameters (which
could conceivably have been generated such that the generating party would not learn a trapdoor)
according to the standard the MS DRBG moduli are the product of primes p,q chosen by the
standard author. The NSA’s knowledge of this secret factorization calls into question the security
of the generator when used in a setting where the NSA is adverse to its user.

MS DRBG has not, to our knowledge, been used in any real-world systems. However, several
surprisingly widespread implementations of Dual EC DRBG (e.g., Juniper’s NetScreen implemen-
tation) were unknown to researchers and were only discovered by chance long after the deprecation
of Dual EC. MS DRBG, though still in the ISO standard, has received far less attention than Dual

'Previous RSA-based generators (including some early drafts of MS DRBG) recommend only to output lg lg N
bits at each RSA operation. MS DRBG’s larger output is justified by a novel pseudorandomness assumption intro-
duced by Micali and Schnorr [MS91].

EC from the research community. It is possible there were (or are) MS DRBG implementations
used in production that have not received public scrutiny.

Given the known vulnerabilities in Dual EC DRBG and the (allegedly) identical provenance
of MS DRBG, it is therefore reasonable to ask whether MS DRBG is vulnerable to an analogous
attack. Concretely:

Does knowledge of the factors of (or malicious construction of) the recommended moduli
imply a practical attack on the MS DRBG generator?

This question is surprisingly difficult to answer. While the literature is replete with studies
of RSA-based generators, the majority of this work naturally assumes that the factorization of
N is kept secret. In that setting, standard results on RSA hardcore bits can be used to argue
the indistinguishability of generator output. Clearly such arguments no longer apply in settings
where the factorization is known to the attacker. And yet in contrast to many other RSA-based
constructions, knowledge of the factorization does not point to an obvious attack strategy against
MS DRBG or similar RSA-based generators. Such gaps between “best reduction” and “best attack”
are hardly unknown in the literature. We argue, however, that the history and provenance of the
MS DRBG standard make it worthy of a closer look.

Our results. In this paper, we study both the implications and potential impact of backdoored
parameters for the Micali-Schnorr generator and for the RSA PRG, a closely related design that
was never standardized. To our knowledge, we are the first to identify vulnerabilities in these
algorithms from this perspective in the literature.

First, we observe that the security of the Micali-Schnorr PRG is not tightly bound to the
difficulty of inverting RSA. We show that the Micali-Schnorr construction remains secure even if
one replaces RSA with a publicly evaluatable PRG or an ideal (and efficiently invertible) random
permutation. This implies that any cryptographic backdoor must somehow exploit the algebraic
structure of RSA, rather than an attacker’s ability to merely invert RSA or the presence of secret
keys. We exhibit two such backdoors in related constructions: a family of exploitable parameters
for the RSA PRG@G, and a second vulnerable construction for a finite-field variant of Micali-Schnorr.
We also observe that the parameters allowed by the ISO standard are incompletely specified, and
allow insecure choices of exponent. Several of our backdoor constructions make use of lattice
techniques, in particular multivariate versions of Coppersmith’s method for finding small solutions
to polynomials modulo integers. We evaluate the impact of our attacks in the context of network
protocols and find that the ISO weak exponent vulnerability would be exploitable in the context
of IPsec.

Ultimately we were unsuccessful in fully solving the question we set out to answer, that of
either finding an efficiently exploitable backdoor for the Micali-Schnorr generator or ruling out the
possibility, but we hope that this work will bring more attention to this unsolved problem and point
the way to potentially fruitful cryptanalytic advances.

1.1 Technical Overview

Our goal in this work is to evaluate the hypothesis that the standardization of ISO/ANSI MS
DRBG may represent an intentional attempt to subvert cryptographic systems. This possibility
is intriguing for two different reasons: first, a better understanding would offer new historical

context on the development of public-key standards and the intentions of nation-state cryptologic
agencies. From a technical perspective, detailed investigation of this question might uncover the
existence of heretofore non-public attacks on public-key cryptosystems. While factoring-based PRG
constructions are some of the earliest work in this area, they appear to have received surprisingly
little attention from a modern perspective, and this question shines new light on the tightness of
the connection between the hardness assumptions and the security of the output.

Our approach is to assume the worst case: that the authors of the standard intentionally
retained the factorization of each recommended modulus (or maliciously generated these moduli),
and additionally possessed techniques that enabled them to practically exploit this knowledge.
From this starting point we then attempt to “re-derive” the necessary techniques and to evaluate
whether they can be used in practical settings. Our primary focus in this work is on techniques
that enable state recovery given some quantity of generator output, since knowledge of the internal
generator state would enable a passive attacker to obtain future generator output and possibly
compromise the security of encryption protocols.

Indistinguishability, state recovery and backtracking resistance. Like most standardized
generators, MS DRBG uses an iterated construction. The generator is initially seeded with a state
so that is repeatedly updated through application of a purported one-way function, while the same
function is also used to produce output bits. As with any PRG, knowledge of previous outputs must
not provide an attacker with a meaningful advantage in predicting future output bits. This can
only be achieved if all internal states remain secret until the generator is reseeded, since knowledge
of any state permits the prediction of all future states and outputs. Both ISO and ANSI require
an even stronger security property: the compromise of any intermediate state s; must not enable
prediction or distinguishing of generator outputs from previous cycles. We show that neither MS
DRBG nor RSA PRG achieve this property when the factorization of N is known.

Eliminating the obvious. A natural approach for a subversion attacker E| to break the security
of the PRGs is to simply invert the RSA function to recover some internal generator state after
observing generator output. However, in MS DRBG (as well as more traditional RSA and Rabin-
based generators) this direct approach fails because the construction does not output all bits of
RSA function output.

While the security assumptions that underlie the security proof for MS DRBG [MS91] are
clearly false if the factorization of the modulus N is known, straightforward attempts to reverse
the security reduction are also futile, for a similar reason. Micali and Schnorr’s reduction relies
on two elements: a novel indistinguishability assumption for partial RSA outputs (repeated herein
as Assumption , which is combined with rejection sampling and the algorithm of Alexi, Chor,
Goldreich, and Schnorr [ACGS84] (in Theorem (1)) to reduce this to the hardness of the RSA
problem. An adversary who can falsify Assumption [I]still does not obtain all bits of the ciphertext
from the generator’s output. Even when the attacker has access to an inversion oracle, both sides
of the reduction are efficient to solve, so even reversing this portion of the reduction is unlikely to
lead to a practical subversion attack. Moreover, the running time of this reduction algorithm for
parameters of practical interest is much more expensive than simply brute forcing the unknown
state would be, which makes Theorem |1| vacuous in the case of MS DRBGH

2 An attacker with backdoor information; see Section
3Naturally ISO has specified parameters so that brute force and collision attacks against the state are infeasible.

Eliminating black box attacks. Given the above, we turn our attention to whether being
able to falsify Assumption [1]in a black box way suffices for a distinguishing attack on MS DRBG.
Stated broadly, this assumption implies that for some length-expanding function F : {0, 1}k —
{0,1}" with k& < n, the ensemble {b1,bo,...,by} is indistinguishable from random, when each
b; + F(s;_1) mod 2" % and s; + |F(s;_1)/2" %] (with s a random k-bit string). It is relatively
easy to argue this assumption holds when F' is itself a PRG (or is modeled as a random function
or permutation on {0,1}"): indeed, we prove this in Section We observe that the MS PRG
construction instantiated with such a random permutation remains secure even when the inverse
oracle is available to an adversary, or when the function contains no secrets or keys. Indeed, this
construction is analogous to several common PRG constructions based on hash functions. The
theorems we prove are straightforward, and their implications are obvious in retrospect, but they
encode observations about the security of the MS DRBG construction that do not appear to have
been formalized in the literature.

The main question then is whether such an assumption can hold when F' is realized via the
RSA function in the unusual setting where the factorization is known. These results suggest that
any attacks on the MS or RSA PRGs must exploit algebraic properties of RSA and modular
exponentiation, rather than being able to take advantage of factorization in a black-box way.

Algebraic attacks. After eliminating the possibility of an “obvious” factoring-based backdoor,
we give several constructions of candidate backdoor constructions and algorithmic weaknesses for
RSA PRG and MS PRG that exploit algebraic properties of modular exponentiation. Most of our
state recovery attacks make use of lattice-based techniques, in particular variants of multivariate
Coppersmith’s method. A straightforward application of Coppersmith-type methods to break MS
and RSA PRG is ruled out by the ISO parameters; such attacks seem unlikely to allow recovery of
a state larger than n/e bits for generic parameters (for RSA exponent e), while the ISO parameters
set the state size at 2n/e bits.

We give backdoor constructions that introduce additional structure that results in feasible
attacks that work beyond these known bounds. For RSA PRG, we show how to efficiently generate
RSA moduli that embed cyclic and linear recurrence relations in the PRG output and how to hide
these recurrences in the factorization of INV; we also give an algorithm exploiting these recurrences for
an efficient full state recovery attack from parameter ranges that were not known to be previously
exploitable. Unfortunately, extending this idea to MS PRG does not seem to result in an efficiently
exploitable backdoor without some further structure that allows us to simplify the exponentially
many polynomial terms generated by the recurrence relations. We illustrate such an algebraic
structure by showing that a variant of MS PRG defined over small-characteristic finite fields is
trivially broken.

Finally, we show that the existence of RSA decryption exponents allows the efficient generation
of apparently unnoticed weak exponent choices for MS PRG that are not ruled out by the parameters
in the ISO standard. These weak exponents allow an efficient state recovery attack for the output
lengths and state sizes in the ISO standard from a single PRG output block. We further observe
that if this PRG were used to generate nonces and secret keys in the IPsec protocol (as Dual EC
was in real-world implementations), this attack would allow an efficient state recovery attack from
a single handshake nonce generated from raw PRG output.

Future directions. The problem of designing an efficient backdoor for the Micali-Schnorr scheme
has floated around the cryptographic community as an open problem since at least 2013 [Grel3],
with little success.

In this work, we rule out some obvious-seeming approaches that are dead ends, and illuminate
some potentially fruitful directions for future exploration. In the end, we leave the question of
identifying or ruling out an efficiently exploitable general backdoor in the Micali Schnorr algo-
rithm unsolved in this paper. Ultimately, a solution to this problem may involve new ideas in the
cryptanalysis of RSA.

2 Background

The ISO, NIST, and ANSI standards refer to the (pseudo)random number generation algorithms
they describe as random bit generators (RBGs) and to deterministic pseudorandom number gen-
eration algorithms as deterministic random bit generators (DRBGs).

ISO-18031 lists a number of (informal) security requirements for RBGs. We list the most
relevant of these below, and mark the exact text from the standard in quotes. We have given
names to these properties for future convenience.

Indistinguishability “Under reasonable assumptions, it shall not be feasible to distinguish the
output of the RBG from true random bits that are uniformly distributed.” Indistinguishability
has been extensively studied in the academic literature [Yao82, [BM82].

State compromise resistance “The RBG shall not leak relevant secret information (e.g., inter-
nal state of a DRBG) through the output of the RBG.” While indistinguishability is the main
requirement for a PRG in the academic literature, the focus of many practical attacks is a
full state compromise |[CNE™14, (CMG™16, [CGHIS].

The following propertiesﬂ are listed as optional requirements:

Backtracking resistance “Given all accessible information about the RBG (comprising some
subset of inputs, algorithms, and outputs), it shall be computationally infeasible (up to the
specified security strength) to compute or predict any previous output bit.”

Prediction resistance “Given all accessible information about the RBG (comprising some subset
of inputs, algorithms, and outputs), it shall be infeasible (up to the specified security strength)
to compute or predict any future output bit at the time that [prediction resistance] was
requested.”

We will use the term “PRG” to refer to the algorithms in this paper, and the term DRBG
when we specifically reference the ISO standard. There have also been extensive academic efforts to
formalize requirements for pseudorandom number generation under various attack models including
recovery from state compromise [DPR™13].

4The standard calls these properties “backward secrecy” and “forward secrecy”, but in the opposite way from the
academic literature; we rename these properties to avoid confusion.

2.1 The RSA PRG

The ISO standard introduces MS DRBG as a variant of the “so-called RSA generator”, which
iteratively applies RSA encryption to a starting seed to generate a sequence of states and outputs
some least significant bits of each state as output. Micali and Schnorr [MS90] name this algorithm
“the ‘incestuous’ generator”.

We summarize this algorithm in Algorithm [1| below. Let N be an integer RSA modulus of
length 1g N = n. Let k be the length of the PRG output on a single iteration, so we have k < n.
The length of the state is r = n bits. e will be a positive integer that is the RSA exponent; in order
for (IV, e) to be valid RSA parameters e should be relatively prime to ¢(N). (The choice e = 2 is
the Rabin generator used in Blum-Blum-Shub [BBS86].)

Algorithm 1: RSA PRG
Input : A number of iterations h
Output: hk pseudorandom bits
1 Sample initial state so < $[1, N] using truly random coins.
2 for i+ 1 to h do
3 5; < s¢_; mod N
4 b, + s; mod 2F
5
6

end
Output the concatenation by||ba]| ... ||bp.

There is a simple formula for the ith state in terms of the initial state:

i
si = s mod N

Output Length There are several choices of output lengths discussed in the literature on this
PRG.

e k =lgn. Micali and Schnorr [MS91] show that the RSA PRG is secure for k& = lgn bits of
the RSA function, based on the Alexi-Chor-Goldreich-Schnorr theorem [ACGS84] that these
bits are hardcore.

e k = 1. Fischlin and Schnorr [FS00] improve the running time of the ACGS reduction and
use this running time to propose concrete parameters of k = 1 bit of output with a 1000-bit
modulus N.

o k= (1/2—1/e —e—o(1))n. Steinfeld, Pieperzyk, and Wang [SPWO06] prove the security of
outputting more bits under the hardness of improving on the Coppersmith bound for solving
polynomials modulo RSA moduli [Cop97].

2.2 The Micali-Schnorr PRG (MS PRG)

Like the RSA PRG, the Micali-Schnorr PRG iteratively applies the RSA function, but it separates
the bits used to generate the next state from the bits that are output. It splits each RSA output
into its most and least significant bits. The least significant bits become PRG output, while the
most significant bits become the RSA input for the PRG’s next iteration.

Let N be an integer RSA modulus of length 1g N = n. Let k be the length of the PRG output
on a single iteration, so we have k < n. r will be the internal state length; for the Micali-Schnorr
algorithm we have r = n— k. e will be a positive integer that is the RSA exponent; this is specified
so that e is relatively prime to ¢(N).

2.2.1 Micali-Schnorr as published in their papers.

There are two published versions of the Micali-Schnorr paper. The first version, “Efficient, Perfect
Random Number Generators,” appeared in CRYPTO ’88 [MS90]. The journal version of the
paper, “Efficient, Perfect Polynomial Random Number Generators,” was published in the Journal
of Cryptology in 1991 [MS91].

The algorithm for the Micali-Schnorr PRG as published in the original paper takes an input h
and iterates the algorithm A times to output hk pseudorandom bits. Micali and Schnorr refer to
this construction as the “sequential polynomial generator of the weaning type.”

Algorithm 2: The Micali-Schnorr algorithm
Input : A number of iterations h
Output: hk pseudorandom bits

1 Sample initial state so + $[1, N27*] using truly random coins.

2 for i<+ 1to h do

zi < s5_, mod N

bi — Zz; mod 2k

if version from [MS90] then

| s (278 + 1

else if ISO-18031 version then

‘ s; < |2i27F];

© o N o gk W

end

10 Output blegH - th

o

Output length. In the original paper, Micali and Schnorr discuss the following choices for k and
n.

k= O(lgn) = O(lglg N) They list this as a suitable choice for the PRG. The algorithm in
Micali and Schnorr’s reduction runs in time polynomial in 2¥ne~! so if the PRG is insecure
for k = O(lgn) then this gives a polynomial time RSA decryption algorithm.

k= O(nl/ 3) They argue that this choice is suitable by comparing the resulting reduction time
to the running time of the number field sieve for factoring, and note that if the algorithm is
insecure for this parameter, it would beat the number field sieve.

kE =n(1 —1/e) is clearly insecure. For this choice, the security proof does not apply because
55 < N, so no mod operation occurs and “RSA” decryption is easy in this case.

k =mn(1—2/e) is left as an open question, but Micali and Schnorr promote this choice as one
that would produce an efficient generator if indeed it is secure. The security of this choice

is based on the indistinguishability of RSA encryptions of short (n — k-bit) plaintexts from
random integers modulo IN. This is the value chosen by the ISO standard.

D.2 Default moduli for the MS_DRBG ()

D.2.1 Introduction to MS_DRBG default moduli

Each modulus is of the form n = pg with p = 2p1 + 1, g = 2, + 1, where p; and g, are (Ig(n)/2 — 1)-bit primes.
D.2.2 Default modulus n of size 1024 bits

The hexadecimal value of the modulus 7 is:

b66fbfda fbac2fd8 2ebl3dcd 4fal70ff c9f7c7b5 1d55b214 4cc2257b 29df3f62
b421b158 0753f304 a671ff8b 55dd8abf b53d3lab alad742f 21857acf 814af3fl
e126d771 ablecab4 e62bfdb5 85c311b0 58e9cd3f aab758a5 2896849 6ecldd51l
d0355aal 55d4d912 6140dcfa b9b03£f62 a5032d06 536d8574 0988£384 27£35885

D.2.3 Default modulus n of size 2048 bits
The hexadecimal value of the modulus 7 is:

cl1a01f2 5daf396a a927157b af6f504f 78cba324 57b58c6b f7d85laf 42385cc?
905b06f4 1f6d47ab 1b3a2cl2 17d14d15 070c9da5 24734ada 2fel7a95 e600ae9a

Figure 1: A portion of ISO 18031 Appendix D.2 showing the default 1024-bit modulus and a portion
of the 2048-bit modulus [Int11].

2.2.2 ISO/IEC 18031 Micali-Schnorr

The Micali-Schnorr algorithm was standardized in ISO/IEC 18031 as a deterministic random bit
generator, named MS DRBG, alongside the Dual EC DRBG design. Dual EC was removed from
ISO 18031 in a 2014 Technical Corrigendum.

The version of the Micali-Schnorr algorithm that appears in ISO/IEC 18031 [Int11] differs in
one minor respect from the academic publication. Specifically, it alters line |§I so that s; < [227F].
(That is, it does not increment the result.) It isn’t clear what effect, if any, this change has on the
security of the scheme, and it is not documented in either publication. In personal communication,
Micali told us he does not recall the reason for the original choice or the change.

Output length. The ISO standard requires that the output length satisfies 8 < k& < min(n —
2v,n(1 —2/e)), where ~ is the target security level. The default is to set k£ to be the largest value
allowed by this inequality, rounded down to a multiple of 8.

The introduction to MS DRBG (section C.4.3.1) applies very different output security bounds to
RSA PRG than MS DRBG: it states that the k = 1glg N least significant bits the RSA generator
outputs “are (asymptotically in N) known to be as secure as the RSA function f. The Micali-
Schnorr generator MS_DRBG() uses the same e and N to produce many more random bits per
iteration, while eliminating the reuse of bits as both output and seed.”

Modulus and exponent generation. The ISO standard states that implementations “shall”
permit either an implementation-generated “private modulus” or the use of one of the default
moduli in the standard (see Figure[l}) The standard requires the length of the modulus to conform
to the requested security strength: a 1024-bit N for v = 80; 2048 bits for v = 112; 3072 for v = 128;
7680 for v = 192; and 15360 for v = 256.

The standard also specifies that custom RSA moduli should be generated so that p— 1, p+ 1,
q — 1, and ¢ + 1 have a prime factor of at least + bits. It also states that the default moduli have
been generated so that p = 2p; + 1,9 = 2¢1 + 1 for py,¢1 primes, and that p+ 1 and g + 1 have
“the required large prime factor”.

It is also required that e be relatively prime to (p — 1)(¢ — 1). While this is necessary for these
to be well-defined RSA parameters, the decryption exponent d = e~! mod (p — 1)(¢ — 1) is never
used in the normal course of random number generation, so it is not clear why this requirement
needs to be present.

The default moduli are stated to have “strong” primes as factors, which “essentially guarantees”
that (') will be relatively prime to odd e, but the factorization of these default moduli is not given,
so users are unable to verify this for themselves when using the default moduli with user-generated
e. If a user-generated exponent is not supplied, the default e = 3 is used.

Backtracking and prediction resistance. The standard states that “[backtracking resistance]
is inherent in the algorithm, even if the internal state is compromised.” This is not true against an
adversary who knows the factorization of the modulus: if the state is compromised, the adversary
can distinguish a sequence of previous outputs from random by iteratively decrypting. The standard
ensures prediction resistance by requiring the implementation to reseed every 50,000 outputs.

2.2.3 ANSI X9.82

The Dual EC and MS DRBG algorithms were the two number-theoretic (public-key cryptographic)
PRG designs promoted by the NSA for inclusion in ANSI X9.82 [Joh04]. A version of MS DRBG
was present in early drafts of the ANSI X9.82 specification from 2004 until August 2005, when it
was removed.

The text of the entire X9.82 DRBG specification is largely identical to the standard ultimately
published by ISO in 2005 [Intll]. A number of draft versions of the X9.82 standard as well as
internal discussions and documentation have been made available as part of a FOIA request from
NIST in 2014 and 2015 [Natl5], which provide interesting insights into the development of the
standard. There is evidence that this text was written by the US government [BLNI6].

There appear to have been differing views among committee members on the number of bits
that should be output from MS PRG. Early proposals suggested outputting far fewer bits than
the ISO version ultimately standardized. A set of 2004 slides from the NSA at a NIST workshop
suggested outputting only the “hardcore” bits for each modulus size; for a 1024-bit RSA modulus
the suggestion was 10 bits, and for 2048 and 3072-bit moduli the suggestion was 11 bits [Joh04].

An undated (but apparently early) draft of X9.82 includes the comments “The MS generator
allows a much larger percentage of N bits to be used on each iteration, and has an additional
advantage that no output bits are used to propagate the sequence. (It does, however, rely on a
stronger assumption for its security than the intractability of integer factorization.) As the X9.82
standard evolved, committee members argued for restricting the number of bits generated on each
exponentiation to O(lglg N) hard bits, as is done in Blum-Blum-Shub. The result is that the
efficiency argument for choosing MS over BBS doesn’t apply. Nonetheless, a user does have more
options in the choice of parameters” [har]. Later drafts of the text mention only the larger output
lengths ultimately adopted by ISO.

The sole comments we have located that justify the decision to drop Micali-Schnorr from the
standard come from a document titled “DRBG recommendations from the X9.82 Editing Group”
which states “We recommend keeping DUAL_EC_DRBG. Despite the fact that it is much slower
than the other DRBGs, it offers a third distinct technology that can serve as a hedge against
breakthroughs in cryptanalysis of hashes and block ciphers. ... We suggest dropping HASH_DRBG
and the MS_DRBG, as well as support for the other NIST curves in the DUAL_EC_DRBG” [drb].

10

2.3 Related work

Backdoored random number generation. In addition to works cited in the introduction, a
long line of literature considers the possibility of algorithm substitution attacks (previously referred
to as “subversion” and “kleptographic”) attacks [YY97, Y'Y96, BPR14, RTYZ16l, BLI7, FMIS8,
CRTT19, PW20]. To formalize this work into the setting of PRGs, Dodis et al. [DGGT15| give a
formal treatment and prove that such schemes are equivalent to public-key encryption schemes with
pseudorandom ciphertexts. Degabriele et al. [DPSW16] extend these results to consider backdoored
PRNGs (which unlike PRGs may take additional inputs for prediction resistance).

Backdoored RSA parameters. There is a surprisingly long line of work on generating “back-
doored” RSA parameters [And93) [Y'Y96, YY97, [YY06, [CS03, [Joy08, Pat12, WKM16, [Ces22]. This
work focuses on trapdoors that admit efficient factorization or recovery of private keys given only
a public key (N, e). In contrast to these works, our work begins from the assumption that the ad-
versary possesses the factorization of N and addresses the problem of compromising an algorithm
using this knowledge.

MS DRBG. Additionally, some previous works have considered MS DRBG. Fouque, Vergnaud,
and Zapalowicz give a time/memory tradeoff for recovering the state faster than brute force [FVZ13],
and Fouque and Zapalowicz study the statistical distance of short RSA [FZ14]. In a 2013 blog post
Matthew Green posed the problem of finding a practical attack against MS DRBG when the factors
are known [Grel3]. Antonio Sanso suggested in a 2017 blog post that Mersenne or other special-
form primes might lead to a backdoor in Micali-Schnorr [San17]. Lynn Engelberts extended Sanso’s
analysis of special form primes in a 2020 masters thesis. [Eng20]

3 Security Reductions for the MS and RSA PRGs

The security reduction that Micali and Schnorr give to their “sequential” construction has two steps.
First, they define a security question, which they label Q1. We rephrase this as an assumption
below:

Assumption 1 ([MS91]). (Q1). The following distributions are polynomially indistinguishable
e (N,s®mod N) for s €p[1, N27F]
e (N,r) forr g [1,N].

The authors next provide a polynomial-time reduction that transforms a distinguisher algo-
rithm for the Micali-Schnorr PRG into a distinguisher for Assumption [} The proof uses a hybrid
argument. It is this assumption that is used to justify the large output sizes used in the ISO
version of MS PRG. The second half of the reduction completes the reduction to the hardness of
RSA inversion, and gives a security reduction for both MS PRG and RSA PRG.

Theorem 1 ([MS91]). Let N be an RSA modulus. FEvery probabilistic algorithm that e-rejects
ciphertexts of random messages s € [1, N27%] can be transformed into a probabilistic algorithm
for decrypting arbitrary RSA ciphertexts; this algorithm terminates after at most (2ke_1n)o(1) steps.

11

This reduction contains several steps that are fundamentally exponential time in £k, the number
of bits of output. In particular, the algorithm samples 2¥ messages until it expects to find one with
the required number of zeros. Thus, this reduction is only polynomial time for lgn bits of output.
Fischlin and Schnorr [FS00] have improved the running time of the ACGS algorithm [ACGS84]
used in the decryption step, but the reduction remains exponential in k.

In addition to being exponential time in the output length %k, running the reduction will be
more expensive than simply brute forcing the unknown bits of the plaintext when k& > n/2, that
is, when the output is larger than the state. In fact, the constants hidden in the O(1) result in
significantly worse parameters.

The exponential cost in the reduction in the proof of Theorem [I| appears to be the reason for
only outputting lg n bits of output for the RSA PRG. It is interesting that the ISO standard accepts
much more generous parameters for Micali-Schnorr output than for the RSA PRG without having
attempted to find an analogously relaxed assumption that might permit more generous outputs as
Steinfeld, Pieprzyk, and Wang [SPWO06] ultimately did.

Statistical indistinguishability results and mod p variants. Micali and Schnorr also con-
sider a variant of their PRG defined modulo a prime p, and hypothesize that this variant is still
secure despite the fact that their factoring-based assumptions no longer hold. The journal version
of their paper [MS91] contains theorems proving the statistical randomness of the (n/2—k— (Ign)?)
least significant bits of s¢ mod N for s € [1, N 27’“] when N is prime or an RSA modulus.

Fouque and Zapalowicz [FZ14] give a more general version of this theorem for RSA moduli that
applies to size bounds above VN and prove that the lg N least significant bits of s® mod N for
s < M for a chosen bound M < N are statistically indistinguishable from uniform. They apply
their bounds to Micali-Schnorr and find that asymptotically, this bound dictates that the output
is not statistically indistinguishable when more than n/3 bits are output.

These statistical indistinguishability results provide evidence that least significant bits of modu-
lar exponentiation (modulo primes or RSA moduli) are indistinguishable from uniform at much less
aggressive parameters than ISO chose. However, such statistical indistinguishability results cannot
apply when the output exceeds the length of the seed. Thus they do not rule out the possibility of
attacks on the PRG with long or multiple outputs.

4 Ruling out black-box attacks

In this section, we will try to make more precise the intuition that the security of MS and RSA
PRG is more closely related to the assumption of pseudorandomness of RSA ciphertexts than the
hardness of inverting RSA. This offers a more formal explanation for why there does not appear to
be a black-box way to use an RSA decryption oracle to break the security of MS PRG.

We begin by defining a generic Micali-Schnorr-type construction, which we call MS-f-PRG. In
this variant the RSA operation is replaced by some function f. That is, Step [3] of Algorithm [2]in
Section becomes z; < f(s;—1), for f that we will instantiate below.

4.1 Micali-Schnorr is secure with a PRG

The Micali-Schnorr construction is still secure when instantiated with a PRG.

12

Theorem 2. If f : [1,2" %] — [1,2"] is a secure pseudorandom generator, then the output of
MS-f-PRG is pseudorandom.

The proof is the same as the proof of Theorem 5.1 in [MS91], substituting the pseudorandomness
of G for Assumption

While this finding is not surprising, it illustrates that the security of MS-f-PRG need not
depend on any secret information. This informs how a provably secure variant of MS PRG could
be instatiated, but unfortunately it does not enable a proof for the variants with RSA modulus
N or prime modulus p (as discussed in the original work of Micali and Schnorr [MS91]). In the
context of an adversary who knows the factorization of N, G(s) = s® mod N with short seed s is
distinguishable from random: simply decrypt G(s) and check if the seed is short. This function is
clearly not a PRG, and so we gain no information about the security of this construction. A similar
argument applies in the prime modulus case f(z) = z° mod p.

4.2 MS PRG is still secure when implemented with a random permutation

We next show that the Micali-Schnorr construction is secure when the one-way RSA function
is replaced with a public (invertible) random permutation. While this analysis is clearly quite
artificial, it offers a useful bound on the efficiency of generic attacks (i.e., attacks that do not
exploit special properties of the RSA function) when the factorization of N is knownﬂ This
suggests that if it is indeed possible to backdoor the Micali-Schnorr construction, the backdoor
must take advantage of some nontrivial algebraic property of RSA.

We begin by defining our variant of the MS PRG in which RSA encryption is replaced with a
publicly accessible random permutation. Concretely, at line [3] of Algorithm [2] we replace the RSA
evaluation z; < s¢ ; mod N with z; < f(s;—1) where f : [1, N — 1] — [1,N — 1] is a publicly
accessible random permutation. We give the attacker the ability to decrypt by making the inverse
permutation f~! publicly accessible. With this modification, we obtain the following theorem.

Theorem 3. No adversary A that makes q total queries to black-box oracles for random permuta-

tions f and f~' can distinguish the hk-bit output string B of our modified variant of Algom'thm@
2

from a random hk-bit string with advantage greater than (h;]\lf) +]\?gfk + % + J\%L_qq

negligible €).

+ ¢ (for some

A proof of Theorem [3] can be found in Appendix

4.3 RSA-PRG as a sponge

The iterative construction of RSA-PRG—apply a transformation to the state, then output the
LSBs—is widely used in symmetric cryptography, and is known as the sponge construction. If
we replace RSA encryption with a random function f in the RSA PRG construction, we can use
theorems developed for cryptographic sponge constructions to obtain strong bounds on the security
of the resulting construction. These theorems hold for functions that are fixed public and efficiently
invertible permutations.

®More critically, this construction does not have any implications for the security of MS PRG instantiated with
the RSA function, since RSA encryption quite clearly behaves differently than a random function.

13

Theorem 4. Let f-PRG be the RSA PRG construction except replacing the x — x° mod N op-
eration with a fized, public, efficiently invertible random permutation f : Zy — Zy. Then the
output of f-PRG is indistinguishable from random to any adversary that runs in time polynomial
in lg N — k and has black-box access to f and f~1.

Proof. f-PRG follows the sponge construction, with state size lg N, rate k, and capacity ¢ =
lg N — k. As Bertoni, Daemen, Peeters, and Van Assche show in equation 6 of [BDPV0S], the RO
differentiating advantage against the sponge construction when used with a random permutation
is upper bounded by m22- (¢t where m is the number of calls to the underlying transforma-
tion. The RO-differentiation game models an adversary with query access to f and f~!'. Thus
no poly(lg N — k)-time adversary can distinguish f-PRG from a random oracle with more than
negligible probability, even with query access to f and f~ L. O

We remark that SHAKE-128 (from the SHA-3 standard [shal5]) is a PRG constructed as a
sponge with state size 1600, outputting 5/6 of the state (1344 bits) per iteration, and the function
f it uses to transform its state is a fixed, public, efficiently invertible permutation. This is a smaller
state size than ISO MS DRBG uses (g N = 3072 for 128-bit security), and a larger fraction of bits
that are output (5/6, compared to 1/3 for ISO using the default exponent e = 3).

5 Algebraic Attacks

In this section, we present several attacks against RSA PRG and MS PRG. While none of these
results in a backdoor against MS DRBG as standardized that is as compelling as the techniques
demonstrated against Dual EC, these attacks illustrate different properties of the algebraic structure

of modular exponentiation that may ultimately lead to either the development or ruling out of such
a backdoor in the MS PRG.

5.1 Notions of cryptographic subversion

A growing body of work considers algorithm substitution attacks (ASAs) against cryptographic
implementations. In this setting, a known cryptographic algorithm is replaced with a subverted
algorithm designed by an attacker, who retains secret knowledge that allows for exploitation [YY97,
YY96, BPR14, RTYZ16, BLI7, [FMIR, ICRTT19, PW20]. This effectively models our assumptions
for a subversion attack on MS DRBG. We do not present formal definitions here, and refer the
reader to e.g., [BPR14, RTYZ16] for details.

The MALICIOUS framework. Peyrin and Wang [PW20] describe the MALICIOUS frame-
work that includes several informal properties required by a subverted symmetric construction such
as an RNG. We modify these to provide a shorthand characterization for our backdoor construc-
tions.

Undiscoverability: An outside observer should be unable to find the hidden backdoor, even if
the general form of the backdoor is known [PW20)].

Practical Construction: The backdoor designer should be able to efficiently construct parame-
ters that allow for backdoor exploitation.

14

Practical Exploitation: An attacker should be able to efficiently violate the security properties
of the scheme if they know the secret information required to exploit the backdoor.

Plausible Deniability: To an external observer, the public parameters, keys, and structure of
the cryptosystem should appear to be “properly” generated.

Relationship to formal definitions of ASAs. Bellare, Paterson and Rogaway formalized a
framework for algorithm substitution attacks (ASAs) [BPR14]. Informally, the framework captures
the properties described above using two independent security gamesE] In the first game, a detection
adversary (D) represents the defender, and is used to define the undiscoverability of a cryptographic
backdoor. In this framework, the detection adversary is asked to distinguish between the correct
algorithm (e.g., an implementation of MS DRBG in which the modulus N is generated honestly at
random and no secret factorization is retained) and a second subverted algorithm such as the ISO
standard with attacker-known (or chosen) factorization. The subverted algorithm passes this test if
V P.P.T. algorithms D, D distinguishes the input/output behavior of the subverted implementation
from the correct implementation with at most negligible advantage[]

In the second game a subversion adversary (S) is given access to secret knowledge about the
subverted algorithm (for example, knowledge of the secret factorization of the modulus N.) The
minimal criteria for a subversion attack is that there must exist some P.P.T. S that distinguishes the
input /output behavior of the subverted and non-subverted implementations with non-negligible ad-
vantage. If the non-subverted implementation is itself a secure PRG, then the ability to distinguish
between subverted and unsubverted implementations naturally implies an attack that distinguishes
the output of the subverted algorithm from random bits. In practice, subversion attackers may also
be able to carry out more powerful attacks, such as state recovery and future output prediction.

5.2 Algorithmic Background: Multivariate Coppersmith’s Method

Several of our attacks make use of the following version of multivariate Coppersmith’s method. For
a basic review of lattices and terminology, see [LLL82].

5.2.1 Review of Coppersmith’s method.

Coppersmith’s method uses lattice reduction to find small solutions to polynomials modulo integers.
For univariate polynomials, this method is fully rigorous, and has a clean bound: for a degree-d
polynomial f(z) € Z[z] and N € Z, all roots r € Z satisfying f(r) = 0 mod N can be found for
|r| < N%/¢ in polynomial time in d and lg N [Cop97].

The multivariate generalization of this method that we need for our attacks does not have a clean
theorem statement, and in fact a fully rigorous generalization cannot exist [Cop01]. Nevertheless, a
heuristic generalization of this method often works in practice [Jut98], and it is this heuristic version
that we will use. We will derive the relevant bounds using ad hoc, problem-specific constructions.

The following lemma tells us the condition under which we expect to succeed.

5The “Practical Construction” requirement is captured formally by requiring that both honest and subverted algo-
rithm can have a polynomial-time setup algorithm that (in the subverted case) produces the subverted implementation
and any secret trapdoors.

"Subsequent definitions by Russel et al. extend this notion to one in which the detection adversary (in this work
called an “online watchdog”) is also allowed to observe interactions between the implementation and an attacker. We
do not consider this scenario in our work, due to the fact that we primarily focus on passive eavesdropping attacks.

15

Lemma 1. Let {f;(Z)}>, be integer polynomials in m variables & = (x1,...,2n) and let N
Z. We wish to find one or more solutions 7 = (r1,...,Tm) simultaneously satisfying { fi(7)
0 mod N}, .

If we can find m auziliary polynomials Q1, ..., Qm such that

lHm

Qj(r1,...,7m) = 0mod N* and 1Qj(r1,. .. rm)| < Nt

for some integer t > 1 then each Q; satisfies Q;(r1,...,mm) = 0 over the integers. If in addition
the Q; are algebraically independent, then we can solve for a bounded number of possible solutions.

We sketch a general method to solve this problem in Algorithm [3| below.

Algorithm 3: Multivariate Coppersmith Method (Sketch)
Input : {fi(D)}}%) € Z[z1,...,2m]|", N € Z,{R;}],
Output: {r;}7, satisfying |r;| < R; and f;(7) = 0 mod N
1 Generate a basis of auxiliary polynomials of the form g, (%) = (H] x;l]) (Hz ffi> N2,
2 Map each polynomial to a scaled coefficient vector embedding:
o:9(@) => z9ix'x? ... xlr — (nRY ... RS, L)
3 Construct a lattice basis B of coefficient vector embeddings o(g) for a carefully chosen
subset of the gs generated in step
4 LLL-reduce the lattice basis.
5 Construct a Grobner basis of the polynomials o~1(v) of all vectors v in the reduced basis
whose /1 norms |v|; are shorter than N*.
6 Enumerate the candidate solutions given by the Groébner basis and verify whether each is a
valid solution for the r;.

The value t and choice of polynomial shifts z{* ... 2% in Step [1] of Algorithm 3| are chosen as
part of the optimization process. We will refer to t as the multiplicity of the roots. The lattice
dimension is determined by the number of distinct monomials in the set of polynomials {g} used
to generate the lattice.

To apply Lemmal[l]we bound |g(7)| < |o(g)]1, so we want to find m vectors in the lattice whose ¢
norms are less than N*. For a random lattice L, the successive minima \;(L) often have close to the
same length, and in practice LLL [LLL82] typically finds vectors of length 1.024™ L (det L)1/ dim L
or 1.024m L\ [NS06].

These vectors are guaranteed to be linearly independent as coefficient vectors, but the cor-
responding polynomials are not guaranteed to be algebraically independent. Nevertheless, the
polynomials found by this algorithm for random problem instances with optimal parameters are
often algebraically independent.

Thus heuristically we expect this algorithm to succeed if we can construct a lattice basis with
determinant bounded as in Condition [I}

Condition 1 (Heuristic Condition for Multivariate Coppersmith). If the basis for lattice L con-
structed in Step [3 of Algorithm [3 satisfies

1.02dimL(detL)1/dimL < Nt

then we heuristically expect Algorithm[3 to find all suitable roots.

16

5.2.2 Applying Coppersmith’s Method to MS and RSA PRG.

It is tempting to try to apply a multivariate Coppersmith approach directly to MS or RSA PRG to
carry out a state recovery attack. In particular, such an attack involves finding a small solution of
a degree-e polynomial modulo N, which is precisely the problem that Coppersmith-type methods
solve.

In this section, we will sketch this attack and observe that it is ruled out by the parameter
choices made by ISO for MS.

MS PRG. An attempted state recovery attack from two outputs would start from the polynomial
relations between the unknown states s;:

58—2k51—b150m0d]\7

s§—2k32—b250m0d]\f
Let |s;| < R. Construct the lattice basis

RE 0 —2R 0 -k
R 0 2R —b
0 NR 0 0

0 0 NR 0
0 0 0 N

o
I
cooo

We have det L(B) = R**™2N3 and dim L(B) = 5. Omitting approximation factors in such small
dimension, Condition [I] tells us we expect to succeed if

(det L(B))l/dimL(b) _ (R26+2N3)1/5 <N

which applies when R < NY/(et1) In other words, the bit length of the state size r = n — k
should satisfy » < n/(e + 1). Attempted improvements from higher degree polynomials and root
multiplicities seem to give the same bound, even if more than two outputs are available.

This attack is ruled out by the choice of ISO parameters r = 2n/e. This makes sense because
this attack does not even require the factorization of V.

RSA PRG. Steinfeld, Pieprzyk, and Wang [SPW06] do a similar analysis of RSA PRG and
obtain a heuristic bound of r < n/(e 4+ 1) for the unknown portion of the state. Herrmann and
May [HMO9] improve this to n/e when the PRG outputs the most significant bits of the state.

Simpler attacks when r < n/e. A state size bound of r < n/e is a degenerate case for both RSA
and MS PRGs, since there is no modular reduction performed when computing sf mod N. Fouque,
Vergnaud, and Zapalowicz point out that one can recover the state via Hensel lifting [FVZ13].

5.3 Attacks on RSA PRG

In this section, we show how to construct backdoor parameters for the RSA PRG. The states (and
thus the output) generated by the RSA PRG have an iterative structure that cycles modulo a
divisor of ¢(¢(N)). This means that an attacker who can control the generation of N and e can
embed a chosen relationship among outputs that enables efficient distinguishing and state recovery
attacks.

17

5.3.1 ¢ has Short Period (eSP) attack mod ¢(¢(N))

In our first backdoor construction, we show that it is possible to efficiently construct RSA param-
eters for which the output of RSA PRG produces extremely short cycles. This violates indistin-
guishability, but would be observable by any attacker. We then show that it is possible to somewhat
obscure the most obvious cyclic behavior in the output, which leads to an efficiently generatable and
exploitable backdoor. While this behavior alone doesn’t lead to a fully undiscoverable backdoor, it
provides intuition for the SUS backdoor we construct later.

Recall that the multiplicative order of an integer modulo N is a divisor of ¢(NN). In the RSA-
PRG generator with modulus NV and exponent e, we have state s; satisfying s; = 381 mod N. Micali
and Schnorr (as well as Blum, Blum, and Shub [BBS86]) note that the period of the sequence of
outputs generated by sg will thus be a divisor of ¢(p(N)) [MS91]. They say that “in general” the
period “will be a large factor of ¢(¢(N)) and will be much larger than v/N which is the average
period of a random recursion in Zy. It is conceivable that the number ¢(p(N)) somewhat affects
the output distribution of the generator and not only its period.” They do not appear to have
considered the possibility of malicious parameter generation.

We consider three cases:

Case 1: e not relatively prime to ¢(N). If (in violation to valid RSA parameters), e is not
relatively prime to ¢(IN), then the z — z° mod N operation is not surjective—not every element
mod N is an eth power. Suppose ¢(N) = we’ for some w. Then the jth PRG state s; = s§ will
be a wth root of unity mod N, and so will all subsequent PRG states. Thus:

Sj4i = S;Z mod w’
giving a cycle whose period is the multiplicative order of e mod w. If w is small, or if e generates
a small subgroup of Z;(N, then this will lead to short cycles.

We note that for “dei)ault” RSA moduli that are given without factorization, there is no way
for the user to efficiently verify that a user-chosen e is relatively prime to ¢(N). However, this
construction is probably best considered to be not plausibly deniable, since these are not valid RSA
parameters.

Case 2: cycles with e relatively prime to ¢(N). Alternatively, even if e is relatively prime
to p(NN), e could potentially generate a small subgroup modulo ¢(N), leading to this type of short
cycle. One algorithm, given a specific e, to find primes p such that e has small order modulo ¢(p)
is shown in Algorithm

This algorithm is reasonably efficient in practice for parameters of interest. For example, for
e =5 and ¢ = 504, it took 10 seconds on a laptop with a dual-core Intel i7-6500 CPU to find an
880-bit prime with these properties using Sage with ECM for factorization, aborting factorization
when it started to get slow. We tried a few candidates for e and ¢ within this range. To generate
a hard-to-factor modulus IV, one could generate two primes using this algorithm.

These types of cycles in the output would be easy to notice for any user who generates ¢ outputs,
so this construction would be discoverable.

Case 3: Partially hidden cycling behavior. Here we will outline the most practical eSP (e has
Short Period) backdoor variant, in which we hide the obvious cycling behavior in the factorization

18

Algorithm 4: Constructing prime p s.t. e has small order mod ¢(p).

Input : An integer e
Output: A prime p such that e has small order modulo ¢(p).
1 Choose a cycle length £.
2 Compute small prime factors p; of e/ — 1 using the elliptic curve method or other factoring
methods that are efficient for small factors.
3 Choose a subset of the p; (and optionally also the composite cofactor) computed in the
previous step, and check if 1 + [], p; is prime. (In order to generate odd primes, we will
need one of the p; to be 2.)

of N = pq. If e generates cycles of length ¢ mod p, but not mod ¢, the outputs would not have
as obvious cycling behavior to the end user. By choosing ¢ such that e’ = cq mod ¢(q) for some
cq small enough that finding roots mod ¢ of degree ¢, polynomials is feasible, an adversary who
knows the factorization and observes the sequence of outputs can efficiently recover the full state,
as we will show in Theorem [5l Such a ¢ can be generated similarly to Algorithm [, but factoring
et — cq instead of et — 1.

With such parameters, an attacker can recover the full state from the first (¢4 1) PRG outputs
(and in particular, using only the first and (¢ + 1)th outputs) assuming each output has length
k> n/2. (If RSA PRG parameters were set following the ISO parameters for MS DRBG, this will
be the case for all e > 5.) The attack is given in Algorithm

Algorithm 5: eSP attack in the “partially hidden cycle” case.

1 Let b; and by11 be two outputs. Without loss of generality assume sp11 > $1 as integers.

2 Observe that bpy 1 — b1 = (811 — $1) mod 2k Observe further that Se+1 — $1 = 0 mod p,
and 0 < (sgy1 — 81)/p < q < 2.

3 Let m = (by1 — b1)p~! mod 2%, reduced such that 0 < m < 2¥. Now m = (sp41 — 51)/p as
integers.

4 Solve the polynomial congruence

y“—y—pm=0 (mod q).

(Recall ¢, = ef mod ¢(g).) This is feasible because the degree c, is small and g is prime.

ot

One of the roots will be s; mod ¢, because mod ¢ we have s‘iq = s‘fz = Spqp1 =pm -+ S1.

For each root a, use CRT to recover §1 € [0,2q) such that s7 = b; (mod 2*) and §; = «
(mod ¢), and check whether §; would produce correct outputs b;.

7 Since s; < pq < 2¥q, when a = s; mod ¢, we will get §; = s; over the integers.

(=]

As a proof of concept, we generate (for public exponent e = 5) a 2048-bit backdoored N = pq
such that 5°% =1 (mod p — 1) and 5°%* = 187 (mod ¢ — 1). We include it in Appendix The
state recovery attack (implemented in Sage) using this modulus took 31 seconds.

However, while practical to construct and practical to exploit, this “backdoor” is not undis-
coverable (regardless of how ¢ is generated) because a user could exploit the relationships modulo
p to efficiently factor IV as follows. They choose an initial state sy, and compute the sequence of
states s; = s{_; mod N. If they discover a state sy where ged(s; — sg, V) is nontrivial, then they

19

can use this to factor N. (Note that this algorithm is similar to the Pollard rho algorithm but with
a different “pseudorandom” walk.)
We summarize these results in the following informal theorem:

Theorem 5. An attacker can efficiently generate RSA parameters (N = pq,e) such that e has a
chosen (small) order ¢ > log, p(p) modulo ¢(p). This attacker can then carry out an efficient state
recovery attack after observing at least { +1 RSA PRG outputs of length k > n/2 bits generated
using these parameters. This backdoor has efficient parameter generation and efficient exploitation
but is discoverable.

While these ideas do not generate a fully satisfactory backdoor, they provide intuition for
the construction in the next section, where we will replace the relationship e = 1 mod ¢(N) (or
mod(p)) with a more complex polynomial.

5.3.2 The SUS backdoor for RSA-PRG

In order to conceal the discoverable cyclic behavior of the eSP backdoor, we augment this idea to
generate moduli that embed a small, sparse polynomial relationship satisfied by the exponent e
modulo ¢(N) or ¢(p). We will call this “Small Unknown Solution” or SUS.

Parameter Generation. Let f(z) =, g ¢z’ be a sparse polynomial that will remain secret,
where the ¢; are all +1 and are roughly balanced. A correspondingly backdoored prime p will satisfy
the relation f(e) = 0 mod p — 1. This corresponds to a relation between PRG states [[,cg 5" = 1
(mod p), where s; = s§ .

To backdoor an RSA modulus N, we can either ensure f(e) = 0 mod ¢(NV), or (similarly to the
“partially hidden cycle” eSP variant) have f(e) = 0 mod ¢(p) but not mod p(q).

Theorem 6. SUS prime and RSA modulus generation is efficient.

Proof. We apply Algorithm {4 except that we replace the desired relation e — 1 mod p — 1 with a
sparse polynomial f(e) =), c;e’. To generate an RSA modulus, we can either generate two primes
from different subsets of the factors in Step 3| (so that f(e) = 0 mod ¢(NV)), or we can backdoor p
and choose ¢ normally (so that f(e) = 0 mod ¢(p)). O

SUS State recovery attack. The state recovery algorithm uses multivariate Coppersmith. We
write 581 =5; = bi+2kri, using the outputs b; and unknown state MSBs r;, with 0 < r; < R = N/Zk.
For ease of exposition let us assume for now that f(e) = 0 mod ¢(N); applying our backdoor

polynomial f we obtain
H (2kn + bi> “ =1mod N
€S
This is a low-degree multivariate polynomial modulo N whose roots are the unknown portions
of each state. Recall all ¢; are +1, with roughly balanced sets S of positive ¢; and S~ of negative
¢;. This gives
IT @*ri+0:) = J] @i+ b)) =0mod N
€St €S~
Our polynomial degree is max(|S™|,|S™|), which is independent of e. We can then recover the r;
using multivariate Coppersmith.

20

If instead we had f(e) = 0 mod ¢(p) but not mody(q), we would instead recover the r; mod p.
But as long as p > R this is the same as recovering r; over the integers.

Example. Suppose f(e) = 200 +¢20 —¢!80 —e0 = (mod ¢(N)); we have |ST| = [S~| = 2. The
Coppersmith polynomial in unknowns 79qg, 720, 7180, 70 1S

£(3) = (ra00 + 2 Fbono) (120 + 27 Fbag) — (r180 + 2 *b1so) (10 + 27%by).

We apply Algorithm [3] with ¢ = 1 and no extra shifts to generate a lattice with dim L = 7
and det L = R®N® (where R is our bound on the 7;). Applying Condition [1| (and omitting the
approximation factor in dimension 7), we expect to succeed when (RSN®)'/7 < N, or when R <
N8, Had we instead had f(e) = 0 (mod ¢)(p), our success condition would instead be that
R < p'/3. In either case, this bound is independent of e.

As a demonstration, we generated a 1024-bit RSA modulus N satisfying e?%0 — 180 420 — 1 =
0 mod ¢(N) for e = 17. We include it in Section of the supplementary materials. Parameter
generation took 19 seconds using Sage on a single core of a machine with an Intel E5-2699 processor.
Using these parameters with & = 896-bit outputs, our attack successfully recovered the state in 213
milliseconds from 200 PRG outputs. For these parameters, the fraction of bits output is below the
(1 —1/e) fraction required by Herrmann and May [HMQ09]; that is, our attack requires less output
to succeed than theirs. In fact, the fraction of bits output is smaller than (1 — 2/e), the maximum
fraction of output bits recommended in the ISO parameters for Micali-Schnorr — although when
N is 1024 bits (at the 80-bit security level) the ISO standard recommends only 864 bit outputs, to
ensure at least 160 bits remain unknown. In practice, however, LLL reduction of this Coppersmith
lattice yields shorter vectors than predicted, and our attack empirically succeeds for these example
parameters with ISO-sized k = 864 outputs, and even with outputs as small as k = 856 bits.

Using a higher multiplicity (and thus a larger-dimension lattice) allows the attack to succeed
with even smaller outputs:

Theorem 7. A SUS-backdoored modulus N of length n with backdoor polynomial f of degree £ and
|S| nonzero coefficients allows an efficient state recovery attack after observing ¢ outputs of length
k> n(l—1/cg) for a constant cs that depends only on |S|, and not on the exponent e.

When f has |S| = 2 terms, cs = 2, when f has |S| = 4 terms, cg < 6.55, and when |S| = 6
terms, cg < 16.96.

The attack requires only |S| outputs within this range at specified positions.

Proof. The recovery algorithm works as follows. Let f(z) = >, ¢iz'. Let ST = {i | ¢; > 0} and
S™ = {i| ¢ < 0}. Apply multivariate Coppersmith’s method to solve for the unknown r; in
ies+ (2575 + b)) = Tlies- (287i + ;)% = 0 mod p.

For |S| = 2, we can construct a full-rank 3-dimensional lattice with multiplicity ¢ = 1 to obtain
the bound in the theorem. This case is degenerate in that a polynomial with coefficients +1, —1
will generate output that cycles. We obtain the bound in the theorem for |S| = 4 from a full-rank
1365-dimensional lattice with ¢t = §8; for |S| = 6, a 1443-dimensional lattice with ¢ = 4.

We have chosen these values so that running LLL for these lattices is within feasible range
today; one can get improved bounds for the cg by choosing larger multiplicities and generating
larger (but still polynomially sized) lattices.]

21

Undiscoverability vs. practical exploitation. We hypothesize that SUS-backdoored param-
eters could be undiscoverable, if the sparse backdoor polynomial f is properly chosen. However,
making the backdoor harder to discover seems to make it harder to exploit.

The backdoor polynomial f in the SUS attack is a sparse polynomial with the property that
f(e) = 0mod ¢(N) or modp(p). The more terms in f, the harder it is to guess, but also the
higher the degree of the multivariate polynomial to be solved using Coppersmith’s method. For
Coppersmith’s method to succeed this then requires either a larger fraction of bits to be output or
a much larger lattice to be reduced.

If f has too few terms, it becomes possible to guess f by brute force, and then verify a guess by
checking (for some arbitrary a) whether a/(¢©) =1 mod N (if f(e) = 0 mod (N)) or if ged(a/(®) —
1, N) is nontrivial (if f(e) = 0 mod ¢(p)).

As an example, suppose we want f to have eight nonzero terms. The multivariate polynomial
to be solved using Coppersmith will have degree 4 (|ST| = |S™| = 4). If we assume the RSA PRG
is reseeded every 50000 outputs (as the ISO standard recommends for MS DRBG), the degree of f
must be less than 50000, since any outputs after the first 50000 will not be algebraically related to
the first 50000 outputs. The size of the search space for f would be roughly (50(7)00) ~ 297, (Without
loss of generality we can assume the degree of f is as large as possible, because if f(e) = 0 then
also ¢19999—deef f(¢) = 0, so there are only 7 terms to choose.)

However, it may be possible to do better than brute force. If parameters are chosen such that

f(e) = 0 mod ¢(N), a meet-in-the-middle attack could recover this f in (**}°) ~ 2°% time and

(50(;00) ~ 2% space: enumerate over all possibilities fy for the first three terms of f, and put

af(®©) mod N into a hashtable. Then iterate through all possibilities for the remaining terms and
check for a collision.

We do not see an analogous meet-in-the-middle attack when instead parameters are chosen such
that f(e) = 0 mod p(p) if p is kept secret. We conjecture that no faster attack than brute-forcing
f is possible in this case.

To illustrate the tradeoffs, in addition to the earlier example, we generated two backdoored
parameter sets: one requires as high as the 3500th output, took 4 core-hours to exploit, and we
conjecture is 2°!-undiscoverable; the other requires only as high as the 150th output, took 3 core-
minutes to exploit, and is (conjectured) 219—undiscoverableE| We give these (and other) parameters
and discuss the tradeoffs further in Appendix

Extending this idea to Micali-Schnorr. Our attempts to extend this idea from RSA PRG to
Micali-Schnorr have encountered some barriers to efficient exploitation that we have been unable
to circumvent.
A first barrier is that the output of MS PRG does not follow the clean iterative structure that
RSA PRG does. In the case of RSA PRG, this allows us to write the ith block of output b; as a
(")

value that is close to a power of the initial state s; = s§_; = s, / (mod N), or a single monomial

like ¢ in a polynomial equation we wish to solve. If we attempt to apply the same approach for
MS PRG, writing the ith block of output in terms of the initial state by iteratively expanding the
expression

s;=27%(s¢_; — b;) mod N,

8Code demonstrating the attack with these parameters is available at https://github.com/ucsd-hacc/msdrbg_
code.

22

https://github.com/ucsd-hacc/msdrbg_code
https://github.com/ucsd-hacc/msdrbg_code

this results in a polynomial with exponentially many terms that depend on the previous sequence
of outputs.

The minimum degree of our backdoor polynomial } . ¢ +e’ = 0 mod p—1 needs to be log, ¢(p)
in order to embed information modulo p, so our polynomial expression will have exponentially many
terms in lg p to even write down. Using larger coefficients in the polynomial to generate terms like
ce' will increase the degree of the Coppersmith polynomial.

Another way of viewing this obstacle is that the high-degree non-sparse relation between states
is due to the simultaneous presence of addition, multiplication, and exponentiation modulo N (or
p) in the state update function. If only exponentiation were involved, as is the case of RSA-PRG,
we can simplify the expression as above. If only multiplication by a constant and addition were
involved, all s; are affine functions of s;5. When all three operations are involved, however, the
resulting expression is a polynomial with exponentially many terms.

One path forward would be to generate some algebraic structure that permits simplification or
elimination of enough cross-terms that the polynomial no longer has exponentially many terms and
becomes solvable. (We give an example of such a structure in the next section.) Alternatively, we
observe that while these polynomials have exponentially many terms if expanded out entirely, they
will have linear depth if evaluated as a circuit. Exploiting this idea would require new algorithmic
ideas, since a lattice attack requires writing down the polynomial to be solved.

5.4 Attacks on MS PRG

In this section, we give two attacks on weak settings for MS PRG.

5.4.1 Finite Field MS-PRG is insecure.

In this section we define a variant of Micali-Schnorr over finite fields of small characteristic, and
detail a straightforward state-recovery attack on this variant that involves no backdoors.

This attack does not imply anything about the existence of an attack (or a feasible backdoor) on
standard MS DRBG, but it demonstrates that the pseudorandomness of modular exponentiation
depends on the choice of field and illustrates algebraic structure that eliminates the exponential
blow-up in terms that kept us from extending the ideas in the SUS backdoor to MS-PRG. This
attack works for any choice of output length k, unlike the other attacks we detail.

Finite Field Micali-Schnorr. Define a variant of the Micali-Schnorr PRG using finite fields.
Our eventual backdoor will rely on the characteristic of the field matching the exponent e, which
we will take to be a small prime.

Let Fen be the finite field of size €. We can represent elements of F.n as polynomials in the
quotient ring F.[z]/N(x) (with N monic, irreducible, and deg(IN) = n) or as coefficient vectors in
(Fe)™. Addition, multiplication, and exponentiation are defined in the standard ways.

Theorem 8 (Informal). Finite-field Micali-Schnorr with state size n and output size k allows an
efficient probabilistic state recovery attack when [(n — k)/k]| outputs are observed.

Attacking FF-MS-PRG. Our attack relies on the linearity of the Frobenius endomorphism to
limit the complexity introduced by exponentiation. For any w,v € Fen, we have that (u + v)¢ =
u® 4 v¢, since all of the cross terms vanish in characteristic e. This linear operation (the Frobenius

23

Algorithm 6: Finite-Field Micali-Schnorr
Input : Parameters e € Z, N € F.[z], a number of iterations h
Output: hk output bits

1 Sample initial state so « $[1,2"~¥] using truly random coins.
2 for i+ 1 to h do

3 2z <= s¢_; mod N(z)

4 Write z; = 2Fs; + b; for deg(s;) < n — k and degb; < k.

5 end

6 Output b1||b2|| ce ||bh

endomorphism) is denoted by F' : u + u°. Similarly, the (invertible) action of multiplying a value
by «* is linear and is represented by the map T : u — z*u.

Using these linear maps, we rewrite the finite field Micali-Schnorr equation s;41 = x_k(sf —Zit1)
as

Sit1 = Tﬁl(F(Si) — Zi+1).

Clearly this is affine, and thus we may write each s; as an affine equation in sg: s1 = A159+b1, 82 =
Assy + ba, ...

When considering these affine equations in the vector space, the constraint deg(s;) < n — k
ensures that the k entries of the corresponding coefficient vector are 0. We use these known values

to construct a new linear system
0= Asg+0b.

The attacker observes output until this linear system is overdetermined, and then solves it. A
solution giving sg is guaranteed to exist. Although the solution is not always unique, in practice
this method appears to recover a solution close to the initial state after [(n — k)/k| outputs.

This attack is efficient. With n = 1024 and k = 341, recovering the FF-MS-PRG state from
9 outputs took 7 minutes implemented in Sage; the unoptimized construction of the linear system
was the bottleneck.

5.4.2 The Bad-e (Be) attack.

In this section, we describe choices for the exponent e that lead to efficient state-recovery attacks
for the Micali-Schnorr generator. The particular choices of e we make are unusual, but allowed by
the ISO standard, and are efficient to exploit with the output sizes recommended by ISO.

As observed in Section a straightforward application of multivariate Coppersmith’s method
for a state recovery attack against MS PRG is ruled out by the parameters specified by ISO. We
can circumvent these restrictions by choosing a large e such that e~! mod ¢(N) is small.

Flexible choice of e. ISO specifies that “The implementation should allow the application to
request any odd integer e in the range 1 < e < 28(N)=1 _ 9. 9lgN/2 »

Our attack instantiates the public exponent e with a value other than the default exponent
e = 3. Using larger e results in a larger output length k£ under the recommended parameters.
Interestingly, while MS DRBG can be instantiated with almost any non-default e, there are more
requirements on the public modulus: N may either be one of the default moduli or randomly
generated.

24

e = d~! for small d is insecure.

Theorem 9. Instantiating Micali-Schnorr with RSA using exponent e = d~* mod p(N) for d
small allows an efficient state recovery attack from a single output when the state has length r <
n/((g) + 1), in time polynomial in d and lg N.

Proof. One output by yields a degree-d polynomial relating states sg and s1.

s§ = (2"s1 +b1) mod N
Sg = (2k81 + bl)d mod N
S0 — (2k$1 + bl)d = 0mod N

A straightforward application of multivariate Coppersmith results in a lattice of dimension d+2

d
and determinant R(2)+*1N4+1 for R the bound on the size of the state. Applying Condition |1 and
omitting the approximation factor if we expect d to be a small constant, we expect to succeed when

T((g) +1) <n. O

We can verify that this attack is allowed by the ISO parameters. When e is large, which is what
we expect for d~! mod (N) for d small, the ISO parameters set r = 2y where « is the security
parameter. Thus we expect this attack to work when v(d? — d +2) < n. To be concrete, for the
ISO security parameters (listed in Section , this inequality is satisfied for d = 3 for all parameter
sizes, for d = 5 at v = 128 and above, and d = 7 for v = 256.

This exponent can be efficiently computed from knowledge of the factorization of N, and we
expect it to be large since ¢(N) | de — 1. This choice of e is arguably not a plausibly deniable
“backdoor” since in practice e is almost always chosen to be small. In addition, it is efficiently dis-
coverable for any small d via the Boneh and Durfee attack on small private RSA exponents [BD99).
However, in cryptographic protocols in which parameters are negotiated by machines making basic
validity checks rather than actively looking for suspicious parameters, even such a discoverable
backdoor could easily go undiscovered.

e= eoefl is insecure. A full generalization of this attack would construct exponents of the form

e = eoel_1 for small multipliers eg. This parameter generation is efficient when the factorization
of N is known. This enables an efficiently exploitable state recovery attack using Coppersmith’s
method for parameters at ISO security levels v = 112 through 256. However, this special-form
exponent backdoor remains detectable, because it is possible for an external observer who suspects
the form of the backdoor to brute force search over pairs of small ey, €1 to recover ¢(N) and thus
factor N. Full details of these algorithms are given in Appendix

6 Impact on cryptographic protocols

Deployed cryptographic systems typically use random numbers as input to a cryptographic protocol.
The precise interaction between protocol, implementation and a subverted RNG can have a major
impact on the exploitability of a system. We now briefly consider how our attacks on MS and RSA
PRG may affect common protocols.

25

Case study: Using MS DRBG state recovery to subvert IPsec. IPsec [DGT9§| is an
encryption protocol often used for VPNs. We focus on the key agreement protocol, typically TKE.
During the period of standardization (approximately 2004-2007), the current version of the protocol
was IKEv1 [HC9§].

As noted in previous analyses [CNE™14, (CMG™16, [CGHI§] many IKE implementations use a
single PRG to generate both unencrypted nonces, encryption padding and ephemeral secret keys
for Diffie-Hellman key agreement. An attacker wishing to passively exploit the “Bad-e¢” MS DRBG
state recovery attack we outline in Section would observe protocol handshakes from such an
implementation, use the nonces to carry out a state recovery attack, and then iterate the state
forward to recover the secret Diffie-Hellman exponent, recover the shared secret, and derive the
symmetric session keys to decrypt the session data.

For the simplest attack described in Theorem [0} state recovery is feasible for all security param-
eters with exponent e = 37! mod ¢(NN) and requires observing at least 3n/4 bits of output. For
n = 1024 this is 96 bytes and for n = 2048 it is 192 bytes, both within the 256-byte upper limit on
a variable-length nonce.

Extracting generator output from public nonces. The most likely source for public output is the
random nonces in each key agreement: these range from 8-256 bytes in IKE. Thus in IKE a
single nonce is conceptually sufficient to recover a single generator output block using a 1024-bit
or 2048-bit modulus.

Extracting generator output from RSA padding. Some configurations of the IKEv1 protocol employ
RSA-PKCS#1v1.5 encryption to authenticate endpoints. In this configuration, one party encrypts
a nonce to the other party’s encryption key. Assuming an attacker can interact with the server
once, it may therefore obtain raw PRG output in the padding of the RSA ciphertext.

With an RSA public key of length 7 bytes and a nonce of length m bytes, each ciphertext
contains 7 — 3 — m bytes of non-zero RSA padding bytes, in addition to the m-byte nonceﬂ
Assuming a 32-byte nonce, this provides 93 bytes of padding (or 125 bytes for padding and nonce
combined) for a 1024-bit RSA encryption key and 221 bytes (or 253 bytes for both) for a 2048-bit
encryption key. The 93-byte padding is less than the 96 output bytes required for a 1024-bit key,
but the remaining bytes could conceivably be recovered via brute force.

Case Study: TLS. SSL/TLS [FKKII, [AD99] are the most common secure communications
protocols used on the Internet. SSL and TLS each combine the use of long-term keys or secrets, as
well as a key agreement protocol and symmetric encryption scheme for transmission of secure data
into a single protocol. Common versions between 2004-2007 included SSL version 3 [FKKII] and
TLS 1.0-1.2 [AD99, [DR06], RDO0S].

The random portion of an SSL/TLS nonce is 28 bytes longB For SSL/TLS or IKE imple-
mentations with smaller nonces, an attacker would need to obtain several nonces over multiple key
exchange interactions (approximately 4 at the 28 bytes length) in order to recover sufficient state
to obtain one 108-byte MS DRBG output at the 1024-bit security level. Even this approach poses
a challenge: for our basic attacks, the recovered output bytes must be consecutive. In a naive
implementation of either protocol, the generation of nonces may be interspersed with other uses

9The PKCS#1v1.5 standard requires that all padding bytes be non-zero, since the 0 byte is used as a delimiter.
Recovering the raw byte stream would thus require some additional steps depending on how this string is generated.
10Fach nonce comprises 28 bytes of random data concatenated with a 4-byte timestamp.

26

of the PRG: as a result, only fragments of each output block would be available. There are two
potential engineering solutions that could mitigate this result:

1. During the standardization period, the NSA proposed and co-authored numerous IETF draft
extensions to SSL/TLS [RS09, RS06, HS09, Hof10L [Hofl2] that cause servers and clients to
output much longer nonces on request. The motivation for these extensions is controver-
sial [Ptal5], but at least one extension was ultimately deployed in the BSAFE commercial
cryptography library [Benl7]. The occasional use of such extensions by any client would
provide eavesdroppers with an arbitrary amount of generator output that could be used to
recover secret keys until the generator was reseeded.

2. Some commercial implementations of IKE pre-generate nonces in advance of a handshake,
storing the results in a queue for later use |[CMG™16]. Such implementations have been
discovered in devices implementing the Dual EC DRBG generator, a design choice that max-
imizes the practical impact of a subversion attack. A similar implementation decision could
allow the exfiltration of multiple consecutive bytes of generator output over several hand-
shakes.

There are also some algorithmic exploitation possibilities:

1. Multivariate Coppersmith methods can be used to solve for multiple nonconsecutive chunks
of output; the exact bounds would depend on the details of the implementation.

2. Our SUS backdoor for RSA PRG exploits sequences of non-consecutive blocks of output,
albeit selected to satisfy the linear backdoor recurrence embedded in the modulus. A more
moderate improvement in the bounds might allow a recovery attack of this form.

7 Conclusion

In this paper, we study the question of whether an adversary who controls the generation of the
parameters used for the Micali-Schnorr PRG can break the security of the algorithm. To that
end, we identify vulnerable parameters permitted by the ISO standard for Micali-Schnorr, and
develop a novel backdoor algorithm for the closely-related RSA PRG that permits efficient state
recovery attacks beyond previously known bounds. However, we encounter barriers in adapting our
backdoor technique to MS PRG for realistic parameters, and thus the main question we set out to
solve remains open.

A solution to this problem may involve the development of new ideas in the cryptanalysis
of RSA. For example, the small characteristic finite field case has exploitable structure. Taking
advantage of this structure leads to improvements in algorithms like the function field sieve for
discrete logarithms over small-characteristic finite fields. An analogous improvement for the integers
that allows simplifications of the recurrences might open doors (or be related to existing advances)
in the study of factorization or RSA cryptanalysis algorithms.

Acknowledgments. We thank Emmanuel Thomé and Antonio Sanso as well as numerous atten-
dees of CHES 2016 for enjoyable conversations about this problem. This work was supported by
NSF under awards CNS-1653110, CNS-1801479, DMS-1913210, and CNS-2048563, and by DARPA
under Contract No. HR001120C0084. Any opinions, findings and conclusions or recommendations

27

expressed in this material are those of the authors and do not necessarily reflect the views of the
United States Government or DARPA.

References

[ACGSS4]

[ADYY]

[And93]
[BBSS6]

[BDYY]

[BDPVO0S]

[Benl17]

[BL17]

[BLN16]

[BMS2]

[BPR14]

[Ces22]

Werner Alexi, Benny Chor, Oded Goldreich, and Claus-Peter Schnorr. RSA /Rabin bits
are 1/241/poly(log N) secure. In 25th FOCS, pages 449-457. IEEE Computer Society
Press, October 1984.

Christopher Allen and Tim Dierks. The TLS Protocol Version 1.0. RFC 2246, January
1999.

Ross J. Anderson. Practical RSA trapdoor. Electronics Letters, 29:995-995, 1993.

L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number
generator. STAM Journal on Computing, 15(2):364-383, 1986.

Dan Boneh and Glenn Durfee. Cryptanalysis of RSA with private key d less than
NO292 Tn Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 1-11.
Springer, Heidelberg, May 1999.

Guido Bertoni, Joan Daemen, Micha€él Peeters, and Gilles Van Assche. On the indiffer-
entiability of the sponge construction. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 181-197. Springer, Heidelberg, April 2008.

David Benjamin. Additional TLS 1.3 results from Chrome. https://mailarchive.
ietf.org/arch/msg/t1ls/i9blmvG2BEPf 1s10JkenHknRwIc/, December 2017.

Sebastian Berndt and Maciej Liskiewicz. Algorithm substitution attacks from a stegano-
graphic perspective. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1649-1660. ACM Press, October / Novem-
ber 2017.

Daniel J. Bernstein, Tanja Lange, and Ruben Niederhagen. Dual EC: A Standardized
Back Door, pages 256-281. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences
of pseudo random bits. In 23rd FOCS, pages 112-117. IEEE Computer Society Press,
November 1982.

Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric en-
cryption against mass surveillance. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO 2014, Part I, volume 8616 of LNCS, pages 1-19. Springer, Heidelberg, August
2014.

Marco Cesati. A new idea for RSA backdoors. https://arxiv.org/abs/2201.13153,
2022.

28

https://mailarchive.ietf.org/arch/msg/tls/i9blmvG2BEPf1s1OJkenHknRw9c/
https://mailarchive.ietf.org/arch/msg/tls/i9blmvG2BEPf1s1OJkenHknRw9c/
https://arxiv.org/abs/2201.13153

[CGH18]

[CMG*16]

[CNET14]

[Cop97]

[Cop01]

[CRT*19)

[CS03]

[DGGT15]

[DGTI8]

[DPR*13]

[DPSW16]

Shaanan N. Cohney, Matthew D. Green, and Nadia Heninger. Practical state recovery
attacks against legacy RNG implementations. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 265-280. ACM
Press, October 2018.

Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan
Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla, and
Hovav Shacham. A systematic analysis of the juniper dual EC incident. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 468-479. ACM Press, October 2016.

Stephen Checkoway, Ruben Niederhagen, Adam Everspaugh, Matthew Green, Tanja
Lange, Thomas Ristenpart, Daniel J. Bernstein, Jake Maskiewicz, Hovav Shacham, and
Matthew Fredrikson. On the practical exploitability of dual EC in TLS implementa-
tions. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014, pages 319-335.
USENIX Association, August 2014.

Don Coppersmith. Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology, 10(4):233-260, September 1997.

Don Coppersmith. Finding small solutions to small degree polynomials. In Joseph H.
Silverman, editor, Cryptography and Lattices, pages 20-31, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

Sherman S. M. Chow, Alexander Russell, Qiang Tang, Moti Yung, Yongjun Zhao, and
Hong-Sheng Zhou. Let a non-barking watchdog bite: Cliptographic signatures with an
offline watchdog. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part I, volume
11442 of LNCS, pages 221-251. Springer, Heidelberg, April 2019.

Claude Crépeau and Alain Slakmon. Simple backdoors for RSA key generation. In
Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 403-416. Springer,
Heidelberg, April 2003.

Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and Thomas Risten-
part. A formal treatment of backdoored pseudorandom generators. In Elisabeth Oswald
and Marc Fischlin, editors, FUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
101-126. Springer, Heidelberg, April 2015.

Naganand Doraswamy, K. Robert Glenn, and Rodney L. Thayer. IP Security Document
Roadmap. RFC 2411, November 1998.

Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergnaud, and Daniel
Wichs. Security analysis of pseudo-random number generators with input: /dev/ran-
dom is not robust. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 2013, pages 647-658. ACM Press, November 2013.

Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and Joanne Woodage.
Backdoors in pseudorandom number generators: Possibility and impossibility results.
In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814
of LNCS, pages 403-432. Springer, Heidelberg, August 2016.

29

[DRO6] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol Version
1.1. RFC 4346, April 2006.

[drb] DRBG recommmendations from the x9.82 editing group. Document online, https:
//github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/
055%20-%20DRBG%20Recommy,20from%20X9 . 82%20Editing%20Group . pdfl

[Eng20] Lynn Engelberts. Analysis of the Micali-Schnorr PRNG with known factorisation of
the modulus. Master’s thesis, University of Oxford, 2020.

[FKK11] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets Layer (SSL)
Protocol Version 3.0. RFC 6101, August 2011.

[FM18] Marc Fischlin and Sogol Mazaheri. Self-guarding cryptographic protocols against al-
gorithm substitution attacks. In Steve Chong and Stephanie Delaune, editors, CSF
2018 Computer Security Foundations Symposium, pages 76-90. IEEE Computer Soci-
ety Press, 2018.

[FS97] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and rabin
bits. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 267-279.
Springer, Heidelberg, May 1997.

[FS00] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and Rabin
bits. Journal of Cryptology, 13(2):221-244, March 2000.

[FVZ13] Pierre-Alain Fouque, Damien Vergnaud, and Jean-Christophe Zapalowicz. Time/mem-
ory/data tradeoffs for variants of the RSA problem. In Ding-Zhu Du and Guochuan
Zhang, editors, Computing and Combinatorics, pages 651-662, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg.

[FZ14] Pierre-Alain Fouque and Jean-Christophe Zapalowicz. Statistical properties of short
RSA distribution and their cryptographic applications. In Zhipeng Cai, Alex Zelikovsky,
and Anu Bourgeois, editors, Computing and Combinatorics, pages 525536, Cham,
2014. Springer International Publishing.

[Grel3] Matthew Green. A few more notes on NSA random number generators.
https://web.archive.org/web/20230109062504 /https:/ /blog.cryptographyengineering.com /2013 /12 /28
few-more-notes-on-nsa-random-number/, December 2013.

[har] DRBGs based on hard problems. Document online, https://github.com/
matthewdgreen/nistfoia/blob/master/6.4.2014%20production/039%20-%
20DRBGs?%20Based’,200n%20Hard’20Problens . pdf.

[HCIg] Dan Harkins and Dave Carrel. The Internet Key Exchange (IKE). IETF RFC 2409
(Proposed Standard), 1998.

[HMO09] Mathias Herrmann and Alexander May. Attacking power generators using unrav-
elled linearization: When do we output too much? In Mitsuru Matsui, editor, ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 487-504. Springer, Heidelberg, December
2009.

30

https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/055%20-%20DRBG%20Recomm%20from%20X9.82%20Editing%20Group.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/055%20-%20DRBG%20Recomm%20from%20X9.82%20Editing%20Group.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/055%20-%20DRBG%20Recomm%20from%20X9.82%20Editing%20Group.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/039%20-%20DRBGs%20Based%20on%20Hard%20Problems.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/039%20-%20DRBGs%20Based%20on%20Hard%20Problems.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014%20production/039%20-%20DRBGs%20Based%20on%20Hard%20Problems.pdf

[Hof10]

[Hof12]

[HS09)

[Int11]

[Joh04]

[Joy08]

[Jutos]

[LLL82]

[MS90]

[MS91]

[Nat15]

[NS06]

[Pat12]

[PLS13]

Paul E. Hoffman. Additional Random Extension to TLS. Internet-Draft draft-hoffman-
tls-additional-random-ext-01, Internet Engineering Task Force, February 2010. Work
in Progress.

Paul E. Hoffman. Additional Master Secret Inputs for TLS. RFC 6358, January 2012.

Paul E. Hoffman and Jerome Solinas. Additional PRF Inputs for TLS. Internet-
Draft draft-solinas-tls-additional-prf-input-01, Internet Engineering Task Force, Octo-
ber 2009. Work in Progress.

International Organization for Standardization. ISO/IEC 18031:2011 information
technology—security techniques—random bit generation. Online documents., 2011.
https://www.iso.org/standard/54945. . html.

Don B. Johnson. X9.82 part 3: Number theoretic DRBGs. Presented at the NIST RNG
Workshop, July 2004. Slides online: https://csrc.nist.gov/CSRC/media/Events/
Random-Number-Generation-Workshop-2004/documents/NumberTheoreticDRBG.
pdf.

Marc Joye. Rsa moduli with a predetermined portion: Techniques and applications.
In Liqun Chen, Yi Mu, and Willy Susilo, editors, Information Security Practice and
Ezperience, pages 116-130, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Charanjit S. Jutla. On finding small solutions of modular multivariate polynomial
equations. In Kaisa Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages
158-170. Springer, Heidelberg, May / June 1998.

Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and Laszlé Lovasz. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261(4):515-534, December 1982.

Silvio Micali and Claus-Peter Schnorr. Efficient, perfect random number generators. In
Shafi Goldwasser, editor, CRYPTQO’88, volume 403 of LNCS, pages 173-198. Springer,
Heidelberg, August 1990.

Silvio Micali and Claus-Peter Schnorr. Efficient, perfect polynomial random number
generators. Journal of Cryptology, 3(3):157-172, January 1991.

National Institute of Standards and Technology. Results of a recent FOIA for NIST
documents related to the design of Dual EC DRBG. Online documents., 2015. https:
//github.com/matthewdgreen/nistfoia/.

Phong Q. Nguyen and Damien Stehlé. Lll on the average. In Florian Hess, Sebastian
Pauli, and Michael Pohst, editors, Algorithmic Number Theory, pages 238-256, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

Constantinos Patsakis. Number theoretic SETUPs for RSA like factoring based algo-
rithms. J. Inf. Hiding Multim. Signal Process., 3(2):191-204, 2012.

Nicole Perlroth, Jeff Larson, and Scott Shane. N.S.A. able to foil basic safeguards of
privacy on web. New York Times, September 2013.

31

https://www.iso.org/standard/54945.html
https://csrc.nist.gov/CSRC/media/Events/Random-Number-Generation-Workshop-2004/documents/NumberTheoreticDRBG.pdf
https://csrc.nist.gov/CSRC/media/Events/Random-Number-Generation-Workshop-2004/documents/NumberTheoreticDRBG.pdf
https://csrc.nist.gov/CSRC/media/Events/Random-Number-Generation-Workshop-2004/documents/NumberTheoreticDRBG.pdf
https://github.com/matthewdgreen/nistfoia/
https://github.com/matthewdgreen/nistfoia/

[Ptalb]
[PW20]

[RDOS]

[RH23]

[RS06]

[RS09]

[RTYZ16]

[San17]

[SF07]

[shalb]

[SIG13]

[SPWO06]

[WKM16]

Thomas Ptacek. Is Extended Random A Malicious NSA Plot?, August 2015.

Thomas Peyrin and Haoyang Wang. The MALICIOUS framework: Embedding back-
doors into tweakable block ciphers. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 249-278. Springer,
Heidelberg, August 2020.

Eric Rescorla and Tim Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, August 2008.

Keegan Ryan and Nadia Heninger. Fast practical lattice reduction through iterated
compression. Cryptology ePrint Archive, Report 2023/237, 2023. https://eprint.
iacr.org/2023/237.

Eric Rescorla and Margaret Salter. Opaque PRF Inputs for TLS. Internet-Draft draft-
rescorla-tls-opaque-prf-input-00, Internet Engineering Task Force, December 2006.
Work in Progress.

Eric Rescorla and Margaret Salter. Extended Random Values for TLS. Internet-Draft
draft-rescorla-tls-extended-random-02, Internet Engineering Task Force, March 2009.
Work in Progress.

Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography:
Clipping the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 34—64. Springer,
Heidelberg, December 2016.

Antonio Sanso. How to try to predict the output of micali-schnorr generator (MS-
DRBG) knowing the factorization, 2017. http://blog.intothesymmetry.com/2017/
12/how-to-try-to-predict-output-of-micali.html.

Dan Shumow and Niels Ferguson. On the possibility of a back door in the NIST
SP800-90 Dual Ec Prng. Presented at the Crypto 2007 rump session, August 2007.
Slides online: http://rump2007.cr.yp.to/15-shumow.pdfl

SHA-3 standard: Permutation-based hash and extendable-output functions, 2015-08-04
2015.

Excerpt from 2013 intelligence budget request: SIGINT ENABLING.
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/
us/documents-reveal-nsa-campaign-against-encryption.html Media leak, 2013.

Ron Steinfeld, Josef Pieprzyk, and Huaxiong Wang. On the provable security of an
efficient RSA-based pseudorandom generator. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 194-209. Springer, Heidelberg, De-
cember 2006.

Stefan Wiiller, Marian Kiihnel, and Ulrike Meyer. Information hiding in the RSA mod-
ulus. In Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia
Security, pages 159-167, 2016.

32

https://eprint.iacr.org/2023/237
https://eprint.iacr.org/2023/237
http://blog.intothesymmetry.com/2017/12/how-to-try-to-predict-output-of-micali.html
http://blog.intothesymmetry.com/2017/12/how-to-try-to-predict-output-of-micali.html
http://rump2007.cr.yp.to/15-shumow.pdf
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html
https://archive.nytimes.com/www.nytimes.com/interactive/2013/09/05/us/documents-reveal-nsa-campaign-against-encryption.html

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended ab-
stract). In 23rd FOCS, pages 80-91. IEEE Computer Society Press, November 1982.

[YY96] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or: Should
we trust capstone? In Neal Koblitz, editor, CRYPT0O’96, volume 1109 of LNCS, pages
89-103. Springer, Heidelberg, August 1996.

[YY97] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptogra-
phy. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62-74.
Springer, Heidelberg, May 1997.

[YYO06] Adam Young and Moti Yung. A space efficient backdoor in RSA and its applications.
In Bart Preneel and Stafford Tavares, editors, SAC 2005, volume 3897 of LNCS, pages
128-143. Springer, Heidelberg, August 2006.

A Appendix
A.1 Proof of Theorem [3

In the initial game, Game 0, the adversary calls the Init oracle exactly once at the start of the
game to obtain its initial input string B. It can query the Func oracle with an input X and a sign
sgn € {+, —} to get output F*&*!(X). For convenience, we allow Func to sample its outputs lazily
with a table T', as long as it maintains the permutation property.

It is clear that

| Pr[A[Funcy)(Inito()) = 1] — Pr[A[F, F~(B) = 1|b + ${0,1}"*]|

Initg() Funcy(X, sgn)
1. by...b, < ${0,1}* 1. if T[sgn,X| # L then return T'[sgn, X]
2. T+ || 2. out < T[sgn,X| < $[1,N]\ S%&"
3. 51,87 «{} 3. T[—sgn,T[sgn,X]] + X
4. return by||...]||by 4. 5% — 5% U {T'[sgn, X|}

5. S5 SR U (X}

6. return out
In Game 1, the Init oracle chooses b; by sampling uniformly random z; and setting b; = z;
mod 2F to its low-order bits. The Micali-Schnorr paper states that this distribution is statistically
indistinguishable from b; with negligible bound ¢, so

| Pr[A[Func,](Init; () = 1] — Pr[A[Funco](Inito()) = 1]| < «.

We also pick a random seed s from [1, N 2*]“], which will be used in later games. Additionally, the
Func; oracle sets a bad flag if any queries or responses collide with s, any z; or their high-order
bits. This is an internal, administrative change and is undetectable.

33

Init; () Func; (X, sgn)

1. 20,...,2n < $[1, N] 1. if T[sgn,X| # L then return T'[sgn,X]
2. s+ $[1,N27¥] 2. out < T[sgn,X] < $[1, N]\ S®&"

3. for ¢ from 1 to h 3. for ¢ from 0 to h

4. b, + z mod 2k 4. ifout =z or out = [27Fz] + 1

5. T «+] 5. bad ¢ true

6. ST,8~ «{} 6. ifX=zorX=s

7. return by||...||bx 7. bad <« true

8. if X =[27Fz|+1

9. bad < true
10. T[—sgn,T[sgn,X]] + X
11. S%e" «— S%e™ J {T[sgn, X}
12. §7%en — §=seh U { X}

13. return out
In Game 2, the Funcy oracle programs the function F' when the bad flag is set through the
tables T" and IT. By the fundamental lemma of game playing, it holds that:

| Pr[A[Funcsy|(Inits()) = 1] — Pr[A[Func;|(Init;()) = 1]| < Pr[bad is set in Game 1].

We give an upper bound for this probability.

For any output string by ..., by, there are at least | N 2_kJ possible values for each z;, and all of
these values are equally likely and independent of the output of the Func; oracle. The probability
that any query X to Func; equals any z; can therefore be upper bounded by # using a union
bound.

For each b;, there are at least |[N27%] — 1 possible values for [27%2;|. Each of these occurs
with probability at most QICTH, and they are likewise independent of Func’s outputs. Therefore the
probability that any query to Func; equals [27%2;| + 1 for some z; is bounded above by LK‘,QIC

The bad flag can also be set if the Func; oracle’s random choices collide with z; or L2_kziJ +1.
Each value of out is sampled independently of the values of z;, and it is chosen uniformly from a set
of size at least N —q. In any query, there are 2h values that will trigger a collision. Then probability
that such a collision occurs over all queries is at most 0]\Q,qu). Therefore, the total probability that

2h hq | 2h
Now t N+ s, and

the bad flag is set in Game 1 is at most

2h h 2h
q+q+ q

N2 F "N T N—¢

| Pr[A[Funcsy](Inits()) = 1] — Pr[A[Func;|(Init;()) = 1]| <

34

Funcy (X, sgn)

1. if T'[sgn,X| # L then return T'[sgn,X]
2. out < T'[sgn,X| < $[1, N]\ S
3. for i from 0 to h

4. if out = z; or out = [27Fz | +1

D. bad « true

6. if sgn = 4+ and out = z;

7. out + T[+, X] « $[1, N]\ {St U {z:},}

8. if sgn = — and out = [27%z; | +1

9. out + T[—, X] « $[1, N]\ {S™ U {[27%2] + 1} ,}

10 if X =zo0orX=s

11. bad < true

12. if sgn=—and i >0 and X = z
13. out «+ T[—, X] « [27%z 1| +1
14. else if sgn =+ and X = s

15. out < T+, X] < =

6. if X =[27Fz] +1

17. bad < true
18. ifsgn =4+ and 7 < h
19. out « T+, X| < zi11

20. T'[—sgn,T[sgn,X]] < X
21. %" «— S%en U {T'[sgn, X|}
22, ST — ST U {X}

23. return out
In Game 3, the Inits oracle programs F so that z; = F((|27%z;_1|+1). This is just bookkeeping:
certain entries of tables T and T~ are set earlier than they would be set by the Funcs oracle,
and some entries of T are set that would not be set by Func. Since the adversary cannot tell
which entries of T" have been initialized (except for its trivial knowledge of which entries have been
initialized by queries to Funcs), these changes are undetectable. Therefore

Pr[A[Funcs|(Init3()) = 1] = Pr[A[Funcsy](Inity()) = 1].

35

1. 20,...,2n < $[1, N]

2. s+ $[1,N27#]

3. T+

4. ST,87 « {z1},{s}

5. T[+,s] < =1

6. T[—,z1] < s

7. for ¢ from 1 to h

8. b « z mod 2F

9. ifi>0then T[—, 2] + |2 Fz_1] +1
10. T+, T[—, z])] < 2
11. St « ST u{z}
12, S« S~ u{[27Fz] +1}

13. return by||...||bs

Finally, in Game 4, we can remove all unreachable code from the Func oracle. All the pro-
gramming in lines 3-17 is now unreachable, since queries on any of the relevant points have been
preprogrammed by Init. This pruning does not alter the behavior of any oracle.

Pr[A[Funcy|(Init4()) = 1] = Pr[A[Funcs](Init3()) = 1]

36

Init4() Funcy(X, sgn)

1.

2.

10.
11.
12.

13.

20, -y 2n < $[1, N] 1. if T[sgn,X]| # L then return T'[sgn,X]
s < $[1,N27F] 2. out < T[sgn,X] < $[1, N]\ S®&"

T+] 3. T[—sgn,T[sgn,X]|] «+ X

ST,87 + {x1},{s} 4. 588" «— 5% U {T'[sgn, X}

T[+,s] < 21 5. S «— gTsen U { X}

T[—,z1] < s 6. return out

for i from 1 to h

b; « z; mod 2F

if i > 1 then T[—, 2] «+ |27%2_1] +1
T[+,T[—,z]] + z

ST« STt u{z}

S~ STu{|27F%]| +1}

return byl ... ||by

We now claim that the Init oracle of Game 4 honestly simulates the Micali-Schnorr PRG
instantiated with the lazily-sampled random permutation F' defined by table T, except in the case
where two of zp, ...,z collide. We implicitly define internal states s;11 = [27%z;] + 1 for i from 1
to h, and the initial seed is s.

(h+1)?

By the birthday and union bounds, this happens with probability at most “—5~. Since the
Func oracle faithfully computes F and F~! on its inputs, we have that

| PrLA[F](PRGIF](20) = 1|20 < $[1, N2¥] — Pr[A[Funcy](Init) = 1]| < .

h+1)?
2N

37

Collecting bounds from earlier gamehops gives us that Advii?(A) =

| Pr[A[F|(PRG[F,F~'() = 1)] — Pr[A[F, F~|(B) = 1|B + ${0,1}"*]

< | Pr[A[F](PRG[F, F7]() = 1)] — Pr[A[Funcy)(Init4()) = 1]|
+| Pr[A[Func,](Init,()) = 1] — Pr[A[F, F~1](B) = 1|b < ${0, 1}
< (h;NW + | Pr[A[Funcy](Init4()) = 1] — PrlA[F](B) = 1]b + ${0, 1}"¥]|
< (h;NW + | Pr[A[Funcs](Init3()) = 1] — PrlA[F, F~(B) = 1|b + ${0, 1}¥]|
< (h;]\fl)z + | Pr[A[Func,](Inity()) = 1] — PrlA[F, F71(B) = 1]b « ${0, 1}¥]|
< (1124—]\[1)2 + | Pr[A[Funcs](Inits()) = 1] — Pr[A[Func;](Init;()) = 1]
+| Pr[A[Func,](Init;()) = 1] — PrlA[F, F~(B) = 1|b + ${0,1}"¥]|
(h+1)2 2hq hq 2hq
= oN | N2k N+N—q
+| Pr[A[Func,](Init, () = 1] — PrlA[F, F71](B) = 1]b + ${0, 1}¥]|
< (h+1)* 2hg +@+ 2hq .

oN TNz R TN TN g

For values of ¢ and h that are polynomial in n = 1g IV, and k within the ISO standardized range,
this advantage is negligible.

A.2 Example parameters for eSP attack

The following 2048-bit modulus N = pq was generated such that 5°°4 = 1 (mod p — 1) and 5°%* =
187 (mod g —1), for use in the eSP attack with exponent e = 5, ¢, = 187, and cycle length ¢ = 504:

N =

0xfad351292767d540d8dd2ef 15b39b02e29b56ad2125add6964203eb0029ba7aa8d44c8eb5
65df7818f6eb959c37£83349ec4b1514ed42741b8e772028db779£5e362234b782b9064c
ef07dead66bced100eb71cc8bf7£1325959eb304e90ecf6e53c4eff9708ebd3c7641ea2b
2ed50fbc679b4f0e06ad60b8e70c7836a5£99e1571be6194afe04c81a6eef8281bb43b99
f17ee715e5f1a95e36aee8c4eb87572a8ff108acdf29136c£543bb8831074b71fc63cc4d4
4ca4d3d7811b6cdca3d33ec889dddc77828510f£0d10ac07b0£691ce2995a72137abf32816
eed9cd322075e7450326f£2fba0b65c19c477d61407eccf48£5857b5f£95¢cf4c63702b9f
09f9ca83

p:

0x9dad39¢c726a6c69087a81e49644d5e2d28937de5ba08c475a615813025318e2ae05£3174
8f685c68£02b6883£10d407012970b50b28da780a6b157b7¢c80011a3857a877d56b5a8d4
£c0a96bf62b7ec86d735de29628e230665356£535df7664723659f8f88847baaf9526393
ab21

q:
0x1966956586a77b7e1fda36£722223a66b161£10027c53b2b39fde757e01fabef8b79e62e

38

0b423546ebc2473011¢c3a79b4379788fff85eb743bfdbfe1d679511042295e5c6a5cf634
b650bf83a997ecef1abef4467e02103de493f1£269bdb9088c6bc0£f114971d05¢c983£499
a48551bdeb901d3bc3290fbbf49368e5d9495b3922bdc03a9ec38e49aeeb6f0cedc78ale2
cb723

We used 504 for this example because it is highly composite and so £°%* —1 has small polynomial
factors, which makes 559 — 1 much easier to factor. Example verification code for these parameters
can be found in Appendix

A straightforward algorithm for generating such a modulus would be similar to Algorithm

Algorithm 7: eSP parameter generation.

1 Choose an exponent e and cycle length ¢.
2 Generate a prime p using Algorithm
3 Choose small ¢, > 1, such that finding roots of degree ¢, polynomials mod ¢ is feasible.
4 Take subsets of factors of e — cq, until a subset is found where ¢ 214 [L; ¢ is prime.
(This ensures e’ = ¢, (mod ¢ — 1).)
Output: Public information (N = pq,e),
secret backdoor information (p, ¢, ¢, ¢q).

However, the polynomial z — cq for ¢4 > 1 tends not to factor as well as zf — 1. This means
et — cq tends not to have as many small factors, so Algorithm E] is much slower than generating two
primes using Algorithm [4] especially if the output needs to be precisely a certain size.

To quickly make N exactly 2048 bits, we used the following alternative algorithm for Algo-
rithm Instead of first choosing ¢, and then trying to find ¢ of the right size, choose d such
that ¢ ~ e’/d would make pq the right size, then set ¢ to the first prime less than e‘/d. Then
Cq = e’ mod (¢ — 1) =~ d(q — €*/d), which is likely to be small for appropriately chosen parameters.

Constructing this exactly 2048-bit N with such a small ¢, required a few hours of trial and
error to find the appropriate parameters, but we believe it should be possible to improve this.

A.3 SUS Attack Parameter Selection

We give below a variety of parameters illustrating the tradeoffs in SUS parameters. The modulus
sizes and output lengths are chosen according to the ISO standard for MS DRBG. The parameters
were generated using the informal psuedocode in Algorithm

15360-bit N, 2°! undiscoverability The MS DRBG uses this modulus size for the 256-bit
security level.

F(x) = 23500 4 g3160 _ 52580 4 22443 _ ;2043 _ 41070,

Highest block of output needed is the 3500th.

We use t = 3 for Coppersmith multiplicity, giving lattice dimension 442.

We use exponent e = 41; outputs are k = 14608 bits, so that unknown part of each state is 752
bits — this is 2n/e, rounded up to the next multiple of 8, as would be used in ISO MS DRBG.

Exploitation took 4 core-hours on an Intel Xeon E5-2699 v4 processor, using the flatter lattice

reduction library{'"| [RH23].
q can be any 901-bit prime; p is the following 14489-bit prime, such that f(e) =0 mod ¢(p):

"https://github.com/keeganryan/flatter

39

https://github.com/keeganryan/flatter

Algorithm 8: Strategy for generating SUS-backdoored parameters

1 For a given security level A, look up the standard value of Ig V.

10

For undiscoverability, N/p must be too large for ECM to find — say, 300 bits — giving an
upper bound on lg p.

Under ISO MS DRBG parameters, the unknown states are always at least 2 bits (and
when e is small enough, as large as (21g N)/e bits). Pick a plausibly small e, which might
need to be adjusted later. This determines the size R of the unknowns.

For a given number of nonzero terms m in the backdoor polynomial, and for this R and
upper bound on lg p, we can try various lattice constructions (by varying the multiplicity
and polynomial shifts). Using Condition [1| we can check how large the modulus p must be
for Multivariate Coppersmith to be expected to succeed. If this lower bound on Igp is less
than the upper bound on lg p from earlier, and if the lattice dimension is small enough for
LLL to be practical, then exploitation is possible for this m. Use the largest possible
value of m for better undiscoverability, or use smaller m (which gives smaller lattice
dimension) for more practical exploitation.

If practical exploitation is impossible even for m = 4 (the smallest nontrivial m), try again
with a larger e.

Pick a degree bound d for the backdoor polynomial. The entropy of the backdoor

polynomial is Ig (kfl). Increasing d gives the backdoor slightly more entropy (better
undiscoverability), but exploiting it requires PRG outputs as high as the dth block of
output (less practical exploitation). Moreover, if e? is more than a few hundred bits
larger than lg p, parameter generation may become harder.

Generate a random monic polynomial f of degree d with m nonzero coefficients, half of
which are +1 and half of which are —1.

Find prime factors of f(e) using ECM until the rough part @ is smaller than the upper
bound on lgp (ideally, much smaller).

Try combinations of the factors found by ECM until p = @ x (other factors) + 1 is a prime
of the correct size.

Generate a random prime g so that pg = N is the correct size.

Output: Public parameters (N, e); secret backdoor information (f,p, q).

40

74e296864a75a92b0bbe2be4e81c58a0e1c846cddfbe7b22d67fa97dclec19006aa74dd1eef5ddbf5e47c1b5f20fa69f0e66f6b6e94e998ce5b3e250d22aa5b0
87a8ed6£74137178£40c690c97dd087f44bda92223c79161582a9588bbad667a357a7273d4fe92e11a2157bb73d369442b6bc12c737ec9311442¢3619562d62¢
51f43£7c0298559fc347c1390e796c408c7f105ac32a21c8221d661d4334537c8a4¢c298611da287389190fb1a8cc087df9d2ad7d6e3cd8fc7ff82afd5e5bb163
ab6a075e069ab30568b0664e5640c9c34d93e285d4849dd223232a54faf53c501725d6b141188c8d7480b45497fee122ef7783£00d87cd04c37afd7be98b58cc
58573110d931be42a5027d746201£871a9adbeadd3497d51a291ee6df0cc94a233ba86fdcad7a94ad81f0b9f76d804f c15bb12bc93bdd587e312eb544bb290da
8beb77ab5d0e5d07b3£5a00£115200£13840c389d91685670e93e9c6754bdcec0c5b99a54b902b04becb7a3b639b0c1a370588a98d38124092c7a79cd4acaabe
06b782b602636249eab38fbbf360e9fbf56b1294fac8f82d1e76d3173afc495¢c763e2ddb2b528740b4b9bf£95166fe464a2baf7dc248625415e28c6c23¢c2603¢c
1033547824172de2716111594518df£62125£f8cbf8320b60daala01f7fa9c1d659bc0eeb3078514c160ebeefad26eaa720e47e14554206e28dfbfb86fded6867
1a34d0d4clcac36af664eafc3e59b240902aaed87ae4cb2f5d7d1844c62fa4859d55c4a74c3664c812f50c78635529f1¢c473275b4716d09ac5dbe01322d04eeb
ae9c7ab4729b9baa30f84abaf0abfcO0ff01e28ab0f2ee2e47081c551c2a7ede326bb6aaabb927e1b687a60511f4a3aa2a6890c111£06986020c91dc871bbbf3e
7991775cdc52d4459a8584b8c538db61baa78e85e51281113854ba972f9dc6c4736b6a93fac78e3d6285063faaf559fb3bdcel1e0529bdb4dbb7aad46254a99d2
06d832ece82ac777ddec46dd4bead320£58d9e9d60c38edef733£03d6d4823944b2eab82cebdbbed7bebecdf£8f32e22db44e4163622605fe898d1e5ff3faabd
cd5958b0612cc281df7e2ba2473c1f115b8e135f93d861704fdfeb7eb2489e47ed390b3c22468ba7656db0ff7fcelbd7a3c2469a0b5920eb6cc94f9ed32ec579
£058fb16c682ab18720f9c237a59909bf6df7873a539139e5bdf489e59ee51f2ab0ec169d6dcceee32aeed46a163b80854b86a9a05e7440d8de40c05c0£8e225
a672a1594e64974b6427814f cbd6fe83314a13f8aa4b28d884b1090d32917da93141731086£4cb0430e0e7960ad90463c85741e4dd1dd3744d494ec3824a4115
43b67ffbc04737042fd276a5712db5402cd386e9dab9303256f6c98c830f75adfabdb0c5b289ba85bf27289749d9ba22eff7b3045£8712ad99bf0afb217948ed
690eebeabaal89b53e502e151a7578ee0777faa4c9281ab1e959f05366444123c0eda329a99b6edfbabd67ed52bdb25b821fb1914f2de1e8cf26£04b21a8716d
fefc99737426103a48dc30£73142ce35bbd262b2b163776e948£534113acf1d85a675e2df7a7c57d80823085587099f947ee53d316c10128315b78706fb717£9
fbeel2eabccaacbf 1£bc3109a98a024375£0195393003657aabeabdac138c37ad92fd41f7ee440802ada7285f16082e0df0f3b9859faf9344b7129935725fa60
€17¢141023679ca9a19022e43d5d790db814df33112fd3cb45d90e533826bc7321bcdf924bcde4e361e7b369chb7606674106f2a7a56c9d066e44bb7216e4a294
2159dad9c1635bfb1fblce072064ba3bbbcbala3e11a3a7499836554055f09cff760b1fc394b3af8eb25079801fc5be37ab159b3d990b02baaa8ee8a7f9596b9
e2bc7e0ebad282323598817e246cd716ef632bb77b5bbd40bf 386808a03d939353b8a80e4766a617d61004e723eec6ecd856f79acac1b4270a896fc1bf71d701
8f06e594ad226a8293426050af2df c4e4d9b9d7clale25dba48ab39ad5f3b2414e7e2e93¢c1c068b804da36fabe0d669c8e7addb57670fdba3562396ea60430026
d93ealec5761209€92192f5272f8ec17bfb6f14b9c2f£325bf 15ae654£92d203£25b09834deab37bca75ee85c8cdea’73593e4691948a09b0666df9609c1da38
a891524d683ac6811dbab641d507dee4304d3ad99eeddb4c6efIb4e02e27893318d6dc4d2f7c10f9a9d61444054d877ce056056bb1d17£0734767032c0d754d8c
a6efbOb5£7410cb93980d677d58feaB806df6d8a064d95c687ce99951e616c71762fdbbd93bbf2b8fbd9aa67acefe3a417£28478d534f7fee12dd0c0520ebaf92
a45da4d54720c0792a1655£04e£713583447c3cabff548d008a6830612006e4d61c8300a452f9db7cac30396£37d91d1aa73671c070cabedd33a0d904a6b3b35
e0463145423f£32a2bfe95e9f5395bae978£7dc63d5f68bee3f4c1b6752031cacd9806409136e513e056b5b2fd8d645ef3e3829a3c090c2020aab8e794dbce01
4913e2453950cc33dc50b3c4e0bc815

15360-bit N, 2°° undiscoverability, smaller outputs If we use e = 39 instead, so that the
unknown part of each state is 788 bits, the multivariate Coppersmith attack no longer is expected

to work with multiplicity 3, so we use multiplicity 4, giving a 1443-dimensional lattice.
F(x) = 22850 4 g2499 _ 52025 _ p1495 _ 1243 4 4173

Highest block of output needed is the 2850th.

Exponent e = 39; outputs are 14572 bits (so that unknown part of each state is 788 bits).

We use multiplicity ¢t = 4 for Coppersmith, giving lattice dimension 1443.

Exploitation took low hundreds of core-hours on an Intel Xeon E5-2699 v4 processor, again
using flatter.

g can be any 1023-bit prime, p is the following 14337-bit prime such that f(e) = 0 mod ¢(p):

1352e7566c191082295921c08f33ebe227d7e281753cb5325912c2e7ae997466c9d0379£d31£5690687d21650c2c4e3£90e7185a1bcbc3bb52f£449dac63816b5
e0687a1dcf735e661dfbce70da90ad4fe9e82f6ecf2f192746186de286b3c6cIebl11£485bfc8eb2139€98d1796bf6119f4376eb95826043d4de08523fc3b709a
af5c79f5b640e94dfb74e72119e534f0ace076faad75b4ce13ee648281d35060a97461ae8a33b82608ac87500836a2a669a368959673128b24f72723725e53e9
5da40e77475b748£7c059777dc7dcc951818b661c9848e01d4a72bbde9afbbdc46df82ee656£000315c3f84a4c1e393088cad1d503e45a6977d7d7bcae315749
4c904d8££20d0eb8e2c4dcbc8b294132a4e776195c460f1f4ea668bdc6922aeb93693fcf2c98088e469cc577306629aa59b084d3a7fcel156bdd55001£50b55b3
04e9fc3c19aa1377a579208229b857cdce2901c1507d34d0e10ee86£02530a20f£51e6d70d2470edd34db9c8364d89ec590efal1787990391a454dbd7abe53817
£b69d607809a81fbc8bc051dd158b7634e00d56d50391acdd888bdde3bc0457d5e98bf49c375aef80a7bd37b54ae1078b3d2101a801581841f5fee0074abdb4f
574c507ac4a75f£152f776b294038869a50f8cd25¢c8d772a3a834a23ae0b658be368018d57a8¢c4e75120103b325d3aaed546742e6ab6be6707£68d29b40d5519
¢5229522eb4485a419becd5fc41b8ab3f5adace6387709¢90c2a841a8f75a09f6cc471b67355bdceccae31a903d1a96ffcb9c8cObe89e5£8e852269554c2b563
96cd5e97c2f6222316daf97342c13a7d5a3b6c0474£11320c667976ee69d1068bc97de8a45291c63d78069e0ddea812e9d70f4f39cal6cc2132c6a71f6d9alce
63fda74cab409af0b8f0ca924c391e2c6ffda7219c5e75c3e481d7486£a23027915679316f 1e2ed7e67d1ba03af41a3d23e2b3dc20c218c3e7aea0862cd3c1al
£7b8064428e3fa4b5760d514def9304b1901828e7f26fe4dad1d1d67bf9d654928cd162ce508942bb5810a35595c9c90f380f0bacd4b7059c4eab08cc8f44£32
b4d3e7307c136eb7153d57a2a0147b09b5415e902a28f abbf 10b422922680774500f7e0fbf9989425c514318f35f6747efd8b9dbe27927903371a24cd10ec81b
6cbb5ca0743e30f46e8dc48eac367bc7929fcc6ef757a3c03ec14d3059808f3b8617babblc7d391dafee049c51b92a2cacbabe38dd6fdefd826649686e06c4300
dcea9faf03535a75e79319cb3e401eaddb8b239bfb439057e6d1cfc343e92936a4ec8f85453db88ec47fe936c034a1245e4d6bbcaf6897b0a942888d1eaac86c
09a8dedcba27c4c5548f1ccbcb6f77e67498c8ed964013156c0ceb57ed7d7579ee384171632799241dd0b3677£93b27fea2a38265ec32020101b98c5fb3e67b5b
3bcc578c6cb6e1a32¢0308ae2229173a03313169464b6d1b389631£4£448658dc5a9d60a0c7c87a74569ad47efb634fd1104£89dd82504bc64abbbaf83£f591c3cf
0£b0a7d972afcOcdc4ebdccbd4abecdd7aabadb8ale9258£558a44b7757£7a94fac80e16c931a4£73£3bal1£22120eb9770a76b01e4b90e9b9d2099b92dc28£dd8
9be42a4bd46c25bdf926961eec52deb8098c4e01e397605ee64dd25437ee198fdfd95935762a5845c80529e81226be15af6ff8a2508d5969cdd6e867a61d0650
02b230b2d9df0a0b7aef08ac3a28be9adcB84af228adaaa27425b996bbfd8b18143352celea2eff4c7a56031912526b41abffd390711a50a45a3e811dc0245862
317c906£07977e8aa5b09fdc045101cce53e4fb6db11b8bad021c90£8917064358b2a982c094c378bab6d4b78f1b3c4dec5822c523b91b9749ef ce2f156fbf895
8e61d1d22448f4f8cc15cf53fa45536ff556e25bd8a85323£40156934f8d3ebc65d7cc78a9372a5c4a63d57316c301c72443868e840c629487b6c2c554dedf24
5ca72122e102d35113c5f£e13853190ce18ce6282bc79d1£f8e514a13b6f4b11e97e00ff8aeebd97b61d6365ca6d489584e96fc1069e£670£3b0fc1860b26e2a2
628b4a969ee000d8£d7027£7cd79b0140d7£430b1b79093cd1db79d9738882214b9843d32726124d6ac2£52585940d05738a237d0ce187317592b07880beffd7
dd787c6ebd3bd4afb3badbefbblfic3cl13afbe9b6a02ebe88£f0105a3dd1a8fa7105£1450d047d2a1c6b4dbb738d80331755aacd0fb8b951c31e467540726ff1c
b3c3ac3f3800eee956c14d0413fc94d9ded99201e07106a7030b7£2828067b9b640b425e3a3f2edc09589b9d55f6e18a4f38cfed91049b87d19d3d1ca83c79c4
a8055db2ab63981172c75895135de4d709e4c0606826£657586e6d1e6ea2309751db10650£80370845a3f4b156ac0638760bdf5d94bc70016a3f6e4clal816a2
€72103d1b08736710390e8470d9f1a534410c6d612dd8c6elaa2f77cef669b3d4ff37d63134d46445d323a3afe8e9c48cf8c9f00ce737cIba737ca07146£020e7

2048 bit N, 2! undiscoverability We now give parameters where exploitation is more prac-
tical but the backdoor is easier to discover. Compared to the previous parameters, the backdoor
polynomial f(x) has only 4 terms instead of 6, leading to a smaller lattice, but less entropy in the

41

choice of f. For these parameters we use modulus and output sizes corresponding to ISO’s 112-bit
security level.

F(z) = 2150 — 266 — 257 4 40

We decrease the degree of f to 150, so that the highest block of output needed is the 150th
instead of the 2850th. However, we need f(e) > ¢(p) (since f(e) must be divisible by ¢(p) and if
it is zero there is no backdoor). So decreasing the degree of f requires us to use larger e. Here we
use e = 65537, a commonly used exponent for RSA encryption.

Outputs are 1824 bits (so that the unknown part of each state is 224 bits, or twice the security
level).

We use multiplicity ¢t = 3 for Coppersmith, giving lattice dimension 70.

Exploitation took 3 core-minutes on an Intel Xeon E5-2699 v4 processor, using fplll.

q can be any 402-bit prime; p is the following 1646-bit prime such that f(e) = 0 mod ¢(p):

2ba2ab9c8a742e6c463d8be9ebadad76945325682bb788376bd30ce28c6df1913f3b0a9cfbb2cl11f
8ecB87e6e49a324ff9baa7756ad043085f01b343c676£97b8d684ad4de8bbad142ad22fb3acad3dabd
133ba2d002c32e2b8a5b3785b9176d4358dedf651d09aef345£3438bd91bd47971d7c1£0bf2326¢c
3770b0c3e23678d5650619c1c03c1c0e59d8cbed4e5f3ba03d1a3e3cec0cd049£d9047e3b097£148F
3f5af11073a1fc6e0£f3aa72072f061819aba80fbad03adb6a09ffaclead41bbcd4d021cd98£17e508
34c10b7a8c81

1024-bit N, no claimed undiscoverability Finally, we give the small parameters we used as
an example, with e = 17, and €?%° — ¢80 4-¢29 — 1 = 0 mod ¢ (V). These parameters were generated
for illustration purposes rather than with undiscoverability in mind.

N =
£17351a63a5b2042c08e423466bf654be5f59bcefd173eedbadd5c129439ed366da97ce83550e2a8
139bb932909107060c755eedf3784c725e57£6207ae2a7a44dbdaa96e1db5c169a4a31a254329026
0cb9688e27£6£424d79f140e978£6117adad579a05b7ce76b932ebaff3c7461fdac9c08112e7£9eb
1a64e0ba949bcf3f

which factors as
p =

00027c0e£9a55007e7£9£77963a9fb5£6d87b4e39a83a4ac2ddccee72a70ddfeb8277ade35ca7ff4
4f9a96a191fdb7adda2508ab2a4b212a8e7e3cf43a4760d4f

q:
0000612dbd55£d70051£60effe91db4427£b1939872660e8d161£23c193be198a9dda8a6e6613634
£176a41cbd8f789ea23a2eb19d07bc0c2fe67d152e388fb862f57dal

Example verification code can be found in Appendix

A.4 e =e¢pe;’ is insecure.

More generally, we consider exponents of the form e = epe; ' (mod ¢(N)) where eg and e; are
small. Such an exponent remains efficient to compute for any eg and ey if the factorization of N is
known.

Theorem 10. Instantiating MS PRG with exponent e = eoel_l mod ¢(N) for ey, ex small allows an
efficient state recovery attack from one output for state size r < n(1/(eq+ (621))), in time polynomial
in max(ep,e1) and lg N.

42

Security Parameter ~ n n/r Valid (ep, e1) pairs
80 1024 64 0
112 2048 9.14 2
128 3072 12 4
192 7680 20 13
256 15630 30 29

Table 1: Weak exponent pairs permitted by ISO parameters. We combine the bounds
on efficient state recovery from Theorem [10| with the parameters dictated by the ISO standard to
determine the number of vulnerable exponents for each security level.

Proof. This choice of e enables the construction of polynomial
f(s0,51) = 58 — (2851 + by)°.

This can be rewritten as f(so,s1) = sg’+>_:1q c;ist, which leads to a Coppersmith lattice generated
by the rows of basis matrix

(R R®c., R lce 1 ...
0 R4N 0 0
B=1|0 0 Ra™IN 0
|0 0 0 N

The dimension of this lattice is e; + 2 and the determinant is N1t Reoter(e1+1)/2 where R is the
bound on |sg|, |s1|. Heuristically, this allows recovery of sg and s; when R < N/(cotei(er+1)/2)
This is equivalent to eg + ej(e1 +1)/2 < n/r. O

We apply the bounds in the above theorem to the ISO parameters to see when a feasible attack
exploiting this weak choice of exponent is permitted by the parameter choices.

Using this heuristic and requirements on the structure of e, we can determine the average
number of valid (e, e1) pairs leading to a distinct weak e for which Coppersmith’s method succeeds
to recover the RNG state. The results are given in Table

It is possible to marginally improve the performance of Coppersmith’s method in several ways,
but this simple analysis suffices to demonstrate a few key points. First, the attack works in practice,
and it even works when the largest modulus size is used. Second, there are relatively few exponents
which may be weak with respect to this attack. Third, we will show that an attack of this form is
detectable, meaning if an attacker persuades a victim to use such a weak exponent, the victim can
efficiently determine if such an exponent is weak. Further, detection of a weak exponent yields the
factorization of the modulus.

Theorem 11. The special-form exponent backdoor is detectable. That s, given public modulus
N and exponent e, it is efficient to determine if there exist small ey, e1 such that e = eoef1
(mod (N)).

Proof. To find eg and e; with high probability, we can simply do a brute force over pairs of small e,
and e;, and check whether e = eoel_1 mod p(N). It is efficient because for the concrete parameters

43

proposed in the standard, the number of small (eg,e;) are limit enough to iterate through all of
them. Additionally, once such an equivalence is known, we have p(N) | ee; — ep and ee; — eg
only slightly larger than ¢(N), so it is easy to determine ¢(/N) and thus the factorization from
e, e, e1.]

Theorem 12. The special-form exponent backdoor is not plausibly deniable. In other words, it is
possible to distinguish between an exponent e € Z, () generated randomly and e = eoefl generated
to conform to the backdoor.

Proof. The proof of Theorem [11] gives a method to efficiently detect if e has the special form. To
complete the argument, we show that such an exponent is overwhelmingly unlikely to have special
form if generated uniformly at random. Since ey, e; < F, there are at most E? = O(lg2 N) special
form exponents and approximately N valid exponents. For the parameter sizes used in Micali-
Schnorr, this means we can detect whether the parameters were generated dishonestly with respect
to this backdoor with a false negative rate of 0 and a false positive rate of less than 271000, 0

This investigation of Micali-Schnorr with weak exponents demonstrates that the [ISO parameters
are incomplete, and not all attacks have been eliminated from the standard. Although this attack
is efficient, the disadvantage is that it is detectable, and would be difficult to perform in practice
without the threat of accidentally exposing the factorization of V.

“Nothing up my sleeve” parameters. Although having a large exponent may be unusual,
there is the possibility of it being disguised as a innocuous-seeming constant. The exponent for the
following public key is based on the digits of 7 = 3.14159. .., but the inverse of e is small: ¢ = 57!
(mod ¢(V)). Example verification code can be found in Appendix We leave it as an exercise
to the reader to recover the factorization.

e =
31415926535897932384626433832795028841971693993751058209749445
92307816406286208998628034825342117067982148086513282306647093
844609550568223172535940812848111745028410270193852110555964462
29489549303819644288109756659334461284756482337867831652712019
09145648566923460348610454326648213393607260249141273724593646
90828205057904964694145265114203583480543017755295093967247853
14473853768601703608298900695818792485036015795124469751158648
34232981702282978024512185647195845547038058553635079877067449
32000141643103568465954665107904174028590478966056256766324482
95783971037101323127767011065093483627404478045559895421373

N =
39269908169872415480783042290993786052464617492188822762186807
40384770507857761248285043531677646334977685108141602883308867
30576193822778965669926016060139681285512837742315138194955577
86861936629774555360137195824168076605945602922334789565890023
86432060708654325435763067908310266742009075311426592155742102
19181870219019805590650376833502499649775088745000720744322712
39798910830524344272834113148801575679297398424503041238163201
69252588963664576543485275388222643231464070095285873656756143
03577976593282594799360871751228487780301961771829747487554943
87948667227434687425583498529809870418645678480508315970197

44

A.5 Example verification code

These scripts are also available at https://github.com/ucsd-hacc/msdrbg_code

Verify SUS Parameters

N = int("Ox"
"£17351a63a5b2042c08e423466bf654bebf59bcefd173ee4badd5c129439ed36"
"6da97ce835502a8139bb93a909107060c755eedf3784c725e57£6207ae2a7a4"
"4dbdaa96e1db5c169a4a31a2543290260cb9688e27£6£424d79£140e978£6117"
"adad579a05b7ce76b932e5aff3c7461fdac9c08112e7f9e51a64e0ba949bcf3f",
16)

p = int("0x"
"00027c0ef9a55007e7£9£77963a9fb5£6d487b4e39a83ad4ac2ddccee72a70ddfe"
"b8277ade35ca7ff44f9a96a191fdb7adda2508ab2a4b212a8e7e3cf43a4760df",
16)

q = int("0x"
"0000612dbd55£d70051£60effe91db4427fb1939872660e8d161£23c193be198"
"a9ddaB8a6e6613634f176a41cbd8f789ea23a2eb19d07bc0c2fe67d152e388fb8"
"62f57dal",

16)

e =17

from math import gcd

phi N = (p - 1) * (q - 1) // gecd(p-1, g-1)

val = pow(e, 200, phi_N) - pow(e, 180, phi_N) + pow(e, 20, phi_N) - 1
assert val % phi_N ==

Apply RSA PRG update function

import random

states = [random.randrange(N)]

for _ in range(200): states += [pow(states[-1], e, N)]

Check relations
assert (states[200] * states[20] - states[180] * states[0]) % N ==
print ("The SUS parameters verify successfully")

Listing 1: Python script verifying our example parameters for the SUS attack.

45

https://github.com/ucsd-hacc/msdrbg_code

Verify eSP Parameters

N = int("Ox"
"£a4351292767d540d8dd2ef15b39b02e29b56ad2125add6964203eb0029ba7aa8d44c8e5"
"65df7818£6eb959c37£83349ec4b1514ed42741b8e772028db779£5e362234b782b9064c"
"ef07dead66bced100eb71cc8bf7£1325959eb304e90ecf6e53c4eff9708ebd3c7641ea2b"
"aed50fbc679b4£0e06ad60b8e70c7836a5£99¢1571be6194afe04c81a6eef8281bb43b99"
"f17ee715e5f1a95e36aece8c4eb8757aa8ff108acdf29136cf543bb8831074b71fc63cc44"
"4cadd3d7811b6cdca33ec889dddc77828510££0d10ac07b0£691ce2995a72137abf32816"
"eed9cd322075e7450326££2fba0b65c19c477d61407eccf48£5857b5f£95c£4c63702b9f"
"09f9ca83", 16)

p = int("0x"
"9dad439c726a6c69087a81e49644d5e2d28937de5ba08c475a615813025318e2ae05£3174"
"8£685c68£02b6883£10d407012970b50b28da780a6b157b7c80011a3857a877d56b5a8d4"
"f£c0a96bf62b7ec86d735de29628e230665356£535df7664723659f8£f88847baaf9526393"
"ab21", 16)

q = int("0Ox"
"1966956586a77b7e1£da36£722223a66b161£10027c53b2b39fde757e01fabef8b79e62e"
"0b423546ebc2473011c3a79b4379788ff£85eb743bfdbfel1d679511042295e5c6a5cf634"
"b650bf83a997eceflabef4467e02103de493£1£269bdb9088c6bc0£114971d05c983£499"
"a48551bdeb901d3bc3290£bbf49368e5d9495b3922bdc03a9ec38e49aee6f0cedc78ale2"

"c5723", 16)
e =25
c_q = 187
1 = 504
assert pow(e, 1, p - 1) == 1
assert pow(e, 1, q - 1) == c_q

Apply RSA PRG update function

import random

states = [random.randrange(N)]

for _ in range(l): states += [pow(states[-1], e, N)]

Check relations

assert states[0] % p == states[1] % p

assert pow(states[0], c_q, q) == states[1] % q
print ("The eSP parameters verify successfully")

Listing 2: Python script verifying our example parameters for the eSP attack.

46

Verify nothing-up-my-sleeve Bad-e parameters

exponent_PI = int(
"31415926535897932384626433832795028841971693993751058209749445"
"'92307816406286208998628034825342117067982148086513282306647093"
"84460955058223172535940812848111745028410270193852110555964462"
'29489549303819644288109756659334461284756482337867831652712019"
"09145648566923460348610454326648213393607260249141273724593646"
"90828205057904964694145265114203583480543017755295093967247853"
"'14473853768601703608298900695818792485036015795124469751158648"
"'34232981702282978024512185647195845547038058553635079877067449"
"32000141643103568465954665107904174028590478966056256766324482"
"95783971037101323127767011065093483627404478045559895421373")

is the product of two 1024-bit primes

int(
"'39269908169872415480783042290993786052464617492188822762186807"
"40384770507857761248285043531677646334977685108141602883308867"
"30576193822778965669926016060139681285512837742315138194955577"
"'86861936629774555360137195824168076605945602922334789565890023"
"'86432060708654325435763067908310266742009075311426592155742102"
"19181870219019805590650376833502499649775088745000720744322712"
"'39798910830524344272834113148801575679297398424503041238163201"
"69252588963664576543485275388222643231464070095285873656756143"
"03577976593282594799360871751228487780301961771829747487554943"
"87948667227434687425583498529809870418645678480508315970197")

= #®
=

The decryption exponent corresponding to the public exponent is 5.
import random

p = random.randrange (N)

¢ = pow(p, exponent_PI, N)

p2 = pow(c, 5, N)

assert p == p2
print ("The nothing-up-my-sleeve parameters verify successfully.")

Listing 3: Python script verifying our “Nothing up my sleeve” parameters for the Bad-e attack.

47

	Introduction
	Technical Overview

	Background
	The RSA PRG
	The Micali-Schnorr PRG (MS PRG)
	Micali-Schnorr as published in their papers.
	ISO/IEC 18031 Micali-Schnorr
	ANSI X9.82

	Related work

	Security Reductions for the MS and RSA PRGs
	Ruling out black-box attacks
	Micali-Schnorr is secure with a PRG
	MS PRG is still secure when implemented with a random permutation
	RSA-PRG as a sponge

	Algebraic Attacks
	Notions of cryptographic subversion
	Algorithmic Background: Multivariate Coppersmith's Method
	Review of Coppersmith's method.
	Applying Coppersmith's Method to MS and RSA PRG.

	Attacks on RSA PRG
	e has Short Period (eSP) attack mod ((N))
	The SUS backdoor for RSA-PRG

	Attacks on MS PRG
	Finite Field MS-PRG is insecure.
	The Bad-e (Be) attack.

	Impact on cryptographic protocols
	Conclusion
	Appendix
	Proof of Theorem 3
	Example parameters for eSP attack
	SUS Attack Parameter Selection
	e = e0 e1-1 is insecure.
	Example verification code

