
Interoperable Private Attribution: A Distributed

Attribution and Aggregation Protocol

Benjamin M Case1, Richa Jain1, Alex Koshelev1, Andy Leiserson2,
Daniel Masny1, Thurston Sandberg1, Ben Savage1, Erik
Taubeneck1, Martin Thomson2, and Taiki Yamaguchi1

1Meta
2Mozilla

Abstract

Measuring people’s interactions that span multiple websites can pro-
vide unique insight that enables better products and improves people’s
experiences, but directly observing people’s individual journeys creates
privacy risks that conflict with the newly emerging privacy model for the
web. We propose a protocol that uses the combination of multi-party
computation and differential privacy that enables the processing of peo-
ples’ data such that only aggregate measurements are revealed, strictly
limiting the information leakage about individual people. Our primary
application of this protocol is measuring, in aggregate, the effectiveness of
digital advertising without enabling cross-site tracking of individuals. In
this paper we formalize our protocol, Interoperable Private Attribution
(IPA), and analyze its security. IPA is proposed in the W3C’s Private
Advertising Technology Community Group (PATCG) [8]. We have im-
plemented our protocol in the malicious honest majority MPC setting for
three parties where network costs dominate compute costs. For processing
a query with 1M records it uses around 18GB of network which at $0.08
per GB leads to a network cost of $1.44.

1 Introduction

Accurate measurements about how complex systems are performing is neces-
sary to keep them running properly and improve them over time. There are
many application areas where this is important. Traditionally, measuring many
such systems involved collecting and sharing extensive amounts of individual
level user data. Much of the time, analysis is done on aggregated data, and
individual-level data is collected only to be used in computing aggregates. Pri-
vacy can be further improved by producing these aggregates with technical
means to prevent exposing or sharing individual-level data. Multi-party com-

1

putation and differential privacy provide that technical capability in several
important applications that have seen large-scale real world deployments:

1. Health statistics: The COVID-19 Exposure Notification system developed
jointly by Apple and Google includes a Private Analytics system that
informs health authorities about how effectively the system is being used
[11].

2. Identifying malicious origins: Mozilla’s Origin Telemetry project helps
browser vendors to identify malicious web pages through aggregate mea-
surements without exposing users’ browsing history [25].

3. Advertising measurement : Meta’s private ads measurement products al-
low a Publisher and Advertiser to privately compute statistics about the
effectiveness of advertising campaigns [5, 7]. The system has been used in
production for queries with up to 1 billion records.

The IETF’s Privacy-Preserving Measurement working group [8] is working to
standardize the MPC behind first two of these two which utilize a particular
variety of MPC protocols known as Verifiable Distributed Aggregation Functions
(VDAFs) [19, 13, 20]. VDAFs core functionality is aggregation across inputs
from many users, enabling a useful but still limited class of functions including
sums, mean, standard deviation, linear regression [19], a step of gradient descent
[28] and heavy hitters [13]. One of the core differences in this current work is
the addition of an attribution step before aggregation. Attribution allows for
conditional aggregations based on the inputs from other reports (see below),
enabling more expressive functions to be computed.

The MPC protocols for advertising measurement mentioned above use a
private join [15, 14, 2, 21] followed by some general purpose MPC [24, 9]. These
protocols do support attribution, but this current work differs in two main ways
1) we support inputs coming not just from two parties but from many client
devices, and 2) we target a stronger malicious security threat model instead of
semi-honest security. One related private join protocol [23] that supports inputs
from many parties in the semi-honest setting was an inspiration for an earlier
semi-honest version of the protocol we designed for IPA.

1.1 Attribution Measurement

Attribution measurement is a standard measurement approach to understand
how a person’s interactions in one context (e.g. website/app) affect their in-
teractions in a different context (e.g. website/app). Attribution measurement
can have many applications but we will specifically focus on how it is used in
online digital advertising. For a given conversion event (e.g., a purchase) a per-
son has on one website, we aim to attribute that conversion to zero or more ad
impressions the person had the opportunity to see in a different context.

Abstractly, we call ad impressions source events and conversions trigger
events. These events are associated with other data, such as an identifier for

2

the person, an identifier for the campaign and/or product, a timestamp, etc.
We call the collection of data associated with an event a report ; an attribution
measurement can be constructed as a query over a set of source reports and
trigger reports.

In a typical case, there may be many source and trigger reports associated
with the same person. There are various approaches for attributing source
reports and trigger reports; for simplicity, in this paper we currently only address
last touch attribution, i.e., trigger reports are attributed to the most recent
source event in the past from the same person, if one exists. Our protocol could
be adapted to allow for more complex attribution logic, but we leave that for
future work.

Trigger reports carry with them a trigger value, which will be aggregated
across all attributed trigger reports. Source reports include a breakdown key
used to specify the granularity of aggregations done after attribution. The end
result of attribution measurement is aggregates (sums of the trigger values),
grouped by the breakdown keys from the source reports to which each trigger
report was attributed.

1.2 Related ads measurement works

Related APIs for private ads measurement include Apple’s Private Click Mea-
surement (PCM) [4] and Google’s Attribution Reporting API (ARA)[3].

Apple’s “Private Click Measurement” system has already been deployed in
the Safari browser. In this system, attribution is performed on-device, and in-
formation about attributed conversions is sent to websites. There is no MPC or
server-side aggregation in this system, nor is there any differential privacy guar-
antee. Instead, heuristics are employed to reduce the linkability of attributed
reports to individuals. These heuristics include adding a random time delay to
reports, and reducing the total entropy of these reports.

Google’s “Attribution Reporting API with Aggregate Reports” also per-
forms on-device attribution, and emits randomly time-delayed and entropy lim-
ited reports. However, in this proposal the reports are encrypted and must be
aggregated with a server-side aggregation system. While this aggregation sys-
tem could be realized with an MPC, the current proposal involves the use of a
“Trusted Execution Environment” operated on a cloud provider. This proposal
also involves the addition of differential privacy and managing of a per-epoch
privacy budget.

For a more detailed comparison of these APIs see [10].

2 IPA overview

Interoperable Private Attribution (IPA) is a proposal introduced by Meta and
Mozilla for a new web platform API to support advertising attribution measure-
ment. It is one proposed standard for the private measurement work item in
the W3C’s Private Advertising Technology Community Group (PATCG). While

3

we believe the core MPC protocol for attribution and aggregation could have
useful applications beyond advertising measurement, the advertising measure-
ment application is our primary motivation. As such, we do not aim to design a
fully abstract solution, but instead lean into the complexity of fitting this pro-
tocol into an overall system design that could support advertising measurement
on the web.

An attribution measurement can be viewed as a query over source reports
and trigger reports, where these reports are matched according to a specific at-
tribution logic and an aggregation (e.g., a sum across breakdowns) is performed
on attributes from the source and trigger reports. Nearly all forms of attribution
logic attempt to match source reports and trigger reports conditional on repre-
senting events related to the same person. In the past, this was accomplished
through technical mechanisms provided by the user agent, specifically 3rd party
cookies and device identifiers.

IPA proposes a new mechanism, called a match key, which is never directly
revealed by the user agent. Instead, match keys only leave the user agent as
encrypted secret-shares, encrypted towards three non-colluding helper parties.
We call this collection of three helper parties a helper party network. Helper
parties in a helper party network are trusted to not collude and only perform
a predetermined MPC protocol that produces an aggregate and differentially
private attribution measurement result.

2.1 Parties Involved

There are a number of different parties that are involved with the protocol:

1. User Agent (UA): a software application, such as browser or app , that
acts on behalf of a user when communicating with a website or server

2. User Agent Vendor (UAV): The distributor of the user agent (e.g. Mozilla)

3. Helper Party: A party who participates in the MPC protocol.

4. Helper Party Network (HPN): A set of three helper parties. We aim to
find helper party networks which are trusted by user agent vendors to be
non-colluding.

5. Websites/apps: An individual website (identified by its eTLD+1) or an
individual app (identified by the mechanism for the OS it operates on.)

6. Match key providers (MKPs): Websites/apps which call the set match key
API, typically websites/apps with a large logged-in set of users.

7. Source websites/apps: Websites/apps on which a user produces a source
event.

8. Trigger websites/apps: Websites/apps on which a user produces a trigger
event.

4

9. Report collectors (RCs): A specific website/app or a delegate acting on
their behalf, that issues queries to the helper party network.

2.2 Match keys

For IPA we assume there will be unique match keys for each person that can
be processed under encryption in the MPC. We are currently considering two
main methods for setting match keys:

1. set by a Match Key Provider

2. generated randomly by the device.

For using a MKP, a UAV will need to approve certain sites to be MKP who
are allowed to call a set matchkey API. The idea is that some sites which people
sign into can assign a match key consistently to users on each device or user
agent that person signs into. The matchkey is stored by the user agent as a
write-only value that cannot be read back in the clear by anyone. The current
threat model for MKPs is semi-honest; hence the need to have them specifically
approved by a UAV. It is still an ongoing area of research to support MKPs
in a malicious threat model. This method of setting a match key supports the
greatest level of interoperability across different platforms.

For device generated matchkeys, each device will generate a randommatchkey
and store it similarly as a value that cannot be read back in the clear by anyone.
Interoperability and cross device consistency of matchkey can still be supported
if a user has multiple devices that already share a common secret that can be
used to derive a consistent matchkey for that user.

When people visit sites each site can request a secret-shared and encrypted
copy of the match key from the user agent for use by the IPA MPC protocol.
Each match key secret share is encrypted toward two of the three helper parties
such that each helper party can decrypt a distinct pair of shares. These helper
parties only need to be trusted not to collude. Our protocol assumes an honest
majority in a network of three helper parties, which allows us to provide full
security with reasonable efficiency. A governance system will need to exist to
establish a set of trusted helper party networks. An existing governance model
from which we might derive inspiration is the CA/Browser Forum[1]. For the
purpose of this paper, we assume that such a helper party network exists.

2.3 Collecting Reports

IPA begins with different websites collecting information on important events.
Sites define what events are interesting to them. As sites are able to request an
encrypted match key at any point, information about events (e.g. timestamp
and event-type) can be stored along with the encrypted match key associated
with the person currently visiting the site. Our goal is to aggregate reports from
events that occur across different websites/apps. We define a report collector as
a party that gathers these reports and assembles them into a query. The bulk

5

of the information that is collected into reports for each event is defined by the
website/app and is not observed by the user agent.

For gathering reports there are three steps:

1. Getting the encrypted matchkey from the user agent: At any
point when a person visits a site or using an app, the website/app can call
the get encrypted match key API and get back encrypted secret shares
of the match key along with some authenticated associated data about
the request. The encrypted match key is bound to certain associated
data, including a bit indicating source/trigger, which match key provider’s
match key was requested, the site/app that requested the match key, and
an epoch. This associated data will be used by the helper party networks
to enforce the differential privacy budgets which we discuss in more detail
below.

2. Constructing reports: Information known to the website/app about
this event includes a timestamp, a conversion value for trigger reports,
and a breakdown key for source reports. Source and trigger reports are
built by combining these attributes with an encrypted match key. Most
of this data also gets secret shared and encrypted under the public keys of
the helper party network. Timestamps remain in the clear (authenticated
as associated data) as later we want the report collector who submits the
query to first sort the reports in a query by timestamp in the clear before
submitting the query. Constructing a report from this data could happen
on the client or a server.

3. Sharing reports with other report collectors: Once source and trig-
ger sites have generated reports, they need to exchange them with a report
collector who uses them to issue queries to a helper party network.

2.4 Overview of MPC Security Model

Our goal is to design a system that web platform vendors are willing to im-
plement and will be technically and economically viable to operate. To this
end, we’ve attempted to find the right balance between the assumption in our
security model and performance characteristics of the protocol. The balance we
are currently proposing is that a web platform vendor which implements this
API only needs to trust the following condition in order to have assurance that
the API does not enable cross-context tracking:

1. At least two out of three helper parties in the helper party network are
honest, meaning that they will not collude with each other, and will run
the correct protocol and enforce the DP budgeting system correctly.

We are proposing a 3-party, malicious, honest majority MPC protocol such
that even if one of the helper parties actively tries to attack the protocol, they
will be unable to learn any of the sensitive inputs and any actively malicious
behavior will be detectable. More specifically we have implemented the protocol

6

using replicated secret sharing [17]. This three party, honest majority setting
allows for very efficient MPC protocols that can achieve malicious security at a
reasonable cost over semi-honest security [17, 22].

2.5 Differential Privacy

Any system that reveals aggregate measurements about people leaks informa-
tion about those people over time. Our privacy goal is to limit the amount of
information that can be learned by a website/app about a single person’s in-
teractions over a specific period of time, an epoch (e.g., week). Aggregation or
k-anonymity alone are insufficient [18] to guarantee such a bound so we rely on
differential privacy to formally analyze and bound how much user information
will potentially be revealed.

Below, we describe how to achieve ε, δ differential privacy for an individual
query and how to manage a privacy budget across queries over the course of an
epoch.

We define two types of queries: source fan-out queries with source reports
from a single website/app and trigger reports from many websites/apps, and
trigger fan-out queries with trigger reports from a single website/app and source
reports from many websites/apps. Each site is issued a privacy budget which is
consumed through these queries. The privacy budget for a source fan-out query
is drawn from the budget of the singular source website/app, and trigger fan-out
queries draw from the privacy budget of the singular trigger website/app.

2.5.1 Sensitivity Capping

In order to provide differential privacy at the level of people’s individual con-
tributions (as identified by match keys), each match key must be limited in the
total contribution it can make across all aggregate outputs of a query. This
maximum contribution is the sensitivity of the query, and together with the ε,
determines the amount of noise required to achieve differential privacy.

We allow for the sensitivity cap to be provided as a parameter to the query.
If the total contribution for a given match key exceeds this cap, it will be
clipped at the cap. The exact value of what is lost due to this capping will
be unknown to all entities involved, including the helper parties and the report
collector. For example, a report collector might set a maximum contribution
of $100, but would be unaware how many users (if any) exceeded that cap and
by how much the cap was exceeded. The relationship between this sensitivity
cap and the differentially private noise added to the aggregate outputs results
in a bias-accuracy tradeoff: a higher cap reduces bias introduced by clipping,
but reduces accuracy due to larger relative noise added to provide differential
privacy. Allowing this as a query parameter allows each report collector to make
their own decision with regards to this tradeoff.

Note that because individual contributions are capped, our protocol also
provides robustness against malicious inputs over that cap, meaning that a

7

single report cannot corrupt the result of a query by contributing unbounded
trigger values.

2.5.2 Differentially Private Noise

The output of each query is a sum per breakdown key. The contribution from a
single person is capped across all breakdown keys, but this contribution can be
allocated to a single breakdown key or distributed across multiple breakdown
keys. Consequently, the sensitivity of the value of each breakdown is determined
by the global sensitivity cap. Random noise is added to each breakdown, using
ε and the sensitivity to inform the variance of the noise distribution. Noise will
be added to each breakdown sum to provide global differential privacy. The
exact form (ε, ε− δ), noise distribution (e.g. Laplace, Gaussian) and method of
application (in-MPC, by helpers) has not yet been determined. We will need to
consider various differential privacy composition theorems for when we reveal
multiple outputs in a single query and for multiple queries.

2.5.3 Differential Privacy Budget Management

The previous section focuses on applying differential privacy to individual queries.
However, we need to further design a system that is differentially private over all
queries issued by report collectors on behalf of a given website/app in an epoch.
Specifically, we propose that for a given epoch and website/app (represented
by a single report collector), people (represented by match keys) can have a
bounded amount of information released impact on the results, as measured by
ε− δ differential privacy.

In our current approach, we achieve this by providing each report collector
with a budget, ε for the given website/app they are querying on behalf of.
When report collectors run queries they will specify how much budget to use,
εi, which will be deducted from their remaining budget. For example, given an
epoch limit of ε, a report collector could perform 10 queries, each with global
differential privacy applied at ε/10, or a more complicated set of queries such
as three with ε/5 and four with ε/10.

The helper party network will need to maintain this budget, per website/app,
over the course of an epoch, preventing report collectors from issuing additional
queries once that budget is exhausted. At the beginning of the next epoch,
every report collector’s budget will refresh to ε. Additionally, report collectors
will need to be bound to a single helper party network for the duration of an
epoch, to prevent double spending. The system for establishing these bindings
is beyond the scope of this work. A site will make a commitment to only use
a certain MKP through an epoch. This prevents them from running the same
events but with different MKPs to increase their budget.

2.5.4 Enforcing DP Budgets

Each site has a certain DP budget per epoch. The tracking and enforcement of
the budgets will be done by the Helper Party Networks.

8

As mentioned above there are two types of queries which can be issued by a
report collector:

1. A source fanout query is designed to help a website/app understand the
effect that the ads it shows have on outcomes for its advertisers. A source
fanout query can only contain source reports from a single source web-
site/app. A source fanout query can include trigger reports from multiple
sites, where each report might represent a conversion event.

2. A trigger fanout query helps a site that buys ads to understand how its ad-
vertising is helping to drive outcomes on its website/app. A trigger fanout
query can only contain trigger reports from a single trigger website/app.
A trigger fanout query includes source reports from multiple sites, where
each report might represent an ad impression or click.

The budget is associated with the website/app that provides source reports
for a source fanout query or the website/app that provides trigger reports for a
trigger fanout query. A website/app can provide source reports for trigger fanout
queries on any other website/app without expending their budget; similarly, no
budget is spent by providing trigger reports to another website/app for source
fanout queries.

The information in the associated data with an encrypted matchkey allows
the Helper Parties to enforce the checks to make sure queries are well formed
according to these constraints. The associated data consists of which MKP’s
matchkey was requested, was the matchkey requested for a source or trigger
report, what site requested the encrypted matchkey, what epoch is it. This
information allows the HPN to check that when running a source-fan-out query
all the source events were created on the site who is submitting the query and
whose budget is being consumed. Similarly, for a trigger-fan-out query all the
trigger events must have been created on the site that is submitting the query
and whose budget is being consumed.

2.6 Query Overview

To initiate a query, a report collector collects a batch of source and trigger
reports into a source fan-out or trigger fan-out query. The RC sorts them by
their timestamps before submitting.

The Helper Parties then execute the following main stages of the query
phase.

1. Local Decryption: Parties decrypt the shares they were sent encrypted
under their public keys

2. Verify: The Helper Parties ensure that there is DP budget available for
the RC submitting the query and that the query is a well formed source
fan-out or trigger fan-out query. Helper Parties start the MPC by running
a verification protocol to ensure all shares are well formed and that none
of the Helpers have modified any of their original replicated shares.

9

3. Sort: Next they compute a stable sort by the value of the match keys using
a radix sort in MPC [12]. This groups together all the reports belonging
to the same match key and because the sort is stable each match key’s
reports are sorted by timestamp.

4. Attribution: Next they run a last touch attribution algorithm that as-
signs the credit for a trigger report’s value to first source report that
occurred early in time with the same match key. The oblivious algorithms
for this attribution step and next capping step use a parallel prefix sum
computation similar to the approach used in [26].

5. Capping: Capping computes the total contribution of each person to the
measurement result across all breakdowns (histogram buckets). If this
contribution exceeds the per-person cap, we drop their contribution down
to the cap.

6. Aggregation: Aggregation sums the attributed trigger values into sep-
arate histogram buckets according to the breakdown key of the source
report they were attributed to.

7. DP noise addition: Finally, we apply DP noise to the aggregate for each
breakdown and reveal the result to the RC who submitted the query.

3 Preliminaries

3.1 Notations

For n ∈ N, we use [n] to denote set {1, . . . , n}. For any two elements a, b of a
set S, we define operator (a = b) which is 1 if a = b and 0 otherwise.

For a bitstring s ∈ {0, 1}∗, we define operators AND(s) : {0, 1}∗ → {0, 1},
OR(s) : {0, 1}∗ → {0, 1}, ¬(s) : {0, 1}∗ → {0, 1}∗ as the and, or and negation of
all bits of s.

We use log to denote the logarithm for basis 2.

3.2 Cryptographic Primitives

Pseudorandom Functions

Definition 1 (Pseudorandom Function). We call a function PRF : K×D→ I a
secure pseudorandom function if and only if for any ppt adversary A with query
access to OPRF(k, ·) (Ou(·)),

|Pr[AOPRF(k,·)(1κ) = 1]− Pr[AOu(·)(1κ) = 1]| ≤ negl,

where k ← K and for x ∈ D, Ou outputs a uniform y ← I whereas OPRF(k, ·)
outputs y = PRF(k, x), and where κ is the security parameter.

10

Public Key Encryption

Definition 2 (Public Key Encryption with Authenticated Data). A public en-
cryption scheme with authenticated data is a triplet of algorithms (PKE.KG,PKE.ENC,PKE.DEC)
with the following syntax:

• PKE.KG(1κ): On input 1κ output a key pair (pk, sk).

• PKE.ENC(pk,m, ad): On input (pk,m, ad), where ad is associated data
PKE.ENC outputs a ciphertext ct.

• PKE.DEC(sk, ct, ad): On input (sk, ct, ad), PKE.DEC outputs a message m.

For correctness, we ask that for any message m ∈ {0, 1}∗ and any associated
data ad,

Pr
(pk,sk)←PKE.KG(1κ)

[PKE.DEC(sk,PKE.ENC(pk,m, ad), ad) = m] ≥ 1− negl.

Definition 3 (IND-CCA-AD Security). We call an encryption scheme indistin-
guishable under chosen ciphertext attacks with authenticated data (IND-CCA-
AD secure) if for any ppt algorithm A,∣∣Pr[AOPKE.DEC(sk,·)(pk, ct0) = 1]− Pr[AOPKE.DEC(sk,·)(pk, ct1) = 1]

∣∣ ≤ negl,

where (pk, sk) ← PKE.KG(1κ), (m0, ad0,m1, ad1) ← A(pk), ∀i ∈ {0, 1} : cti ←
PKE.ENC(pk,mi, adi), where OPKE.DEC(sk, ·) responds to queries m, ad with PKE.DEC(sk,m, ad)
and A does not query ctb, ad0 nor ctb, ad1 to OPKE.DEC(sk, ·).

Similar to the fact that CCA security implies non-malleability, the IND-
CCA-AD notion implies that it is hard to manipulate the associated data of
a ciphertext since otherwise, adversary A could use the decryption oracle to
decrypt the challenge ciphertext together with manipulated associated data.

UC Security For a protocol Π between a set of parties C ∪H, we use (C,H)Π
to denote the joint output distribution. We omit Π when the protocol is clear
from the context. Similarly, we use (Sim,F) to denote the output distribution
of the joint output of algorithm Sim interacting with ideal functionality F and
the outputs of F to the other parties interacting with F .

For defining UC security, we follow the framework of [16]. For more details
and an introduction to UC, we refer to [16].

Definition 4 (UC Security). A protocol Π UC realizes ideal functionality F if
for any ppt adversary A corrupting the parties C, there exists a simulator Sim
such that for any ppt environment D and any polynomial size auxiliary input z

|Pr[D(z, (C,H)Π) = 1]− Pr[D(z, (Sim,F)) = 1]| = negl,

where all algorithms receive input 1κ and H is the set of honest parties.

11

Replicated Secret Sharing

Definition 5 (Three Party Replicated Secret Sharing). A three party replicated
secret sharing scheme consists of a input domain Dsh with an addition ⊕ and
multiplication ⊙ and the following ppt algorithms.

share(x): For input x ∈ Dsh, sample sh1, sh2, sh3 ← Dsh under the constraint that
x = sh1 ⊕ sh2 ⊕ sh3. Define shares SH1 := (sh1, sh2), SH2 := (sh2, sh3),
SH3 := (sh3, sh1) and output (SH1,SH2,SH3).

share(x, i,SHi): For input x ∈ Dsh and SHi = (shi, shi+1 mod 3), compute shi−1 mod 3 :=
x ⊖ shi ⊖ shi+1 mod 3. Output (SH1,SH2,SH3). We sometimes abbreviate
share(x, i,SHi) as share(x,SHi).

combine(i, j, SHi,SHj): If i ̸= j, compute x := sh1 ⊕ sh2 ⊕ sh3 and output x.
Otherwise, output ⊥.

4 Interoperable Private Attribution

4.1 Model

Parties We consider the following parties.

MKP: A match key provider sets up each user agent with a user specific match
key.

UA: A user agent generates source and trigger events and sends them in en-
crypted form to a report collector. The events include a match key.

Examples of user agents are web browsers and smart phone applications.

RC: A report collector collects encrypted events, called reports, from user agents
and stores them together with meta-information, which includes times-
tamp and campaign ID. Report collectors might send reports to other
report collectors.

A RC can make a query to the MPC helper parties by submitting a list of
encrypted events that are sorted by the timestamp.

Examples of report collectors are advertiser (for trigger events) and pub-
lisher (for source events).

MPC Helper Parties: After receiving a query from a RC, the helper parties
process the query in MPC and send the outcome to RC. There are three
helper parties which we denote with party 1, 2 and 3.

Network Topology We assume secure, i.e. confidential and authenticated,
point-to-point channels between match key provider and user agents, user agents
and report collectors, different report collectors, report collectors and MPC
helper parties, and different MPC helper parties. We can establish such channels
using HTTPS, TLS and PKI.

12

Security under Corruptions Security holds under the following corruption
model. An adversary is allowed to statically corrupt any amount of match key
providers, user agents and report collectors. He is allowed to statically corrupt
at most one out of the three MPC helper parties. Corrupted parties might not
follow the protocol description (malicious security, active security). We use H
to denote the set of honest parties and C the set of corrupted parties. UA ∈ C
denotes a corrupted user agent, and likewise for MKP and RC. H and C may
also contain the integers 1, 2 and 3, referring to the MPC helper parties. We
use i ∈ H to refer to all honest MPC helper parties. We use i ∈ C accordingly.

We consider security under aborts. If any party aborts, the protocol execu-
tion stops. In the ideal world, we allow the simulator or the functionality to
abort as well. Further, if any subroutine of an ideal functionality or protocol
aborts, the ideal functionality and protocol abort as well. If an abort happens
during a subsession (ssid), only the subsession is aborted, the main session (sid)
continues.

4.2 IPA Related Definitions

Source and Trigger Events In IPA, there are source and trigger events.
When processing the events in MPC, we use the same format such that when
events are secret shared, trigger and source events cannot be distinguished. We
define the event datatype as follows.

Definition 6 (Events). An event evt consists of the following variables.

epid: The epoch identifier specifies the epoch of an event. An event is excluded in
queries under DP budget dpbgtepid′ for epoch epid′ iff epid ̸∈ dprange(epid′),
where range dprange is defined for each epoch and determines from what
passed epochs events can be used in cross-epoch queries.

mk: The match key which is unique for each user and used to group user events.

ac: The attribution constraint is an additional constraint for the attribution
process. To be eligible for attribution two events must have the same mk
and same ac.

ts: Timestamp of the event.

tb: The trigger bit determines whether the event is a trigger, i.e. 1 or source
event, i.e. 0.

bk: Breakdown key of the event which determines the aggregation category of
the event. We use BK to denote the set of all breakdown keys.

tv: The trigger value which is 0 for source events.

The following variables are appended when processing events in IPA.

hb: The helper bit determines whether the previous event (IPA events are pro-
cessed in a sorted list) has the same match key and attribution constraint.

13

sb: The stop bit determines whether attribution process of an event has been
finalized.

cr: The credit of a source event is the sum of trigger values that are attributed
to this source event.

minf: Metadata information that is sent from the UA to a RC in a session where
the RC also requests an encrypted mk. This information would be used by
the RC to assign tv or bk.

eid: An event id which is used by the ideal functionality.

In IPA, we process events in lists. We define a list of events together with
list operators as follows.

Definition 7 (List of Events). A list of events L consists of events evt. Further,
we use L.evt to access a specific event L.(evt+ t) to access a following event that
is t − 1 events apart of evt. L.(evt − t) is defined accordingly. We use L[i] to
access the element on position i in L.

Definition 8 (Special symbols). Various protocols use values x ∈ Dsh∪{∅, flag}.
The symbols ∅ and flag are applied when reports fail decryption and have incon-
sistent shares, respectively.

4.3 The Ideal Functionality of IPA

We present the ideal functionality of IPA FIPA in Figure 1. In this functionality,
a user agent can set up a match key. If no match key is set up, it is picked at
random during the event generation. Reports of generated events are shared
with a report collector. Additionally, report collectors are allowed to share
events with other report collectors. At any time, a report collector is allowed
to spend his privacy budget and submit a query to the IPA functionality on a
subset of his reports. FIPA returns the differentially private aggregated result to
the report collector.

Note that in UC Security proofs the ideal functionality carries out operations
that are enforced by the protocol. But certain operations which are prescribed
for correctness but not enforced (or needed for privacy) are not included in the
ideal functionality. An example of this is presorting reports based on ts by RC
before submitting a query.

5 The IPA Protocol

We present the IPA protocol in a more modular fashion, separated by initial-
ization, match key generation, event generation, sharing events and query even
though the different parts only together realize functionality FIPA. We focus on
presenting the case that includes a MKP as that is more complex than device
generated matchkeys.

14

Functionality FIPA:
Match Key Generation:

1. Upon receiving (sid, ssid, request,MKP) from UA, send
(sid, ssid,UA) to MKP.

2. Upon receiving (sid, ssid,mk) from MKP, send (sid, ssid,mk) to UA.
Event Generation:

• Upon receiving (sid, ssid, epid,mk,minf,RC) from UA, generate eid.
Send (sid, ssid, eid, epid,minf) to RC and store (eid, epid,mk) in LRC.

If RC ∈ C, it can also make the following query:
• Upon receiving (sid, ssid,mk, epid) from RC, generate eid. Store
(eid, epid,mk) in LRC and send (sid, ssid, eid) to RC.

Sharing Reports:
• Upon receiving (sid, ssid, eid, ac, ts, tb, bk, tv,RC′) from
RC, look up (eid, epid,mk) ∈ LRC, generate eid′

store (eid′, epid,mk, ac, ts, tb, bk, tv) in LSRC′ and send
(sid, ssid, eid′, epid, ts) to RC′. (It might be that RC = RC′).

Query: (no concurrent queries by same RC)
1. Upon receiving (sid, ssid, Leid, epid, dpsp, dpcap) from RC, send

Leid, dpsp, dpcap to parties 1, 2 and 3. Abort if dpbgtRC,epid <
dpsp. Set dpbgtRC,epid := dpbgtRC,epid − dpsp. For eid ∈ Leid,
if (eid, epid,mk) ∈ LRC, request (ac, ts, tb, bk, tv) from RC and
otherwise, look up (eid, epid,mk, ac, ts, tb, bk, tv) ∈ LSRC. Add
(eid, epid,mk, ac, ts, tb, bk, tv) to L. Remove evt ∈ L from L with
evt.epid ̸∈ dprange(epid) or evt.mk = ∅ (send eid of removed ele-
ments to adversary).

2. Upon receiving (sid, ssid, sssid, eid) from i ∈ C, delete element with
eid from L. (i ∈ C can issue multiple queries).

3. Stable sort L according to (evt.mk, evt.ac).
4. Perform a last touch attribution on L: Append evt.cr to each event

and initialize it with 0. For every event, compute (evt+ i).cr+ =
evt.tb · evt.tv where (evt+ i) is the closest preceding source event,
i.e. (evt+ i).tb = 0, for which evt.mk = (evt+ i).mk and evt.ac =
(evt+ i).ac. If no such event exists, ignore this event.

5. Perform DP capping: Set cr := 0 for all trigger events. ∀i ∈ [|L|],
set (evt+ i).crt = min((evt+ i).crt,max(0, dpcap−

∑
j∈[i]((evt+

i).mk = (evt+ j).mk) · (evt+ j).cr))
6. Perform an aggregation on L: For each bk ∈ BK, compute AGbk :=∑

evt∈L(bk = evt.bk) · evt.cr.
7. Sample and add DP-noise: For each bk ∈ BK, sample ebk ←
Ddpsp,dpcap and compute DPAGbk := AGbk + ebk.

8. Send (sid, ssid, {bk,DPAGbk}bk∈BK) to RC.

Figure 1: The ideal functionality FIPA. Match key generation, event generation,
sharing events and query can be queried concurrently (as indicated by giving
them a subsession id ssid).

15

5.1 Protocol Overview

In Figure 2, we give a brief overview of the IPA protocol and its different sub-
protocols.

Protocol for IPA (sub-protocols):

• Initialization

• Match Key Generation

• Event Generation

• Sharing Reports

• Query

Figure 2: The overview of the protocol and its sub-protocols realizing IPA.

Initialization During the initialization, we specify the privacy budgets for all
the report collectors and epochs. Different from FIPA, the real protocol performs
additional steps to set up the other protocol procedures. This includes initial-
izing secret and public keys for an IND-CCA-AD secure PKE and distributing
them. We show the details in Figure 3. In an implementation, the user agent

Protocol for Initialization:
1. For i ∈ [3], party i generates (pki, ski)← PKE.KG(1κ).
2. For i ∈ [3], party i sends pki to all UA and RC.

Figure 3: The protocol realizing the initialization.

vendors will distributed the keys to the user agents.

Match Key Generation The protocol for the match key generation is straight-
forward since a match key provider can simply send the match key to the user
agent over the point to point channel. We describe the protocol formally in

Protocol for Match Key Generation:
1. UA sends (sid, ssid, request) to MKP.
2. MKP sends with (sid, ssid,mk) to UA.

Figure 4: The protocol realizing the match key generation.

Figure 4.

16

Protocol for Event Generation:
1. UA samples (SH1,SH2,SH3)← share(mk)
2. UA defines ad := epid and computes cti ← PKE.ENC(pki,SHi, ad)
∀i ∈ [3].

3. UA sends epid, ct1, ct2, ct3 and minf to RC.
4. RC samples (SHRC1,SHRC2,SHRC3) ← share((ac, ts, tb, bk, tv))

and computes ctRCi ← PKE.ENC(pki,SHRCi, ∅) ∀i ∈ [3].
5. RC stores report rp := (epid, ct1, ct2, ct3, ts, ctRC1, ctRC2, ctRC3).

Figure 5: The protocol realizing the event generation.

Event Generation We describe the protocol for the event generation in Fig-
ure 5. For the event generation, we use an IND-CCA-AD secure PKE scheme
together with a replicated secret sharing scheme. We do not specify the domain
Dsh in this section and emphasize that it could be implemented using different
domains, depending on the data type of the variable and downstream processing
of the events.

Sharing Reports A report collector can share his reports with any other re-
port collector by simply sending him the reports over the point to point channel.
Figure 6 shows the protocol.

Protocol for Sharing Reports:
1. RC sends (sid, ssid, rp) to RC′.

Figure 6: The protocol realizing sharing reports between report collectors.

Query We present the protocol for IPA queries in a modular fashion by ab-
stracting the individual steps using ideal functionalities. This allows to replace
them individually with different realizations without impacting the security of
IPA. We present the protocol for IPA queries in Figure 7. The protocol uses the
following ideal functionalities:

FVRFY: Verifies that the shares are well-formed.

FSort: Performs a stable sort according to (evt.mk, evt.ac) on the secret shared
list.

FLTA: Performs a last touch attribution on the secret shared list.

FCAP: Performs a DP capping on the secret shared list.

FAGR: Performs an aggregation according to evt.bk on the secret shared list and
outputs a secret shared aggregate for each breakdown key.

FDPNoise: Generates DP noise and adds it to each secret shared aggregate.

17

Protocol for Query:
1. RC sorts L = {rpj}j∈[m] for m ∈ N according to ts and sends

(dpsp, dpcap, epid, {adj , ctj,i, ctRCj,i}j∈[m]) to helper party i for
each i ∈ [3].

2. The parties i ∈ [3] send dpsp, dpcap, epid to each other and abort
if it is inconsistent or dpbgtRC,epid < dpsp.

3. The parties i ∈ [3] remove all shares for which epidj ̸∈
dprange(epid) (by informing the other parties). They
compute SHj,i := PKE.DEC(ski, ctj,i, adj), SHRCj,i :=
PKE.DEC(ski, ctRCj,i, ∅) for all remaining j. If a decryption for
j ∈ [m] fails, the party informs the other parties and all parties
remove the shares for j. They submit SHj,i,SHRCj,i to FVRFY for
all remaining j. If FVRFY outputs 0, they remove the shares for
j. If the lists have inconsistent sizes, the parties call FVRFY for
empty shares. We use n ∈ N to denote the remaining amount of
reports. They define Li := {SHj,i,SHRCj,i}j∈[n].

4. Party i for i ∈ H submits Li to FSort and replaces Li with the
response of FSort.

5. Party i for i ∈ H submits Li to FLTA and replaces Li with the
response of FLTA.

6. Party i for i ∈ H submits Li to FCAP and replaces Li with the
response of FCAP.

7. Party i for i ∈ H submits Li to FAGR and replaces Li with the
response of FAGR.

8. Party i for i ∈ H submits Li, dpsp, dpcap to FDPNoise and replaces
Li with the response of FDPNoise.

9. Party i submits {bk, ebk,i}bk∈BK to RC.
10. RC recombines bk, ebk,i to DPAGbk. He aborts if reconstruction

fails (inconsistent shares). Otherwise, he outputs {DPAGbk}bk∈BK.

Figure 7: The protocol realizing the query using ideal functionalities FVRFY,
FSort, FLTA, FCAP, FAGR and FDPNoise.

18

We emphasize that Step 3 of the query step does not abort the protocol but
deletes specific events in order to provide robustness against malicious user
agents. Aborting the protocol because of a single ill-formed event would allow
denial of service attacks and render the IPA protocol as useless in practice. Step
3 is not intended to provide security against a malicious helper party who would
not be able to charge a report collector for its services in case of a protocol abort.

5.2 Ideal Functionalities during Query

Verify We define verification functionality FVRFY in Figure 8. We realize the

Functionality FVRFY:
1. Upon receiving (sid, ssid,SHi) from party i ∈ H, define

(shi, , sh
′
i+1 mod 3) := SHi. Send sh′j to j ∈ C, receive sh′j+1 mod 3

from j ∈ C. If for any i ∈ [3], shi = ∅, immediately abort.
2. Send (shi = sh′i), (shk = sh′k) for i, k ∈ H to Party j ∈ C. Receive

b ∈ {0, 1} from Party j ∈ C. If there is no j ∈ C, define b := (shj =
sh′j). Send b ∧ (shk = sh′k) ∧ (shi = sh′i) to Party i for i ∈ H.

Figure 8: The ideal functionality FVRFY.

share verification functionality FVRFY with protocol in Figure 9.

Protocol realizing FVRFY:
1. For all i ∈ [3], Party i define (shi, shi+1 mod 3) := SHi and sends

shi+1 mod 3 to Party i+ 1 mod 3. If for any i ∈ [3], shi = ∅, imme-
diately abort.

2. For all i ∈ [3], Party i receives sh′i and checks whether shi = sh′i.
If this is the case, it sends 1 to both other parties, otherwise 0.

3. Party i outputs 0 if any sent or received message is 0, otherwise
output 1. Further it shares the message received from Party i −
1 mod 3 with Party i+ 1 mod 3. If the messages are inconsistent
for any Party, the Party aborts.

Figure 9: The protocol realizing ideal functionality FVRFY.

Lemma 1. The protocol in Figure 9 realizes ideal functionality FVRFY when at
most one helper party is corrupted.

Proof. We construct the simulator Sim as follows. Sim receives sh′j and forwards

it to the adversary who responds with sh′j+1 mod 3. Sim sends sh′j+1 mod 3 to
FVRFY which responds with bi, bk for i, k ∈ H. Sim forwards both bits to the
adversary who responds with b′i for i ∈ H. If b′i ̸= b′k for i, k ∈ H with i ̸= k, Sim
sends abort to FVRFY. Sim forwards b′i for i ∈ [3] \ {j} to FVRFY. Sim outputs
the adversaries output.

19

The messages that Sim sends to the adversary are identical to the messages
that the adversary receives during the real protocol. Further, if Sim does not
abort, FVRFY produces the same outputs than the honest parties during the real
protocol execution.

We need to show that if Sim aborts, at least one of the real parties in H
would also abort. Sim aborts if the adversary sends inconsistent messages to
the honest parties. In the real protocol, at least one of the honest parties
shares this message with the other honest party which would then detect the
inconsistency and abort.

Secure Sorting We define the ideal functionality FSort in Figure 10. [12] uses

Functionality FSort:
1. Upon receiving (sid, ssid, Li) from party i ∈ H, reconstruct L.
2. Stable sort L according to (evt.mk, evt.ac).
3. Receive Lj for j ∈ C from Party j. Generate (L1, L2, L3) ←

share(L, j, Lj).
4. Send Li to Party i ∈ H.

Figure 10: The ideal functionality FSort.

a Radix sorting based approach for secure sorting. The advantage of this sort is
that it does not use secure comparison operations which are usually performed
using Boolean circuits. To upgrade Boolean circuits to malicious security by
using MACs is very expensive since every AND gate necessary for semi-honest
security results in 1+κ many AND gates for malicious security. One of the best
performing comparison based sorting is Quicksort. Unfortunately, Quicksort
reveals the amount of identical events which would allow to track the total
amount of events of a user which would violate our security goals. This can
be fixed by appending a counter to each match key. However, the counter size
would be log(|L|), which increases the costs for comparisons by another log(|L|)
factor. For these reasons, a Radix sorting based approach seems to be better
suited for this work. Further, at the current state of art, it is more dollar cost
efficient in terms of network and computation costs.

Last Touch Attribution We define the ideal functionality FLTA in Figure 11.
We show how to instantiate this functionality in Section 9.

DP Capping We define the ideal functionality FCAP in Figure 12. We show
how to instantiate this functionality in Section 9.

Aggregation We define the ideal functionality FAGR in Figure 13. We show
how to instantiate this functionality in Section 9.

20

Functionality FLTA:
1. Upon receiving (sid, ssid, Li) from party i ∈ H, reconstruct L. Send

(sid, ssid, Lj) to j ∈ C.
2. Perform a last touch attribution on L: Append evt.cr to each event

and initialize it with evt.tv. For every event evt ∈ L define I ∈
[|L|] s.t. (evt − I) is the closest preceding source event for which
evt.mk = (evt− I).mk and evt.ac = (evt− I).ac. For every i ∈ [I],
compute (evt− i).cr = (evt− i).cr+ evt.tv. If no such event exists,
continue with next event in L.

3. For every evt ∈ L, receive evtj .SHcr,j for j ∈ C from Party j.
Generate {evti.SHcr,i}i∈[3] ← share(evt.cr, evtj .SHcr,j). Append
evti.SHcr,i to list Li.

4. Send Li to Party i ∈ H.

Figure 11: The ideal functionality FLTA.

Functionality FCAP:
1. Upon receiving (sid, ssid, Li) from party i ∈ H, reconstruct L. Send

(sid, ssid, Lj) to j ∈ C.
2. Set cr := 0 for all events with tb = 1.
3. Perform DP capping: ∀r ∈ {|L|, . . . , 1}, i.e. iterate in re-

verse order, define the currently used budget for event L[r] as
cr :=

∑
j∈{r,...|L|}(L[r].mk = L[j].mk) · L[j].cr Set L[r].cr :=

min
(
L[r].cr,max

(
0, dpcap− cr

))
4. For every evt ∈ L, receive evtj .SHcr,j for j ∈ C from Party j.

Generate {evti.SHcr,i}i∈[3] ← share(evt.cr, evtj .SHcr,j). Update
evti.SHcr,i in list Li.

5. Send Li to Party i ∈ H.

Figure 12: The ideal functionality FCAP.

Functionality FAGR:
1. Upon receiving (sid, ssid, Li) from party i ∈ H, reconstruct L. Send

(sid, ssid, Lj) to j ∈ C.
2. Perform an aggregation on L: For each bk ∈ BK, compute AGbk :=∑

evt∈L(bk = evt.bk) · evt.cr.
3. For each bk ∈ BK, Receive SHbk,j for j ∈ C from Party j. Generate
{SHbk,i}i∈[3] ← share(AGbk,SHbk,j).

4. Send {SHbk,i}bk∈BK to Party i ∈ H.

Figure 13: The ideal functionality FAGR.

21

Functionality FDPNoise:
1. Upon receiving (sid, ssid, {SHbk,i}bk∈BK) from party i ∈ H, recon-

struct AGbk. Send (sid, ssid, {SHbk,j}bk∈BK) to j ∈ C.
2. Sample and add DP-noise: For each bk ∈ BK, sample ebk ←
Ddpsp,dpcap and compute DPAGbk := AGbk + ebk.

3. Receive {ŜHbk,j}bk∈BK for j ∈ C from Party j. Generate for each

bk ∈ BK: {ŜHbk,i}i∈[3] ← share(DPAGbk, ŜHbk,j).

4. Send {ŜHbk,i}bk∈BK to Party i ∈ H.

Figure 14: The ideal functionality FDPNoise.

DP Noise We define the ideal functionality FDPNoise in Figure 14. To gener-
ating the DP noise securely, we can use a Box-Muller transform based approach
as described in [27]. Since we use a global DP setting, the noise generation
process is independent of the amount of events, i.e. |L|. Therefore, this process
is not performance sensitive and has minimal impact on the overall dollar cost
of the IPA protocol.

6 Security of the IPA protocol

Theorem 1. Let PKE be an IND-CCA-AD secure PKE. Then, the IPA protocol
defined in Figure 3, 4, 5, 6 and 7 securely realizes the ideal IPA functionality
defined in Figure 1 under at most one corrupted helper party and any amount
of corrupted match key provider, user agents and report collectors in the FVRFY,
FSort, FLTA, FCAP, FAGR, FDPNoise hybrid model.

Proof. We construct the simulator Sim as follows.

Initialize: For each i ∈ H, Sim generates (pki, ski)← PKE.KG(1κ). Further it
receives pki for i ∈ C from the adversary. Sim sends pk1, pk2 and pk3 to
all user agents UA and report collectors RC.

Match Key Generation: Sim simply forwards any message from or to a cor-
rupted UA or corrupted MKP.

Event Generation: If RC,UA ∈ H, do nothing. Otherwise, do the following.
If UA ∈ C, receive rp := (epid, ct1, ct2, ct3,minf) from UA. Use ski, skj for
i, j ∈ H with i ̸= j, decrypt cti, ctj to obtain SHi,SHj and use them to re-
construct mk (for failed decryption mk := ∅, for inconsistent shares mk :=
flag). Submit (sid, ssid, epid,mk,minf) to FIPA and the report to RC. If
UA ∈ H (and therefore RC ∈ C), receive (sid, ssid, epid,minf,RC) from FIPA.
generate (SH1,SH2,SH3)← share(0), compute cti ← PKE.ENC(pki,SHi, epid).
If RC ∈ C, send (epid, ct1, ct2, ct3,minf) to RC. Store (eid, rp,mk, {shj , shj+1 mod 3}j∈C).

Sharing Reports: We treat this case identically to the event generation where
RC takes the role of UA and RC′ of RC with the following difference. Look

22

up report that matches ct1, ct2, ct3 among stored reports to get eid. If
RC ∈ C use ski, skj to decrypt ctRCi, ctRCj to obtain SHRCi,SHRCj ,
reconstruct and submit (sid, ssid, eid, ac, ts, tb, bk, tv) to FIPA (for failed de-
cryption mk := ∅, for inconsistent shares mk := flag). If RC ∈ H, generate
(SHRC1,SHRC2,SHRC3) ← share(0) and encrypt them to ctRC1, ctRC2

and ctRC3. Store (eid′,mk, rp, rp′), where rp is the initial report sent by
RC and rp′ is the looked up report.

Query: If RC ∈ H and there is a j ∈ C, receive Leid, dpsp, dpcap from FIPA. For
every eid ∈ Leid, look up the matching report among the stored reports. If
there is a match, use the associated report rp (eid is also matched against
(eid,eid’) of shared reports). Otherwise (report was generated by UA ∈
H), Sim generates an event by generating (SH1,SH2,SH3) ← share(0),
(SHRC1,SHRC2,SHRC3) ← share(0), encrypting them to ct1, ct2, ct3 and
ctRC1, ctRC2, ctRC3. Sim sends (epid, ctj , ctRCj) for all reports together
with dpsp, dpcap to Party j.

If RC ∈ C, Sim receives the reports for each helper party from RC and
merges the reports by using epid, dpsp, dpcap of one of the honest parties to
(dpsp, dpcap, epid, {adj , ctj,i, ctRCj,i}j∈[m]). Sim compares (ctj,1, ctj,2, ctj,3)
with other ciphertexts of stored reports to obtain a corresponding eid
which he then adds to Leid. If there is no matching ciphertext, Sim uses
ski, skk for i, k ∈ H to decrypt ctj,i, ctj,k and the shares to reconstruct mk
(for failed decryption set mk := ∅, for inconsistent shares set mk := flag).
He then issues an Event Generation query for corrupted RC, submitting
(sid, ssid,mk, epidj) to FIPA. FIPA responds with eidj which Sim adds to Leid.
After adding one eid to Leid for each report, Sim issues a query to FIPA.
FIPA might request (ac, ts, tb, bk, tv) which Sim obtains by using ski, skk for
i, k ∈ H to decrypt ctRCj,i, ctRCj,k and using the shares for reconstruct-
ing (ac, ts, tb, bk, tv) (for reports that fail decryption we set mk := ∅, for
inconsistent shares mk := flag).

Sim sends dpsp, dpcap, epid, which he either gets from FIPA or RC ∈ C, for
both honest parties to j ∈ C. He aborts if dpsp, dpcap, epid are inconsistent
or if j ∈ C sends inconsistent values. FIPA sends all eid of reports that need
to be removed. Inform Party j that those reports need to be removed
(includes any report with mk = ∅). Party j ∈ C might request to remove
reports as well. For each of those reports, issue a delete element query to
FIPA. If Party j only requests one of the other helper parties to remove
the report, Sim sets mk := flag for that report (but does not issue a delete
query to FIPA for that report).

For all remaining events, Sim forwards the messages and outputs between
Party j ∈ C and FVRFY. Sim also submits the shares of the honest par-
ties, which are shares of 0. To generate the share of 0, Sim looks up
SHj = (shj , shj+1 mod 3) for j ∈ C among the stored reports. For reports
with mk = flag, send the inconsistent shares which will cause them to be
removed. Sim receives the output for i ∈ H from FVRFY. If it is a 0, Sim

23

issues a delete query to FIPA to delete the report for that event from L.

Sim simulates the steps involving FSort, FLTA, FCAP, FAGR and FDPNoise as
follows. He forwards the messages and outputs between Party j ∈ C and
FSort, FLTA, FCAP, FAGR and FDPNoise. Instead of submitting actual shares,
Sim generates shares of 0 and submits the shares on behalf of the honest
parties to FSort, FLTA, FCAP, FAGR and FDPNoise as in case of FVRFY.

If RC ∈ C, Sim receives the output {bk,DPAGbk}bk∈BK from FIPA. Sim uses
the shares Lj := {ebk,j}bk∈BK submitted by j ∈ C to FDPNoise and gen-
erates ({ebk,1, ebk,2, ebk,3}bk∈BK) ← share({DPAGbk}bk∈BK, j, {ebk,j}bk∈BK).
Sim sends {bk, ebk,i}bk∈BK for each i ∈ H to RC. Sim forwards the message
of Party j ∈ C to RC as well.

After the simulator Sim has simulated all subsessions, he outputs the output of
the adversary.

We now show that the joint output distribution of Sim and FIPA are indis-
tinguishable from the joint output distribution of the adversary and the honest
parties (interacting with the adversary). We show this in a sequence of hybrids
that we define as follows.

Hybrid1: Is the real protocol execution between the honest parties and the ad-
versary. It produces the joint output distribution of the adversary and the
honest parties (interacting with the adversary).

Hybrid2: The same as Hybrid1 except that Hybrid2 interacts with FIPA during
the Match Key Generation as follows. When UA ∈ C requests a match
key from MKP, Hybrid2 submits a request (sid, ssid, request,MKP) to FIPA

rather than submitting it directly to MKP. Hybrid2 forwards the response
of FIPA to UA. Further for MKP ∈ C, Hybrid2 receives (sid, ssid,UA) from
FIPA, forwards it to MKP. MKP responds with (sid, ssid,mk) which Hybrid2
forwards to FIPA.

Hybrid3: The same as Hybrid2 except that Hybrid3 interacts with FIPA during
the Event Generation as follows. Whenever UA ∈ C sends or RC ∈ C
receives (from UA ∈ H) rp := (epid, ct1, ct2, ct3,minf), use the secret keys
ski, skk for i, k ∈ H to decrypt cti, ctk. If decryption fails, set mk = ∅.
If the shares are inconsistent set mk = flag. Otherwise, reconstruct mk.
If UA ∈ C, send (sid, ssid, epid,mk,minf,RC) to FIPA. In any case, receive
(sid, ssid, eid, epid,minf) and store (eid, rp,mk, {shj , shj+1 mod 3}j∈C), where
the shares are the decrypted shares ofmk. Still forward (epid, ct1, ct2, ct3,minf)
to RC ∈ C.

Hybrid4: The same as Hybrid3 except that Hybrid4 interacts with FIPA during
Sharing Reports as follows. Whenever RC ∈ C sends or RC′ ∈ C re-
ceives (from RC ∈ H) rp := (epid, ct1, ct2, ct3, ts, ctRC1, ctRC2, ctRC3), use
the secret keys ski, skk for i, k ∈ H to decrypt cti, ctk, ctRCi, ctRCk. If
decryption fails, set mk = ∅. If the shares are inconsistent set mk =
flag. Otherwise, reconstruct mk, ac, ts, tb, bk, tv. If UA ∈ C, look up eid

24

that matches ct1, ct2, ct3 among stored events. (if it doesn’t exist, is-
sue event generation query for RC ∈ C). Let stored event be rp′. Send
(sid, ssid, eid, ac, ts, tb, bk, tv,RC′) to FIPA. In any case, receive (sid, ssid, eid′, epid)
and store (eid′,mk, rp, rp′). Still forward (epid, ct1, ct2, ct3, ts, ctRC1, ctRC2, ctRC3)
to RC′ ∈ C.

Hybrid5: The same as Hybrid4 except that Hybrid5 interacts with FIPA as follows.
If RC ∈ H and there is a j ∈ C, receive Leid, dpsp, dpcap from FIPA. For
every eid ∈ Leid, look up the matching report among the stored reports. If
there is a match, use the associated report rp (eid is also matched against
(eid,eid’) of shared reports). Otherwise (report was generated by UA ∈
H), Sim generates an event by generating (SH1,SH2,SH3) ← share(0),
(SHRC1,SHRC2,SHRC3) ← share(0), encrypting them to ct1, ct2, ct3 and
ctRC1, ctRC2, ctRC3. Sim sends (epid, ctj , ctRCj) for all reports together
with dpsp, dpcap to Party j.

If RC ∈ C, receive the reports for each helper party from RC and merge
the reports by using epid, dpsp, dpcap of one of the honest parties to
(dpsp, dpcap, epid, {adj , ctj,i, ctRCj,i}j∈[m]). Compare (ctj,1, ctj,2, ctj,3) with
other ciphertexts of stored reports to obtain a corresponding eid which is
added to Leid. If there is no matching ciphertext, use ski, skk for i, k ∈ H to
decrypt ctj,i, ctj,k and the shares to reconstruct mk (for failed decryption
set mk := ∅, for inconsistent shares set mk := flag). Issue an Event Gener-
ation query for corrupted RC, submitting (sid, ssid,mk, epidj) to FIPA. FIPA

responds with eidj which is added to Leid. After adding one eid to Leid for
each report, Issue a query to FIPA. FIPA might request (ac, ts, tb, bk, tv)
which is obtained by using ski, skk for i, k ∈ H to decrypt ctRCj,i, ctRCj,k

and using the shares for reconstructing (ac, ts, tb, bk, tv) (for reports that
fail decryption we set mk := ∅, for inconsistent shares mk := flag).

Send dpsp, dpcap, epid, which is either obtained from FIPA or RC ∈ C, for
both honest parties to j ∈ C. Abort if dpsp, dpcap, epid are inconsistent or
if j ∈ C sends inconsistent values. FIPA sends all eid of reports that need
to be removed. Inform Party j that those reports need to be removed
(includes any report with mk = ∅). Party j ∈ C might request to remove
reports as well. For each of those reports, issue a delete element query to
FIPA. If Party j only requests one of the other helper parties to remove
the report, Sim sets mk := flag for that report (but does not issue a delete
query to FIPA for that report).

For all remaining events, forward the messages and outputs between Party
j ∈ C and FVRFY. For reports with mk = flag, send the inconsistent shares
(such that they are consistent with the adversaries view) which causes
them to be removed. Receive the output for i ∈ H from FVRFY. If it is a
0, Issue a delete query to FIPA to delete the report for that event from L.

Hybrid5 aborts if the list held by FIPA contains different events than the
list that is secret shared between the parties i ∈ H.

25

Hybrid6: The same as Hybrid5 except that for all subsessions of Query with
RC ∈ C, parties i ∈ H send {bk, ebk,i}bk∈BK to RC as the final output,
where ({ebk,1, ebk,2, ebk,3}bk∈BK) ← share({DPAGbk}bk∈BK, j, {ebk,j}bk∈BK)
and {ebk,j}bk∈BK is the share sent by Party j ∈ C to FDPNoise. {DPAGbk}bk∈BK
is the output received by Hybrid6 from FIPA.

Hybrid7: The same as Hybrid6 except that the honest parties always submit
random shares of 0 to the functionalities FSort, FLTA, FCAP, FAGR and
FDPNoise.

Hybrid8: The same as Hybrid7 except that the honest parties always submit
shares of 0 to the functionalities FVRFY. To generate the share of 0,
look up SHj = (shj , shj+1 mod 3) for j ∈ C. Sample (SH1,SH2,SH3) ←
share(0, j, shj) or if the decrypted shares are inconsistent (empty), pick in-
consistent (empty) shares SHi,SHk (which only happens if the ciphertext
was created by an UA ∈ C or RC ∈ C) while still being consistent with shj .

Hybrid9: The same as Hybrid8 except that Hybrid9 does the following. Let j ∈ C.
Whenever a new report for an honest party is for the first time sent to a
corrupted party (either during Event Generation from UA ∈ H to RC ∈ C
or during Sharing Reports from RC ∈ H to RC ∈ C) instead of sending
an encryption of shj−1 mod 3 of the match key (the share that is not in
possession of j ∈ C) under pki and pkk for i, k ∈ H, send an encryption of
sh′j−1 mod 3 such that shj ⊕ sh′j−1 mod 3 ⊕ shj+1 mod 3 = 0.

Claim 1. Hybrid1 and Hybrid2 are indistinguishable.

Proof. FIPA only forwards messages during the Match Key Generation. There-
fore it does not change their distribution. Hence, Hybrid1 and Hybrid2 send
identically distributed messages to the adversary.

Claim 2. Hybrid2 and Hybrid3 are indistinguishable.

Proof. As in the previous claim, Hybrid3 does not change the distribution of
messages to corrupted parties. Therefore, Hybrid2 and Hybrid3 are indistin-
guishable.

Claim 3. Then Hybrid3 and Hybrid4 are indistinguishable.

Proof. As in the previous claim, Hybrid4 does not change the distribution of
messages to corrupted parties. Therefore, Hybrid3 and Hybrid4 are indistin-
guishable.

Claim 4. Hybrid4 and Hybrid5 are indistinguishable.

Proof. For RC ∈ C, Hybrid5 receives the reports for each helper party and merges
them. If epid, dpsp, dpcap are inconsistent, Hybrid4 aborts whenever the honest
helper parties Hybrid4 would abort because of inconsistent values. It looks up
matching eid for each report that has been submitted. If there is no such report,

26

Hybrid4 issues an Event Generation for RC ∈ C to cause FIPA to generate a new
event for this report. It uses the secret keys of the honest parties to decrypt the
ciphertexts. It also uses the keys for request for ac, ts, tb, bk, tv from FIPA. If
decryption fails, mk = ∅, or if the shares are inconsistent, mk = flag. If there is
no abort, Hybrid5 submits epid, dpsp, dpcap together with the eid of the reports
to FIPA. FIPA will abort if dpbgtRC,epid < dpsp. This is also the case in Hybrid4
where both of the helper parties will abort. Since the values are consistent
among honest helper parties (otherwise they abort), it will not happen that one
honest helper party will abort but not FIPA by triggering the dpbgtRC,epid < dpsp
condition. Further, due to this abort condition, dpbgtRC,epid remains consistent
as long as no RC queries Query concurrently.

Let RC ∈ H. In this case, FIPA sends Leid, dpsp, dpcap. Similar to Sim,
Hybrid5 looks up the reports that match eid ∈ Leid. If there is no match, it
creates the reports as encryptions of shares for 0 (same as Sim). Any report
generated by a malicious party will be stored during Event Generation or Shar-
ing Reports. Therefore, they will be matched and the correct report is sent to
j ∈ C (i.e. consistent with FIPA). For reports that have not been matched must
be reports generated by UA ∈ H and only shared with RC ∈ H. Since we only
send share SHj in encrypted form to j ∈ C, the message (epid, ctj , ctRCj) is
indistinguishable from any message encrypting one secret share of any different
value.

Hybrid5 then sends the generated reports in case of RC ∈ H or forwards the
reports in case of RC ∈ C to j ∈ C. As argued above, RC ∈ H the distribution
of the reports for party j does not differ between Hybrid4 and Hybrid5. In case
RC ∈ C, the reports are just forwarded and therefore the same holds.

Hybrid5 removes any report with mk = using a delete report query to Query
(Step 2). This will delete all events in L for which ciphertexts cannot be de-
crypted by at least one honest party. For such events, the honest party in the
actual protocol will inform the other honest parties who then will also delete
them. Further, Hybrid5 uses a delete report query to Query (Step 2) for each
report that j ∈ C requests to be deleted to both honest parties. If just one party
is requested to delete it, we flag the report by setting mk := flag.

Hybrid5 now forwards messages between FVRFY and parties i ∈ [3]. For
reports that are flagged with mk = flag, Hybrid5 submits inconsistent shares
for the honest parties. Notice that only reports are flagged with mk = flag
when they contained inconsistent or deleted reports to start with. Therefore
the inconsistent shares can be generated such that they are consistent with the
adversaries view. Hybrid5 receives the output of FVRFY for each report. If the
output is 0, i.e. the actual parties have removed it, Hybrid5 issues a delete query
to remove it from FIPA’s internal list of the Query subsession.

When submitting the initial list, Hybrid5 ensures that it contains all report
IDs eid that represent the reports in the actual query. Missing eid are gener-
ated by issuing additional queries and decrypting the corresponding ciphertexts.
Hybrid5 flags bad reports, i.e. reports that fail decryption or contain inconsistent
shares and then issues delete queries to remove them from the FIPA internal list.
The real protocol removes such reports by having the parties interact. During

27

this interaction the honest parties remove all such bad reports. In this pro-
cess, j ∈ C might remove additional reports for which Hybrid5 also issues delete
queries. Therefore, Hybrid5 does not abort because of inconsistent lists and
hence Hybrid4 and Hybrid5 are indistinguishable.

Claim 5. Hybrid5 and Hybrid6 are indistinguishable.

Proof. By the definition of FDPNoise, it also generates the shares {bk, ebk,i}bk∈BK
for i ∈ H in Hybrid1 by computing

({ebk,1, ebk,2, ebk,3}bk∈BK)← share({DPAGbk}bk∈BK, j, {ebk,j}bk∈BK).

It remains to show that {DPAGbk}bk∈BK generated in Hybrid6 is identical to
the recombination of the shares {bk, ebk,i}bk∈BK for i ∈ H in Hybrid5. This is due
to the fact that the internal list during Query of FIPA contains the same events
as secret shared between the helper parties. Therefore, the same events are con-
tained in the aggregated output. Further, by the definition of FSort, FLTA, FCAP,
FAGR and FDPNoise, the actual protocol helper parties (see Figure 7) process list
L identically to FIPA (see Figure 1). Therefore, the outcome {DPAGbk}bk∈BK is
also identical.

Claim 6. Hybrid6 and Hybrid7 are indistinguishable.

Proof. The functionalities FSort, FLTA, FCAP, FAGR and FDPNoise have the same
interaction pattern with the adversary. Namely, the adversary sends its shares
to these functionalities and does not receive anything in return. Therefore,
having the honest parties sending shares of 0 instead is indistinguishable from
the point of view of the adversary. Further, the outputs of the functionalities
FSort, FLTA, FCAP, FAGR and FDPNoise in Hybrid6 and Hybrid7 are independent of
the output {DPAGbk}bk∈BK or its shares of the Query procedure.

Claim 7. Hybrid7 and Hybrid8 are indistinguishable.

Proof. By the definition of FVRFY, Party j ∈ C receives share shj . shj has the
same distribution in Hybrid7 and Hybrid8. Further, Party j ∈ C receives the
outcome of the comparison shi = sh′i and shk = sh′k for i, k ∈ H from FVRFY.
If the shares of the honest parties are consistent in Hybrid8, then they are also
consistent in Hybrid7. Therefore, the adversary receives the same outputs from
FVRFY in Hybrid7 and Hybrid8.

Claim 8. Let PKE be IND-CCA-AD secure. Then, Hybrid8 and Hybrid9 are
computationally indistinguishable.

Proof. We use a hybrid argument over both public keys, pki and pkk for i, k ∈ H
and over every honest event submitted to a corrupted report collector. During
each hybrid step, we use the following reduction. Let shj , shj+1 mod 3, shj−1 mod 3

be the match key shares. We define sh′j−1 mod 3 := 0 ⊖ shj ⊖ shj+1 mod 3 and

depending on the hybrid m0 = (shj−1 mod 3, shj), m1 = (sh′j−1 mod 3, shj) or

m0 = (shj+1 mod 3, shj−1 mod 3), m1 = (shj−1 mod 3, sh
′
j−1 mod 3). We submit

28

m0,m1 together with ad to the IND-CCA-AD challenge game after receiving pk
and depending on the hybrid, setting pki := pk or pkj := pk. Since we lose
access to ski or skj , we use the decryption oracle to decrypt other ciphertexts.
Notice that in Hybrid8, we do not need access to shj−1 mod 3 anymore other
than for generating honest user agent events and challenge ciphertexts. For
simulating the remaining parts of Hybrid8, shj , shj+1 mod 3 are sufficient which
can be always obtained (unless the decryption fails in which case they do not
need to be obtained). There is one subtlety here. Namely, a corrupted RC
could use the challenge ciphertext for a different epid and submit it during a
different subsession as report to Query or Sharing Reports. FIPA only allows to
generate a new report by either querying Sharing Reports, in which case we do
not need to know mk, however it only works generating a report for the same
epid or by querying Event Generation as RC ∈ C. This however requires mk and
hence we would need to decrypt the callenge ciphertext. Since we are using an
IND-CCA-AD secure scheme rather than IND-CCA secure, we are allowed to
query the decryption oracle for a decryption of the challenge ciphertext as long
as epid is different.

Now if an adversary can distinguish two consecutive intermediate hybrid
steps, he can break the IND-CCA-AD security. Therefore Hybrid8 and Hybrid9
cannot be dististinguished when using an IND-CCA-AD secure PKE.

We can conclude the theorem by observing that Hybrid9 resembles Sim and is
completely independent of share shj−1 mod 3 of any match key submitted through
an honest user agent. Further, the output distribution of Sim is indistinguishable
from Hybrid1 which is the actual protocol. This suffices for concluding the proof.

7 Basic Functionalities

Open Functionality In Figure 15 we show the ideal functionality to securely

Ideal Functionality FOpen:
1. Receive SHi from i ∈ H. Recombine x = combine({SHi}i∈H).
2. Send x to Party i ∈ [3].

Figure 15: The ideal functionality FOpen to open secret shares.

open secret shared values.

Multiplication of Shares We define the Fmult for multiplying secret shared
valuse in Figure 16. In Figure 17, we show a protocol realizing Fmult.

Lemma 2. Let PRF be a secure pseudorandom function. Then, the protocol
in Figure 17 securely realizes Fmult in the three party setting with at most one
corruption.

29

Functionality Fmult:

1. Receive #g,SHx,i,SHy,i,Ki from party i ∈ H

2. Compute x := combine({SHx,i}i∈H), y := combine({SHy,i}i∈H)
and derive SHx,j , SHy,j for j ∈ C from {SHx,i}i∈H, {SHy,i}i∈H.

3. Send SHx,j , SHy,j , Kj and receive SHz,j and d from party j for
j ∈ C.

4. {SHz,i}i∈[3] := share(x⊙ y ⊕ d,SHz,j)

5. Send SHz,i to party i ∈ H

Figure 16: The ideal functionality Fmult.

Protocol realizing Fmult:

1. On input #g, SHx,i = (shx,i, shx,i+1 mod 3), SHy,i =
(shy,i, shy,i+1 mod 3), ki, ki+1 mod 3 compute shz,i := shx,i ⊙
shy,i ⊕ shx,i ⊙ shy,i+1 mod 3 ⊕ shx,i+1 mod 3 ⊙ shy,i ⊕ PRF(ki,#g)⊖
PRF(ki+1 mod 3,#g)

2. Send (#g, shz,i) to party i−1 mod 3 and receive (#g, shz,i+1 mod 3)
from party i+ 1 mod 3.

3. Output share SHz,i := (shz,i, shz,i+1 mod 3).

Figure 17: The protocol realizing Fmult. The gate number #g is unique for
each call to any protocol and ideal functionality. Party i ∈ H has access to ki,
ki+1 mod 3 which can be used across multiple sessions

Proof. Let j ∈ [3] be the index of the corrupted party in the protocol of Fig-
ure 17. We construct the following simulator that produces the same output
distribution as Party j but interacts with ideal functionality Fmult. The sim-
ulator receives as input the gate number and PRF keys #g, kj , kj+1 mod 3. It
also receives SHx,j = (shx,j , shx,j+1 mod 3), SHy,j = (shy,j , shy,j+1 mod 3) from
Fmult. It then invokes corrupted party with #g, kj , kj+1 mod 3,SHx,j ,SHy,j as
inputs. Afterwards, it samples a random share shz,j+1 mod 3 ← Dsh and sends
it to Party j. Party j responds with shz,j . The simulator then defines SHz,j :=
(shz,j , shz,j+1 mod 3) and d := shz,j⊖PRF(kj ,#g)⊕PRF(kj+1 mod 3,#g)⊖shx,j⊙
shy,j ⊖ shx,j ⊙ shy,j+1 mod 3 ⊖ shx,j+1 mod 3 ⊙ shy,j . Finally, the simulator send
SHz,j and d to Fmult and outputs the output of corrupted Party j.

We now prove that the output distributions are indistinguishable for the
environment. We use a sequence of hybrid argument.

Hybrid1: Identical to the real protocol execution. The corrupted party interacts
with the honest parties.

30

Hybrid2: We replace PRF(kj−1 mod 3,#g) with u← IPRF for all computations of
all parties, where j is the index of the corrupted party.

Hybrid3: The corrupted party interacts with the simulator. The outputs to the
environment are generated by the simulator and Fmult.

Hybrid1 and Hybrid2 are indistinguishable by the pseudorandomness of the
PRF. Notice that the corrupted party does not have access to PRF key kj−1 mod 3.
Therefore the reduction is straightforward such that distinguishing Hybrid1 from
Hybrid2 allows to distinguish PRF(kj−1 mod 3,#g) from u ← IPRF and therefore
break the pseudorandomness of PRF. The distinguishing probability is therefore
upper bounded by a negligible probability.

The main difference between our simulator and an honest party is that the
former sends a random share shz,j+1 mod 3 to Party j while the latter sends
shz,j+1 mod 3 := shx,j+1 mod 3 ⊙ shy,j+1 mod 3 ⊕ shx,j+1 mod 3 ⊙ shy,j−1 mod 3 ⊕
shx,j−1 mod 3 ⊙ shy,j+1 mod 3 ⊕ PRF(kj+1 mod 3,#g) ⊖ PRF(kj−1 mod 3,#g). In
Hybrid2, PRF(kj−1 mod 3,#g) has been replaced with a uniform u. Therefore,
the distribution of shz,j+1 mod 3 in Hybrid2 and Hybrid3 is identical and cannot
be distinguished.

The output of Fmult is a sharing of x⊙ y ⊕ d for d = shz,j ⊖ PRF(kj ,#g)⊕
PRF(kj+1 mod 3,#g)⊖ shx,j ⊙ shy,j ⊖ shx,j ⊙ shy,j+1 mod 3⊖ shx,j+1 mod 3⊙ shy,j .
Further, the sharing is uniquely defined by x⊙ y ⊕ d and SHz,j . Therefore, the
shares output by Fmult are identical to the shares generated by the parties in
Hybrid2, which are shz,j , shz,j+1 mod 3, shz,j−1 mod 3 and

shz,j ⊕ shz,j+1 mod 3 ⊕ shz,j−1 mod 3

= shz,j ⊕ shx,j+1 mod 3 ⊙ shy,j+1 mod 3 ⊕ shx,j+1 mod 3 ⊙ shy,j−1 mod 3

⊕ shx,j−1 mod 3 ⊙ shy,j+1 mod 3 ⊕ PRF(kj+1 mod 3,#g)⊖ u

⊕ shx,j−1 mod 3 ⊙ shy,j−1 mod 3 ⊕ shx,j−1 mod 3 ⊙ shy,j

⊕ shx,j ⊙ shy,j−1 mod 3 ⊕ u⊖ PRF(kj−1 mod 3,#g)

= d⊕ shx,j ⊙ shy,j ⊕ shx,j ⊙ shy,j+1 mod 3 ⊕ shx,j+1 mod 3 ⊙ shy,j

⊕ shx,j+1 mod 3 ⊙ shy,j+1 mod 3 ⊕ shx,j+1 mod 3 ⊙ shy,j−1 mod 3

⊕ shx,j−1 mod 3 ⊙ shy,j+1 mod 3

⊕ shx,j−1 mod 3 ⊙ shy,j−1 mod 3 ⊕ shx,j−1 mod 3 ⊙ shy,j

⊕ shx,j ⊙ shy,j−1 mod 3

= d⊕ (shx,1 ⊕ shx,2 ⊕ shx,3)⊙ (shy,1 ⊕ shy,2 ⊕ shy,3).

= d⊕ x⊙ y.

PRF Key Generation When using Fmult, we need as secret shared PRF
Key between the helper parties. We assume that their is a setup phase, that
establishes such a PRF Key. The parties can use the protocol that is defined in
Figure 18.

31

Protocol for Generating a Secret Shared PRF Key:
1. ∀i ∈ [3], Party i samples ki ← K and sends ki to Party i−1 mod 3.

Figure 18: The protocol to generate a secret shared PRF key.

8 Authenticated Secret Sharing

Some functionalities are not secure against additive attack such as Fmult. Fur-
ther, any functionality in the Fmult hybrid model also suffers from additive
attacks. Nevertheless, we can prevent additive attacks by using a Message Au-
thentication Code (MAC) based authentication mechanism. Such a MAC needs
to be verified before secret shared values are opened to ensure that they have
not been altered.

This section is closely aligned with the compiler proposed in [17]. Unfortu-
nately, we cannot use their compiler directly since they use a different setup.
This is especially true for the share generation. Their compiler is also less mod-
ular, while in IPA, we want to have a high level of flexibility. In this section, we
therefore frame authenticated secret sharing closer to UC functionalities, that
easily allow to replace subprotocols. It also allows to open secret shared values
within the protocol, whereas [17] is more geared to open them at the end of the
protocol.

Message Authentication Codes We use information-theoretically secure
Message Authentication Codes (MAC) to ensure security against malicious be-
havior. We use µ ∈ N to denote the dimension of the MAC in the context of
secret shares over domain Dsh and security parameter κ. µ ensures that the MAC
provides enough security for security parameter κ. µ is defined as µ := ⌊ κ

log |Dsh|⌋.
We overload notation and use µ over different Dsh, the associated Dsh will be
clear from the context.

A MAC for a value x ∈ Dsh has typically the form (τ1, . . . , τµ) := τ and for
ℓ ∈ [µ], τ ℓ := kℓτ ⊙ x for a secret key kτ := (k1τ , . . . , k

µ
τ) ← Dµ

sh. For simplicity,
we use kτ · x to denote (k1τ ⊙ x, . . . , kµτ ⊙ x). During our protocols, we use a
global MAC secret key that is the same for all shares over a specific Dsh. For
each domain Dsh, we use a different key. For Dsh = {0, 1}, we denote kτ with kb
and for Dsh = Zp, we use kp.

Similar to x, τ is processed in secret shared form, i.e. for i ∈ [3], SMi :=
(SM1

i , . . . ,SM
µ
i) and for ℓ ∈ [µ], (SMℓ

1,SM
ℓ
2,SM

ℓ
3)← share(τ ℓ), where for i ∈ [3]

SMℓ
i := (smℓ

i , sm
ℓ
i+1 mod 3). For the ease of notation we will sometimes use

(SM1,SM2,SM3)← share(τ) or SMi = (smi, smi+1 mod 3).
Similar to the MAC τ , we also process the secret key kτ in secret shared form,

i.e. for ℓ ∈ [µ], (SKMℓ
1,SKM

ℓ
2,SKM

ℓ
3) ← share(kℓτ), where for i ∈ [3], SKMℓ

i :=
(skmℓ

i , skm
ℓ
i+1 mod 3). For the ease of notation, we also use (SKM1,SKM2,SKM3)←

share(kτ) or SKMi = (skmi, skmi+1 mod 3). For kb we use SKB, skb instead of
SKM, skm and for kp we use SKP, skp.

32

Protection Against Additive Attacks We show the following useful lemma
that shows that shares authenticated with an information theoretic Mac are
protected against additive attacks. During an additive attack, an adversary is
able to add two offsets d1, d2 to a value, Mac tuple x, τ such that the new secret
shared values are x′ := x+ d1, τ

′ := τ + d2. The next lemma states that such a
tuple would not pass the MAC verification procedure that asks that τ ′ = kτ ·x′.

Lemma 3. For any algorithm A, any x ∈ Dsh and any i ∈ [3]

Pr[τ+d1 = kτ · (x+d2) | (d1, d2)← A(SKMi,SHi,SMi), (d1, d2) ̸= (0, 0)] = negl,

where the randomness is taken over kτ ← Dµ
sh, τ := kτ ·x, {SMi}i∈[3] ← share(τ),

{SKMi}i∈[3] ← share(kτ) and {SHi}i∈[3] ← share(x).

Proof. Since τ = kτ · x, τ + d1 = kτ · (x+ d2) is equivalent to d1 = kτ · d2. This
equation holds if either kτ = 0 which happens with probability 1

|Dµ
sh|
≤ 2−κ or

d2 = 0 or kτ = d1

d2
. If d2 = 0 it follows that d1 = 0 which violates (d1, d2) ̸=

(0, 0). Further, since SKMi,SHi,SMi are independent of kτ the probability
that kτ = d1

d2
is identical to the probability that when first picking an element

d3 = d1

d2
, then sampling a kτ ← Dµ

sh, kτ is the same as d3. This happens with

probability 1
|Dµ

sh|
≤ 2−κ. Therefore, the probability of A picking d1, d2 such that

the equation holds and (d1, d2) ̸= (0, 0) is negligible.

Generation of a MAC Key FGenMACKey In Figure 19, we show the ideal

Ideal Functionality FGenMACKey:
1. Receive SKMj from j ∈ C.
2. Sample kτ ← Dµ

sh

3. Compute {SKMi}i∈[3] ← share(kτ ,SKMj).
4. Send SKMi to i ∈ H.

Figure 19: The ideal functionality FGenMACKey to generate a secret shared MAC
key.

functionality that allows to generate a secret shared MAC key.

Generation of Authenticated Shares In Figure 20, we show the ideal
functionality that allows to generate authenticated shares.

Verification of Authenticated Shares In Figure 21, we present the func-
tionality that allows to securely verify MACs. If FMACVrfy on input LMAC would
output 1, we say that the list LMAC verifies and denote it with vrfy(LMAC). We
realize FMACVrfy by using the protocols in [17] of the verification stage of their
compiler.

33

Ideal Functionality FGenAShares:
1. Receive SHi from Party i ∈ H as well as SKMi. Send SHj , SKMj

to j ∈ C. Receive SMj and d from j ∈ C.
2. Reconstruct kτ := combine({SKMi}i∈H) and x :=

combine({SHi}i∈H)
3. Compute τ := x · kτ + d and {SMi}i∈[3] ← share(τ,SMj).
4. Send SMi to i ∈ H.

Figure 20: The ideal functionality FGenAShares to generate authenticated shares
up to additive attacks.

Ideal Functionality FMACVrfy:
1. Receive LMACi,kτ from Party i ∈ H as well as SKMi.
2. Reconstruct kτ := combine({SKMi}i∈H).
3. For each row (SHi,SMi)i∈H in (LMACkτ ,i)i∈H reconstruct the

shares to x := combine({SHi}i∈H) and τ := combine({SMi}i∈H).
Output 0 and stop iff τ ̸= kτ · x.

4. Output 1.

Figure 21: The ideal functionality FMACVrfy to verify authenticated shares.

Protocols with Authenticated Shares We formalize the concept of proto-
cols with authenticated shares in Definition 9. Intuitively, we use this concept
to capture protocols that are on its own, not sufficient to satisfy UC security
and realize an ideal functionality. However, if the shares are actually verified in
a following procedure, they are sufficient to UC realize an ideal functionality.

Definition 9 (Protocol with Authenticated Shares). A protocol Π is called
a protocol with authenticated shares if a subset of the secret shares defined
within Π are authenticated via a secret shared MAC. This subset is denoted
with LMAC and contains elements of the form (SH1,SH2,SH3,SM1,SM2,SM3).
Within LMAC, we distinguish between shares that are inputs to Π and shares
that are outputs or the result of intermediate computations.

Conditional Realization For protocols with authenticated shares, we weaken
the concept of UC realizing an ideal functionality. Different from UC Security,
we only ask that the environment cannot distinguish real and ideal world con-
ditioned on LMAC that verifies, i.e. there are no shares in LMAC that fail to
authenticate. Further, we ask that the environment cannot distinguish real and
ideal world when not given the output of the honest parties, even when the
shares in LMAC do not verify. This is a useful notion, since in the later case,
the shares in LMAC can actually be verified and the protocol aborted if they
do not verify. In that case, the environment does not learn the output of the
honest parties.

In this paragraph, we focus on the weakening of UC realizing a functionality,

34

which we call conditionally realizing a functionality. We emphasize that con-
ditionally realizing a functionality is not sufficient for UC security, but in the
following paragraph, we show how to upgrade it to UC security. We give the
formal definition of conditional realization in Definition 10.

Definition 10 (Conditional Realization). A protocol Π with list LMAC condi-
tionally realizes an ideal functionality F if for any ppt adversary A corrupting
the parties C, there exists a simulator Sim such that for any ppt environment D
and any polynomial size auxiliary input z

|Pr[D(z, (C,H)Π) = 1 | vrfy(LMAC)]− Pr[D(z, (Sim,F)) = 1]| = negl,

where all algorithms receive input 1κ and H is the set of honest parties. Further,
we require that

|Pr[D(z, (C | H)Π) = 1]− Pr[D(z, (Sim | F)) = 1]| = negl,

where (C | H)Π is the joint view of the corrupted parties in C during the protocol
execution. (Sim | F) is the view generated by the simulator when interacting
with F , but not including the output of F to the honest parties.

We remark that typically, an ideal functionality F that opens shares cannot
be conditionally realized by a protocol with an LMAC that contains the opened
shares unless the protocol UC realizes F . However, if the functionality instead
outputs the shares to the parties, it can be. As we will see in the following para-
graph, these shares can be opened by the parties after a successful verification
of the shares in LMAC.

Universal Composability of Protocols with Authenticated Shares As
mentioned before, the intuition behind protocols with authenticated shares is
that authenticated shares can be opened if they verify. In that case, they do
not leak any sensitive information as captured by the first requirement of Def-
inition 10. If they do not verify, the protocol or functionality is still safe to
execute, as captured by the second requirement of Definition 10. However, the
parties will need to abort before any of the shares is opened. This can be en-
sured by actual verifying the shares and aborting if needed. We can therefore
translate authenticated functionalities into UC functionalities by adding a veri-
fication procedure for the shares in LMAC and aborting if the verification fails.
We depict the procedure in Figure 22.

Theorem 2. Let protocol ΠLMAC with authenticated shares LMAC conditionally
realize an ideal functionality F . Then, the protocol in Figure 22 UC realizes F .

Proof. The proof follows from the fact that conditionally realization is equivalent
to UC realization when LMAC verifies. Further, the corrupted parties are due
to Lemma 3 not able to run an additive attack against FGenAShares since with
overwhelming probability the shares would not verify. This ensures the well-
formedness of the initial input shares for ΠLMAC.

35

Securely Compute ΠLMAC:
1. Invoke FGenMACKey to generate SKMi for Party i.
2. Invoke FGenAShares for all input shares (SH1,SH2,SH3) ∈ LMAC and

(SKM1,SKM2,SKM3) to generate the corresponding secret shared
MAC (SM1,SM2,SM3).

3. Invoke ΠLMAC

4. Invoke FMACVrfy on input LMAC. Abort if FMACVrfy outputs 0.

Figure 22: The secure computation of a protocol ΠLMAC with authenticated
shares LMAC.

When LMAC does not verify, the environment cannot distinguish the view of
the corrupted party in the real word from the view generated from the simulator.
However, for UC security, we need that this holds even when the environment
receives the output of the honest parties or in the ideal world, the output of
the ideal functionality to the honest parties. Since the protocol in Figure 22
aborts when LMAC does not verify before this output is sent to/generated by
the honest parties, the environment only receives failure symbol ⊥ which does
allow the environment to distinguish the real world from the ideal world.

Chaining Protocols with Authenticated Shares We extend the capacity
of Theorem 2 by showing that the composition of protocols with authenticated
shares is also a protocol with authenticated shares.

Lemma 4. Let ΠLMAC
1 and ΠLMAC

2 be two protocols with authenticated shares
LMAC and LMAC. Then the parallel execution of the protocols as well as the
composition of the protocols is again a protocol with authenticated shares LMAC∪
LMAC. Further, if they conditionally realize functionalities F1, F2, then the
parallel execution conditionally realizes the parallel execution of F1 and F2 and
the composition conditionally realizes the composition of F1 and F2.

Proof. The proof follows straightforwardly from the fact that Definition 9 only
asks for a list of authenticated shares which is LMAC ∪ LMAC since we do not
need to verify the same shares multiple times. Further, conditional realization

holds since we can execute the simulators of ΠLMAC
1 and ΠLMAC

2 in parallel as
well as compose them.

9 Protocols with Authenticated Shares

9.1 Helper Functionalities

For our protocols with authenticated shares, we use the following helper func-
tionalities. For the sake of simplicity, we do not mention the secret shared MACs
in the ideal functionality. However, any computation on a secret shared value
also needs to be applied to the secret shared MAC of that value. When using

36

a helper functionality in our protocol, the protocol will also send the secret
shared MAC as an input and expect a secret shared MAC of the output value.
Similarly, when conditionally realizing the helper functionality via a protocol,
we will also explicitly mention the secret shared MACs.

Functionality for Computing Helper Bits The ideal functionality FHB

for computing helper bits is defined in Figure 23. For the DP capping, we

Ideal Functionality FHB:
1. FSHC receives input Li from i ∈ H. Compute L :=

combine({Li}i∈H). Send Lj to j ∈ C.
2. For every evt ∈ L, define evt.hb := (evt.mk = (evt − 1).mk) ∧

(evt.ac = ((evt − 1).ac)). Further, receive SHevt.hb,j from
j ∈ C, sample {SHevt.hb,i}i∈[3] ← share(evt.hb,SHevt.hb,j). Add
{SHevt.hb,i} to Li.

3. Send Li to i ∈ H.

Figure 23: The ideal functionality FHB for computing helper bits.

to compute helper bits that ignore the attribution constraint. We call this
functionality FHBC and define it in in Figure 24. Both functionalities are very

Ideal Functionality FHBC:
1. FSHC receives input Li from i ∈ H. Compute L :=

combine({Li}i∈H). Send Lj to j ∈ C.
2. For every evt ∈ L, define evt.hb := (evt.mk = (evt − 1).mk).

Further, receive SHevt.hb,j from j ∈ C, sample {SHevt.hb,i}i∈[3] ←
share(evt.hb,SHevt.hb,j). Add {SHevt.hb,i} to Li.

3. Send Li to i ∈ H.

Figure 24: The ideal functionality FHB for computing helper bits ignoring the
attribution constraint.

similar and can be realized using a protocol for a secure comparison.

Functionality for Share Conversion The ideal functionality for share con-
version is defined in Figure 25. For the share conversion from D1

sh := {0, 1}
to D2

sh := Zq we use the protocol defined in Figure 26 that we will use as a
subroutine in other protocols.

Lemma 5. The protocol in Figure 26 conditionally realizes FSHC in the Fmult

hybrid model for at most one corrupted helper party.

Proof. The second requirement from Definition 10 trivially holds, because the
protocol only outputs secret shared values to the corrupted party which are
independent from any actual sensitive value. For the rest of the proof, we focus

37

Ideal Functionality FSHC from {0, 1} to Zq:
1. FSHC receives input SHb,i from i ∈ H. Compute b ∈ {0, 1} via

b := combine({SHb,i}i∈H). Send SHb,j to j ∈ C.
2. Convert b ∈ {0, 1} to b′ ∈ Zq, s.t. 0 ∈ {0, 1} is mapped to 0 ∈ Zq

and 1 ∈ {0, 1} is mapped to 1 ∈ Zq.
3. Receive SHb′,j from j ∈ C. Sample (SHb′,1,SHb′,2,SHb′,3) ←

share(b′, j, SHb′,j).
4. Send SHb′,i to i ∈ H.

Figure 25: The ideal share conversion functionality FSHC.

Protocol for Share Conversion from {0, 1} to Zq:
1. Party i receives input {SHb,i,SMb,i} and defines SHi,i := (shb,i, 0),

SHi+1 mod 3,i := (0, shb,i+1 mod 3), SHi−1 mod 3,i := (0, 0).
2. ∀i ∈ [3], Party i sends SH1,i and SH2,i to Fmult and receives SHx,i.

Further, it sends SM1,i and SM2,i to Fmult and receives SMx,i. Add
(SHx,1,SHx,2,SHx,3,SMx,1,SMx,2,SMx,3) to LMAC.

3. ∀i ∈ [3], Party i defines SHy,i := SH1,i ⊕ SH2,i ⊖ 2 ⊙ SHx,i and
SMy,i := SM1,i ⊕ SM2,i ⊖ 2⊙ SMx,i.

4. ∀i ∈ [3], Party i sends SHy,i and SH3,i to Fmult and receives SHz,i.
Further, it sends SMy,i and SM3,i to Fmult and receives SMz,i. Add
(SHz,1,SHz,2,SHz,3,SMz,1,SMz,2,SMz,3) to LMAC.

5. ∀i ∈ [3], Party i outputs SHb′,i := ⊖2⊙ SHz,i ⊕ SH3,i ⊕ SHy,i and
SMb′,i := ⊖2⊙ SMz,i ⊕ SM3,i ⊕ SMy,i.

Figure 26: The protocol for share conversion in the Fmult hybrid model.

38

on the case that LMAC verifies. In that case, we can invoke Lemma 3 to prove
that d = 0 whenever Fmult is queried.

We construct the simulator as follows. For the sake of simplicity, we ignore
SM in this description and let the simulator do any action on SH also on SM
in the same fashion. Sim receives SHb,j from FSHC. Whenever j ∈ C sends a
message to Fmult, forward the message to Fmult. During the interactions between
j ∈ C and Fmult, Sim learns SH1,j ,SH2,j from Fmult, SHx,i from j ∈ C during
the first multiplication and SHy,j ,SH3,j from Fmult, SHz,i from j ∈ C during
the second multiplication. Since d = 0, there is no additive attack. There-
fore, SH1,j ,SH2,j ,SH3,j ,SHy,j are consistent with SHb,j and follow the protocol
distribution. Sim uses the shares to compute SHb′,j according to protocol and
submits it to FSHC. Sim outputs the output of j ∈ C.

Since Sim is only forwarding messages between Fmult and j ∈ C, the output
distribution of j ∈ C is identical in the real protocol execution and the simulated
one.

It remains to show that the honest parties generate the same output as FSHC.
Since there are no additive attacks, the honest parties compute

SHb′,i := ⊖2⊙ SH3,i ⊙ (SH1,i ⊕ SH2,i ⊖ 2⊙ SHx,i)⊕ SH3,i ⊕ SHy,i

Which corresponds to

b′ = −2 · shb,3 · (shb,1 + shb,2 − 2 · shb,1 · shb,2)
+ shb,3 + shb,1 + shb,2 − 2 · shb,1 · shb,2 mod p

= shb,1shb,2shb,3 + shb,1(1− shb,2)(1− shb,3)

+ (1− shb,1)shb,2(1− shb,3) + (1− shb,1)(1− shb,2)shb,3 mod p.

Therefore, b′ is 1 if and only if b is 1 and otherwise 0. When Fmult interacts
with Sim it also creates identical shares. Therefore the joint outputs in the real
protocol execution are indistinguishable from the ones in the ideal world.

Functionality for Comparison In Figure 27, we define functionality FCE

for comparing a secret shared value against a constant.

Ideal Functionality FCE:
1. FCE receives input SHx,i, y from i ∈ H. Compute x :=

combine({SHx,i}i∈H). Send SHx,j to j ∈ C.
2. Set b = 1 ∈ Zq if x ≤ y and b = 0 ∈ Zq otherwise. Receive SHb,j

from j ∈ C, sample {SHb,i}i∈[3] ← share(b,SHb,j).
3. Send SHb,i to i ∈ H.

Figure 27: The ideal functionality FCE for comparing two values where one is a
constant in Zq.

39

9.2 Protocols during the Query Phase

Oblivious Last Touch Attribution For the Last Touch Attribution, we
use an approach similar to the approach used in [26]. This approach allows to
compute a prefix sum in O(log(|L|)) parallel time. The oblivious attribution
uses a tree-like structure to compute a prefix sum. The accumulation of sum
elements halts whenever a new match or attribution constraint is reached. It also
halts when a source event is reached. By using this strategy, the credit value for
each source event is the sum of the following trigger events until another source
event follows. This computes a last-touch attribution.

In more detail, we use a helper bit indicating whether the previous event
has a different match key or attribution constraint. Further, we use a stop bit
indicating whether the accumulation is supposed to stop. We iterate in ⌈logN⌉
many steps and for each step, we iterate over all list elements. More precisely,
we use the following approach.

• For t = 0, t < log(|L|) + 1, t = t+ 1

– For r = |L| − 2t, r > 0, r = r − 1

If (L[r].sb = 1 and L[r + 2t].hb = 1 and L[r + 2t].tb = 1) then

L[r].cr = L[r].cr + L[r + 2t].cr

L[r].sb = L[r + 2t].sb

else

L[r].sb = 0

The inner part of the two for loops translates into the following arithmetic
computation:

L[r].cr = L[r].cr + L[r].sb · L[r + 2t].hb · L[r + 2t].tb · L[r + 2t].cr

and
L[r].sb = L[r + 2t].sb · L[r].sb · L[r + 2t].hb · L[r + 2t].tb

This can be simplified by precomputing x = L[r+2t].hb ·L[r+2t].tb and reusing
y = L[r].sb · x during the computation. In Figure 28, we use this approach to
compute a last touch attribution based on secret shared value. The protocol
description in the figure does not overwrite variables and instead introduces new
variables that are indexed with the iteration counter t. This is helpful for the
security analysis and also does not lead to errors when the for inner for loop of
the protocol is executed in parallel (due to overwriting values that still need to
be read).

Lemma 6. The protocol in Figure 28 conditionally realizes FLTA in the Fmult,
FHB hybrid model.

Proof. The second requirement from Definition 10 trivially holds, because the
protocol only outputs secret shared values to the corrupted party which are
independent from any actual sensitive value. For the rest of the proof, we focus

40

Protocol conditionally realizing FLTA:
1. Invoke FHB on input Li from Party i ∈ [3].
2. For every r ∈ [|L|], invoke FSHC on input L[r].SHhb,i ∈ {0, 1} and

define L[r].SHhb,i ∈ Zq as the output. Repeat for L[r].SHtb,i ∈
{0, 1}.

3. For every r ∈ [|L|], initialize shsb,r,0,1 := 1 ∈ Zq, shsb,r,0,2 := 0 ∈
Zq, shsb,r,0,3 := 0 ∈ Zq and SHcr,r,0,i := L[r].SHtv,i ∈ Zq.

4. For every r ∈ [|L|], send L[r].SHtb,i, L[r].SHhb,i to Fmult,
receive SHx,r,i. Repeat for L[r].SHtb,i, L[r].SMhb,i. Add
{SHx,r,i,SMx,r,i}i∈[3] to LMAC.

5. For (t := 0, t < log(|L|) + 1, t := t+ 1) compute:

• For (r := 1, r ≤ |L|, r := r + 1) compute:

– If r + 2t ≥ |L|
∗ Set SHcr,r,t+1,i := SHcr,r,t,i, SMcr,r,t+1,i := SMcr,r,t,i.

∗ Set SHsb,r,t+1,i := 0, SMsb,r,t+1,i := 0

– else

∗ Send SHsb,r,t,i, SHx,r+2t,i to Fmult, receive
SHy,r,t,i. Repeat for SHsb,r,t,i, SMx,r+2t,i. Add
{SHy,r,t,i,SMy,r,t,i}i∈[3] to LMAC.

∗ Send SHy,r,t,i, SHcr,r+2t,t,i to Fmult, receive
SHz,r,t,i. Repeat for SMy,r,t,i, SHcr,r+2t,t,i. Add
{SHz,r,t,i,SMz,r,t,i}i∈[3] to LMAC.

∗ Set SHcr,r,t+1,i := SHcr,r,t,i + SHz,r,t,i, SMcr,r,t+1,i :=
SMcr,r,t,i + SMz,r,t,i.

∗ Send SHy,r,t,i, SHsb,r+2t,t,i to Fmult, receive
SHsb,r,t+1,i. Repeat for SMy,r,t,i, SHsb,r+2t,t,i.
Add {SHsb,r,t+1,i,SMsb,r,t+1,i}i∈[3] to LMAC.

6. For every r ∈ [|L|], set L[r].SHcr,i := SHcr,r,⌈log(|L|)⌉,i. Append
L[r].SHcr,i to Li.

Figure 28: The protocol for the last touch attribution in the Fmult, FHB hybrid
model.

41

on the case that LMAC verifies. In that case, we can invoke Lemma 3 to prove
that d = 0 whenever Fmult is queried.

We construct the simulator Sim as follows. It receives Lj from FLTA. During
the computation of FHB, it sends Lj , to A who responds with L[r].SHhb,j . Sim
updates Lj using L[r].SHhb,j . It uses the same strategy when FSHC is invoked.
Sim follows the protocol for any local computation of any shares for j ∈ C and
whenever Fmult is invoked, it sends Lj to A and receives the result of Fmult from
A in forms of shares for j ∈ C. It uses these shares to compute L[r].SHcr,i which
it then submits to FLTA. Sim outputs the output of A.

Since Sim follows the protocol description and only forwards messages be-
tween A and the hybrid functionalities, the view of A when interacting with
Sim is indistinguishable from its view when interacting with the honest parties
during the real protocol. We still need to show that the output of the honest
parties is consistent with the output of FLTA. FLTA outputs a secret shared list
L that is identical to the input list except that it appends the credits cr for each
event. According to FLTA, cr is defined as the sum of trigger values tv of each
following events until an event is a source event or has a different match key or
attribution constraint. In the latter case, its helper bit is set to zero. We need to
show, that in the real protocol execution results, the honest parties produce the
same output. Since d = 0 for all multiplications, i.e. calls to Fmult), the honest
parties will correctly multiply their shares and A is not able to manipulate any
of the secret shared values of the honest parties.

By expanding the tree structure, for an event L[r] and Party i, we obtain
(where d = 0 for all multiplications, i.e. calls to Fmult):

L[r].SHcr,i = SHcr,r,⌈log(|L|)⌉,i

= SHcr,r,⌈log(|L|)⌉−1,i + SHz,r,⌈log(|L|)⌉−1,i

= L[r].SHtv,i +

⌈log(|L|)⌉−1∑
t=0

SHz,r,t,i

= L[r].SHtv,i +

⌈log(|L|)⌉−1∑
t=0

SHy,r,t,i · SHcr,r+2t,t,i

where SHy,r,t,i = SHsb,r,t,i · L[r + 2t].SHtb,i · L[r + 2t].SHhb,i and for r + 2t < 1,
SHcr,r+2t,t,i := 0, SHy,r,t+1,i := 0, SHz,r,t+1,i := 0. For simplicity, we recombine
the shares and show that the underlying values have the correct distribution.
Let crr,t := combine({SHcr,r,t,i}i∈H), yr,t := combine({SHy,r,t,i}i∈H) and sbr,t :=
combine({SHsb,r,t,i}i∈H).

We now use a complete induction to show that we obtain the correct sum.
For t = 0 and all r ∈ [|L|], crr,t := L[r].tv via definition. Now let for all t < T
and all r, crr,t be the sum of previous events until there is a source event,
i.e. evt.tb = 0 or there is different match key or attribution constraint, i.e.
hb = 0. We need to show that this also holds for crr,T . By expanding crr,T ,

we obtain crr,T = L[r].tv +
∑T−1

t=0 yr,t · crr+2t,t. By assumption, all the crr+2t,t

components of the sum have the right distribution. By the definition of yr,t,

42

i.e. yr,t := sbr,t · L[r + 2t].tb · L[r + 2t].hb holds. Therefore, yr,t = 0, whenever
event L[r] is a source event, i.e. L[r + 2t].tb = 0 or has a different match key or
attribution constraint, i.e. L[r + 2t].hb = 0.

There are two things that we need to show. First, once a sum is zeroed out,
i.e. yr,t = 0, all following sums are also zeroed out, i.e. yr,t+s = 0 for all s > 0.
This is easy to show since it is sufficient to show that yr,t = 0 implies that
yr,t+1 = 0. Further, since sbr,t+1 is a factor of yr,t+1, it is sufficient for us to
show that yr,t = 0 implies that sbr,t+1 = 0. By definition, sbr,t+1 := yr,t ·sbr+2t,t

and therefore the first statement follows.
Second, it could be that there is an event r′ that is a source event or has

a different match key, but doesn’t have a power of two distance to L[r]. In
that case the credits crr+2t,t for t ∈ {0, . . . , T} are still correct per induction
assumption. Let crr+2t,t be the sum that includes L[r′].tv. We need to ensure
that all following summands, i.e. crr+2t′ ,t′ for t

′ > t, are zeroed out, i.e. yr,t′ = 0.
By the first statement, it is sufficient to show this for t′ = t+1. We can leverage,
that some y terms involved in the computation of crr+2t,t are zero to argue that
yr,t+1 = 0. Again, by the first statement, yr′′,t = 0 for ”lower” order term
(meaning a term computed during a comparably early iteration t) yr′′,t implies
that yr′′,t+s = 0 for any ”higher” order term (computed during a comparably
late iteration t+s) yr′′,t+s with s > 0. Therefore, there is at least one ”highest”
order term involved in the computation of crr+2t,t that is zero. By definition,

crr+2t,t := L[r + 2t].tv +
t−1∑
i=0

yr+2t,i · crr+2t+2i,i.

By expanding the sum for the ”highest” order terms (e.g. i = t − 1 and then
i = t− 2, . . .) we can see that these ”highest” order terms are

yr+2t,t−1; yr+2t+2t−1,t−2; . . . ; yr+
∑s

i=0 2t−i,t−1−s;

We need to show that if any of these ”highest” terms is zero, then yr,t+1 = 0.
Or more formal, for any s ≥ 0, yr+

∑s
i=0 2t−i,t−1−s = 0 implies yr,t+1 = 0. By

definition, yr,t+1 := sbr,t+1 ·L[r+2t+1].tb ·L[r+2t+1].hb. We need to show that
sbr,t+1 = 0. Again, by definition sbr,t+1 := yr,t · sbr+2t,t. We can expand sbr,t+1

as follows

sbr,t+1 = yr,t · yr+2t,t−1 · sbr+2t+2t−1,t−1 = yr,t ·
∏
s=0

yr+
∑s

i=0 2t−i,t−1−s.

Since any ”highest” order term yr+
∑s

i=0 2t−i,t−1−s is a factor of sbr,t+1, for any
s ≥ 0, yr+

∑s
i=0 2t−i,t−1−s = 0 implies sbr,t+1 = 0 and therefore yr,t+1 = 0.

This concludes our complete induction argument. We have shown that the
underlying values of the secret shares during the real protocol result in the
correct computation of the Last Touch Attribution. Therefore, the secret shares
of the hones parties also have the correct distribution and we have shown the
lemma.

43

DP Capping We define the protocol conditionally realizing FCAP in Fig-
ure 29. The DP Capping ensures that the contribution of each match key
owner is limited to be at most dpcap. This allows to achieve differential privacy
guarantees. Further, it also ensures robustness since even if a user agent submits
an artificially large trigger value, it will be capped during the DP Capping.

The protocol invokes two sub-protocols. The first one is called Compute
Currently Used Budget. This sub-protocol is defined in Figure 30. Compute
Currently Used Budget computes a prefix sum over the list. This prefix sum is
defined for each event and represents the currently used budget for all source
events associated with the same match key. The algorithm to compute the
prefix sum is very similar to the algorithm used for computing the Last Touch
Attribution. Its computational complexity is O(log(|L|)) parallel time.

The second protocol is called Overflow Protection and is defined in Figure 31.
The Overflow protection ensures that even if the prefix sum representing the
currently spend budget exceeds q, i.e. it wraps around and decreases, the budget
is still considered spent. Again, we use a similar algorithm as the Last Touch
Attribution. It takes O(log(|L|)) parallel time.

Lemma 7. Let 2 · dpcap < q. Then, the protocol in Figure 29 conditionally
realizes FCAP in the Fmult, FHB, FSHC, FCE hybrid model.

Proof. Similar to the previous proofs, the second requirement from Definition 10
trivially holds, because the protocol only outputs secret shared values to the
corrupted party which are independent from any actual sensitive value. For the
rest of the proof, we focus on the case that LMAC verifies. In that case, we can
invoke Lemma 3 to prove that d = 0 whenever Fmult is queried.

We construct the simulator Sim as follows. It receives Lj from FCAP. Sim
follows the protocol for any local computation of any shares for j ∈ C and
whenever a hybrid functionality is invoked, it uses Lj to send A the correct
shares and receives the results of the hybrid functionality from A in forms of
shares for j ∈ C. It uses these shares to update Lj and any other stored secret
shares according to protocol. After all computation is done, Sim submits the
shares L[r].SHcr,j for all r ∈ [|L|] to FLTA. Sim outputs the output of A.

As before, since Sim follows the protocol description and only forwards mes-
sages between A and the hybrid functionalities, the view of A when interacting
with Sim is indistinguishable from its view when interacting with the honest
parties during the real protocol. It remains to show that the output of the hon-
est parties during the real world protocol execution is indistinguishable from
the output of FCAP interacting with Sim. In the following, we argue that the
underlying values that are secret shared have the correct distribution. It follows
that then the secret shares also have the correct distribution, since the secret
shares of the honest parties are determined by the shares of j ∈ C and the actual
values.

As defined in Figure 12, FCAP starts with setting the credit of all trigger
events to zero. It then iterates through L, starting with the last element in
list L. It keeps track of the currently spend budget for each match key. If the
budget is spent for event L[r], the credit for all L[r′] with r′ < r is set to zero.

44

Protocol conditionally realizing FCAP:
1. Invoke FHBC on input Li from Party i ∈ [3]. For every r ∈ [|L|],

invoke FSHC on input L[r].SHhb,i ∈ {0, 1} and define L[r].SHhb,i ∈
Zq as the output. Repeat for L[r].SHtb,i ∈ {0, 1}.

2. For every r ∈ [|L|], compute 1 − tb by setting L[r].sh′tb,1 :=

1 − L[r].shtb,1 and ∀i ∈ {2, 3}, L[r].sh′tb,i := −L[r].shtb,i. Send

L[r].SH′tb,i, L[r].SHcr,i to Fmult, receive SHcr,r,0,i. Repeat for

L[r].SH′tb,i, L[r].SMcr,i. Add {SHcr,r,0,i,SMcr,r,0,i}i∈[3] to LMAC.
3. For every r ∈ [|L|], send SHcr,r,0,i, SMcr,r,0,i, dpcap to FCE, receive

SHb,cr,r,i ∈ Zq, SMb,cr,r,i ∈ Zq.
4. For every r ∈ [|L|], set sh′cr,r,0,1 := dpcap − shcr,r,0,1 and

∀i ∈ {2, 3}, sh′cr,r,0,i := −shcr,r,0,i. Send SH′cr,r,0,i, SHb,cr,r,i to

Fmult, receive SHx,cr,r,i. Repeat for SH′cr,r,0,i, SMb,cr,r,i. Add
{SHx,cr,r,i,SMx,cr,r,i}i∈[3] to LMAC.

5. For every r ∈ [|L|], set SHcr,r,0,i := dpcap− SHx,cr,r,i, SMcr,r,0,i :=
dpcap · SKM− SMx,cr,r,i.

6. Invoke Compute Currently Used Budget sub-protocol from Fig-
ure 30.

7. For every r ∈ [|L|], send SHc,r,i, SMc,r,i, dpcap to FCE, receive
SHb,r,i ∈ Zq, SMb,r,i ∈ Zq.

8. Invoke Overflow Protection sub-protocol from Figure 31.
9. For every r ∈ [|L|], set sh′c,r+1,1 := shc,r+1,1−dpcap and ∀i ∈ {2, 3},

sh′c,r+1,i := shc,r+1,i. Send SH′c,r+1,i, SHb,r+1,i to Fmult, receive

SHe,r,i. Repeat for SH
′
c,r+1,i, SMb,r+1,i. Add {SHe,r,i,SMe,r,i}i∈[3]

to LMAC.
10. For every r ∈ [|L|], set sh′e,r,1 := she,r,1 + dpcap and ∀i ∈
{2, 3}, sh′e,r,i := she,r,i. Send SH′e,r,i, L[r + 1].SHhb,i to Fmult,

receive SHd,r,i. Repeat for SH′e,r,i, L[r + 1].SMhb,i. Add
{SHd,r,i,SMd,r,i}i∈[3] to LMAC.

11. For every r ∈ [|L|], set sh′d,r,1 := dpcap − shd,r,1 and ∀i ∈ {2, 3},
sh′d,r,i := −shd,r,i. Set SHf,r,i := SHcr,r,0,i − SH′d,r,i.

12. For every r ∈ [|L|], send SHb,r,i, SHf,r,i to Fmult, receive SHa,r,i.
Repeat for SMb,r,i, SHf,r,i. Add {SHa,r,i,SMa,r,i}i∈[3] to LMAC.

13. For every r ∈ [|L|], set L[r].SHcr,i := SHa,r,i+SH′d,r,i, L[r].SMcr,i :=

SMa,r,i + SM′d,r,i.

Figure 29: The protocol for the DP Capping in the Fmult, FHB, FSHC, FCE hybrid
model.

45

Compute Currently Used Budget, Sub-Protocol for FCAP:

1. For every r ∈ [|L|], initialize shsb,r,0,1 := 1 ∈ Zq, shsb,r,0,2 := 0 ∈
Zq, shsb,r,0,3 := 0 ∈ Zq.

2. For (t := 0, t < log(|L|) + 1, t := t+ 1) compute:

• For (r := 1, r ≤ |L|, r := r + 1) compute:

– If r + 2t ≥ |L|
∗ Set SHcr,r,t+1,i := SHcr,r,t,i, SMcr,r,t+1,i := SMcr,r,t,i.

∗ Set SHsb,r,t+1,i := 0, SMsb,r,t+1,i := 0

– else

∗ Send SHsb,r,t,i, L[r + 2t].SHhb,i to Fmult, receive
SHy,r,t,i. Repeat for SHsb,r,t,i, L[r + 2t].SMhb,i. Add
{SHy,r,t,i,SMy,r,t,i}i∈[3] to LMAC.

∗ Send SHy,r,t,i, SHcr,r+2t,t,i to Fmult, receive
SHz,r,t,i. Repeat for SMy,r,t,i, SHcr,r+2t,t,i. Add
{SHz,r,t,i,SMz,r,t,i}i∈[3] to LMAC.

∗ Set SHcr,r,t+1,i := SHcr,r,t,i + SHz,r,t,i, SMcr,r,t+1,i :=
SMcr,r,t,i + SMz,r,t,i.

∗ Send SHy,r,t,i, SHsb,r+2t,t,i to Fmult, receive
SHsb,r,t+1,i. Repeat for SMy,r,t,i, SHsb,r+2t,t,i.
Add {SHsb,r,t+1,i,SMsb,r,t+1,i}i∈[3] to LMAC.

3. For every r ∈ [|L|], set SHc,r,i := SHcr,r,⌈log(|L|)⌉,i.

Figure 30: The sub-protocol Compute Currently Used Budget for the DP Cap-
ping in the Fmult hybrid model.

46

Overflow Protection, Sub-Protocol for FCAP:

1. For every r ∈ [|L|], initialize shsb,r,0,1 := 1 ∈ Zq, shsb,r,0,2 := 0 ∈
Zq, shsb,r,0,3 := 0 ∈ Zq.

2. For every r ∈ [|L|], initialize SHb,r,0,i := SHb,r,i, SMb,r,0,i :=
SMb,r,i.

3. For (t := 0, t < log(|L|) + 1, t := t+ 1) compute:

• For (r := 1, r ≤ |L|, r := r + 1) compute:

– If r + 2t ≥ |L|
∗ Set SHb,r,t+1,i := SHb,r,t,i, SMb,r,t+1,i := SMb,r,t,i.

∗ Set SHsb,r,t+1,i := 0, SMsb,r,t+1,i := 0

– else

∗ Send SHsb,r,t,i, L[r + 2t].SHhb,i to Fmult, receive
SHy,r,t,i. Repeat for SHsb,r,t,i, L[r + 2t].SMhb,i. Add
{SHy,r,t,i,SMy,r,t,i}i∈[3] to LMAC.

∗ Send SHy,r,t,i, SHb,r,t,i to Fmult, receive
SHx,r,t,i. Repeat for SMy,r,t,i, SHb,r,t,i. Add
{SHx,r,t,i,SMx,r,t,i}i∈[3] to LMAC.

∗ Set sh′b,r+2t,t,1 := shb,r+2t,t,1 − 1. ∀i ∈ {2, 3}, set

sh′b,r+2t,t,i := shb,r+2t,t,i. Send SHx,r,t,i, SH
′
b,r+2t,t,i

to Fmult, receive SHz,r,t,i. Repeat for SMx,r,t,i,
SH′b,r,t+2t,i. Add {SHz,r,t,i,SMz,r,t,i}i∈[3] to LMAC.

∗ Set SHb,r,t+1,i := SHb,r,t,i + SHz,r,t,i, SMb,r,t+1,i :=
SMb,r,t,i + SMz,r,t,i.

∗ Send SHy,r,t,i, SHsb,r+2t,t,i to Fmult, receive
SHsb,r,t+1,i. Repeat for SMy,r,t,i, SHsb,r+2t,t,i.
Add {SHsb,r,t+1,i,SMsb,r,t+1,i}i∈[3] to LMAC.

4. For every r ∈ [|L|], set SHb,r,i := SHb,r,⌈log(|L|)⌉,i.

Figure 31: The sub-protocol Overflow Protection for the DP Capping in the
Fmult hybrid model.

47

If there is still budget, but L[r]’s credit exceeds the budget, L[r]′s credit is set
to the remaining budget.

The protocol in Figure 29 computes the capping as follows. In Step 2, it
initializes crr,0 := (1− tb) · crr. Therefore, it crr,0 to zero for all trigger events.
In Step 3, 4 and 5, it sets crr,0 := dpcap − (crr,0 ≤ dpcap?) · (dpcap − crr,0).
This is equivalent of setting crr,0 := crr,0, when crr,0 ≤ dpcap and crr,0 = dpcap
otherwise. Since in FCAP, no credit after the capping can exceed dpcap, this does
not result in inconsistency with FCAP. However, since the protocol computes
over Zq, and since 2 ·dpcap < q, it ensures that no sum of two credits will exceed
q, i.e. for any r, r′ ∈ L with crr,0 + crr′,0 ≥ dpcap, (crr,0 + crr′,0) mod q ≥ dpcap
holds as well.

The sub protocol Compute Currently Used Budget keeps track of the cur-
rently spend budget. L is sorted and therefore events with the same match key
are next to each other. Further, we have computed the helper bits in Step 1 to
separate events with different match key. It is therefore sufficient to compute a
prefix sum that is reset at each helper bit to keep track of the match key specific
budget. For now we assume that Compute Currently Used Budget computes the
correct prefix sum over the event credits. The variables storing the prefix sum
is cr. If the sub protocol is correct, cr =

∑
r′∈{r,...,|L|}(L[r].mk = L[r′].mk) ·crr′,0

holds. We will show the correctness of the sub protocol later.
Step 7 computes br which is 0 when cr > dpcap and 1 otherwise. Step 8

invokes the sub-protocol Overflow Protection. Assuming that it is correct (we
show correctness later), for all r, r′ ∈ [|L] with r′ < r, L[r].mk = L[r′].mk, it
holds that if br = 0 then br′ = 0. This is not necessarily true before Step 8
since the prefix sum is computed over Zq and could wrap around such that it
decreases. However, due to Step 3, 4 and 5, as well as 2dpcap < q, it is ensured
that if the sum exceeds dpcap the first time over the integers, for that event, let
it be event r, br = 0 holds.

Step 9 computes er := br+1 · (cr+1 − dpcap). Step 10 computes dr := (er +
dpcap) · L[r + 1].hb. Step 11 computes fr := crr,0 − (dpcap − dr). Step 12
computes ar := br · fr and Step 13 computes L[r].cr := ar + (dpcap − dr). We
can summarize these steps by the following computation:

L[r].cr = ar + (dpcap− dr) = br · (crr,0 − (dpcap− dr)) + (dpcap− dr)

where dr = (br+1 ·(cr+1−dpcap)+dpcap)·L[r+1].hb. If event r+1 has a different
match key, L[r + 1] = 0 and therefore dr = 0. In this case, L[r].cr = br · (crr,0 −
dpcap) + dpcap which is L[r].cr = dpcap if crr,0 > dpcap and L[r].cr = crr,0c
otherwise. This is consistent with FCAP. Let us consider now that L[r+1].hb = 1,
which means that the previous event has the same match key. In this case,
dr = (br+1 · (cr+1 − dpcap) + dpcap). We distinguish now the following cases

br+1 = 0: When br+1 = 0, it means that the previous event exceeded dpcap
already. In this case dr = dpcap and therefore L[r].cr = br · crr,0. Due
to the overflow protection, br+1 = 0 implies that br = 0. Hence L[r] = 0
which is consistent with the specification of FCAP.

48

br+1 = 1: When br+1 = 1, it means that the previous event has not exceeded
dpcap and therefore there is some budget left. In this case, dr = cr+1

and thus, L[r].cr = br · (crr,0 − (dpcap − cr+1)) + (dpcap − cr+1). Now,
if br = 0, i.e. event r exceeds the budget, L[r] = dpcap − cr+1 which is
the remaining budget after event r + 1 reduces the budget for its credit.
In the other case, i.e. br = 1, there is still enough budget. L[r].cr =
(crr,0 − (dpcap − cr+1)) + (dpcap − cr+1) = crr,0 and therefore the final
credit for event r is identical to the credit before the capping (unless it
has been previously capped to dpcap during Step 3,4 and 5).

As we have shown, in all cases the protocol of Figure 29 is consistent with FCAP.
It remains to show that the sub-protocols are correct.

We start with Compute Currently Used Budget. This protocol is very similar
to the procotol for FLTA and therefore its correctness proof is very similar, too.
Therefore, we keep the proof brief. We need to show that for all r ∈ [|L|], cr
resembles the correct prefix sum, i.e cr =

∑
r′∈{r,...,|L|}(L[r].mk = L[r′].mk) ·

crr′,0. Since L is sorted and the helper bits are set correctly, it is sufficient to
show that cr =

∑
r′∈{r,...,r′} crr′,0, were event r′ is the closest event with r′ > r

and L[r′ + 1].hb = 0.
According to the protocol, cr := crr,⌈log(|L|)⌉, where crr,t+1 := crr,t + yr,t ·

crr+2t,t. We can expand this to crr,t = crr,0 +
∑t−1

s=0 yr,s · crr−2s,s.
We use a complete induction to show that we obtain the correct sum. For

t = 0 and all r ∈ [|L|], crr,0 resembles the correct sum via definition, i.e. it is
just the sum of the events credit itself. Now let for all t < T and all r, crr,t
be the sum of previous events until there is different match key, i.e. hb = 0.
We need to show that this also holds for crr,T . By assumption, all the crr+2t,t

components of the sum have the right distribution. By the definition of yr,t, i.e.
yr,t := sbr,t ·L[r+2t].hb holds. Therefore, yr,t = 0, whenever event L[r+2t] has
a different match key, i.e. L[r + 2t].hb = 0.

There are two things that we need to show. First, once a sum is zeroed out,
i.e. yr,t = 0, all following sums are also zeroed out, i.e. yr,t+s = 0 for all s > 0.
This is easy to show since it is sufficient to show that yr,t = 0 implies that
yr,t+1 = 0. Further, since sbr,t+1 is a factor of yr,t+1, it is sufficient for us to
show that yr,t = 0 implies that sbr,t+1 = 0. By definition, sbr,t+1 := yr,t ·sbr+2t,t

and therefore the first statement follows.
Second, it could be that there is an event r′ that has a different match key,

but doesn’t have a power of two distance to L[r]. In that case the credits crr+2t,t

for t ∈ {0, . . . , T} are still correct per induction assumption. Let crr+2t,t be the
sum that includes L[r′].cr. We need to ensure that all following summands, i.e.
crr+2t′ ,t′ for t′ > t, are zeroed out, i.e. yr,t′ = 0. By the first statement, it is
sufficient to show this for t′ = t+1. We can leverage, that some y terms involved
in the computation of crr+2t,t are zero to argue that yr,t+1 = 0. Again, by the
first statement, yr′′,t = 0 for ”lower” order term (meaning a term computed
during a comparably early iteration t) yr′′,t implies that yr′′,t+s = 0 for any
”higher” order term (computed during a comparably late iteration t+s) yr′′,t+s

with s > 0. Therefore, there is at least one ”highest” order term involved in the

49

computation of crr+2t,t that is zero. By definition,

crr+2t,t := crr+2t,0 +

t−1∑
i=0

yr+2t,i · crr+2t+2i,i.

By expanding the sum for the ”highest” order terms (e.g. i = t − 1 and then
i = t− 2, . . .) we can see that these ”highest” order terms are

yr+2t,t−1; yr+2t+2t−1,t−2; . . . ; yr+
∑s

i=0 2t−i,t−1−s;

We need to show that if any of these ”highest” terms is zero, then yr,t+1 = 0.
Or more formal, for any s ≥ 0, yr+

∑s
i=0 2t−i,t−1−s = 0 implies yr,t+1 = 0. By

definition, yr,t+1 := sbr,t+1 ·L[r+2t+1].tb ·L[r+2t+1].hb. We need to show that
sbr,t+1 = 0. Again, by definition sbr,t+1 := yr,t · sbr+2t,t. We can expand sbr,t+1

as follows

sbr,t+1 = yr,t · yr+2t,t−1 · sbr+2t+2t−1,t−1 = yr,t ·
∏
s=0

yr+
∑s

i=0 2t−i,t−1−s.

Since any ”highest” order term yr+
∑s

i=0 2t−i,t−1−s is a factor of sbr,t+1, for any
s ≥ 0, yr+

∑s
i=0 2t−i,t−1−s = 0 implies sbr,t+1 = 0 and therefore yr,t+1 = 0. This

concludes our complete induction argument and shows that the sub-protocol is
correct.

We now show the correctness of the second sub-protocol, the Overflow
Protection. Again, this protocol has a very similar structure. For correct-
ness, we need to show that once br = 0, br′ = 0 for all r′ with r′ < r and
L[r].mk = L[r′].mk. Again, because L is sorted and the helper bits are set cor-
rectly, we only need to show that br = 0 implies br′ = 0 for r′ ∈ {r, . . . , r′′},
where r′′ is the smallest r′′ > r with L[r′′ + 1].hb = 0.

yr,t and sbr,t are defined as before. Therefore, we can rely on the previous
analysis to obtain that if yr,t = 0, then yr,t+s = 0 for all s > 0. Further, if for

any r′ ∈ {r, . . . , r +
∑t−1

i=0 2
t−i}, L[r′].hb = 0, then for any s with r + 2s ≥ r′

(s < log(r − r′)), yr,s = 0. Let r′ be the closest event to r with L[r′].hb = 0.
Since for all r′′ ∈ {r, . . . , r′ − 1}, sbr′′,0 = 1 as well as L[r′′].hb = 1, it follows
that for any s with r+2s < r′, yr,s = 1 by the definition of yr,s := sbr,s ·L[r+2s]
and sbr,s := yr,s−1 · sbr+2t−1,t−1.

By definition, br := br,⌈log(|L|)⌉. Further, br,t+1 := br,t+(br+2t,t−1) ·yr,t ·br,t.

50

We now expand br,t to (assuming r′ > r + 3 and s′ = ⌈log(r′ − r)⌉ − 1)

br,t = br,0 +

s′∑
s=0

(br+2s,s − 1) · br,s

= br,0 + (br+1,0 − 1)br,0 + (br+2,1 − 1)br,1 +

s′∑
s=2

(br+2s,s − 1) · br,s

= br,0br+1,0 + (br+2,0 + (br+3,0 − 1) · br+2,0 − 1)(br,0 + (br+1,0 − 1)br,0)

+

s′∑
s=2

(br+2s,s − 1) · br,s

= br,0br+1,0br+2,0br+3,0 +
s′∑

s=2

(br+2s,s − 1) · br,s

=

r′−r−1∏
s=0

br+s,0.

Therefore, if any event r′′ ∈ {r, . . . , r′ − 1} has spend the dpcap budget, i.e.
br′′,0 = 0, then br,⌈log(|L|)⌉ = 0 as well, which is what we wanted to show in order
to show the correctness of sub-protocol Overflow Protection.

Since both sub-protocols are correct, we have shown the lemma.

Aggregation There are different approaches to secure aggregation including
sorting by the breakdown key and computing a prefix sum with stop bits similar
to the last touch attribution. That approach would work well for a large amount
of different breakdown categories. We use a more straightforward approach by
just using multiplications and comparisons. This works sufficiently well for small
amount of breakdown categories. We present the protocol in Figure 32.

Protocol realizing FAGR for BK = Dbk
sh ⊂ {0, 1}∗, cr ∈ Dcr

sh := Zp:
1. For each r ∈ [|Li|] and bk ∈ BK, compute SHb,r,bk,i := OR(¬(bk⊕

(L[r]).SHbk,i)).
2. For each r ∈ [|Li|] and bk ∈ BK, invoke FSHC on SHb,r,bk,i ∈ {0, 1}

and define the output as SHb,r,bk,i ∈ Zq.
3. For each r ∈ [|Li|] and bk ∈ BK, Send SHb,r,bk,i, L[r].SHcr,i to
Fmult, receive SHx,bk,r,i. Repeat for SHb,r,bk,i, L[r].SMcr,i. Add
{SHx,bk,r,i,SMx,bk,r,i}i∈[3] to LMAC.

4. Perform an aggregation on L: For each bk ∈ BK, compute
SHAG,bk,i :=

∑
r∈[|L|] SHx,bk,r,i.

Figure 32: The protocol conditionally realizing functionality FAGR.

Lemma 8. The protocol in Figure 32 conditionally realizes FAGR in the Fmult,
FSHC hybrid model.

51

Proof. Similar to the previous proofs, the second requirement from Definition 10
trivially holds, because the protocol only outputs secret shared values to the
corrupted party which are independent from any actual sensitive value. For the
rest of the proof, we focus on the case that LMAC verifies. In that case, we can
invoke Lemma 3 to prove that d = 0 whenever Fmult is queried.

We construct the simulator Sim as follows. It receives Lj from FAGR. Sim
follows the protocol for any local computation of any shares for j ∈ C and
whenever a hybrid functionality is invoked, it uses Lj to send A the correct
shares and receives the results of the hybrid functionality from A in forms of
shares for j ∈ C. It uses these shares to update Lj and any other stored secret
shares according to protocol. After all computation is done, Sim submits the
shares SHAG,bk,i for all bk ∈ BK to FAGR. Sim outputs the output of A.

As before, since Sim follows the protocol description and only forwards mes-
sages between A and the hybrid functionalities, the view of A when interacting
with Sim is indistinguishable from its view when interacting with the honest
parties during the real protocol. It remains to show that the output of the hon-
est parties during the real world protocol execution is indistinguishable from
the output of FCAP interacting with Sim. In the following, we argue that the
underlying values that are secret shared have the correct distribution. It follows
that then the secret shares also have the correct distribution, since the secret
shares of the honest parties are determined by the shares of j ∈ C and the actual
values.

The correctness straightforwardly follows. During the first step, the helper
parties compute the equality between bk and the secret shared bk′ of each event
and bk ∈ BK. This bit is then converted to Zq via FSHC. xbk,r = L[r].cr if
bk = L[r].bk and xbk,r = 0 otherwise. Since the protocol sums up all xbk,r to
AGbk, AGbk is consistent with FAGR

10 Performance

We are in the process of implementing our protocol in Rust [6]. Here are some
current performance numbers for the query stage showing the network usage.
For the MPC we use in the 3-party honest majority setting. In general, in this
setting of MPC, network is known to dominate the compute in the overall cost
of running the protocol. We expect similar results for IPA.

In table 1 and figure 1 we show the total amount of network used by all the
helper parties for different query sizes when running the protocol. For all the
runs below we use 16 breakdowns and 40 bit matchkeys and run with malicious
security. We have measured for up to 100k records. Scaling is a bit worse than
linear as certain stages of the protocol like attribution scale as O(n log n) in
the number of records. Extrapolating to 1M records puts the network around
18GB which at $0.08 per GB cost $1.44 (throughout we mean 1 GB = 10243

bytes). We also show the breakdown for how much network each stage of the
query takes in table 1 and figure 34.

52

0 20 40 60 80 100 120
0

500

1,000

1,500

2,000

number of records (thousands)

n
et
w
or
k
(M

B
s)

Figure 33: Network used for different size queries

Figure 34: Network percentages per stage

53

Number of records Network (MBs)
1000 15.6
10,000 159.1
100,000 1621

Table 1: Network used for different size queries

Stage Network (MBs) Percentage
Verify 146 9%
Sort 682 42.1%

Attribution 128 7.9%
Capping 461 28.5%

Aggregation 62 3.8%
Other 141 8.8%

Table 2: Network for different stages of the protocol when run with 100k records.

References

[1] Certificate authority browser forum. https://cabforum.org/. 5

[2] Private Computation Framework 2.0. https://github.com/

facebookresearch/Private-ID, 2020. 2

[3] Attribution reporting api. https://github.com/WICG/

attribution-reporting-api/blob/main/README.md, 2021. 3

[4] Introducing private click measurement, pcm. https://webkit.org/blog/
11529/introducing-private-click-measurement-pcm/, 2021. 3

[5] Privacy-enhancing technologies and building for the future. https://www.
facebook.com/business/news/building-for-the-future, 2021. 2

[6] Ipa open source code. https://github.com/private-attribution/ipa,
2022. 52

[7] Our progress on developing and incorporating privacy-enhancing
technologies. https://www.facebook.com/business/news/

our-progress-on-developing-and-incorporating-privacy-enhancing-technologies,
2022. 2

[8] Private advertising technology community group. https://www.w3.org/

community/patcg, 2022. 1, 2

[9] Private Computation Framework 2.0. https://github.com/

facebookresearch/fbpcf, 2022. 2

54

https://cabforum.org/
https://github.com/facebookresearch/Private-ID
https://github.com/facebookresearch/Private-ID
https://github.com/WICG/attribution-reporting-api/blob/main/README.md
https://github.com/WICG/attribution-reporting-api/blob/main/README.md
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://webkit.org/blog/11529/introducing-private-click-measurement-pcm/
https://www.facebook.com/business/news/building-for-the-future
https://www.facebook.com/business/news/building-for-the-future
https://github.com/private-attribution/ipa
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies
https://www.w3.org/community/patcg
https://www.w3.org/community/patcg
https://github.com/facebookresearch/fbpcf
https://github.com/facebookresearch/fbpcf

[10] Private measurement important dimensions for attribution.
https://github.com/patcg/docs-and-reports/tree/main/

design-dimensions, 2022. 3

[11] Google Apple. Exposure notification privacy-preserving analytics (enpa).
https://covid19-static.cdn-apple.com/applications/covid19/

current/static/contact-tracing/pdf/ENPA_White_Paper.pdf, 2021.
2

[12] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny
Pinkas, Katsumi Takahashi, and Junichi Tomida. Efficient secure three-
party sorting with applications to data analysis and heavy hitters. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 125–138. ACM Press, November 2022. 10, 20

[13] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval
Ishai. Lightweight techniques for private heavy hitters. 2021 IEEE Sym-
posium on Security and Privacy (SP), pages 762–776, 2020. 2

[14] Prasad Buddhavarapu, Benjamin M Case, Logan Gore, Andrew Knox, Pay-
man Mohassel, Shubho Sengupta, Erik Taubeneck, and Min Xue. Multi-key
private matching for compute. Cryptology ePrint Archive, 2021. 2

[15] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sen-
gupta, Erik Taubeneck, and Vlad Vlaskin. Private matching for compute.
Cryptology ePrint Archive, 2020. 2

[16] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of univer-
sally composable security for standard multiparty computation. In Rosario
Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 3–22. Springer, Heidelberg, August 2015. 11

[17] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 34–64.
Springer, Heidelberg, August 2018. 7, 32, 33

[18] Aloni Cohen. Attacks on deidentification’s defenses. In 31st USENIX Se-
curity Symposium (USENIX Security 22), pages 1469–1486, Boston, MA,
August 2022. USENIX Association. 7

[19] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In Symposium on Networked Systems
Design and Implementation, 2017. 2

[20] Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schopp-
mann. Verifiable distributed aggregation functions. Cryptology ePrint
Archive, 2023. 2

55

https://github.com/patcg/docs-and-reports/tree/main/design-dimensions
https://github.com/patcg/docs-and-reports/tree/main/design-dimensions
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf

[21] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung.
On deploying secure computing: Private intersection-sum-with-cardinality.
In 2020 IEEE European Symposium on Security and Privacy (EuroS&P),
pages 370–389, 2020. 2

[22] Ryo Kikuchi, Nuttapong Attrapadung, Koki Hamada, Dai Ikarashi,
Ai Ishida, Takahiro Matsuda, Yusuke Sakai, and Jacob C. N. Schuldt.
Field extension in secret-shared form and its applications to efficient se-
cure computation. Cryptology ePrint Archive, Paper 2019/386, 2019.
https://eprint.iacr.org/2019/386. 7

[23] Benjamin Kreuter, Craig William Wright, and Karn Seth. Constructing a
secure universal measurement id. Technical report, Google, LLC, 2021. 2

[24] Mahnush Movahedi, Benjamin M Case, Andrew Knox, James Honaker,
Li Li, Yiming Paul Li, Sanjay Saravanan, Shubho Sengupta, and Erik
Taubeneck. Privacy-preserving randomized controlled trials: A protocol
for industry scale deployment. arXiv preprint arXiv:2101.04766, 2021. 2

[25] Mozilla. Origin telemetry. https://blog.mozilla.org/security/2019/

06/06/next-steps-in-privacy-preserving-telemetry-with-prio/,
2022. 2

[26] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina
Taft, and Elaine Shi. GraphSC: Parallel secure computation made easy.
In 2015 IEEE Symposium on Security and Privacy, pages 377–394. IEEE
Computer Society Press, May 2015. 10, 40

[27] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael Dowsley, David
Melanson, Anderson Nascimento, and Martine De Cock. Training differ-
entially private models with secure multiparty computation. Cryptology
ePrint Archive, Report 2022/146, 2022. https://eprint.iacr.org/2022/
146. 22

[28] Joseph J. Pfeiffer, Denis Xavier Charles, Davis Gilton, Young Hun Jung,
Mehul Parsana, and Erik Anderson. Masked lark: Masked learning, aggre-
gation and reporting workflow. ArXiv, abs/2110.14794, 2021. 2

56

https://eprint.iacr.org/2019/386
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://eprint.iacr.org/2022/146
https://eprint.iacr.org/2022/146

	Introduction
	Attribution Measurement
	Related ads measurement works

	IPA overview
	Parties Involved
	Match keys
	Collecting Reports
	Overview of MPC Security Model
	Differential Privacy
	Sensitivity Capping
	Differentially Private Noise
	Differential Privacy Budget Management
	Enforcing DP Budgets

	Query Overview

	Preliminaries
	Notations
	Cryptographic Primitives

	Interoperable Private Attribution
	Model
	IPA Related Definitions
	The Ideal Functionality of IPA

	The IPA Protocol
	Protocol Overview
	Ideal Functionalities during Query

	Security of the IPA protocol
	Basic Functionalities
	Authenticated Secret Sharing
	Protocols with Authenticated Shares
	Helper Functionalities
	Protocols during the Query Phase

	Performance

