
QuantumCharge: Post-Quantum Cryptography
for Electric Vehicle Charging

– preprint –

Dustin Kern1, Christoph Krauß1, Timm Lauser1, Nouri Alnahawi1, Alexander
Wiesmaier1, and Ruben Niederhagen2,3

1 Darmstadt University of Applied Sciences, Germany
{firstname.lastname}@h-da.de

2 University of Southern Denmark, Odense, Denmark
3 Academia Sinica, Taipei, Taiwan

ruben@polycephaly.org

Abstract. ISO 15118 enables charging and billing of Electric Vehicles
(EVs) without user interaction by using locally installed cryptographic
credentials that must be secure over the long lifetime of vehicles. In
the dawn of quantum computers, Post-Quantum Cryptography (PQC)
needs to be integrated into the EV charging infrastructure. In this paper,
we propose QuantumCharge, a PQC extension for ISO 15118, which
includes concepts for migration, crypto-agility, verifiable security, and
the use of PQC-enabled hardware security modules. Our prototypical
implementation and the practical evaluation demonstrate the feasibility,
and our formal analysis shows the security of QuantumCharge, which
thus paves the way for secure EV charging infrastructures of the future.

Keywords: Post-Quantum Cryptography, Electric Vehicle Charging,
Formal Security Verification, ISO 15118, Hardware Security Module

1 Introduction

One of the driving technologies of the 21st century is going to be quantum
computing. However, while quantum computing promises great impact, e.g., in
the fields of chemical and biological engineering, artificial intelligence, financial
services, and complex manufacturing [15], it also poses a severe threat to our
current IT security. While current prototypes of quantum computers are not yet
large and stable enough to pose an immediate threat, experts predict that in the
upcoming years practical attacks are becoming more and more likely [46]. For
instance, Shor’s algorithm [56] provided that it is executed on a sufficiently large
and stable quantum computer, can break the asymmetric cryptography that is
currently in wide use — RSA, DSA, DH, and ECC. This will affect all of our
current IT infrastructures including automotive protocols.

In recent years, the term Post-Quantum Cryptography (PQC) has been es-
tablished for the next generation of cryptography providing protection against

2 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

crypt-analytic attacks aided by large quantum computers. Much effort is taken
to develop and integrate PQC [3], the most prominent of which is the ongoing
standardization effort [48] of the National Institute of Standards and Technol-
ogy (NIST) where the first candidates for standardization were stipulated in
July 2022. However, PQC’s requirements regarding computational power, stor-
age, and memory pose challenges for its use in resource-restricted devices [9].

With the long lifespan of entities in the e-mobility context, such as 10+ years
for Charge Points (CPs) [58] or up to 35 years for Electric Vehicles (EVs) [35],
considerations of PQC and crypto-agility are critical in order to maintain secu-
rity. One of the most important e-mobility standards is ISO 15118 [34,35], which
defines a Plug-and-Charge (PnC) protocol enabling charging and billing of EVs
based on cryptographic credentials installed directly in the car making RFID
cards or apps obsolete. An integration of PQC schemes into ISO 15118, how-
ever, is not straightforward. First, several entities defined in this standard are
embedded devices and as such subject to strict resource restrictions hampering
the integration of PQC. Second, ISO 15118 is not crypto-agile, i.e., it does not
provide a mechanism to add and agree upon new cryptographic schemes, which
requires changes to the standard when introducing PQC. Instead, it specifies
hard requirements for the used cryptography (such as specific algorithms and
parameters or limited execution times and data sizes) due to interoperability
reasons.

Related work. An overview of the challenges and the current state of migrating
applications and communication protocols to PQC is provided in [3]. Differ-
ent platforms and use cases impose different requirements w.r.t. the choice of a
suitable PQC scheme and parameters as discussed in [51,9]. PQC schemes are
benchmarked and tailored to specific hardware and software platforms in [12,20].
Other works focus on special requirements for embedded/resource-constrained
devices [42,5] or integrating PQC in micro-controllers [50,30]. Efforts for inte-
grating PQC in prominent protocols include IKEv2 [59] and VPN [32,43]. There
is also work on integration/migration strategies [9,22] and crypto-agility [2,41].
The integration into the industrial protocol Open Platform Communications
Unified Architecture (OPC UA) has been discussed in [53] for cyber-physical
systems.

A major focus has been given to PQC for Transport Layer Security (TLS):
Several experiments and approaches are presented in the literature for integrat-
ing PQC into TLS including benchmarks [57,52], hybrid approaches [60,19], and
investigations for embedded systems [16,18]. The Open Quantum Safe (OQS)
project provides a collection of implementations of several PQC schemes in the
library liboqs and integration into several popular Internet protocols including
forks of the BoringSSL and OpenSSL libraries with the integration of PQC using
liboqs [61].

The suitability of NIST candidates for Vehicle to Vehicle communication is
assessed in [13] and [29] provides a light-weight identity-based two-party Au-
thenticated Key Exchange for the Internet of vehicles. A case study of PQC for
secure communication within a vehicle is given in [17] and a concrete imple-

Title Suppressed Due to Excessive Length 3

mentation is evaluated for the protocol Lightweight Authentication for Secure
Automotive Networks (LASAN) in [54]. Optimizations for PQC in automotive
systems are provided in [24]. [65] provides an analysis of NIST PQC candidates
for usage in Hardware Security Modules (HSMs) and proposes new sets of hard-
ware accelerators for the future generation of the automotive HSMs.

To the best of our knowledge, no related work focuses on PQC security in
EV charging protocols. However, some papers investigate the use of HSMs with
ISO 15118. In [26], an approach is presented that secures an EV’s PnC creden-
tials, which are per ISO 15118 definition generated in the backend, by importing
them into the EV’s HSM (specifically a Trusted Platform Module (TPM) 2.0).
Notably, the approach of [26] has been integrated into the current draft of the
upcoming second edition of the standard, ISO 15118-20 [35]. However, the gen-
eration of private credentials in the backend results in a needlessly high risk of
backend leaks. This issue is addressed in [25,27], where private keys are gener-
ated within the EV’s HSM (specifically a TPM 2.0) and the EV only request
a corresponding certificate from the backend. Critical aspects that are not con-
sidered in this context include: (i) crypto-agility, (ii) PQC-support including
migration, and (iii) formal security proofs.

Our contribution. We propose QuantumCharge, an ISO 15118 extension for
integrating PQC into the EV charging and billing process, with the following
eight main contributions: (i) We analyze the cryptographic algorithms used in
the standards w.r.t. their security against attacks from quantum computers and
propose alternatives following NIST. (ii) We propose a migration concept to
address the issue of existing legacy PnC entities that cannot be updated to
support PQC. (iii) We propose a crypto-agility concept by supporting multiple
PQC algorithms and extending the ISO 15118 process to support algorithm ne-
gotiation. (iv) We include changes to the protocol that enable symbolic proofs of
the desired strong security properties. (v) We propose a concept for integrating
PQC-enabled HSMs to ensure secure key generation, storage, and usage as well as
other security services such as secure boot. (vi) We provide an implementation
and performance evaluation showing the feasibility of our approach and com-
pliance with ISO 15118 limitations such as timeouts. (vii) We perform a formal
analysis of the central aspects of our protocol extension using the Tamarin prover
to show the security of QuantumCharge. (viii) We release the adapted ISO 15118
implementation and Tamarin models as open source (cf. Secs. 6 and 7).

Structure of the paper. The remainder of the paper is structured as follows.
Sec. 2 provides background on e-mobility and PQC on embedded systems. Sec. 3
introduces our assumed system and attacker model and Sec. 4 the requirements
for QuantumCharge. Sec. 5 describes our QuantumCharge concept. Our formal
security evaluation is described in Sec. 6 and the implementation and practical
evaluation in Sec. 7. Finally, we conclude the paper in Sec. 8.

4 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

Electric
Vehicle
(EV)

Charge
Point
(CP)

Backend

Certificate
Provisioning

Service
(CPS)

e-Mobility
Service
Provider
(eMSP)

Original
Equipment

Manufacturer
(OEM)

Provisioning
Credentials

Contract
Credential Req Contract

Credential Req

Contract
Credentials

Contract
Credentials

PnC
Authorization

1

2
3

4
5

6

Fig. 1. E-mobility architecture.

2 Background

In this section, we introduce background on e-mobility and relevant standards
as well as PQC and its performance on embedded systems.

2.1 E-Mobility

Fig. 1 shows a simplified e-mobility architecture. It adopts the definitions of the
ISO 15118 standard [33,34] for entities and processes related to PnC authenti-
cation for EV charging. The entities include the EV, the CP, and several PnC
backend systems. For credential management, only the EV’s Original Equipment
Manufacturer (OEM), the e-Mobility Service Provider (eMSP) backend, and the
Certificate Provisioning Service (CPS) are relevant. The EV user has a contract
with the eMSP, which enables PnC authorization and billing based on crypto-
graphic credentials. The CPS establishes trust in the credentials provided by an
eMSP for an EV. The EV stores the required credentials and establishes a PnC
session with the CP. The CP (managed by a Charge Point Operator; not shown)
enables data transfer to the backend and authorizes the EV to use the charging
service.

The ISO 15118 communication between EV and CP uses a TLS channel with
unilateral authentication of the CP. The EV authenticates itself inside the TLS
channel using a challenge-response protocol. In the upcoming second edition,
ISO 15118-20 [35], TLS uses mutual authentication with a vehicle certificate
installed by the OEM in addition to the challenge-response-based EV authen-
tication within the TLS channel. ISO 15118-20 further includes more modern
TLS cipher suites, the option for TPM-based credential protection, and back-
ward compatibility. The communication between CPs and the backend uses dif-
ferent protocols, e.g., Open Charge Point Protocol (OCPP) [49], and is usually
secured with TLS. We omit the details for the sake of simplicity. In the follow-
ing, we describe the relevant steps for using PnC with a focus on the related
application-layer security mechanisms.

EV Preparation. During production, the OEM generates the EV’s provisioning
credentials (Step 1 in Fig. 1) in the OEM backend and installs them in the
EV. The credentials consist of a unique long-term identity called Provisioning
Certificate Identifier (PCID), the key pair {PCpk;PCsk}, and the respective
X.509 OEM Provisioning Certificate PCCert (which includes PCID and PCpk).

Title Suppressed Due to Excessive Length 5

In case the second edition of ISO 15118 is supported, the vehicle certificate and
the corresponding private key are additionally generated and installed in the EV.

Generation of Contract Credentials. To enroll the EV for PnC charging ser-
vices, the owner hands over the PCID to the eMSP when concluding a charging
contract. The eMSP then generates contract credentials to enable the EV to au-
thenticate itself against the CP. The eMSP generates a key pair {CCpk;CCsk}
and the X.509 Contract Certificate CCCert that contains a unique e-Mobility
Account Identifier (eMAID) linked to the charging contract.

Contract Credentials Installation/Update. An EV’s contract certificate CCCert

and the respective key pair are installed when connecting the EV to a CP for the
first time. First, a TLS channel is established (not shown in Fig. 1). In Edition 1
of ISO 15118, only the CP authenticates itself in the TLS handshake by using
the private key corresponding to the Supply Equipment Communication Con-
troller (SECC) certificate. The additional EV authentication is only supported
in Edition 2 based on the vehicle certificate. After the TLS channel has been
established, the EV sends a request to the CP to install the contract credentials
(Step 2). The request contains PCCert and is signed with PCsk. The CP for-
wards the request over the CPS to the eMSP (Step 3). The eMSP encrypts the
private key CCsk with PCpk (from PCCert)4. The CPS signs the response and
sends it (Step 4) over the CP to the EV (Step 5). The EV verifies the authentic-
ity of the received data, decrypts CCsk, and stores the credentials for later use.
Credential updates use a similar process, except that old contract credentials
are used for signing/encryption instead of the provisioning credentials.

Contract Credentials Usage. To start charging, the customers plug the charging
cable of their EV into a CP, and the charging process is automatically handled
with ISO 15118 without further customer interaction. Again, a TLS channel is
established first. Then, the EV uses the contract credentials to authenticate its
concluded contract against the CP, which authorizes the charging session (Step
6). The EV provides its eMAID and contract certificate CCCert to the CP. The
CP verifies the validity of the credentials and sends a random nonce to the
EV, which in turn signs the nonce with the private key CCsk and returns the
signature to the CP. If the authentication succeeds, the CP activates charging.
Afterwards, the EV can periodically sign meter readings with its private key
CCsk to confirm the status of the charging session (see [34], Section 8.4.3.13).
Before billing, signatures regarding the metering may be verified by eMSPs.

2.2 Post-Quantum Cryptography on Embedded Systems

In 2016, NIST started a PQC standardization process [48] that aims to stan-
dardize schemes for key encapsulation and signing, which were selected from five

4 The encryption is done symmetrically using Advanced Encryption Standard (AES)
for which a symmetric session key is generated with an ephemeral-static Elliptic
Curve Diffie Hellman (ECDH) key exchange using PCpk as the static part.

6 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

main families of PQC algorithms: code-based, hash-based, isogeny-based, lattice-
based, and multivariate schemes. We focus on signatures (with key generation
in the HSM, cf. Sec. 5). After several rounds, three signature-scheme candidates
were selected for standardization in July 2022 [47]: The two lattice-based schemes
CRYSTALS-Dilithium [7] and FALCON [23] as well as the hash-based scheme
SPHINCS+ [6].

Notably, IETF already has standardized the “stateful” hash-based PQC sig-
nature schemes XMSS [31] and LMS [44]. Compared to the “stateless” algorithm
SPHINCS+, handling of the state in XMSS and LMS requires additional pre-
cautions along with existing key-handling practices. While in a vehicle equipped
with a TPM the handling of a state can be realized fairly safely and easily
(e.g., using a monotonic counter in the TPM), more effort may be required for
backend servers without TPM or HSM — e.g., backup and workload-sharing
strategies need to be adapted to take state management into account. Due to
these additional requirements specific to stateful schemes, we do not investigate
XMSS and LMS in further detail. However, since SPHINCS+ generally requires
more computational resources and has larger signatures than XMSS and LMS,
SPHINCS+ is a “worst case” hash-based signature scheme and the results for
SPHINCS+ also apply as an upper limit to XMSS and LMS.5

Performance benchmarks on an embedded Arm Cortex-A53 platform6 indi-
cate that, in general, Dilithium stands out for its efficient key generation, signing,
and verification [42]. FALCON is less efficient for signing and verification, yet
still acceptable; however, key generation times are rather long. SPHINCS+ is
considered the least efficient, with acceptable key generation and verification
but extremely long signing times. Benchmarks of the pqm4 project [36,37], tar-
geting a 32-bit Arm Cortex-M4 micro-controller, confirm the findings in [42]
on the suitability of said PQC candidates. These results show that there are
PQC schemes that can be used on embedded platforms and hence are promising
candidates for the integration into EV charging protocols.

3 System and Attacker Model

Our system model assumes the e-mobility architecture with the entities and
communication relations shown in Fig. 1. We require that EVs supporting Quan-
tumCharge are equipped with an HSM supporting the required PQC algorithms
(cf. the analysis in [65]) which can be used to locally generate keys in the EV

5 In addition, XMSS and LMS require the selection of parameters that define the
maximum number of signatures per public-private key pair. These parameters can
be chosen large enough to support the total number of expected charging operations
during the lifetime of a vehicle. Given a maximum lifespan of 35 years for an electric
vehicle and at most two charging operations per day, a maximum of 220 signatures
would provide a significant margin. Nevertheless, procedures for re-keying must be
put in place when using XMSS and LMS for this application.

6 Arm Cortex-A53 platforms are increasingly used in more powerful automotive Elec-
tronic Control Units (ECUs), e.g., see Renesas product range [55].

Title Suppressed Due to Excessive Length 7

(similar to [25,27]). Legacy EVs do not support QuantumCharge. Similarly, CPs
and backend systems may or may not support PQC and QuantumCharge. Thus,
we have several use cases ranging from all entities supporting QuantumCharge
to no one supporting QuantumCharge.

The security of the PnC communication is of high importance as a successful
attack can cause financial damages and may even harm power grid stability (cf.
[1,67,38]). Thus, there are high incentives for attackers to compromise the secu-
rity of the charging process [8]. In our attacker model, we distinguish attackers
based on their area of influence. We consider the following four kinds of attackers
with access to quantum computers. Moreover, we consider that cryptographic
algorithms might become insecure during the lifecycle of vehicles and charging
infrastructure, requiring cryptographic agility to be in place.

Compromised EV. We consider that the attacker has complete control over the
charging vehicle. This encompasses remote attackers compromising the car as
well as physical attacks. For example, the attacker could be the car owner or
someone with temporary access in a car-sharing scenario. Moreover, car owners
might be incentivized to manipulate the billing information to conduct charging
fraud. Such an attacker might replace components of the car or temper with the
firmware of ECUs, but does not have the capabilities to perform physical attacks
on HSMs.

Compromised CP. We consider an attacker with complete control over the CP.
As the billing information is generated by the CP, manipulating this data is
difficult to prevent in case of a compromised CP. However, the attacker might
try to manipulate, replay, or forge any data that a CP receives/forwards (e.g.,
metering confirmations generated by vehicles7).

Compromised Network. A network attacker has complete control over a net-
work node between the CP and backend systems or between the CP and the
EV. For example, a malicious device could have been installed within the charg-
ing cable or plug or directly behind the CP, allowing for manipulation of the
sent and received communication. However, the attacker has no control over EV,
CP, or backend components. As we aim for backward compatibility, downgrade
attacks have to be considered with regard to this attacker (cf. Sec. 6).

Leaked Backend Data. An attacker might be able to extract information from
backend systems. We assume that top-level secret keys, such as certificate signing
keys, are sufficiently protected, but individual EV keys might not. Thus, private
keys of EVs should not be stored in the backend.

4 Requirements

We define the requirements for security (RS) and feasibility (RF) as follows:

7 While ISO 15118 allows an EV to confirm meter values via a signature (called meter
receipt), using this signature for billing purposes is subject to local regulation [34].

8 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

RS1 Secure key storage: Private keys must be stored in a protected and secure
environment to prevent their leakage.

RS2 Secure cryptographic operations: Cryptographic algorithms must be exe-
cuted within a secure, tamper-resistant, and separated environment.

RS3 Key usage authorization: Key usage must be limited to authenticated and
trusted software to prevent unauthorized access.

RS4 Secure key provisioning: Private keys must be generated in a secure envi-
ronment and must never leave it.

RS5 PQC support: Cryptographic algorithms used for security-critical functions
must resist attacks by quantum computers.

RS6 Crypto-agility: The system must provide a mechanism to update or replace
outdated or broken cryptographic algorithms securely.

RS7 Secure Credential Installation: Bilateral authentication of the data sent
between CPS and EV for credential installation must be guaranteed.

RS8 Secure Charge Authorization: The authenticity of charge authorization re-
quests received by the CP must be guaranteed.

RS9 Charge Data Authenticity : The authenticity of received charge data as at-
tested by the EV must be guaranteed towards the eMSP.

RF1 Minimal overhead. The system should keep extra communication and com-
putational overhead within the constraints of existing standards.

RF2 Easy integration. The system should not alter the message flow of existing
protocols and only introduce minor changes to message content.

RF3 Continued operation. The system should offer backward compatibility with
regard to actors that do not support PQC.

5 Security Concept

In this section, we describe our analysis of cryptographic algorithms which need
to be replaced with PQC algorithms, the general approach of QuantumCharge,
and detail the integration of QuantumCharge into the PnC architecture.

5.1 Analysis of PnC Cryptographic Algorithms

We focus our analysis of the specified cryptographic algorithms on both editions
of ISO 15118 and relevant processes as described in Sec. 2.1. The application-
specific protocols of ISO 15118 (discussed in the following) operate inside a TLS
channel between the EV and the CP as well as the CP and the backend. Since
there already exists exhaustive work on the migration of TLS to PQC (e.g.,
[57,52,60,19,16,18]) and prototype PQC-TLS libraries (e.g., [61]), we consider
TLS out of scope for this paper and assume a post-quantum secure underlying
TLS channel in the following. Instead, we focus on application-layer security
mechanisms, which need to be post-quantum secure independently of the indi-
vidual TLS channels (e.g., credential installation between EV and the backend).

Title Suppressed Due to Excessive Length 9

PKI and Signatures. ISO 15118 defines a (rather complex) Public Key Infras-
tructure (PKI) as the basis for credential installation and charge authorization.
Public/private key pairs are used in the OEM provisioning and contract creden-
tials. In addition, eMSPs, CPSs, and CPs are also equipped with public/private
key pairs and corresponding certificates. All certificates and key pairs use Elliptic
Curve Cryptography (ECC). Edition 1 uses the secp256r1 curve and ECDSA
with SHA-256 as the hash function. Edition 2 uses secp521r1 and ECDSA with
SHA-512 or Curve448 and EdDSA with SHAKE256. The key pairs are used in
the TLS handshake and on the application layer for signature generation. Any
ECC keys and signature algorithms must be replaced with PQC alternatives.

The current NIST PQC API for signature algorithms assumes that complete
messages and not message digests are signed. For simpler integration with XML
signatures, we nevertheless keep the current approach of signing message di-
gests also when using PQC algorithms, which introduces minor overhead but is
directly interoperable with the existing protocols. Notably, while the XML sig-
nature specification includes a list of supported algorithms, it explicitly supports
extensibility via application defined (in our case PQC) algorithms [10].

Key Establishment and Symmetric Encryption. The contract credential instal-
lation process as standardized in ISO 15118 is based on an ephemeral-static
ECDH key agreement for establishing a symmetric key (cf. footnote 4) with
the above-mentioned ECC curves for the respective editions. The hash function
for the Key Derivation Function (KDF) is SHA-256 in Edition 1 and SHA-512
in Edition 2. The symmetric key is then used to encrypt the private contract
key with AES-CBC-128 in Edition 1 and AES-GCM-256 in Edition 2. Using
the classical ISO 15118 installation process requires a suitable replacement of
Diffie-Hellmann, e.g., a PQC Key Encapsulation Mechanism (KEM), and PQC
algorithms for ECC. Also, the key length for AES should be 256 bits and the
length of the hash functions should be at least 512 bits. However, since we ad-
ditionally integrate the approach from [25,27] in QuantumCharge and generate
keys securely in the EV’s HSM (cf. Sec. 5.2), we do not require PQC key en-
capsulation as a replacement for Diffie-Hellmann and symmetric encryption in
QuantumCharge (except for the underlying TLS channel).

5.2 General Approach

QuantumCharge’s general approach is to update ISO 15118 (and accordingly
other PnC standards) to support PQC with minimal protocol changes while
providing a high level of security. This is intended to enable easy adoption by
the industry. QuantumCharge has five central parts as described in the following.

First, QuantumCharge integrates PQC algorithms based on our analysis de-
scribed in Sec. 5.1. For signatures in TLS and at the application layer, we pro-
pose to use the PQC algorithms selected by NIST for standardization [47], i.e.,
the two lattice algorithms Dilithium [7] and FALCON [23] and the hash-based
algorithm SPHINCS+ [6]. The idea is to provide a proof of concept with NIST-
approved algorithms of different families to be able to switch between algorithms

10 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

in case of compromise. On the application layer, we only need signatures since
the encryption of private contact keys for transfer is replaced by a secure key
generation in the EV’s HSM. For TLS, we propose to replace Diffie-Hellmann
with the KEM Kyber [14] (which is currently the only KEM selected by NIST),
SHA-512 as hash function, and AES-GCM-256 for encryption. Dilithium, FAL-
CON, and SPHINCS+ as well as Kyber are currently the only schemes that are
being standardized by NIST; more schemes will likely follow in the future and
then will be relevant in this context as well.

Second, QuantumCharge integrates a migration concept to address the issue
of existing legacy PnC entities that cannot be updated to support PQC. Hereby
we assume that only EVs and CPs are affected, but all backend systems can be
updated. In addition to the PQC algorithms, the classical ECC algorithms, as
standardized in both editions of ISO 15118 remain supported. At the beginning
of an ISO 15118 charging session, EV and CP agree on the protocol version
to be used, i.e., conventional ECC-based ISO 15118 or QuantumCharge. This
protocol negotiation allows legacy ECC algorithms to remain supported. Note
that negotiation may fail if EV or CP are configured to only accept PQC-secured
connections.

Third, QuantumCharge provides crypto-agility by supporting multiple PQC
algorithms and extending the ISO 15118 process with an algorithm negotiation
(which is out of scope in the standard, cf. [V2G20-2320] in [35]). Algorithm
negotiation is only performed if QuantumCharge was selected for this session
and is extensible with any arbitrary (PQC) algorithms, e.g., in case the existing
algorithms are broken or new more secure/efficient ones are developed. Again,
negotiation may fail if EV and CP cannot agree on common algorithms.

Fourth, QuantumCharge generates all keys of the EV securely in an HSM in
the EV. Keys for the EV are no longer generated in backend systems. Follow-
ing the TPM-approach from [25,27] we assume that a generic HSM with PQC
support is used. The HSM is used for secure key generation, secure storage of
(private) keys, and for secure execution of cryptographic operations. Further,
the HSM provides additional features for restricting the usage of keys to a trust-
worthy system state (e.g., based on secure/authenticated boot).

Fifth, QuantumCharge includes changes to the credential installation and
PnC authorization processes of ISO 15118 to allow for formal security proofs.
Specifically, we enable the verification of strong formal authentication properties
to meet the respective security requirements from Sec. 4.

5.3 Extending ISO 15118 with QuantumCharge

To enable the use of QuantumCharge, it must be supported by all involved enti-
ties (cf. Fig. 1). However, it is still possible for QuantumCharge-enabled EVs to
use legacy CPs with classic ECC according to the original ISO 15118 standards.
For security reasons, though, EVs can also be configured not to charge at such
CPs. In the following, we describe QuantumCharge in more detail by describing
the components and the integration into the ISO 15118 Edition 1 protocol flow,
as Edition 1 is still the prominent edition of the protocol today. However, as the

Title Suppressed Due to Excessive Length 11

EV/HSM
eMSP ai

Chain, CCai
Cert, CCai

sk ,EV.Algs
CP

eMSP ai
Root,CP.Algs

supportedAppProtocolReq(iso:15118:2,
Major=PQC, Minor=1, ID=1)

supportedAppProtocolRes(“OK”, ID=1)

ServiceDetailReq(“ChargeService”, params={EV.Algs})

AuthAlgs = EV.Algs ∩ CP.AlgsServiceDetailRes(“ChargeService”, params={AuthAlgs})

[Optional Install; cf. Fig. 3]

PaymentDetailsReq(eMSP ai
Chain∥CCai

Cert)

ValidateeMSP
ai
Root

(eMSP ai
Chain∥CCai

Cert)

na
$← {0, 1}∗PaymentDetailsRes(CPID, na)

AuthReqData = “AuthReq”∥CPID∥na∥eMAID

SigAuth = SignCC
ai
sk

(AuthReqData)
AuthorizationReq(

AuthReqData, SigAuth)

VrfyCC
ai
Cert

.pk(AuthReqData, SigAuth)AuthorizationRes(“OK”)

[Unchanged Messages; cf. [34]]

MeterReceipt = “MeterRec”∥EMSPID∥
MeterData∥eMAID

SigMeter = SignCC
ai
sk

(MeterReceipt)
MeteringReceiptReq(

MeterReceipt, SigMeter)

VrfyCC
ai
Cert

.pk(MeterReceipt, SigMeter)MeteringReceiptRes(“OK”)

4 ServiceDetailRes Generation

7 PaymentDetailsRes Generation

9 AuthorizationReq Generation

11 AuthorizationReq Verification

13 MeteringReceiptReq Generation

15
MeteringReceiptReq Verification

(optional here since recipient is eMSP)

1

2

3

5

6

8

10

12

14

16

Fig. 2. Usage procedures of contract credentials (changes in bold).

adoption of Edition 2 is expected to increase, we already explicitly consider the
integration of QuantumCharge into ISO 15118-20 at the end of this section. The
descriptions assume an error-free process. In the case of an error, the respective
process may be aborted (e.g., as described above, if EV and CP fail to agree on
an algorithm).

EV manufacturing. In the EV production, an HSM supporting ECC and PQC
algorithms is installed. We assume the HSM ensures that keys are generated in
the HSM (and not imported) and that private key export is not allowed.

During customization, multiple key pairs {PCai

pk, PCai

sk} are generated by
the HSM and the OEM creates the corresponding OEM provisioning certificates
PCai

Cert, where ai denotes the respective cryptographic algorithm of the set of
supported algorithms {a1, . . . , an}. In addition to the classic ECC algorithms
EC-/EdDSA (for use with legacy systems), we support the PQC algorithms as
mentioned in Sec. 5.2 with their different parameter sets. Key usage can be
restricted to specific policies, e.g., access is only possible after a secure boot. We
omit details on this aspect and refer to the TPM-based approach in [25,27].

Contract Credential Usage. Fig. 2 shows the PnC authorization process using
the contract credential. First, the TLS channel between EV and CP is estab-
lished (not shown)8. When a communication session is initiated by an EV, a

8 Since PQC for TLS is addressed in other work (see Sec. 1), we omit the details on TLS
in the following and discuss only the application layer of ISO 15118. In our current
design, the choice of algorithms is done independently for TLS and application layer
but could also easily be coordinated.

12 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

handshake is performed to negotiate the used application protocol and version.
More specifically, the standard defines a major and a minor version number.
The major number is used for the protocol version of either Edition 1 or 2.
The minor number can indicate minor changes of the protocol (e.g., additional
data elements). The EV sends a prioritized list of supported application layer
protocols/versions to the CP, which responds with its selection.

To enable QuantumCharge and support backwards compatibility, we extend
this initial application protocol/version negotiation. Notably, the minor version
number cannot be used to indicate the use of PQC since with ISO 15118-20
a divergence in minor numbers is not indicated to the EV by the CP (if the
major number matches and the minor number is lower, the CP simply responds
with an OK; cf. [35] [V2G20-170]). To detect that the backwards compatibility
mode is needed, however, the EV would require this indication. Hence, we show
QuantumCharge support via the definition of new major numbers such that
there are now four rather than two valid flags for the major number (for Edition
1 or 2, each with or without PQC). The major and minor numbers are used in
the prioritized list sent by the EV (Step 1 in Fig. 2). The CP selects the protocol
version and replies with an OK (Step 2).

If both sides support QuantumCharge, an additional handshake is performed
to negotiate the signature algorithm using modified service detail messages (for
the “ChargeService”; Steps 3-5). The EV sends a prioritized list of supported
algorithms to the CP. The CP responds with its selection. At this point, the EV
may start a contract credential installation as detailed later in this section.

If the EV possesses contract credentials using the chosen algorithm (from
Step 5), it can start the PnC authorization process by sending its corresponding
contract certificate chain to the CP (Step 6). The CP verifies the chain based
on a locally installed eMSP root and responds with its unique ID and a fresh
nonce na (Step 7-8). Afterwards, the EV uses its HSM to sign its authorization
request data (including eMAID and the CP’s ID to identify the sender/recipient
of this signature, which is essential for the verification of formal authentication
properties) and sends the signed data to the CP (Steps 9-10). The CP verifies the
signature using the public key from the previously (in Step 6) received CCai

Cert

and if the signature is valid, the EV is cleared to charge (Steps 11-12).
Similar to authorization request signing, an EV can use its PQC contract

credentials to sign meter receipts (Step 13). The signed data again includes the
eMAID and an ID of the recipient (i.e., the eMSP for, e.g., billing purposes) and
is sent to the CP, which may verify the signature using the EV’s public contract
key (Steps 14-16). The meter receipt is later forwarded to the eMSP, along with
other billing-relevant data, and the eMSP verifies the signature (not shown in
Fig. 2).

Contract Credential Installation/Update. After the application protocol and
signature algorithm negotiations between EV and CP are completed, the EV
may choose to install new contract credentials (e.g., if it does not possess valid
credential with the chosen algorithm). For this, the HSM generates the key pairs

Title Suppressed Due to Excessive Length 13

EV/HSM
V 2Gai

Root, PCai
Cert, PCai

sk ,EV.Algs

eMSP/CPS
eMSP ai

Chain, eMSP ai
sk , CPSai

Chain, CPSai
sk,

OEMai
Root,CPS.Algs[Setup; cf. Fig. 2]

ServiceDetailReq(“CertInstall”,
params={EV.Algs, PCID})

InstallAlgs = EV.Algs ∩ CPS.Algs
ni

$← {0,1}∗
ServiceDetailRes(“CertInstall”,

params={InstallAlgs, CPSID, ni})

Alg = Choice(EV.Algs ∩ CPS.Algs)

CCai
pk,CCai

sk ← GenKeyPair(Alg)

SigPoP = SignCC
ai
sk

(ni∥CCai
pk)

CertReqData = “CertInstallReq”∥Alg∥
CPSID∥PCai

Cert∥ni∥CCai
pk∥SigPoP

SigReq = SignPC
ai
sk

(CertReqData)
CertInstallReq(

CertReqData, SigReq)

VrfyCC
ai
pk

(ni∥CCai
pk, SigPoP)

ValidateOEM
ai
Root

(PCai
Cert)

VrfyPC
ai
Cert

.pk(CertReqData, SigReq)

CCai
Cert = GenCerteMSP

ai
sk

(CCai
pk)

CertResData = “CertInstallRes”∥PCID∥
eMSP ai

Chain∥CPSai
Chain∥CCai

Cert

SigRes = SignCPS
ai
sk

(CertResData)
CertInstallRes(

CertResData, SigRes)

ValidateV 2G
ai
Root

(CPSai
Chain)

VrfyCPS
ai
Chain

.pk(CertResData, SigRes)

2 ServiceDetailRes Generation

4 CertInstallReq Generation

6 CertInstallRes Generation

8 CertInstallRes Verification

1

3

5

7

CP

Fig. 3. Installation procedure of a contract credential (changes in bold).

{CCai

pk, CCai

sk} and the EV requests the eMSP to issue the corresponding contract
certificates CCai

Cert for the public keys CCai

pk.

Fig. 3 shows the process for installing contract credentials using the modified
CertInstallReq message. The process again starts with an algorithm negotiation
using modified service detail messages (for the “CertInstall”; Steps 1-3). The EV
sends (via the CP) a prioritized list of supported algorithms to the CPS, which
acts as a middleman between EVs and eMSPs in the installation process (Fig. 3
combines CPS and eMSP for simplicity). The CPS responds with a selection of
accepted algorithms and a fresh nonce ni. The EV uses its HSM to generate the
contract credential key pair {CCai

pk, CCai

sk}, create a Proof-of-Possession (PoP)
signature over ni and CCai

pk with CCai

sk, and sign the certificate request data
using PCai

sk (Step 4). The credential update process is similar except that an old
CCai

sk is used for signing instead of PCai

sk (not shown).

The signed certificate request data, which includes the selected algorithm,
an ID of the recipient, the PCai

Cert, ni, CCai

pk, and the PoP signature, is sent
(via the CP) to the CPS (Step 5). The CPS verifies the PoP signature based on
CCai

pk, validates the provisioning certificate PCai

Cert based on a locally installed
OEM root, verifies the certificate request data signature based on PCai

Cert, and
forwards the request to the eMSP (Step 6). Afterwards, the eMSP responds with
a contract certificate CCai

Cert for CCai

pk based on which the CPS can build and
sign the certificate response data (Step 6). The signed response data is sent to
the EV, which verifies the CPS signature based on a locally installed root and
stores the contract credential for later use (Steps 7-8).

14 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

Integration into ISO 15118-20. In case Edition 2 of ISO 15118 is supported,
minor changes to the different processes are required. Firstly, the EV manu-
facturing process now also requires that the EV’s key pairs and corresponding
vehicle certificates are generated for usage in the TLS handshake. Key pairs are
again generated in the EV’s HSM and the OEM reads out the public keys and
generates the certificates.

Secondly, compared to Edition 1, ISO 15118-20 slightly changes the contract
credential usage message flow. The most important change is that ServiceDetail
messages are sent after authorization and thus cannot be used for algorithm ne-
gotiation. Instead, we propose the use of the new AuthorizationSetup messages
for this purpose, whereby the EV’s request (usually empty) contains EV.Algs
and the CP’s response (usually only na and some information about the offered
services) additionally contains AuthAlgs and CPID. Furthermore, ISO 15118-20
defines no PaymentDetails messages as the CP’s nonce na is included in the Au-
thorizationSetupRes message and the EV’s contract certificate chain is included
in its AuthorizationReq. Respectively, QuantumCharge would also include the
EV’s contract certificate chain in its AuthorizationReq.

Finally, the contract credential installation process requires minor adjust-
ments. In ISO 15118-20, ServiceDetail messages are sent after authorization
and, thus, after credential installation. Additionally, the installation of multi-
ple credentials from different eMSPs is supported, whereby multiple CertInstall
message pairs are exchanged. We thus propose the use of CertInstall messages
for algorithm negotiation, whereby the first CertInstall message pair contains the
data of the ServiceDetail message pair in Fig. 3. Following CertInstall message
pairs contain the proposed installation data with no further changes needed.

6 Formal Security Verification

We formally verify RS6 to RS9, as we focus on the changes made to the autho-
rization protocol. RS1, RS2, and RS3 are addressed by the usage of an HSM
with PQC support. Private keys are stored and used in a secure area of the
HSM (addressing RS1 and RS2). In addition, we assume that the HSM enforces
key usage authorization, e.g., using a policy that enables key access only af-
ter a secure boot process (addressing RS3). We assume that keys stored within
the backend, especially Certificate Authority (CA) keys, will be processed at
least as securely, for example, using a server HSM and additional physical access
control to the processing hardware. Moreover, RS4 is enabled by our changes
to the credential installation process, as private credential keys are no longer
generated in the backend but in the EV’s HSM instead. Possible downgrade
attacks should be addressed by timely disabling insecure algorithms by poli-
cies, especially the backwards compatibility with non-PQC algorithms should
be disabled when quantum computer-based attacks become feasible for mali-
cious actors. This will require close negotiation between the OEMs, eMSPs, and
Charge Point Operators to determine the best security/operability trade-off for

Title Suppressed Due to Excessive Length 15

the specific ecosystem. We abstract from the used algorithms and assume they
satisfy RS5.

We formally verify our protocol in the symbolic model, also called the Dolev-
Yao model [21]. In this model, cryptographic primitives are represented by sym-
bolic functions and assumed to be perfectly secure. Instead, the security of the
composition of these primitives is analyzed. Usually, the attacker has complete
control over the network (cf. the Compromised Network adversary in Sec. 3).
However, restrictions of this control, for example, by assuming secure or authen-
ticated channels, are possible. In addition, we allow the presence of multiple
dishonest parties, i.e., the attacker can corrupt multiple parties that are not
directly involved in the transaction under proof. For example, if Alice sends a
message to Bob, this message has to remain secure even if there is a compromised
Charlie that also sends messages to Alice and Bob.

We use the Tamarin prover [45] to verify the security of our model, a state-of-
the-art tool for automated symbolic protocol verification. In Tamarin, a model
is specified as a set of rules that define a protocol’s communication and data-
processing steps. Security properties that are required to hold over all possible
execution traces of the model are specified in first-order logic and called lemmas.
Tamarin starts with a state where the property has been violated and performs
a backward search over the possible rule executions to determine whether there
is a valid path that leads to this state. If there is, the property does not hold,
and Tamarin has found a counterexample. If there is no possible execution path
that can lead to a violation of the property, this proves that the property holds.

Our complete Tamarin model files for QuantumCharge are provided in an on-
line repository.9 The files contain lemmas to verify the desired security properties
and additional lemmas that verify the correctness of the Tamarin specification
of our model. The repository also includes instructions on how to run the model
and reproduce and verify the results of our formal analysis and details on the
verification times.

We model the authentication requirements from RS7 to RS9 with the no-
tion of injective agreement. Injective agreement is a well-established and strong
authentication property originally defined by Lowe [40] and commonly used in
current research (e.g. [11,28,66,39]). It encompasses verification of the identity
of the communication partners, the integrity of the exchanged messages, and
protection against replay attacks.

Definition 1 (Injective agreement). A protocol guarantees injective agree-
ment to an honest initiator A with an honest responder B on a set of data
items ds if, whenever A, acting as initiator, completes a run with the protocol,
apparently with responder B, then B has previously been running the protocol,
apparently with A, and B was acting as a responder in this run. Moreover, each
run of A corresponds to a unique run of B and both agents agree on the values
of the variables in ds [40].

9 https://code.fbi.h-da.de/seacop/quantumcharge-source

https://code.fbi.h-da.de/seacop/quantumcharge-source

16 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

To encompass crypto-agility (RS6), we model cryptographic operations to
be bound to an algorithm. They can become insecure at any time during the
protocol run, which is modeled by a rule that exposes the secret key of a party,
allowing the attacker to forge signatures freely. Moreover, parties can revoke
support for algorithms they consider insecure, aborting all pending operations
using this algorithm. Ideally, we would like to show that injective agreement
holds for all transactions in our model, given that each insecure algorithm has
been revoked before becoming insecure by at least one of the involved parties
before being broken by the attacker. However, this property is unrealistically
strong since an attack would always be possible against an entity using insecure
algorithms. For example, the EV could send a message to the CPS, then the
used algorithm becomes insecure and is revoked by the EV but not by the CPS.
The message would then be accepted by the CPS regardless. We argue that
the actual risk of such an attack is limited, as its possible timeframe is small.
However, we can only show a slightly weaker property, requiring that injective
agreement holds for parties that revoked the algorithm before it became insecure,
but not necessarily for their communication partner.

Definition 2 (Injective agreement under insecure algorithms). Honest
A with honest B injectively agree (cf. Def. 1) on ds and all cryptographic algo-
rithms used in this protocol run, either directly by A and B or within the setup
of credentials they use during this protocol run, either remain secure during the
entire protocol run or are revoked by A prior to becoming insecure.

Using Def. 2, we formally verify that QuantumCharge provides RS7, RS8,
and RS9 with the Tamarin prover, under consideration of RS6 by modeling
crypto-agility as previously discussed. For this, all communication of CPs is
assumed to be under the control of the adversary (cf. Compromised CP in Sec. 3).
Entities that are directly involved in a specific protocol run (EV, CPS, or eMSP)
are assumed to be honest, i.e., we assume that their cryptographic credentials
have not been revealed to the adversary. This assumption is reasonable due to
the use of HSMs (cf. RS1, RS2, and RS3). However, in order to keep the needed
assumptions as weak as possible, other entities of the same types that are not
directly involved in the protocol run can be compromised (cf. Compromised EV
and Leaked Backend Data in Sec. 3). Thus, our model can verify that, even if
the key storage/usage of some entities is subject to an attack (e.g., due to an
implementation error in some HSMs), the security of all other entities remains
intact.

The execution of Tamarin with our model9 shows that QuantumCharge sat-
isfies the security properties, as no counterexamples are found. As the proof
generation is fully automated, the following description summarizes the verified
properties instead of going into proof details.

Secure credential installation. For the security of the credential installation
process (RS7), we consider a compromised CP and network. Note that, as we
always allow for the presence of additional dishonest parties, the presence of com-
promised EVs trying to impersonate a different EV during the process is also

Title Suppressed Due to Excessive Length 17

considered. Using our Tamarin model, we verify that injective agreement under
insecure algorithms holds for credential installation transactions in our protocol
between EV and CPS in both directions. That is, the CPS (as initiator) injec-
tively agrees with the EV (as responder) on the certificate installation request
(Step 5 in Fig. 3 and the EV (as initiator) injectively agrees with the CPS (as
responder) on the certificate installation response message (Step 7 in Fig. 3). As
an example, we look at the first of these properties in detail in Appendix A.1.

Secure PnC authorization process. We verify that the CP and the EV injectively
agree under insecure algorithms on authorization requests from the EV. That is,
the Tamarin analysis shows that QuantumCharge provides strong security for
charge authorizations (RS8). Note that the algorithms used during the setup of
the used credentials are assumed to have remained secure during their setup.

Charge Data Authenticity. As charge measurements originate from the CP’s
meter, it is difficult to prevent the CP from providing false meter data to the
eMSP for billing. In ISO 15118, this is addressed by optional metering receipts.
The EV may compare the CP’s meter data with its own measurements before
signing receipts. Our analysis shows that for metering receipts verified by the
eMSP, injectiv agreement under insecure algorithms on the included data (RS9)
is satisfied between the eMSP and the EV. Thus, the data cannot be manipulated
by the CP or a network attacker.

7 Implementation and Practical Feasibility Evaluation

We implemented QuantumCharge as a proof-of-concept. The setup is shown
in Fig. 4 and the code is provided online.9 The EV and CP are implemented
on Raspberry Pi 3 Model B+ boards and connected via PLC stamp micro 2
EVBs to emulate Power Line Communication as per ISO 15118. The Pi boards
have an Arm-based Quad Core CPU at 1.4 GHz and 1 GB RAM. While there
is variance between manufacturers, this setup can nonetheless be argued to be
representative since: (i) w.r.t. the CP’s side, commercial controllers with compa-
rable performance exist, such as Vector’s vSECC [64] (using an Arm-based Quad
Core CPU at 1 GHz and 2 GB RAM) and (ii) w.r.t. the EV’s side, an option
that is discussed in the industry is the offloading of cryptographic functions for
PnC to one of the more capable vehicle ECUs such as the infotainment/head
unit, which is usually in the Arm Cortex-A performance class [4] (e.g., [62] with
a dual Arm Cortex–A15 at 1.2 GHz).

Our ISO 15118 implementation uses RISE V2G [63] in Java, with the changes
proposed in Sec. 5. For the PQC algorithms, we use the OQS implementations in
C, called from Java via JNI using the provided bindings. Certificates and keys for
the PKI are generated using OQS’ PQC OpenSSL prototype. Functions of the
e-mobility backend (CPS/eMSP) are implemented on the CP-Pi for simplicity.

For each PQC algorithm, all working parameter options supported by OQS
are included in our QuantumCharge implementation and evaluation. In the fol-
lowing, we only list the results of one parameter set per algorithm; the full results

18 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

EV Pi TPM

CP Pi

PLC

Fig. 4. Proof-of-Concept Setup

Table 1. Communication overhead (in byte).

Message
Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512 sphincssha256
128frobust

PaymentDetailsReq Total 1,472 1,880 1,489 12,262 5,679 52,371
eMSPChain∥CCCert 1,435 1,843 1,452 12,225 5,642 52,331

AuthorizationReq Total 383 452 426 2,735 974 17,417
SigAuth 71 139 114 2,420 660 17,088

CertInstallReq Total 1,150 1,536 1,229 11,868 5,006 57,781
CCpk 91 158 69 1,312 897 32
SigPoP 72 139 114 2,420 660 17,088
PCCert 478 614 489 4,080 1,885 17,449
SigReq 71 138 114 2,420 659 17,088

CertInstallRes Total 3,313 4,196 3,406 27,261 12,327 122,162
eMSPChain∥CCCert 1,435 1,843 1,452 12,225 5,642 52,331
CPSChain 1,422 1,828 1,455 12,228 5,638 52,335
SigReq 71 139 114 2,420 660 17,088

can be found online.9 Specifically, we include PQC parameter sets for NIST se-
curity level 1, which is comparable to the current security of ISO 15118. The
only exception is Dilithium, where we use security level 2, since Dilithium does
not provide level 1 parameters.

We use the proof-of-concept implementation to measure the overhead of
QuantumCharge in comparison to the default ISO 15118 algorithms. W.r.t. com-
munication overhead, the most significant changes come from the inclusion of
PQC public keys and signatures in various messages. Tab. 1 provides an overview
of the resulting message sizes and the most significant element sizes.10

It shows only minor differences between the non-PQC algorithms. The vari-
ance between the PQC algorithms, however, is relatively high, with FALCON

10 Message size totals are slightly larger than the sum of element sizes since totals
represent the size of EXI-encoded XML messages (as sent between EV and CP) and
since element sizes that are independent of the algorithm are omitted for simplicity.

Title Suppressed Due to Excessive Length 19

Table 2. Storage overhead (in byte).

Message
Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512 sphincssha256
128frobust

EV Cryptographic Data Total 3,558 4,709 3,538 36,269 17,569 122,342
V2G Root Certificate 472 608 483 4,074 1,882 17,443
Provisioning Cert. Chain 1,429 1,835 1,461 12,234 5,649 52,341
Provisioning Key Pair 121 223 73 3,870 2,202 115
Contract Certificate Chain 1,415 1,820 1,448 12,221 5,634 52,328
Contract Key Pair 121 223 73 3,870 2,202 115

CP Cryptographic Data Total 2,480 3,259 2,486 24,238 11,589 87,328
V2G Root Certificate 472 608 483 4,074 1,882 17,443
eMSP Root Certificate 468 602 479 4,070 1,876 17,439
CP TLS Certificate Chain 1,419 1,826 1,451 12,224 5,629 52,331
CP TLS Key Pair 121 223 73 3,870 2,202 115

offering the lowest overhead (closest to the non-PQC algorithms) due to its rel-
atively small public keys and signatures. Since ISO 15118 messages use a 4-byte
length field, their size is limited to 4,294,967,295 byte, which is not violated by
any of the evaluated algorithms.

The overhead for MeteringReceiptReq messages is comparable to that of the
AuthorizationReq since both cases involve the same cryptographic actions (a
signature with the private contract key) and is thus not explicitly listed. Addi-
tional minor overhead (not detailed in Tab. 1 but part of the totals) is caused
by: (i) The inclusion of algorithm IDs in different messages (e.g., a 2-byte ID per
algorithm similar to TLS). (ii) The addition of the CPID in PaymentDetailsRes
and AuthorizationReq messages (39-255 characters [35]). (iii) The addition of
the CPSID in specific ServiceDetailRes and CertInstallReq message (e.g., 2 char
country code plus 3 char operator ID similar to eMSP IDs [35]).

The storage overhead of QuantumCharge for EV and CP is shown in Tab. 2.
The reported sizes for all data elements are based on their DER encoded for-
mat. All certificate chains use two Sub-CAs, i.e., the chains are the maximum
allowed length of ISO 15118. Regarding storage overhead, our results again show
only minor differences between the non-PQC algorithms and a high variance be-
tween the PQC ones with relations comparable to that of the communication
overhead. Notably, a potential compatibility issue of QuantumCharge is created
since ISO 15118, independently of its XML message definitions, limits the max-
imum size of DER-encoded certificates to 800 bytes. In ISO 15118-20, this limit
is increased to 1600 byte. Since none of the evaluated PQC algorithms can meet
this limit, any kind of PQC-ready ISO 15118 would need a further increase and
thus affect the storage requirements of involved systems.

W.r.t. computational overhead, the most significant changes of Quantum-
Charge are PQC key pair generation, signing, and signature verification. Tim-
ing measurements are repeated 100 times using Java’s System.nanoTime() and
Tab. 3 shows the resulting averages. We see that most PQC algorithms are

20 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

Table 3. Computational overhead (in ms rounded to four significant figures).

Message
Algorithm

ecdsa256 ecdsa521 eddsa448 dilithium2 falcon512 sphincssha256
128frobust

PaymentDetailsReq Handling (CP) 102.4 325.2 82.67 39.28 20.1 279.5
Validate Certificate Path 99.59 322.2 79.63 35.80 17.06 272.9

AuthorizationReq Generation (EV) 42.39 85.05 51.45 30.44 60.74 1,157
Generate XML Signature 31.23 73.50 39.61 21.39 52.11 1,147

AuthorizationReq Handling (CP) 52.97 129.2 45.80 27.75 22.35 100.7
Verify XML Signature 46.27 122.4 39.24 21.39 16.29 93.59

CertInstallReq Generation (EV) 2,508 2,767 1,113 507.6 693.3 2,192
Generate Key Pair 2,372 2,552 807.1 42.04 230.2 71.18
Generate PoP Signature 29.73 72.66 40.90 12.33 38.46 824.3
Generate XML Signature 41.53 78.44 50.32 29.46 51.41 786.0

CertInstallReq Handling (CP) 190.2 407.6 188.9 235.2 225.0 3,582
Verify PoP Signature 54.81 87.75 27.47 7.396 3.078 48.62
Verify XML Signature 29.11 74.08 30.37 18.07 15.84 64.76
Validate Provisioning Certificate 27.11 64.95 26.66 14.19 8.631 64.86
CertInstallRes Generation 69.94 172.9 94.59 175.4 183.3 3,373

Generate Contract Certificate 16.95 52.92 17.50 19.74 55.89 1,299
Generate XML Signature 18.24 70.70 18.07 16.46 51.59 1,340

CertInstallRes Handling (EV) 208.6 456.5 245.1 143.0 114.2 536.8
Verify XML Signature 60.06 119.9 71.90 41.56 35.54 117.0
Validate Certificate Path 102.7 288.6 123.1 58.57 38.33 316.8

suited for the use case. Notably, Dilithium and FALCON are sometimes even
faster than the standard algorithms. However, signature generation with the
SPHINCS+ algorithm starting from security level 3 and using the small s-
parameter sets (not shown) was too slow to meet ISO 15118’s limits (fast f-
parameter sets showed no issues). Specifically, CertInstallReq generation was
with 49 seconds over the relevant ISO 15118 limit of 40 seconds.

The performance evaluation shows that QuantumCharge mostly maintains
compatibility with the current ISO 15118 limits and the only general (for all al-
gorithms) issue arises from the larger certificate sizes. Since the respective limit,
however, was already increased with ISO 15118-20, we argue that a further in-
crease for PQC support is reasonable. The evaluation shows that for SPHINCS+,
it is preferable to use the f-parameter sets instead of the s-parameter sets. Since
a variety of PQC algorithms (for all security levels) are compatible with existing
time limits, we consider RF1 met. Further, as QuantumCharge is compatible
with ISO 15118’s current roles and data flows, we argue that RF2 is met. More-
over, as our extension supports backwards compatibility, RF3 is met.

8 Conclusion

In this paper, we propose QuantumCharge, a PQC extension for ISO 15118. We
analyze the PnC standards and protocols and show where PQC algorithms are

Title Suppressed Due to Excessive Length 21

required. QuantumCharge includes concepts for migration, crypto-agility, verifi-
able security, and the use of PQC-enabled HSMs. As baseline, QuantumCharge
implements Dilithium, FALCON, and SPHINCS+ and can be extended eas-
ily with other PQC algorithms. With our prototype, we analyze the introduced
communication and computational overhead. Our results show that all PQC al-
gorithms require increasing the defined maximum certificate size in both editions
of ISO 15118 and that all algorithms can meet the defined timing requirements.
Hence, all PQC signature algorithms Dilithium, FALCON, and SPHINCS+
(using the fast f-parameter sets) selected by NIST for standardization can be
used in QuantumCharge. Our formal analysis using Tamarin shows the security
of our protocol changes. QuantumCharge provides strong security guarantees,
user-friendly performance, and high compatibility to ISO 15118 as well as legacy
systems, thus paving the way for PQC-secure charging.

Acknowledgements This research work has been partly funded by the German
Federal Ministry of Education and Research and the Hessian State Ministry
for Higher Education, Research and the Arts within their joint support of the
National Research Center for Applied Cyber-Security ATHENE.

A Appendix

A.1 Tamarin Lemma for RS7

In Listing A.1, we give the Tamarin lemma for injective agreement under se-
cure algorithms for the CPS. The Commit_CPS_Install event in Line 3 denotes
that the CPS accepted a credential installation request by the client (identified
by its PCID). The CPS sends accepted requests to the eMSP who generates the
client’s certificate, including the client’s public key cc_pub, and sent back to the
CPS. The CPS signs the response and sends it to the client (cf. Step 5 to 7 in
Fig. 3). We require that for all such commit events, there is a corresponding
event Running_EV_Install, denoting that the EV identified by PCID previously
sent a certificate installation request (cf. Step 5 in Fig. 3) for the public contract
credential key cc_pub (Line 4 to 6). In addition, there must not be an additional
commit event for the same public key cc_pub by any certificate provisioning ser-
vice (Lines 7-9). This ensures that the Running_EV_Install event corresponds
to a unique Commit_CPS_Install event, i.e., that no replay attacks are possi-
ble. We only require this property to hold if all algorithms used by the involved
parties either remain secure during the entire transaction or have been revoked
by the CPS before completing the transaction (Lines 10-14). This includes the
algorithm used for the provisioning certificate of the EV, as well as the signature
testifying its validity, the algorithm used for the contract credentials (cc_pub),
and the algorithm used by the CPS’s certificate chain. Note that the CPS will
abort the transaction if it uses revoked algorithms. We model the insecurity of
an algorithm the same way as the corruption of an entity, that is, the private key
of a credential set for this algorithm and entity is given to the attacker, which
is denoted by a KeyReveal event.

22 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

1 lemma auth_install_inj_agreement_insec_algs_CPS :
2 " Al l CPS PCID cc_pub #i .
3 Commit_CPS_Install (CPS,PCID, cc_pub) @i
4 ==> ((Ex #j .
5 Running_EV_Install (PCID,CPS, cc_pub) @j
6 & (#j<#i)
7 & not (Ex CPS2 PCID2 #i2 .
8 Commit_CPS_Install (CPS2 ,PCID2 , cc_pub) @i2
9 & not(#i2=#i)))

10 | (Ex en t i t y a lg #kr .
11 KeyReveal (ent i ty , a l g) @kr
12 & Honest (ent i ty , a l g) @i
13 & not (Ex #kr2 . E_RevokedAlg (CPS, a lg) @kr2
14 & kr2<i))) "

Listing A.1. Injective Agreement under Insecure Algorithm Lemma in Tamarin.

References

1. Acharya, S., Dvorkin, Y., Karri, R.: Public plug-in electric vehicles+ grid data: Is
a new cyberattack vector viable? IEEE Transactions on Smart Grid 11(6), 5099–
5113 (2020)

2. Alnahawi, N., Schmitt, N., Wiesmaier, A., Heinemann, A., Graßmeyer, T.:
On the State of Crypto Agility. In: Tagungsband zum 18. Deutschen IT-
Sicherheitskongress. vol. 18, pp. 103–126. German Federal Office for Information
Security (BSI) (2022)

3. Alnahawi, N., Wiesmaier, A., Grasmeyer, T., Geißler, J., Zeier, A., Bauspieß, P.,
Heinemann, A.: On the State of Post-Quantum Cryptography Migration. In: IN-
FORMATIK 2021. pp. 907–941. Gesellschaft für Informatik, Bonn (2021)

4. Arm: A Starter’s Guide to Arm Processing Power in Automotive (2018),
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/
a-starters-guide-to-arm-processing-power-in-automotive

5. Atkins, D.: Requirements for Post-Quantum Cryptography on Embedded Devices
in the IoT (2021)

6. Aumasson, J.P., Bernstein, D.J., Beullens, W., Dobraunig, C., Eichlseder, M.,
Fluhrer, S., Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., Lau-
ridsen, M.M., Mendel, F., Niederhagen, R., Rechberger, C., Rijneveld, J., Schwabe,
P., Westerbaan, B.: SPHINCS+ Submission to the NIST post-quantum project,
v.3 (2020)

7. Bai, S., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler,
G., Stehlé, D.: CRYSTALS-Dilithium – Algorithm Specifications and Supporting
Documentation (2021)

8. Bao, K., Valev, H., Wagner, M., Schmeck, H.: A threat analysis of the vehicle-
to-grid charging protocol iso 15118. Computer Science-Research and Development
33(1-2), 3–12 (2018)

9. Barker, W., Polk, W., Souppaya, M.: Getting ready for post-quantum cryptogra-
phy: Explore challenges associated with adoption and use of post-quantum crypto-
graphic algorithms. Tech. rep., NIST Publications (2020). https://doi.org/10.
6028/NIST.CSWP.05262020-draft

https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://community.arm.com/arm-community-blogs/b/embedded-blog/posts/a-starters-guide-to-arm-processing-power-in-automotive
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/atkins-requirements-pqc-iot-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/atkins-requirements-pqc-iot-pqc2021.pdf
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://sphincs.org/data/sphincs+-round3-specification.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://doi.org/10.6028/NIST.CSWP.05262020-draft
https://doi.org/10.6028/NIST.CSWP.05262020-draft
https://doi.org/10.6028/NIST.CSWP.05262020-draft
https://doi.org/10.6028/NIST.CSWP.05262020-draft

Title Suppressed Due to Excessive Length 23

10. Bartel, M., Boyer, J., Fox, B., LaMacchia, B., Simon, E.: XML Signature Syntax
and Processing Version 1.1. W3C recommendation, World Wide Web Consortium
(W3C) (2013)

11. Basin, D., Sasse, R., Toro-Pozo, J.: Card brand mixup attack: Bypassing the {PIN}
in {non-Visa} cards by using them for visa transactions. In: 30th USENIX Security
Symposium (USENIX Security 21). pp. 179–194 (2021)

12. Basu, K., Soni, D., Nabeel, M., Karri, R.: NIST Post-Quantum Cryptography – A
Hardware Evaluation Study. Cryptology ePrint Archive, Report 2019/047 (2019)

13. Bindel, N., McCarthy, S., Rahbari, H., Twardokus, G.: Suitability of 3rd Round
Signature Candidates for Vehicle-to-Vehicle Communication – Extended Abstract.
3rd PQC standardization conference, NIST (2021)

14. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Seiler, G., Stehle, D.: CRYSTALS – Kyber: A CCA-Secure Module-
Lattice-Based KEM. In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). pp. 353–367 (2018)

15. Bova, Francesco, Goldfarb, Avi, Melko, Roger G.: Commercial applications of quan-
tum computing. EPJ Quantum Technol. 8(1), 2 (2021)

16. Bürstinghaus-Steinbach, K., Krauß, C., Niederhagen, R., Schneider, M.: Post-
Quantum TLS on Embedded Systems: Integrating and Evaluating Kyber and
SPHINCS+ with Mbed TLS. In: ACM Asia Conference on Computer and Com-
munications Security. p. 841–852. ASIA CCS ’20, ACM (2020)

17. Campos, F., Meyer, M., Sanwald, S., Stöttinger, M., Wang, Y.: Post-quantum
cryptography for ECU security use cases. In: 17th escar Europe: embedded security
in cars (conference proceedings). Ruhr-Universität Bochum (2019)

18. Chang, Y.A., Chen, M.S., Wu, J.S., Yang, B.Y.: Postquantum SSL/TLS for Em-
bedded Systems. In: IEEE Conference on Service-Oriented Computing and Appli-
cations. p. 266–270. IEEE (2014)

19. Crockett, E., Paquin, C., Stebila, D.: Prototyping post-quantum and hybrid key
exchange and authentication in TLS and SSH. Cryptology ePrint Archive, Report
2019/858 (2019)

20. Dang, V.B., Farahmand, F., Andrzejczak, M., Mohajerani, K., Nguyen, D.T.,
Gaj, K.: Implementation and Benchmarking of Round 2 Candidates in the
NIST Post-Quantum Cryptography Standardization Process Using Hardware and
Software/Hardware Co-design Approaches. Cryptology ePrint Archive, Report
2020/795 (2020)

21. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
information theory 29(2), 198–208 (1983)

22. European Telecommunications Standards Institute (ETSI): Migration strategies
and recommendations to quantum safe schemes. TR 103 619 V1.1.1 (2020)

23. Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-Fourier Lattice-based
Compact Signatures over NTRU Specification v1.2 (2020)

24. Fritzmann, T., Vith, J., Sepúlveda, J.: Strengthening Post-Quantum Security for
Automotive Systems. In: Euromicro Conference on Digital System Design (DSD).
pp. 570–576 (2020)

25. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M.: HIP: HSM-Based Identities for
Plug-and-Charge. In: Conference on Availability, Reliability and Security. ARES
’20, ACM (2020)

26. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M.: TrustEV: Trustworthy Electric Ve-
hicle Charging and Billing. In: ACM/SIGAPP Symposium on Applied Computing
SAC 2020. ACM (2020)

https://www.w3.org/TR/xmldsig-core1/
https://www.w3.org/TR/xmldsig-core1/
https://ia.cr/2019/047
https://ia.cr/2019/047
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/bindel-suitability-abstract-pqc2021.pdf
https://csrc.nist.gov/CSRC/media/Events/third-pqc-standardization-conference/documents/accepted-papers/bindel-suitability-abstract-pqc2021.pdf
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1109/EuroSP.2018.00032
https://doi.org/10.1140/epjqt/s40507-021-00091-1
https://doi.org/10.1140/epjqt/s40507-021-00091-1
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.13154/294-6673
https://doi.org/10.13154/294-6673
http://ieeexplore.ieee.org/document/6978621/
http://ieeexplore.ieee.org/document/6978621/
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2019/858
https://eprint.iacr.org/2020/795
https://eprint.iacr.org/2020/795
https://eprint.iacr.org/2020/795
https://ieeexplore.ieee.org/document/1056650
https://falcon-sign.info/falcon.pdf
https://falcon-sign.info/falcon.pdf
https://ieeexplore.ieee.org/document/9217638
https://ieeexplore.ieee.org/document/9217638
https://dl.acm.org/doi/10.1145/3407023.3407066
https://dl.acm.org/doi/10.1145/3407023.3407066
https://doi.org/10.1145/3341105.3373879
https://doi.org/10.1145/3341105.3373879

24 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

27. Fuchs, A., Kern, D., Krauß, C., Zhdanova, M., Heddergott, R.: HIP-20: Integration
of Vehicle-HSM-Generated Credentials into Plug-and-Charge Infrastructure. In:
Computer Science in Cars Symposium. CSCS ’20, ACM (2020)

28. Gazdag, S.L., Grundner-Culemann, S., Guggemos, T., Heider, T., Loebenberger,
D.: A formal analysis of ikev2’s post-quantum extension. In: Annual Computer
Security Applications Conference. p. 91–105. ACSAC ’21, Association for Comput-
ing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3485832.
3485885, https://doi.org/10.1145/3485832.3485885

29. Gupta, D.S., Ray, S., Singh, T., Kumari, M.: Post-quantum lightweight identity-
based two-party authenticated key exchange protocol for Internet of Vehicles with
probable security. Computer Communications 181, 69–79 (2022)

30. Hülsing, A., Rijneveld, J., Schwabe, P.: ARMed SPHINCS - Computing a 41 KB
signature in 16 KB of RAM. In: Cheng, C., Chung, K., Persiano, G., Yang, B. (eds.)
Public-Key Cryptography - PKC 2016. LNCS, vol. 9614, pp. 446–470. Springer
(2016)

31. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: XMSS: eXtended
Merkle Signature Scheme. RFC 8391 (2018)

32. Hülsing, A., Ning, K.C., Schwabe, P., Weber, F., Zimmermann, P.R.: Post-quantum
WireGuard. In: IEEE Symposium on Security and Privacy. pp. 304–321 (2021)

33. ISO/IEC: Road vehicles – vehicle to grid communication interface – part 1: General
information and use-case definition. ISO 15118-1:2013, ISO (2013)

34. ISO/IEC: Road vehicles – vehicle-to-grid communication interface – part 2: Net-
work and application protocol requirements. ISO 15118-2:2014, ISO (2014)

35. ISO/IEC: Road vehicles – vehicle to grid communication interface – part 20: 2nd
generation network and application protocol requirements. ISO 15118-20:2022, ISO
(2022)

36. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

37. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
Benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report
2019/844 (2019)

38. Kern, D., Krauß, C.: Analysis of e-mobility-based threats to power grid resilience.
In: Proceedings of the 5th ACM Computer Science in Cars Symposium. CSCS ’21,
Association for Computing Machinery, New York, NY, USA (2021). https://doi.
org/10.1145/3488904.3493385, https://doi.org/10.1145/3488904.3493385

39. Kern, D., Lauser, T., Krauß, C.: Integrating privacy into the electric vehicle charg-
ing architecture. Proceedings on Privacy Enhancing Technologies 3, 140–158 (2022)

40. Lowe, G.: A hierarchy of authentication specifications. In: Computer Security Foun-
dations Workshop. pp. 31–43. IEEE (1997)

41. Macaulay, T., Henderson, R.: Cryptographic Agility in Practice: Emerging Use-
Cases. Infosec Global (2019)

42. Malina, L., Ricci, S., Dzurenda, P., Smekal, D., Hajny, J., Gerlich, T.: Towards
Practical Deployment of Post-quantum Cryptography on Constrained Platforms
and Hardware-Accelerated Platforms. In: Simion, E., Géraud-Stewart, R. (eds.)
Innovative Security Solutions for Information Technology and Communications,
LNCS, vol. 12001, pp. 109–124. Springer (2020)

43. Mathilde, R., Aymeric, G., Yolan, R.: PQ-WireGuard: we did it again. https://
csrc.nist.gov/CSRC/media/Presentations/pq-wireguard-we-did-it-again/
images-media/session-5-raynal-pq-wireguard.pdf (2021)

44. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali Hash-Based Signatures. RFC
8554 (2019)

https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3385958.3430483
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://doi.org/10.1145/3485832.3485885
https://www.sciencedirect.com/science/article/pii/S0140366421003686
https://www.sciencedirect.com/science/article/pii/S0140366421003686
https://www.sciencedirect.com/science/article/pii/S0140366421003686
https://www.rfc-editor.org/info/rfc8391
https://www.rfc-editor.org/info/rfc8391
https://ieeexplore.ieee.org/document/9519445
https://ieeexplore.ieee.org/document/9519445
https://github.com/mupq/pqm4
https://ia.cr/2019/844
https://ia.cr/2019/844
https://doi.org/10.1145/3488904.3493385
https://doi.org/10.1145/3488904.3493385
https://doi.org/10.1145/3488904.3493385
https://doi.org/10.1145/3488904.3493385
https://doi.org/10.1145/3488904.3493385
https://ieeexplore.ieee.org/document/596782
https://assets.website-files.com/5bd73d456f7b3f2db2bbbb95/5c76a740dcc2cc4646a06805_ISG_AgilityUseCases_Whitepaper-FINAL.pdf
https://assets.website-files.com/5bd73d456f7b3f2db2bbbb95/5c76a740dcc2cc4646a06805_ISG_AgilityUseCases_Whitepaper-FINAL.pdf
http://link.springer.com/10.1007/978-3-030-41025-4_8
http://link.springer.com/10.1007/978-3-030-41025-4_8
http://link.springer.com/10.1007/978-3-030-41025-4_8
https://csrc.nist.gov/CSRC/media/Presentations/pq-wireguard-we-did-it-again/images-media/session-5-raynal-pq-wireguard.pdf
https://csrc.nist.gov/CSRC/media/Presentations/pq-wireguard-we-did-it-again/images-media/session-5-raynal-pq-wireguard.pdf
https://csrc.nist.gov/CSRC/media/Presentations/pq-wireguard-we-did-it-again/images-media/session-5-raynal-pq-wireguard.pdf
https://www.rfc-editor.org/info/rfc8554

Title Suppressed Due to Excessive Length 25

45. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: Computer Aided Verification. LNCS,
vol. 8044, pp. 696–701. Springer (2013)

46. Mosca, M., Piani, M.: 2021 Quantum Threat Timeline Report. Tech. rep., Global
Risk Institute (2022)

47. NIST: Post-Quantum Cryptography PQC — Selected Algorithms
2022, https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022

48. NIST: Project: Post-Quantum Cryptography (2017), https://csrc.nist.gov/
Projects/post-quantum-cryptography

49. OCA: Open Charge Point Protocol 2.0.1 - Part 2 - Specification. Open stan-
dard, Open Charge Alliance, Arnhem, Netherlands (3 2020), https://www.
openchargealliance.org/protocols/ocpp-201/

50. Oder, T., Speith, J., Höltgen, K., Güneysu, T.: Towards Practical Microcontroller
Implementation of the Signature Scheme Falcon. In: Ding, J., Steinwandt, R. (eds.)
Post-Quantum Cryptography, LNCS, vol. 11505, pp. 65–80. Springer (2019)

51. Ott, D., Peikert, C., other workshop participants: Identifying Research Chal-
lenges in Post Quantum Cryptography Migration and Cryptographic Agility. arXiv
preprint arXiv:1909.07353 (2019)

52. Paquin, C., Stebila, D., Tamvada, G.: Benchmarking Post-Quantum Cryptography
in TLS. Cryptology ePrint Archive, Report 2019/1447 (2019)

53. Paul, S., Scheible, P.: Towards Post-Quantum Security for Cyber-Physical Sys-
tems: Integrating PQC into Industrial M2M Communication, LNCS, vol. 12309,
p. 295–316. Springer (2020)

54. Ravi, P., Sundar, V.K., Chattopadhyay, A., Bhasin, S., Easwaran, A.: Authen-
tication Protocol for Secure Automotive Systems: Benchmarking Post-Quantum
Cryptography. In: 2020 IEEE International Symposium on Circuits and Systems
(ISCAS). pp. 1–5 (2020)

55. Renesas Electronics Corporation: R-Car Automotive System-on-Chips (SoCs)
(2022), https://www.renesas.com/us/en/products/automotive-products/
automotive-system-chips-socs#parametric_options

56. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM J. Comput. 26(5), 1484–1509 (oct
1997)

57. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-Quantum Authentication
in TLS 1.3: A Performance Study. In: Network and Distributed System Security
Symposium. Internet Society (2020)

58. Smith, M., Castellano, J.: Costs Associated With Non-Residential Electric Vehicle
Supply Equipment: Factors to consider in the implementation of electric vehicle
charging stations. U.S. Department of Energy Vehicle Technologies Office (2015)

59. Smyslov, V.: Intermediate exchange in the IKEv2 protocol. IETF draft (2021)
60. Stebila, D., Fluhrer, S., Gueron, S.: Hybrid key exchange in TLS 1.3. IETF draft

(2020)
61. Stebila, D., Mosca, M.: Post-quantum Key Exchange for the Internet and the

Open Quantum Safe Project. In: Avanzi, R., Heys, H. (eds.) Selected Areas in
Cryptography – SAC 2016. LNCS, vol. 10532, pp. 14–37. Springer (2016), https:
//openquantumsafe.org/

62. Texas Instruments: DRA745 – Infotainment Applications Processor (2019), https:
//www.ti.com/product/DRA745

https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://link.springer.com/chapter/10.1007/978-3-642-39799-8_48
https://globalriskinstitute.org/publications/2021-quantum-threat-timeline-report/
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://www.openchargealliance.org/protocols/ocpp-201/
https://www.openchargealliance.org/protocols/ocpp-201/
http://link.springer.com/10.1007/978-3-030-25510-7_4
http://link.springer.com/10.1007/978-3-030-25510-7_4
https://ia.cr/2019/1447
https://ia.cr/2019/1447
http://link.springer.com/10.1007/978-3-030-59013-0_15
http://link.springer.com/10.1007/978-3-030-59013-0_15
https://doi.org/10.1109/ISCAS45731.2020.9180847
https://doi.org/10.1109/ISCAS45731.2020.9180847
https://doi.org/10.1109/ISCAS45731.2020.9180847
https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs#parametric_options
https://www.renesas.com/us/en/products/automotive-products/automotive-system-chips-socs#parametric_options
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24203.pdf
http://www.afdc.energy.gov/uploads/publication/evse_cost_report_2015.pdf
http://www.afdc.energy.gov/uploads/publication/evse_cost_report_2015.pdf
http://www.afdc.energy.gov/uploads/publication/evse_cost_report_2015.pdf
https://tools.ietf.org/id/draft-stebila-tls-hybrid-design-03.html
https://link.springer.com/chapter/10.1007/978-3-319-69453-5_2
https://link.springer.com/chapter/10.1007/978-3-319-69453-5_2
https://openquantumsafe.org/
https://openquantumsafe.org/
https://www.ti.com/product/DRA745
https://www.ti.com/product/DRA745

26 Kern, Krauß, Lauser, Alnahawi, Wiesmaier, and Niederhagen

63. V2G Clarity: Reference Implementation Supporting the Evolution of the Vehicle-
2-Grid communication interface (RISE V2G) (2020), https://github.com/
V2GClarity/RISE-V2G

64. Vector: vSECC – Communication Controller for High Power Charging
Stations V2.3 (2022), https://cdn.vector.com/cms/content/products/vSECC/
Docs/vSECC_FactSheet_EN.pdf

65. Wang, W., Stöttinger, M.: Post-Quantum Secure Architectures for Automotive
Hardware Secure Modules. Cryptology ePrint Archive, Report 2020/026 (2020)

66. Wesemeyer, S., Newton, C.J., Treharne, H., Chen, L., Sasse, R., Whitefield, J.:
Formal analysis and implementation of a tpm 2.0-based direct anonymous attesta-
tion scheme. In: Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security. p. 784–798. ASIA CCS ’20, Association for Comput-
ing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3320269.
3372197, https://doi.org/10.1145/3320269.3372197

67. Zhdanova, M., Urbansky, J., Hagemeier, A., Zelle, D., Herrmann, I., Höffner, D.:
Local power grids at risk – an experimental and simulation-based analysis of attacks
on vehicle-to-grid communication. In: Proceedings of the 38th Annual Computer
Security Applications Conference. p. 42–55. ACSAC ’22, Association for Comput-
ing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/3564625.
3568136, https://doi.org/10.1145/3564625.3568136

https://github.com/V2GClarity/RISE-V2G
https://github.com/V2GClarity/RISE-V2G
https://cdn.vector.com/cms/content/products/vSECC/Docs/vSECC_FactSheet_EN.pdf
https://cdn.vector.com/cms/content/products/vSECC/Docs/vSECC_FactSheet_EN.pdf
https://ia.cr/2020/026
https://ia.cr/2020/026
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1145/3320269.3372197
https://doi.org/10.1145/3564625.3568136
https://doi.org/10.1145/3564625.3568136
https://doi.org/10.1145/3564625.3568136
https://doi.org/10.1145/3564625.3568136
https://doi.org/10.1145/3564625.3568136

	QuantumCharge: Post-Quantum Cryptography for Electric Vehicle Charging– preprint –

