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Abstract. FPGA-SoCs are a popular platform for accelerating a wide
range of applications due to their performance and flexibility. From a
security point of view, these systems have been shown to be vulnerable
to various attacks, especially side-channel attacks where an attacker can
obtain the secret key of a cryptographic algorithm via laboratory mea-
surement equipment or even remotely with sensors implemented inside
the FPGA logic itself. Fortunately, a variety of countermeasures on the
algorithmic level have been proposed to mitigate this threat. Beyond side-
channel attacks, covert channels constitute another threat which enables
communication through a hidden channel. In this work, we demonstrate
the possibility of implementing a covert channel between the CPU and
an FPGA by modulating the usage of the Power Distribution Network.
We show that this resource is especially vulnerable since it can be easily
controlled and observed, resulting in a stealthy communication and a
high transmission data rate. The power usage is modulated using simple
and inconspicuous instructions executed on the CPU. Additionally, we
use Time-to-Digital Converter sensors to observe these power variations.
The sensor circuits are programmed into the FPGA fabric using only
standard logic components. Our covert channel achieves a transmission
rate of up to 16.7 kbit/s combined with an error rate of 2.3%. Besides
a good transmission quality, our covert channel is also stealthy and can
be used as an activation function for a hardware trojan.

Keywords: FPGA-SoC · covert channel · Power Distribution Network
· on-chip power sensors · hardware trojan

1 Introduction

Field Programmable Gates Arrays (FPGAs) are commonly used to accelerate
computations in hardware. Currently, FPGAs can be found in a variety of plat-
forms from the Cloud as extension cards [1, 2] to Embedded Systems, in so-called
System-On-Chips (SoCs). FPGA-SoCs consist of multiple processing units, an
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FPGA, and memory elements located in the same chip. One main characteris-
tic of FPGA-SoCs is the sharing of resources such as memory and peripherals
between the heterogeneous computation units they integrate. Besides providing
advantages for a designer, this lack of isolation between resources has also been
used to mount powerful attacks on FPGA-SoCs [8, 10, 13, 17, 31]. In this work,
we focus on the shared Power Distribution Network (PDN) which is contained
in FPGA-SoCs. Previous works have demonstrated the possibility of mounting
side-channel attacks via Ring Oscillators (ROs) [31, 7] or Time-to-Digital Con-
verters (TDCs) [23, 8] acting as on-chip power sensors implemented inside the
FPGA fabric. By using one of these primitives, AES secret keys can be extracted
from a victim located inside the FPGA [31, 7, 5] or in a software implementation
running on an ARM Cortex-A9 CPU [8]. Besides side-channels, covert channels,
which consist of building a hidden communication channel through a medium
which is not intended for this purpose have been shown to be a threat to FPGAs
and traditional computers. Covert channels in FPGAs have been implemented
through logical resources or shared connections [22, 26]. These two types of covert
channels can be mitigated via proper usage of isolation mechanisms provided by
the FPGA manufacturer [3]. Furthermore, covert channels implemented through
micro-architectural events can also threaten FPGA-SoC systems, especially if the
FPGA can access the CPU caches [14, 20]. More generic covert channels requir-
ing fewer assumptions and bypassing logical isolation mechanisms in the context
of FPGA-SoC exploit temperature [12, 27] and power fluctuations [5, 4, 32]. A
covert channel implemented via the modulation of the PDN has been considered
in the work of [4, 5] with ROs acting as PDN stressors and ROs [4]/TDCs [5]
acting as receivers. Additionally, a covert channel exploiting the power supply
leakage between a desktop PC’s CPU and an FPGA connected to a PCIe accel-
eration card has been demonstrated in [4]. In order to stress the power supply
effectively, the authors have run multiple threads of the stress function available
on Linux on different CPU cores. By stressing the PDN with this methodology,
they implemented a covert channel achieving a transmission rate up to 6.1 bit/s
combined with a 97% transmission accuracy.

1.1 Our Contribution

Similarly to [4], we consider a covert channel between a CPU and an FPGA.
However, our work consider the SoC scenario where the CPU and FPGA are
located on the same chip and present applications specific to this setup. By in-
vestigating this scenario, we show that the PDN can be effectively modulated
from the CPU via a sequence of divisions and nanosleep operations running in
a single thread on one CPU core. In addition, to being a stealthier implemen-
tation, our covert channel also achieves a higher transmission rate of up to 16.7
kbit/s and a corresponding bit error rate of 2.3% without requiring an explicit
synchronization between the transmitter and the receiver. As an application use-
case, we discuss the usage of the covert channel for the activation of a hardware
trojan.
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1.2 Structure of this Work

The remainder of this work is organized as follows: Section 2 explains the back-
ground information such as the threat model and the vulnerabilities resulting
from a shared PDN in FPGA-SoCs. Section 3 describes the implementation of
the power covert channel between the CPU and the FPGA. Section 4 charac-
terizes the covert channel implemented in this work. We compare our covert
channel to similar work and discuss its limitations and countermeasures in sec-
tion 5. Finally, section 6 concludes this work.

2 Background

This section contains the background information related to this work. It first
introduces the threat model and the assumptions we made for the implementa-
tion of the covert channel. Finally some information regarding Manchester code,
the code we used for encoding a message through the PDN are introduced.

2.1 Threat Model

FPGA Processing System

Fig. 1: Threat Model for the CPU to FPGA power covert channel

The attacker model considered in this work is depicted in figure 1. We consider
a scenario where an attacker capable of executing unprivileged code on one CPU
core wants to communicate with a trojan module located in the FPGA fabric.
The trojan purpose is to mount an attack on the CPU, which cannot be mounted
from unprivileged code executed on the CPU due to the isolation mechanisms
of the operating system, lack of attack primitives available in software or due
to primitives that require higher privileges for being used. Such attacks include
direct memory access attacks, which have been shown to be feasible on FPGA-
SoCs from the FPGA fabric because of the poor protection of memory interfaces
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that are accessible from the FPGA logic [13, 10]. Another scenario could be, an
unprivileged software adversary who wants to mount side-channel through power
sensors implemented in the FPGA logic [8] or use special circuits such as ring-
oscillators for generating voltage drops that can compromise software execution
on a CPU [19, 11]. For executing one of the previously mentioned attacks, an
attacker can reprogram partially the FPGA from the userspace via the libdfx
library [29], that interacts with the FPGA Manager kernel driver [30]. On Xil-
inx FPGA-SoCs, the FPGA reconfiguration interfaces are considered as trusted
under secure boot assumption [28]. Therefore, the runtime reconfiguration of
the logic does not force the usage of encrypted or authenticated bitstream load
even after secure boot. This relaxed trust assumption contributes to ease the
hardware trojan insertion for those platforms. Once the attacker has placed a
malicious IP inside the FPGA logic, she needs to communicate with the FPGA
for activating the trojan in a covert way. In an FPGA-SoC, the CPU can use the
AXI bus for communicating the activation signal, however this communication
channel is not coverted and is therefore not suitable for activating a trojan. Fur-
thermore, a suspicious communication on the AXI bus can be easily blocked by a
firewall placed on the AXI bus as proposed in [13]. For that purpose, we present
a methodology to covertly communicate between the CPU and the FPGA with
the help of a PDN modulator software running on the CPU (see section 3.2) and
a decoding logic implemented within the FPGA logic (see section 3.3).

2.2 Security Vulnerabilities Resulting from a Shared PDN

The power dissipation of a chip can be divided into a static part which is propor-
tional to the current and its variation and a dynamic part which is influenced by
the toggling of the transistors. Like every power supply, the PDN cannot deliver
a constant voltage to an FPGA-SoC. Instead, the delivered voltage is dependent
on the current demand. Previous works have exploited this property to mount
fault and denial-of-service attacks based on voltage-drop by using power-wasting
circuits in FPGAs [17, 18].
In order to observe the voltage variations resulting from the PDN, the inversely
proportional relation between the supply voltage and the propagation delay of
a signal can be used. The propagation delay variation of a clock signal can be
measured in a so-called delay-line circuit, which acts as a voltage sensor. One
example of such a circuit is the TDC circuit [6] represented in figure 2.
The TDC depicted in figure 2 measures the propagation delay of a clock signal
inside a circuit consisting of an initial delay and a chain of delay elements, which
constitute the delay line. Latches and registers are used to depict the propagation
of the clock signal inside the delay line during one clock period. The delay line
state is then reflected as a thermometer code inside the registers. In case of a
voltage decrease, the clock signal propagates less inside the delay line, which is
seen by a decrease in the delay line state’s Hamming Weight. Inversely, if the
voltage raises, the delay line state’s Hamming Weight increases. By using this
principle, TDCs can be effectively used as voltage sensors and have been used
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Fig. 2: Schematic of an n-bit delay-line TDC with an initial delay unit

for side-channel attacks against a cryptographic core located in the FPGA [23]
or a software implementation running on a CPU [8].
Covert channels implemented through the PDN exploit both capabilities of
stressing and observing the PDN through logic circuits implemented within the
FPGA. In the work of [5, 4], ROs have been used as PDN stressors and TDCs re-
spectively ROs as PDN observers. Power covert channels were also demonstrated
to be feasible between a PC’s CPU and an FPGA mounted on an acceleration
card in [4]. By modulating the shared power supply usage via the Linux stress
and sleep functions, the authors implemented a covert channel with a trans-
mission rate of up to 6.1 bit/s and a 97% transmission accuracy. In this work,
a similar scenario is evaluated in the SoC context, with the FPGA and CPU
co-located on the same chip.

2.3 Manchester Code

The transmission of a message inside the PDN requires an encoding scheme.
For FPGA platforms, the On-Off keying encoding has been demonstrated to
be efficient for a temperature covert channel [27]. In the context of a PDN
covert channel, this simple encoding scheme has also shown to be efficient for a
pure FPGA-to-FPGA power covert channel [5]. For a more generic power covert
channel implementation involving FPGAs, Giechaskiel et al. suggest the usage
of the Manchester code which is less prone to transmission errors [4]. Based on
this evaluation, we opted for the Manchester encoding scheme for implementing
a PDN covert channel in this work. The Manchester code defines a format to
physically represent bits on a transmission line. In the Manchester code, logical
zeros are encoded in a falling signal edge, whereas logical ones are represented
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by rising signal edges. The level transition occurs in the middle of the bit-period
i.e., it is aligned with the rising clock edge of a shared clock signal. Due to this
alignment capability, the Manchester code is a so-called self-clocking code. The
clock signal can be extracted from the data signal itself. Thus, depending on the
implementation, a shared clock signal or synchronized clocks on the transmitter
and receiver side are not required [24].
In this work, we have implemented a covert channel using the shared PDN,
meaning only a single transmission line for communication is available. Hence,
we make use of the self-clocking property of the Manchester code, synchronizing
the transmitter and receiver without a shared clock signal.

3 Power Covert Channel Implementation

This section describes the implementation details of the PDN covert channel
presented in this work. After a brief description of the experimental setup, a
more detailed explanation of the transmitter and receiver design is presented.

3.1 Experimental Setup

The experimental setup used in this work is the Pynq-Z1 board from Digilent.
This platform contains a Xilinx Zynq-7000 SoC which features a dual-core ARM
Cortex-A9 CPU running at 650 MHz together with a Xilinx Artix-7 FPGA
clocked at 300 MHz in our experiments. The SoC is connected to an external 512
MB DDR3-RAM chip. We supplied the board with power through micro USB
instead of using an external power supply. The transmitter software is running on
an Ubuntu 18.04 operating system. For an evaluation of the transmission quality,
we read the decoded bitstream from Linux and store them inside logfiles. These
logfiles are then downloaded for an offline analysis on a standard PC.

3.2 Transmitter Design

The transmitter software aims at modulating the usage of the PDN by varying
the CPU load. In [4], the open-source application stress has been used for gen-
erating voltage drops on the shared power supply by imposing load on several
CPU cores during a given duration with matrix multiplication operations. We
verify that this methodology can also be applied to our platform, however it
has the downside of leading to a low transmission rate, which is inherent to the
usage of the stress tool. The tool indeed needs to be run in seconds granularity
which prevents the achievement of a high transmission rate. Initial experiments
revealed that a sequence of division instructions were sufficient for generating a
voltage drop which is significant enough for implementing a covert communica-
tion. After testing several strategies for encoding a high voltage level, we opted
for the usage of the nanosleep function. During the execution of nanosleep we
observed an initial voltage drop for 15 µs followed by a raised and a constant
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high level which depends on the given duration and a final voltage drop for an-
other 15 µs (see figure 3). Fortunately, this behavior matches the Manchester
code specification which requires a level transition after either a half or a full
period. The PDN response to nanosleep prevents the transmission of discrete
bits by iterating through the bitstream to transmit. Instead of that, we used the
translation table (see table 1) which takes the current bit value to transmit, its
predecessor and successor to encode a sequence of instructions which modulates
the PDN according to a Manchester encoding (see section 2.3). Additionally, for
a bitstream of size n we assume that the predecessor of the first bit is 0 and the
successor of the last bit is 1. The sleeping durations of 30 µs and 60 µs, as well
as the number of divisions, are derived from the low voltage level between two
sequential nanosleep function calls. From figure 3 the duration of this voltage
level can be read off to be 30 µs. As a result, the period of the Manchester signal
must be double this time. Thus, the software must modulate high voltages for 30
µs and 60 µs by executing the nanosleep function with the respective duration.
Low voltage levels of 30 µs and 60 µs are modulated by the delay between two
nanosleep executions and an extension of this delay by executing 1200 integer
divisions. Figure 4 depicts the waveform corresponding to the transmission of
the bitstream 011, which is obtained by executing instructions on one ARM
Cortex-A9 core following the encoding contained in table 1. In conformity to the
Manchester code specification, only transitions occurring at the middle of a bit-
period carry information (cf. section 2.3). Therefore, the falling edge occurring
after 120 µs in figure 4 does not encode a bit.
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Fig. 3: Averaged TDCs’ measurements during two consecutive nanosleep exe-
cutions using Linux

3.3 Receiver Design and Message Decoding

This section describes the components involved in the receiver block. The receiver
logic running at 300 MHz consists of TDC sensors and a decoding logic which is
represented in figure 5. A particular focus is made on the FSM, which is used for
detecting edges corresponding to a valid bit transmission and the corresponding
bit value according to the Manchester code specification (see section 2.3).
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Predecessor Value Successor Instruction
0 0 don’t care sleep for 30µs
0 1 0 divide 1200 times, sleep for 60µs
0 1 1 divide 1200 times, sleep for 30µs
1 0 don’t care -
1 1 0 sleep for 60µs
1 1 1 sleep for 30µs

Table 1: Translation of a bit under consideration of its direct neighbors into a
instruction list, used for voltage modulation
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Fig. 4: Signal waveform resulting from the execution of the instruction list trans-
lated from the bitstream 011

3.3.1 PDN monitoring: For monitoring the variations of the PDN, we use
TDC sensors. One TDC sensor consists of a chain of 16 CARRY-4 elements as
delay-line and 2 LUTs-6 elements as initial delay (see figure 2 and section 2.2 for
the explanation of the PDN monitoring via TDC sensors). The output of a TDC
sensor is further fed into an encoder so that it can be represented in binary
code. Using multiple TDCs and averaging the measurements lead to a better
voltage fluctuation coverage and measurement quality. However it also results
in additional noise generated by the TDC sensors which in turn decreases the
measurement quality. Therefore a trade-off has to be found with the number of
TDCs and the resulting measurement quality. Previous work [8] investigating
side-channels on a Zynq-7000 Processing System via TDC sensors found that
the usage of 8 adjacent TDC sensors placed at the left-hand side of the FPGA
produce the best measurement quality. We used this configuration as a baseline
and performed further experiments in section 4.2.4, to evaluate the influence of
the placement of the sensors on the covert channel quality.

3.3.2 Averaging and shift register: The first block of the decoding logic
(visible in figure 5) is a block-averaging mechanism which can be seen as a low
pass filter that is applied to the noisy TDCs’ measurements. The approach con-
sists in summing 1500 samples from the 8 TDCs. Using this approach rather than
a more complex low pass filter is sufficient since the covert channel transmission
frequency is much lower than the TDCs’ sampling frequency. The averaging
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Fig. 5: Block diagram of the decoder logic with intermediate signal names

block is followed by a shift register of size 2, which keeps the current (avg_1)
and previous block-averaged values (avg_2).

3.3.3 Edge detection: The signal edge detection is implemented as a gradient-
based mechanism which compares the difference between two block-averaged val-
ues. If the absolute value of this difference is higher than a fixed threshold, the
edge_detected signal is set high for one clock cycle. Falling edges are encoded
as 0 whereas rising edges are encoded as 1 in the edge_sign signal. Furthermore,
a counter is used to reflect the delay between two consecutive edges. According
to the Manchester code specification, a signal can only show a constant level
for either a half or a full bit-period. Therefore, this threshold is set to 3/4 of
a bit-period. In practice, no clock is shared between the decoder logic and the
transmitter code running on the CPU. Moreover, the non-determinism of the
Linux operating system might cause slight variations in the bit-period. Conse-
quently, we determined the threshold value empirically. If the delay between two
detected edges exceeds this threshold, the edge_delay signal is set high for one
clock cycle.

3.3.4 FSM: The final step of the decoder logic is an FSM that gets the
decomposed signal and returns the decoded bit values. To determine whether an
edge in the Manchester code actually encodes a bit, we require knowledge about
the previous edges in the signal (cf. section 2.3). Hence, we use an FSM since
it stores the information about the previous edges in the currently active state.
Figure 6 visualizes the Mealy FSM with two input and two output bits. The first
input represents the delay passed since the previous edge with zero meaning a
half bit-period passed and a one signalizing an entire bit-period passed. The
second input bit shows the edge sign where falling edges are represented by a
zero and rising edges by a one. The first output bit finally stores the decoded bit
value and the second output is set high whenever the decoded bit is valid. The
FSM is triggered asynchronously whenever the upstream edge detection logic
detects an edge.
The main function of the FSM is to decode the Manchester encoded signal. If an
edge is detected and it does not encode a bit, one of the two pre-* states is en-
tered and the validation output is set low. This prevents subsequent logic blocks
from accepting the current decoder output. Contrarily, if an edge is detected
that encodes a bit the corresponding valid-* state is entered and the validation
output is set high. The distinction of whether an edge encodes a bit or not is
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accomplished based on the currently active state. According to the Manchester
code definition, edges in the data signal that encodes bit values must be aligned
with the rising edge of the shared clock signal. Since our implementation only
has a single transmission line and no shared clock signal we extract a virtual
clock signal from the data signal. This virtual clock signal is stored in the first
input bit which stores the delay passed since the previous edge was detected. If
one of the valid-* states is active it means the last detected edge did encode a
bit and was consequently aligned with the rising edge of the virtual clock sig-
nal. If the next edge is detected after a half bit-period it will be aligned with
the falling edge of the virtual clock signal. Hence, it does not encode a bit and
the corresponding pre-* state is entered. But in case the next edge is detected
after an entire bit-period it will be aligned with a virtual rising clock edge again
thereby encoding a bit value.
Moreover, the FSM has the function to resynchronize the receiver with the trans-
mitter. If an edge is missed or an additional one is detected the decoder FSM
might enter a false state and incorrectly decode subsequent edges. To cope with
this issue, we use a property of the Manchester code that unambiguously shows if
an edge decodes a bit or not. If a delay of an entire bit-period between two edges
is detected, both edges must encode a bit according to the Manchester code.
Consequently, whenever an edge after a delay of an entire bit-period is detected
the FSM enters the corresponding valid-* state, regardless of the currently active
state.

init

valid-0pre-0 valid-1 pre-1

DC, 0/0, 1

0, 1/0, 0

DC, 1/1, 1

0, 0/1, 0
1, 1/1, 1

1, 0/0, 1

0, 1/0, 0

1, 1/1, 11, 1/1, 1

1, 0/0, 1

Input#1: edge_delay
Input#2: edge_sign
Output#1: bit_value
Output#2: bit_valid

Fig. 6: FSM to determine which signal edges encode to an actual bit value

3.3.5 Decoder Control The current implementation uses control signals for
configuring the decoder and starting and stopping the decoder logic. The con-
figuration of the decoder consists in specifying the block size used for averaging,
the thresholds for the detection of edges, and the delay between two consecu-
tive edges. All these parameters are configurable via software by writing into
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specific AXI-addressable registers. This enables flexibility in the decoder config-
uration without the necessity of regenerating a bitstream for a different decoder
configuration.
In addition, the start and stop signals used for a transmission are also encoded
into AXI-addressable registers. These registers are system-wide accessible, which
violates the concept of covert channel presented in section 2.1. In future work,
the start and stop signals used for the covert communication should be encoded
in the PDN via a specific start and stop bit pattern.

4 Power Covert Channel Characterization

In this section, the performance and transmission quality of the covert channel
are evaluated. Furthermore, we analyze the influence of the sensors placement
on the covert channel characteristics and present the FPGA resource usage of
the sensors and decoder logic.

4.1 Data Rate Limitations

The communication performance is represented by the achieved transmission
rate. The bit-period of the covert communication is derived from the transmitter
implementation. As shown in section 3.2 the minimal duration of a constant
signal level is 30 µs. Using the Manchester code results in a bit-period of 60 µs
since every bit is transmitted as a combination of a high and low signal level of
equal duration. Consequently, this results in a data rate of 16.7 kbit/s.
The lower bound of 30 µs for a constant signal level is due to the presented
behavior of the nanosleep function (cf. figure 3). It is important to note that
this bound does not correspond to the physical limits of the used device. Imple-
menting the transmission software as a bare-metal program instead of a Linux
application results in an increased transmission rate of 47.1 kbit/s.

4.2 Transmission Quality

To determine the quality of the communication channel we examine the ratio
of falsely detected bits i.e., bit error. This allows a fine granular analysis of
the conditions under which errors are especially likely to occur. Additionally,
we determine the word success rate, meaning the ratio of correctly transmitted
words. Both metrics are calculated from a set of 10 000 word transmissions.

4.2.1 Bit Error vs. Word Size

Figure 7 shows the bit error for the four different word sizes from 8 to 64 bit. As
expected, the smallest evaluated word size of 8 bit results in the lowest ratio of
falsely transmitted bits of 2.3%. Furthermore, figure 7 shows an almost linear
increase of the bit error with increasing word sizes. This matches the results of
Gnad et al. [5]. Their FPGA-to-FPGA covert channel also shows a nearly linear
dependency between the bit error and the width of the transmitted word.
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Fig. 7: Relative bit error in percent against different word sizes, calculated form
a set of 10000 samples

4.2.2 Bit Error Distribution
As a metric to evaluate the communication quality, we measure the bit errors
occurring in a set of 10 000 transmissions. For that purpose, we transmit 64-bit
wide words in sequence and calculate the relative amount of falsely detected bits
for every index of the words.
Figure 8 presents the bit error evaluation results. The bar plot depicted in blue
shows the bit error distribution for a set of randomly generated words. Since
every single word in this set is independent of every other word, it is possible
to derive the general dependence of the bit error on the index and word size.
The bit error distribution measured after transmitting random words in figure 8
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Fig. 8: Relative bit error in percent against the position of the respective bit in
a 64-bit wide word
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shows a linear increase with rising index. This effect can be explained by the
occurrence of synchronization errors. The PDN covert channel uses only a single
transmission line and does not have a shared clock signal. The Manchester code
in combination with the implemented decoder FSM enables the communication
without synchronized clocks on the transmitter and receiver sides. However, this
approach is prone to detecting unintentional edges and missing intentional edges
in the data signal. If such a detection error occurs, the FSM might enter a false
state and is not able to decode the following edges correctly. Furthermore, even
after a resynchronization of the FSM, the signal pattern is decoded correctly
but the data might be aligned at an incorrect index. Consequently, bit errors at
one specific position in the data word induce further errors at the subsequent
indices. Summing the individual bit error at an index and the bit errors at
upstream indices results in the linear increase shown in figure 8.

4.2.3 Word Success Rate
A further metric that represents the quality of the communication channel

besides the bit error is the word success rate. This characteristic describes the
relative number of successfully decoded words in comparison to the total number
of transmitted words.
Figure 9 shows the word success rate against different word sizes. Transmitting
byte-sized words results in the highest success rate of 94.5%. It is visible that the
success rate decreases almost linearly with increasing word sizes. The moderate
gradient is surprising since two known effects contribute to a decrease in the
word success rate. First, with a longer word size the probability that at least
one bit error occurs increases. Secondly, the bit error distribution shows higher
numbers of errors in wider words suggesting a decrease in signal quality.
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Fig. 9: Word success rate in percent against different word sizes, calculated form
a set of 10000 samples

4.2.4 Influence of the Sensors Placement To determine whether the phys-
ical location of the TDC sensors inside the FPGA influences the communication
quality, we chose two distinct placements on opposite sides of the FPGA (see
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figure 10). In both positions, all 8 TDCs are placed near each other. For the first
setup, the slices directly next to the CPU are used to implement the TDCs. This
leads to a placement of the sensors on the left-hand side of the FPGA fabric.
For the second location, the sensors are placed on the far-most right-hand side
of the FPGA. The two positions are 80 slices apart horizontally.

(a) (b)

Fig. 10: Placement of the eight TDCs (orange) a) next to the CPU and b) far
away from the CPU

Figure 11 shows the comparison of these two placements in terms of communi-
cation quality. Figure 11a depicts the signal waveforms measured by the TDCs.
The upper blue curve corresponds to the TDCs’ placement next to the CPU.
The lower orange curve shows the waveform measured with the sensors placed
on the opposite side of the FPGA. Comparing both measurements shows that
the orange waveform is scaled down by 25% in comparison to the blue wave-
form. Consequently, the signal edge height stays constant relative to the signal
level. This shows that in both positions the TDCs measure a significant voltage
variation when the PDN is modulated by the CPU. The downscaled voltage mea-
surements can be explained by a non-uniform PDN. Hence, the supply voltage
varies slightly due to the design of the PDN across the SoC. Comparable results
are presented in the work of Krautter et al. [15] who exhaustively analyzed the
influence of the transmitter and receiver placement on the quality of an intra-
chip side-channel attack. They found that the power distribution is not uniform
within the chip, which can result in a different transmission quality, that is not
necessarily influenced by the physical distance to the transmitter.
Since we use a gradient-based approach to detect edges in the data signal and
the downscaling of the TDCs’ measurements results in a reduced gradient value,
a negative influence on the communication quality is expected. A comparison
between the word success rate, i.e. the relative number of correctly transmitted
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data words of the two different TDC placements is shown in figure 11b. It shows
that the downscaling of the edge height due to the different sensor positions does
not present a problem for small word sizes. In contrast, transmitting wider words
result in a significantly decreased word success rate. Here, the high number of
bits and therefore the increased error probability in combination with a more
susceptible signal-to-noise ratio result in a lower communication quality.
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Fig. 11: Comparison of a) the signal waveforms and b) word success rate between
the placement of the TDCs next to the CPU (blue) and far away (orange)

4.3 Resource Utilization

As shown in table 2, the receiver and decoder logic can be implemented with a
small resource usage, using only 2.35% of the available FPGA LUTs.
On the CPU side, the transmitter is implemented with only one thread per-
forming a sequence of divisions and nanosleep function calls. Moreover, the
capability of achieving a good transmission at a high bandwidth without having
to resend a message multiple times contributes to make the transmitter code
stealthy on the CPU usage.

Type Amount Utilization
Slices 555 4.17%
LUTs 857 2.35%

Registers 1364 1.28%

Table 2: Resource utilization caused by the receiver and decoder logic
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5 Discussion and Future Work

The following section first presents a comparison between the CPU to FPGA
covert channel implemented in this work and other state-of-the-art covert chan-
nels shown on FPGAs. In a second time, the usage of the implemented covert
channel as an activation function for a trojan is discussed. Finally some consid-
erations regarding noise and potential countermeasures are presented.

5.1 Comparison with Other Power Covert Channels Involving
FPGAs

Temperature [12, 27] and power consumption [5] are the most promising trans-
mission medium that can be used as covert channel on FPGA platforms since
they can bypass FPGA isolation mechanisms. The temperature covert channel
uses high and low temperature level to encode bits and has been shown to be
practicable on standard FPGA platforms [12] upto FPGA platforms integrated
in the cloud [27]. Its downside is mainly the achieved transmission speed, with
which several minutes are required to transmit a 128 bit AES key [27]. A faster
transmission medium relying on the FPGA power consumption is presented in
the work of Gnad et al. [5]. Their implementation uses ROs in a custom logic
circuit to modulate the supply voltage. A TDC sensor, programmed into the
same FPGA fabric, observes the PDN. Since they also use the Pynq-Z1 as their
evaluation platform, we can use their results to classify our covert channel. In
comparison to our implementation, their covert channel achieves data rates up
to 8 Mbit/s. They use the same transmission medium on the same hardware
and an equivalent receiver circuit. Therefore, we can derive that the transmitter
software executed on the CPU is the main performance limitation. This supports
the observation presented in section 4.1, showing an increased transmission rate
when executing the software as a bare-metal program instead of a Linux appli-
cation. Moreover, Gnad et al. are able to generate three distinct voltage levels
whereas our covert channel uses rising and falling level edges between two volt-
age levels. Consequently, using a custom logic circuit to stress the PDN results
in fine granular control over the PDN in terms of timing and level modulation.
A different approach towards power covert channels was taken by Giechaskiel et
al. [4]. Instead of implementing both the transmitter and receiver on the same
chip and using the shared PDN as the transmission medium, they have used
a computer PSU. The transmitter and receiver are implemented using discrete
devices which are either placed directly on the motherboard or connected via
PCIe acceleration cards. This setup results in a more complex transmitter and
receiver design. While we are able to modulate the supply voltage using only
a single core of an embedded CPU, they have required multiple threads of a
desktop-class CPU. Moreover, the receiver that is implemented on a discrete
FPGA requires additional circuitry to measure deliberate voltage variations.
They have used additional ROs, stressing the voltage regulators to make the
supply voltage more vulnerable to high CPU loads. A receiver of this complexity
is not required for our covert channel. As shown in section 3.3, voltage variations
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are directly measurable using TDC sensors with a simple block averaging scheme
to filter high-frequency noise.
In conclusion, the threat of a power covert channel heavily depends on the trans-
mitter implementation and the nature of the transmission medium. The shared
PDN of a single chip is especially vulnerable to covert channel communication.
In comparison to a common PSU, exploiting the shared PDN by implementing
the transmitter and receiver on the same chip shows significant improvements in
the achievable transmission rate. Furthermore, it allows a simplified transmitter
and receiver design.

5.2 Activation of a Hardware Trojan via the Covert Channel

Hardware trojans consist of malicious circuits hidden within a benign design. In
the context of FPGA-SoCs, they can typically be contained in IP cores obtained
from third parties. The insertion of HTs in FPGA-SoCs is also facilitated due to
the relaxed trust assumptions on the FPGA reconfiguration interfaces made on
Xilinx FPGA-SoCs [28]. Xilinx considers the PCAP and the ICAP as trusted
in the context of secure boot. Therefore, it is possible to load un-authenticated
and un-encrypted bitstram after a secure boot process due to these relaxed trust
assumptions [28]. After its insertion, a hardware trojan should remain discrete
and only activated under specific conditions, which are not reproducible during
normal operation. The activation signal should also be communicated via an
indirect communication channel. In this work, we have the capability to encode
a chosen bitstream in the PDN via the bit to instruction mapping presented
in section 3.2. To ensure that the transmitted bitstream cannot be reproduced
during normal conditions and still be transmitted reliably, the activation bit-
stream should be large enough, transmittable in a short duration, and have a
good word success rate. With the analysis presented in sections 4.2.1 and 4.2.3,
we think that a trigger signal of 16 bits can be a good trade-off for ensuring
those requirements. In section 5.3, the influence of noise which may degrade
the activation signal transmission quality is discussed together with techniques
that can be investigated in future work for improving the transmission quality
in presence of noise.

5.3 Influence of Noise and Countermeasures

Besides the analysis in terms of performance and quality, further topics are still
worth investigating. Currently, the used FPGA-SoC is operated in an ideal state
for the covert channel implementation. Gnad et al. [5] showed that a PDN covert
channel can be implemented with noise sources located within the FPGA. In fu-
ture work, we should verify if noise sources generated by logic inside the FPGA
can disturb the reception of the message encoded in the PDN by the CPU. In ad-
dition to noise on the receiver side, noise on the transmitter software should also
be considered. In the current evaluation, no major application is running on the
Linux operating system during the experiments. One transmitter thread is exe-
cuted using only one of the two available cores of the integrated ARM Cortex-A9
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and is not running in parallel or being preempted by another thread. A promis-
ing strategy to deal with thread preemption could be the multi-threading of
the transmitter signal, as presented in [4]. While the results presented in [4]
haven’t explicitly considered preemption of the transmitter code, they showed
an increase in the transmission quality by considering multiple threads running
stress, which is the PDN stressor the authors used for encoding bits in their
covert channel implementation. Future work should investigate if running mul-
tiple transmission threads increase the transmission quality at the price of a
decrease in the implementation stealthiness and if it enables the run of parallel
victim workload during the covert transmission.
The implementation of countermeasures in the context of a PDN covert chan-
nel remains challenging. In contrast to side-channel attacks, where the imple-
mentation to be protected is clearly defined and can be masked with adequate
techniques [21, 9], equalizing a hidden PDN transmitter on a CPU or within the
FPGA logic is more difficult. One approach could be to use a bitstream ana-
lyzer scheme which prevents the insertion of power sensors within the FPGA
logic [16]. However, it was shown that power sensing circuits that are harder to
detect can still be used despite this approach [25].

6 Conclusion

In this work, we have shown that the PDN is a vulnerable resource that can
be used for implementing a covert channel between a CPU and an FPGA on
an FPGA-SoC platform. This communication channel is particularly interesting
for the activation of hardware trojans in FPGA-SoCs. By using simple sleep
function calls and integer divisions, we were able to modulate the PDN usage in
a stealthy way. The hidden message encoded in the PDN can then be decoded
within the FPGA using TDC sensors and a decoder logic. Overall, the presented
covert channel achieves a transmission rate of up to 16.7 kbit/s and a bit error
rate of 2.3%, which is a significant improvement in comparison to other CPU
to FPGA covert channels. Future research should evaluate the robustness of the
covert channel to noise sources running in parallel to the transmitter software
and investigate possible countermeasures.
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