
A Differential Fault Attack against Deterministic
Falcon Signatures

Sven Bauer� and Fabrizio De Santis�

Siemens AG, Technology, Munich, Germany
{svenbauer,fabrizio.desantis}@siemens.com

Abstract. We describe a fault attack against the deterministic variant of the Falcon
signature scheme. It is the first fault attack that exploits specific properties of
deterministic Falcon. The attack works under a very liberal and realistic single fault
random model. The main idea is to inject a fault into the pseudo-random generator of
the pre-image trapdoor sampler, generate different signatures for the same input, find
reasonably short lattice vectors this way, and finally use lattice reduction techniques
to obtain the private key. We investigate the relationship between fault location, the
number of faults, computational effort for a possibly remaining exhaustive search
step and success probability.
Keywords: Fault attack · Post-quantum cryptography · Digital signature schemes
· Lattice-based cryptography · Falcon

1 Introduction
In July 2022, the U.S. Department of Commerce’s National Institute for Standard and
Technology (NIST) announced the first four winners of the Post-Quantum Cryptography
(PQC) standardization project after a six-year long competition and three rounds of
evaluation [NIS22]. The goal of the NIST PQC standardization project is to standardize
public-key post-quantum algorithms for public-key encryption (PKE), key encapsulation
mechanisms (KEM), and digital signatures, as currently specified in the NIST SP800-
56A/B and FIPS 186 documents. The first drafts are expected to be released in 2023. NIST
has selected only CRYSTALS-Kyber [SAB+22] for PKE/KEM, while three algorithms
CRYSTALS-Dilithium [LDK+22], Falcon [PFH+22] and SPHINCS+ [HBD+22] were
selected for digital signatures. The security of CRYSTALS-Kyber, CRYSTALS-Dilithium,
and Falcon is based on hardness problems on structured lattices, while the security
of SPHINCS+ is based on the security of classical hash functions, e.g., SHA-2, SHA-3.
In general, cryptographic algorithms mainly based on the hardness of structured lattice
problems offer comparatively small keys and ciphertexts as well as high computational
performance.

A provable approach to design post-quantum digital signature schemes was first de-
scribed by Gentry, Peikert, and Vaikuntanathan [GPV07] and it is based on the hash-and-
sign paradigm. This approach is referred to as the GPV framework. Falcon instantiates
the GPV framework [GPV07] over NTRU lattices to achieve an efficient post-quantum
digital signature scheme with very short signature size. In particular, NIST recommends
Falcon for applications that require smaller signatures than CRYSTALS-Dilithium. The
current version of Falcon [PFH+22] submitted to the NIST standardization project is
non-deterministic, i.e., signing the same message twice results in different signatures with
a very high probability. As pointed out in [GPV07], any instance of the GPV framework
must never output two different signatures for the same message hash. Falcon gets around

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X
mailto:{svenbauer, fabrizio.desantis}@siemens.com

2 A Differential Fault Attack against Deterministic Falcon Signatures

this issue by randomizing the hash of the message that is to be signed. So signing the
same message more than once will almost certainly lead to different message hash values
and hence different signatures. However, a deterministic version of Falcon is desirable
for some use-cases, cf. [LPa17], and may also be considered for future standardization.
Deterministic Falcon de-randomizes both the message hashing and the trapdoor sampler
to support a fully deterministic signing mode as specified in [LPa17]. However, it is very
well known that deterministic digital signature schemes are prone to Differential Fault
Analysis (DFA) (see, for example, [PSS+17, BP18]). Generally speaking, a DFA attacker
can alter the signature generation process by physical means, e.g., by injecting voltage
glitches, laser, or electro-magnetic radiation. In this way, an adversary is able to collect
pairs of correct and faulty outputs, i.e., digital signatures, and recover the secret private
key used for signature generation.

Our DFA on deterministic Falcon signatures targets the pseudo-random generator in
the pre-image trapdoor sampler, essentially reintroducing randomness, thus forcing the
trapdoor sampler to produce different signatures for the same input, hence violating a
central security assumption of Falcon.

1.1 Previous work
Fault Attacks against Deterministic ECDSA/EdDSA Signatures A first DFA against
deterministic ECDSA and EdDSA has been proposed in [BP16]. The paper presents two
attacks exploiting faults injected during the calculation of the scalar multiplication and
nonce during the digital signature generation routine. The adversary can recover the
secret key by solving linear equations obtained from correct and faulty pairs of signatures.
The attacks have subsequently been improved in [RP17, ABF+18, PSS+18, SB18], where
different fault injection targets are exploited and an evaluation of real hardware platforms is
performed. A further fault attack against deterministic ECDSA/EdDSA using lattice-based
techniques to recover the secret key has recently been proposed in [CSC+22].

Fault Attacks against Lattice-based Signatures The work of [BBK16, EFGT16] in-
vestigated fault attacks on non-deterministic lattice-based signature schemes, such as
BLISS [DDLL13], GLP [GLP12], PASSSign [LZA18], and ring-TESLA [ABB+16]. In
particular, the work of [EFGT16] presented a fault attack exploiting early loop abort
faults against discrete Gaussian sampling in the secret trapdoor lattice of the GPV-based
hash-and-sign signature scheme of [DLP14]. The attack requires m + 2 faulty signatures
using loop aborts after m iterations for a full key recovery. The possibility of lattice-based
deterministic signatures was already hinted in [LDK+17, BAA+17]. However, the applica-
bility of differential fault attacks against deterministic versions of CRYSTALS-Dilithium
and qTESLA were investigated in a nonce-reuse scenario using a single random faults
model [BP18].

Fault Attacks against Falcon Signatures In [MHS+19], the authors propose two types
of fault attack against Falcon. First, they adapt an attack from [EFGT16] to Falcon.
In this attack, an injected fault causes the trapdoor sampler to stop prematurely. The
component s2 of the resulting faulty signatures is then just a vector in a low-dimensional
lattice generated by the secret key component F . Hence, lattice reduction can be applied
on a small number of faulty signatures to find F . From F , the other secret key components
can be found using the public key and the NTRU equation that defines the relationship
between the secret key components. The second attack assumes the attacker can set large
parts of the output of the trapdoor sampler to zero, resulting in the same type of faulty
signatures as the first attack. The processing of the faulty signatures to obtain the private
key is hence the same.

Sven Bauer� and Fabrizio De Santis� 3

1.2 Contributions
To the best of our knowledge, we describe the first fault attack on deterministic Falcon
that exploits specific algorithmic properties. The attack works under a very generic and
realistic fault model using random faults injected during the execution of the pre-image
trapdoor sampler. We investigate the relationship between fault location, the number of
faults, computational effort for a possibly remaining exhaustive search step and success
probability. We provide simulations results both on a PC and ARM Cortex-M4 processor
to validate our claims.

1.3 Outline
In Section 2, we define the notation and provide some background information on lattice-
based cryptography and the Falcon digital signature scheme. In Section 3, we give a brief
algorithmic description of Falcon. The proposed fault attacks are described in Section 4.
A practical evaluation of the attack is provided in Section 5. Countermeasures to protect
against the proposed fault attack are described in Section 6. Conclusion and outlook are
provided in Section 7.

2 Preliminaries
In this section, we briefly introduce the necessary background on lattice-based cryptography
and the Falcon digital signature scheme.

Notation We denote row vectors by bold lowercase letters and matrices by bold uppercase
letters. The inner product of two vectors x, y is denoted by ⟨x, y⟩ and the Euclidean
norm of a vector x is denoted by ∥x∥ =

√
⟨x, x⟩. Let ϕ(x) = xn + 1 for n = 2κ a power

of two and let R = Z[x]/(ϕ). The ring R is a truncated polynomial ring that inherits
its ring structure from Z[x]. The elements f ∈ R are represented as polynomials, e.g.,
f(x) =

∑n−1
i=0 fix

i, or vectors, e.g., f = (f0, . . . , fn−1). Note that xf(x) corresponds to a
negacyclic rotation of the corresponding coefficient vector, i.e. viewed as a vector xf(x) is
(−fn−1, f0, f1, . . . , fn−2).

Any polynomial g ∈ R induces a linear map Mg : R → R given by polynomial
multiplication, Mg(f) = fg. Hence, we can also view polynomials as linear maps or
matrices.

For any polynomial f , we denote its Fourier transform by f̂ and by f̂ the corresponding
coefficient vector. Let q ∈ N⋆. We denote the lattice generated by the basis B =
(b0, ..., bm−1) ∈ Zm×n by Λ(B) =

{∑m−1
i=0 xibi, xi ∈ Z

}
and the corresponding orthogonal

lattice given by Λ⊥(B) = {x ∈ Zn : xB∗ = 0}.
The q-ary lattice is denoted by Λq(B) = {y ∈ Zn : y = xB mod q, x ∈ Zn} and the

corresponding orthogonal q-ary lattice is denoted by Λ⊥(B)q = {x ∈ Zn : xB∗ = 0 mod q}.
Let σ ∈ R with σ > 0. For any c ∈ Rn, the Gaussian function on Rn with center at c
and standard deviation σ is denoted by ρσ,c(x) = exp(−∥x−c∥2

2σ2). The discrete Gaussian
distribution over Λ of center c and standard deviation σ is denoted by DΛ,σ,c(z) =
ρσ,c(z)/(

∑
x∈Λ ρσ,c(x)) for all z ∈ Λ.

SIS problem Let A ∈ Zm×n
q be an m× n matrix with entries in Zq that consists of m

uniformly random vectors ai ∈ Zn
q : A = [a1| · · · |am]. The Short Integer Solution (SIS)

problem asks to find a non-zero vector x ∈ Zm such that: ∥x∥ ≤ β for some β ∈ R and
xA = 0 ∈ Zn

q . In order to guarantee that such a non-trivial, short solution exists, it is
required that β ≥

√
n log q, and m ≥ n log q. The R-SIS problem is a special case of the SIS

problem, where the matrix A is restricted to negacyclic blocks A = [rot(a1)| · · · |rot(am)]

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

4 A Differential Fault Attack against Deterministic Falcon Signatures

GPV Framework The GPV framework is a way to construct lattice-based signatures
based on the hash-and-sign paradigm. At the high-level, the GPV framework works as
follows: The public key is a matrix A ∈ Zn×m

q , where n > m, and the private key is a
matrix B ∈ Zm×m

q . Public and private key are linked by the relation Λq(A)⊥ = Λq(B). A
signature for a given a message m ∈ {0, 1}∗ is a short vector s ∈ Zm

q such that sA∗ = H(m),
where H : {0, 1}∗ → Zn

q is a hash function. The function which finds s is called a pre-image
trapdoor sampler. Given the public-key A, it is straightforward to verify that s is a valid
signature: it is sufficient to check that the signature s is indeed short and verify that
sA∗ = H(m). The GPV framework is proven secure in the (quantum) random oracle model
assuming the hardness of the SIS problem.

NTRU Lattices Let ϕ = xn + 1 for n = 2κ and q ∈ N⋆. A set of NTRU secrets consists of
four polynomials f, g, F, G ∈ Z[x]/(ϕ) which verify the NTRU equation fG−gF = q mod ϕ.
Additionally, it is required that f is invertible modulo q. Then the public polynomial h is

defined by h← gf−1 mod q. The matrices A =
[

1 h
0 q

]
and B =

[
f g
F G

]
generate

the same lattice, but the matrix A contains large polynomials, whereas the B matrix
contains only small polynomials. Recovering the secret polynomials from the knowledge of
h corresponds to breaking the NTRU problem.

Trapdoor Sampling A trapdoor sampler takes a matrix A, some additional information
T (the ‘trapdoor’) and a target vector c as inputs and returns a short vector s as output,
such that sA∗ = c mod q. Note that, using basic linear algebra, it is easy to find a vector
c0 such that c0A∗ = c mod q. Finding a short vector s is then equivalent to finding a
vector v = s− c0 ∈ Λ⊥

q (A) close to c0. In the GPV framework, the secret basis B serves
as the trapdoor to achieve this.

Gram-Schmidt Orthogonalization (GSO) Let n, m be integers. Let B ∈ Rn×m be
a full-rank matrix. The Gram-Schmidt Orthogonalization (GSO) of B is the unique
matrix B̃ = (b̃0, ..., b̃n−1) ∈ Rn×m such that B = LB̃ ∈ Rn×m, where L is a lower
triangular with 1’s on the diagonal and the vectors b̃i are pairwise orthogonal. The value
∥B∥GS = maxb̃i∈B̃∥b̃i∥ is called the Gram-Schmidt norm of B.

3 Falcon

Falcon stands for “Fast Fourier lattice-based compact signatures over NTRU” and
instantiates the theoretical signature framework of [GPV07] using NTRU lattices and
fast Fourier trapdoor sampling. For brevity, we will refer to the Falcon version v1.2 (as
submitted to NIST [PFH+22]) simply as ’Falcon’ and to the version defined in [LPa17]
as ’deterministic Falcon’. In the following, we provide a brief description of those parts
of Falcon which are required to make this paper self-contained. We refer the interested
reader to the full Falcon specification [PFH+22] for those parts that are omitted here.

Parameters The degrees of the reduction polynomial ϕ = xn + 1 are 512 and 1024 for
NIST security level I (128-bit) and security level V (256-bit), respectively. Hence, there
are two variants of Falcon which are called Falcon-512 and Falcon-1024, respectively.
The integer modulus is fixed to q = 12289 for both variants.

Sven Bauer� and Fabrizio De Santis� 5

Key Generation The private key is generated by drawing two private polynomials
f, g

$← R with small coefficients1, where f is invertible modulo q, and by computing two
unique private polynomials F, G ∈ R such that fG− gF = q mod (xn + 1). The public
key is computed by computing a public polynomial h ∈ R such that h = gf−1 mod q.
From these polynomials, the public basis matrix A ∈ R2 and the private basis matrix
B ∈ R2×2 are defined as follows:

A =
(
1 h∗)

, B =
(

g −f
G −F

)
, (1)

where the corresponding lattices are defined as follows:

Λ⊥(A) = {y ∈ R2 : yA = 0}, Λ(B) = {y ∈ R2 : y = xB for some x ∈ R2}. (2)

Note that these bases, and thus their associated lattices, are orthogonal modulo q, i.e.,
BA∗ = 0 mod q and Λ⊥(A) = Λ(B). Also note that the secret key is not directly stored
as B, rather as sk = (B̂, T), where B̂ is the entry-wise Fourier representation of the private
basis B, and T is a binary tree representing the GSO of B. The public key of Falcon is
defined as pk = h.

Signature Generation Signature generation consists in hashing a message m, along with
a random nonce r, into a polynomial c modulo ϕ, whose coefficients are uniformly mapped
to integers in the 0 to q − 1 range. Then, a pair of short polynomials (s1, s2) such that
s1 = c− s2h mod ϕ mod q is generated using the secret lattice basis (f, g, F, G). Note that
it is sufficient to transmit s2 as the signature, because s1 can be computed from (s2, c, h).
The signature algorithm of Falcon is illustrated in Alg.1.

Algorithm 1 Falcon.Sign(m, sk)
Require: A message m, a secret key sk = (B̂, T)
Ensure: A signature sig

1: procedure Falcon-Sign(m,sk)
2: r

$← {0, 1}320

3: c← HashToPoint(r||m, q, n) ▷ c ∈ R
4: t̂← (ĉ, 0)B̂−1 ▷ pre-image t̂
5: do
6: ẑ← ffSampling(t̂, T) ▷ trapdoor sampler
7: ŝ← (t̂− ẑ)B̂
8: while ∥s∥2 >

⌊
2.42nσ2⌋

9: return sig = (r, s)

Trapdoor Sampling The trapdoor sampler of Falcon is implemented by the function
ffSampling, which takes a binary tree T (representing the GSO of the private basis)
and a pre-image t̂ as input and returns an output vector ẑ such that z ∈ Λ and s =
(t − z)B ∼ D(c,0)+Λ(B),σ,0, as illustrated in Alg. 2. The trapdoor sampler of Falcon
samples signatures of norm proportional to ∥B∥GS using a discrete Gaussian sampler
SamplerZ with varying mean µ and standard deviation σ′, as shown in Alg. 3.

The discrete Gaussian sampler SamplerZ calls another random sampler called BaseSam-
pler, whose distribution is statistically close to a half Gaussian distribution centered in 0
with a fixed standard deviation.

1In practice, the coefficients of the polynomials f and g are generated following a discrete Gaussian
distribution with center 0 and standard deviation σ = 1.17

√
q/2n.

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

6 A Differential Fault Attack against Deterministic Falcon Signatures

The BaseSampler function is shown in Alg. 4, where JP K is a function that, for
any logical proposition P , returns 1 if P is true or 0 otherwise, and RCDT is a reverse
cumulative distribution table.

Algorithm 2 ffSamplingn(t, T)
Require: t̂ = (t0, t1) ∈ FFT(Q[x]/(xn + 1))2, a Falcon-tree T
Ensure: ẑ = (z0, z1) ∈ FFT(Z[x]/(xn + 1))2

1: procedure ffSamplingn(t, T)
2: if n = 1 then
3: σ′ ← T.value
4: z0 ← SamplerZ(t0, σ′)
5: z1 ← SamplerZ(t1, σ′)
6: return ẑ = (z0, z1)
7: (ℓ, T0, T1)← (T.value, T.leftchild, T.rightchild)
8: t̂1 ← splitfft(t1)
9: z1 ← ffSamplingn/2(t̂1, T1)

10: z1 ← mergefft(ẑ1)
11: t′

0 ← t0 + (t1 − z1) · ℓ
12: t̂0 ← splitfft(t′

0)
13: ẑ0 ← ffSamplingn/2(t̂0, T0)
14: z0 ← mergefft(ẑ0)
15: return ẑ = (z0, z1)

Algorithm 3 SamplerZ(-)
Require: µ, σ′ ∈ R with σmin ≤ σ′ ≤ σmax
Ensure: z ∈ Z is sampled from a distribution close to DZ,µ,σ′

1: procedure SamplerZ(µ, σ′)
2: r ← µ− ⌊µ⌋
3: c← σmin/σ′

4: while True do
5: z0 ← BaseSampler()
6: b← UniformBits(8)&1
7: z ← b + (2b− 2)z0

8: x← (z−r)2

2σ′2 − z2
0

2σmax2

9: if BerExp(x, c) = 1 then ▷ See [PFH+22] for the definition of BerExp.
10: return z + ⌊µ⌋

Algorithm 4 BaseSampler(-)
Require: -
Ensure: An integer z+ ∼ DZ+,σmax,0

1: procedure BaseSampler(-)
2: u← UniformBits(72)
3: z+ ← 0
4: for i← 0→ 17 do
5: z+ ← z+Ju < RCDT[i]K
6: return z+

Sven Bauer� and Fabrizio De Santis� 7

Deterministic Signature Generation In deterministic Falcon, signature generation uses
a fixed (versioned) salt value instead of generating a random value r as described on Line 3.
The fixed salt value consists of a byte representing the value of ℓ = log2(n) and an ASCII
representation of the string FALCON_DET followed by all-zero padding bytes. The fixed
salt is omitted from the signatures themselves. We refer the interested reader to the full
specification of deterministic Falcon given in [LPa17].

Signature Verification Given a message m, a signature s2 and a public key h, the verifier
first computes the hash of the message c = H(m), then computes the first signature
component s1 = hs2, and finally verifies that (s1, s2) is sufficiently short. If so, the
signature is accepted, otherwise the verifier rejects the signature.

4 The fault attack against deterministic Falcon
In this section, we first explain the general idea of the attack against deterministic Falcon
and then go into the details and describe how to make it work in practice.

Suppose we can obtain two different signatures s, s′ for the same message hash c as in
Alg. 3, but with different outputs of the trapdoor sampler ffSampling. We define the
vector v as the difference between the two signatures:

v = (v1, v2) = (s1 − s′
1, s2 − s′

2) = s− s′. (3)

Because
vA∗ = sA∗ − s′A∗ = (0, c)− (0, c) = 0, (4)

we have found a vector v in the lattice generated by B:

v ∈ Λ⊥(A) = Λ(B). (5)

Moreover, because both signatures s and s′ are relatively short, so it is also their difference
v short. More precisely, we have:

∥v∥ = ∥s− s′∥ ≤ ∥s∥+ ∥s′∥ ≤ 2
√
⌊2.42nσ2⌋. (6)

Also note that, due to the definition of B in Eq. (1), there exists a vector u = (u1, u2) ∈ R2

such that

(v1, v2) = v = uB = (u1, u2)
(

g −f
G −F

)
= (u1g + u2G,−u1f − u2F), (7)

so v2 lies in the sublattice of R generated by the secret key elements f, F .
Now, if we inject faults into the pseudo-random number generator called by ffSampling,

while repeatedly signing the same message with a deterministic variant of Falcon, we
are in exactly the following situation: we obtain different valid signatures for the same
message hash and subtracting different faulty signatures from each other we obtain several
v2 as just described above. If we have enough v2 we can try to apply lattice reduction
techniques to obtain f , F or an equivalent representation of the private key.

To summarize the main idea of our attack, by injecting faults into subroutines of
ffSampling, we want to obtain a set of different signatures {s(0), s(1), . . . s(m−1)} for the
same input message. Subtracting pairs of different signatures from each other, gives us a
set of “somewhat short” vectors

{s(j)
2 − s

(k)
2 | 0 ≤ j < m, 0 ≤ k < m, j ̸= k} (8)

in a sublattice generated by f, F .

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

8 A Differential Fault Attack against Deterministic Falcon Signatures

The obvious approach to obtain f or F from these vectors is lattice reduction. However,
since the rank of the lattice generated by f, F is 512 for Falcon-512 and 1024 for Falcon-
1024, reducing a “somewhat short” basis of vectors like v2 to find a “really short” f can
be still computationally hard in practice. To make our attack feasible in practice, we show
a simple way to work in a suitable sublattice of smaller rank in the next subsections.

4.1 Fault attack in a suitable sublattice
In order to obtain a practically feasible attack, we would like to work in a lower-rank
sublattice that still contains the private key f . Injecting a fault in ffSampling routine
will result in an incorrect value ẑ of the signing procedure (cf. Alg. 1, line 6). Looking at
Alg. 1, line 7 we see that

ŝ− ŝ′ = (t̂− ẑ)B̂− (t̂− ẑ′)B̂ = (ẑ′ − ẑ)B̂. (9)

Substituting the definition of private basis matrix B from Eq. (1) we obtain

ŝ2 − ŝ′
2 = (ẑ0 − ẑ′

0)⊙ f̂ + (ẑ1 − ẑ′
1)⊙ F̂ , (10)

where ⊙ denotes component-wise multiplication.
Now let us have a closer look at Alg. 2 which performs trapdoor sampling in a recursive

way. The output z1 does not depend on the recursive call on line 13. If we track the
call-tree of recursions in ffSampling, we see therefore that z1 does not depend on the
later calls to SamplerZ on lines 4 and 5. These later calls to SamplerZ in turn result
in calls of BaseSampler and UniformBits. So faults injected in the later calls to
UniformBits will only affect the output z0 of the ffSampling call at the top of the
recursion call tree. Hence, if the fault is injected in this way, then z1 = z′

1 and Eq. (10)
becomes

ŝ2 − ŝ′
2 = (ẑ0 − ẑ′

0)⊙ f̂ . (11)

Because the Fourier inverse is a linear operation, we obtain

s2 − s′
2 = (z0 − z′

0)f. (12)

Note that the same calculations hold if we assume that s is also a faulty signature (but
different from s′). In this case, z0 − z′

0 is the difference between the two injected faults.
Injecting faults repeatedly and taking the difference between two faulty signatures (or

a faulty and a correct one) we can produce a set

∆ = {δ1f, δ2f, . . . , δmf}, (13)

where δi = zi − z′
i. We consider the lattice generated by ∆:

Λ(∆) ⊂ Λ(f) ⊂ R. (14)

If ∆ is large enough, then there is a possibility that f ∈ Λ(∆). Additionally, if the rank of
Λ(∆) is small enough, e.g. 40, we can apply lattice reduction techniques to find f .

Now the question is, what are the possible values of the δi, because this determines the
rank of the sublattice generated by ∆. For example, if δi(x) = ai + bi(x) for all i, then
the rank of the lattice Λ(∆) is at most 2. In order to get a better understanding of the
range of possible values for the δi, we have to have a closer look at the effect of a fault
injection in concrete instance of the pseudo-random number generator (PRNG) used by
UniformBits.

Sven Bauer� and Fabrizio De Santis� 9

4.2 The PRNG of deterministic Falcon
This paragraph is specific to the ChaCha20-based PRNG implementation used in the
pre-image sampler of the deterministic Falcon reference implementation provided in
[LPa17], which is actually the the same as in the reference implementation of standard
Falcon submitted to NIST as [PFH+22]. However, note that similar considerations are
transferable to other PRNG implementations whenever necessary.

Essentially, the PRNG uses the key stream generated by the ChaCha20 stream cipher
as pseudo-random output. The PRNG maintains a 256 byte buffer. So a fresh ChaCha20
pseudo-random output is only produced, whenever the buffer has been exhausted.

It seems entirely possible that a fault can be injected even during the fetching from
this buffer. However, it seems far easier to inject a fault into a ChaCha20 computation,
because this takes a lot longer than just fetching data from a buffer. The fault can have
any of several well-known effects like instruction skipping or data corruption to cause a
faulty output. Note that the structure of a ChaCha20 computation is normally easy to
identify in a power trace. Hence, it is generally not difficult to identify trigger points for
injecting a suitable fault.

We have to distinguish between two types of faults. The first type is a fault that just
affects the output u of a single ChaCha20 computation underlying the call of UniformBits
in Alg. 4, line 2. Because the output of ChaCha20 is buffered, a single fault can lead to up
to 256 faulty output bytes. This will affect several calls to UniformBits and hence affect
several z0, z1 in Alg. 2, lines 4 and 5.

The second type of fault changes the seed of the PRNG in UniformBits. The reference
implementation uses ChaCha20 to implement UniformBits. Because ChaCha20 adds its
output to its internal state, this type of fault is quite likely. Note that this second type of
fault affects the current and all future outputs of BaseSampler and hence potentially
more z0, z1 in Alg. 2, lines 4 and 5 than the first type of fault.

Note that a fault may not necessarily result in a different signature. For example,
different values of u can result in the same value of z+ in Alg. 4.

Because of the 256 byte buffer and because SamplerZ needs 10 pseudo-random bytes
at a time, we expect a single fault of the first type to generate values δ from a roughly
25 dimensional subspace of FFT(Q[x]/(xn + 1)). As Fourier transformation is a linear
operation, we can hence assume that the resulting differences v between faulty signatures
will lie in a sublattice of rank ≈ 25. This is well within reach of current lattice reduction
algorithms. See, for example, [ADH+19] for a discussion of modern sieving algorithms.
We only need a basis of a sublattice of rank about 25, so we expect that with around 25
suitable faults an attacker should have a good chance of finding the secret key.

4.3 Combining the fault attack with exhaustive search
Recall that, according to Eq. (14), Λ(∆) is only a sublattice of Λ(f). So there is no
guarantee that lattice reduction with ∆ finds the secret private key f . In general, it will
only output cf , for some polynomial c ∈ R.

If c = xk, then cf is just a negacyclic rotation of the original f . This is not a problem
for the attacker, as all negacyclic rotations of f are equivalent private keys. Indeed, if
(f, g, F, G) is a set of secret NTRU-polynomials, then (xkf, xkg,−xn−kF,−xn−kG) also
satisfies the NTRU equation

(xkf)(−xn−kG)− (xkg)(−xn − kF) = −xnfG + xngF = fG− gF = q mod ϕ. (15)

The public polynomial h = g/f = (xkg)/(xkf) is the same for both sets of NTRU secrets.
Hence, both NTRU secrets are equivalent in the sense that messages signed with either of
them can be verified by the same public key.

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

10 A Differential Fault Attack against Deterministic Falcon Signatures

If c = ckxk with ck ̸= ±1, and cf is relatively short, then the coefficients of cf will
have a greatest common divisor |ck| ≠ 1. This situation is easy to recognize for an attacker.
The attacker just has to divide the candidate private key component cf by the greatest
common divisor of its coefficients.

If c is not simply a monomial, but cf is relatively short (say up to about four times
the length of f), then c is most likely sparse and its few non-zero coefficients are small. In
these cases, an attacker can try to find c by exhaustive search and hence still determine
the private key f . Note that, because rotated keys are equivalent, as we have just seen,
the attacker can assume that one of the non-zero coefficients of c is simply c0.

4.4 Extending the attack to Falcon
The fault attack described so far works only for a deterministic version of Falcon, for
example, as described in [LPa17]. The standard non-deterministic version of Falcon
described in [PFH+22] randomizes the function HashToPoint, which hashes the input
to a polynomial in R, as illustrated in Alg. 1. Hence, if the same message is signed
twice with the standard version of Falcon, then ffSampling in line 6 is called for two
different values of t̂ with overwhelming probability. Thus, taking the difference of these
two signatures is very unlikely to return a short vector, and so it becomes computationally
infeasible to find f by lattice reduction techniques.

To apply our attack to standard Falcon, a second fault injection is necessary to make
standard Falcon behave in a deterministic way. For example, if the random value r in
Alg. 1, line 3 can be forced to a fixed value by a fault injection or other means, then it will
be possible to apply our fault attack as described above. Note, that the fault to force r to
a fixed value does not have to be necessarily perfectly reproducible. Faulty signatures with
the “wrong” r can be easily recognized by looking the difference with another signature,
then this difference vector would be noticeably larger than expected. Note also that,
therefore, it is not necessary to force r into one particular value. It is sufficient to force it
to one of a small set {r0, r1, . . . , rm−1} of possible values. The resulting faulty signatures
can easily be grouped into sets coming from r1, r2 etc. by looking at the size of pairwise
differences. This highlights the importance of using a fault attack resistant random number
generator in Alg. 1, line 3, e.g., by using a fault-resistant implementation of ChaCha20,
e.g., [ZMR19].

5 Practical evaluation
In order to validate the feasibility of our attack and our hypotheses on the number of
faults required to a successful attack, we conducted a number of experiments with the
Falcon implementations provided in [PD22] and [LPa17].

5.1 Simulations on a PC
We modified the code in [PD22] slightly to make it deterministic as described in [LPa17]
and added instrumentation for simulating the injection of faults of the two types described
above.

We simulated the attack for 10 randomly chosen keys for each of Falcon-512 and
Falcon-1024. For each key we chose 10 random inputs. These inputs were hashed and
signed by the implementation we have just described. As mentioned in Sec. 4.2, we
distinguish between two types of faults: A fault may either only affect one block of output
of the PRNG or it may affect the state of the PRNG and hence all future outputs. We
call the former type of fault ‘transient’ and the latter ‘persistent’. We simulated each type
of fault with 25 and 50 attacks each. Key and input were fixed for each attack, as this is a

Sven Bauer� and Fabrizio De Santis� 11

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8
sh

ar
e

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 1: 25 attacks against Falcon-
512 with persistent faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
ar

e
of

to
ta

l

w = 1

w = 2

w = 3

w ≥ 4

Figure 2: 50 attacks against Falcon-
512 with persistent faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
a
re

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 3: 25 attacks against Falcon-
512 with transient faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
a
re

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 4: 50 attacks against Falcon-
512 with transient faults. See text for
further details.

requirement for the attack to work. We injected exactly one fault in each experiment. We
attacked each of the final five calls of the PRNG. We repeated each of these experiments
10 times. To give an idea of the remaining effort to find the key by exhaustive search after
the lattice reduction step as described in Sec. 4.3, we also give the number w of non-zero
coefficients of s, when sf is the key candidate found by the lattice reduction step and f is
the actual private key the attacker is looking for.

Summaries of the results of these experiments are illustrated in Fig. 1 to 8. The sum
of the slices with w = 1, 2, 3 and w ≥ 4 is not necessarily 1, because there are cases in
which all signatures are the same, despite injected faults. This can happen, for example,
because of rounding. Interestingly, all figures look quite similar. It is not suprising to
see that the probability for an (almost) immediate success, i.e., a result with w = 1, is
higher with 50 faults than with 25. In every experiment, for each of the 10 keys, there
was one attack that revealed a rotation of the key immediately without exhaustive search.
This is not obvious from the figures, but it also illustrates the effectiveness of the attack.
To summarize, we see that the attack has a high probability of success, even with a very
moderate number of faults.

5.2 Simulations on ARM Cortex-M4
We simulated our attack also on a STMF407G-DISC1 board featuring an a 32-bit ARM
Cortex-M4 (STMF407VGT6) high-performance microcontroller with FPU core, 1-Mbyte
Flash memory, and 192-Kbyte RAM. We ran our attack using the C implementation
of deterministic Falcon-1024 available at [LPa17]2 compiled with gcc version 12.2.0
and optimization flags -O3 -mfloat-abi=hard -mfpu=fpv4-sp-d16. We simulated the

2commit 02a2a64c44147775e6870b2d957f2cfda1437895

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

12 A Differential Fault Attack against Deterministic Falcon Signatures

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8
sh

ar
e

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 5: 25 attacks against Falcon-
512 with persistent faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
ar

e
of

to
ta

l

w = 1

w = 2

w = 3

w ≥ 4

Figure 6: 50 attacks against Falcon-
512 with persistent faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
a
re

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 7: 25 attacks against Falcon-
512 with transient faults. See text for
further details.

fi
n

al
ca

ll

fi
n

al
ca

ll
-1

fi
n

al
ca

ll
-2

fi
n

al
ca

ll
-3

fi
n

al
ca

ll
-4

0.0

0.2

0.4

0.6

0.8

sh
a
re

of
to

ta
l

w = 1

w = 2

w = 3

w ≥ 4

Figure 8: 50 attacks against Falcon-
512 with transient faults. See text for
further details.

injection of random faults in the register r2 right before the execution of the assembly
instruction eors r3, r2 (cf. Listing 2 on line 4) with the aid of a debugger (GNU gdb
13.1). In practice, this corresponds in randomly changing the content of lower part of the
64-bit variable cc at line 287 of the file rng.c (cf. Listing 1 on line 4).

Listing 1: C code
1 uint64_t cc;
2 uint32_t state [16];
3 ...
4 state [14] ^= (uint32_t)cc;

Listing 2: Assembly code
1 ldr r2 , [sp , #32]
2 ldr r3 , [sp , #136]
3 ...
4 eors r3 , r2

In this way, we are able to perturbate the state of ChaCha20, hence the generation of
random numbers operated by the function falcon_inner_prng_refill(), thus leading
to the generation of different signatures for the same input message. We were able to
fully recover (a rotation) of the secret key f using 100 faulty signatures, when a random
fault was injected in the fourth to last execution of falcon_inner_prng_refill() for
a fixed input message with 78 executions, hence leading us to be able to forge legit-
imate signatures for it. When the faults were injected in the third to last execution
of falcon_inner_prng_refill(), it was possible to recover the secret key f up to an
additional (yet practically doable) bruteforce effort. The attack recovered cf , as in section
4.3, where c had only two non-zero coefficients; these were both from the set {−1, 1}.

We repeated the attack injecting random instruction skips during the third to last
execution of falcon_inner_prng_refill(). We injected 100 faults, 20 of which lead to
an unresponsive behavior, and 8 of which were unsuitable because lead to the same output.
In this case, we were able to recover the secret key f up to a practicable final bruteforce
effort. We stress the fact these attacks were run the attack only for a fixed key and input

Sven Bauer� and Fabrizio De Santis� 13

message to verify their applicability in practice. By using different inputs results may
change as shown by the statistical simulations of Sec. 5.1.

Finally, please note that, although the attack was carried out without using a real
fault injection setup, the simulation results on real hardware clearly indicate that the
attack is practically feasible as long as random instructions skip or random faults in a
32-bit register, memory, or during the computation of an XOR-operation are possible
during the execution of the falcon_inner_prng_refill() function. All these kind of fault
injections are typically not considered difficult to achieve with a low-cost fault injection
setup, e.g., [GGD17].

6 Countermeasures

The typical defence against fault attacks in signature generation is to verify the signature
before returning it as output. However, this does not work in our case, because the faulty
signatures generated by our attack are all perfectly valid signatures. (An attacker can
actually exploit this property to filter the faulty signatures generated during an attack: A
fault attack may sometimes produce random output or a fault of the wrong type. To avoid
these ‘faulty faults’ breaking the lattice reduction step, an attacker can check whether the
faulty signatures are valid and throw away those that are not.) An obvious countermeasure
is a complete re-calculation of each signature or at least re-compute ffSampling. Of course
this incurs a significant performance penalty. Also, it does not prevent the attack if the
attacker is able to inject the same fault in both signature calculations.

Randomly shuffling the order of the computation of the sampled coefficients in ff-
Sampling may increase significantly the effort of an attacker. In fact, it is impossible
for an attacker to guarantee that an injected fault only affects the value z0 returned by
ffSampling in this case. The attacker is still able to find s− s′ ∈ Λ(B) as in Eq. (9), but
s′

2 − s2 is not necessarily in the sublattice just generated by f , so the simplification from
Eq. (10) to Eq. (11) does not apply anymore. Instead, the attacker obtains vectors in the
larger lattice generated by both f and F . This makes the lattice reduction harder and
may make it infeasible to obtain f or at least pf for some sparse polynomial p with small
coefficients.

However, note that this is not possible with the procedure illustrated in Alg. 2, because
the input to the second recursive call in line 13 depends on the output of the first recursive
call in line 9. Also note that the ChaCha20-based PRNG that is currently used by Falcon
does not allow to compute an arbitrary coefficient zj in Alg. 2, lines 4 and 5 without
computing all previous (in the standard order) zi first. The reason is, that Alg. 3 does not
consume a fixed number of pseudo-random bits. Hence, the same number of pseudo-random
bits generated for the computation of each zi may be different for different i.

So the introduction of shuffling in ffSampling would require replacing the sampling
algorithm by one with parallelizable steps and changing the PRNG in such a way that the
index of the coefficient becomes a parameter. Such a change would allow to generate the
bitstreams each coefficient independently and would hence make it possible to shuffle the
order in which the coefficients are calculated. Note that signature generation would still
be deterministic in this case.

If changes to the PRNG are undesirable in a concrete instantiation of a deterministic
Falcon signature scheme, then the PRNG can be re-run and the output (or a checksum
over the output) and its final state compared against the values for the original run when
the siganture was produced. However, this offers only incomplete protection, because a
fault does not necessarily have to be injected into the PRNG for our attack.

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X

14 A Differential Fault Attack against Deterministic Falcon Signatures

7 Conclusion and future work
In this work, we have described the first fault attack of deterministic Falcon that exploits
specific algorithmic properties of Falcon. The attack works under a very generic and
realistic fault model using random faults injected during the execution of the pre-image
trapdoor sampler. The attack can be naturally transferred to non-deterministic standard
Falcon by suppressing the entropy in the call to HashToPoint in standard Falcon
with another fault injection (or, by other attack means).

It would be interesting to transfer the result of this work to deterministic variants of
other signature schemes based on the GPV framework, such as Mitaka and ModFalcon (see
[EFG+21] and [CPS+19], respectively). Another possible line of research is the practical
investigation of the countermeasures we have suggested in Sec. 6. Finally, it would be
interesting to perform an evaluation of our attack with a real fault injection setup.

Acknowledgments This work was partly funded by the German Federal Ministry of
Education and Research in the project AQUORYPT through grant number 16KIS1012.

References
[ABB+16] Sedat Akleylek, Nina Bindel, Johannes A. Buchmann, Juliane Krämer, and

Giorgia Azzurra Marson. An efficient lattice-based signature scheme with
provably secure instantiation. In David Pointcheval, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 16, volume 9646 of LNCS, pages
44–60. Springer, Heidelberg, April 2016.

[ABF+18] Christopher Ambrose, Joppe W. Bos, Björn Fay, Marc Joye, Manfred Lochter,
and Bruce Murray. Differential attacks on deterministic signatures. In Nigel P.
Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 339–353. Springer,
Heidelberg, April 2018.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Heidelberg, May 2019.

[BAA+17] Nina Bindel, Sedat Akleylek, Erdem Alkim, Paulo S. L. M. Barreto, Johannes
Buchmann, Edward Eaton, Gus Gutoski, Juliane Kramer, Patrick Longa,
Harun Polat, Jefferson E. Ricardini, and Gustavo Zanon. qTESLA. Techni-
cal report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/round-
1-submissions.

[BBK16] Nina Bindel, Johannes Buchmann, and Juliane Krämer. Lattice-based signature
schemes and their sensitivity to fault attacks. In 2016 Workshop on Fault
Diagnosis and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA,
USA, August 16, 2016, pages 63–77. IEEE Computer Society, 2016.

[BP16] Alessandro Barenghi and Gerardo Pelosi. A note on fault attacks against
deterministic signature schemes. In Kazuto Ogawa and Katsunari Yoshioka,
editors, IWSEC 16, volume 9836 of LNCS, pages 182–192. Springer, Heidelberg,
September 2016.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

Sven Bauer� and Fabrizio De Santis� 15

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on de-
terministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7267.

[CPS+19] Chitchanok Chuengsatiansup, Thomas Prest, Damien Stehlé, Alexandre Wal-
let, and Keita Xagawa. ModFalcon: compact signatures based on mod-
ule NTRU lattices. Cryptology ePrint Archive, Report 2019/1456, 2019.
https://eprint.iacr.org/2019/1456.

[CSC+22] Weiqiong Cao, Hongsong Shi, Hua Chen, Jiazhe Chen, Limin Fan, and Wenling
Wu. Lattice-based fault attacks on deterministic signature schemes of ECDSA
and eddsa. In Steven D. Galbraith, editor, Topics in Cryptology - CT-RSA
2022 - Cryptographers’ Track at the RSA Conference 2022, Virtual Event,
March 1-2, 2022, Proceedings, volume 13161 of Lecture Notes in Computer
Science, pages 169–195. Springer, 2022.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice
signatures and bimodal Gaussians. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56. Springer, Heidelberg,
August 2013.

[DLP14] Léo Ducas, Vadim Lyubashevsky, and Thomas Prest. Efficient identity-based
encryption over NTRU lattices. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages 22–41. Springer,
Heidelberg, December 2014.

[EFG+21] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: a simpler,
parallelizable, maskable variant of falcon. Cryptology ePrint Archive, Report
2021/1486, 2021. https://eprint.iacr.org/2021/1486.

[EFGT16] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Loop-abort faults on lattice-based Fiat-Shamir and hash-and-sign signatures.
In Roberto Avanzi and Howard M. Heys, editors, SAC 2016, volume 10532 of
LNCS, pages 140–158. Springer, Heidelberg, August 2016.

[GGD17] Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. Low-cost setup for
localized semi-invasive optical fault injection attacks - how low can we go? In
Sylvain Guilley, editor, COSADE 2017, volume 10348 of LNCS, pages 207–222.
Springer, Heidelberg, April 2017.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. Cryptology ePrint Archive,
Report 2007/432, 2007. https://eprint.iacr.org/2007/432.

[HBD+22] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig, Maria Eichlseder,
Scott Fluhrer, Stefan-Lukas Gazdag, Panos Kampanakis, Stefan Kolbl, Tanja
Lange, Martin M Lauridsen, Florian Mendel, Ruben Niederhagen, Christian
Rechberger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumasson, Bas
Westerbaan, and Ward Beullens. SPHINCS+. Technical report, National Insti-
tute of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://eprint.iacr.org/2019/1456
https://eprint.iacr.org/2021/1486
https://eprint.iacr.org/2007/432
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

16 A Differential Fault Attack against Deterministic Falcon Signatures

[LDK+17] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. CRYSTALS-DILITHIUM. Technical
report, National Institute of Standards and Technology, 2017. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/round-
1-submissions.

[LDK+22] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter
Schwabe, Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-
DILITHIUM. Technical report, National Institute of Standards and Tech-
nology, 2022. available at https://csrc.nist.gov/Projects/post-quantum-
cryptography/selected-algorithms-2022.

[LPa17] David Lazar, Chris Peikert, and algoidan. Deterministic falcon implementation.
https://github.com/algorand/falcon, Accessed 2022-11-17.

[LZA18] Xingye Lu, Zhenfei Zhang, and Man Ho Au. Practical signatures from the
partial Fourier recovery problem revisited: A provably-secure and Gaussian-
distributed construction. In Willy Susilo and Guomin Yang, editors, ACISP
18, volume 10946 of LNCS, pages 813–820. Springer, Heidelberg, July 2018.

[MHS+19] Sarah McCarthy, James Howe, Neil Smyth, Seamus Brannigan, and Máire
O’Neill. BEARZ attack FALCON: Implementation attacks with countermea-
sures on the FALCON signature scheme. Cryptology ePrint Archive, Report
2019/478, 2019. https://eprint.iacr.org/2019/478.

[NIS22] NIST. NIST announces first four quantum-resistant cryptographic al-
gorithms. https://www.nist.gov/news-events/news/2022/07/nist-
announces-first-four-quantum-resistant-cryptographic-algorithms,
2022. Accessed 2022-12-21.

[PD22] Thomas Prest and ‘Dan’. falcon.py. https://github.com/tprest/falcon.py,
2022. Accessed 2022-12-31.

[PFH+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. FALCON. Technical report, National Institute of Standards
and Technology, 2022. available at https://csrc.nist.gov/Projects/post-
quantum-cryptography/selected-algorithms-2022.

[PSS+17] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault
attacks. Cryptology ePrint Archive, Report 2017/1014, 2017. https:
//eprint.iacr.org/2017/1014.

[PSS+18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault attacks.
In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 338–352. IEEE, 2018.

[RP17] Yolan Romailler and Sylvain Pelissier. Practical fault attack against the
ed25519 and eddsa signature schemes. In 2017 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2017, Taipei, Taiwan, September 25,
2017, pages 17–24. IEEE Computer Society, 2017.

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé,
and Jintai Ding. CRYSTALS-KYBER. Technical report, National Institute

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/algorand/falcon
https://eprint.iacr.org/2019/478
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://github.com/tprest/falcon.py
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://eprint.iacr.org/2017/1014
https://eprint.iacr.org/2017/1014

Sven Bauer� and Fabrizio De Santis� 17

of Standards and Technology, 2022. available at https://csrc.nist.gov/
Projects/post-quantum-cryptography/selected-algorithms-2022.

[SB18] Niels Samwel and Lejla Batina. Practical fault injection on deterministic
signatures: The case of EdDSA. In Antoine Joux, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 18, volume 10831 of LNCS,
pages 306–321. Springer, Heidelberg, May 2018.

[ZMR19] Alexander Zeh, Manuela Meier, and Viola Rieger. Parity-based concurrent error
detection schemes for the chacha stream cipher. In 2019 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems,
DFT 2019, Noordwijk, Netherlands, October 2-4, 2019, pages 1–4. IEEE, 2019.

https://orcid.org/0000-0003-1882-6110
https://orcid.org/0000-0003-3194-826X
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

	Introduction
	Previous work
	Contributions
	Outline

	Preliminaries
	Falcon
	The fault attack against deterministic Falcon
	Fault attack in a suitable sublattice
	The PRNG of deterministic Falcon
	Combining the fault attack with exhaustive search
	Extending the attack to Falcon

	Practical evaluation
	Simulations on a PC
	Simulations on ARM Cortex-M4

	Countermeasures
	Conclusion and future work

