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Abstract. This work is motivated by the following question: can an un-
trusted quantum server convince a classical verifier of the answer to an
efficient quantum computation using only polylogarithmic communica-
tion? We show how to achieve this in the quantum random oracle model
(QROM), after a non-succinct instance-independent setup phase.

We introduce and formalize the notion of post-quantum interactive oracle
arguments for languages in QMA, a generalization of interactive oracle
proofs (Ben-Sasson—Chiesa—Spooner). We then show how to compile any
non-adaptive public-coin interactive oracle argument (with private setup)
into a succinct argument (with setup) in the QROM.

To conditionally answer our motivating question via this framework
under the post-quantum hardness assumption of LWE, we show that
the ZX local Hamiltonian problem with at least inverse-polylogarithmic
relative promise gap has an interactive oracle argument with instance-
independent setup, which we can then compile.

Assuming a variant of the quantum PCP conjecture that we introduce
called the weak ZX quantum PCP conjecture, we obtain a succinct ar-
gument for QMA (and consequently the verification of quantum com-
putation) in the QROM (with non-succinct instance-independent setup)
which makes only black-box use of the underlying cryptographic primi-
tives.

Keywords: succinct arguments - interactive oracle proofs - delegation of
quantum computation - quantum random oracle model - QROM - BQP

- QMA

1 Introduction

This work is motivated by the following use case which is desirable in a world
where quantum computers reach larger scales but are only available in controlled
facilities or laboratories.

Real World Application: Alice owns only classical devices (e.g. laptop
and/or tablet) and a classical internet connection. She wants to delegate

* This paper has been accepted for publication in the proceedings of the Cryptogra-
phers’ Track at the RSA Conference 2024.
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some efficient quantum-computational tasks to a quantum server (Mer-
lin) in a remote location. How can she make sure that the quantum server
performed the intended tasks using only a succinct amount of classical
internet communication?

Under some assumptions, we show how this can be achieved after a non-succinct
initial setup phase that does not depend on the subsequent tasks to be delegated.
In particular, we show the following result.

Informal Theorem 1 (Informal Statement of Theorem 4). If a variant of the
quantum PCP conjecture (Conjecture 1) is true as well as the post-quantum
hardness of LWE, then there exists a classical-verifier succinct-communication
argument with non-succinct setup in the QROM for QMA (and consequently for
the verification of quantum computation).

The general topic of delegating quantum computation has been studied for
a while (for a non-exhaustive list of works, see for example [Chi05, FHMIS,
GKK18, Mah18b, ACGH20, CCY20, Zha22, TMT22|). In early work, the veri-
fier was modeled as a (possibly weaker) quantum device (e.g. [Chi05]). Mahadev’s
breakthrough [Mah18a, Mah18b] enabled classical verification of quantum com-
putation under the post-quantum hardness assumption of Learning with Errors
(LWE). This opened the door to further subsequent developments in the topic of
classical verification of quantum computation (e.g. [VZ19, ACGH20]). In par-
ticular, the question of succinct verification of quantum computation has been
studied in these works [CCY20, BM22, BKL 22, CM21, GIMZ22, Zha21]. We
discuss how they differ from our work in Section 1.1.

We will now go from our motivating question to the more general problem
of deciding whether a local Hamiltonian has a low-energy groundstate. The de-
tails of the reduction from verification of quantum computation to the local
Hamiltonian problem can be found in [FHM18| where the standard Feynman-
Kitaev circuit-to-Hamiltonian reduction is used. As alluded to in some papers
such as [BLO8, FHM18|, one can obtain ZX ' Hamiltonians from the Kitaev
construction by using a suitable universal gate set 2.

This circuit-to-Hamiltonian reduction is analogous to the circuit-to-SAT re-
duction, the hallmark of the Cook-Levin proof of NP-completeness of the SAT
problem. The original Feynman-Kitaev reduction goes from decision quantum
circuits to local Hamiltonians of the following form:

H = Hin + Hout + Hprop + Hclock- (1>

10 0—
in physics and quantum computation.

% Consider, for example, the universal gate set G = {H, X, CCNOT}. Note that
H= %(XJrZ) and CCNOT = I — (I —Z1)(I - Z2)(I — X3). G is a universal gate
set with real matrices and can be used to obtain propagation Hamiltonians whose
Pauli decomposition has the real Pauli matrices X and Z.

! The Pauli X, Z matrices are X = (0 1) , L= (1 01> and they are used frequently
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The purpose of this Hamiltonian is to “detect” any “violation” or deviation from
the prescribed circuit. The terms inside each component in this Hamiltonian act
as “validators” for the following conditions:

— Hi, checks that the input is indeed the input that Alice intended to work
with,

— H,yt checks that the output of the decision circuit is 0 (or 1),

— Hpop checks that the circuit was computed by honestly going gate-by-gate
from the input to the output as intended, and

— Hgock checks the encoding of the clock register. The clock register “affixes”
a timestamp to the system state at each step in the progression of the com-
putation from the input (start time) to the output (end time).

The Hamiltonians of the Feynman-Kitaev construction and inspired exten-
sions thereof are known as k-local Hamiltonians because each component of the
above (Hin, Hout, Hprop, Helock) 1 the sum of terms such that each term needs
to measure at most k qubits to be able to perform the needed checks. This con-
cept of locality is analogous to the arity of constraints in constraint satisfaction
problems (CSPs).

For the quantum server to convince Alice that it indeed performed the re-
quested computation, it prepares ? a quantum state known as the history state
that describes the execution history of such computation. An honest history
state should not be marked as a “violator” by the Hamiltonian H corresponding
to that computation (this property is known as completeness). Additionally, the
Hamiltonian H should mark any dishonest state as a violator (this property is
known as soundness). The measure of such violation is known as the energy of
a quantum state [¢)) with respect to the Hamiltonian H (written as (¢| H [¢)).
The quantum states that have low energy (i.e. low violation measure) are called
ground states of the Hamiltonian. The lowest energy level that such quantum
states attain is known as the ground energy of the Hamiltonian.

A classical-verifier protocol for the ZX local-Hamiltonian problem has been
given in [ACGH20] by iterating on a long sequence of works starting by Ki-
taev in 1999 and culminating in the recent works of [MNS16, FHM18, MF16,
Mah18b, VZ19, CVZ20]. We modify the protocol to eliminate redundant com-
munication. Then we identify the modified protocol as an instance of an interac-
tive oracle argument, a concept that we define by generalizing interactive oracle
proofs [BCS16].

Post-quantum interactive oracle arguments - which we define in this paper
- are interactive protocols for yes/no promise problems where yes instances are
defined by a quantum-witness relation. In this class of protocols, prover messages
are modeled as oracles that can be query-accessed by the verifier. Our main tech-
nical contribution (Informal Theorem 2) shows that interactive oracle arguments
with succinct query complexity can be compiled into succinct-communication ar-
guments.

3 The constructive proofs of Feynman-Kitaev reductions show how to efficiently pre-
pare such history state for an efficient quantum computation, but we do not include
the details here.
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Informal Theorem 2 (Informal Statement of Corollary 1). Any public-coin
non-adaptive interactive oracle argument (with setup) with succinct (i.e. at most
polylogarithmic) query complexity can be compiled into a succinct-communication
argument (with setup) in the quantum random oracle model (QROM).

Informal Theorem 2 is the bridge that will get us to Informal Theorem 1.
However, we need a starting protocol with succinct query complexity to com-
pile using the framework of Informal Theorem 2. We obtain this by modify-
ing [ACGH20]’s classical-verifier protocol for the ZX local Hamiltonian problem
by eliminating some redundant communication. The modified protocol will have
succinct query complexity when the promise gap of the local Hamiltonian is at
least inverse-polylogarithmic. The result of compilation using Informal Theo-
rem 2 can be summarized as follows.

Informal Theorem 3. For any constant k and any relative promise gap that
is at least inverse-polylogarithmic, the ZX k-local Hamiltonian problem has a
classical-verifier succinct-communication argument system with non-succinct setup
i the quantum random oracle model and under the post-quantum hardness as-
sumption of LWE.

In the quantum realm, Quantum Merlin Arthur (QMA) [Kit99] refers to
the quantum analogue of the complexity class MA. QMA is the class of lan-
guages where a prover, Merlin, can convince a quantum verifier, Arthur, of a true
proposition by sending a polynomially-sized quantum witness state (instead of
a polynomially-sized classical proof string). However, sending any polynomially-
sized quantum witness state trying to convince Arthur about false proposi-
tions is doomed to fail. Both cases are within some error probabilities. The
local Hamiltonian problem is QMA-complete when the promise gap is inverse-
polynomial [KKRO06].

Hoping for a quantum analogue of the celebrated classical PCP Theorem [ALM™98,
AS98], the quantum PCP conjecture [AAV13]| states that the local Hamiltonian
problem remains QMA-complete when the promise gap is constant. For Infor-
mal Theorem 3 to apply to QMA (and obtain Informal Theorem 1), it suffices
that the ZX local Hamiltonian problem be QMA-complete with at least inverse-
polylogarithmic gap. We call this condition the weak ZX quantum PCP conjec-
ture.

Conjecture 1. There exists a constant k such that the ZX k-local Hamilto-
nian problem with a promise gap that is at least inverse-polylogarithmic is QMA-
complete.

The qualifier “weak” here is to indicate that it is enough to amplify the gap
to be inverse-polylogarithmic. When it is amplified to a constant, we call the
conjecture the ZX quantum PCP conjecture.

Conjecture 2. There exists a constant k such that the ZX k-local Hamiltonian
problem with a constant relative promise gap is QMA-complete.
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One can see that Conjecture 2 implies Conjecture 1 because a constant
promise gap is one that is at least inverse-polylogarithmic. However, the ex-
act relationship between either of these modified conjectures and the standard
quantum PCP conjecture is unknown to us and we pose as an open problem.

Open Question 1. Does the standard quantum PCP conjecture imply the (weak)
ZX quantum PCP conjecture?

We strongly conjecture a positive answer to that question because as men-
tioned earlier a proper choice of a universal gate set can lead to real Hamiltonians
whose Pauli decomposition has the real Pauli matrices X and Z.

1.1 Recent Related Works

Below we discuss the most relevant recent works. While most of them address the
motivating problem of succinct verification of quantum computation, our work
addresses also the general problem of compiling classical-verifier interactive ora-
cle arguments into succinct arguments in the QROM. The succinct verification
of quantum computation is a motivation and application of that compilation
framework, but may not be the only application.

— Succinct classical verification of quantum computation [BKL"22]:

Their work achieves succinct arguments for QMA (both succinet communi-
cation and succinct verification) in the standard model assuming the post-
quantum security of indistinguishability obfuscation (i0) and Learning with
Errors (LWE). A key contribution of that work is showing how to replace
the non-succinct setup phase of the Mahadev protocol with succinct key
generation based on 10. As a result, in the interactive setting, they obtain
a 12-message succinct argument for QMA in the standard model, which can
be reduced to 8 messages assuming post-quantum FHE; the latter protocol
can be made non-interactive in the QROM.
Our work achieves a 5-message * (excluding 1 offline message setup) argu-
ment in the QROM with non-succinct instance-independent setup without
using FHE, but assuming a variant of the quantum PCP conjecture and
LWE.

4 We conjecture that it is possible to reduce the number of messages to 3 in our work.
In the current version, the prover commits to one Merkle tree, then receives a Ma-
hadev challenge (test/Hadamard), then commits to another tree, then receives the
challenged indices to be revealed. This description was chosen so that Section 3 can
be applied in a vanilla way. However, this choice does not utilize the fact that the
challenged indices in both trees are identical!l We conjecture that the verifier could
send the challenged indices along with the Mahadev test/Hadamard challenge bits
without exposing soundness. The intuition is that Mahadev’s protocol is already a
form of commitment that would be capable of replacing the second Merkle tree com-
mitment. Furthermore, we conjecture that our protocol can be made non-interactive
using the Fiat-Shamir transformation in the QROM.
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Our protocol resembles practical succinct arguments for NP that compile
PCPs and are used in real-world applications today. This makes it easier to
implement in practice if a constructive proof of the (weak) ZX quantum PCP
conjecture is discovered. We expect that the succinct key generation tech-
nique in [BKL*22| can also be applied to our protocol, which would remove
the non-succinct setup at the cost of assuming and using post-quantum iO.
Furthermore, our work more importantly addresses the general problem of
compiling interactive oracle arguments into succinct arguments. The succinct
verification of quantum computation is a motivation and application of this
compilation framework, but may not be the only application.
Quantum-computational soundness of the Kilian transformation:
The soundness of the Kilian transformation from classical probabilistically
checkable proofs (PCPs) against quantum polynomial-time cheating devices
had been recently formally established in a line of works [CMS19, CMSZ21].
[CMS19] proved its soundness when the hash function is modeled via the
QROM. Later, [CMSZ21| showed its soundness in the standard model when
the hash function family is any collapsing (see [Unrl6b]) hash function fam-
ily. Families of such functions exist under the LWE assumption [Unrl6a].
In our work, the input to the Kilian transformation is not a classical PCP,
but rather a quantum PCP that was transformed into a classical-verifier in-
teractive oracle protocol using Mahadev’s verifiable measurement protocol.
[CMS19] proves the soundness of SNARGs based on IOPs with round-by-
round soundness in the QROM. However, in our work we do not assume any
special soundness properties about the IOArgs except for standard compu-
tational soundness.

Classical verification of quantum computation with efficient veri-
fier [CCY20]: This work builds a protocol for the succinct classical veri-
fication of quantum computation with a non-succinct setup from the LWE
assumption as well as post-quantum indistinguishability obfuscation (iO)
and post-quantum fully homomorphic encryption (FHE). There is a gap in
the soundness proof because an underlying protocol is proven sound in the
QROM, but an assumption about its soundness with a concrete hash func-
tion is made. Our soundness proof is fully in the quantum random oracle
model, without the need to use the code for the hash function and there-
fore avoiding the aforementioned gap in the soundness proof. Furthermore,
our work does not require post-quantum iO nor use post-quantum FHE but
rather a variant of the quantum PCP conjecture and the LWE assumption.
As mentioned earlier, we also address the more general problem of compiling
interactive oracle arguments.

zk-SNARGSs for QMA from quantum null-iO [BM22]: This work mainly
studies a cryptographic concept known as indistinguishability obfuscation for
null quantum circuits (quantum null-i0). As an application, they show how
to obtain zk-SNARGS for QMA from (i) the quantum hardness of LWE, and
(ii) post-quantum indistinguishability obfuscation (i0O) for classical circuits.
However, the construction makes non-black-box use of a hash function mod-
eled as a random oracle. Therefore, it suffers from the same issue as [CCY20]
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as mentioned earlier. They also show (in Appendix A) a construction assum-
ing (post-quantum) VBB obfuscation for classical circuits.

On the other hand, our work does not require post-quantum iO but rather
a variant of the quantum PCP conjecture and the LWE assumption and
we also address the more general problem of compiling interactive oracle
arguments.

— Online extractability in the quantum random oracle model [DFMS22b,
DFMS22a|: We make use of the online extractability framework of [DFMS22b|
to prove the online extraction of Merkle trees (see Theorem 1 and Ap-
pendix A) which is implicit in their follow-up work [DFMS22a| that appeared
while we were working on this paper. We kept the explicit theorem state-
ment needed for our work and Appendix A where we prove it because the
statement in our paper as well as the notation and exposition fit better with
the rest of the manuscript.

— Quantum Merkle Trees in the Quantum Haar Random Oracle
Model [CM21]: This work introduced the Quantum Haar Random Oracle
Model (QHROM) which is a generalization to the quantum random oracle
model. They show how to construct a quantum Merkle tree in this model
and how it can be used to commit to and later reveal quantum states. If the
quantum PCP conjecture is true, this could be used to obtain succinct argu-
ments for QMA in the QHROM with guantum communication. The security
is proven against what they define to be semi-honest ® provers. In a follow-
up work [CM22|, they discussed zero-knowledge properties. In our work, we
focus on classical verifiers (with classical communication) in the quantum
random oracle model (QROM) - which is a more established model than the
QHROM. We analyze security against cheating quantum provers that can
perform any malicious action but limited to run in polynomial time.

— Commitment to quantum states [GIMZ22]: After [CM21], [GIMZ22]
announced a construction of quantum Merkle trees from quantum-cryptographic
assumptions (implied by one-way functions) in the standard model, and
proved that the proposed succinct argument of [CM21] is secure with this in-
stantiation (against cheating provers). This protocol is public coin and relies
on very weak cryptographic assumptions, but requires quantum communi-
cation like [CM21] while our work focuses on classical verifiers with only
classical communication.

— Succinct blind quantum computation using a random oracle [Zha21]:
This work introduced a two-phase protocol for the blind delegation of quan-
tum computation. The first phase is a quantum phase with succinct complex-
ity while the second is entirely classical. Our work considers fully classical
verifiers.

5 This notion is different from the typical usage of the term semi-honest in cryp-
tographic secure computation where it means an “honest but curious” adversary. A
semi-honest prover in [CM21] is a prover that commits to a cheating state but follows
the steps of the protocol.
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2 Background and Prior Work

In this section, we explore the background needed to build our framework in
the paper. Additionally, Appendix 2.1 provides a glossary of the mathematical
symbols and notation frequently used in this paper.

2.1 Glossary

Table 1 provides a glossary of most of the symbols and notation used in this
paper. While we borrow a lot of [ACGH20]’s exposition style in introducing
the classical-verifier argument system for local Hamiltonians, we slightly diverge
from their symbolic notation as indicated in that table.

2.2 Mathematical preliminaries

We recall some of the definitions and facts frequently used later in the paper.
Let p and ¢ be two classical probability distributions on a finite sample space
(2. The total variation distance between p and ¢ is

drv(p,a) = 5 S Ip(e) — a(x)] = max|p(4) - g(4)].
zes? -

A generalization of the total variation distance is the trace distance. To define
it, let’s first define the trace norm (Schatten 1-norm) of a matrix p as follows:

o], = (/o).

Recall that for a density matrix p, it holds that p = pf. The trace distance
between two quantum states represented by their density matrices p and o is

1 1
= §Hp—JH = gtr( (p—0)?) = mgxtr(P(p—a)) where P ranges over projectors.
tr 1

8(p, ) = ||p—0

We now state some helpful propositions about the trace distance.

Proposition 1. The trace distance between two pure quantum states can be
bounded as follows:

(1) (119} (@) = [l0) i —10) (01| < ||lw) =19}

Proposition 2 (Convexity Properties of the Trace Distance; Theorem
9.3 in [NC10] and consequences thereof). Let {p;} and {q;} be probability
distributions over the same index set, and {p;} and {o;} be density operators
with indices from the same index set. Then the following properties hold:

1. Conwvexity: 6(>_ pipi,0) < > pid(pi,0),
; i
2. Joint Convezity: 6(>_ pipi, Y. pici) <. pid(pi,oi), and
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Symbol /Notation |Description Symbol in [ACGH20]

n Number of qubits in a single copy of a quantum state n

J Index over qubits in a single copy of a quantum state 7

I k-local Hamiltonian on n qubits I
used once to denote the Hadamard gate

k Locality of a Hamiltonian k

S Number of Hamiltonian terms

s Index over Hamiltonian terms g
also the soundness error of (interactive) proofs

, Number of copies (repetitions) in LH verification protocol ,
see another usage for r(n) below
Index over copies (repetitions) in LH verification protocol

V4 0 < /¢ < d indexes levels in a Merkle tree )
£(n): Total length of all prover messages in an IOArg

m Number of repetitions in Mahadev’s protocol k

) Index over repetitions in Mahadev’s protocol i

S, 0) Set of indices of the k qubits affected by ‘ overloaded with

’ Hamiltonian verification term sampled for copy i, ¢ Hamiltonian index S

c Completeness; Completeness Error is 1 — ¢ c

s Soundness Error s

I'=b—a Absolute promise gap for a local Hamiltonian b—a

¥ Relative promise gap for a local Hamiltonian

10P Interactive Oracle Proof

10Arg Interactive Oracle Argument

t(n) Round complexity of an IOArg

r(n) Randomness complexity of an IOArg

q(n) Query complexity of an IOArg

£(n) Total length of all prover messages in an IOArg

d Depth of a Merkle tree

0(p,0) = Hp —o|| |Trace distance between density matrices p, o

drv(p,q) - Total variation distance between distributions p and ¢

[A, B| Commutator of A, B i.e. AB — BA

x|y String concatenation of strings = and y

Table 1: Glossary of some of the mathematical notation used in this paper. When
applicable, the (slightly different) notation in [ACGH20] is indicated.

3. Strong Convezity: 53 pipi, 3_ 0:0:) < > pid(pi, 0i) + drv(p, q)

where drv(p, q) is the total variation distance between the probability distribu-
tions {p;} and {q;}.

The commutator of two operators is given by: [A, B] := AB — BA. Notice
that [A, B] = —[B, 4] and that [A, B]f = Bf AT — ATB" =[BT, At]. We say that
two operators A, B commute if their commutator is 0 i.e. [4,B] = [B,A] =0
and we say that they e-almost commute if H[A, B]H = H[B, A]’ <e.
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If A, B are two linear operators that e-almost commute, the following proposition
tells us that e also bounds the ||-||-distance between an output quantum state
resulting from applying A then B on an input state and the output state had
we applied B then A instead on the same input.

Proposition 3. If A, B are two linear operators that e-almost commute, the
following statements hold:

1. for a pure quantum state ), it holds that (note that H|1/J)H =1):

|aB1w) - Baw)| = ||l B0 | < 1. B) - [0 e @

2. for a (mized) quantum state represented by the density matriz p = > p; V) (¥il,
i

it holds that:
S(ABpBTAT, BApATBT) < e. (3)

Proof of Inequality (3).

S(ABpBT AT, BApATBY) =4 <ZpiAB i) (tbi| BTAT, S~ pi BA ) (4] ATBT>
< Zp;s (AB ) (v:] BT AT, B i) (i ATBT)
< Zpi ‘
S

— €

AB [thi) — BA |v;)

2.3 Merkle trees

A classical © Merkle tree of depth d is a binary tree used to commit to a sequence
of blocks of data (called leaves) T = (7;) c[24] using a cryptographic hash func-
tion h : X — {0,1}*. The root of the Merkle tree represents a digest of the blocks
of the data at its leaves. For a leaf node at index j € [29], its authentication path
can be used to verify its authenticity with respect to a root rt.

Figure 1 illustrates a Merkle tree of depth d = 3 to commit to a sequence of
leaves m = (m1,...,7g).

5 In this paper we will only work with classical Merkle trees where the data are classical
strings and the algorithms are executed on classical devices. However, their security
is established against a cheating quantum device in the quantum random oracle
model.

by joint convexity (2)
by Proposition (1)

by Inequality (2)

since Zpi =1
i
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Fig. 1: This figure illustrates a Merkle tree of depth d = 3 to commit to 23 = 8
leaves with the root rt = z3 3. The intermediate nodes for the authentication path
of m3 are marked with the notation used in this paper. Notice that z3 9 = m3 and
x30 = T4 and 7t = z3 3 in a valid authentication path.

For notational convenience, let z; o = ;. We will use the notation h(z,z’)
to indicate applying the hash function to the proper concatenation of x and z’
(respecting which is left/right child). Define h; ¢ := h(xj ¢, zj1—1) where h;o =
m;. The authentication path consists of the hash values at levels 0 < ¢ < d as
follows: ap; = (¢, 2j¢)o<¢<d- An authentication path ap; is valid if and only
if zjq = rt and hj, = z;, for all 0 < ¢ < d. Figure 1 provides an example of a
Merkle tree with 8 leaves. Let @ be a set of indices for some leaves. At each level ¢
(from 0 to d), we define the following sequence Z; which corresponds to the hash
values at this level needed to verify all authentication paths: Zg,c = (2j,¢) ;- We

will use Z/c; ¢ to denote the augmented sequence created from Zg , by ordering
these intermediate Merkle tree nodes from left to right and replacing any missing
nodes with L. When @ is clear in the context, we write Zg ¢ as Z, and Zg  as

Zy for brevity. Similarly, we define: X = (@j) jeq and )/(c; as well as their

shorted notations X, and )/(\g respectively when () is clear in the context. The
suite of Merkle tree algorithms used in this paper are as follows:

— CoMMIT"(7ry, ..., m94): returns the root of the Merkle tree rt and all inter-
mediate nodes,

— VALIDh(Tt,j7 apj): returns true if and only if the given authentication path
ap; for the j-th leaf is valid against the root r¢ by using the hash function
ha

— CONSISTENT(Q, {ap; }jeq): returns true if and only if the authentication
paths for leaves at indices Q C [29] are well-formed and consistent at the
common intermediate nodes 7, and

" This is equivalent to sending each overlapping intermediate node once instead of
sending it multiple times inside possibly overlapping paths for each leaf. However,



12 I. Faisal

— VERIFY"(rt, Q, apjeq): validates a batch of authentication paths and returns

true if and only if both CONSISTENT(Q, ap;c) and Vj € @ : VaLip” (m‘,j7 apj)
are true.

2.4 Merkle Trees in the Quantum Random Oracle Model (QROM)

The random oracle [BR93] models a concrete cryptographic hash function H :
X — Y as an external random oracle RO that answers queries randomly the first
time they are submitted and consistently whenever they are resubmitted. Pre-
cisely, the random oracle is a uniformly random function from & to ). The quan-
tum random oracle [BDFT11] is a unitary oracle Uy : |z) |y) — |z) |y & H(z))
defined with an underlying uniformly random function H. The query is submit-
ted in the x register and an answer H(x) is returned by XORing such answer
with the content of the y register.

Since the introduction of the QROM, different techniques and applications
were introduced, most notably the compressed oracle technique due to Zhandry [Zhal9].
Building on the success of this line of work, [DFMS22b] introduced a framework
for online extractability in the quantum random oracle model. Online extraction
means that the extraction happens (i) on-the-fly during the algorithm’s execu-
tion, and (ii) in a straightline which means that no rewinding of the algorithm
calling the random oracle is needed. [DFMS22b] provides a framework that en-
capsulates many of the inner workings that needed to be handled extensively
before. Their framework offers an extractable random oracle simulator S which
has an internal database state and two query interfaces (which are operators)
(see Figure 3 in Appendix A):

1. §.RO-query: the quantum random oracle unitary, and
2. S.E-query: a classical extraction query that applies a measurement to the
simulator state.

We will use the following result about the online extraction of Merkle trees
which is implicit in a follow-up work by [DFMS22a], but we also provide a
detailed discussion and a proof of it in Appendix A which was written prior to
the publication of [DFMS22a]. The theorem bounds the probability of winning
a game G1(\, d,r, q) illustrated in Figure 2 (as well as Figure 4 in Appendix A)
where a quantum adversary A interacts with only the RO interface while a
classical honest extraction algorithm & only (classically) interacts with the E
interface of the simulated random oracle. The adversary announces a classical
value rt which is supposedly the root of a Merkle tree of depth d and they
win if they can later “fake” at least one of r leaves. Faking a leaf here means
giving a leaf value that can be authenticated against the prior commitment,
but different from that output by extraction. A referee algorithm R determines
whether the adversary won by validating the authentication paths against the
root rt then comparing the adversary’s leaves against the leaves given by the
extraction algorithm.

for easier notation and exposition, we send the authentication paths for each leaf and
require this consistency condition when verifying a batch of authentication paths.
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A

rt

=1><—H' ' H

£

S7 (7rj7apj)j65'
R

-1

won /lost

Fig.2: This figure illustrates the game G; referenced in Theorem 1. A wins if
S C 29, |S| = r, and VERIFYR© (rt7S7apj€S), but 3j € S : w; # 7;. The
“snaked” arrowed lines represent quantum queries and responses thereof, while
the straight arrowed lines represent classical queries and responses thereof. The
referee R consists of two main procedures: (1) verifying the authentication paths
which needs to interact with the S.RO interface, and (2) comparing the output
of the adversary and the extractor which does not interact with S.

Theorem 1. For the game Gy defined in Figure 4 by the universal referee and
extractor algorithms described earlier such that A = w(d), ¢ < poly(29), and
any quantum adversary A = (A1, As) where Ay makes q1 queries to the random
oracle, then Ay announces a value rt, followed by As making qo queries to the
random oracle such that g1 + g2 < q, then As outputs a classical string, it holds
that:

Pr[A wins G1(\, d,7,q)] < negl(\).
2.5 The Local Hamiltonian Problem
Definition 1 (Local Hamiltonian Problem (n, k,v)-LH). The k-local Hamil-

tonian problem notated as (n,k,v)-LH is a promise problem where the input is
a classical binary string x = (H,a,b) such that:
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s
— H is a k-local Hamiltonian H = Y, Hs on a total of n qubits where S =
s=1
poly(n) and each Hy is a Hermitian matriz with a bounded operator norm
[|Hs|| <1 and its entries are specified by poly(n) bits and Hy is non-identity
on at most k qubits,

— a and b are two numbers represented with poly(n) bits such that a < b; the
gap I' = b — a is called the absolute promise gap and v = I'/S is called
the relative promise gap,

— for yes-instances, there exists an n-qubit quantum state |1) such that (| H |1)
a (i.e. energy of the state w.r.t. H is at most a),

— for no-instances, for every n-qubit quantum state |¢), it holds that (| H |¢p) >
b (i.e. energy of the state w.r.t. H is at least b), and

— 1t is promised that any instance will be either a yes or no instance.

That problem is called the ZX k-local Hamiltonian problem and we notate it as
(n, k,v)-LH-ZX when each H is a constant-scaled tensor product of n matrices
from the set of 2 x 2 matrices {1,X,Z} such that at most k of the matrices in
each product are non-identity.

This problem is QMA-complete when the promise gap is at least inverse
polynomial i.e. v > 1/poly(n). The k-LH problem remaining QMA-hard even
when this promise gap is constant i.e. v > « for some constant « is known as the
quantum PCP conjecture (qPCP for brevity), which is still unsettled to date.
[AALV09] showed that the qPCP statement is equivalent to obtaining PCPs for
QMA where quantum reductions 8 are used to prove that the proof verification
version implies the gap amplification version.

2.6 Classical-Verifier Argument for ZX Local Hamiltonians

We will now describe Protocol 1 due to [ACGH20| which is a quantum-prover
classical-verifier argument system with an instance-independent setup phase.
The protocol can be parallel-repeated to obtain negligible completeness and
soundness errors. In Appendix C, we give a detailed exposition and proofs of
completeness and soundness and explain the modular construction of this pro-
tocol while generalizing the locality to any constant k& and the promise gap to
any function. We give below a very brief summary.

Protocol 1 [ACGH20] uses Mahadev’s verifiable measurement protocol de-
scribed in Section C.2 to make the verifier of a protocol for local Hamiltonian
verification (Protocol 5) classical instead of quantum. In the predecessor version
of Protocol 5 [MF16, FHM18, MNS16|, the choice of measurements (X or Z)
depended on the choice of the Hamiltonian term. This is because a particular

8 It is an open question whether they are equivalent under classical reductions. In
fact, the proof checking formulation itself could end up being more specific than
that provided in [AALV09] which was the reason why it was not straightforward
to prove the equivalence under classical reductions. For the details of the quantum
reduction, we refer the reader to the proof of Theorem 5.5. in [Gril8].

<
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Hamiltonian term may act by X on a qubit while another term could act by
Z on the same qubit. This poses a challenge when using Mahadev’s verifiable
measurement because the first step of Mahadev’s protocol samples keys that de-
pend on the basis choice. [ACGH20| got around this issue by randomly sampling
a basis for each qubit. When the time comes to select a Hamiltonian term, the
verifier first checks whether this selected term is consistent with the randomly
selected bases on the affected qubits.

In the first round of [ACGH20|’s protocol, the verifier generates a set of
private trapdoors and corresponding public keys (a trapdoor/key for each qubit
in the witness state) to initiate the Mahadev protocol. The prover then sends
a commitment for the witness state - they allegedly have - using the received
public keys. The verifier then sends a challenge bit (0/1) that dictates certain
measurements to be done by the prover. The prover measures accordingly and
sends the measurement outcomes. If the verifier sent 0 as the challenge bit, a
Mahadev “test round” (TestCheck) is executed whose purpose is making sure that
the prover “did not change their mind” after the commitment. If the verifier sent
1 as the challenge bit, a Mahadev “Hadamard round” (HadRound) is executed
to extract the measurements needed to execute the verification procedure on
the Hamiltonian term. The protocol is executed multiple times in parallel using
multiple copies of the witness state.

Protocol 1 (Protocol 4 in [ACGH20|; Quantum-Prover Classical-Verifier Ar-
gument System for ZX local Hamiltonians with Instance-Independent Setup).

Parties: Quantum polynomial-time prover P & classical probabilistic polynomial-time
verifier V.

Parameters: 1. n: number of qubits.

2. r,m: number of repetitions in the LH verification and Mahadev protocols

respectively.
3. X\: a security parameter > n.
Setup: 1. V samples uniformly random bases h € {0,1}""™.
2. V runs Mahadev’s key generation algorithm (pk,sk) < Gen(1*, h).
3

.V sends the public keys pk to P, but maintains sk secretly °.
s
Inputs: Inputs to both parties: © = (H = > d;H,a,b) i.e. instance of the

s=1
(n,k,~)-LH-ZX.
Input to honest prover on yes instances: |U) = |))*™™ (i.e. rm copies
of [) the ground state of the Hamiltonian H ). This state is in the register
W. For each i € [m],£ € [r],j € [n], we use Wiy, to denote the corresponding
qubit.

9 Later, we will use the term “public-coin protocols with private setup” to highlight
this again.
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For each Wig;, the prover prepares the “commitment” state (see Section C.2;
we use here F' to denote f or g depending on the uniformly chosen basis):

\/WZ Z ¢b‘ Wie; > 1tz;| pkm(b 17)>Yi] .

zeX be{0,1}

P measures each register Yig; in the standard basis € sends the outcomes
y = (yiej) to V.
V samples challenge bits c1,...,cm < {0,1} and sends ¢ = (¢1,...,¢m) to
P. 0 or 1 means asking the prover to engage in test or Hadamard rounds
(respectively) of the Mahadev protocol (see Section C.2).
For each i € [m],¢ € [r],j € [n],
1. If ¢; = 0, P performs a standard basis measurement and gets u;p; =
(Wiej, iej).-
2. If ¢; = 1, P performs a Hadamard basis measurement and gets u;p; =
(Wiej, Tieg)-
P sends u = (ujj) to V.
For each i € [m],
1. If ¢; =0,V sets v; := /\ TestCheck(skie;, wiej, yiej) (see Section C.2).

£,
2. If ¢; =1,V records the set A; C [r] (the subset of copies consistent with

the mndom bases choice). For each £ € A;:
(a) Run the Hadamard round (see Section C.2) for each j € [n]:

(ziej, €iej) = HadRound(skie;, wiej, Yiej, hiej)-

If it rejects (i.e. zi; = 0 for some j), set vyy = 0; otherwise enter
the next step.

(b) Like in Protocol 5, sample a Hamiltonian term s;o < m where the
distribution 7 is given by:

7(s) =

|ds|

Denote by S(i,¢) the set of indices of the qubits acted upon by non-
identity Pauli observables.

Set vig :== 3 | 1 —sGN(ds,,) - ‘eg([‘ ) eigj> (i.e. set to 1 iff the mea-
JES(i,

surement has the opposite sign of the coefficient of the selected term).
Then, as in Step 3 of the verdict in Protocol 5:V sets v; = 1 iff:

2 (b )/ I
Zm> ’|A—( — >'Az-|

where (see Protocol 5 and the proof in Appendix D for the details):
1 a 1 b

Ci=— — ———— and s =

2 2)|d 2 23 0dy|



Interactive Oracle Arguments in the QROM 17

Finally, V accepts iff v := N\~ v; evaluates to 1 (i.e. v; is 1 for each parallel
repetition i € [m]).

3 Succinct Communication from Interactive Oracle
Arguments

3.1 Defining Interactive Oracle Arguments

We now formalize the notion of quantum-computationally sound classical-verifier
interactive oracle proofs for quantum-witness relations (which for brevity we
also call IOArgs for interactive oracle arguments) by generalizing interactive
oracle proofs (IOPs) in [BCS16]. In particular, we introduce IOArgs with a pre-
processing (setup) phase where the verifier sends a message to the prover that
does not depend on the input instance but only on an upper bound on the in-
stance size n. Since this step does not need the input and can happen temporally
before the execution of the protocol on a particular input, we do not account for
its cost when analyzing succinctness of the protocol communication.

Definition 2 (Interactive Oracle Arguments with Setup; Generalizing
Interactive Oracle Proofs in [BCS16]). Let p(n) be a polynomial and R be

a relation: R € J {0, 1}" X Hyp(n) where Hy(y is the Hilbert space of p(n)-qubit
n=0

pure quantum states. Consider a promise problem A = (Ayes, Ano) where AyesN
Ao =0 and Ayes :={x | 3|Y) : (z,|¢)) € R}. We say that A has a quantum-
computationally sound classical-verifier interactive oracle proof system with setup
with the following parameters (notated as A € IOARG, ¢[t(n),£(n),r(n),q(n)]):

— round complezity t(n): number of prover oracle messages in the protocol,

— total length of all prover messages: £(n),

— randomness complezity r(n): total number of random bits used by the verifier,

— query complexity q(n): number of queries by the verifier to the prover’s oracle
messages,

— completeness ¢(n), and soundness s(n)

if there is an interactive protocol between:

Parties: 1. P¥): a quantum poly(n)-time algorithm (when the input x is a yes in-
stance, an honest prover will receive a state |¢) such that (x,|¢)) € R),
and

2.V =Wo,...,Vin)): a classical probabilistic poly(n)-time algorithm using
r(n) random bits. The verifier’s sub-algorithm Vo = SETUP(1") is an
optional setup phase that only depends on the input length 10 but not the
input itself while the the other sub-algorithms Vi, ..., Vi) depend on the
mput x.

10 Tn most useful interactive oracle arguments including the argument system for the
local Hamiltonian problem discussed in this paper, we do not have to know the input
length exactly, but it suffices to know an upper bound.
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Setup: The protocol starts with an optional setup phase run by the verifier (pg,vo)
SETUP(1™). The verifier sends po to the prover and keeps'! vg.
Interaction: For any round i € [t(n)], the following interaction takes place:
1. The prover sends an oracle message p; = P (L, D0, D1y« -y Pie1,Vls -« Vi1)-
2. If i < t(n), the verifier samples randomness $; and outputs a message
v; = V(x,v9,01,...0i-1;%;).
Verdict: At the end of the protocol, the verifier samples randomness $;(,)

and chooses q(n) locations Q = (Q1,...,Q¢m)) to access from previous
prover oracle messages p1, . .., pi. Finally, the verifier runs a predicate
VERDICT(xapHQla oy Pt(n) 1Qu(n)’ Vo, V1, -+ -5 Vt(n)—13 $f(n))

to output a decision (accept/reject).
Completeness: If x is a yes-instance, with |x| =n, then for an honest prover P receiving a
quantum state |¢) such that (x, |[¢)) € R: Pr[(P,V) accepts x| > ¢(n).
Soundness: If © is a no-instance, with |x| = n, then for any quantum polynomial-time
interactive algorithm P: Pr[(P,V) accepts z] < s(n).

We say that an IOArg is public-coin with private setup if the verifier sends
the randomness they generate to the prover 2 (except for the randomness used
in the setup step). In our definition, the queries of the IOArg are non-adaptive
in the sense that one query does mot depend on the answer to another. In this
paper, we work with non-adaptive public-coin I0Args with private setup.

3.2 Succinct Communication by Applying the Kilian Transformation

We now show how to apply the standard Kilian transformation [Kil92] to com-
pile any non-adaptive public-coin IOArg with private setup and succinct query
complexity into a succinct-communication argument. To prove the soundness of
the compiled protocol, we will use the online extraction of Merkle trees in the
quantum random oracle model discussed in Section A.

Protocol 2 (Succinct-communication argument from non-adaptive public-coin
IOArg with private setup and succinct query complexity).

Model: RO : X — {0,1}* is a quantum random oracle which could be called in
superposition.
Promise Problem: A € I0ARGs[t(n),l(n),r(n),q(n)] with an underlying relation R where
q(n) = O(A).
Parties: Quantum poly-time prover P & classical probabilistic poly-time verifier V.
Setup: The verifier runs (po,vo) < SETUP(1™) from the underlying IOArg, keeps
9, and sends po to the prover.

11 Keeping the randomness used in the setup enables the verifier to store information
such as secret keys and/or trapdoors without revealing them to the prover.
12 or its oracle messages
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Inputs: To both parties: x where |x| =n & x is a yes/no instance of the promise

problem A.
To the prover: The setup message pg received during the setup. An honest
prover will also receive a state |¢) on yes-instances x such that (z, |¢)) € R.

Round P;: The prover computes the message p; according to the underlying IOArg. The
prover then uses CommitR® to compute a Merkle tree root rt; for the mes-
sage p; and sends rt; to the verifier.

Round V;: If i < t(n): according to the underlying IOArg the verifier samples random-
ness $; and sends the message v;.
If i = t(n): According to the underlying IOArg, the verifier samples random-
ness 8,y and determines the q(n) locations Q = (Q1,...,Qn)) to access
from the previous prover oracle messages pi,...,Pyn) that were supposedly
committed with the roots rty, ..., rtyy) respectively. The verifier sends these
indices Q to the prover.

Round Pyi1: The prover sends the g(n) bits at locations Q along with authentication paths
to the verifier i.e. they send the sequence ((ﬂ-i’j’apiaj)jeQi)lgigt(n) where
ap; ; means the authentication path of the jth location with respect to the
root rt; of the ith Merkle tree.

VERDICT: For each i =1...t(n), the verifier verifies the authentication paths with ac-
cess to the random oracle RO and using the predicate VERIFY defined in
Section 2.3. Precisely, in the ith iteration, the verifier performs this verifi-
cation by calling VERIFYT© (rti, Qi (apiJ)jeQi). It rejects if this predicate
rejects. Otherwise, the verifier outputs the output of:

VERDICT(Z, T1(Qy s - - s T#|Qy V0, VLs + - - 5 Ve~ 15 S4(n))

where VERDICT 1is the verdict predicate of the underlying I0OArg and m;|q,
are the locations received from the prover during the round Pyp)41-

3.3 Analysis of the Compiled Protocol

The completeness of Protocol 2 is stated in Theorem 2 and proven in Ap-
pendix B.1 using the idempotence property of the RO interface (Property 4,
Theorem 5). The soundness of this protocol is summarized in Theorem 3 and
proven in Appendix B.2 which are key technical contributions in this paper. In
Appendix B.3, we analyze the total communication cost in this protocol which is
found to be O (A - (t(n) + ¢(n) - log(n)) + r(n)) classical bits. The resulting pro-
tocol is succinet when ¢(n) = O(poly(log(n))) = O(1), r(n) = O(1), t(n) = O(1),
and ¢(n) = poly(n). Finally, we summarize these three properties of the protocol
(completeness, soundness, and succinctness) in Corollary 1.

Theorem 2 (Completeness of Protocol 2). For a promise problem A €
IOARG, [t(n),£(n), r(n), g(n)] such that c(n) is the completeness of the IOAry,
Protocol 2 built on that IOArg also has completeness c(n).
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Theorem 3 (Computational Soundness of Protocol 2). Consider a promise
problem A with an interactive oracle argument i.e. A € IOARG, s[t(n), (n),r(n), ¢(n)].
Let Protocol 2 be built on top of this IOArq in the quantum random oracle model

with A = w(log(£(n))). Let x be an instance of A withn = |z|. If a (possibly cheat-

ing) quantum prover P running in polynomial time Tp(n) = poly(n) and access

to RO can make an honest verifier V in such protocol accept x with probability

> 0(n), then there exists a polynomial-time (quantum) IOArg prover Proare(x)

that can make an honest IOArg verifier accept x with probability > §(n)—negl(\).

Corollary 1 (Succinct-Communication Arguments from IOArgs). In
the quantum random oracle model with RO : X — {0,1}* and A\ = w(log(n)):
Protocol 2 built for a promise problem A € IOARG.4[O(1), poly(n), O(1), 0(1)]
is a succinct-communication argument with (possibly non-succinct) setup with

completeness ¢ and soundness s — negl(\).

4 Classical-Verifier Succinct-Communication Argument
for ZX Local Hamiltonians

4.1 Eliminating redundancy in [ACGHZ20]’s classical-verifier
argument

Protocol 3 is a modified version of Protocol 1. When executing the Mahadev
verifiable measurement test/Hadamard rounds in the protocol, we only verify
the measurements for the qubits that would have been necessary to run the LH
verification. Precisely, the difference here is that - even in Mahadev’s test round
- the index j ranges over the set S(i,¢) which is the set of qubit indices affected
by non-identity observables in the Hamiltonian term s;, instead of ranging over
[n] (i.e. all qubits).

Protocol 3 (Modified version of Protocol 1 after eliminating redundancy).
Parties, Inputs, Setup: Same as in Protocol 1.
Rounds Pi1,Vs, Py: Same as in Protocol 1.

V’s Verdict For each i € [m], £ € [r] : V samples a Hamiltonian terms s;p < 7
where the distribution 7 is given by:

|ds|
2. 1ds]

m(s) =

Denote by S(i,0) the set of indices of the qubits acted upon by non-identity Pauli
observables.

Also, let A; C [r] be the subset of copies consistent with the random bases
choice.

For each i € [m]:

1. If ¢; =0 (test round), set v; := A TestCheck(skiej, wicj, Yiej)-
LEA;, JES(iLL)
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2. If ¢; =1 (Hadamard round), for each £ € A;:
(a) Run the Hadamard round for each j € S(i,£):

(ij,ewj) = HadROUHd(Skwj,UiEjayie]w hilj)~

If it rejects (i.e. zy; = 0 for some j), set vy = 0; otherwise enter the
next step.

(b) Set vyg := 5 | 1 —5scN(ds,,) - [I e | (i-e. set to 1 iff the measure-
JES(i,0)
ment has the opposite sign of the coefficient of the selected term).
Then, as in Protocols 5 and 1:V sets v; = 1 iff:

(2= 0-a/zial)
4

c+s
> ez D4y = A
LeA;

where (see Protocol 5 and the proof in Appendix D for the details):

1

1 a 1 b
2 2) ]

d S
an S 2 2Z|ds|

Finally, as in Protocol 1, V accepts iff v := \.-, v; evaluates to 1 (i.e. v; is 1
for each parallel repetition © € [m]).

In Appendix D, we follow [ACGH20]’s proof of the soundness of Protocol 1
to show how the soundness of this modified protocol still holds even when we
only verify the Mahadev measurements for the qubits affected by the selected
local Hamiltonian term. We outline a corollary to that result below.

Corollary 2 (Mirror of Theorem 4.6. in [ACGHZ20]). Under the LWE as-

sumption, for every constant k, Protocol 8 with r = w(bi#) and m = w(log(n))

has negligible completeness and soundness errors.

4.2 Compiling towards Succinct Communication

Since only a number of selected locations are read from each prover message, we
can rewrite Protocol 3 as an IOArg by modeling the prover messages as message
oracles instead of message strings. As a result, we get Protocol 4 which is a
two-round public-coin non-adaptive interactive oracle argument with a private
setup. Specifically, the verifier’s choices with the exception of key-generation -
which happens in setup - are revealed to the prover (or its message oracles). Note
that the setup phase is non-succinct because the verifier needs to send a key for
each qubit. The verifier sends a total of m (the number of parallel repetitions
of the Mahadev protocol) classical bits in the first round. The verifier needs to
query k - r - m locations from each prover oracle. Theorem 9 and Corollary 2
still directly apply to this protocol because it is exactly the same as Protocol 3
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from the point of view of both the prover and verifier. When ~ is at least inverse
polylogarithmic, one can take r = w(logn/v?) to obtain negligible completeness
and soundness errors in Protocol 4 as well as polylogarithmic query complexity.
We can then apply Corollary 1 to conclude with Corollary 3.

Protocol 4 (Interactive Oracle Argument with Preprocessing for ZX Local
Hamiltonians).
Parties, Inputs, Setup: Same as in Protocol 3.

Round Py: P follows the steps of Protocol 3 (as described in Protocol 1) and sends an
oracle O, that represents the measurement outcomes on the commitment
qubits.

Round V1: V samples c1,. .., ¢y < {0,1} and sends ¢ = (c1,...,¢m) to P.

Round Py: P follows the steps of Protocol 3 and sends an oracle O, toV that represents
the measurement outcomes of measuring the pre-image and committed qubit
registers.

Round V,: V samples terms si,...,8m-m < T and queries their corresponding indices
from the oracles O, and O,.

V’s Verdict: V executes and returns the output of the verdict round of Protocol 3.

Corollary 3. Under the post-quantum hardness of LWE and for any matural
number n, there exists a classical-verifier succinct-communication argument sys-
tem with instance-independent setup and negligible completeness and soundness
errors for instances of size at most n of the (n,k,v)-LH-ZX problem with at
least inverse-polylogarithmic relative promise gap in the quantum random oracle
model with RO : X — {0,1}* and any A = w(log(n)).

4.3 ZX Quantum PCP Conjecture and Consequences to QMA

We now formally state the weak ZX quantum PCP conjecture (Conjecture 3)
which was defined informally in Informal Conjecture 1.

Conjecture 3 (Weak ZX Quantum PCP Conjecture). There exist a con-
stant k and a function f(n) = O(1) such that the (n,k,~y)-LH-ZX problem with
relative promise gap v(n) = 1/f(n) is QVMA-hard.

The (weak) ZX quantum PCP conjecture (Conjecture 3) and Corollary 3
imply the existence of succinct-communication arguments with setup for QMA
under the LWE assumption in the QROM which can be stated as follows.

Theorem 4. If the Weak ZX Quantum PCP Conjecture (Congecture 3) is true
as well as the post-quantum hardness of LWE, then for any promise problem A €
QMA and any natural number n, there exists a succinct-communication argument

system with setup for all instances of A of size at most n in the quantum random
oracle model with RO : X — {0,1}* and any A = w(log(n)).

While we could not prove that Conjecture 3 is implied by the standard
quantum PCP conjecture, we conjecture that this would be possible via a gap-
preserving reduction. The tools to prove an implication like that may come to
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light when more progress is made towards settling the standard quantum PCP
conjecture. Actually, it might be the case that a long-awaited proof of the quan-
tum PCP conjecture would be established via the QMA-hardness of ZX local
Hamiltonians.

5 Conclusion

We formalized the notion of post-quantum interactive oracle arguments (with
setup). Given that formalism, we showed a framework to compile any public-coin
non-adaptive interactive oracle argument (with private setup) into a succinct-
communication argument (with possibly non-succinct setup). Our soundness
proof utilized the online extraction of Merkle trees in the quantum random
oracle model. We stated the (weak) ZX quantum PCP conjectures as variants
of the standard quantum PCP conjectures. In the QROM, either of these con-
jectures is sufficient to imply the existence of succinct-communication classical-
verifier arguments with non-succinct setup for QMA under the LWE assumptions
(and consequently a protocol for succinct-communication classical verification of
quantum computation with non-succinct setup).
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