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Abstract

Cryptanalysis of modern symmetric ciphers may be done by using linear equation systems with
multiple right hand sides, which describe the encryption process. The tool was introduced by Raddum
and Semaev in [35] where several solving methods were developed. In this work, the probabilities
are ascribed to the right hand sides and a statistical attack is then applied. The new approach is a
multivariate generalisation of the correlation attack by Siegenthaler [37]. A fast version of the attack
is provided too. It may be viewed as an extension of the fast correlation attack in [30] by Meier
and Sta�elbach, based on exploiting so called parity-checks for linear recurrences. Parity-checks are
a particular case of the relations that we introduce in the present work. The notion of a relation
is irrelevant to linear recurrences. We show how to apply the method to some LFSR-based stream
ciphers including those from the Grain family. The new method generally requires a lower number
of the keystream bits to recover the initial states than other techniques reported in the literature.

Keywords � Cryptanalysis, Multivariate correlation attacks, Test-and-extend algorithm, Stream ciphers,

LFSRs, Grain

1 Introduction

The goal of a key recovery attack against a stream cipher is to get the secret key given a sequence of the
generated keystream bits. The key is used for initialising various components of the cipher. On devices
employing linear feedback shift registers (LFSR), the key is used to set their initial states. We focus
on attacks against LFSR-based stream ciphers whose goal is to recover the cipher's initial state that
produced the given keystream.

A non-linear �lter generator is a keystream generator used for constructing stream ciphers. It consists
of a binary LFSR of length n and a Boolean function f in ℓ variables, as depicted in Figure 1. The LFSR's
feedback taps are de�ned by its degree-n primitive polynomial1 g = xn−cn−1x

n−1− . . .−c1x−1 ∈ F2[x].
The LFSR sequence s1, s2, . . . satis�es the linear recurrence relation

si+n = cn−1si+n−1 + . . .+ c1si+1 + si, (1)

where the arithmetic is in F2. Let Si be the LFSR state at time i, then Si = M i−1S1, where M is the
transpose of the companion matrix of g, i.e.,

Si =


si

si+1

...
si+n−1

 and M =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
1 c1 · · · cn−1

 .

The keystream bit at time i is zi = f(si+k1 , . . . , si+kℓ
), where f : Fℓ

2 → F2 and 0 ≤ k1 < · · · < kℓ ≤ n−1.
The polynomial g, the �ltering function f and the indices k1, . . . , kℓ are considered to be public.

1It is not necessary for the polynomial to be primitive, however, when it is, the LFSR sequence has maximum period

2n − 1 on a non-zero initial state.
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Figure 1: Model of a �lter generator.

Let Λ be an ℓ× n matrix which �selects� the inputs to f from Si, i.e.,si+k1

...
si+kℓ

 = ΛSi and Λ =

ek1+1

...
ekℓ+1

 ,

where ei = (0, . . . , 0, 1, 0, . . . , 0), i = 1, . . . , n, and the only 1 is in position i from the left. De�ne
Ai = ΛM i−1. Then zi = f(ΛSi) = f(ΛM i−1S1) = f(AiX), where X = S1. The pre-image of zi
is the set of all possible values of AiX in Fℓ

2 such that zi = f(AiX). We assign a uniform probability
distribution on the pre-image of zi and all other values in Fℓ

2 get probability 0. That de�nes a probability
distribution for a random variable Xi on the values of AiX. We assume that X is uniformly distributed
on Fn

2 and that Xi are independent. Let N keystream bits be available. The attack on the �lter generator
is then to �nd the value X = x with maximum likelihood under the condition that

AiX = Xi, i = 1, . . . , N. (2)

We present a statistical approach to solve (2) and employ it to �nd the LFSR's initial state. This new
method is general and does not use the properties of the recurrence (1), including parity-checks as in
Fast Correlation Attacks (see Section 1.1 below).

1.1 Published Attacks

There is a substantial literature on key recovery attacks against LFSR-based stream ciphers, where
Fast Correlation Attacks (FCA) are among the most important. The �rst FCA was discovered by
Meier and Sta�elbach [30] as an improvement to the correlation attack by Siegenthaler [37]. Algebraic
attacks [11, 10] form another important class. The attacks by Anderson [3], Goli¢ et. al [17] and Leveiller
et. al [27] are examples of the so-called deterministic attacks, which are e�cient for very speci�c devices.
There is also a general class of time/memory/data trade-o�s [5]. FCAs are the most relevant technique
in our context and we focus exclusively on them.

Assume we have N keystream bits generated by an LFSR-based stream cipher and let g be the
LFSR's feedback polynomial. A parity-check is an equation

1 + xi1 + · · ·+ xid−1 ≡ 0 mod g, (3)

for some indices 0 < i1 < · · · < id−1 < N , and d is called its weight. The LFSR sequence satis�es these
equations: sj + si1+j + · · ·+ sid−1+j = 0 for 1 ≤ j ≤ N − id−1. Parity-checks only depend on g and N .
A more general de�nition of a parity-check is given in [9].

In FCAs, recovering the LFSR's initial state is represented as a decoding problem. The sequence
{si}Ni=1 generated by the LFSR is the information transmitted and the keystream {zi}Ni=1, is the infor-
mation received at the other end of a binary symmetric channel with crossover probability 1−p, where si
and zi are correlated as p = Pr(si = zi) ̸= 1/2. FCAs are usually comprised of a precomputation phase
and a decoding phase. The objective in precomputation is to obtain many low-weight parity-checks.
The initial state of the LFSR is recovered during the decoding phase. In brief, the decoding algorithm
removes the noise using the information on how the keystream satis�es the parity-checks. Algorithms
for the decoding phase are either one-pass or iterative.

The e�ciency of FCAs is a�ected by some characteristics of the device, notably the weight (i.e., the
number of non-zero terms) of g. Also, for the �lter generator, the nonlinearity of f (see [31]). Goli¢
presents in [16] a thorough list of design criteria to make the �lter generator resistant to various attacks.
Table 1 summarises some results of published FCAs for a variety of parameters, where d is the weight of
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Attack deg(g) weight(g) d 1− p N

Johansson, Jönsson [24]
40 17 2 0.260 4 · 104
40 17 2 0.400 4 · 105

Johansson, Jönsson [23]
40 17 2 0.300 4 · 104
40 17 2 0.410 4 · 105

Chepyzhov et al. [8]
60 ? 3 0.300 6.3 · 104
60 ? 3 0.400 6 · 105
70 ? 3 0.350 1.12 · 106

Canteaut,Trabbia [6]
40 17 4 0.440 4 · 105
40 17 5 0.482 3.6 · 105

Johansson, Jönsson [25]
40 17 2 0.450 4 · 105
60 13 3 0.320 1.5 · 105
60 13 2 0.430 4 · 107

Mihaljevi¢ et al. [32]

40 17 3 0.469 4 · 105
40 17 3 0.490 3.6 · 105

∗89 ? 3 0.469 ≈ 2.5 · 1011
∗89 ? 3 0.478 ≈ 1012
∗89 ? 3 0.480 ≈ 4 · 1012

Chose et al. [9]
40 17 4 0.469 8 · 104

∗40 17 4 0.490 8 · 104
∗89 ? 4 0.469 228

Molland et al. [33]
60 ? 4 0.430 1.5 · 107
60 ? 4 0.470 1 · 108

Leveiller et al. [28]
40 17 5 0.375 1.7 · 104
100 3 3 0.4375 3 · 104

Didier [12]
53 ? 5 0.4375 ≈ 4 · 105
59 ? 5 0.4531 ≈ 1.45 · 106
61 ? 5 0.4531 ≈ 2.1 · 106

Table 1: Some published results of FCAs. ∗: theoretical results only. ?: neither g is explicitly presented
nor its weight is reported.

the parity-checks, p = Pr(si = zi) and the length of the available keystream is N . For details on FCAs,
we refer to the original FCA [30], the sources in Table 1 and the surveys [29, 2].

More recently, some attacks to the Grain family [21] of ciphers have been published. Todo et al. [38]
presented a new FCA against the ciphers Grain-v1 [22], Grain-128 [20] and Grain-128a [1]. The attack
exploits a commutative property obtained by considering parity-checks as elements of a �nite �eld.
The authors also propose a new one-pass algorithm to recover the initial state and show new linear
approximations of the ciphers with high correlation. The number of required keystream bits and number
of operations is, respectively, 275.1 and 276.7 for Grain-v1, 2112.8 and 2114.4 for Grain-128, and 2113.8

and 2115.4 for Grain-128a. Zhou et al. [39] later presented an attack using vectorial parity-checks and a
new vectorial iterative decoding algorithm which generalises the original iterative method in [30]. For
Grain-128a, this attack is reported to require around 291 keystream bits and 292 operations. Vectorial
versions of the FCA were introduced in [18, 19].

1.2 Overview of the New Method and Applications

We �rst formulate (2) in more generality and describe a multivariate generalisation of the correlation
attack by Siegenthaler [37] in Sections 2.1 and 2.2, respectively. The correct solution is recovered by
deciding whether a candidate solution follows a uniform distribution or the distribution induced by (2).
For this, we use a maximum likelihood type statistic. In Section 2.4, similarly to [9], we employ the Fast
Fourier Transform (FFT) to compute the values of the statistic. This largely reduces the time complexity
of the method while increasing its space complexity. However, a straightforward application of this basic
multivariate correlation attack still has time complexity at least 2n, though requiring a lower number of
equations compared to the original univariate attack. The goal is to solve (2) in a more e�cient way.

The new method is constructed upon relations with a more general nature than parity-checks used in
FCAs. Hence, such relations may be regarded as a generalisation of parity-checks and vectorial parity-
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checks used in [19, 39]. Let B = Br denote a matrix of size r × n and of rank 1 ≤ r ≤ n. A subset
I ⊆ {1, 2, . . . , N} is called a relation modulo B if the space spanned by the rows of Ai, i ∈ I, and the
space spanned by the rows of B have an intersection of dimension rI ≥ 1. Let TI be a matrix of size
rI × r such that the rows of the matrix TIB form a basis of this intersection. Also, let Y = BX. One
may compute a probability distribution for a random variable YI on the values of TIY = TIBX. The
distribution of YI only depends on the distribution of Xi, i ∈ I. A set Ir of relations I, where the
distribution of YI is non-uniform, is collected. Then, the system of equations

TIY = YI , I ∈ Ir.

is similar to (2), but of a smaller dimension. The values of Y = BX are tested with the multivariate
correlation method. Even though the distributions of YI are closer to uniform compared to the distri-
butions of Xi, and the random variables YI may be dependent, the number of values to test is reduced.
The trade-o� may be positive and that is proved by our experiments with the �lter generator, where the
time complexity is lower than 2n.

To compute the solution X = x to (2) from the system above, a test-and-extend algorithm is used.
The algorithm is similar to a tree search method in a variation of linear cryptanalysis for block ciphers
(see [15]). This new method has two variations and is presented in Section 3 in detail. Since recovering
the initial state is not modelled as a decoding problem, the algorithm is not a decoding procedure as in
FCAs. Two techniques for obtaining a set Ir of relations are in Section 4. Several methods to compute
the probability distribution of YI , I ∈ Ir, are introduced in Section 5. The analysis of the new technique
and implementation details are given in Sections 6 and 7, respectively.

The new method is applied to �hard� instances of the �lter generator; the results are reported in
Section 8 and summarised in Table 2. Experimentally, our method requires less keystream bits to recover
the LFSR's initial state compared to existing FCAs for similar parametrs, and it is still signi�cantly faster
than brute force (see Section 8.2.2). When the LFSR is an internal component of a stream cipher, we
may have (2) with the distributions of Xi de�ned di�erently. For instance, we showcase an application
to Grain-v1 in Section 9. Compared to the 275.1 keystream bits required in [38], our new technique
requires 253.5 bits with a trade-o� on time complexity (290.5 vs 276.7 in [38]). Additionally, we found
linear approximations to Grain-v1 with higher correlation than those reported in [38].

deg(g) weight(g) d 1− p N time complex.
40 17 3 0.375 5 · 103 232

40 17 3 0.375 5 · 103 235

64 17 3 0.375 1 · 104 257

80 7 3 0.375 1 · 104 271

Table 2: Result of experimental attacks against the �lter generator.

The idea of the method and theoretical results in Sections 2-6 are due to Semaev. All computer
calculations in this work and application of the method to the �lter generator and the Grain family of
stream ciphers in Sections 7-9 are due to Canales-Martínez.

2 Multivariate Correlation Attacks

In this section, the general problem we plan to solve is formulated. Also, multivariate extensions of
known correlation attacks are introduced. That is a basis for the new method in Section 3.

2.1 General Problem

Let Ai, i = 1, . . . , N , be ℓi × n matrices of rank ℓi over a �nite �eld Fq, where ℓi are small compared to
n. Let X be a vectorial random variable uniformly distributed on Fn

q and Xi, i = 1, . . . , N , be vectorial
random variables on Fℓi

q , where Pr(Xi = a) = Pi(a) for some probability distribution Pi on Fℓi
q . We

consider the system of equations
AiX = Xi, i = 1, . . . , N. (4)

The task is to �nd the value x that maximises

Pr (X = x |AiX = Xi, i = 1, . . . , N) .
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It is equivalent to maximising the likelihood Pr (X1 = A1x, . . . ,XN = ANx). If Xi are independent, we
may maximise

∑N
i=1 ln Pr(Xi = Aix) =

∑N
i=1 lnPi(Aix), for Pi(Aix) ̸= 0. We will assume the variables

X,X1, . . . , XN to be independent.
With the description as in Section 1, the attack against the �lter generator is a particular case of this

problem. Multiple right hand side equation systems introduced in [35] are also a particular case of the
problem.

2.2 Basic Multivariate Correlation Attack

For x ∈ Fn
q , we decide whether xi = Aix, i = 1, . . . , N , were independently taken from the distributions

Pi on Fℓi
q (Hypothesis 1) or independently taken from uniform distributions on Fℓi

q (Hypothesis 0). Given
a threshold c ∈ R, we say x survives if

Pi(xi) ̸= 0, i = 1, . . . , N, (5)

S(x) =

N∑
i=1

lnPi(xi) ≥ c. (6)

Let β be a prescribed success probability. We will show how to compute c such that Pr(S(x) ≥ c) = β
under Hypothesis 1. The number of incorrect survivors is on average αqn, where α is the probability of
an incorrect x to pass the test, that is under Hypothesis 0. We de�ne asymptotic distributions of the
statistic S(x) in these two cases:

� Hypothesis 1. Let

µ1i =
∑
y∈Fℓi

q

Pi(y) lnPi(y) and σ2
1i =

∑
y∈Fℓi

q

Pi(y) ln
2 Pi(y)− µ2

1i

be the expectation and the variance of lnPi(xi), respectively. Then µ1 =
∑N

i=1 µ1i and σ2
1 =∑N

i=1 σ
2
1i are the expectation and the variance of S(x), respectively. Let Pi be close to the uniform

distributions on their supports. Then, the Lyapunov condition [4] is satis�ed for S(x). Thus, for
large enough N , its distribution approximately follows the normal distribution N(µ1, σ

2
1) by the

Lyapunov Central Limit Theorem. The threshold c is then computed from β = Pr(N(µ1, σ
2
1) ≥ c).

� Hypothesis 0. Let Ki denote the size of the support of Pi, and

µ0i =
∑

y∈Fℓi
q :Pi(y)̸=0

lnPi(y)

Ki
and σ2

0i =
∑

y∈Fℓi
q :Pi(y)̸=0

ln2 Pi(y)

Ki
− µ2

0i

be the expectation and the variance of lnPi(xi), respectively. Then µ0 =
∑N

i=1 µ0i and σ2
0 =∑N

i=1 σ
2
0i are the expectation and the variance of S(x), respectively. Under the condition that

Pi(xi) ̸= 0, i = 1, . . . , N , the distribution of S(x) approximately follows N(µ0, σ
2
0) by the Lyapunov

Central Limit Theorem. Thus α = (
∏N

i=1
Ki

qℓi
) Pr(N(µ0, σ

2
0) ≥ c).

We may get multiple candidate solutions. In practice, however, the solution is unique for large
enough N . The complexity of this straightforward attack is O(Nqn) operations. If the distributions Pi

are uniform on their supports (as in equations (2) for the �lter generator) the statistic S(x) is a constant.
Then, only (5) works to test the candidate solutions and the method is reduced to brute force on the
LFSR initial state. Another example is the correlation attack in [37]. This attack is a particular case for
q = 2, ℓi = 1 and there are only two di�erent distributions among Pi. In that case, only (6) works to
test the candidate solutions.

2.3 Number of Equations

Let the distributions P1, . . . , PN be permutations of the same distribution. Given a desired success
probability β and the number of survivors αqn, we estimate the number of necessary equations N (e.g.,
the amount of required keysteam bits in the cryptanalysis of a �lter generator) and de�ne the threshold
c. Since

µ0 = Nµ01, σ
2
0 = Nσ2

01 and µ1 = Nµ11, σ
2
1 = Nσ2

11,
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we �nd c and N from the equations

α

N∏
i=1

qℓi

Ki
= Pr(N(Nµ01, Nσ2

01) ≥ c) and β = Pr(N(Nµ11, Nσ2
11) ≥ c).

2.4 Improved Time Complexity with FFT

Let every Pi be close to the uniform distribution on Fℓi
q such that qℓiPi(y) = 1 + o(1). We show that

with the Fast Fourier Transform (FFT) the time and space complexity of the multivariate correlation
attack is O(

∑N
i=1 ℓiq

ℓi + nqn) and qn, respectively. This is a multivariate extension of the univariate
FFT-based method in [9].

Let ξ be a primitive q-th root of unity and let u · v denote the dot product of vectors u and v. We
have that

Pi(y) =
∑
a∈Fℓi

q

Wiaξ
a·y = q−ℓi +

∑
a∈Fℓi

q :a̸=0

Wiaξ
a·y,

where Wia = q−ℓi
∑

x∈Fℓi
q
Pi(x)ξ

−a·x. The numbers Wia are called the Fourier spectrum of Pi. Given

an input vector of length qn, the FFT computes the Fourier spectrum with time complexity O(nqn) for
bounded q (e.g., see [7]). The cost of computing the spectrum for all P1, . . . , PN is then O(

∑N
i=1 ℓiq

ℓi)
operations. By assumption, Pi(y) are close to q−ℓi , so qℓi

∑
a∈Fℓi

q :a ̸=0
Wiaξ

a·y are small. Since ln(1+ε) ≈ ε

for small ε, we have

lnPi(y) = ln(q−ℓi +
∑
a̸=0

Wiaξ
a·y) = ln(1 + qℓi

∑
a̸=0

Wiaξ
a·y)− ℓi ln q ≈ qℓi

∑
a̸=0

Wiaξ
a·y − ℓi ln q,

where
∑

a̸=0 is a short notation for
∑

a∈Fℓi
q :a̸=0

. Thus, the statistic S(x) de�ned by (6) may be approxi-
mated as

N∑
i=1

lnPi(Aix) ≈
N∑
i=1

qℓi
∑
a ̸=0

Wiaξ
a·(Aix) −

N∑
i=1

ℓi ln q =
∑
b∈Fn

q

C(b)ξb·x −
N∑
i=1

ℓi ln q,

where C(b) =
∑N

i=1 q
ℓi
∑

a ̸=0,aAi=b Wia, b ∈ Fn
q . The non-zero C(b) may be computed in

∑N
i=1 q

ℓi

operations. The values
∑

b C(b)ξb·x for all x ∈ Fn
q may be computed with the FFT in O(nqn) operations.

We have to keep the values C(b) in order to apply the FFT, so the space complexity is qn. Therefore,
the overall time complexity of the attack is O(

∑N
i=1 ℓiq

ℓi + nqn), which is still larger than qn. We apply
this method to Grain-v1 in Section 9.2. It requires a signi�cantly lower number of the keystream bits
compared to [38], though with higher time complexity.

3 New Method

The new method may work faster than the multivariate correlation attack above and, in particular, its
time complexity is lower than qn. That is the main contribution of this study. The fast correlation attack
in [30] applies to LFSR-based stream ciphers and exploits low-weight parity-checks, which may not exist
or be scarce within the available length-N keystream. Since the system (4) is generally irrelevant to
LFSRs and linear recurrences, relations of a more general nature are used instead.

Let Br be an r × n matrix over Fq of rank r, where 1 ≤ r ≤ n, and Y = BrX. Also, ⟨·⟩ will denote
the linear space spanned by the rows of the speci�ed matrices. We show how to test the values of Y .

De�nition 1. Let Br be as above and Ai be the matrices in (4). A set of indices I ⊆ {1, . . . , N} such

that

⟨Ai, i ∈ I⟩ ∩ ⟨Br⟩ ≠ ⟨0⟩ (7)

is called a relation modulo Br and its weight is |I|. If its weight is small, I is said to be short.

Let trI > 0 be the dimension of the space (7). This space is spanned by the rows of a matrix TrIBr,
where TrI is a matrix of size trI × r of rank trI . If I is a short relation, we may e�ciently compute the
conditional probability distribution prI given by

prI(v) = Pr ((TrIBr)X = v |AiX = Xi, i ∈ I) , v ∈ FtrI
q . (8)
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Let YI denote a random variable on FtrI
q with the distribution prI and let Ir be a set of relations modulo

Br. Then
TrIY = YI , I ∈ Ir,

is a system of equations of the same type as (4), but of a smaller dimension r ≤ n. Since X is uniformly
distributed on Fn

q , the random variable Y is uniformly distributed on Fr
q. The multivariate method in

Section 2 is then applied to solve the new system. That is, br = BrX is tested with

prI(brI) ̸= 0, I ∈ Ir, (9)

Sr(br) =
∑
I∈Ir

ln prI(brI) > cr, (10)

where brI = TrIbr and cr is a threshold de�ned by the success probability of not rejecting the correct
solution. Alternatively, we may use the FFT to compute the values of the statistic Sr if the probabilities
prI(v) are close enough to q−trI .

For matrices Br of large rank r, a straightforward application of the multivariate methods is ine�cient
since we need to run over qr vectors br. The following test-and-extend algorithm is used instead. We
choose a sequence of matrices Br of rank r = 1, . . . , n, such that Br is a sub-matrix of Br+1 and obtain
a set Ir of relations. The algorithm has two variations:

1. Tree search. The search starts at r = 1. The candidates for BrX are tested with (9) and
(10). The survivors are extended to candidates for Br+1X and tested. We continue in this fashion
to obtain the survivors at level n. The cost of computing the values of the statistic for BrX is
proportional to |Ir|. The method is implemented by traversing a tree.

2. Hybrid method. The search starts at r = r0 for some parameter r0 ≥ 1. The FFT is applied
to compute the values of the statistic for Br0X. Up to around 2r0 relations may be used within
essentially the cost of one application of the FFT. The candidates for Br0X are ranked according
to the value of the statistic. After that, the tree traversal is done as in the �rst variation starting
with the most probable candidates for Br0X. As an option, one can brute force the values of X = x
such that Br0x are most probable.

In Sections 4 and 5, we show how to compute short relations (7) and their probability distributions
(8), respectively. The success probability of the algorithm and its complexity are studied in Section 6.
Implementation details are presented in Section 7. In Section 8 the algorithm is applied to equations
(2) constructed from some instances of the �lter generator. Experimentally, the complexity of �nding
the solution is lower than qn, even for some hard instances of (2), where the number of equations N is
relatively low.

Vectorial parity-checks used in vectorial FCAs are similar to relations introduced here. However,
the latter have a more general nature and may be seen as a generalisation of the former (which in turn
generalise non-vectorial parity-checks). Additionally, the new method is not a decoding procedure as
the ones used in FCAs. Thus, it is not possible to make a direct comparison with decoding algorithms
in FCAs. (Moreover, the authors in [39] state that it is di�cult to make a comparison of vectorial and
non-vectorial decoding algorithms.)

A detailed example of the new method applied on a toy �lter generator is in Appendix A. We refer to
Section A.1 �rst, where the application of both variants of the method as described above is presented.
Then, Section A.2 discusses the strategy to construct the matrices Br and the sets Ir. We refer to the
latter after having read Sections 6�8.1.

4 Relations Modulo Br

In this section, we present two methods to �nd short relations modulo Br of weight d.

4.1 Brute Force

The relation (7) is equivalent to a system of homogeneous linear equations∑
i∈I

viAi = vBr, (11)

7



where the variables are vectors vi ∈ Fℓi
q , i ∈ I, and v ∈ Fr

q such that v ̸= 0. The system incorporates n
equations in

∑
i∈I ℓi + r variables from Fq. One has to solve

(
N
d

)
such systems to �nd all relations (7)

modulo Br of weight ≤ d.
Let ℓi = ℓ for 1 ≤ i ≤ N . We may expect to �nd at least one relation (7) if N > (d/e) q

n−dℓ−r+1
d .

Indeed, there are qℓd − 1 non-zero vectors in the left hand sides of (11) for every I = {i1, . . . , id} if
dependencies between the rows of Ai, i ∈ I, are neglected. The probability that one random vector
hits the space ⟨Br⟩ is qr−n. If a vector belongs to ⟨Br⟩, then its multiples by non-zero constants belong
to ⟨Br⟩ too. For ℓd + r < n, the probability that two non-collinear vectors for the same I hit ⟨Br⟩ is
negligible. The average number of the relations (11) and therefore (7) is around(

N
d

)
(qℓd − 1)

qn−r(q − 1)
. (12)

For small d and large N , we have
(
N
d

)
≈ Nd

d! . That implies the bound for N . The expression (12) is a
rather accurate estimate for the actual number of relations modulo Br for the parameters in Section 8.2.

4.2 Lattice Reduction

Assume that q is a small prime number. Let A be a vertical concatenation of the matrices A1, . . . , AN .
Thus, A is a matrix with m =

∑N
i=1 ℓi rows, n columns and integer entries. Let L denote a lattice of all

integer vectors v of length m such that vA ∈ ⟨Br⟩ modulo q. Clearly, if (11) holds, then

(0, . . . , 0, vi1 , 0 . . . , 0, vid , 0 . . . , 0) ∈ L.

That is a relatively short vector in the lattice since its norm is ≤ q
2 (
∑

i∈I ℓi)
1/2.

The rank of the lattice L is m and the volume is qn−r, the basis is easy to construct. A reduction
algorithm (e.g., [26]) is applied to compute the reduced basis. Short vectors are extracted and checked.
If d is small enough, a short relation (7) is found. Since we may want many short relations, the initial
basis of L is modi�ed and the reduction algorithm is applied again.

5 Computing the Distributions prI

In this section, we present four di�erent methods to compute the probabilities (8). To simplify notation,
let I = {1, . . . , d} and C denote the event AiX = Xi, i ∈ I. Also, let V be a matrix of size t × n and
rank t such that the rows of V are in the space generated by the rows of A1, . . . , Ad. Then

prI(v) = Pr(V X = v | C),

where V = TrIBr. The results are summarised in Table 3, where R =
∑d

i=1 q
ℓi and ℓi = rank(Ai).

The term R appears in all methods because the corresponding computations depend on all
∑d

i=1 q
ℓi

probability values.

Method Formula Complexity Comments

Section 5.1 (13) dqn +R -

Section 5.2 (14) dqrank(A) +R A = (A1, . . . , Ad)

Section 5.4 (16) dqrank(W ) +R ⟨A1⟩, . . . , ⟨Ad⟩ lin. indep. mod ⟨W ⟩ and ⟨V ⟩ ⊆ ⟨W ⟩

Section 5.5 (17) dq2 rank(V ) +R A1, . . . , Ad lin. indep.

Table 3: Summary of the methods for computing Pr(V X = v | C).

The �rst three methods are universal and the third one is the fastest of the three. The convolution
method in Section 5.5 may be even faster. That works if the rows of A1, . . . , Ad are linearly independent.
Remark that, even if A1, . . . , Ad are linearly independent, the matrix W of smallest rank such that
⟨A1⟩, . . . , ⟨Ad⟩ are linearly independent modulo ⟨W ⟩ and ⟨V ⟩ ⊆ ⟨W ⟩ may be A = (A1, . . . , Ad). For
instance, let A1, A2, A3 be linearly independent rows (ℓ1 = ℓ2 = ℓ3 = 1) and V = A1 + A2 + A3. Then
W = (A1, A2, A3) and rank(W ) = 3. The method from Section 5.5 is faster in that case as rank(V ) = 1.
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5.1 Basic Formula

By the conditional probability formula,

prI(v) = Pr(V X = v, C)/Pr(C).

Since X,X1, . . . , Xd are independent and X is uniformly distributed on Fn
q , we have

Pr(V X = v, C) =
∑

x∈Fn
q :V x=v

Pr(X = x,X1 = A1x, . . . ,Xd = Adx)

=
1

qn

∑
x∈Fn

q :V x=v

d∏
j=1

Pj(Ajx). (13)

In order to compute prI(v), it is enough to compute only Pr(V X = v, C) for each v ∈ Ft
q since Pr(C) =∑

v Pr(V X = v, C). The whole computation takes dqn operations.

5.2 Change of Variables

Let k = dimFq
⟨A1, . . . , Ad⟩ and let U be a (k × n)-matrix constructed with linearly independent rows of

A1, . . . , Ad. Then Aj = A′
jU and V = V ′U for some matrices A′

j and V ′. Let Z = UX. So AjX = A′
jZ

and V X = V ′Z, and (13) implies

Pr(V X = v, C) = 1

qk

∑
z∈Fk

q :V
′z=v

d∏
j=1

Pj(A
′
jz), (14)

There are at most qk terms in the sums (14) for all v and each term is a product of d numbers. Therefore,
the cost of the computation is dqk operations.

5.3 Independence in A1, . . . , Ad modulo ⟨W ⟩ ⊇ ⟨V ⟩
Another method for computing probabilities prI(v) is presented in this section and the following one. It
may be e�cient even if k = dimFq ⟨A1, . . . , Ad⟩ is large. Let W be a matrix of size l × n over Fq and of
rank l. The linear spaces

⟨A1⟩, . . . , ⟨Ad⟩ (15)

are called linearly independent modulo ⟨W ⟩ if
∑d

i=1 ai ∈ ⟨W ⟩ and ai ∈ ⟨Ai⟩ imply ai ∈ ⟨W ⟩. We will
show how to construct a matrix W of lowest rank such that ⟨V ⟩ ⊆ ⟨W ⟩ and (15) are linearly independent
modulo ⟨W ⟩. Then in Section 5.4, we will give a formula to compute

Pr(WX = w, C)

for every w ∈ Fl
q. The probabilities Pr(V X = v, C) are then easy to deduce. The complexity of the

computation is dqrank(W ) operations.
Let U be a space generated by all b1, . . . , bd such that bi ∈ ⟨Ai⟩ and b1 + · · ·+ bd ∈ ⟨V ⟩. Let W be a

matrix whose rows form a basis of U . Then the spaces (15) are linearly independent modulo W . Suppose∑d
i=1 ai ∈ ⟨W ⟩ and ai ∈ ⟨Ai⟩. We need to show that ai ∈ ⟨W ⟩. One has

∑d
i=1 ai ∈

∑d
i=1 bi + ⟨V ⟩, for

some bi ∈ ⟨Ai⟩ ∩ ⟨W ⟩ by the de�nition of W . Then
∑d

i=1(ai − bi) ∈ ⟨V ⟩ and therefore (ai − bi) ∈ ⟨W ⟩.
Hence, ai ∈ ⟨W ⟩ for i = 1, . . . , d. The spaces (15) are linearly independent. The rank of W is the lowest
by construction. The following statement is then true.

Lemma 1. W is a lowest rank matrix such that ⟨V ⟩ ⊆ ⟨W ⟩ and (15) are linearly independent.

We now show how to construct a basis of U . That may be done by solving a system of linear
equations. Let bi1, . . . , biti be a basis for ⟨Ai⟩/⟨V ⟩, i = 1, . . . , d. So bi =

∑ti
j=1 γijbij ∈ ⟨Ai⟩/⟨V ⟩ for

γi1, . . . , γiti ∈ Fq. Therefore b1 + · · ·+ bd ∈ ⟨V ⟩ if and only if

d∑
i=1

ti∑
j=1

γijbij ∈ ⟨V ⟩.

We take a set of linearly independent solutions. Each solution results in b1, . . . , bd and such bi generate
the space U . A basis of U forms the matrix W .
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5.4 Formula for Pr(WX = w,C)

Let W be a matrix constructed in Section 5.3 and rank(W ) = l. Suppose K is a matrix of size n× (n− l)
and of rank n− l such that WK = 0. Hence, Wx = w if and only if x = x0 +Ky, where y is a column
vector of length n− l and Wx0 = w. Let Vi be the linear space spanned by the columns of AiK and

ϕ : Fn−l
q → V1 × . . .× Vd

be a linear mapping de�ned by ϕ(y) = (y1, . . . , yd), where yi = AiKy.

Lemma 2. The mapping ϕ is surjective and

Pr(WX = w, C) = Pr(WX = w,A1X = X1, . . . , AdX = Xd)

=
|Kerϕ|
qn

d∏
i=1

∑
yi∈Vi

Pi(wi + yi), (16)

where wi = Aix0.

Proof. Let's prove that ϕ is surjective. If not, then the values of ϕ belong to a proper subspace of
V1 × . . . × Vd. So there are vi ∈ Fℓi

q such that
∑

i viAiKy = 0 for every y ∈ Fn−l
q and there are non-

zero vectors among v1A1K, . . . , vdAdK. The equality
∑

i viAiKy = 0 holds for any y if and only if
(
∑

i viAi)K = 0, and so
∑

i viAi ∈ ⟨W ⟩. By the de�nition of W , the latter implies viAi ∈ ⟨W ⟩. Hence
v1A1K = · · · = vdAdK = 0, which is a contradiction. Therefore ϕ is surjective.

Let's prove (16). By (13),

Pr(WX = w, C) = 1

qn

∑
x∈Fn

q :

Wx=w

d∏
i=1

Pi(Aix) =
1

qn

∑
y∈Fn−ℓ

q :

W (x0+Ky)=w

d∏
i=1

Pi(Aix0 +AiKy).

Hence,

Pr(WX = w, C) = |Kerϕ|
qn

∑
y1∈V1,

...
yd∈Vd

d∏
i=1

Pi(wi + yi) =
|Kerϕ|
qn

d∏
i=1

∑
yi∈Vi

Pi(wi + yi).

Let r be the rank of the system of linear equations ϕ(y) = (0, . . . , 0). So |Kerϕ| = qn−l−r. The values∑
yi∈Vi

Pi(wi + yi) may be precomputed for any i and wi ∈ Fℓi
q . It takes at most

∑d
i=1 q

ℓi operations.

After that, the cost is dql operations. The overall cost is then dql +
∑d

i=1 q
ℓi operations. Recall that

l = rank(W ) ≤ k = dimFq
⟨A1, . . . , Ad⟩. If l < k, this method is more e�cient than the one in Section

5.2.

5.5 Convolution Formula

Let the rows in A1, . . . , Ad be linearly independent. The probabilities Pr(V X = v | C)may be computed in∑
i q

ℓi+dq2t operations, where t = rank(V ). Since ⟨V ⟩ ⊆ ⟨A1, . . . , Ad⟩, we can represent V =
∑d

i=1 ViAi,
where Vi are matrices of size (t×ℓi). This representation is unique and may be found by solving a system
of linear equations.

Lemma 3.

Pr(V X = v |A1X = X1, . . . , AdX = Xd) = Pr

(
d∑

i=1

ViXi = v

)
. (17)

Proof. Since the rows in A1, . . . , Ad are linearly independent, A1X, . . . , AdX are independent uniformly
distributed random variables. By the conditional probability formula,

Pr(V X = v |A1X = X1, . . . , AdX = Xd) =
Pr

(∑d
i=1 ViAiX = v,A1X = X1, . . . , AdX = Xd

)
Pr(A1X = X1, . . . , AdX = Xd)

=
Pr

(∑d
i=1 ViXi = v,A1X = X1, . . . , AdX = Xd

)
Pr(A1X = X1, . . . , AdX = Xd)

,
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where

Pr (A1X = X1, . . . , AdX = Xd) =

d∏
i=1

Pr(AiX = Xi) =

d∏
i=1

1/qℓi = q−
∑d

i=1 ℓi

and

Pr

(
d∑

i=1

ViXi = v,A1X = X1, . . . , AdX = Xd

)
=

∑
v1,...,vd:∑d
i=1 Vivi=v

d∏
i=1

Pr(AiX = vi)

d∏
i=1

Pi(vi)

= q−
∑d

i=1 ℓi ×
∑

v1,...,vd:∑d
i=1 Vivi=v

d∏
i=1

Pi(vi)

= q−
∑d

i=1 ℓi × Pr

(
d∑

i=1

ViXi = v

)
,

with vi ∈ Fℓi
2 . Therefore,

Pr(V X = v |A1X = X1, . . . , AdX = Xd) = Pr

(
d∑

i=1

ViXi = v

)
.

It takes qℓi linear algebra operations to compute the distribution of ViXi . Then, Pr
(∑d

i=1 ViXi = v
)

may be computed iteratively by a convolution type formula because ViXi are independent. That takes
dq2t operations. The overall cost of computing the distribution Pr(V X = v | C) is

∑d
i=1 q

ℓi +dq2 rank(V ).
According to Section 5.3, ⟨W ⟩ = ⟨V1A1, . . . , VdAd⟩ since the rows in A1, . . . , Ad are linearly independent.
The cost to compute the conditional distribution Pr(WX = w |A1X = X1, . . . , AdX = Xd) is

∑d
i=1 q

ℓi+
dqrank(W ). The conditional distribution on V X may be computed within the same cost since ⟨V ⟩ ⊆ ⟨W ⟩.
So, the convolution method is preferable if the rows A1, . . . , Ad are linearly independent and rank(V ) <
rank(W )/2.

6 Success Probability and Complexity of the Tree Search

To simplify notation, we may assume that I1 = I2 = · · · = In = I. Every relation I for Br is a relation
for Br+1 according to the de�nition of Br and the de�nition (7) of a relation. So Ir ⊆ Ir+1. However, a
relation I modulo Br+1 may not be a relation modulo Br. In the latter case, we can still consider I as
a trivial relation for Br because we have ⟨0⟩ in the right hand side of (7). Then trI = 0 and prI(0) = 1
for such I. Thus we can formally augment the set Ir and get Ir = Ir+1.

6.1 Success Probability

The execution of the algorithm is a success if br = Brx was not rejected for every r = 1, . . . , n, where
X = x is the correct solution to (4). The success probability β is de�ned by

β = Pr(Sr(br) ≥ cr, r = 1, . . . , n |AiX = Xi, i = 1, . . . , N).

We will show how to compute the thresholds c1, . . . , cn given β. Let

S =

S1(b1)
...

Sn(bn)

 =
∑
I∈I

SI , SI =

 ln p1I(b1I)
...

ln pnI(bnI)

 , c =

c1
...
cn

 ,

where brI = TrIbr by the de�nition of the statistic Sr in (10). The inequalities Sr(br) ≥ cr may be
written entry-wise as S ≥ c. So β = Pr(S ≥ c |AiX = Xi, i = 1, . . . , N).

As Br is a submatrix of Br+1 in its �rst r rows, we choose the matrices TrI in (7) such that TrI is a
submatrix of Tr+1 I in its �rst trI rows and �rst r columns as below

Tr+1 I =


0

TrI

...
0

∗ ∗

 .
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So, brI = TrI br is a subvector of br+1 I = Tr+1 I br+1 in its �rst trI entries. The mean of SI is

µI =


µ1I

µ2I

...
µnI

 , µrI =
∑

v∈FtrI
q

prI(v) ln prI(v).

The mean of S is therefore µ =
∑

I∈I µI . Let QI be the covariance matrix of SI . The entry in the row
i and the column j ≥ i of QI is ∑

v∈F
tjI
q

pjI(v) ln piI(vi) ln pjI(v)− µiIµjI ,

where vi is the vector in the �rst tiI entries of v. This is because j ≥ i and biI = TiIbi is the vector in
the �rst tiI coordinates of bjI = TjIbj .

The distribution of SI only depends on the distribution of Xi, i ∈ I. If any distinct relations I, J ∈ I
are disjoint, then SI , I ∈ I, are independent and the covariance matrix of S is Q =

∑
I∈I QI . In practice,

the sets I are small (of size at most d) random-looking subsets of {1, . . . , N}. They are mostly pairwise
disjoint. For the same reason, for large enough |I|, the sum S =

∑
I∈I SI approximately follows the

multivariate normal distribution N(µ,Q). Our experiments with the �lter generator in Section 8 �t well
this assumption. Given β, the threshold c such that Pr(N(µ,Q) ≥ c) = β can be computed.

6.2 Number of Tree Nodes at Level r

The complexity of the algorithm is de�ned by the number of nodes visited during the search. At level r
a current node br is tested with (9) and (10). The number of nodes at level r is the number of survivors
br−1 times q. We show how to compute the number of incorrect survivors br.

Let X be taken from the uniform distribution on Fn
q . Therefore, br = BrX is uniformly distributed

on Fr
q and brI = TrIbr is uniformly distributed on FtrI

q . Let ErI denote the event prI(brI) ̸= 0. Then,
Pr(ErI) = KrI/q

trI , where KrI is the size of the support for the distribution prI . Let Er be the joint
event {ErI , I ∈ I}. If any distinct I, J ∈ I are disjoint, then the events ErI are independent. In practice,
that is likely to happen, so we may assume

εr = Pr(Er) =
∏
I∈I

KrI/q
trI .

Let

S(r) =

S1(b1)
...

Sr(br)

 , c(r) =

c1
...
cr

 ,

where ci are found from Pr(N(µ,Q) ≥ c) = β in Section 6.1. The current br passes the tests up to level
r if and only if Er holds and S(r) > c(r). The probability of this event is

Pr(S(r) > c(r), Er) = Pr(Er) · Pr(S(r) > c(r) | Er).

We will show how to compute α(r) = Pr(S(r) > c(r) | Er). We can write S(r) =
∑

I∈I SI(r), where

SI(r) =

ln p1I(b1I)
...

ln prI(brI)

 .

Let µrI =

µ1I

...
µrI

 be the mean vector and let QrI be the covariance matrix of SI(r). Since bjI is a vector

in the �rst tjI entries of brI , then

µjI =

∑
vr∈FtrI

q :prI(vr )̸=0
ln pjI(vj)

KrI
,
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where vj is the �rst tjI entries of vr. Notice that prI(vr) ̸= 0 implies pjI(vj) ̸= 0. The entry in the row
i and the column j of the covariance matrix QrI is∑

vr∈FtrI
q :prI(vr) ̸=0

ln piI(vi) ln pjI(vj)

KrI
− µiIµjI .

For large |I|, the random variable S(r) =
∑

I∈I SI(r) approximately follows a multivariate normal
distribution N(µr, Qr), where µr =

∑
I∈I µrI and Qr =

∑
I∈I QrI . Therefore α(r) ≈ Pr(N(µr, Qr) >

c(r)). The number of incorrect br which pass the test at level r is approximately

εr · α(r) · qr.

6.3 Complexity

For N > (d/e) q
n−dℓ−r+1

d , according to Section 4.1, we may expect non-trivial relations modulo Br of
weight at most d. Short relations are computed by brute force or lattice reduction. The search for
relations is fully parallelisable. For small d, the distributions prI are relatively easy to compute and
more likely to be non-uniform. However, we do not expect many useful relations if N is moderate and
r is small. For larger r, we can have numerous useful relations. On the other hand, computing the
distributions prI may be tedious for larger d and the distributions tend to be uniform. We need |Ir|
arithmetic operations with real numbers to compute the statistic Sr in (10) for each visited node at level
r. So the complexity of the tree search is

∑n−1
r=0 εr · α(r) · qr+1 · |Ir+1| arithmetic operations, where we

set ε0 = 1, α(0) = 1.

7 Algorithm Implementation Details

The algorithm comprises two stages: precomputation and tree search. Let a small d be a parameter.
In the �rst stage, a set of matrices Br of rank r = 1, . . . , n are chosen; these matrices are such that Br

is a submatrix of Br+1 in its �rst r rows. Then, we obtain relations modulo Br of weight at most d
(see Section 4) and construct the sets Ir together with the computation of the probability distributions
prI , I ∈ Ir, de�ned by (8) (see Section 5). Finally, the thresholds cr are calculated such that the
correct solution is found with a prede�ned success probability β after the algorithm terminates (see
Section 6). That de�nes the statistical tests (9), (10) for 1 ≤ r ≤ n. In the second stage, the candidate
solutions for BrX are tested, the survivors are extended to candidate solutions for Br+1X and tested,
for 1 ≤ r ≤ n− 1. This stage is implemented with a tree search. By (10), the complexity of computing
the statistic Sr is proportional to |Ir|. We can a�ord using only a limited number of the relations Ir
with this variation. Therefore, to construct the sets Ir, all obtained relations are ranked and the best
ones are selected; this is explained in Section 7.1. Section 7.2 presents the tree search.

Alternatively, the FFT may be used (i.e., hybrid method). We choose a parameter 1 ≤ r0 ≤ n.
In the �rst stage we construct the sets Ir and compute prI , I ∈ Ir, as above, however, we do it for
r = r0 +1, . . . , n. We also obtain a large set Ir0 of relations modulo Br0 . In the second stage, the values
of the statistic Sr0(b) are computed for all b ∈ Fr0

q with the FFT (see Section 2.4). The candidates
b = Br0X are ranked according to the values Sr0(b). Then, starting with the most probable candidates,
they are extended to candidate solutions for Br0+1X and tested, the survivors are further extended
and tested, etc. This variation requires space of order qr0 to execute the FFT. We can use up to qr0

relations in Ir0 within the cost of one FFT application. Experimentally, that reduces the size of the
tree search. Since |Ir0 | is large, there may be dependencies between the summands in the de�nition (10)
of the statistic Sr for r = r0 and a normal approximation to the distribution of Sr0 may not be very
accurate.

7.1 Ranking Relations

The complexity of the tree search for every level r is in�uenced by the number of relations Ir as the
statistic (10) incorporates |Ir| summands. The available relations may be ranked according to the size
of the support and the entropy (alternatively, the quadratic imbalance) of the distribution prI on FtrI

q .
Inferior relations are then �ltered out. The size of the support of I ∈ Ir is the number KrI of v ∈ FtrI

q
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such that prI(v) ̸= 0. The normalised q-ary entropy is

H(prI) = −
∑

v∈FtrI
q

prI(v) logq prI(v)− trI .

Let I, J ∈ Ir. We say that I is a better distinguisher than J (i.e., further away from being uniform) if

1. KrI

qtrI
< KrJ

qtrJ
, or

2. H(prI) < H(qrJ) if KrI

qtrI
= KrJ

qtrJ
.

A number of best relations are used to construct the statistic Sr in (10).

7.2 Tree Search

Let b = (a1, a2, . . . , an) ∈ Fn
q . For 1 ≤ r ≤ n, we denote br = (a1, a2, . . . , ar), so that bn = b. To simplify

notation, we will use a predicate Rr. We say Rr(br) = 1 if both conditions (9) and (10) are satis�ed,
and Rr(br) = 0 otherwise. The task is to �nd b such that

R1(b1) = 1, . . . , Rn(bn) = 1. (18)

The solving algorithm is implemented by traversing a tree, where br is tested at level r. If Rr(br) = 1,
then br is extended to br+1 and tested. If Rr(br) = 0, that branch is not explored and the search
backtracks. Whenever the last level n is reached, the value of bn is a solution to (18). Generally, the tree
search �nds candidate solutions to (4). In our experiments with the �lter generator, the correct solution
is always found. In some cases, it is unique at an early level r < n.

8 Key Recovery Attacks for the Filter Generator

In this section we apply the new method for cryptanalysis of the �lter generator.

8.1 Constructing Br and relations

For the �lter generator, the matrix Bn, and therefore its sub-matrices Br, and the relations in Ir were
chosen according to the following principles:

1. Each row of Bn is randomly taken from the vectors aAi, i = 1, . . . , N , where a = (a1, . . . , aℓ) and
the linear Boolean function a(x1, . . . , xℓ) = a1x1+· · ·+aℓxℓ is one of the best linear approximations
to the function f . The vector aAi belongs to the space generated by the rows of Ai. There are at
least r relations I modulo Br of weight 1, thus providing with a few good distributions pr,I .

2. Even though we may �nd numerous relations, only a bounded number of them may be used for the
tree search. We try to choose Ir such that I ∩ J = ∅ for distinct I, J ∈ Ir, that is, all the relations
are pairwise disjoint. In that case, the distribution of the statistic Sr may be well approximated
with the Central Limit Theorem. Also, the sets Ir are chosen to be disjoint. The tests (9) and (10)
may be considered independent for r = 1, . . . , n. So the statistics Sr, r = 1, . . . , n, are independent
and the covariance matrix Q for their joint distribution is diagonal. That allows our experimental
results to be as close as possible to the theoretical analysis based on the normal approximation to
the distribution of Sr.

3. In contrast, when using the FFT at stage r0 (hybrid method), we can a�ord a large number of
relations in Ir0 with almost no additional cost. That signi�cantly reduces the time complexity
of the whole attack. However, the Central Limit Theorem (CLT) does not seem to hold for the
statistic Sr0 , since the sum (10) representing the statistic may contain a large number of dependent
terms. At least in the case when b is distributed uniformly on Fr0

q (as in Section 6.2 where the
number of wrong survivors is computed), the distribution of Sr0 is normal, but the parameters are
di�erent from those calculated with the CLT. Hence, the complexity of the FFT based attack is
generally more di�cult to predict.
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4. Let I be a relation modulo Br. Then, j ∈ I is called irrelevant if vj = 0 for every solution vi,
i ∈ I, and v ̸= 0 to (11). That means that the distribution pr,I does not depend on Xj , even if
j ∈ I. The other indices in I are called relevant modulo Br. Two relations I1 and I2 modulo Br

are equivalent if their set of relevant indices coincide. For each Br, we apply the ranking criteria
in Section 7.1 on the classes of equivalent relations and choose a suitable number of them to create
Ir.

Section A.2 illustrates the principles above for the toy example in Section A.1.

8.2 Experimental Results on the Filter Generator

We now present results of the new method applied to four hard instances of the �lter generator. The
method requires a signi�cantly lower number of keystream bits than FCAs, methods based on the
Berlekamp-Massey algorithm and fast algebraic attacks as in [11, 10]. So, we mainly compare the
e�ciency of the new method with brute force. The latter requires 2n − 1 trials of the LFSR initial state.
On each candidate, we clock the LFSR and generate n bits of the keystream. Therefore, brute force
takes essentially n2n bit operations, where we neglected the cost of clocking the LFSR.

In the �rst two experiments, n = 40 and the �ltering functions f depend on ℓ = 5 and 7 variables,
respectively. We were able to explicitly recover the LFSR initial state with N = 5000 keystream bits
and signi�cantly faster than brute force. The best complexity was achieved with a combination of FFT
and tree search, that is, 232.06 and 235.19 additions of reals, respectively, to compute the values of the
statistics. The results closely �t the theoretical prediction. In the last two experiments, n = 64 and
80, respectively, ℓ = 5 and N = 10 000. The tree search was executed up to some intermediate level.
The complexity was then extrapolated to the whole tree. Again, the best result was achieved with a
combination of FFT and tree search, that is, 257.39 and 270.95 additions of reals, respectively.

In the experiments below, we used instances of the �lter generator which employ �components� from
the existing literature, such as the widely used degree-40 feedback polynomial in [24] and the Boolean
function from Grain-v1. In the �rst three experiments, we used feedback polynomials with high weight
and input indices ki that maximise the memory (i.e., kℓ − k1 ≈ n). In the last experiment, we follow
closely the de�nition of the LFSR in Grain-v1, but maximise the memory when choosing the last input
to the �ltering function. Under various criteria (for example [16]), the devices are hard instances of the
�lter generator.

The statistical software R [34] was used to get the vector c which de�nes the tests (10) and the
probabilities α(r) in Sections 6.1 and 6.2.

8.2.1 Experiments

In all experiments the matrices Br were created as in Section 8.1, we applied brute force to obtain a
set I of relations modulo Br1 , for some value r1, and created the (disjoint) sets Ir by choosing relations
from I. Table 4 shows the values used in the experiments. Then, for all experiments, we computed the
covariance matrix and mean vector for the multivariate distributions to get the vector c of thresholds
using a success probability β = 0.9.

Experiment 1. The polynomial g is a common choice in the literature, f is the one used in Grain-v1,
the input spacings to f are coprime and span the whole register:

� g(x) = x40 + x38 + x33 + x32 + x29 + x27 + x25 + x21 + x19 + x17 + x12 + x11 + x9 + x5 + x3 + x+1;

� f(x1, . . . , x5) = x2 + x5 + x1x4 + x3x4 + x4x5 + x1x2x3 + x1x3x4 + x1x3x5 + x2x3x5 + x3x4x5;

� (k1, . . . , k5) = (0, 7, 15, 26, 39).

The tree search found a unique solution corresponding to the correct initial state. Figure 2 shows the
number of theoretical and experimental survivors from the tree search. The maximum of theoretical
survivors is 228.59 at r = 30. Experimentally, it was 228.34. Since |I30| = 300, the theoretical complexity
is 236.82 and in practice it was 236.57 additions of reals to compute the values of the statistics in the right
hand side of (10). We applied the hybrid approach with r0 = 20 using all 2 269 relations modulo B20

with non-uniform distributions. The complexity of the FFT is O
(
224.32

)
operations. Then, the correct

initial state was recovered after executing the tree search on 32 603 ≈ 215 candidate solutions starting
at level r = 20. Figure 2 shows the number of survivors with the hybrid approach at levels r ≥ 20. The
maximum number of survivors is 223.84 at r = 30. Since |I30| = 300, the complexity of the tree search
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Linear approx. r1 d |I| |Ir|

Experiment 1 x1 + x3 + x4 10 3 15 000
50 for r = 1, . . . , 10
150 for r = 11, . . . , 20
300 for r = 21, . . . , 40

Experiment 2 x1 + x4 + x5 + x6 + x7 5 3 15 000
50 for r = 1, . . . , 10
150 for r = 11, . . . , 20
300 for r = 21, . . . , 40

Experiment 3 x4 + x5 32 3 100 000

100 for r = 1, . . . , 20
250 for r = 21, . . . , 30
400 for r = 31, . . . , 50
500 for r = 51, . . . , 64

Experiment 4 x4 + x5 40 3 49 657

50 for r = 1, . . . , 20
200 for r = 21, . . . , 45
400 for r = 46, . . . , 60
500 for r = 61, . . . , 80

Table 4: Details of the experiments.
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Figure 2: Number of survivors for experiment 1.

is 232.06 additions with reals. The hybrid approach performs better in this case compared to only using
the tree search.

Experiment 2. Device taken from [28], the authors did not specify the input spacings to f , in our
case, they are coprime and span the whole register.

� g(x) = x40 + x38 + x33 + x32 + x29 + x27 + x25 + x21 + x19 + x17 + x12 + x11 + x9 + x5 + x3 + x+1;

� f(x1, . . . , x7) = 1 + x1 + x2 + x3 + x4 + x5 + x6 + x1x7 + x2(x3 + x7) + x1x2(x3 + x6 + x7);

� (k1, . . . , k7) = (0, 3, 8, 15, 26, 31, 39).

The tree search found 14 solutions which included the one corresponding to the correct initial state.
Figure 3 shows the number of theoretical and experimental survivors from the tree search. The maximum
of theoretical survivors is 230.31 at r = 32. Experimentally, it was 227.83. Since |I30| = 300, the theoretical
complexity is 238.54 operations and in practice it was 236.06. We applied the hybrid approach with
r0 = 20 using all 261 relations modulo B20 with non-uniform distributions. The complexity of the FFT
is negligible as above. Then, the correct initial state was recovered after executing the tree search on
259 039 ≈ 218 candidate solutions starting at level r = 20. Figure 3 shows the number of survivors with
the hybrid approach at levels r ≥ 20. The maximum number of survivors is 226.96 at r = 32. Since
|I30| = 300, the complexity of the tree search is 235.19 operations. The hybrid approach performs better
in this case compared to only using the tree search.

Experiment 3. The polynomial g was chosen at random with high weight, f is the one used in
Grain-v1, the input spacings to f are coprime and span the whole register.

� g(x) = x64+x62+x55+x49+x44+x42+x37+x24+x23+x20+x16+x15+x10+x8+x6+x2+1;

� f(x1, . . . , x5) = x2 + x5 + x1x4 + x3x4 + x4x5 + x1x2x3 + x1x3x4 + x1x3x5 + x2x3x5 + x3x4x5;
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Figure 3: Number of survivors for experiment 2.

� (k1, . . . , k5) = (0, 22, 43, 61, 63).

We estimated the theoretical complexity �rst and, given the number of expected survivors, we executed
the tree search up to level 36 only. Figure 4 shows the number of theoretical and partial experimental
survivors from the tree search. The maximum of theoretical survivors is 250.67 at r = 52. Since |I52| =
500, the theoretical complexity is 259.64 operations. At level 36, we got 235.75 survivors from the tree
search and 235.73 survivors theoretically. Since the number of experimental survivors follows very closely
the theoretical curve, we expect the experimental complexity to be about 259.64. We applied the hybrid
approach using 1 115 relations with B20. These are all the relations in I mod B20 whose support have
a non-uniform probability distribution (at level 20). Due to the potential high number of survivors, we
executed the tree search part up to level 36 as well. For this partial experiment, however, we knew
in advance the candidate at level 20 corresponding to the correct initial state. Otherwise, we would
not have been able to know where to stop the tree search and it would be equivalent to brute force all
candidates at level 20. Figure 4 shows the number of survivors with the hybrid approach. We got 232.42

candidates at level 36. Hence, the hybrid approach also performs better than using the tree search only.
As in the previous experiments, the complexity of the FFT is negligible compared to the tree search
part. We assume that the number of survivors for the hybrid method follows the behaviour of the tree
search only, as in the previous experiments. In the worst case, the tree search part of the hybrid method
will not reject any candidates up to level 52, that is, there should be 248.42 survivors at this level. Since
|I52| = 500, the worst case complexity is about 257.39 operations.
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Figure 4: Number of survivors for experiment 3.

Experiment 4. The polynomial g, the function f and the indices ki are taken from Grain-v1. In
that cipher, the last input to f comes from its NFSR (see Section 9); here it comes from the last cell of
the LFSR (k5 = 79) to increase the memory.

� g(x) = x80 + x62 + x51 + x38 + x23 + x13 + 1;

� f(x1, . . . , x5) = x2 + x5 + x1x4 + x3x4 + x4x5 + x1x2x3 + x1x3x4 + x1x3x5 + x2x3x5 + x3x4x5;
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� (k1, . . . , k5) = (3, 25, 46, 64, 79).

We also executed the tree search up to level 36 given the high theoretical complexity. Figure 5 shows the
number of theoretical and experimental survivors (up to level 36) from the tree search. The maximum
of theoretical survivors is 263.9 at B65 giving the theoretical complexity 272.86 (since |I65| = 500). At
level 36, we got 234.72 survivors from the tree search and 235.72 survivors theoretically. Since the number
of experimental survivors follows very closely the theoretical curve, we can expect the experimental
complexity to be about 271.86 operations. We applied the hybrid approach using all 9 845 relations
modulo B20 whose support have a non-uniform probability distribution (at level 20). We executed the
tree search up to level 36 as well and, as in experiment 3, we knew in advance the correct candidate at
level 20. Figure 5 shows the number of survivors with the hybrid approach. We got 232.98 candidates
at level 36. Hence, the hybrid approach also performs better than using the tree search only. As in the
previous experiments, the complexity of the FFT is negligible compared to the tree search part. We
assume that the number of survivors for the hybrid method follows the behaviour of the tree search only
method, as in the previous experiments. In the worst case, the tree search part of the hybrid method
will not reject any candidates up to level 65, that is 261.98 survivors at level 65. Since |I65| = 500, the
worst case complexity is about 270.95 operations.
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Figure 5: Number of survivors for experiment 4.

8.2.2 Analysis of experimental results

The relations (7) may be seen as a generalisation of the parity-checks used in FCAs. Some FCAs perform
a partial brute force on a subset Γ of the LFSR's initial state bits as in [9]. We call parity-checks used in
that work parity-checks modulo Γ. The expected number of weight-d parity-checks modulo Γ given the
length-N keystream is 2|Γ|−n

(
N

d−1

)
, according to [9]. With the same weight, the set of relations modulo

Br, for an appropriate matrix Br, incorporates parity-checks modulo Γ, where |Γ| = r. However, for the
same number of keystream bits, the expected number (12) of relations modulo Br is signi�cantly higher.
Table 5 compares these numbers for some explicit parameters. The value of a relation I is de�ned by
the quality of the distribution (8). A large pool of the relations is constructed during precomputation,
then we choose those to use during the attack.

That explains why our method requires less keystream bits to recover the LFSR initial state compared
to FCAs and is still faster than brute force. Table 6 shows a comparison of the data and time complexity
of our method with some reported FCAs. Recall that p = Pr(si = zi). For experiment 1, there is no
result reported for the same parameters, but we compare it against the attack in [28] since f yields
1 − p = 0.375. For experiment 2 we used the same device as in [28]. Experiment 3 can be compared
to the attack in [8]. Even though the parameters n and 1 − p are not the same, we can notice that
our method requires less keystream bits when compared to the experiments with n = 60. The closest
comparison for experiment 4 may be the result with n = 70 from [8]; in our experiment, the length of
the LFSR is larger and our method requires less keystream bits. It is reported that the method in [8]
has error probability of 0.6 for n = 60 and 0.4 for n = 70; in our case, the error probability is 0.1.
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n d N r = |Γ| # parity-checks mod Γ

40 3 5 · 103
0 0

15 0

25 28.58

40 3 8 · 104
0 0

15 26.58

25 216.58

89 3 228 32 0

(a) Expected number of parity-checks mod Γ of weight d.

n d N ℓ r # relations modBr

40 3 5 · 103
5 0 29.28

5 15 224.28

5 25 234.28

40 3 5 · 103
7 0 215.28

7 15 230.28

7 25 240.28

40 3 8 · 104 5 15 236.29

7 15 242.29

89 3 228
5 32 213.42

7 32 245.42

(b) Expected number of relations modBr of weight d.

Table 5: Comparison of the expected number of parity-checks and relations.

n = deg(g) d 1− p N Time complexity
Exp. 1 40 3 0.375 5 · 103 232

[28] 40 5 0.375 1.7 · 104 228

Exp. 2 40 3 0.375 5 · 103 235

[28] 40 5 0.375 1.7 · 104 228

Exp. 3 64 3 0.375 1 · 104 257

[8] 60 3 0.300 6.3 · 104 242

[8] 60 3 0.400 6 · 105 244

Exp. 4 80 3 0.375 1 · 104 271

[8] 70 3 0.350 1.12 · 106 244

Table 6: Comparison of attacks against the �lter generator.

9 Application to Grain ciphers

Ciphers in the Grain family are bit oriented synchronous stream ciphers for hardware implementation.
Their main components are an LFSR, an NFSR and an output function constructed with a nonlinear
Boolean function h and linear terms added to h; see Figure 6.

LFSR

+

+NFSR

+

h

+

zi

Figure 6: Overview of the components in the Grain family of ciphers.

In this section, we show how to construct a system of equations (4) for the toy Grain-like cipher
described in [38] and Grain-v1. We apply the basic multivariate correlation attack from Sections 2.2 and
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2.4 to these ciphers. It requires a signi�cantly lower number of keystream bits compared to [38], though
with higher time complexity. For the ciphers in this section, the resulting relations presented a high
number of right hand sides and therefore required a more e�cient strategy for storing their probability
distributions. So, we did not apply the test-and-extend algorithm in this case. That is a future direction
for this work. For both ciphers, we also �nd linear combinations of LFSR bits with higher correlations
than those indicated in [38].

In [36], Shi et al. applied a FCA against SNOW-V [13] and SNOW-Vi [14] by �nding a linear ap-
proximation with high correlation. The latter is obtained with the so-called technique of approximation
to composite functions together with the aid of an automatic search model based on the SAT/SMT
technique (see the paper for details). The technique in [36] may be used with the Grain ciphers and
check whether it yields linear approximations with even higher correlation. Additionaly, in a similiar
fashion as described below for the Grain ciphers, our new technique may be applied to SNOW-V and
SNOW-Vi using the correlations found in [36]. However, we do not follow these directions in this work.

9.1 Grain toy cipher

The cipher consists of LFSR and NFSR of length 24 bits each. The LFSR and NFSR feedback at time
t is computed by

st+24 = st + st+1 + st+2 + st+7,

bt+24 = st + bt + bt+5 + bt+14 + bt+20bt+21 + bt+11bt+13bt+15,

respectively. The keystream bit is computed by

zt = h(st+3, st+7, st+15, st+19, bt+17) +
∑
j∈A

bt+j , (19)

where A = {1, 3, 8} and

h(x0, x1, x2, x3, x4) = x1 + x4 + x0x3 + x2x3 + x3x4 + x0x1x2 + x0x2x3+

x0x2x4 + x1x2x4 + x2x3x4

Assume the N -bit keystream z1, . . . , zN is given. Let X = (s1, s2, . . . , s24)
T be the LFSR unknown

initial state and

AtX = (st+3, st+7, st+15, st+19, st+8, st+12, st+20, st+24, st+17, st+21,

st+29, st+33, st+27, st+31, st+39, st+43, st+1 + st+3 + st+8)
T ,

where At is a 17 × 24-matrix. That is, AtX incorporates 17 linear functions in X. We will construct
a multivariate probability distribution on AtX for a random variable Xt and get a system of equations
AtX = Xt, t = 1, . . . , N , as in Section 2.1.

Let T = {0, 5, 14, 24} as in [38]. We may have two distributions on AtX depending on the bit
Zt =

∑
i∈T zt+i. From the de�nition of the NFSR feedback∑

i∈T,j∈A

bt+j+i =
∑
j∈A

st+j +
∑
j∈A

bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j .

So (19) implies

Zt +
∑
i∈T

h(st+3+i, st+7+i, st+15+i, st+19+i, bt+17+i) +
∑
j∈A

st+j =∑
j∈A

bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j (20)

and

st+17 +
∑
i∈T

bt+17+i = bt+37bt+38 + bt+28bt+30bt+32. (21)
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The distribution of Xt on AtX is then computed as a uniform distribution conditioned by the relations
(20) and (21). The distribution is non-uniform. To be speci�c, let a = (a1, . . . , a17) be a 17-bit string
and we want to compute Pr(AtX = a). By AtX = a, (20) and (21) the following 22 bits of

u = (Zt, a1, . . . , a17, bt+17, bt+22, bt+31, bt+41) (22)

uniquely de�ne 3 bits of

v = (bt+22,
∑

j∈A bt+20+jbt+21+j + bt+11+jbt+13+jbt+15+j , bt+37bt+38 + bt+28bt+30bt+32). (23)

So ϕ(u) = v for a 22-bit to 3-bit mapping ϕ. Each v has the same number 219 of pre-images u under ϕ.
The distribution pv on (23) is precomputed by running over 15 variables involved in the right hand side.
This induces a distribution 2−19pϕ(u) on (22). Under condition that Zt is �xed by ε = 0 or 1 we have

Pr(Xt = a|Zt = ε) = 2−18
∑

bt+17,bt+22,bt+31,bt+41,Zt=ε

pϕ(u),

where the sum is run over all values of bt+17, bt+22, bt+31, bt+41 and Zt = ε. Therefore AtX = Xt, t =
1, . . . , N .

We apply the FFT-based method in Section 2.4 to recover X. By Section 2.2, we �nd the parameters
of the limit distributions as

µ01 = −11.782815, σ2
01 = 0.00137196 and µ11 = −11.784191, σ2

11 = 0.00138229.

By the formulae in Section 2.3, for c = −358 013.3911 and N = 30 382 ≈ 214.89, the number of incorrect
survivors is < 1 on average and the success probability is β = 0.9999. The condition (5) is ful�lled. The
FFT is used to compute the values of the statistic in (6), thus recovering X. The complexity of the
attack is proportional to 217N +24 · 224 ≈ 231.89 operations. The cipher state is 48 bits long. According
to [38], with N = 223.25 the whole state may be recovered with the number of operations and memory
size of order N .

Let p0, p1 be a probability distribution, then δ = p0 − p1 is called its correlation. With the FFT we
�nd all linear combinations of the entries of AtX with non-zero correlations. Table 7 shows absolute
values of non-zero correlations δ and the number of linear combinations Nδ with the same δ. The data
does not depend on Zt. It is stated in [38] that there are 1024 linear combinations with highest absolute
value of the correlation 2−10.41503. However that is not correct according to Table 7. There are linear
combinations with even a higher correlation. For instance, the absolute value of the correlation of

st+7 + st+19 + st+12 + st+24 + st+17 + st+21 + st+31 + st+43 + st+1 + st+3 + st+8 (24)

is 2−9.83007. The reason for the discrepancy is the relation (21) which was ignored in [38]. So we can
slightly improve the results of that paper, though we do not follow this direction here.

δ Nδ

9437184
233 = 2−9.83007... 128

6291456
233 = 2−10.41503... 768

4718592
233 = 2−10.83007... 512

3145728
233 = 2−11.41503... 3968

1572864
233 = 2−12.41503... 3584

Table 7: Correlations for Grain toy cipher

We veri�ed experimentally the correlation value of (24) as follows. Let s denote (24) with t = 0. We
randomly chose 230 di�erent initial states for the cipher (i.e, LFSR and NFSR initial states). For each
initial state, we computed Z0 = z0 + z5 + z14 + z24, and when Z0 = 0, we computed s and kept track
of the number of times s = Z0. We got that Z0 = 0 occurred 536 879 412 ≈ 229.000022 times and among
those, s = 0 occurred 268 737 466 = 228.001622 times. With this, we obtained 2−9.816232 as experimental
correlation.
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9.2 Grain-v1

We apply a similar method to Grain-v1. The LFSR and NFSR feedback at time t are computed by

st+80 = st + st+13 + st+23 + st+38 + st+51 + st+62,

bt+80 = st + bt+62 + bt+60 + bt+52 + bt+45 + bt+37 + bt+33 + bt+28 + bt+21 + bt+14+

bt+9 + bt + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45+

bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33+

bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37 + bt+33bt+28bt+21bt+15bt+9+

bt+52bt+45bt+37bt+33bt+28bt+21.

respectively. The keystream bit is computed as

zt = h(st+3, st+25, st+46, st+64, bt+63) +
∑
j∈A

bt+j , (25)

where A = {1, 2, 4, 10, 31, 43, 56} and

h(st+3, st+25, st+46, st+64, bt+63) = st+25 + bt+63 + st+3st+64 + st+46st+64+

st+64bt+63 + st+3st+25st+46 + st+3st+46st+64+

st+3st+46bt+63 + st+25st+46bt+63 + st+46st+64bt+63.

Let X = (s1, s2, . . . , s80)
T be the LFSR unknown initial state and

AtX = (st+3, st+25, st+46, st+64, st+17, st+39, st+60, st+78, st+24, st+67, st+85, st+31,

st+53, st+74, st+92, st+40, st+62, st+83, st+101, st+48, st+70, st+91, st+109, st+55,

st+77, st+98, st+116, st+63, st+106, st+124, st+65, st+87, st+108, st+126, st+105,

st+144, st+1 + st+2 + st+4 + st+10 + st+31 + st+43 + st+56),

where At is a 37 × 80-matrix. That is AtX incorporates 37 linear functions in X. We will construct
a multivariate probability distribution on AtX for a random variable Xt and get a system of equations
AtX = Xt, t = 1, . . . , N as in Section 2.1.

Let T = {0, 14, 21, 28, 37, 45, 52, 60, 62, 80} as in [38]. We may have two distributions on AtX de-
pending on Zt =

∑
i∈T zt+i. From the de�nition of the NFSR∑

i∈T,j∈A

bt+i+j =
∑
j∈A

st+j +
∑
j∈A

g′(b(t+j)), (26)

where

g′(b(t)) = bt+33 + bt+9 + bt+63bt+60 + bt+37bt+33 + bt+15bt+9 + bt+60bt+52bt+45+

bt+33bt+28bt+21 + bt+63bt+45bt+28bt+9 + bt+60bt+52bt+37bt+33+

bt+63bt+60bt+21bt+15 + bt+63bt+60bt+52bt+45bt+37+

bt+33bt+28bt+21bt+15bt+9 + bt+52bt+45bt+37bt+33bt+28bt+21.

So (25) and (26) imply

Zt +
∑
i∈T

h(st+3+i, st+25+i, st+46+i, st+64+i, bt+63+i) +
∑
j∈A

st+j =
∑
j∈A

g′(b(t+j)) (27)

and
st+63 +

∑
i∈T

bt+63+i = g′(b(t+63)). (28)

Let a = (a1, . . . , a37) be a 37-bit vector, we want to compute Pr(AtX = a). By (27) and (28), the
following 48 bits of

u = (Zt, a1, . . . , a37, bt+63, bt+77, bt+84, bt+91, bt+100, bt+108, bt+115, bt+123, bt+125, bt+143) (29)
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uniquely de�ne 9 bits of

v = (bt+77, bt+84, bt+91, bt+100, bt+108, bt+115, bt+123,
∑
j∈A

g′(b(t+j)), g′(b(t+63)) ). (30)

So ϕ(u) = v for a 48-bit to 9-bit mapping ϕ. Each v has 239 pre-images u under ϕ. The distribution pv
on (30) is pre-computed. This induces a distribution 2−39pϕ(u) on (29). The last entry in AtX above
incorporates 6 di�erent variables (st+31 appears in position 12 as well). Hence, under the condition that
Zt is �xed by ϵ = 0 or 1, we have

Pr(Xt = a | Zt = ϵ) = 2−38
∑

bt+63,bt+77,bt+84,bt+91

bt+100,bt+108,bt+115,bt+123

bt+125,bt+143,Zt=ϵ

pϕ(u).

The distribution pv was pre-computed as follows. The expression for (30) incorporates 64 variables.
Some of the variables are �xed by constants, then

∑
j∈A g′(b(t+j)) and g′(b(t+63)) are represented as sums

of �independent� polynomials with fewer variables. Independence means that each of the rest variables
appears in one polynomial only. The distributions relevant to the independent polynomials are computed
separately. Finally, they are combined to get pv. We computed pv by �xing bt+38, bt+46, bt+64, bt+65, bt+71

and bt+91. The largest computation corresponded with a polynomial in 23 variables.
By Section 2.2, we �nd the parameters of the limit distributions as

µ0,1 = −25.646445680717974846, σ2
0,1 = 3.204164923186231 · 10−15

and
µ1,1 = −25.646445680717978051, σ2

1,1 = 3.204164923189462 · 10−15.

By the formulae in Section 2.3, for c = −326687075514236406.749337 and N = 253.5, the number of
incorrect survivors is < 1 on average and the success probability is β = 0.9991. The condition (5) is
ful�lled. The FFT is used to compute the values of the statistic in (6), thus recoveringX. The complexity
of the attack is proportional to 237N +80 · 280 ≈ 290.5 operations. The internal state of the cipher is 160
bits long. According to [38], with N = 275.11 the whole state may be recovered with time complexity
and space complexity of order N .

With the FFT applied to f(v) = pv, we �nd linear combinations of the entries of AtX with non-zero
correlations. That would require space/memory for 237 elements. Due to the memory limitation, we
adopted the following strategy. The Fourier transform on f : Fn

2 → R at point u is

f̂(u) =
∑
x∈Fn

2

(−1)u·xf(x),

where u · x is the dot product of u and x. Let n = n1 + n2 with n1 > 0 and n2 > 0, then

f̂(u) =
∑

x1∈Fn1
2

∑
x2∈Fn2

2

(−1)(u1,u2)·(x1,x2)f(x1, x2) =
∑

x1∈Fn1
2

(−1)u1·x1
∑

x2∈Fn2
2

(−1)u2·x2f(x1, x2)

=
∑

x1∈Fn1
2

(−1)u1·x1gu2(x1) = ĝu2(u1), (31)

where ui ∈ Fni
2 and (u1, u2), (x1, x2) denote the concatenation of vectors and gu2

(x1) =
∑

x2∈Fn2
2
(−1)u2·x2f(x1x2).

We can compute the Fourier-Hadamard spectrum of f by using equation (31). For every u2 ∈ Fn2
2 ,

we evaluate gu2
(x1) in all points x1 by running over x2, and then we apply the FFT to compute

f̂(u) = ĝu2(u1). The total complexity is 2n2(2n + n12
n1) = 2n(2n2 + n1) operations.

The time complexity of the method above is higher compared to that of the FFT (n2n operations).
However, since we are interested in certain points u (e.g., where f̂(u) ̸= 0 or |f̂(u)| ≥ t for a thresh-
old t), we can choose n1 and n2 such that the computations of ĝu2

can be done with the available
space/memory and discard the irrelevant data. The computation is parallelisable which is additional to
the parallelisation that can be implemented within the FFT for computing ĝu2 .

For this application, we chose n2 = 9 and we parallelised the computation of the 29 possible values
for u2. Each computation of the Fast Walsh-Hadamard transform is therefore applied to a vector of
length 228. Since each element was stored on a 64-bit precision �oating-point number, the total memory
requirement was 234 bits. For each value of u2, we only kept the values of u1 such that |f̂(u)| >
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2−36, where u = (u1, u2). In other words, we only kept the linear combinations of AtX given by u
whose correlation's absolute value is greater than 2−36. The authors in [38] found 442 368 such linear
combinations, however, we found 443 264. As in the toy example above, we attribute this discrepancy
to the omission of (28) in [38]. There are 171 di�erent correlation values among the 443 264 linear
combinations we found. Table 8 shows some of the highest and lowest values. As an example,

st+3 + st+25 + st+64 + st+39 + st+60 + st+78 + st+24 + st+85 + st+53 + st+92+

st+62 + st+83 + st+101 + st+70 + st+109 + st+77 + st+116 + st+63 + st+106 + st+124+

st+87 + st+126 + st+105 + st+144 + st+1 + st+2 + st+4 + st+10 + st+31 + st+43 + st+56

has the highest correlation 2−35.46890046.

δ Nδ

2−35.46890046... 64

2−35.50019546... 64

2−35.54760452... 128

2−35.55461504... 640

2−35.57682560... 64

(a) Highest correlations for Grain-v1.

δ Nδ

2−35.98275923... 128

2−35.98646706... 1280

2−35.99121484... 256

2−35.99186310... 640

2−35.99726377... 640

(b) Lowest correlations for Grain-v1.

Table 8: The correlations for Grain-v1.

10 Conclusions

We introduced new methods for cryptanalysis of LFSR-based stream ciphers. The cryptanalysis is
presented as a more general problem of �nding solutions to systems of linear equations with associated
probability distributions on possible right hand sides. We described the multivariate correlation attack
and then, the test-and-extend algorithm. The latter has lower time complexity and comprises two stages,
precomputation and main computation. In the precomputation stage, we �nd relations modulo B and
compute the probability distributions induced by these relations. The second stage has two variations:
tree search and hybrid variant. The �rst one �nds the initial state of the LFSR (in general, candidate
solutions to the systems of linear equations) by traversing a tree along with a statistical test to decide
which branches to discard. The second variant also traverses a tree, however, the tree search is started
at a further level on the tree following the ranking given by the statistic associated to the nodes and
computed with the FFT.

We applied the test-and-extend algorithm to a variety of hard instances of the �lter generator. In
some experiments, we successfully recovered the correct initial state of the LFSR. For the other cases,
our cryptanalytic results are theoretical only. In all cases, the hybrid variant outperformed the simple
tree search. This new method allows successful recovery of the initial state requiring a lower number of
keystream bits compared to other published attacks. We also applied the multivariate correlation method
to a toy Grain-like cipher and Grain-v1. Again, we recover the LFSR's initial state for the ciphers using
less keystream bits compared to the best known attack. On the other hand, the time complexity to
recover the whole cipher state (LFSR and NFSR states) is higher using our method. In the case of
Grain-v1, our results are theoretical only. Additionally, for both ciphers, we found linear combinations
of LFSR sequence bits with a higher correlation than those reported in [38]. Particularly, the correlations
for Grain-v1 were obtained by computing the FFT on a large input vector; we used a simple method to
parallelise this computation, which, to the best of our knowledge, has not been reported.
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A Toy example

A.1 Application of the new method

Here we illustrate the idea of the new method by applying it to a small device. Let the keystream
z1, . . . , z11 = 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0 be produced by a �lter generator where g(x) = x7+x5+x2+x+1,
f(x1, x2, x3) = x1 + x1x2 + x2x3 and (k1, k2, k3) = (0, 2, 5). We will �nd its initial state X. We have

M =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 1 0 0 1 0


and Λ =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 .

Then the matrices Ai = ΛM i−1, i = 1, . . . , 11 are

A1 =

1 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0

 , A2 =

0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

 , A3 =

0 0 1 0 0 0 0
0 0 0 0 1 0 0
1 1 1 0 0 1 0

 ,

A4 =

0 0 0 1 0 0 0
0 0 0 0 0 1 0
0 1 1 1 0 0 1

 , A5 =

0 0 0 0 1 0 0
0 0 0 0 0 0 1
1 1 0 1 1 1 0

 , A6 =

0 0 0 0 0 1 0
1 1 1 0 0 1 0
0 1 1 0 1 1 1

 ,

A7 =

0 0 0 0 0 0 1
0 1 1 1 0 0 1
1 1 0 1 0 0 1

 , A8 =

1 1 1 0 0 1 0
1 1 0 1 1 1 0
1 0 0 0 1 1 0

 , A9 =

0 1 1 1 0 0 1
0 1 1 0 1 1 1
0 1 0 0 0 1 1

 ,

A10 =

1 1 0 1 1 1 0
1 1 0 1 0 0 1
1 1 0 0 0 1 1

 , A11 =

0 1 1 0 1 1 1
1 0 0 0 1 1 0
1 0 0 0 0 1 1

 .

The truth table of f is in Table 9. The distributions P(0) = (1/4, 1/4, 1/4, 0, 0, 0, 1/4, 0) and P(1) =
(0, 0, 0, 1/4, 1/4, 1/4, 0, 1/4) correspond to f(a) = 0 and f(a) = 1, respectively. Hence, the distributions
of the random variables Xi are Pi = P(0), for i = 2, 4, 5, 6, 7, 8, 9, 11, and Pi = P(1), for i = 1, 3, 10. That
de�nes the system (4).

a (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

f(a) 0 0 0 1 1 1 0 1

Table 9: Truth table of f(x1, x2, x3) = x1 + x1x2 + x2x3.

Let the matrices Br, r = 1, . . . , 7, be obtained by taking the �rst r rows of

B =



0 0 0 0 1 0 1
1 0 1 0 0 0 0
0 1 0 1 0 0 0
1 1 1 0 0 0 0
1 1 1 0 0 0 1
0 0 0 0 1 1 1
0 0 1 0 1 0 0


.

We will use short relations of weight d = 2. To show the idea of relations, let us consider B3 and

I = {1, 2}: we have that ⟨A1, A2⟩∩ ⟨B3⟩ = ⟨T3 IB3⟩, where T3 I =

(
0 1 0
0 0 1

)
and therefore t3 I = 2. We

de�ne the sets

I1 = {{5, 7}, {1, 5}} ,
I2 = {{1, 6}, {1, 7}, {2, 5}} ,
I3 = {{8, 10}, {2, 11}, {3, 7}, {4, 8}} ,
I4 = {{2, 4}, {4, 6}, {2, 6}, {2, 7}, {2, 10}} ,
I5 = {{5, 11}, {1, 2}, {2, 9}, {7, 11}, {6, 7}, {1, 11}, {4, 5}, {10, 11}, {1, 8}, {5, 8}} ,
I6 = {{1, 10}, {3, 4}, {5, 9}, {8, 11}, {4, 10}, {3, 6}, {3, 9}} ,
I7 = {{8, 9}} ,
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and compute the probability distribution of those relations. We set the success probability β = 0.9 and
get the thresholds

(c1, . . . , c7) = (−2.8344,−8.8069,−15.4057,−17.0976,−39.5219,−28.2609,−4.0000).

The applcation of the tree search yielded a unique candidate solution b = (0, 0, 1, 0, 0, 1, 1)T ; the tree
traversal is depicted in Figure 7. Solving the linear system B7X = b yields X = (1, 0, 1, 1, 0, 1, 0)T , which
is the correct initial state.

0

0

0 1

0

0

0 1

0 1

1

1

1

0 1

1

Level

1

2

3

4

5

6

7

Figure 7: Tree traversal for the toy example. Filled nodes represent the survivor nodes. Non-�lled nodes
represent rejected nodes whose branch is not traversed.

We also applied the hybrid approach with r0 = 3. Since this is a small example, we used all the
available relations modulo B3 for the given keystream to compute the statistic at that level:

I =


{1, 2}, {1, 3}, {1, 5}, {1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {1, 11},
{2, 3}, {2, 4}, {2, 5}, {2, 6}, {2, 7}, {2, 9}, {2, 10}, {2, 11}, {3, 4},
{3, 6}, {3, 7}, {3, 9}, {3, 10}, {3, 11}, {4, 5}, {4, 6}, {4, 8}, {4, 10},
{4, 11}, {5, 6}, {5, 7}, {5, 8}, {5, 9}, {5, 11}, {6, 7}, {6, 10}, {7, 8},
{7, 9}, {7, 10}, {7, 11}, {8, 9}, {8, 10}, {8, 11}, {9, 10}, {9, 11}, {10, 11}

 .

After applying the FFT at level 3, the candidates were sorted as follows according to the value of the
statistic:

(0, 1, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 0, 1), (1, 0, 0), (0, 0, 0), (1, 0, 1).

Neither of the �rst four candidates survived at level 4. The �fth candidate is the one corresponding to
the correct initial state, which was recovered, and the tree search stopped at this point. The complexity
of the hybrid method is de�ned by the FFT. Due to the size of this example, the hybrid approach is
the worst. For bigger instances, however, the hybrid approach yields the best results (e.g., the results in
Section 8.2).

A.2 Constructing Br and relations

We now illustrate the principles in Section 8.1 (i.e., how to obtain the matrices Br and the sets Ir) for
the toy example.

� The matrix B = B7 is constructed by randomly taking vectors from (1, 1, 0)Ai, where x1 + x2 is a
good linear approximation to f .

� The 45 weight-2 relations modulo B3 in the set I were found using the method in Section 4.1. As
explained at the beginning of Section 6, they can be seen as relations modulo Br for r = 1, . . . , 7.
Some I, J ∈ I taken modulo Br may be equivalent for some values of r and not equivalent for
others. For example, I = {1, 2} and J = {1, 8}. When r = 1 we have(

0
)
B1 =

(
0 0 0

)
A1 +

(
0 0 0

)
A2,

(
0
)
B1 =

(
0 0 0

)
A1 +

(
0 0 0

)
A8.

When r = 2 we have(
0 1

)
B2 =

(
1 1 0

)
A1 +

(
0 0 0

)
A2,

(
0 1

)
B2 =

(
1 1 0

)
A1 +

(
0 0 0

)
A8.

29



Finally, when r = 3 we get(
0 1 0
0 0 1

)
B3 =

(
1 1 0
0 0 0

)
A1 +

(
0 0 0
1 1 0

)
A2,

(
0 1 0
0 0 1

)
B3 =

(
1 1 0
0 0 0

)
A1 +

(
0 0 0
0 1 1

)
A8.

No indices in I or J are relevant modulo B1 and the only relevant index of I and J at level 2 is 1,
so they are equivalent modulo B1 and B2. They are no longer equivalent modulo Br, r ≥ 3, since
their set of relevant indices are distinct.

� The sets Ir, r = 1, . . . , 7, are disjoint, though not all relations within one set Ir are pairwise
disjoint.
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