
CaSCaDE: (Time-Based) Cryptography from
Space Communications DElay

Carsten Baum1⋆, Bernardo Machado David2⋆⋆

Elena Pagnin3⋆ ⋆ ⋆, and Akira Takahashi4†

1 Technical University of Denmark, cabau@dtu.dk
2 IT University of Copenhagen, bernardo@bmdavid.com

3 Chalmers University of Technology, elenap@chalmers.se
4 J.P.Morgan AI Research & AlgoCRYPT CoE, takahashi.akira.58s@gmail.com

July 5, 2024

Abstract. Time-based cryptographic primitives such as Time-Lock Puz-
zles (TLPs) and Verifiable Delay Functions (VDFs) have proven to be
pivotal in several areas of cryptography. All existing candidate construc-
tions, however, guarantee time-delays based on the average hardness of
sequential computational problems. This means that any algorithmic or
hardware improvement affects parameter choices and may turn deployed
systems insecure.
To address this issue, we investigate how to build time-based crypto-
graphic primitives where delays depend on sources other than sequential
computations: namely, transmission delays caused by sequential commu-
nication. We explore sequential communication delays that arise when
sending a message through a constellation of satellites in Space. This
setting has the advantage that distances between protocol participants
are guaranteed as positions of satellites are observable from Earth, more-
over delay lower bounds are unconditional and can be easily computed
using the laws of Physics (no transmission travels faster than the speed
of Light).
We introduce proofs of sequential communication delay (SCD) in the
Universal Composability framework, that can be used to convince a ver-
ifier that a message has accrued delay by traversing a path among a set
of scattered satellites. With our SCD proofs we realize the first proposals
of Publicly Verifiable TLPs and VDFs whose delay guarantees are rooted
on physical limits, rather than ever-decreasing computational hardness.
Finally, our notion of SCD paves the way to the first Delay Encryption
construction not based on supersingular isogenies.

⋆ This work was supported by Protocol Labs.
⋆⋆ This work was supported by Protocol Labs and the Independent Research Fund

Denmark (IRFD) grant number 0165-00079B.
⋆ ⋆ ⋆ This work was supported by the VR project number 2022-04684.

† Work partially done while affiliated with the University of Edinburgh.

cabau@dtu.dk
bernardo@bmdavid.com
elenap@chalmers.se
takahashi.akira.58s@gmail.com

Table of Contents

1 Introduction . 3
1.1 Our Contributions . 4
1.2 Technical Overview . 5

2 Preliminaries . 7
3 Modeling Communication Delays . 8
4 Proofs of Sequential Communication Delays . 11

4.1 Modelling Proofs of Sequential Communication Delay 11
5 Verifiable Delay Functions . 17
6 Delay Encryption . 18
7 Publicly Verifiable Time-Lock Puzzles . 20
8 Stateless VDF . 24
A Auxiliary Functionalities and other Preliminaries 28

A.1 UC Secure Public-Key Encryption with Plaintext Verification . . . 31
A.2 Global Clocks and Global tickers . 33

B Delayed Communication - Proofs and more details 34
B.1 Realizing F f∆

mdmt . 34
B.2 Proof of Theorem 1 . 36
B.3 Computing channel delays . 36
B.4 The protocol πMulti−SCD and proof of Theorem 2 37

C Proof of Theorem 5 . 39
D UC Treatment of Delay Encryption . 39
E Practical Considerations . 41

1 Introduction

Time-Lock Puzzles (TLPs) [42] and Verifiable Delay Functions (VDFs) [11] have
received a lot of attention recently as building blocks for e.g. randomness bea-
cons and multiparty computation with partial fairness. The minimum delay in
evaluating a VDF or solving a TLP is obtained by forcing parties to solve com-
putational problems that require a number of inherently sequential steps. Even
if the hardness of sequential computational problems is well understood in the-
ory, lower bounds for the concrete time spent computing a number of sequential
steps heavily depends on the (evolving) algorithms and hardware used for such
computation.

In this work, we take a different approach and investigate how to construct
time-based cryptographic primitives from physical assumptions (in addition to
classical trust assumption). This allows us to build proofs of sequential com-
munication delay based on Physics phenomena that have strong experimental
evidence and are absolute. Our constructions derive their delay guarantees from
special relativity, which posits that communication cannot happen faster than
the speed of Light. Thus, the communication delay between two parties is pre-
cisely lower bounded by their relative distance. In detail, let d denote the distance
in meters between two satellites, and c the speed of Light, then the minimal pos-
sible time-delay in their communication is ∆ = d/c (see Appendix E for more
information). The fundamental physical delay ∆ becomes apparent when trans-
mitting data over large distances of thousands of km. This motivates the use
of communication delay incurred by sending messages across a constellation of
satellites placed far from each other, in Space.

Practical Considerations About Our Setting. The advent of relatively cheap
CubeSats [41] has made it possible to easily deploy sizable constellations for
specific applications, sparking initiatives towards satellite-based cryptographic
applications [1]. It is therefore not unthinkable that satellite time could be rented
from different satellite providers in the future, similar to how one rents cloud
servers today. Moreover, having satellites owned by different companies partic-
ipating also shows that an assumed threshold on corruptions in a constellation
of satellites is realistic. Using satellites also allows any third party verifiers to
ascertain communication delay lower bounds. There are many ways to track
satellites and learn their positions, which allows for determining communication
delay lower bounds as discussed in Appendix E. Finally, since it is hard and
costly to tamper with a satellite in orbit, one can combine the physical delay
guarantees of special relativity with computational delay guarantees provided
by an on-board non-programmable computational device (e.g. an ASIC) that
solves hard sequential problems (e.g. iterated squaring) with well-known run-
times. Since it is infeasible to update the internal device, later advances that
speed up these runtimes do not affect the on-board computation.

Can’t These Delays Be Simulated Locally? Since we also rely on a trust assump-
tion (for reasons that will be more clear later), it might seem that delays can be

3

trivially guaranteed by having honest parties quarantine messages for a certain
period of time before transmitting them, instead of relying on physical delay.
Such a naive solution exploiting local delays would require tightly synchronized
clocks, which are expensive to realize in practice. Moreover, the trivial solu-
tion does not provide precise and absolute delay lower bounds because clocks
on real-world devices may be susceptible to unexpected physical faults. We are
thus motivated to propose a better solution that requires synchronization only
to guarantee termination, while achieving the minimum delays imposed by the
speed-of-light limit and large distances, even if an honest party has loosely syn-
chronized clocks. We aim to derive absolute delay lower bounds that hold even if
an adversary completely controls the clock. In contrast, such an adversary can
cheat honest parties of the trivial protocol into believing that a certain minimum
delay was guaranteed.

Related Work. Time-Lock Puzzles (TLPs) [42] allow a sender to commit to a
message in such a way that a receiver can obtain it only after a delay is elapsed.
Verifiable Delay Functions (VDFs) [11] work as a pseudorandom function whose
evaluation requires at least a certain delay, after which it generates both an
output and a proof that the output was obtained after this delay. Similarly, a
publicly verifiable TLP (PV-TLP) also produces a proof that a certain message
was contained in the puzzle. In both cases, verifying these proofs takes time
essentially independent of the delay for solving the PV-TLP or evaluating the
VDF. A lot of theoretical work has been done on constructing TLPs [8, 9, 13,
26,30,42] and VDFs [7,11,24,25,39,46]. Yet, all known constructions are based
on the average hardness of sequential computational problems, and hence are
orthogonal to this work.

The concept of deriving security guarantees based on physical assumptions
is not new in the field of cryptography, e.g., noisy communication channels [21,
21, 36], physically-unclonable functions [14, 38, 43], tamper-proof tokens [28, 29],
and more recently protein polymers for secure vaults and one-time programs
[3]. None of the aforementioned assumptions, however, enforces time delays. We
proceed along the line of work – initiated by Kent [32] in 1999 – that builds
cryptographic schemes from special relativity. In detail [32,34] focus on commit-
ments, more recent efforts target multi-prover Zero-Knowledge proofs [22] and
have been experimentally demonstrated [2,45]. However, these constructions re-
quire verifiers to interact with provers via ideal secure channels, whereas the
primitives we consider require non-interactive public verifiability.

1.1 Our Contributions

We build on the line of work that builds cryptographic schemes from special
relativity assumptions and provide the following contributions.
Modelling dynamic delayed channels in UC: We introduce a UC model
for communication channels that incorporate time-varying delays. We model
both single-use channels and multiple-use channels. To achieve this, we utilize
a Global clock to establish synchrony. Since our model accounts for messages

4

being transmitted through a constellation of satellites, it accurately captures
the communication delay between parties whose positions change over time. This
variability in position directly impacts the delay experienced when transmitting
messages between these parties.
Proofs of Sequential Communication Delay: Building on our model, we
introduce techniques for proving that a certain message has been sequentially
transmitted among a number of parties. We analyse the delay bounds obtained
by composing delayed channels and propose the notion of proofs of sequential
communication delay (SCD). We propose SCD protocols based on physical de-
lays, digital signatures, and PKI and prove them secure in the UC-hybrid model.
VDF from SCD: We present the first construction of a UC-secure VDF based
on physical communication delay. Specifically, we construct VDFs from proofs
of sequential communication delay and a bulletin board, in the random oracle
model, by extracting randomness from such proofs.
TLP from SCD: We present the first construction of a UC-secure publicly
verifiable (PV) time-lock puzzle based on physical communication delay. As an
application, we show that our PV-TLPs can be used to efficiently instantiate
the randomness beacon from [7] (expensive resources are only used in case of
cheating).
Delay Encryption and Stateless VDF from Threshold Identity Based
Encryption (IBE) and SCD: We show how to obtain Delay Encryption [15]
by combining our proofs of sequential communication delay and an IBE scheme
endowed with a threshold identity secret key generation protocol. To the best
of our knowledge, this is the first delay encryption scheme not based on super-
singular isogeny assumptions. We also use a similar technique to obtain a more
efficient construction of VDFs.

1.2 Technical Overview

We briefly describe the new models and techniques we introduce to obtain our
results. In Appendix E we elaborate on our model choices, lower bounds on the
communication delay, and performance estimates of the core building blocks.
Modelling Communication Delays: We model time and delays by using a
global clock GClock inspired by [33], which we realize in the Abstract Compos-
able Time [8] framework. We start by modelling a single-use ideal functionality

F∆lo,∆hi

dmt for delayed message transmission with fixed minimum (∆lo) and max-
imum (∆hi) delay parameters. This functionality guarantees that the adversary
does not learn the message until at least ∆lo ticks after it is sent by the sender.
At the same time, the functionality guarantees that the receiver gets the mes-
sage at most ∆hi ticks after sending. This means that as long as at least one
of the channel participants is honest, the channel guarantees delay. Next, we
model a multiple use delayed channel functionality F f∆

mdmt where the minimum
and maximum delays for a message sent at time t are dynamically determined by
a function (∆lo, ∆hi)← f∆(t) according to the current time provided by GClock.
We show that F f∆

mdmt can be realized based on F∆lo,∆hi

dmt . These functionalities can

5

be composed to obtain a minimum delay guarantee for a message transmitted
among multiple parties.

Proofs of SCD: We define the notion of a proof of sequential communication
delay πlo, which allows a third party verifier V to check that a given message m
has been sent from PS to PR while incurring a minimum delay of ∆lo. This is
modelled using the functionality F f∆

SCD. As we construct this functionality from

F f∆
mdmt, we inherit security guarantees of minimal delay even if one of the par-

ticipants (sender or receiver) is dishonest. We then construct a simple protocol
realizing F f∆

SCD in a synchronized setting with a global clock GClock, public key
infrastructure FReg, a unique digital signature scheme FSig and a delayed channel

F f∆
mdmt. In this protocol, PS signs (m, t), i.e. the message to be sent concatenated

with the time t when the message is sent, obtaining a signature σPS
. PS sends

(m, t, σPS
) through F f∆

mdmt to PR, who checks that σPS
is valid w.r.t. (m, t) and

PS ’s verification key. Moreover, PR checks that it has received the message at a
time t′ such that t+∆lo ≤ t′ ≤ t+∆hi, where (∆lo, ∆hi)← f∆(t), i.e. it checks
that the claimed sending time t is consistent with the channels parameters and
the time t′ when it actually receives the message. If the checks pass, PR generates
a signature σPR

on (m, t, σPS
), and a proof πPS→PR

∆lo
= (σPS

, σPR
) along with

m, t,∆lo. Any third party can verify whether the proof is valid w.r.t. a message
m and parameters t,∆lo by checking that PS ,PR are the parties transmitting
through F f∆

mdmt, that (∆lo, ∆hi) ← f∆(t) and that σPS
, σPR

are valid. πlo gives
no guarantees if both PS and PR collude, e.g. by sharing their signing keys; we
show that πlo is a proof of delay if at most one of the parties is corrupted. This
simple protocol can be generalized to a chain of delay channels with multiple
intermediate parties. Our definition of F f∆

SCD is broad enough that this function-
ality can also model this setting. Here, the parameters of the individual delay
channels of the participating parties, their number as well as the threshold of
parties that can be corrupted allow us to prove which delay function f∆(·) the
sequential proof will guarantee.

VDF from SCD: We obtain a direct construction of a VDF from proofs of
sequential communication delay. Our construction departs from F f∆

SCD, a random
oracle and a bulletin board FBB, which is used to keep the state of VDF evalua-
tions. The core idea is to send the VDF input in from a sender PS to a receiver
PR via F f∆

SCD, obtaining a proof of sequential communication delay πlo, which
is also the proof of VDF evaluation. The output of the VDF is determined by
querying the random oracle on in|πlo. Verification can be done by checking πlo
is valid for a given minimal delay ∆lo and recomputing the output. The first πlo
is written to the bulletin board and retrieved for future evaluations of the VDF
to avoid multiple valid evaluations (i.e. sending in through F f∆

SCD again to get a
different πlo).

Delay Encryption and Stateless VDF from Threshold IBE and SCD:
We use an IBE scheme with a protocol that allows parties who hold shares of
the master secret key to efficiently generate the secret key for a given identity.
In order to construct Delay Encryption, we define encryption under a given
identity as IBE encryption under that identity. Later on, key extraction is done

6

by having parties jointly generate the secret key for that identity in a round-robin
manner along with a proof of sequential communication delay showing that this
key generation had a certain minimum delay. We then adapt this technique to
obtain a unique signature using Naor’s transform from IBE to signatures, which
yields a threshold unique signature with a proof of sequential communication
delay attesting the minimum delay for signature generation. The final VDF
can be constructed by applying a random oracle to the signature and using
the signature of communication delay and the signature itself to verify the VDF
output. This construction solves the caveat of our first simple construction, since
it always yields the same output for each input without requiring any parties to
keep state.
TLP from SCD: We construct a PV-TLP protocol where a puzzle is a ci-
phertext puz obtained by encrypting a message m under the public key pk of a
threshold encryption scheme. The parties Pi who have the corresponding secret
key shares ski are connected via delayed channels F f∆

mdmt. A PV-TLP is solved

by threshold decrypting puz via delayed channels F f∆
mdmt following a specific se-

quence of parties {P1,P2, . . . ,Pn} where Pi aggregates its decryption share to
Pi−1’s decryption share before passing it on to Pi+1. The delay guarantee comes
from our analysis of sequential communication delay, as honest parties Pi check
that the ciphertext has traversed the path from P1 to Pi−1 before aggregating
their decryption share, which guarantees a minimum delay. In order to obtain
a publicly verifiable proof that a puzzle puz contained a message m, we employ
the random oracle based transformation of [27,40], where decryption yields not
only m but the unique randomness used to generate puz. This randomness con-
stitutes our proof, since together with m it can be used to do a re-encryption
check.

2 Preliminaries

Notation. We denote the computational (resp. statistical) security parameter
by τ (resp. λ), the concatenation of two strings a and b by a|b, and compact
multiple concatenations by (ai)

n
i=1 = a1|a2| . . . |an.

Auxiliary Background Material. In Appendix A, we give an overview of the UC
framework [17] and present standard functionalities for Public Key Infrastruc-
tures (FReg), (unique) digital signatures (FSig), bulletin boards (FBB) and global
random oracles (GrpoRO), which we will use in our constructions.

UC Secure Public-Key Encryption with Plaintext Verification. It is observed
in [6] that it is possible to UC-realize public-key encryption with a plaintext
verification property using the random oracle-based IND-CCA secure public-
key encryption schemes of [27, 40]. This plaintext verification property allows a
party who decrypts a ciphertext to generate a non-interactive publicly verifiable
proof that a certain plaintext was obtained. We will apply the approach of [6]
to obtain a threshold public-key encryption scheme with the same plaintext
verification property. In order to do so, we use the fact that the encryption

7

schemes of [27,40] can be obtained from any partially trapdoor one-way function,
which allows us to depart from a simple threshold version of El Gamal to obtain
a UC-secure theshold encryption scheme with plaintext verification. In Appendix
A.1 we recall in verbatim form the definitions of the schemes from [27, 40] and
the necessary properties for obtaining plaintext verification as presented in [6].

Global Clocks. We need to assume that honest parties have synchronized clocks.
5 This is necessary to argue about evolving communication delays with respect
to specific instants in time, which we need to construct proofs of sequential
communication delays. We capture this notion of synchronicity by using a global
clock functionality GClock,following the ideas of [4,31,33]. GClock allows parties and
functionalities to request the current value of a synchronized time counter, which
is only incremented if all honest parties agree to update the clock. This also
means that e.g. ticks cannot happen randomly in protocol steps, unless parties
in the protocol explicitly query GClock to continue. We explain in Appendix A.2
how GClock can be realized in the framework of [8].

Functionality 1: GClock
GClock is parameterized by a variable ν, sets P,F of parties and functionalities
respectively. It keeps a Boolean variable dJ for each J ∈ P ∪F , a counter ν as well
as an additional variable u. All dJ , ν and u are initialized as 0.

Clock Update: Upon receiving a message (Update) from J ∈ P∪F : Set dJ = 1.
If dF = 1 for all F ∈ F and dp = 1 for all honest p ∈ P, set u← 1 if it is 0.

Clock Read: Upon receiving a message (Read) from any entity: If u = 1 then
first send (Tick, sid) to S. Next set ν ← ν +1, reset dJ to 0 for all J ∈ P ∪F and
reset u to 0. Answer the entity with (Read, ν).

3 Modeling Communication Delays

We model physical communication between two parties as authenticated message
transmission ideal functionalities that ensure both minimal and maximal com-
munication delays. This is in line with communication in the UC framework, that
always happens through channel functionalities. Moreover, we allow any third
party to observe the minimum and maximum delay bounds for a message trans-
mitted through the functionality. This implicitly assumes that the parties know
each others’ positions (in order to compute the delays) which is a reasonable
assumption for satellites and base stations as outlined in the introduction.

5 Our protocols in fact only require loosely synchronized clocks, as the minimum de-
lay is guaranteed by a physical effect rather than synchronization, and the use of
synchronization only impacts liveness of the protocol. We choose not to model that
more explicitly as it would require more details in the formalization.

8

Functionality 2: F∆lo,∆hi

dmt

This functionality is parameterized by a minimal delay ∆lo > 0 and a maximal
delay ∆hi > ∆lo; it interacts with a sender PS , a receiver PR, an adversary S, and
the clock GClock. At initialisation t is set to 0, and the flags msg, released, done to ⊥.

Send: Upon receiving an input (Send, sid,m) from party PS , do:
– If msg = ⊥, record m and set msg = ⊤.
– If msg = ⊤, send (None, sid) to PS .

Receive: Upon receiving (Rec, sid) from PR, do:
– If released = ⊥ and done = ⊥, then send (None, sid) to PR.
– If released = ⊤ and done = ⊥, then msg = ⊤ and there exists a recorded

message m. Set done = ⊤ and send (Sent, sid,m) to PR.
– If done = ⊤, then send (done, sid) to PR.

Release message: Upon receiving an input (ok, sid) from S, do:
– If msg = ⊥ or t < ∆lo, then send (None, sid) to S.
– If msg = ⊤, t ≥ ∆lo and released = ⊥, then set released = ⊤.
– If released = ⊤, then send (None, sid) to S.

Tick: Sends (Read) to GClock, receiving (Read, t) as answer. If t has changed since
the last activaction:
– If msg = ⊥, then send (None, sid) to S.
– If msg = ⊤ and released = ⊥, then set t = t+ 1:
• If t = ∆lo then send (Sent, sid,m, t) to S.
• If t = ∆hi, set released = ⊤ and send (Released, sid) to S.

We start by modelling a single-use delayed channel with fixed minimum and
maximum delay parameters for simplicity. This channel captures the transmis-
sion of a single message between two parties at an specific point in time, which
determines the delay parameters. As parties’ relative positions evolve with time,
so do the communication delay bounds as their relative distances change. We
therefore, based on the single-use delayed channel, construct a multi-use func-
tionality whose delay bounds can evolve with the ticks of GClock. This multi-use
channel allows other parties to observe the delay bounds for a message trans-
mitted at a given (past or future) point in time, which will later be necessary for
verifying the output of a time-based primitive constructed over the channels, as
well as estimating the delay guaranteed by a future evaluation of such a primitive.

Single-Use Channel ideal functionality F∆lo,∆hi

dmt : As a warm-up example,

we present the functionality F∆lo,∆hi

dmt for delayed authenticated message trans-
mission in Functionality 2. The message delivery is at least ∆lo ticks (i.e. the
physical bound for message transmission), and this delay holds also for an adver-
sarial receiver. The adversary cannot force transmission to be delayed by more
than ∆hi ticks if it is the sender, and cannot force delivery before ∆lo ticks.

Multiple-Use Channel ideal functionality F f∆
mdmt: Manually keeping track

of what instance of F∆lo,∆hi

dmt to use (along with its parameters ∆lo, ∆hi) every
time a message needs to be sent between two parties, as well as the current
time, would make protocol descriptions very cumbersome. Hence, we present
a higher level abstraction of a multiple-use delayed authenticated channel that

9

Functionality 3: F f∆
mdmt

This functionality is parameterized by a computational security parameter τ and
a permissible delay function f∆ : {0, . . . , poly(τ)} → N× N; it interacts with GClock,
sender PS , receiver PR and adversary S. At initialisation the list L is empty.
In any call below, F f∆

mdmt first sends (Read) to GClock and obtains (Read, t).

Send: Upon first message (Send, sid,m) for t from party PS add (m, t,⊥) to L.
Receive: Upon receiving (Rec, sid) from PR, for every (m, t, released) ∈ L, if

released = ⊤ (i.e. the maximum delay has passed or the adversary released
the message), remove (m, t, released) from L and send (Sent, sid,m, t) to PR.

Release message: Upon receiving an input (ok, sid, t) from S compute (∆lo, ·)←
f∆(t). If there is (m, t, released) ∈ L such that t ≥ t+∆lo then set released = ⊤.

Tick: For every (m, t, released) ∈ L compute (∆lo,∆hi)← f∆(t) and do as follows:
– If t+∆lo = t, send (Sent, sid,m, t) to S.
– If t+∆hi = t, set released = ⊤.

automatically assigns minimum and maximum delays to each message according
to the time it is sent. In Functionality 3 we present the functionality F f∆

mdmt for
multiple-use delayed authenticated message transmission. The main parameter
of this functionality is a function f∆ that takes as input a time t and outputs
the minimum delay ∆lo and maximum delay ∆hi for a message sent at time t.
When it is requested to transmit a message, F f∆

mdmt determines the current time
by contacting GClock and computes (∆lo, ∆hi) ← f∆(t). Next, the functionality
registers the message in a list and ensures that it is not revealed to the adversary
before a minimum delay ∆lo, while guaranteeing delivery to an honest receiver
within a maximum delay ∆hi. Moreover, F f∆

mdmt allows for any third party to
obtain the delay parameters for messages sent at a given clock tick, as f∆ is a
public parameter of the functionality (similar to ∆lo, ∆hi in F∆lo,∆hi

dmt).

To model predictability of delay, we require that the variance between any
two ticks in delay - as modeled by f∆ - cannot be too much: no adversary should
be able to send a message faster by waiting until a later tick (i.e. time travel of
messages is not possible). To capture this, we give the following definition:

Definition 1 (Permissible Delay Function). A function
f∆ : {0, . . . , poly(τ)} → N× N models permissible delay if

∀t ∈ N : (∆lo, ∆hi)← f∆(t), (∆′
lo, ∆

′
hi)← f∆(t+ 1)⇒ ∆′

lo −∆lo > −1.

Realizing F f∆
mdmt from F∆lo,∆hi

dmt In Appendix B.1 we present a protocol that
realises the multiple-use ideal functionality for authenticated delayed message
transmission using GClock and multiple F∆lo,∆hi

dmt , and prove its security. The pro-
tocol uses one instance of F ·

dmt· for each possible timestamp. The sender simply
picks the correct instance for message transmission, while the verifier for every
clock tick tests 1. if any of the instances delivers a message to him; and 2. if the
message’s time of sending and delay are consistent.

10

4 Proofs of Sequential Communication Delays

In this section, we introduce techniques for producing a publicly verifiable proof
πlo that a message m has incurred a certain minimum delay due to being trans-
mitted from party PS to party PR. Such a proof, when using the delay channel
functionalities from Section 3, requires that at least one of the two parties in-
volved in the process was honest. The idea is to have both the sender PS and
receiver PR of a delayed channel sign the input message and the initial times-
tamp when this message was sent (provided that the message is received within
reasonable time constraints such that the initial timestamp is not too far in the
future or past). Both signatures and the initial timestamp form the proof πlo
showing that the message was sent from PS to PR incurring a given minimum
delay as observed by an honest party. This is guaranteed by the delayed channel,
whose minimum delay is determined by the timestamp.

We then use a sequence of consecutive communication channels between mul-
tiple parties in order to obtain a larger provable minimum delay than that pro-
vided by a single channel without intermediaries. Here, a message m travels from
sender P1 to receiver Pn, through hops Pi. Each intermediate party Pi sends to
Pi+1 not only the original message m, but also a proof showing that m travelled
from P1 to Pi. If m and the proof arrive at Pi at a certain time that is not con-
sistent with the minimum and maximum delays of the channels connecting P1 to
Pi (i.e. it is too far in the future or in the past), Pi aborts. This construction can
be leveraged to obtain a final proof of sequential communication delay consist-
ing of (m, t, σ1, . . . , σi−1), where signature σi is generated by party Pi, and t is
the initial timestamp when m was sent. Finally, we sketch the optimization that
uses sequentially aggregate signatures (SAS) [35] and ordered multi signatures
(OMS) [10] to avoid proofs of sequential communication delay of size linear in
the number of network nodes.

4.1 Modelling Proofs of Sequential Communication Delay

We begin by modeling a publicly verifiable proof of delay through an ideal func-
tionality F f∆

SCD depicted in Functionality 4. This functionality incorporates the

delayed channel modelled by F f∆
mdmt, and proof generation/verification mecha-

nisms similar to those of the unique digital signature functionality FSig (Func-

tionality 13). Departing from F f∆
mdmt, which allows for a PS to send a message

m to PR with minimum and maximum delays (∆lo, ∆hi) ← f∆(t) depending
on time t, F f∆

SCD delivers to PR the proof πlo that m was sent at time t with a
minimum delay ∆lo.

In F f∆
SCD, the adversary may only generate valid proofs of delay after the

minimal delay of πlo, but it learns m earlier than the honest receiver. This makes
sense because the statement that the message m has traveled for a certain delay
does not mean that m was only learnt by the adversary with that delay. For
an example in practice, consider a chain of 4 parties with 3 intermediate delay
channels. If e.g. P2 and P4 = PR are both corrupted, then the adversary must of

11

Functionality 4: F f∆
SCD

F f∆
SCD keeps initially empty lists L,Lπ, and is parameterized by a computational

security parameter τ and a permissible delay function f∆. F f∆
SCD interacts with GClock,

sender PS , receiver PR, verifiers V and adversary S.
In any call below, F f∆

SCD first sends (Read) to GClock and obtains (Read, t).

Send: Upon receiving an input (Send, sid,m) from an honest PS and if this is the
first such message in this tick-round:
1. Compute (∆lo,∆hi)← f∆(t) and add (t,m,⊥,∆lo) to L.
2. Output (message, sid, t,m) to S.

If PS is corrupted, then upon input (Send, sid,m, t) from S compute (∆lo,∆hi)←
f∆(t). If ∆hi + t− t ≥ ∆lo then add (t,m,⊥,∆lo) to L.

Receive: Upon receiving (Rec, sid) from PR, for every (t,m,⊤, cnt) ∈ L:
1. Remove (t,m, released, cnt) from L and recompute (∆lo,∆hi)← f∆(t).
2. If (m, t,∆lo,∆hi, πlo, 1) ∈ Lπ send (Sent, sid,m, t, t− t, πlo) to PR.
3. Else, send (Proof, sid,m, t, t− t) to S. Upon receiving (Proof, sid,m, t, πlo)

from S, check that (m, t,∆lo,∆hi, πlo, 0) /∈ Lπ. If yes, output⊥ to PS/PR and
halt. Else, add (m, t,∆lo,∆hi, πlo, 1) to Lπ and send (Sent, sid,m, t, t−t, πlo)
to PR. If S sends (NoProof, sid) then output (NoProof, sid).

Release message: Upon receiving an input (ok, sid, t) from S compute (∆lo, ·)←
f∆(t). If there is (t,m, released, cnt) ∈ L such that t ≥ t+∆lo and cnt = 0 then
set released = ⊤.

Verify: Upon receiving (verify, sid,m, t,∆, πlo) from Vi, send (verify,
sid,m, t,∆, πlo) to S. Upon receiving (verified, sid,m, t,∆, πlo, ϕ) from S do:
1. If (∆lo,∆hi) ← f∆(t) and ∆ /∈ [∆lo,∆hi] or then set f = 0. Otherwise set

f = 1. (is delay in allowed interval?)
2. If t +∆lo > t then set f = 0 (no verification request can be positive, unless

m has circulated for at least ∆lo ticks)
3. If ϕ = 1 and there is an entry (m, t,∆lo,∆hi, π

′
lo, 1) ∈ Lπ where π′

lo ̸= πlo

then set f = 0. (any proof of delay must be unique)
4. If there is an entry (m, t,∆lo,∆hi, πlo, f

′) ∈ Lπ, let b = f∧f ′. (All verification
requests with identical parameters will result in the same answer.)

5. If no such entry is present, set b = f ∧ϕ and add (m, t,∆lo,∆hi, πlo, b) to Lπ.
(Add for consistency)

Output (verified, sid,m, t,∆, b) to Vi.
Tick: For every (t,m, released, cnt) ∈ L compute (∆lo,∆hi)← f∆(t). If t+∆hi = t,
set released = ⊤. If cnt > 0 then reduce cnt by 1.

course learn m once it arrives at P2. The guarantee of the functionality is that
the proof of delay will only arrive at the adversary with the required minimal
delay, and that an honest receiver will have to potentially wait longer to receive
it and m. This is because the message still has to pass through channels that
have honest parties as senders and receivers before a proof is generated.

A second interesting property is that a corrupted sender is allowed to date
back message sending by a certain amount of ticks, i.e. at time t it is allowed
to say that it sent the message already at time t < t. It can do so as long as
F f∆

SCD can still delay proof (and message) delivery by ∆lo ticks without exceeding
time t +∆hi during delivery. The reason for this “time traveling” of dishonest

12

senders is the multiparty protocol. For example, consider a chain of parties where
P1 = PS and P2 are corrupted. In that case the simulator cannot extract any
information from the channel between P1 and P2 as the adversary is of course
not bound to use this channel. But it can still guarantee message delay as parties
later on in the chain are honest, so their delay channels must have been used.

A third important property is that a proof that m was sent through the
channel with a certain delay that is within [∆lo, ∆hi] is unique to the tuple
(m, t), where t is the time when m was supposed to be sent. Moreover, F f∆

SCD

allows any verifier Vi to check that a proof πlo of delay in [∆lo, ∆hi] for message
m sent at time t is indeed valid (i.e. it has been generated honestly). Here, the
adversary may define validity of a proof during verification even if F f∆

SCD did not
output the proof itself at that time. This is an artifact of our protocol, as a
dishonest receiver PR must not make his contributions public until when the
proof gets verified. This is standard behavior in other UC functionalities, such
as the signature functionality FSig.

Proofs of Sequential Communication Delay with 2 parties. We construct a sim-
ple protocol (Protocol 5) that realizes F f∆

SCD between two parties by leveraging

a delayed channel F f∆
mdmt, a Public Key Infrastructure FReg and a unique digital

signature FSig on a synchronized network (with synchrony maintained by GClock).
In it, both the sender PS and receiver PR sign the message m being transmit-
ted. However, we need to take steps to guarantee that an honest PR does not
inadvertently help a corrupted PS forge a proof for an invalid initial timestamp
t or minimum delay ∆lo. In order to to avoid this issue, PR needs to verify that
m has been received through an instance of F f∆

mdmt where PS acts as sender at a
timestamp between t+∆lo and t+∆hi, where t is the initial timestamp when
the message was sent and (∆lo, ∆hi)← f∆(t). Since PR needs to know t in order
to obtain (∆lo, ∆hi), we have PS sign (m, t), allowing PR to perform its delay
consistency checks. If PR is satisfied, it then signs (m, t, σS), where σS is PS ’s
signature, and outputs both PS ’s signature and its own as the proof of sequential
communication delay. Verifying such a proof of sequential communication delay
can be done by any third party by verifying the signatures generated PS and
PR, as well as checking consistency of the timestamps.

Theorem 1. πSCD (Protocol 5) UC-realizes F f∆
SCD in the GClock,F f∆

mdmt,FSig, FReg-
hybrid model against a static active adversary corrupting at most one of PS ,PR.

The proof can be found in Appendix B.2 and is rather straightforward. For a
corrupted sender, extract the message m from F f∆

mdmt but ensure that verification
keys are registered and that it would later be accepted by an honest receiver.
For a corrupted receiver, program F f∆

mdmt to output the correctly signed message
at the right time. In this case, verification is more involved as upon querying
Verify the signature used by the dishonest receiver might be undefined.

Proofs of Sequential Communication Delay with > 2 parties. We will now realize
F f∆

SCD using a longer chain of parties. There, the sender P1 = PS is connected to

P2 using a delayed channel F f∆
mdmt with delay function f∆,1, P2 is connected to P3

13

Protocol 5: πSCD

Protocol πSCD is executed by a sender PS , a receiver PR and a set of verifiers V
interacting with each other and with GClock,F f∆

mdmt,FSig
S ,FSig

R,FReg.
In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, party Pi ∈ {PS ,PR} proceeds as follows:
1. Send (keygen, sid) to an instance of FSig

i where it acts as signer;
2. Upon receiving (verification key, sid, SIG.vki) from FSig

i, Pi sends
(register, sid, SIG.vki) to FReg.

Send: Upon receiving first input (Send, sid,m) for t, PS proceeds as follows:
1. Send (sign, sid, (m, t)) to FSig

S , receiving (signature, sid, (m, t), σS).
2. Send (Send, sid, (m, t, σS)) to F f∆

mdmt.

Receive: Upon receiving (Rec, sid), PR sends (Rec, sid) to F f∆
mdmt and proceeds as

follows for every (Sent, sid, (m, t, σS), t
′) received from F f∆

mdmt:
1. Check that t = t′ and verifySigs(PS, (m, t), σS, t) evaluates to true.
2. If the checks pass, send (sign, sid, (m, t, σS)) to FSig

R, receiving (signature,
sid, (m, t, σS), σR). Output (Sent, sid,m, t, t− t, (σS , σR)).

3. If a check fails, then output (NoProof, sid).
Verify: Upon receiving (verify, sid,m, t,∆, πlo), Vi ∈ V parses πlo = (σS , σR)
and proceeds as follows:
1. Compute (∆lo,∆hi)← f∆(t). Check that ∆ ∈ [∆lo,∆hi] and t ≥ t+∆lo.
2. Check that verifySigs(PS, (m, t), σS, t) and verifySigs(PR, (m, t, σS), σR, t)

both evaluate to true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,∆, πlo, b).

Tick: Send (Update) to GClock.
Function verifySigs(Pi,m, σ, t):

1. Send (Retrieve, sid,Pi) to FReg, receiving (Retrieve, sid,Pi, SIG.vk, tReg)
as answer. Check that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ, SIG.vk) to FSig
i, receiving (verified, sid,m, σ, f) as

response. Output true if f = 1, otherwise false.

via F f∆
mdmt with f∆,2 until Pn−1, which is connected via F f∆

mdmt to Pn = PR with

delay function f∆,n. As before, P1 signs m, t before sending it through F f∆
mdmt,

while P2 signs the output of F f∆
mdmt if it is valid and then forwards it with the

signature via F f∆
mdmt to P3 etc. We will prove that such a chain again realizes an

instance of F f∆
SCD, but with different delay parameters.

We consider malicious adversaries that can interrupt signature generation by
refusing to execute the protocol. We assume that each party in the chain knows
all the delay functions f∆,i for each of the F f∆

mdmt instances in the chain, which
allows them to compute delay bounds for incoming messages. In our protocol,
Pi must establish that the message m that it obtained – which was supposedly
initially sent at time t by P1 – could be delivered to Pi−1 via instances of F f∆

mdmt

with delay functions f∆1, . . . , f∆i−2 and incurring the respective delay, such that

Pi−1 sending it at time ti−1 via F f∆
mdmt with a delay modeled by f∆i−1 is plausible.

As an example, assume a chain of 3 parties where only P3 is honest. Let
(1, 3) = f∆,1(t) = f∆,2(t) for every t, and assume that P3 obtains m from P2,
which was supposedly sent at t = 0 by P1. P3 knows that m must travel a

14

minimum time of 1 tick from P1 to P2 or at most 3 ticks. If the channel from P2

to P3 incurs delay between 1 and 3 ticks, but P3 obtains m at tick 7, then P2 has
sent m the earliest at tick 4. This means that P2 is cheating as it delayed delivery
of m. Alternatively, if P3 had obtained m at tick 1 then P2 must have sent the
message at tick 0 (by the minimum delay f∆,2), which is also impossible as the
message would have needed at least 1 tick from P1 to P2. Hence, we carefully
specify what each party verifies before signing about timestamps and delivery
times and how it impacts the proven delay given the corruption thresholds.

Plausible delays. We now introduce the plausible delay predicate isP(t1, f∆,1, . . . ,
f∆,ℓ−1, tℓ). It is defined for ℓ > 1 as follows:

ℓ = 2: true if ∃∆ ∈ f∆,1(t1) : t1 +∆ = t2.
ℓ > 2: true if ∃∆ ∈ f∆,1(t1): isP(t1 +∆, f∆,2, . . . , f∆,ℓ−1, tℓ).

As we constrain the output of each f∆,i to only be defined on polynomially many
inputs, isP can be computed in polynomial time as long as ℓ = O(log(τ)). This
can be improved if, e.g. all f∆ functions are constant in an obvious way.

We now show that we can combine two instances of isP into one:

Proposition 1. Let f∆,1, . . . , f∆,n−1 be permissible delay functions and let t1, ti, tn
be such that isP(t1, f∆,1, . . . , f∆,i−1, ti) and isP(ti, f∆,i, . . . , f∆,n−1, tn). Then isP(t1,
f∆,1, . . . , f∆,n−1, tn) holds.

Conversely, we can also decompose every isP chain into its parts.

Proposition 2. Let f∆,1, . . . , f∆,n−1 be permissible delay functions and t1, tn be
such that isP(t1, f∆,1, . . . , f∆,n−1, tn) holds. For every i ∈ {2, . . . , n− 1} there ex-
ists a ti such that isP(t1, f∆,1, . . . , f∆,i−1, ti) and isP(ti, f∆,i, . . . , f∆,n−1, tn) hold.

Proof. (of Propositions 1 & 2) The definition of isP implies that isP(t1, f∆,1, . . . ,

f∆,n−1, tn) returns true if and only if ∃ ∆1, . . . ,∆n−1 : t1 +
∑n−1

i=1 ∆i = tn ∧
∆i ∈ f∆,i

(
t1 +

∑i−1
j=1 ∆j

)
. Proposition 1 follows by combining both existential

statements. Proposition 2 follows from setting ti+1 = t1 +∆1 + · · ·+∆i. ⊓⊔
We stress that verifying that a message arrived at the receiver with plausible

delay does not imply that it indeed incurred the delay during delivery. The
reason for this is that if a sequence of parties are corrupted, then they may
not use delayed channels for communication among each other. Going back to
the aforementioned example, if m arrives at tick-round 2 at P3 and is claimed
to have been sent at tick round t = 0 by P1, then this is not what must have
happened as we first must consider the corruption threshold. If both P1,P2 are
corrupted then an adversary could have only gotten m at tick round 1, signed
(m, 0) using both signing keys and make P2 send it to P3. Hence, if we consider a
corruption model where 2 parties out of 3 can be corrupted, the overall channel
built by P1,P2,P3 cannot guarantee a minimum delay that is longer than 1, if
by minimum delay we mean time spent for m to travel as observed by honest
parties. This is of course different if only 1 out of P1,P2 can be corrupted.

We now describe how the proven minimal delivery time can be computed. If
both P1 & Pn are honest, then Pn would only sign if isP is true when the message

15

arrives at it. This means that the message must have incurred a delay from P1 to
Pn that is at least the sum of minimal delays on each intermediate channel: P1

is honest and must have sent it at the right time. Therefore, the longest chain
of delay observed by the honest parties in this case spans the whole message
delay from P1 to Pn and is the lower-bound on provable message delay. This
observation extends to any chain between the first Pi and last Pj honest party
within P1, . . . ,Pn, if either of P1,Pn was not honest. Therefore, to determine the
minimal guaranteed delay in case of k corruptions, we only need to consider the
cases where all of P1, . . . ,Pi−1 are dishonest and send the message later than
allowed, or where Pj+1, . . . ,Pn are all dishonest and sign the messages earlier
than allowed, or both. Only these can reduce proven delay time.

Next, consider the setting where honest parties appear in sequences of at
least n − k > 1 consecutive parties in the network, i.e. there is no isolated
honest party. Let Pi, . . . , Pi+n−k−1 be such an honest chain of parties. Then
the minimal delay cannot be reduced by placing a dishonest party within this
chain. This follows because then either Pi−1 or Pi+n−k become honest, and the
minimal honest delay then consists of the minimal delay on Pi, . . . ,Pi+n−k−1

plus the extra party (as the additional delay due to f∆ will be non-negative.
Therefore, to reduce the minimal delay to a minimum, exactly n−k consecutive
parties must be honest.

Moreover, it is not sufficient if only P1 or Pn is dishonest, followed or preceded
by honest parties. This is because an honest P2 by observing F f∆

mdmt would ensure
that the message was sent early enough given the delay of the channel (similarly
for an honest Pn−1 and corrupt Pn). Thus, to minimize delay, an adversary will
not only corrupt the first or last party in the chain, but also the adjacent one.

Bounding the channel delays. Using Propositions 1, 2 and the afore-
mentioned observations, we can compute the minimal and maximal delay by
decomposing an isP sequence into all possible partitions of up to 3 plausible
subsequences, one of which is of length n− k and represents the honest parties.
There are at most poly(τ) many such decompositions. In Appendix B.3 we show
how to find sequences that realize the shortest observable minimal delay, or the
maximal delay, in time polynomial in the number of isP calls.

Putting things together. We present a detailed description of our protocol
for sequential communication delays πMulti−SCD in Protocol 18 in Appendix B.
The protocol realizes the delay function delays computable as outlined previously.

Theorem 2. The protocol πMulti−SCD UC-securely implements F f∆
SCD in the GClock,

FReg,FSig,F f∆
mdmt-hybrid model with security against any adversary actively cor-

rupting up to k = n− 1 parties with permissible delay function given by delays.

The proof can be found in Appendix B.4 and follows a similar outline as the one
for Theorem 1. The key difference is that there might be a dishonest PS , followed
by a chain of dishonest P2,P3, . . . that do not necessarily have to communicate
via their F f∆

mdmt instances. Hence, when the first honest (simulated) party obtains

an output from F f∆
mdmt, then the message that S enters into F f∆

SCD has to have an
earlier timestamp than the current one, based on the claim when the dishonest
P1 originally “sent” the message.

16

Optimizing πMulti−SCD While πMulti−SCD realizes F f∆
SCD using only simple primi-

tives, it incurs a large overhead for the proof of sequential communication: one
proof consists of n nested signatures, and each party Pi forwards i signatures
to party Pi+1. We want to obtain a proof size and communication complexity
independent from the number of parties, preferably close to the size of a single
signature. To do so, we face a main hurdle: it seems that we cannot eliminate
a signature by any intermediate party, since that would allow the adversary to
forge proofs by making the eliminated party be the honest party in πMulti−SCD.
Hence, we focus on techniques that allow us to aggregate signatures by each
party Pi involved in πMulti−SCD in such a way that we obtain a compact proof of
size independent from n. A conceptually simple way to achieve this is using a se-
quentially aggregate signature scheme (SAS) [35] or an ordered multi-signatures
scheme (OMS) [10], which allow for aggregating a number of signatures gen-
erated in sequence into a single signature (i.e. with the same size as a single
signature). This directly fits our use of signatures in πMulti−SCD, where enforcing
the order of signing is solved by the SAS/OMS property of allowing verifiers to
check the order with which each party generated its signature on (m, t).

5 Verifiable Delay Functions

We construct a VDF from proofs of sequential communication delays. Our con-
struction can be obtained in a black-box manner from any proof of sequential
delay, yielding a VDF with a proof size equal to that of the underlying proof
of communication delay. The main idea is to sequentially send the input of the
VDF among nodes in a network while having them compute a proof of sequen-
tial communication delay for this message. The output is computed by querying
a global random oracle on the input concatenated with the proof of sequential
communication delay. Verification can be easily achieved by first verifying the
proof of sequential communication delay and then recomputing the output. We
realize a VDF functionality (dapted from [7]) presented in Functionality 6.

We present our VDF protocol in Protocol 7. The construction assumes access
to a bulletin board where we store attempts at jointly evaluating the VDF by
sending a message via F f∆

SCD. When evaluating the VDF we consider as valid
only the first evaluation attempt registered in the bulletin board with a valid
proof of sequential delay generated by F f∆

SCD. This significantly simplifies our

analysis since the adversary can no longer send the same input to F f∆
SCD multiple

times and obtain multiple proofs of sequential delay and thus produce several
valid VDF outputs, which deviates from the standard behavior expected from
this primitive. The same effect could be obtained by assuming either PS or
PR are honest and do not accept to interact with F f∆

SCD to transmit the same
message more than once, thus guaranteeing only one proof of sequential delay is
generated, which means a single valid VDF output exists.

Theorem 3. Protocol πVDF UC-realizes FVDF in the F f∆
SCD,GrpoRO,FBB-hybrid

model against an active static adversary corrupting a majority of parties in P.

17

Functionality 6: FVDF

FVDF is parameterized by a computational security parameter τ , and input space
ST , a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and a delay parameter Γ .
FVDF interacts with a set of parties P = {P1, . . . ,Pn}, and an adversary S. FVDF

maintains a initially empty lists L (proofs being computed), and OUT (outputs).

Solve: Upon receiving (Solve, sid, in) from Pi ∈ P where in ∈ ST and Γ ∈ N, add
(Pi, sid, in, 0,⊤) to L and send (Solve, sid, in) to S.
Tick: For each (Pi, sid, in, c, b) ∈ L, update (Pi, sid, in, c, b) ∈ L by setting c = c+1
and proceed as follows:

1. If c ≥ ϵΓ sample out
$← ST , send (GetStsPf, sid, in, out) to S and wait for an

answer. If S answers with (Abort, sid), update (Pi, sid, in, c, b) ∈ L by setting
b = ⊥. If S answers with (GetStsPf, sid, π), FVDF halts if π /∈ PROOF or there
exists (in′, out′, π) ∈ OUT, else, it appends (in, out, π) to OUT.

2. If c = Γ , remove (Pi, sid, in, Γ, b) ∈ L. If there was an abort (i.e. b = ⊥), send
(NoProof, sid, in) to Pi. Otherwise, send (Proof, sid, in, out, π) to Pi.

Verification: Upon receiving (Verify, sid, in, out, π) from Pi ∈ P, set b = 1 if
(in, out, π) ∈ OUT, otherwise set b = 0 and output (Verified, sid, in, out, π, b) to Pi.

The delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where

(·, ∆hi) = maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.

Proof. It is simple to construct a simulator S for πVDF by having S interact
with an internal copy of A towards which it simulates honest parties executing
exactly as in πVDF and simulating F f∆

SCD,GrpoRO,FBB exactly as they are described

except when explicitly stated. S forwards every message sent to simulated F f∆
SCD

to be evaluated by FVDF and provides matching proofs to F f∆
SCD and FVDF when

requested. If A causes an evaluation to abort, S correspondingly aborts the
same evaluation at FVDF. Whenever FVDF leaks to S that an evaluation on a
new input has been requested, S simulates this evaluation in the simulation.
Moreover, S programs GrpoRO so that outputs of simulated VDF evaluations
match the outputs provided by FVDF. ⊓⊔

6 Delay Encryption

In this section, we extend our PV-TLP construction to obtain a related primitive
called Delay Encryption [15]. A Delay Encryption scheme allows for encrypting
many messages under a certain identity in such a way that a secret key allowing
for decrypting all such messages can be obtained after a certain delay, a notion
akin to an “identity based TLP”. We construct this primitive by combining an
IBE scheme with a distributed (identity) key generation protocol and our proofs
of sequential communication delay.

Assume IBE = (Setup, KG, Enc, Dec) is an Identity-based encryption scheme
where: IBE.Setup on input the security parameter τ outputs the master secret
key msk and the public key pk; IBE.KG on input an identity string ID ∈ {0, 1}∗
andmsk outputs the identity decryption key skID ; IBE.Enc on input the plaintext

18

Protocol 7: πVDF

Protocol πVDF is executed by a set of parties P = {P1, . . . ,Pn} interacting with
a bulletin board functionality FBB and with F f∆

SCD, where party PR ∈ P acts as
receiver and party PS ∈ P as sender. They additionally use a random oracle GrpoRO.

Solve: A party Pi interacts with PS ,PR as follows to evaluate the VDF on in:
1. On input (Solve, sid, in), Pi sends (Read, sid) to FBB and checks whether a

record (c, in, t,∆, πlo) is returned (if multiple (c, in, t,∆, πlo) for different c
and πlo are returned, consider the one with the lowest c and a valid πlo w.r.t
F f∆

SCD). If yes, skip to step 5.

2. Pi sends (Send, sid, in) to PS and PS forwards (Send, sid, in) from Pi to F f∆
SCD.

3. Upon receiving (Sent, sid, in, t,∆, πlo) from F f∆
SCD, PR send (Write,

sid, (in, t,∆, πlo)) to FBB. If instead PR receives (NoProof, sid), it forwards
this message to all parties in P.

4. If it received (NoProof, sid) from PR, Pi outputs (NoProof, sid, in). Other-
wise, it sends (Read, sid) to FBB and retrieves (c, in, t,∆, πlo).

5. Pi sends (Hash-Query, in|πlo) to GrpoRO, receiving (Hash-Confirm, out).
Pi sends (IsProgrammed, in|πlo) and aborts if the response is
(IsProgrammed, 1). Pi outputs (Proof, sid, in, out, π = πlo).

Verification: On input(Verify, sid, in, out, π), Pi proceeds as follows:

1. Send (Read, sid) to FBB and check that there is a record (c, in, t,∆, π), if mul-
tiple (c, in, t,∆, π) for different c are returned, consider the one with the lowest
c and a valid π w.r.t. to F f∆

SCD.

2. Send (Verify, sid, in, t,∆, π) to F f∆
SCD expecting (Verified, sid, in, t,∆, 1).

3. Send (Hash-Query, in|π) to GrpoRO, receiving (Hash-Confirm, out′). Check
that out = out′. Send (IsProgrammed, in|π) expecting (IsProgrammed, 0).

4. If all checks pass set b = 1, else set b = 0, and output (Verified, sid, in, out, π, b)

m, public key pk and identity ID outputs the ciphertext c; IBE.Dec on input the
identity decryption key skID and the ciphertext c outputs either a message m or
⊥. First, observe that many IBE schemes (e.g. [12]) are essentially a version of
El Gamal. This means that Setup, KG can easily be “thresholdized” to allow for
generating identity secret keys from shares of msk , and that skID is unique for
each ID . As an example, consider [12] which uses two source groups G, a target
group GT and a pairing e : G × G 7→ GT . Setup creates pk = gmsk for master
secret key msk using a public generator g ∈ G. KG creates a random generator
h = H(ID) ∈ G based on a hash of the identity ID using a random oracleH toG,
and lets skID = hmsk . Clearly, skID is unique for ID . Enc generates a ciphertext
c = (c1, c2) from m and ID by computing c1 = gr c2 = m · e(H(ID)r, pk), and
Dec decrypts c by computing m = c2 · e(c1, skID)−1.

It is easy to “thresholdize” such an IBE scheme with UC security. To imple-
ment Setup, parties use standard semi-honest El Gamal distributed key genera-
tion to create a Shamir sharing of a random secret msk and then raise g to msk
using standard techniques. Additionally, they commit to their shares of msk and

19

use UC NIZKs to prove execution correctness. Implementing KG as a distributed
protocol is again straightforward as ID is public, since each protocol participant
can compute H(ID) locally, raise it to its committed share of msk and prove
correctness of this using a UC NIZK. Then, by reconstruction in the exponent,
one can obtain the unique H(ID)msk . By using a CCA secure version of Enc, Dec,
e.g. [12] as shown in [37], we obtain UC security for the full encryption scheme.

Our crucial observation is that we can run a distributed key generation
(DKG) protocol outputting the secret key for a given ID via delayed channels
F f∆

SCD that generate proofs of sequential communication. By letting intermediate
parties check the key shares and proofs of delay, we can provably lower-bound
the delay for creating skID . Notice that this idea gives us a natural construction
of Delay Encryption. To encrypt, we let a party knowing pk first choose an iden-
tity ID and let the ciphertext be ID , Enc(m, pk, ID). To decrypt one or more
ciphertexts for the same ID , parties obtain the secret key skID by running the
DKG and then decrypt using skID . The delay directly follows from the bound
on the execution time of the DKG. We provide an ideal functionality for Delay
Encryption in Appendix D and formalize this observation in the following the-
orem, which is conservatively phrased in terms of the [12] IBE, although it can
be generalized to any IBE that supports distributed key generation.

Theorem 4. If the IBE scheme of [12] is IND− ID− CCA2 secure, there ex-
ists a protocol that UC-realizes FDE in the F f∆

SCD,FNIZK,GrpoRO-hybrid model
against an active static adversary corrupting a majority of parties in P. The
delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where (·, ∆hi) =

maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.

7 Publicly Verifiable Time-Lock Puzzles

We construct a publicly verifiable time-lock puzzle (PV-TLP) based on sequen-
tial communication delays. The main idea is to use a threshold encryption scheme
and generate a puzzle by encrypting a message under the public key. The se-
cret key is in turn shared among a set of nodes connected by delayed channels.
The TLP is opened by having these nodes perform threshold decryption via
sequential communication. By having the nodes which hold the key shares com-
municate in a round-robin manner, the individual channel delays then add up
to the overall delay of the TLP.

In our construction, the sizes of both the proof and the messages exchanged
among each pair of parties involved in solving the puzzle are independent from
the number of parties. In order to do so, we relax our output guarantee by only
detecting dishonest behavior after the decryption protocol is finished without
identifying cheaters, which allows for the adversary to cause aborts without
revealing the corrupted parties. In case aborts happen, we can fall back to a more
expensive protocol using NIZKs of valid decryption share generation in order to
identify the corrupted parties and eliminate them. This yields low overhead in
the optimistic case (which is the most likely to happen in practice) while still
attaining guaranteed output delivery. See Appendix E for further discussion.

20

Functionality 8: FDKG

FDKG is parameterized by a cyclic group G of order q with generator g and interacts
with a set of parties P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P.

Key Generation The first time it is activated, FDKG samples ski
$← G for i ∈ W,

computes sk =
∑

i∈W ski and pk = gsk.
SK Request: Upon (SecKey, sid) from Pi ∈ W, return (SecKey, sid, ski).
PK Request Upon (PubKey, sid) from Pi ∈ P, return (PubKey, sid, pk).

Functionality 9: Ftlp

Ftlp is parameterized by a computational security parameter τ , a message space
{0, 1}τ , a tag space T AG, a proof space PROOF , a slack parameter 0 < ϵ ≤ 1 and
a delay parameter Γ . Ftlp interacts with a set of parties P = {P1, . . . ,Pn} and an
adversary S. Ftlp maintains initially empty lists omsg (output messages and proofs)
and L (puzzles being solved).

Create puzzle: Upon receiving the first message (CreatePuzzle, sid,m) from Pi

where m ∈ {0, 1}τ , proceed as follows:

1. If Pi is honest, sample puz
$← T AG and proof π

$← PROOF .
2. If Pi is corrupted, let S provide puz and π. If (puz, π) /∈ T AG ×PROOF or

there exists (puz′,m′, π) ∈ omsg, then Ftlp halts.
3. Append (puz,m, π) to omsg, set and output (CreatedPuzzle, sid, puz, π) to Pi

and (CreatedPuzzle, sid, puz) to S.
Solve: Upon receiving (Solve, sid, puz) from Pi ∈ P, add (sid, puz, 0) to L and send

(Solve, sid, puz) to S.
Public Verification: Upon receiving (Verify, sid, puz,m, π) from a party Pi ∈
P, set b = 1 if (puz,m, π) ∈ omsg, otherwise set b = 0 and output
(Verified, sid, puz,m, π, b) to Pi.

Tick: For all (sid, puz, c) ∈ L, update (sid, puz, c) ∈ L by setting c = c + 1 and
proceed as follows:
– If c ≥ ϵΓ and (puz,m, π) ∈ omsg, output (Solved, sid, puz,m, π) to S.
– If c ≥ ϵΓ and there does not exist (puz,m, π) ∈ omsg, let S provide π ∈
PROOF and add (puz,⊥, π) to omsg.

– If c = Γ , remove (sid, puz, c) ∈ L and send (Proceed?, sid, puz,m, π) to S,
where m,π are such that there is (puz,m, π) ∈ omsg and proceed as follows:
• If S sends (Abort, sid, π′), output (Solved, sid, puz,⊥, π′) to all Pi.
• If S sends (Proceed, sid), output (Solved, sid, puz,m, π) to all Pi.

In order to achieve constant communication, we have each decryption node
aggregate its decryption share to the share received from the previous party
along with a proof of sequential communication showing that the ciphertext
being decrypted has traversed a pre-defined path through a certain sequence of
decryption nodes. This step avoids attacks where the adversary obtains several
decryption shares from different honest nodes in parallel or out of order.

We use the generic Public Key Cryptosystem with Plaintext Verification
construction from Definition 5 together with a simple threshold version of El

21

Gamal to verify that the final decrypted message is indeed the message that was
originally encrypted (i.e. the message inside the PV-TLP). Hence, the verifier
only has to perform a re-encryption check in order to assert that a given PV-
TLP has been correctly solved. This optimized construction realizes the PV-
TLP functionality defined in Functionality 9, which follows [7] but supports
only a fixed delay Γ . Our construction, πTLP−Light, is depicted in Protocol 10
and employs a Distributed Key Generation functionality, FDKG, in the setup
(Functionality 8). The FDKG functionality can be UC-realized by a number of
protocols that compute a public key gsk and secret key shares ski such that
sk = sk1 + · · ·+ skn.

We capture the security of Protocol πTLP−Light in Theorem 5. The proof
obtains loose bounds for the minimum and maximum delay guarantees provided
by this protocol since πTLP−Light only uses the decryption validity proof as a
publicly verifiable proof of a TLP solution, which allows for a unique and easily
verifiable proof. If the TLP proof instead also consisted of the proofs provided
by the parties in the set W by using F f∆

SCD instead of F f∆
mdmt and for correct

decryption, we would be able to condition the minimum and maximum delays
guaranteed by a TLP solution on the exact time when it is solved, which would
give tighter delay bounds. However, the latter approach requires an intricate
reworking of Ftlp that would also require a more expensive protocol to realize
as the communication per party becomes linear in |W|. Hence, we present this
simpler construction in order to highlight our main techniques.

Theorem 5. Protocol πTLP−Light UC-realizes Ftlp in the GClock,GrpoRO, FDKG,

F f∆
mdmt-hybrid model against an active static adversary A corrupting a majority of

parties inW. The parameters of Ftlp are tag space T AG = G×G×{0, 1}2τ , proof
space G× {0, 1}τ , slack parameter ϵ = ∆lo

∆hi
and delay parameter Γ = ∆hi where

(∆lo, ·) ← mint∈{0,...,poly(τ)}{delays(t, f∆,1, . . . , f∆,|W|−1, |W| − 1)}, (·, ∆hi) ←
maxt∈{0,...,poly(τ)}{delays(t, f∆,1, . . . , f∆,|W|−1, |W| − 1)} and f∆,1, . . . , f∆,|W|−1

are the delay functions of the instances of F f∆,1

mdmt, . . . ,F
f∆,|W|−1

mdmt where Pj ∈ W
acts as receiver.

The proof can be found in Appendix C. The core tasks of its simulator S are
making sure that: 1) every puzzle generated by A is created at Ftlp; and 2) every
puzzle that is solved by Ftlp in the ideal world is simulated towards A. The
first task is accomplished by S by extracting the message m and proof π from
every puzzle generated by A and sending it to Ftlp. The second task is achieved
by simulating an execution of πTLP−Light for solving TLPs provided by Ftlp and
later using the leakage of m,π from Ftlp to program the restricted programmable
random oracles such that the output of the protocol matches m,π.
Constructing a Random Beacon. Notice that our Ftlp can be used to instantiate
the random beacon construction of [7]. In this construction, parties generate
randomness by broadcasting (or posting to a public ledger) a PV-TLP containing
a random input. After a majority of parties have provided their PV-TLPs, these
PV-TLPs are opened by their owners, who present their random input along with
a proof that it was contained in their PV-TLP. In case one of the owners does
not follow the protocol, the other parties can solve the unopened PV-TLP to

22

Protocol 10: πTLP−Light

πTLP−Light is parameterized by a cyclic group G of order q with generator g. πTLP−Light

is executed by parties P = {P1, . . . ,Pn}, among which a subset of solvers W ⊂ P,
interacting with GClock, GrpoRO1 with output in Zq, GrpoRO2 with output in {0, 1}2τ ,
FDKG and instances F f∆,i

mdmt where Pi is sender and Pi+1 is receiver for all Pi ∈ W.

Setup: When first activated, all Pi ∈ P send (PubKey, sid) to FDKG, receiving pk,
and all Pi ∈ W additionally send (SecKey, sid) to FDKG, receiving ski.

Create puzzle: On input (CreatePuzzle, sid,m), Pi encrypts m using pk following
the steps of Definition 5:

1. Sample r
$← G, s

$← {0, 1}τ and send (Hash-Query, r) to GrpoRO2, receiv-
ing (Hash-Confirm, pad). Then send (Hash-Query,m|s) to GrpoRO1, receiving
(Hash-Confirm, ρ).

2. Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) to GrpoRO1 (resp.
GrpoRO2) and abort if either of the responses is (IsProgrammed, 1).

3. Compute puz = (c1 = gρ, c2 = r · pkρ, c3 = (m|s)⊕ pad).
4. Output (CreatedPuzzle, sid, puz, π = (pk, r, s)).

Solve: On input (Solve, sid, puz), Pi sends (Solve, sid, puz) to the first Pj ∈ W
(i.e. j = min{j | Pj ∈ W}). Upon receiving (Solved, sid, puz,m, π) from the
last Pℓ ∈ W (i.e. ℓ = max{ℓ | Pℓ ∈ W}), perform Public Verification on
puz,m, π and set m = ⊥ if it does not succeed. Output (Solved, sid, puz,m, π).

Public Verification: On input (Verify, sid, puz = (c1, c2, c3),m, π = (pk, r, s)),
Pi executes Steps 2 to 5 of Create Puzzle with pk,m, r, s to obtain
puz′. If puz′ = puz, Pi sets b = 1, else, it sets b = 0, outputting
(Verified, sid, puz,m, π, b).

Tick: Parties in W proceed as follows and then send (Update) to GClock:
Starting Solution: For all (Solve, sid, puz = (c1, c2, c3)) received in this tick,
the first Pi ∈ W proceeds as follows: 1. Send (Read) to GClock, obtaining

(Read, ν1); 2. Compute ĉ2 = c2 ·c−ski
1 ; 3. Send (Send, sid, (ν1, puz, ĉ2)) to F

f∆,1

mdmt.

Ongoing Solution: Every party Pj ∈ W \Pi sends (Rec, sid) to F f∆
mdmt where

they act as receivers and, for every message (Sent, sid, (ν1, puz, ĉ2), ν) received
as answer, proceed as follows:

1. Given the current time ν obtained from GClock, ν and all the delay functions
f∆,1, . . . , f∆,j−1 associated to the previous instances of F f∆

mdmt, check that
isP(ν1, f∆,1, . . . , f∆,j−1, ν) is true, aborting otherwise.

2. Parse puz = (c1, c2, c3) and compute c̃2 = ĉ2 · c
−skj
1 .

3. If Pj is not the last party Pℓ ∈ W, send (Send, sid, (ν1, puz, c̃2)) to F
f∆,j

mdmt.

Delivering Result: The last party Pℓ ∈ W obtains r = c̃2 = c2 · c
−

∑
j∈W skj

1 ,
sends (Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad), computes
m|s = c3 ⊕ pad and broadcasts (m,π = (pk, r, s)) to all Pi ∈ P.

obtain the remaining random input. Finally all parties hash all random inputs
to obtain a random output. In our setting, this is particularly advantageous,
since potentially sequential communication delay channels only needs to be used
in case a party misbehaves. When there is no misbehavior, randomness can be
obtained cheaply by locally verifying PV-TLP proofs without accessing delayed
channels. Otherwise, if sequential communication delay must be used, a party

23

who failed to open their PV-TLP is identified, so it can be excluded in future
executions and/or made to pay for access to delay channels.

8 Stateless VDF

This Delay Encryption construction from 6 can also be converted into a stateless
VDF. Since we combine standard results in order to obtain this construction, we
only informally sketch it here. In Section 5 we have described a VDF construction
that creates the random value from a proof of sequential delay. Unfortunately,
in order to achieve uniqueness we have to use a bulletin board to keep track
of previous VDF inputs. Departing from our Delay Encryption construction,
obtaining a stateless VDF is possible as follows: assume that a threshold instance
of IBE is set up such that Setup was run and pk is known. To evaluate the VDF,
consider the VDF input x as an ID and run the threshold version of KG to generate
skx. Then, hashing x, skx using a random oracle yields the VDF output, while
skx serves as the publicly verifiable proof6. Unpredictability follows due to the
Naor transform [23], since each skx can be considered as a signature of an EUF-
CMA secure signature scheme (which is therefore UC secure). Uniqueness of the
signature follows from the El Gamal-type of IBE, as each skx is unique. The
VDF delay is then identical with the runtime of KG. We formalize this result in
the following theorem, which is conservatively phrased in terms of the [12] IBE,
although it can be generalized to any IBE that yields a unique signature via the
Naor Transform and supports distributed key generation.

Theorem 6. If the IBE scheme of [12] is IND− ID− CCA2 secure, there ex-
ists a protocol that UC-realizes FVDF in the F f∆

SCD,FNIZK,GrpoRO-hybrid model
against an active static adversary corrupting a majority of parties in P. The
delay parameter is Γ = ∆hi and the slack parameter is ϵ = ∆lo

∆hi
where (·, ∆hi) =

maxt∈{0,...,poly(τ)}{f∆(t)} and (∆lo, ·) = mint∈{0,...,poly(τ)}{f∆(t)}.

Acknowledgment

The work described in this paper has received funding from: the Protocol Labs
Research Grant Program PL-RGP1-2021-064, the Protocol Labs-CryptoSat SpaceVDF
program, the Independent Research Fund Denmark (IRFD) grants number 9040-
00399B (TrA2C), 9131-00075B (PUMA) and 0165-00079B, and the VR project
number 2022-04684.

This paper was prepared in part for information purposes by the Artificial
Intelligence Research group of JPMorgan Chase & Co and its affiliates (“JP
Morgan”), and is not a product of the Research Department of JP Morgan.
JP Morgan makes no representation and warranty whatsoever and disclaims all
liability, for the completeness, accuracy or reliability of the information contained

6 Which can be checked by encrypting a random value to identity x, decrypting using
skx and checking for consistency

24

herein. This document is not intended as investment research or investment
advice, or a recommendation, offer or solicitation for the purchase or sale of
any security, financial instrument, financial product or service, or to be used
in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be unlawful.

References

1. Cryptosat. https://cryptosat.io. Accessed: 2022-10-07.
2. Pouriya Alikhani, Nicolas Brunner, Claude Crépeau, Sébastien Designolle, Raphaël

Houlmann, Weixu Shi, Nan Yang, and Hugo Zbinden. Experimental relativistic
zero-knowledge proofs. Nat., 599(7883):47–50, 2021.

3. Ghada Almashaqbeh, Ran Canetti, Yaniv Erlich, Jonathan Gershoni, Tal Malkin,
Itsik Pe’er, Anna Roitburd-Berman, and Eran Tromer. Unclonable polymers and
their cryptographic applications. In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 759–789. Springer,
Heidelberg, May / June 2022.

4. Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin
as a transaction ledger: A composable treatment. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356.
Springer, Heidelberg, August 2017.

5. Roger R Bate, Donald D Mueller, Jerry E White, and William W Saylor. Funda-
mentals of astrodynamics. Courier Dover Publications, 2020.

6. Carsten Baum, Bernardo David, and Rafael Dowsley. (Public) Verifiability for
Composable Protocols Without Adaptivity or Zero-Knowledge. volume 13600 of
LNCS, pages 249–272. Springer, 2022.

7. Carsten Baum, Bernardo David, Rafael Dowsley, Ravi Kishore, Jesper Buus
Nielsen, and Sabine Oechsner. CRAFT: Composable randomness beacons and
output-independent abort MPC from time. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 439–470.
Springer, Heidelberg, May 2023.

8. Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine
Oechsner. TARDIS: A foundation of time-lock puzzles in UC. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part III, vol-
ume 12698 of LNCS, pages 429–459. Springer, Heidelberg, October 2021.

9. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikun-
tanathan, and Brent Waters. Time-lock puzzles from randomized encodings. In
Madhu Sudan, editor, ITCS 2016, pages 345–356. ACM, January 2016.

10. Alexandra Boldyreva, Craig Gentry, Adam O’Neill, and Dae Hyun Yum. Ordered
multisignatures and identity-based sequential aggregate signatures, with applica-
tions to secure routing. In Peng Ning, Sabrina De Capitani di Vimercati, and
Paul F. Syverson, editors, ACM CCS 2007, pages 276–285. ACM Press, October
2007.

11. Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay
functions. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

12. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–
229. Springer, Heidelberg, August 2001.

25

https://cryptosat.io

13. Dan Boneh and Moni Naor. Timed commitments. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 236–254. Springer, Heidelberg, Au-
gust 2000.

14. Christina Brzuska, Marc Fischlin, Heike Schröder, and Stefan Katzenbeisser. Phys-
ically uncloneable functions in the universal composition framework. In Phillip
Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 51–70. Springer,
Heidelberg, August 2011.

15. Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of
LNCS, pages 302–326. Springer, Heidelberg, October 2021.

16. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Jesper Buus Nielsen
and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS,
pages 280–312. Springer, Heidelberg, April / May 2018.

17. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

18. Ran Canetti. Universally composable signature, certification, and authentication.
In 17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30
June 2004, Pacific Grove, CA, USA, page 219. IEEE Computer Society, 2004.

19. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 61–85. Springer, Heidelberg, February 2007.

20. Ran Canetti and Jonathan Herzog. Universally composable symbolic analysis of
mutual authentication and key-exchange protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 380–403. Springer, Heidelberg,
March 2006.

21. Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened secu-
rity assumptions (extended abstract). In 29th FOCS, pages 42–52. IEEE Computer
Society Press, October 1988.

22. Claude Crépeau, Arnaud Massenet, Louis Salvail, Lucas Shigeru Stinchcombe, and
Nan Yang. Practical relativistic zero-knowledge for NP. In Yael Tauman Kalai,
Adam D. Smith, and Daniel Wichs, editors, ITC 2020, pages 4:1–4:18. Schloss
Dagstuhl, June 2020.

23. Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, and Rui Zhang. Formal
security treatments for signatures from identity-based encryption. In Willy Susilo,
Joseph K. Liu, and Yi Mu, editors, ProvSec 2007, volume 4784 of LNCS, pages
218–227. Springer, Heidelberg, November 2007.

24. Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay
functions from supersingular isogenies and pairings. In Steven D. Galbraith and
Shiho Moriai, editors, ASIACRYPT 2019, Part I, volume 11921 of LNCS, pages
248–277. Springer, Heidelberg, December 2019.

25. Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. Continuous
verifiable delay functions. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part III, volume 12107 of LNCS, pages 125–154. Springer, Heidel-
berg, May 2020.

26. Cody Freitag, Ilan Komargodski, Rafael Pass, and Naomi Sirkin. Non-malleable
time-lock puzzles and applications. In Kobbi Nissim and Brent Waters, editors,
TCC 2021, Part III, volume 13044 of LNCS, pages 447–479. Springer, Heidelberg,
November 2021.

26

27. Eiichiro Fujisaki and Tatsuaki Okamoto. How to enhance the security of public-key
encryption at minimum cost. In Hideki Imai and Yuliang Zheng, editors, PKC’99,
volume 1560 of LNCS, pages 53–68. Springer, Heidelberg, March 1999.

28. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In Daniele
Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 308–326. Springer,
Heidelberg, February 2010.

29. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS,
pages 115–128. Springer, Heidelberg, May 2007.

30. Jonathan Katz, Julian Loss, and Jiayu Xu. On the security of time-lock puzzles and
timed commitments. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020,
Part III, volume 12552 of LNCS, pages 390–413. Springer, Heidelberg, November
2020.

31. Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally
composable synchronous computation. In Amit Sahai, editor, TCC 2013, volume
7785 of LNCS, pages 477–498. Springer, Heidelberg, March 2013.

32. Adrian Kent. Unconditionally secure bit commitment. Physical Review Letters,
83(7):1447, 1999.

33. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

34. Tommaso Lunghi, Jedrzej Kaniewski, Felix Bussières, Raphael Houlmann, Marco
Tomamichel, Stephanie Wehner, and Hugo Zbinden. Practical relativistic bit com-
mitment. Physical Review Letters, 115(3):030502, 2015.

35. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, and Hovav Shacham. Sequen-
tial aggregate signatures from trapdoor permutations. In Christian Cachin and
Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 74–90.
Springer, Heidelberg, May 2004.

36. Ueli M. Maurer. Protocols for secret key agreement by public discussion based on
common information. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of
LNCS, pages 461–470. Springer, Heidelberg, August 1993.

37. Ryo Nishimaki, Yoshifumi Manabe, and Tatsuaki Okamoto. Universally compos-
able identity-based encryption. In Phong Q. Nguyen, editor, Progress in Cryptology
- VIETCRYPT 2006, 2006.

38. Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-
way functions. Science, 297(5589):2026–2030, 2002.

39. Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

40. David Pointcheval. Chosen-ciphertext security for any one-way cryptosystem. In
Hideki Imai and Yuliang Zheng, editors, PKC 2000, volume 1751 of LNCS, pages
129–146. Springer, Heidelberg, January 2000.

41. J. Puig-Suari, C. Turner, and W. Ahlgren. Development of the standard cubesat
deployer and a cubesat class picosatellite. In 2001 IEEE Aerospace Conference
Proceedings (Cat. No.01TH8542), volume 1, pages 1/347–1/353 vol.1, 2001.

42. Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-
release crypto, 1996.

43. Ulrich Rührmair and Marten van Dijk. On the practical use of physical unclonable
functions in oblivious transfer and bit commitment protocols. Journal of Crypto-
graphic Engineering, 3:17–28, 2013.

27

44. David A Vallado. Fundamentals of astrodynamics and applications, volume 12.
Springer Science & Business Media, 2001.

45. Ephanielle Verbanis, Anthony Martin, Raphaël Houlmann, Gianluca Boso, Félix
Bussières, and Hugo Zbinden. 24-hour relativistic bit commitment. Phys. Rev.
Lett., 117:140506, Sep 2016.

46. Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and
Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 379–407. Springer, Heidelberg, May 2019.

A Auxiliary Functionalities and other Preliminaries

We use the (Global) Universal Composability or (G)UC model [17, 19] for ana-
lyzing security and refer interested readers to the original works for more details.

In UC protocols are run by interactive Turing Machines (iTMs) called parties.
A protocol π will have n parties which we denote as P = {P1, . . . ,Pn}. The
adversary A, which is also an iTM, can corrupt a subset I ⊂ P as defined by the
security model and gains control over these parties. The parties can exchange
messages via resources, called ideal functionalities (which themselves are iTMs)
and which are denoted by F .

As usual, we define security with respect to an iTM Z called environment.
The environment provides inputs to and receives outputs from the parties P. To
define security, let πF1,... ◦ A be the distribution of the output of an arbitrary
Z when interacting with A in a real protocol instance π using resources F1,
Furthermore, let S denote an ideal world adversary and F ◦S be the distribution
of the output of Z when interacting with parties which run with F instead of π
and where S takes care of adversarial behavior.

Definition 2. We say that F UC-securely implements π if for every iTM A
there exists an iTM S (with black-box access to A) such that no environment Z
can distinguish πF1,... ◦ A from F ◦ S with non-negligible probability.

In the security experiment Z may arbitrarily activate parties or A, though only
one iTM (including Z) is active at each point of time.

The Global Random Oracle. In Functionality 11 we present the restricted ob-
servable and programmable global random oracle ideal functionality from [16].
It follows the standard notion of a random oracle, when defined in the UC frame-
work.

Key Registration Ideal Functionality FReg. The key registration functionality
FReg is presented in Functionality 12. This ideal functionality captures a public
key infrastructure, allowing parties to register their public keys in such a way
that other parties can retrieve public keys with the guarantee that they belong
to the party who originally registered them. FReg is inspired by the functionality
from [20], but additionally supports timestamps on registered keys.

28

Functionality 11: GrpoRO

GrpoRO is parameterized by an output size function ℓ and a security parameter τ ,
and keeps initially empty lists ListH,prog.

Query: On input (Hash-Query,m) from party (P, sid) or S, parse m as (s,m′)
and proceed as follows:

1. Look up h such that (m,h) ∈ ListH. If no such h exists, sample h
$← {0, 1}ℓ(τ)

and set ListH = ListH ∪ {(m,h)}.
2. If this query is made by S, or if s ̸= sid, then add (s,m′, h) to the (initially

empty) list of illegitimate queries Qs.

3. Send (Hash-Confirm, h) to the caller.

Observe: On input (Observe, sid) from S, if Qsid does not exist yet, set Qsid = ∅.
Output (List-Observe,Qsid) to S.
Program: On input (Program-RO,m, h) with h ∈ {0, 1}ℓ(τ) from S, ignore the
input if there exists h′ ∈ {0, 1}ℓ(τ) where (m,h′) ∈ ListH and h ̸= h′. Otherwise, set
ListH = ListH ∪ {(m,h)}, prog = prog ∪ {m} and send (Program-Confirm) to S.
IsProgrammed: On input (IsProgrammed,m) from a party P or S, if the input
was given by (P, sid) then parse m as (s,m′) and, if s ̸= sid, ignore this input. Set
b = 1 if m ∈ prog and b = 0 otherwise. Then send (IsProgrammed, b) to the caller.

Functionality 12: FReg

FReg interacts with a set of parties P and an ideal adversary S as well as a global
clock GClock as follows:

Key Registration: Upon receiving a message (register, sid, pk) from a party
Pi ∈ P:
1. Send (Read) to GClock, waiting for response (Read, ν).

2. Send (Registering, sid, pk,Pi, ν) to S. Upon receiving (sid, ok,Pi) from S, and
if this is the first message from Pi, then record the tuple (Pi, pk, ν).

Key Retrieval: Upon receiving a message (Retrieve, sid,Pj) from a party
Pi ∈ P, send message (Retrieve, sid,Pj) to S and wait for it to return a message
(Retrieve, sid, ok). Then, if there is a recorded tuple (Pj , pk, ν) output (Retrieve,
sid,Pj , pk, ν) to Pi. Otherwise, if there is no recorded tuple, return (Retrieve,
sid,Pj ,⊥).

Unique Digital Signatures Ideal Functionality FSig. The standard digital signa-
ture functionality FSig from [18] captures a randomized signature scheme where
the signer may influence the generation of a signature by choosing the random-
ness used by the signing algorithm. This particularity is captured by allowing the
ideal adversary S choose a new string σ to represent a signature on a message
m every time the signer Ps (a special party who has the right to generate signa-
tures, i.e., who holds the signature key) makes a new request for a signature on
m. This process allows for multiple valid signatures to be produced for the same
message. However, we require a unique signature scheme for our applications to

29

Functionality 13: FSig

Given an ideal adversary S, verifiers V and a signer Ps, FSig performs:

Key Generation: Upon receiving a message (keygen, sid) from Ps, verify that
sid = (Ps, sid

′) for some sid′. If not, ignore the request. Else, hand (keygen, sid)
to the adversary S. Upon receiving (verification key, sid, SIG.vk) from S, output
(verification key, sid, SIG.vk) to Ps, and record the pair (Ps,SIG.vk).

Signature Generation: Upon receiving a message (sign, sid,m) from Ps, verify
that sid = (Ps, sid

′) for some sid′ . If not, then ignore the request. Else, if an
entry (m,σ,SIG.vk, 1) is recorded, output (signature, sid,m, σ) to Ps and ignore
the next steps (this condition guarantees uniqueness). Else, send (sign, sid,m) to S.
Upon receiving (signature, sid,m, σ) from S, verify that no entry (m,σ,SIG.vk, 0)
is recorded. If it is, then output an error message to Ps and halt. Else, output
(signature, sid,m, σ) to Ps, and record the entry (m,σ, SIG.vk, 1).

Signature Verification: Upon receiving a message (verify, sid,m, σ, SIG.vk′)
from some party Vi ∈ V, hand (verify, sid,m, σ, SIG.vk′) to S. Upon receiving
(verified, sid,m, ϕ) from S do:

1. If SIG.vk′ = SIG.vk and the entry (m,σ,SIG.vk, 1) is recorded, then set f = 1.
(This condition guarantees completeness: If the verification key SIG.vk′ is the
registered one and σ is a legitimately generated signature for m, then the
verification succeeds.)

2. Else, if SIG.vk′ = SIG.vk, the signer Ps is not corrupted, and no entry
(m,σ′, SIG.vk, 1) for any σ′ is recorded, then set f = 0 and record the en-
try (m,σ,SIG.vk, 0). (This condition guarantees unforgeability: If SIG.vk′ is
the registered one, the signer is not corrupted, and never signed m, then the
verification fails.)

3. Else, if there is an entry (m,σ,SIG.vk′, f ′) recorded, then let f = f ′. (This
condition guarantees consistency: All verification requests with identical pa-
rameters will result in the same answer.)

4. Else, let f = ϕ and record the entry (m,σ, SIG.vk′, ϕ).

Output (verified, sid,m, f) to Vi.

proofs of sequential communication. In a unique signature scheme, only one sig-
nature may be produced for a given message m under a signing key. In the UC
formalization of signature schemes, an instance of the functionality FSig itself
represents each different signing key by allowing only a special party Ps (i.e. the
holder of a signing key) to produce signatures. Hence, we capture the notion of
unique signatures by only allowing one signature on a given message m to be
produced by the same instance of FSig. The remainder of this functionality still
follows the same steps as the standard one from [18]. Our modified FSig captur-
ing unique signatures is presented in Functionality 13, where modifications with
respect to [18] are written in this font.

It is shown in [18] that any EUF-CMA signature scheme UC realizes the
standard signature functionality where multiple valid signatures may be pro-

30

duced for the same message under the same signing key (i.e. the same instance
of FSig may generate multiple signatures for the same message, as long as they
have not been flagged as invalid signatures by a previous unsuccessful verifica-
tion procedure). We observe that this fact trivially extends to the case of unique
signatures, i.e., any EUF-CMA signature scheme UC realizes our FSig capturing
unique signatures, since the only restriction in this case is that a single signa-
ture is produced for each message by a single instance of FSig (which represents
a signer’s signing key).

Bulletin Board Ideal Functionality FBB. In Functionality 14 we describe an au-
thenticated bulletin board functionality which is used throughout this work.
Authenticated Bulletin Boards can be constructed from regular bulletin boards
using FSig,FReg and standard techniques.

Functionality 14: FBB

FBB interacts with a set of parties P and keeps a counter c initially set to 0,
proceeding as follows:

Write: Upon receiving (Write, sid,m) from Pi ∈ P, store the message (c,m) and
increment c.

Read: Upon receiving (Read, sid) from Pi ∈ P, return all messages (·,m) that are
stored.

A.1 UC Secure Public-Key Encryption with Plaintext Verification

Semantics of a public-key encryption scheme. We consider public-key encryption
schemes PKE that have public-key PK, secret key SK, messageM, randomness
R and ciphertext C spaces that are functions of the security parameter τ , and
consist of a PPT key generation algorithm KG, a PPT encryption algorithm Enc

and a deterministic decryption algorithm Dec. For (pk, sk)
$← KG(1τ), any m ∈

M, and ct
$← Enc(pk,m), it should hold that Dec(sk, ct) = m with overwhelming

probability over the used randomness.
Moreover, we extend the semantics of public-key encryption by adding a

plaintext verification algorithm {0, 1} ← V(ct,m, π) that outputs 1 if m is the
plaintext message contained in ciphertext ct given a valid proof π that also
contains the public-key pk used to generate the ciphertext. Furthermore, we

modify the encryption and decryption algorithms as follows: (ct, π)
$← Enc(pk,m)

and (m, π) ← Dec(sk, ct) now output a valid proof π that m is contained in ct.
The security guarantees provided by the verification algorithm are laid out in
Definition 3.

Definition 3 (Plaintext Verification). Let PKE = (KG,Enc,Dec,V) be a
public-key encryption scheme and τ be a security parameter. Then PKE has
plaintext verification if for every PPT adversary A, it holds that:

31

Pr

V(ct,m′, π′) = 1

∣∣∣∣∣∣
pk

$← PK, (m, π,m′, π′)
$← A(pk),

π = (pk, r), π′ = (pk, r′) ∈ PK ∪R,
m,m′ ∈M, (ct, π)← Enc(pk,m; r),m′ ̸= m

 ∈ negl(τ)

IND-CCA secure Cryptosystem with Plaintext Verification based on [40] from [6].
This cryptosystem can be constructed from any Partially Trapdoor One-Way
Injective Function in the random oracle model. Moreover, as observed in [6],
it can be instantiated in the restricted observable and programmable global
random oracle model of [16]. First we recall the definition of Partially Trapdoor
One-Way Functions.

Definition 4 (Partially Trapdoor One-Way Function [40]). The function
f : X × Y → Z is said to be partially trapdoor one-way if:

– For any given z = f(x, y), it is computationally impossible to get back a
compatible x. Such an x is called a partial preimage of z. More formally, for
any polynomial time adversary A, its success, defined by SuccA = Prx,y[∃y′,
f(x′, y′) = f(x, y)|x′ = A(f(x, y))], is negligible. It is one-way even for just
finding partial-preimage, thus partial one-wayness.

– Using some extra information (the trapdoor), for any given z ∈ f(X ×Y), it
is easily possible to get back an x, such that there exists a y which satisfies
f(x, y) = z. The trapdoor does not allow a total inversion, but just a partial
one and it is thus called a partial trapdoor.

As observed in [40], the classical El Gamal cryptosystem is a partially trap-
door one-way injective function under the Computational Diffie Hellman (CDH)
assumption, implying an instantiation of this cryptosystem under CDH. We will
later exploit this fact to apply this transformation to a simple threshold version
of El Gamal where the encryption procedure and the public key are exactly
the same as in the standard scheme, allowing for the construction below to be
instantiated. We now recall this generic construction.

Definition 5 (Pointcheval [40] IND-CCA Secure Cryptosystem with
Plaintext Verification). Let T D be a family of partially trapdoor one-way
injective functions and let H : {0, 1}|m|+τ → Y and G : X → {0, 1}|m|+τ be
random oracles, where |m| is message length. This cryptosystem consists of the
algorithms PKE = (KG,Enc,DecV) that work as follows:

– KG(1τ): Sample a random partially trapdoor one-way injective function f :
X ×Y → Z from T D and denote its inverse parameterized by the trapdoor by
f−1 : Z → X . The public-key is pk = f and the secret key is sk = (f, f−1).

– Enc(pk,m): Sample r
$← X and s

$← {0, 1}τ . Compute a← f(r,H(m|s)) and
b = (m|s) ⊕ G(r), outputting ct = (a, b) as the ciphertext and π = (pk, r, s)
as the proof.

32

– Dec(sk, ct): Given a ciphertext ct = (a, b) and secret key sk = f−1, compute
r ← f−1(a) and M ← b ⊕ G(r). If a = f(r,H(M)), parse M = (m|s) and
output m and the proof π = (pk, r, s) . Otherwise, output ⊥.

– V(ct,m, π): Parse π = (pk, r, s), compute ct′ ← Enc(pk,m, (r, s)) and output
1 if and only if ct = ct′.

A.2 Global Clocks and Global tickers

We now discuss the [8] model, which expresses time within the Generalized
Universal Composability (GUC) framework in such a way that protocols can be
made oblivious to clock ticks. Specifically, TARDIS models the passage of time
without implying synchronicity. Our results can be stated in this model as well,
which makes our results directly comparable and compatible with previous work
on UC PV-TLPs and VDFs [7, 8] that adopt the same model.

Global Tickers: In [7, 8], a global ticker functionality Gticker (see Functional-
ity 15) keeps track of “ticks” representing a discrete unit of time. When activated
by another ideal functionality, the global ticker answers whether or not a new
“tick” has happened since the last time it was activated by this ideal function-
ality but does not provide a synchronized clock value. To ensure that all honest
parties can observe all relevant timing-related events, Gticker only progresses if all
honest parties have signaled that they have been activated (in arbitrary order).
Parties do not get outputs from Gticker. Ticked functionalities can freely interpret
ticks and perform arbitrary internal state changes. Upon each activation, any
ticked ideal functionality first checks with Gticker if a new tick has happened and
if yes, executes code in a special Tick interface. In a protocol realizing a ticked
functionality, parties activate the global ticker after executing their steps, so that
a new tick is allowed to happen. We refer to [8] for more details

Functionality 15: Gticker

Initialize a set of registered parties Pa = ∅, a set of registered functionalities Fu = ∅,
a set of activated parties LPa = ∅, and a set of functionalities LFu = ∅ that have
been informed about the current tick.

Party registration: Upon receiving (register, pid) from honest party P with pid
pid, add pid to Pa and send (registered) to P.
Functionality registration: Upon receiving (register) from functionality F ,
add F to Fu and send (registered) to F .
Tick: Upon receiving (tick) from the environment, do the following:
1. If Pa = LPa, reset LPa = ∅ and LFu = ∅, and send (ticked) to the adversary S.
2. Else, send (notticked) to the environment.

Ticked request: Upon receiving (ticked?) from functionality F ∈ Fu: If F /∈ LFu,
add F to LFu and send (ticked) to F. Otherwise send (notticked) to F.
Record party activation: Upon receiving (activated) from party P with pid
pid ∈ Pa, add pid to LPa and send (recorded) to P.

33

Synchronicity and Global Clocks As mentioned in Section 2 we need to assume
that honest parties have synchronized clocks. This is necessary to argue about
communication delays that depend on the relative position of two parties, which
evolves in time. We capture this notion of synchronicity by using a global clock
functionality GClock (see Functionality 1). In the definition that we use through-
out the main body, GClock allows users to query the current time and increments
an internal time counter once all functionalities and honest parties activate a
clock update interface after the last update. However, one can realize GClock in
the TARDIS abstract composable time model. To do so, we update its internal
time counter when Gticker issues a new tick.

Global Clocks in the TARDIS [8] model: In order to integrate the global
functionality GClock into the abstract composable time model, we modify it as
outlined above. This modification captures the fact that GClock exposes towards
the parties and other ideal functionalities the number of ticks issues by Gticker
since the beginning of the execution. However, it is not a separate clock that is
executed independently from Gticker. Since we wish GClock to count the ticks issued
by Gticker, our modified version of GClock requires all honest parties to activate
the global ticker every time they would update the global clock (i.e. when they
have executed all their instructions for a given round). This modification can
be seen in Functionality 16. It is immediate how this clock functionality can be
used to replace the global GClock throughout our protocols by replacing Update
messages to GClock by activated calls to Gticker.

Functionality 16: GClock

GClock interacts with a sets P,F of parties and functionalities, respectively, as well
as with Gticker. It keeps a counter ν initially set to 0.

Clock Read: Upon receiving (Read) from any entity, answer with (Read, ν).

Tick: Increment ν, i.e. set ν ← ν + 1.

B Delayed Communication - Proofs and more details

B.1 Realizing F f∆
mdmt

The multiple-use ideal functionality F f∆
mdmt for authenticated delayed message

transmission can be realized in the GClock,F∆lo,∆hi

dmt -hybrid model. Assume access

to many instances of the single-use functionality F∆lo,∆hi

dmt , one fresh instance of

F∆t
lo,∆

t
hi

dmt associated to t for each message to be sent at time t ∈ {0, . . . , poly(τ)}
with parameters (∆t

lo, ∆
t
hi) ← f∆(t). Upon receiving an input (Send, sid,m), a

sender PS determines (∆t
lo, ∆

t
hi) ← f∆(t) and uses the instance of F∆t

lo,∆
t
hi

dmt to
send (m, t). Upon receiving input (Rec, sid), a receiver PR queries all instances

34

of F∆t′
lo,∆

t′
hi

dmt associated to a time t′ smaller than current time t in order to retrieve
messages that might have been sent. It then has to establish correctness of the
delay.

Protocol 17: πmdmt

For each t ∈ {0, . . . , poly(τ)} let (∆t
lo,∆

t
hi) ← f∆(t). In the protocol two parties

PS ,PR interact via functionalities F∆t
lo,∆

t
hi

dmt . In addition, they use a global clock
GClock. Upon any activation that is not related to a message below, parties send
(Update) to GClock.

Send: Upon input (Send, sid,m) PS acts as follows:
1. Send (Read) to GClock and obtain (Read, t).
2. Determine (∆lo,∆hi)← f∆(t).
3. Send (Send, sid, (m, t)) to F∆lo,∆hi

dmt and (Update) to GClock.
Receive: Upon input (Rec, sid) PR acts as follows:
1. Send (Read) to GClock and obtain (Read, t).
2. For each t ∈ {0, . . . , t} compute (∆t

lo,∆
t
hi)← f∆(t).

3. Send (Rec, sid) to each F∆t
lo,∆

t
hi

dmt and wait for responses (Sent, sid, (m, t′)) from

F∆t
lo,∆

t
hi

dmt . If t ̸= t′ then PR ignores (m, t′).
4. If ∆lo + t ≤ t ≤ ∆hi + t then PR outputs (Sent, sid,m, t).

Theorem 7. The protocol πmdmt in Protocol 17 GUC-securely implements F f∆
mdmt

in the GClock,F ·
dmt-hybrid model against a static active adversary.

Proof. We now construct a PPT simulator S for a corrupted sender or receiver.
In both cases, the simulator will simulate all hybrid instances of F ·

dmt, which can
be done in time polynomial in τ as there are only poly(τ) such instances.

If PS is corrupted then we construct S as follows: S acts like an honest PR,
but it additionally observes all inputs (Send, sid,m) to any instance of F ·

dmt that

it simulates. Any input of the form (m, t) to F∆lo,∆hi

dmt with (∆lo, ∆hi) = f∆(t)

is forwarded as (Send, sid,m) to F f∆
mdmt during the same tick of GClock. When

the adversary makes this F∆lo,∆hi

dmt output the message (m, t′), then S makes

F f∆
mdmt output m in the same tick round of GClock by sending (ok, sid, t′). This

simulation is perfect, as F f∆
mdmt will output any message in the same round where

the respective instance of F ·
dmt would have released it to an honest receiver.

Moreover, only those messages are forwarded by S to F f∆
mdmt that wouldn’t be

ignored by an honest receiver.
If PR is corrupted then S sends (Rec, sid) to F f∆

mdmt in every tick round. Upon

obtaining (Sent, sid,m, t′) from F f∆
mdmt in tick round t, S computes (∆lo, ∆hi)←

f∆(t
′) and programs the respective instance F∆lo,∆hi

dmt to contain the message
(m, t′) and have msg = released = ⊤ so that the honest receiver can pick
up the message. Again, the simulation is perfect because the instance that is
reprogrammed by S is the one an honest sender would provide the respective

35

input to. Moreover, given the construction of F ·
dmt the dishonest receiver would

not be able to obtain the message any earlier than in this round in the real
protocol. ⊓⊔

B.2 Proof of Theorem 1

Proof. We construct a PPT simulator S that emulates the protocol interaction
for a corrupted PS or PR. S will simulate the instances of FSig,FReg,F f∆

mdmt.
During Setup, S will in either case of corruption act like an honest party, setting
up both instances FSig

S ,FSig
R and will simulate posting its key on FReg.

If PS is corrupted, then S during Send extracts the message m from F f∆
mdmt

and checks that PS has a key SIG.vkS registered with FReg before the current tick

round. If the signature verifies with FSig
S , then forward it to F f∆

SCD as (Send,

sid,m) in the same tick round. When the adversary makes F f∆
mdmt output the

message and if an honest verifier would have accepted it, then S computes πlo
as in the protocol using FSig

R for its signature. Finally, it lets F f∆
SCD deliver

the message to the honest receiver and sends (Proof, sid,m, t, πlo) to F f∆
SCD.

If the timestamp in F f∆
mdmt does not coincide with when the message was sent,

it instead lets F f∆
SCD deliver the message and sends (NoProof, sid). For any

message (verify, sid,m, t,∆, πlo) where S did generate πlo for this m, t and
(∆lo, ∆hi) ← f∆(t), ∆ ∈ [∆lo, ∆hi] send (verify, sid,m, t,∆, πlo, 1), otherwise
send (verify, sid,m, t,∆, πlo, 0) to F f∆

SCD.

If instead PR is corrupted, wait until F f∆
SCD outputs (Sent, sid,m, t), then cre-

ate a valid signature σS using FSig and make F f∆
mdmt output (Sent, sid, (m, t, σS), t)

to PR in the same tick round. In addition, send (NoProof, sid) to F f∆
SCD. Then,

upon query (Verify, sid,m, t,∆, πlo) from F f∆
SCD and if πlo can be parsed as

(σ′
S , σR), check that σS = σ′

S . If not, then send (verified, sid,m, t,∆, πlo, 0) to

F f∆
SCD. Otherwise emulate the call (verify, sid, (m, t, σS), σR,SIG.vkR) on FSig

R

with the adversary, which will ultimately output (verified, sid, (m, t, σS), f) to
S. Send (verified, sid,m, t,∆, πlo, f) to F f∆

SCD.
Clearly, the simulation runs in polynomial time. For a corrupted PS , we

only make F f∆
SCD output a proof (and let it later verify a proof positively) if the

message from PS via F f∆
mdmt was well-formed. This is identical to the protocol,

and also the proof πlo is identical. For the corrupt PR we make the simulated
protocol output the correctly signed message to it in the same round as it would
in the real protocol. Moreover, F f∆

SCD’s Verify responses are consistent with the
outputs from the protocol by letting S verify signatures with FSig first. Hence
both cases are perfectly indistinguishable. ⊓⊔

B.3 Computing channel delays

We now define the algorithm delays(t1, f∆,1, . . . , f∆,n−1, k) that works for any
threshold k < n of corrupted parties to determine the minimal and maximal
observable delay as follows:

36

1. For i ∈ [n− 1] let ∆i
hi = maxj∈poly(τ){∆hi | (∆lo, ∆hi)← f∆,i(j)}. Then

∆hi = max
j∈[∆1

hi+···+∆n−1
hi]
{j | isP(t1, f∆,1, . . . , f∆,n−1, t1 + j)}

2. First party honest:

a1 = min
t1≤t≤t1+∆hi

{t− t1 | isP(t1, f∆,1, . . . , f∆,n−k, t1 + t)}

3. Last party honest:

a2 = min
t1≤t<tn≤t1+∆hi

{
tn − t

∣∣ isP(t1, f∆,1, . . . , f∆,k, t)∧
isP(t, f∆,k+1, . . . , f∆,n−1, tn)

}
4. First and last two corrupt:

a3 = min
i∈{2,...,k−2},t1≤t<t′≤t1+∆hi

t′ − t

∣∣∣∣ isP(t1, f∆,1, . . . , f∆,i, t)∧
isP(t, f∆,i+1, . . . , f∆,i+n−k, t

′)∧
isP(t′, f∆,i+n−k+1, . . . , f∆,n−1, tn)


5. Set ∆lo = min{a1, a2, a3} and output (∆lo, ∆hi).

Clearly, each step of delays makes only polynomially many calls to isP, so the
algorithm remains efficient for n = poly(log τ).

Proposition 3. The algorithm delays computes the minimal and maximal ob-
servable delay for k corruptions of n parties given delay functions f∆,1, . . . , f∆,n−1.

Proof. Clearly, ∆hi cannot be larger than the sum of the largest individ-
ual delays that any f∆,i can contribute. Hence, ∆hi as computed is the largest
achievable delay in any observable protocol.

a1 considers the case where the first n− k parties are honest. That the given
statement finds the smallest possible delay in this case follows directly.

Step a2 considers the case where the last n−k parties are honest. Here, since
Pk+1 can observe the behavior of Pk (which is dishonest), the minimal delay
includes the delay from Pk to Pk+1.

Finally, step a3 considers all cases where there are two parties in the beginning
and the end of the chain that are corrupted, and picks the best way of having i
corrupted in the beginning and k − i in the end so that the honest parties have
minimal observable delay. Then, the minimal of all these 3 mutually exclusive
cases yields the minimal channel delay. ⊓⊔

B.4 The protocol πMulti−SCD and proof of Theorem 2

Proof. We construct a simulator S that works for every set of corrupted parties.
Let Pi be the first honest party and Pj be the last honest party (where Pi = Pj

is possible). In general, S will run a simulation of πMulti−SCD with the adversary
where it lets every uncorrupted Pi act honestly, subject to the modifications
outlined below.

37

Protocol 18: πMulti−SCD

This protocol is executed by a sender P1, a set of intermediate parties P2, . . . ,Pn−1

and a receiver Pn, as well as a set of verifiers V interacting with each other and

with GClock,FReg,FSig
1, . . . ,FSig

n. Each pair Pi,Pi+1 is connected by F f∆,i

mdmt.
In every step, the activated party sends (Read) to GClock to obtain (Read, t).

Setup: Upon first activation, each Pi proceeds as follows:
1. Send (keygen, sid) to FSig

i where Pi acts as signer.
2. Upon receiving (verification key, sid,SIG.vki) from FSig

i, Pi sends
(register, sid, SIG.vki) to FReg.

Send: Upon receiving first input (Send, sid,m) for t, P1 proceeds as follows:
1. Send (sign, sid, (m, t)) to FSig

1, receiving (signature, sid, (m, t), σ1).

2. Send (Send, sid, (m, t, σ1)) to F
f∆,1

mdmt.

Receive: Upon receiving (Rec, sid), Pn sends (Rec, sid) to F f∆,n−1

mdmt and proceeds

as follows for the first (Sent, sid, (m, t, σ1, . . . , σn−1), t
′) received from F f∆,n−1

mdmt :

1. Check if isP(t, f∆,1, . . . , f∆,n−2, t
′).

2. For each i ∈ [n− 1] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi, t) is true.
3. If all checks pass, send (Sign, sid, (m, t, σ1, . . . , σn−1)) to FSig

n to ob-
tain (Signature, sid, (m, t, σ1, . . . , σn−1), σn). Output (Sent, sid,m, t, t −
t, (σ1, . . . , σn)). If a check fails, then output (NoProof, sid).

Verify: Upon receiving (verify, sid,m, t,∆, πlo), Vi ∈ V parses πlo = (σ1, . . . , σn)
and proceeds as follows:
1. Check that t+∆ ≥ t and isP(t, f∆,1, . . . , f∆,n, t+∆) is true.
2. For each i ∈ [n] check if verifySigs(i, (m, t, σ1, . . . , σi−1), σi, t) is true.
3. If all checks pass set b = 1, else b = 0. Output (verified, sid,m, t,∆, πlo, b).

Tick: Proceed as follows and then send (Update) to GClock.
1. Each Pi ∈ {P2, . . . ,Pn−1} sends (Rec, sid) to F f∆,i−1

mdmt .
2. If Pi obtains (Rec, sid, (m, t, σ1, . . . , σi−1), ti−1) then check if isP(t, f∆,1, . . . ,

f∆,i−2, ti−1) is true and if for each j ∈ [i − 1] it holds that
verifySigs(j, (m, t, σ1, . . . , σj−1), σj , t) is true.

3. If the checks pass, send (Sign, sid, (m, t, σ1, . . . , σi−1)) to FSig
i to obtain

(Signature, sid, (m, t, σ1, . . . , σi−1), σi) if this is the first message for t.

4. Send (Send, sid, (m, t, σ1, . . . , σi)) to F
f∆,i

mdmt.
Function verifySigs(ℓ,m, σ, t):

1. Send (Retrieve, sid,Pℓ) to FReg, receiving (Retrieve, sid,Pℓ, SIG.vk, tReg)
as answer. Check that tReg ≤ t and output false if not.

2. Send (verify, sid,m, σ, SIG.vk) to FSig
ℓ, receiving (verified, sid,m, σ, f) as

response. Output true if f = 1, otherwise false.

If P1 is honest then S already initially obtains m from F f∆
SCD and honestly

generates messages and signatures for F f∆,i

mdmt where an honest party is a sender.
If P1 is corrupted then wait until the first honest party Pi obtains the first valid

message m, t from F f∆,i−1

mdmt . If an honest Pi would sign and forward the mes-

sage, then send (Send, sid,m, t) to F f∆
SCD and continue to simulate the protocol

honestly.

38

Continue simulation for each honest intermediate party until the last honest

party Pj . If Pj = Pn then S makes message delivery of F f∆,n−1

mdmt coincide with

output delivery in F f∆
SCD by using Release message and chooses the proof string

according to all signatures as in the protocol. If some signatures are not valid or
delivery appears too late at the simulated Pn or any honest intermediate receiver
then S makes F f∆

SCD output (NoProof, sid). Finally, reject all Verify queries in
case (NoProof, sid) was sent and accept only those for the chosen proof string
otherwise. If Pj ̸= Pn, let all honest parties act like in the protocol. For each
query of Verify, reject if the proof string disagrees with the honestly generated
signatures for the specific message and delay. For all signatures of adversarially
controlled parties Pi, check with FSig

i if they are valid for m, t and only set
ϕ = 1 iff all are valid.

The messages that the adversary obtains in the protocol are perfectly in-
distinguishable from those in the simulation. Moreover, the output of Verify
both in the simulation and in the protocol coincides. If the receiver is honest,
then delivery of message and output is simultaneous with what happens in the
protocol by S using the Release message interface. Moreover the message and
its timestamp are consistent with the simulation, and exactly those get delivered
to an honest receiver that don’t make the protocol abort. If a protocol instead
fails, then S uses (NoProof, sid) to let F f∆

SCD abort. All Verify responses of S
are consistent with what an honest verifier would output in the protocol. ⊓⊔

C Proof of Theorem 5

Proof. We prove Theorem 5 by constructing a simulator S (presented in Simu-
lator 19) that executes an internal copy of A and interacts with Ftlp in an ideal
world execution that is indistinguishable for the environment Z from the real
world execution of πTLP−Light with A. The core tasks of S are making sure that
every puzzle generated by A in the simulation is created at Ftlp and that every
puzzle that is solved by Ftlp in the ideal world is simulated towards A. The first
task is accomplished by S by extracting the message m and proof π from every
puzzle generated by A and creating a TLP containing m by contacting Ftlp. The
second task is achieved by simulating an execution of πTLP−Light for solving TLPs
provided by Ftlp and later using the leakage of m,π from Ftlp to program the
restricted programmable random oracles such that the output of the protocol
matches m,π. Both simulation strategies are clearly possible and indistinguish-
able from a real execution since S has the shared secret key sk provided by FDKG

(which is simulated) and since it can rely on the properties of the IND-CCA
secure (and thus UC-secure) encryption scheme in Definition 5, which is used to
generate ciphertexts containing TLP messages in πTLP−Light. ⊓⊔

D UC Treatment of Delay Encryption

The notion of Delay Encryption (DE) was introduced in [15], where a game
based security definition is presented. In order to use our proof of sequential

39

Simulator 19: S for πTLP−Light

S interacts with an internal copy of A, towards which it simulates the honest
parties in P = {P1, . . . ,Pn} and functionalities Gticker,GClock, GrpoRO1, GrpoRO2, FDKG,

F f∆,1

mdmt, . . . ,F
f∆,|W|−1

mdmt . Unless explicitly stated, S simulates all functionalities exactly
as they are described.

Setup: S simulates FDKG towards A and honest parties in P interacting with FDKG,
learning all skj and sk =

∑
Pj∈W skj .

Create puzzle: When A outputs puz = (c1, c2, c3), S proceeds as follows:
1. Extract the message m and proof π = (pk, r, s): (a) Ex-

tract message m by computing r = c̃2 = c2 · csk1 , sending
(Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad) and com-
puting m|s = c3 ⊕ pad. (b) Check that the puzzle is valid by send-
ing (Hash-Query,m|s) to GrpoRO1, receiving (Hash-Confirm, ρ) and
checking that puz = (c1 = gρ, c2 = r · pkρ, c3 = (m|s) ⊕ pad).
(c) Send (IsProgrammed,m|s) (resp. (IsProgrammed, r)) to GrpoRO1

(resp. GrpoRO2) and abort if either of the responses is (IsProgrammed, 1).
2. If all checks on m,π passed, send (CreatePuzzle, sid,m) to Ftlp and provide

puz, π when requested.
Solve: Simulate honest parties in P executing as in πTLP−Light. Upon receiving

(Solve, sid, puz) from Ftlp, S forwards (Solve, sid, puz) to the first Pi ∈ W.
Public Verification: Simulate honest parties in P executing as in πTLP−Light.
Tick: S simulates honest parties in W executing as in πTLP−Light, additionally per-

forming the following steps:

Starting Solution: When a corrupted party in P sends (Solve, sid, puz) to the
first Pi ∈ W, S forwards (Solve, sid, puz) to Ftlp.
Ongoing Solution: S answers requests from Ftlp as follows:
– Upon receiving (Solved, sid, puz,m, π) from Ftlp, S programs GrpoRO1 and
GrpoRO2 such that solving puz via the steps of πTLP−Light yields message m
with proof π.

– Upon receiving a request from Ftlp for π for a puz = (c1, c2, c3), S an-
swers with π = (pk, r, s) obtained by computing r = c̃2 = c2 · csk1 , sending
(Hash-Query, r) to GrpoRO1, receiving (Hash-Confirm, pad) and comput-
ing m|s = c3 ⊕ pad.

communication delay machinery, we first introduce a treatment of DE in the
UC framework, upon which we have defined and constructed our results. In
Functionality 20, We provide an ideal functionality FDE for DE that captures
this notion.

Similarly to other timed functionalities in our work, this functionality is de-
fined in the abstract composable time model of TARDIS [8], previously discussed
in Section 2 and Appendix A.2. We essentially adapt our PV-TLP functionality
Ftlp to generate a DE ciphertext as if it was a time-lock puzzle connected to a
certain ID represented by a sub-session ID ssid. Analogously, we modify the puz-
zle solving interface to instead implicitly extract the secret key corresponding to
a ssid, which in the functionality is reflected by allowing honest parties to obtain

40

the messages in ciphertexts corresponding to that ssid. As is the case in Ftlp and
FVDF, we allow the adversary to decrypt ciphertexts connected to a given ssid
slightly before the same access is given to honest parties (i.e. at time ϵΓ < Γ).

Functionality 20: FDE

FDE is parameterized by a computational security parameter τ , a message space
MSG, a tag space T AG, a slack parameter 0 < ϵ ≤ 1 and a delay parameter
Γ . FDE interacts with a set of parties P = {P1, . . . ,Pn} and an adversary S. FDE

maintains initially empty lists omsg (encrypted messages), L (keys being extracted),
EXT (extracted keys).

Encrypt Message: Upon receiving a message (CreatePuzzle, sid, ssid,m) from Pi

where m ∈ MSG, send (CreatePuzzle, sid, ssid) to S and let S provide puz.
If puz /∈ T AG or there exists (ssid, puz,m′) ∈ omsg, then FDE halts. Append
(ssid, puz,m) to omsg, set and output (Encrypt, sid, ssid, puz) to Pi and to S.

Extract Key: Upon receiving (Extract, sid, ssid) from Pi ∈ P, add (ssid, 0) to L
and send (Extract, sid, ssid) to S.

Decrypt Ciphertext: Upon receiving (Decrypt, sid, ssid, puz) from a party Pi ∈
P, ignore the message if Pi is honest and there does not exist a record ssid ∈
EXT or if Pi is corrupted and there does not exist a record (ssid, c) ∈ L for
c ≥ ϵΓ . Otherwise, proceed as follows:

– If (ssid, puz,m) ∈ omsg, output (Decrypt, sid, ssid, puz,m) to Pi.
– If there does not exist (ssid, puz,m) ∈ omsg, let S provide m ∈ MSG, add

(ssid, puz,m) to omsg and output (Decrypt, sid, ssid, puz,m) to Pi.

Tick: For all (ssid, c) ∈ L, update (ssid, c) ∈ L by setting c = c+ 1 and:
– If c ≥ ϵΓ , send (Extracted, sid, ssid) to S.
– If c = Γ , remove (ssid, c) ∈ L, send (Proceed?, sid, ssid) to S and proceed as

follows:
• If S sends (Abort, sid, ssid), output (Abort, sid, ssid) to all Pi.
• If S sends (Proceed, sid, ssid), add ssid to EXT and output

(Extracted, sid, ssid) to all Pi.

E Practical Considerations

In this appendix, we elaborate on our model choices and how realistic our con-
structions are in generic terms. Unfortunately we cannot back our estimates with
concrete results as we could not buy a few satellites, ship them to space and test
our protocol in its realistic setting. We leave this as interesting future work.

How to compute communication delay lower bounds. In Physics c de-
notes the speed of light (measured to c = 299.792.458 meters/second in the
space). Einstein’s Special Relativity sets c as the natural upper bound on com-
munication speed since matter, energy or signals that may carry information

41

can travel at most as fast as the speed of light. With this in mind it is straight-
forward to determine the exact lower bound for communication delay between
two satellites. Let d denote the distance in meters between two satellites, then
the minimal possible time-delay in their communication is ∆ = d/c. The dis-
tance d can be computed by first determining each satellite’s position and then
computing the Euclidean distance between such positions. Determining a satel-
lite’s position at an instant in time is done via classical mechanics, see [5,
Chapter 4 & 5] or [44, Chapter 10 & 11] for standard references. Even spy
satellites can be tracked by amateur enthusiasts, e.g. https://gizmodo.com/
how-you-can-track-every-spy-satellite-in-orbit-1685316357.

Efficiency of TLP & IBE constructions. When computing the Time-Lock
Puzzle (TLP) based on threshold encryption, each satellite performs one extra
scalar multiplication, adding 0.066ms for the Cortex-A15 processor and 2.28ms
for the A9 processor mentioned above. When executing our VDF/TLP con-
structions based on IBE, each satellite only needs to compute one extra scalar
multiplication on the elliptic curve as in the TLP based on threshold encryption.
Expensive operations (e.g. re-encryption and bilinear pairings) are only done on
non-constrained devices verifying the result of VDF/TLP evaluations.

On a trust assumption. Previous results on TLPs/VDFs consider that the
evaluation of TLPs/VDFs is done locally by each party, thus requiring security
even when this single evaluator is dishonest. In our setting, we outsource this
evaluation to a group of parties and guarantee security if at least 1 of them
is honest. In our concrete instantiation, we require at least one of the parties
signing the message be honest, when the message travels through the round-
robin network of parties when being signed in order by each party. While this
is indeed an extra trust assumption, it allows us to provide precise and absolute
delay lower bounds. This is not unprecedented in the time-based cryptography
literature, as the same assumption of at least 1 out of n parties being honest
is also made in the context of distance bounding protocols. Moreover, since
satellites are in orbit, it is infeasible to corrupt their hardware and software
(provided it is not updatable) after the launch.

Liveness of Optimistic Protocols. We take an optimistic approach of de-
signing highly efficient protocols that might abort in case of misbehavior by one
of the parties, in which case we resort to more expensive protocols that iden-
tify and eliminate the cheating party. This applies to our constructions of VDFs
in Section 5,TLPs in Section 7 and Delay Encryption in Section 6. All of the
constructions rely on our proof of communication delay, so they will abort if a
satellite in the pre-established signing path fails to provide a valid signature.
Moreover, in the TLP (resp. Delay Encryption) constructions, a satellite who
misbehaves in the threshold encryption (resp. threshold identity key generation)
will also cause an abort. Both abort cases can be handled by requiring the satel-
lites to repeat the protocol while providing non-interactive zero knowledge proofs

42

https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357
https://gizmodo.com/how-you-can-track-every-spy-satellite-in-orbit-1685316357

(NIZK) of correct execution. In this augmented protocol, we can easily identify a
cheater by checking the NIZKs (i.e. misbehavior will result in an invalid NIZK),
subsequently eliminating this cheater e re-executing the protocol once more.
Naturally, eliminating a cheating satellite will also require re-executing the se-
quential signing protocol, which might be costly. However, notice that once a
cheater is eliminated, it no longer participates in future executions of the pro-
tocol. Hence, these re-executions will happen at most t times, where t is the
number of corrupted satellites. After all cheaters are eliminated, all executions
will only require the highly efficient optimistic protocol.

43

	Introduction
	Our Contributions
	Technical Overview

	Preliminaries
	Modeling Communication Delays
	Proofs of Sequential Communication Delays
	Modelling Proofs of Sequential Communication Delay

	Verifiable Delay Functions
	Delay Encryption
	Publicly Verifiable Time-Lock Puzzles
	Stateless VDF
	Auxiliary Functionalities and other Preliminaries
	UC Secure Public-Key Encryption with Plaintext Verification
	Global Clocks and Global tickers

	Delayed Communication - Proofs and more details
	Realizing Fmdmtf
	Proof of Theorem 1
	Computing channel delays
	The protocol Multi-SCD and proof of Theorem 2

	Proof of Theorem 5
	UC Treatment of Delay Encryption
	Practical Considerations

