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Abstract

Starting from the problem of d-Tensor Isomorphism (d-TI), we
study the relation between various Code Equivalence problems in dif-
ferent metrics. In particular, we show a reduction from the sum-rank
metric (CEsr) to the rank metric (CErk). To obtain this result, we inves-
tigate reductions between tensor problems. We define the Monomial
Isomorphism problem for d-tensors (d-TI∗), where, given two d-tensors,
we ask if there are d − 1 invertible matrices and a monomial matrix
sending one tensor into the other. We link this problem to the well-
studied d-TI and the TI-completeness of d-TI∗ is shown. Due to this
result, we obtain a reduction from CEsr to CErk. In the literature, a
similar result was known, but it needs an additional assumption on the
automorphisms of matrix codes. Since many constructions based on
the hardness of Code Equivalence problems are emerging in cryptog-
raphy, we analyze how such reductions can be taken into account in
the design of cryptosystems based on CEsr.

Keywords— Code Equivalence; Sum-Rank Metric; Rank Metric; Matrix Code
Equivalence; Tensor Isomorphism

1 Introduction

Equivalence problems. An equivalence problem is a computational problem
where, given two objects A and B of the same nature, it asks whether there exists a
map with some properties (an equivalence) sending A to B. Different problems can
be stated, depending on the nature of the considered objects or the properties of
the map. One of the most well-known equivalence problems is Graph Isomorphism,
but in the literature one can find problems concerning groups, quadratic forms, al-
gebras, linear codes, tensors, and many other objects. We will focus on the latter,
with the Code Equivalence and the Tensor Isomorphism problems. An interesting
fact is that the isomorphism problem for tensors seems “central” among others.
In particular, a large class of equivalence problems can be polynomially reduced
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to it. In other words, given a pair of objects (groups, algebras, graphs, etc.), a
pair of tensors can be built such that they are isomorphic if and only if the start-
ing objects are equivalent. This led to the definition of the complexity class TI in
[GQ21]. Different reductions among these problems can be found in [GQ23; GQT21;
PR97; CDG20; RST22]. In general, there are no known polynomial algorithms for
most of the above problems. Because of this, many public key cryptosystems base
their security on the hardness of solving these kinds of problems, for example, Iso-
morphism of Polynomials [Pat96], Code Equivalence [BBPS21; CNP+23], Tensor
Isomorphism [JQSY19], Lattice Isomorphism [DPPW23], Trilinear Forms Equiv-
alence [TDJ+22], and problems from isogenies of elliptic curves [DG19; BKV19;
FFK+23].

Code Equivalence. One of the most studied equivalence problems concerns
linear codes. In the Hamming metric, the maps that generate an equivalence were
classified in [Mac62], leading to the Monomial Equivalence Problem, which was
studied in [PR97; SS13]. Worth mentioning is the Support Splitting Algorithm
[Sen00], which solves the above problem in average polynomial time for a large class
of codes over Fq for q < 5. For a detailed analysis, the interested reader can refer
to [BBPS23]. Recently, the problem of equivalence in different metrics has been
studied, and we will focus on the rank metric and the sum-rank one. Concerning
the rank metric, the classification of equivalence maps is given in [Mor14], while
in [CDG20], the authors analyze the Matrix Code Equivalence, and they reduce
the Hamming case to it. The same result is given in an independent work [GQ23],
where the former problem is called Matrix Space Equivalence. In [RST22], it is
shown that Matrix Code Equivalence is polynomially equivalent to problems on
bilinear and quadratic maps. Moreover, the link between the rank and the sum-
rank metric is studied, leading to a reduction from the latter to the former in a
special case. Here we extend this analysis, finding an unconditional reduction from
the code equivalence in the sum-rank metric to the rank one.

Our contribution and techniques. In this work, we give two results of
different nature. The first one concerns some relations between tensors problems.
The d-Tensor Isomorphism Problem (d-TI) asks, given two d-tensors T1 and T2, if
there are d invertible matrices A1, . . . , Ad sending T1 to T2. We introduce another
problem called d-Tensor Monomial Isomorphism Problem (d-TI∗), where instead
of having d invertible matrices, we require that one of them must be monomial.
We show that d-TI∗ reduces to 3-TI for every d ≥ 4. To show this, we use tech-
niques from [CDG20] where the authors exhibit a reduction from Monomial Code
Equivalence to Matrix Code Equivalence. We reformulate this reduction in terms
of tensors, and we generalize it in higher dimensions. In particular, we show that
d-TI∗ is reducible to (2d − 1)-TI, and then, using a result from [GQ23], we get as
corollary that d-TI∗ reduces to 3-TI.
Our techniques are the following: given the reduction Ψ and the (2d − 1)-tensors
Ψ(T1) and Ψ(T2), we project to the vector space W where we expect the action
of the monomial matrix. Then, we consider the projected tensor as a 2-tensor in
order to compute its rank. We show that some constrains on the rank imply that
the matrix acting on W is monomial.
Observe that the techniques from [GQ23] can be adapted and used as well, but
they are less efficient in terms of output dimension, since the reduction is looser
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Figure 1: Reduction between problems and TI-completeness. “A → B”
indicates that A reduces to B. Dashed arrows denote trivial reductions.

with respect to the one given in [CDG20].
Another contribution is about the sum-rank code equivalence. Using the result
from above, we reduce the problem of deciding whether two sum-rank codes are
equivalent to the problem of deciding if two matrix codes are equivalent. Note that
a similar result is given in [RST22] with the assumption that some automorphisms
group are of a given form. While such hypothesis is mostly satisfied for randomly
generated matrix codes (for example the ones used in cryptography [CNP+23]),
here we give an unconditional reduction. Unfortunately, our reduction produces
matrix codes with dimension and sizes that are polynomially bigger than the start-
ing parameters of the sum-rank codes. In particular, we get a O(x6) overhead.
Due to this result, we can conclude that for the three considered metrics (Ham-
ming, rank, sum-rank), Code Equivalence problems are in the class TI. Figure 1
summarizes new and known reductions between code equivalence and other prob-
lems, showing the route we used.
This work is organized as follows. In Section 2 we give some preliminaries on
tensors, linear codes and equivalence problems in different metrics. Section 3 intro-
duces the Monomial Isomorphism problem for tensors and a proof of its TI-hardness
is given. Section 4 concerns the proof that the Code Equivalence problem in the
sum-rank metric can be reduced to the same problem in the rank metric.

2 Preliminaries

For a prime power q, Fq is the finite field with q elements, and Fnq is the
n-dimensional vector space over Fq. The span of vectors v1, . . . , vk is denoted
with 〈v1, . . . , vk〉. With Fn×mq we denote the linear space of n ×m matrices with
coefficients in Fq. Let GL(n,Fq) be the group of invertible n × n matrices with
coefficients in Fq. When the field is implicit, we use GL(n) instead. A monomial
n × n matrix is given by the product of an n × n diagonal matrix with non-zero
entries on the diagonal, with an n × n permutation matrix. The group of n × n
monomial matrices over the field Fq is denoted with Mon(n,Fq) or Mon(n), and is
a subgroup of GL(n). We denote with W1 ⊕W2 the direct sum of vector spaces
W1 and W2 and its elements are written as (w1, w2), where wi is in Wi. With St
we denote the symmetric group over a set of t elements. The transpose of a matrix
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A is denoted with At and I` denotes the `× ` identity matrix.

2.1 Tensors

Given a positive integer d, a d-tensor over Fq is an element of the tensor space⊗d
i=1 Fni

q . If we fix the bases {e(i)
1 , . . . , e

(i)
ni } for every linear space Fni

q , we can
represent a d-tensor T with respect to its coefficients T (i1, . . . , id) in Fq

T =
∑

i1,...,id

T (i1, . . . , id)e
(1)
i1
⊗ · · · ⊗ e(d)

id
.

We say that T has size n1 × . . . × nd. For example, observe that 1-tensors and
2-tensors can be represented as vectors and matrices, respectively.

A rank one (or decomposable) tensor is an element of the form a1 ⊗ · · · ⊗ ad,
where ai is in Fni

q . Given a d-tensor T , its rank is the minimal non-negative integer
r such that there exist t1, . . . , tr rank one tensors for which T =

∑r
i=1 ti. In general,

computing the rank of a d-tensor is a hard task for d ≥ 3 [H̊as89; SŠ18; Shi16].
The projection to a can be defined for any a in Fnj

q . Since we are interested

mainly in projections to an element of the basis e
(j)
k of Fnj

q , we define

proj
e
(j)
k

: Fn1
q ⊗ . . .⊗ Fnj

q ⊗ . . .⊗ Fnd
q → Fn1

q ⊗ . . .⊗ Fnj−1
q ⊗ Fnj+1

q ⊗ . . .⊗ Fnd
q ,∑

i1,...,id

T (i1, . . . , id)e
(1)
i1
⊗ · · · ⊗ e(d)

id

7→
∑

i1,...,ij−1,
ij+1,...,id

T (i1, . . . , ij−1, k, ij+1, . . . , id)e
(1)
i1
⊗ · · · ⊗ e(j−1)

ij−1
⊗ e(j+1)

ij+1
⊗ · · · ⊗ e(d)

id
.

(1)

In other words, we send to zero every component of
∑
i1,...,id

T (i1, . . . , id)e
(1)
i1
⊗· · ·⊗

e
(d)
id

which does not contain e
(j)
k , obtaining a (d− 1)-tensor.

A group action can be defined on the vector space T =
⊗d

i=1 Fni
q of d-tensors of

size from the Cartesian product of invertible matrices G = GL(n1)× . . .×GL(nd)
as follows

? : G× T → T ,(A1, . . . , Ad) ,
∑

i1,...,id

T (i1, . . . , id)e
(1)
i1
⊗ · · · ⊗ e(d)

id


7→

∑
i1,...,id

T (i1, . . . , id)A1e
(1)
i1
⊗ · · · ⊗Ade(d)

id
.

It can be shown that the action defined above does not change the rank of a
tensor1. In particular, this implies that the action of an element in GL(n1)× . . .×
GL(ni−1) × GL(ni+1) × . . . × GL(nd) on the projection proj

e
(i)
k

(T ) of a tensor T

has the same rank as proj
e
(i)
k

(T ). We summarize these properties in formulas

1However, if we extend the action to non-invertible matrices, this property does not
hold: the zero matrix sends every tensor into the zero tensor (which has rank zero by
definition).
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1. rk ((A1, . . . , Ad) ? T ) = rk (T ),

2. rk
(

(A1, . . . , Ai−1, Ai+1, . . . , Ad) ? proj
e
(i)
k

(T )
)

= rk
(

proj
e
(i)
k

(T )
)

.

The isomorphism problem between tensors has some interesting links and prop-
erties in computational complexity theory. Here we recall the formal definition of
the problem.

Definition 1. The d-Tensor Isomorphism (d-TI) problem is given by

• input : two d-tensors T1 and T2 in
⊗d

i=1 Fni
q ;

• output : YES if there exists an element g of GL(n1)× . . .×GL(nd) such that
T2 = g ? T1 and NO otherwise.

The search version is the problem of finding such matrices, given two isomorphic
d-tensors.

If we recall the decision problems d-Colourability (d-COL) and d-SAT, it is
known that the first integer for which these problems are NP-complete is d = 3.
In particular, there are polynomial reductions from d-COL to 3-COL and from d-
SAT to 3-SAT. The same happens for d-TI and 3-TI, as shown in the following
astonishing result from [GQ23].

Theorem 2. d-TI and 3-TI are polynomially equivalent.

Since a lot of different problems can be reduced to d-TI, in the same flavor of
the complexity class GI (the set of problems reducible in polynomial time to Graph
Isomorphism [KST12]), the authors of [GQ21] define the TI class.

Definition 3. The Tensor Isomorphism class (TI) contains decision problems that
can be polynomially reduced to d-TI for a certain d. A problem D is said TI-hard
if d-TI can be reduced to D, for any d. A problem is said TI-complete if it is in TI
and is TI-hard.

It is easy to see that TI is a subset of NP, and we can adapt the AM protocol
for Graph Non-Isomorphism [GMW91] and Code Non-Equivalence [PR97] to show
that TI is in coAM. This means that no problem in TI cannot be NP-complete
unless the polynomial hierarchy collapses at the second level [BHZ87].

2.2 Linear codes in different metrics

A linear code C of dimension k is a linear space of dimension k. A linear code
can be embedded in different linear spaces V over Fq, depending on the form of the
code. A code is endowed with a map weight w defined on V

w : V→ N

such that w(x) = 0 if and only if x = 0. We can define a metric d from a weight w

d : V× V→ N, (x, y) 7→ w(y − x).

Throughout this paper, we will consider three weights with their metrics. We
highlight that, even if we can endow the same code with two or more different
metrics, we consider a code with just a metric.
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The first one is the Hamming weight. Here we consider linear codes embedded
in Fnq , and we say that the code C has length n. This weight is defined as the
number of non-zero entries of a vector:

wH : Fnq → N, (x1, . . . , xn) 7→ |{i | xi 6= 0}|.

We refer to the distance induced by wH as dH. A useful representation of a k-
dimensional code C of length n in the Hamming metric is given by its generator
matrix, a k × n matrix having a basis {v1, . . . , vk} of C as rows. Notice that the
generator matrix is not unique since there are many bases for the same linear code.

The second weight we consider is defined on matrices. This means that our
code C is a space of matrices and usually we refer to it as a matrix code. If we
consider n×m matrices, the code has length n×m. The map

wR : Fn×mq → N, M 7→ rk(M)

is defined as the rank of the matrix M . Hence, the distance dR between M1 and
M2 is given by the rank of M2 −M1.

The last class of codes we consider is embedded into the direct sum (or Cartesian
product) of spaces of matrices. Given natural numbers d, n1, . . . , nd,m1, . . . ,md,
we have that the linear space V defined above is Fn1×m1

q ⊕ · · · ⊕ Fnd×md
q . We can

define the Sum-rank weight as the sum of the ranks

wSR : Fn1×m1
q ⊕ · · · ⊕ Fnd×md

q → N,
(M1, . . . ,Md) 7→

∑d
i=1 rk (Mi) .

The distance dSR induced by wSR is called sum-rank metric and we call a code
endowed with this distance a sum-rank code of parameters d, n1, . . . , nd,m1, . . . ,md.

Observe that the sum-rank metric is both a generalization of the Hamming and
the rank distance. For n1 = · · · = nd = m1 = · · · = md = 1, the sum-rank metric
coincides with the Hamming metric, and sum-rank codes can be seen as linear codes
of length d in Fdq . If we have d = 1, then dSR is the rank metric, and sum-rank
codes are matrix codes of size n1 ×m1.

2.3 Code Equivalence

We recall the general problem of deciding whether two linear codes are equiva-
lent. Given a weight w and a metric d, we say that an invertible linear map f from
the vector space V to itself preserves the metric (or, equivalentely, the weight) if
f (w(x)) = w(x) for every x in V. We call such maps linear isometries, and they
form a group with the composition. Two linear codes are linearly equivalent if there
exists a linear isometry between them. The task of checking if two codes are equiv-
alent is called Linear Code Equivalence Problem. Since in the rest of the paper we
will consider only linear isometries, sometimes we drop the word “linear” when we
talk about isometries or equivalences, in particular we refer to the problem above
as Code Equivalence (CE). Its hardness depends on which codes and metric we
consider. In the following, we define CE with respect to the three different metrics
we saw in Subsection 2.2.

We can characterize linear isometries in the Hamming metric, reporting a well-
known result from [Mac62].
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Proposition 4. If f : Fnq → Fnq is a linear isometry in the Hamming metric, then
there exists an n× n monomial matrix Q such that f(x) = xQ for all x in Fnq .

Then two codes C and D are linearly equivalent if there exists a monomial
matrix Q such that

C =
{
yQ ∈ Fnq : y ∈ D

}
.

The generator matrix G of a code C is not unique, hence, for every invertible matrix
S, the matrix SG generates the same code C. This must be considered since we
state the equivalence problem in terms of generator matrices.

Definition 5. The Hamming Linear Code Equivalence (CEH) problem is given by

• input : two codes C and D represented by their k × n generator matrices G
and G′, respectively;

• output : YES if there exist a k×k invertible matrix S and an n×n monomial
matrix Q such that G = SG′Q, and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiv-
alent codes.

Observe that the matrix S in the above definition models a possible change of basis,
while the monomial matrix Q is a permutation and a scaling of the coordinates of
the code.

Now we consider the rank metric. From [Mor14], linear isometries for the rank
metric can be characterized as follows.

Proposition 6. If f : Fn×mq → Fn×mq is a linear isometry in the rank metric, then
there exist an n × n invertible matrix A and an m ×m invertible matrix B such
that

1. f(M) = AMB for all M in Fn×mq , or

2. f(M) = AM tB for all M in Fn×mq ,

where the latter case can occur only if n = m.

Usually, an isometry can be denoted with a pair of matrices (A,B).
In the literature, for example [CDG20; RST22], the linear equivalence problem

for matrix codes is defined taking into account only the first case given in Proposi-
tion 6, even when we have n = m. In terms of the computational effort to solve the
problem, this is not an issue, since considering both cases requires at most twice the
time of considering only the first one, and hence, just a polynomial overhead that
we can ignore. For simplicity, we continue the approach from [CDG20; RST22] in
the following definition.

Definition 7. The rank Linear Code Equivalence (CErk) problem is given by

• input : two n×m matrix codes C and D of dimension s represented by their
bases;

• output : YES if there exist matrices A in GL(n) and B in GL(m) such that,
for every M in D, we have that AMB is in C, and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiv-
alent codes.
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In the literature, this problem is also called Matrix Code Equivalence (MCE).
Given a matrix code C, an automorphism of C is a linear isometry f such that

f(C) = C. We say that C has trivial automorphisms if the only automorphisms of
C are of the form M 7→ (λIn)M (µIm) for some non-zero λ, µ in Fq.

The equivalence problem between sum-rank codes was introduced in 2020 by
Mart́ınez-Peñas [Mar20]. Before stating the problem, we characterize linear sum-
rank isometries. This result is given in [CGL+22] and a slightly less general state-
ment can be found in [Ner22, Proposition 4.26].

Proposition 8. Let f : Fn1×m1
q ⊕· · ·⊕Fnd×md

q → Fn1×m1
q ⊕· · ·⊕Fnd×md

q be a linear
isometry in the sum-rank metric. Then there exists a permutation σ in Sd such
that ni = nσ(i) and mi = mσ(i) for every i, and there exist ψi : Fni×mi

q → Fni×mi
q

isometries in the rank metric such that

f(M1, . . . ,Md) =
(
ψ1(Mσ(1)), . . . , ψd(Mσ(d))

)
for each Mi ∈ Fni×mi

q .

We are ready to state the linear equivalence problem for sum-rank codes. As
in the case of CErk, we choose to not include the case of transposition of matrices.

Remark. Observe that, even if for CErk the inclusion of the transposition of ma-
trices has only a polynomial blow-up, this is not the case for CEsr. In fact, from
[Ner22] we can see that the transposition can be seen as the action of Fd2. This im-
plies that there is an overhead of O(2d) between considering or not the transposition
of matrices, for example, see [CDG20, Remark 2] for the rank case.

Recall that, as linear space, a sum-rank code C of parameters d, n1, . . . , nd,
m1, . . . ,md and dimension k admits a basis of the form {C1, . . . ,Ck} where Ci =(
C

(1)
i , . . . , C

(d)
i

)
is a tuple of matrices. In particular, C

(j)
i is in Fnj×mj

q for each i

and j.

Definition 9. The sum-rank Linear Code Equivalence (CEsr) problem is given by

• input : two sum-rank codes C and D, of parameters d, n1, . . . , nd,m1, . . . ,md

and dimension k represented by their bases {Ci} and {Di}, respectively;

• output : YES if there exist matrices A1, . . . , Ad, B1, . . . , Bd, where Ai is in
GL(ni) and Bi is in GL(mi), and a permutation σ in Sd such that

C = Span
{(
A1D

(σ(1))
1 B1, . . . , AdD

(σ(d))
1 Bd

)
, . . . ,(

A1D
(σ(1))
k B1, . . . , AdD

(σ(d))
k Bd

)}
,

and NO otherwise.

The search version is the problem of finding such matrices given two linearly equiv-
alent codes.

This formulation embraces both the previous linear equivalence problems for
Hamming and rank metric as special cases. Due to this, we can formulate the next
result.
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Proposition 10. Both CEH and CErk polynomially reduce to CEsr.

A natural question is about the converse, whether problems in the Hamming or
the sum-rank metric reduce to CErk. It has been show independently in [CDG20]
and [GQ23] that CEH can be reduced to CErk, using two different approaches. In
[GQ23, Section 5], the reduction uses 3-tensors via an “individualization” argument
to force a matrix to be monomial. In [CDG20], given a linear code of dimension

k in Fnq , the reduction defines a matrix code in Fk×(k+n)
q . This approach will be

generalized in the setting of d-tensors in the following section, and it will give us
some reductions between tensors problem in dimensions higher than 3.

3 Monomial Isomorphism Problems

In this section, we will examine the relationship between tensor isomorphism
problems when a matrix acting on a specific space is required to be monomial in-
stead of using the action from the entire group GL(n1)×· · ·×GL(nd). Specifically,
there exists a j such that the action on the j-th space is given by Mon(nj). For
simplicity, we will refer to this special space as the last one throughout the remain-
der of the article and in the problems statements. Since Mon(nd) is a subgroup of
GL(nd), the action of the group GL(n1)× · · · ×GL(nd−1)×Mon(nd) on d-tensors
is well-defined. When there exists an element g sending the d-tensor T1 into T2, we
say that they are monomially isomorphic.

Definition 11. The Monomial d-Tensor Isomorphism (d-TI∗) problem is given by

• input : two d-tensors T1 and T2 in
⊗d

i=1 Fni
q ;

• output : YES if there exists an element g of GL(n1)×· · ·×GL(nd−1)×Mon(nd)
such that T2 = g ? T1 and NO otherwise.

The search version is the problem of finding such matrices, given two monomially
isomorphic d-tensors.

We recall that, if the action of the monomial matrix is not on the last vector
space, we can permute the spaces to obtain the problem above. Observe that the
problem 2-TI∗ is exactly CEH and the proof that CEH reduces to CErk from [CDG20]
can be viewed as a reduction from 2-TI∗ to 3-TI. In the following, we generalize
this approach to reduce d-TI∗ to (2d− 1)-TI.

Let V1, . . . ,Vd be vector spaces over Fq of dimension n1, . . . , nd, respectively.

Now let {v(j)
1 , . . . , v

(j)
nj } be a basis for the space Vj . We recall that W1 ⊕W2 is the

direct sum of vector spaces W1 and W2 and its elements are of the form (w1, w2).
The action of an element of GL(dim(W1) + dim(W2)) is block-by-block:(

A11 A12

A21 A22

)
·
(
w1

w2

)
=

(
A11w1 +A12w2

A21w1 +A22w2

)
.

The reduction we use is the following map, going from a space of d-tensors to a
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space of (2d− 1)-tensors,

Ψ :

d⊗
i=1

Vi →

(
d−1⊗
i=1

Vi

)
⊗

(
d−1⊗
i=1

(Vi ⊕ Vd)

)
⊗ Vd,∑

i1,...,id

T (i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d)

id
7→

∑
i1,...,id,
j1,...,jd−1

T (i1, . . . , id)T (j1, . . . , jd−1, id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

⊗ (v
(1)
j1
, 0)⊗ . . .⊗ (v

(d−1)
jd−1

, 0)⊗ v(d)
id

+
∑

i1,...,id

T (i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
⊗ (0, v

(d)
id

)⊗ . . .⊗ (0, v
(d)
id

)⊗ v(d)
id
.

(2)

Example 1 (Running example). As an exmaple, consider d = 3 and a tensors in
F2

2 ⊗ F2
2 ⊗ F3

2. The map Ψ became

Ψ : F2
2 ⊗ F2

2 ⊗ F3
2 → F2

2 ⊗ F2
2 ⊗

(
F2

2 ⊕ F3
2

)
⊗
(
F2

2 ⊕ F3
2

)
⊗ F3

2,∑
i,j,k

T (i, j, k)ei ⊗ ej ⊗ ek 7→∑
i,j,k,
i′,j′

T (i, j, k)T (i′, j′, k)ei ⊗ ej ⊗ (ei′ , 0)⊗ (ej′ , 0)⊗ ek

+
∑
i,j,k

T (i, j, k)ei ⊗ ej ⊗ (0, ek)⊗ (0, ek)⊗ ek.

Given the tensor

T1 = e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 + e1 ⊗ e2 ⊗ e3,

its image under Ψ is given by

Ψ(T1) = e1 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0)⊗ e1 + e1 ⊗ e1 ⊗ (e2, 0)⊗ (e2, 0)⊗ e1

+ e1 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0)⊗ e1 + e2 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)⊗ e2

+ e2 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0)⊗ e2 + e2 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)⊗ e2

+ e1 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)⊗ e3 + e1 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0)⊗ e3

+ e1 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)⊗ e3 + e1 ⊗ e1 ⊗ (0, e1)⊗ (0, e1)⊗ e1

+ e2 ⊗ e2 ⊗ (0, e2)⊗ (0, e2)⊗ e2 + e1 ⊗ e2 ⊗ (0, e3)⊗ (0, e3)⊗ e3

In the following, we show that two tensors T1 and T2 are monomially isomorphic
if and only if Ψ(T1) and Ψ(T2) are isomorphic.

Proposition 12. If T1 and T2 are two monomially isomorphic d-tensors, then
Ψ(T1) and Ψ(T2) are isomorphic as (2d− 1)-tensors.

Proof. Suppose that T1 and T2 are in
⊗d

i=1 Vi as defined above. Now, since T1 and
T2 are monomially isomorphic, there exist d − 1 invertible matrices A1, . . . , Ad−1

and a monomial matrix Q such that

(A1, . . . , Ad−1, Q) ? T1 = T2.

10
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Let Q be the product of a permutation matrix P corresponding to the permutation
σ in Snd

and a diagonal matrix D = diag(α1, . . . , αnd
). More explicitly∑

i1,...,id

T1(i1, . . . , id)A1v
(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

⊗ αidv
(d)
σ(id)

=
∑

i1,...,id

T2(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d)

id
.

(3)

Our claim to obtain the thesis is that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃) ?Ψ(T1) = Ψ(T2),

where for every i = 1, . . . , d− 2

Ãi =

(
Ai 0
0 P

)
,

while

Ãd−1 =

(
Ad−1 0

0 PD−1

)
, and Q̃ = PD2

Consider T2, and, for a k in {1, . . . , nd}, we write its projection to v
(d)
k

proj
v
(d)
k

(T2) =
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
. (4)

Combining Eq. (3) and Eq. (4), we have∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

=
∑

i1,...,id−1

ασ−1(k)T1(i1, . . . , id−1, σ
−1(k))A1v

(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

(5)

We define ι to be the canonic injection of
⊗d−1

i=1 Vi into
⊗d−1

i=1 (Vi ⊕ Vd), and we

consider proj
v
(d)
k

(T2)⊗ ι
(

proj
v
(d)
k

(T2)
)

, that is∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

⊗
∑

j1,...,jd−1

T2(j1, . . . , jd−1, k)(v
(1)
j1
, 0)⊗ . . .⊗ (v

(d−1)
id−1

, 0)

and, applying Eq. (5) two times, it is equal to∑
i1,...,id−1,
j1,...,jd−1

α2
σ−1(k)T1(i1, . . . , id−1, σ

−1(k))T1(j1, . . . , jd−1, σ
−1(k))

A1v
(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

⊗ (A1v
(1)
i1
, 0)⊗ . . .⊗ (Ad−1v

(d−1)
id−1

, 0).

(6)

Observe that, if we tensorize this element with v
(d)
k and we take the sum over

k = 1, . . . , nd, we have the first term of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃) ? Ψ(T1),

11
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that is equal to the first term of Ψ(T2).
To complete the proof we compute the second term of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)?
Ψ(T1), and we show that it is equal to the second one of Ψ(T2). In fact, using Eq.
(5), we have∑

id

∑
i1,...,id−1

T1(i1, . . . , id)A1v
(1)
i1
⊗ . . .⊗A1v

(d−1)
id−1

⊗ (0, v
(d)
σ(id))⊗ (0, v

(d)
σ(id))⊗ (0, α−1

id
v

(d)
σ(id))⊗ α

2
id
v

(d)
σ(id) =∑

id

∑
i1,...,id−1

T2(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
⊗ (0, v

(d)
id

)⊗ . . .⊗ (0, v
(d)
id

)⊗ v(d)
id
.

(7)

The first and the second terms of (A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃)?Ψ(T1) are equal
to the ones of Ψ(T2), and we can conclude that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃) ?Ψ(T1) = Ψ(T2).

To complete the proof we observe that matrices A1, . . . , Ad−1, Ã1, . . . , Ãd−1 and Q̃
are invertible by construction, hence Ψ(T1) and Ψ(T2) are isomorphic as (2d− 1)-
tensors.

Example 2 (Running example). Consider the tensor T1 from Example 1 under
the action of matrices

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
, C =

0 0 1
0 1 0
1 0 0

 .

We obtain the monomially isomorphic tensor

T2 = (A,B,C) ? T1 = e1 ⊗ e2 ⊗ e3 + e2 ⊗ e1 ⊗ e2 + e1 ⊗ e1 ⊗ e1

and it can be seen that Ψ(T1) is isomorphic to Ψ(T2) via the matrices (A,B, Ã, B̃, C̃),
where

A =

(
A 0
0 C

)
, B =

(
A 0
0 C

)
, C̃ = C

as in the proof of Proposition 12.

Now we show the converse.

Proposition 13. If Ψ(T1) and Ψ(T2) are isomorphic, then T1 and T2 are mono-
mially isomorphic.

Proof. Since Ψ(T1) and Ψ(T2) are isomorphic, there exist invertible matricesA1, . . . , Ad−1,
Ã1, . . . , Ãd−1, Q̃ such that

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃) ?Ψ(T1) = Ψ(T2).

We want to exhibit d− 1 invertible matrices A′1, . . . , A
′
d−1 and a monomial matrix

Q′ such that (A′1, . . . , A
′
d−1, Q

′) ? T1 = T2. In particular, we will show that A′i = A

12
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for every i = 1, . . . , d − 1. First, we claim that Q̃ is a monomial matrix. Consider

(In1 , . . . , Ind−1
, In1+nd

, . . . , Ind−1+nd
, Q̃) ?Ψ(T1) and use Q̃v

(d)
id

=
∑nd

j=1 Q̃j,idv
(d)
j∑

i1,...,id,
j1,...,jd−1

T1(i1, . . . , id)T1(j1, . . . , jd−1, id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

⊗ (v
(1)
j1
, 0)⊗ . . .⊗ (v

(d−1)
jd−1

, 0)⊗
nd∑
k=1

Q̃k,idv
(d)
k

+
∑

i1,...,id

T1(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
⊗ (0, v

(d)
id

)⊗ . . .⊗ (0, v
(d)
id

)⊗
nd∑
k=1

Q̃k,idv
(d)
k .

(8)

If we project it to v
(d)
k along the last space Vd we obtain∑

i1,...,id,
j1,...,jd−1

Q̃k,idT1(i1, . . . , id)T1(j1, . . . , jd−1, id)v
(1)
i1

⊗ . . .⊗ v(d−1)
id−1

⊗ (v
(1)
i1
, 0)⊗ . . .⊗ (v

(d−1)
id−1

, 0)

+
∑

i1,...,id

Q̃k,idT1(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
⊗ (0, v

(d)
id

)⊗ . . .⊗ (0, v
(d)
id

).

(9)

Now consider Eq. (9) as a 2-tensor in
(⊗d−1

i=1 Vi
)
⊗
(⊕d−1

i=1 (Vi ⊕ Vd)
)

. With this

new view, we obtain

∑
id

Q̃k,id

[ ∑
i1,...,id−1

T1(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1


⊗

 ∑
j1,...,jd−1

T1(j1, . . . , jd−1, id)(v
(1)
j1
, 0)⊗ . . .⊗ (v

(d−1)
jd−1

, 0)

]

+
∑
id

Q̃k,id

 ∑
i1,...,id−1

T1(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

⊗ (0, v
(d)
id

)⊗ . . .⊗ (0, v
(d)
id

) =

∑
id

Q̃k,id

[( ∑
i1,...,id−1

T1(i1, . . . , id)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

)
⊗

( ∑
j1,...,jd−1

T1(j1, . . . , jd−1, id)(v
(1)
j1
, 0)⊗ . . .⊗ (v

(d−1)
jd−1

, 0) + (0, v
(d)
id

)⊗ . . .⊗ (0, v
(d)
id

)

)]
,

(10)

having rank at most the number of non-zero elements of Q̃k,·, the k-th row of

the matrix Q̃, but at least 1 since Q̃ is invertible. Now consider the action of
(A1, . . . , Ad−1, Ã1, . . . , Ãd−1) on this tensor: the rank remains the same. If we

repeat this process for Ψ(T2), we obtain the following rank-1 tensor in
(⊗d−1

i=1 Vi
)
⊗

13
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(⊕d−1
i=1 (Vi ⊕ Vd)

)
( ∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

)
⊗

 ∑
j1,...,jd−1

T2(j1, . . . , jd, k)(v
(1)
i1
, 0)⊗ . . .⊗ (v

(d−1)
id−1

, 0) + (0, v
(d)
k )⊗ . . .⊗ (0, v

(d)
k )

 .

(11)

From the equality of the ranks, Q̃k,· must have exactly a non-zero element for each k,

and hence, Q̃ is a monomial matrix of the form PD, where D = diag(α1, . . . , αnd
) is

a diagonal matrix and P is a permutation matrix corresponding to the permutation
σ in Snd

.
Without loss of generality, suppose that the permutation σ of the monomial

matrix Q̃ is the identity. This avoids the use of σ on the index of v
(d)
id

. Consider again

Ψ(T2) and its projection to v
(d)
k along Vd as in Eq. (11). We project on elements

of the basis of
⊕d−1

i=1 (Vi ⊕ Vd). For elements of the form (v
(1)
`1
, 0)⊗ . . .⊗ (v

(d−1)
`d−1

, 0)
we get

proj
(v

(1)
`1
,0)⊗...⊗(v

(d−1)
`d−1

,0)

(
proj

v
(d)
k

(Ψ(T2))
)

=

T2(`1, . . . , `d−1, k)
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
.

(12)

In particular, it is a multiple of
∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . . ⊗ v(d−1)

id−1
for

every choice of `1, . . . , `d−1. When we consider elements different from (v
(1)
`1
, 0) ⊗

. . . ⊗ (v
(d−1)
`d−1

, 0), the projection is always zero, except for the case (0, v
(d)
k ) ⊗ . . . ⊗

(0, v
(d)
k )

proj
(0,v

(d)
ik

)⊗...⊗(0,v
(d)
ik

)

(
proj

v
(d)
k

(Ψ(T2))
)

=∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
.

(13)

Hence, every projection of proj
v
(d)
k

(Ψ(T2)) is a multiple of
∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗

. . . ⊗ v
(d−1)
id−1

and the linear space Vk generated by all the projections is gener-

ated by the (d − 1)-tensor in Eq. (13). Consider now the projection to v
(d)
k of

(A1, . . . , Ad−1, Ã1, . . . , Ãd−1, Q̃) ?Ψ(T1), that is the (2d)-tensor

αk

( ∑
i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

)
⊗

( ∑
j1,...,jd−1

T1(j1, . . . , jd−1, k)Ã1(v
(1)
j1
, 0)⊗ . . .⊗ Ãd−1(v

(d−1)
jd−1

, 0)+

(
Ã1(0, v

(d)
k )⊗ . . .⊗ Ãd−1(0, v

(d)
k )
))

.

(14)

14
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Again, if we project to any element of the basis of
⊗d−1

i=1 (Vi ⊕ Vd), we obtain a
multiple of the (d− 1)-tensor

αk
∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1
⊗ . . .⊗Ad−1v

d−1
id−1

. (15)

By hypothesis, the space generated by these projections is equal to Vk, the space
generated by the same projections of Ψ(T2), that can be written as

Vk = 〈
∑

i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1
〉

= 〈αk
∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

〉.

Hence there exists a non-zero λk in Fq such that∑
i1,...,id−1

T2(i1, . . . , id−1, k)v
(1)
i1
⊗ . . .⊗ v(d−1)

id−1

= λkαk
∑

i1,...,id−1

T1(i1, . . . , id−1, k)A1v
(1)
i1
⊗ . . .⊗Ad−1v

(d−1)
id−1

.
(16)

Tensorizing Eq. (16) with v
(d)
k and taking the sum on k, we have that T1 and

T2 are monomially isomorphic via (A1, . . . , Ad−1, Q
′), where Q′ = D′P with D′ =

diag(λ1α1, . . . , λnd
αnd

), and hence we have the thesis.

Example 3 (Running example). Recall the tensors T1, T2,Ψ(T1) from examples 1
and 2. The tensor

Ψ(T2) = e1 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)⊗ e3 + e1 ⊗ e2 ⊗ (e2, 0)⊗ (e1, 0)⊗ e3

+ e1 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)⊗ e3 + e2 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0)⊗ e2

+ e2 ⊗ e1 ⊗ (e2, 0)⊗ (e1, 0)⊗ e2 + e2 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0)⊗ e2

+ e1 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0)⊗ e1 + e1 ⊗ e1 ⊗ (e2, 0)⊗ (e1, 0)⊗ e1

+ e1 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0)⊗ e1 + e1 ⊗ e2 ⊗ (0, e3)⊗ (0, e3)⊗ e3

+ e2 ⊗ e1 ⊗ (0, e2)⊗ (0, e2)⊗ e2 + e1 ⊗ e1 ⊗ (0, e1)⊗ (0, e1)⊗ e1

is isomoprhic to Ψ(T1) via the invertible matrices (A,B, Ã, B̃, C). We want to prove
that T1 is monomially isomorphic to T2 via matrices (A,B,C). In particular, we
first show that C is monomial.

15
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Let C = (cij) and consider (I2, I2, I5, I5, C) ?Ψ(T1)

e1 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e1 ⊗ e1 ⊗ (e2, 0)⊗ (e2, 0)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e1 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e2 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e2 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)⊗ (c1,3e1 + c2,3e2 + c3,3e3)

+ e1 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0)⊗ (c1,3e1 + c2,3e2 + c3,3e3)

+ e1 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)⊗ (c1,3e1 + c2,3e2 + c3,3e3)

+ e1 ⊗ e1 ⊗ (0, e1)⊗ (0, e1)⊗ (c1,1e1 + c2,1e2 + c3,1e3)

+ e2 ⊗ e2 ⊗ (0, e2)⊗ (0, e2)⊗ (c1,2e1 + c2,2e2 + c3,2e3)

+ e1 ⊗ e2 ⊗ (0, e3)⊗ (0, e3)⊗ (c1,3e1 + c2,3e2 + c3,3e3).

Projecting this tensor to e2 from the basis of the last space F3
2 gives

c2,1e1 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0) + c2,1e1 ⊗ e1 ⊗ (e2, 0)⊗ (e2, 0)

+ c2,1e1 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0) + c2,2e2 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0)

+ c2,2e2 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0) + c2,2e2 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0)

+ c2,3e1 ⊗ e2 ⊗ (e1, 0)⊗ (e1, 0) + c2,3e1 ⊗ e2 ⊗ (e2, 0)⊗ (e2, 0)

+ c2,3e1 ⊗ e2 ⊗ (e1, 0)⊗ (e2, 0) + c2,1e1 ⊗ e1 ⊗ (0, e1)⊗ (0, e1)

+ c2,2e2 ⊗ e2 ⊗ (0, e2)⊗ (0, e2) + c2,3e1 ⊗ e2 ⊗ (0, e3)⊗ (0, e3).

Now consider the above tensor as a 2-tensor in the space
(
F2

2 ⊗ F2
2

)
⊗
((
F2

2 ⊕ F3
2

)
⊗
(
F2

2 ⊕ F3
2

))
.

We have

c2,1 (e1 ⊗ e1)

⊗ ((e1, 0)⊗ (e1, 0) + (e2, 0)⊗ (e1, 0) + (e1, 0)⊗ (e2, 0) + (0, e1)⊗ (0, e1))

+ c2,2 (e2 ⊗ e2)

⊗ ((e1, 0)⊗ (e1, 0) + (e2, 0)⊗ (e1, 0) + (e1, 0)⊗ (e2, 0) + (0, e2)⊗ (0, e2))

+ c2,3 (e1 ⊗ e2)

⊗ ((e1, 0)⊗ (e1, 0) + (e2, 0)⊗ (e1, 0) + (e1, 0)⊗ (e2, 0) + (0, e3)⊗ (0, e3)).

(17)

This 2-tensor has rank at most the number of non-zero elements in the row (c2,1, c2,2, c2,3).
This rank does not change when we apply the remaining part of the action, that
is the element (A,B, Ã, B̃, I3). If we take the same projection to e2 of F3

2 and the
same view as 2-tensor of Ψ(T2), we obtain the following rank-1 tensor

e2 ⊗ e1 ⊗ (e1, 0)⊗ (e2, 0) + e2 ⊗ e1 ⊗ (e2, 0)⊗ (e1, 0) + e2 ⊗ e1 ⊗ (e1, 0)⊗ (e1, 0)

+ e2 ⊗ e1 ⊗ (0, e2)⊗ (0, e2)

=
(
e2 ⊗ e1

)
⊗
(

(e1, 0)⊗ (e2, 0) + (e2, 0)⊗ (e1, 0) + (e1, 0)⊗ (e1, 0) + (0, e2)⊗ (0, e2)
)
.

(18)
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Since (A,B, Ã, B̃, C) ? Ψ(T1) = Ψ(T2), we have that the rank of Eq. (17) is equal
to the rank of Eq. (18), hence the row (c2,1, c2,2, c2,3) has exactly one non-zero
element Using the same argument, projecting on different elements of the basis of
F3

2, we show that every row of C has one non-zero entry. This shows that C is
monomial and we denote with σ be the permutation associated to C.
Now we deal with the last part of the proof, showing that T1 and T2 are monomial
isomorphic. Consider again Eq. (18). We can project to elements of the basis of
(F2

2 ⊗ F3
2) ⊗ (F2

2 ⊗ F3
2). For example, when we project to (e1, 0) ⊗ (e2, 0), we have

e2 ⊗ e1. Similarly, projecting to (0, e2) ⊗ (0, e2) produces again e2 ⊗ e1. Other
projections to (0, ei)⊗ (0, ej) with i 6= j, or to mixed elements like (ei, 0)⊗ (0, ej)
give us the zero tensor. In particular, the non-zero projections are multiples of
e2 ⊗ e1. We denote the vector space generated by all these projections with V2.
This space must be equal to the span of all the same projections (up to σ) of
(A,B, Ã, B̃, C) ?Ψ(T1). As an example, we first project to eσ−1(2) of F3

2, and then
to (e1, 0)⊗ (e2, 0). We obtain a multiple of the 2-tensor∑

i,j

T1(i, j, 2)Aei ⊗Bej .

The vector space generated by these projections is exactly V2 since (A,B, Ã, B̃, C)?
Ψ(T1) is equal Ψ(T2). In other words,

V2 = 〈e1 ⊗ e2〉 = 〈
∑
i,j

T1(i, j, 2)Aei ⊗Bej〉.

Hence, there exists a non-zero scalar λ2 (in this case equal to 1) such that

e1 ⊗ e2 =
∑
i,j

T1(i, j, 2)Aei ⊗Bej .

We repeat the process with other elements of the basis of F3
2, both for Ψ(T2) and

for (A,B, Ã, B̃, C)?Ψ(T1). Then we tensorise the projections of Ψ(T2) with ek and
the ones of (A,B, Ã, B̃, C) ?Ψ(T1) with eσ−1(k). Taking the sum on k gives us

T2 =

3∑
k=1

∑
i,j

T1(i, j, 2)Aei ⊗Bej ⊗ eσ−1(k) = (A,B,C) ? T1.

Therefore, T1 and T2 are monomially equivalent.

The combination of the two results above gives us the main result of this section.

Theorem 14. The problem d-TI∗ polynomially reduces to (2d − 1)-TI. Moreover,
d-TI∗ is TI-complete.

Proof. Given an instance (T1, T2) of d-TI∗, we can build an instance (Ψ(T1),Ψ(T2))
of (2d − 1)-TI. If we call an oracle for (2d − 1)-TI on the latter pair of tensors,
then we can decide the original monomial isomorphism: Proposition 12 shows that
Ψ(T1) and Ψ(T2) are isomorphic if T1 and T2 are monomially isomorphic. On the
other hand, Proposition 13 shows that if Ψ(T1) and Ψ(T2) are isomorphic, then T1

and T2 are monomially isomorphic. Since the map Ψ is polynomially computable,
this is a correct and polynomial-time reduction.
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Let us analyze the sizes of the reduction Ψ. It takes a d tensor of size n1×. . .×nd
and returns a (2d−1)-tensor of size n1×. . .×nd−1×(n1+nd)×. . .×(nd−1+nd)×nd.
We will use this reduction to link Code Equivalence problems in the following
section, but this result could be of independent interest and shows how powerful is
the TI class [GQ21]. In particular, Theorem 14 proves that for every d, d-TI∗ is in
the class TI. Moreover, a trivial reduction can be found from d-TI to (d + 1)-TI∗

(send T to T ⊗ 1), hence for d ≥ 4 we have that d-TI∗ is TI-complete.

4 Relations between Code Equivalence Problems

In this section, we show how to reduce the code equivalence problem for sum-
rank codes to the one in the rank metric. A reduction is given in [RST22], but it
assumes that the automorphism group of the obtained rank code is trivial in the
sense of Subsection 2.3. We recall the technique from [RST22], and we observe
how this kind of reduction (sending a tuple of elements of Fmq to a block-diagonal
matrix) does not work without the trivial automorphisms assumptions.

Let C be a sum-rank code with basis {C1, . . . ,Ck}, where Ci =
(
C

(1)
i , . . . , C

(d)
i

)
is a tuple of matrices. We denote with Φ the map from the set of sum-rank codes
to the set of matrix codes used in [RST22]

Φ (〈C1, . . . ,Ck〉) = 〈W1, . . . ,Wk〉,

where Wi is the (
∑
i ni)×(

∑
i ni) block diagonal matrix with the elements of Ci on

the diagonal. We recall that if the automorphisms group of the image of Φ is not
trivial, then, given an isometry in the rank metric, we cannot retrieve an isometry
in the sum-rank setting since the two codes are not equivalent.

Example 4. Consider the field F2 and the one-dimensional sum-rank codes C and
D with parameters d = 2, n1 = 3, n2 = 2,m1 = m2 = 2 generated by

C1 =

1 0
0 0
0 0

 , C2 =

(
1 0
0 1

)
and D1 =

1 0
0 1
0 0

 , D2 =

(
0 0
0 1

)
,

respectively. It can be seen that C and D are not equivalent since there is not
any sum-rank isometry between them: the permutation must be the identity since
n1 6= n2 and do not exist invertible matrices (A,B) in GL(3) × GL(2) such that
AC1B is in the space generated by D1 (just look at their ranks). However, if we
consider Φ(C) and Φ(D), we obtain the two one-dimensional matrix codes generated
by

C ′ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 and D′ =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 ,

respectively. We can see that Φ(C) and Φ(D) are equivalent via the isometry given
by permutation matrices Pσ and Pτ , where σ = (2 4) is in S5 and τ = (2 3) is in S4.
In fact, PσC

′Pτ = D′. This happens since the automorphisms groups of Φ(C) and
Φ(D) are not trivial. For example, for Φ(C) it contains the isometry (P(4 5), P(3 4)),
where (4 5) and (3 4) are permutations in S5 and S4, respectively.
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The 3-TI problem is equivalent to the Code Equivalence in the rank metric CErk

since the former can be stated in terms of matrix spaces, and the admissible maps
between these spaces are exactly the isometries used for CErk (see [GQ23]). A sketch
of the reduction is the following. To a matrix code C generated by C1, . . . , Ck we
associate the 3-tensor in the space A⊗ B⊗ C

TC =
∑
i1,i2,i3

(Ci3)i1,i2 ai1 ⊗ bi2 ⊗ ci3 .

In particular, A and B represent the spaces of rows and columns, respectively, while
C is the space representing the dimension of the code (or the elements in the basis).
Hence, a matrix can be represented as a 2-tensor in A⊗B, and the action (A,B)?M
is the matrix multiplication AMBt. The action regarding C is the map sending a
k-uple of matrices into another k-uple. Therefore, given two matrix codes C and
D, with bases C1, . . . , Ck and D1, . . . , Dk, equivalent via (A,B) and such that the
invertible matrix M sends the basis AC1B, . . . , ACkB to D1, . . . , Dk, the tensors
TC and TD are isomorphic via (A,Bt,M). The vice versa is obtained similarly and
we highlight that there is no overhead in the sizes of tensors and matrix spaces
obtained in both directions.

Hence, we can resume the above observation in the following result.

Theorem 15. The problem CErk is TI-complete.

By the TI-hardness of CErk and since it can be reduced to CEsr, we get that
CEsr is TI-hard. If we want to show its TI-completeness, we need to prove that it is
in TI, presenting a reduction from a TI-complete problem, for instance 4-TI∗.

Lemma 16. The problem CEsr is polynomially reducible to 4-TI∗.

Proof. We model a sum-rank code as a 4-tensor. Given a sum-rank code C with pa-
rameters d, n1, . . . , nd,m1, . . . ,md and basis {C1, . . . ,Ck}, let N be the maximum
among n1, . . . , nd and M be the maximum among m1, . . . ,md. For each i from 1
to d, we can embed an ni × mi matrix into an N ×M one, filling it with zeros.
Hence, there are d embeddings gi such that

gi : Fni×mi
q → FN×Mq .

In the rest of the proof, we consider sum-rank codes embedded via the functions
gi, this means that we work with codes having parameters d, ni = N,mi = M for
every i = 1, . . . , d. Let SR(d,N,M) be the set of sum-rank codes of parameters
d, ni = N,mi = M and let A,B,C,D be vector spaces of dimension N,M, k, d with
bases {ai}i, {bi}i, {ci}i and {di}i, respectively. Here, A and B denotes the row and
column spaces of the matrices, C denotes the dimension of the code, while D models
the factors of the sum-rank code. Hence, the code generated by {C1, . . . ,Ck} can
be seen as the 4-tensor∑

i1,...,i4

(
C

(i4)
i3

)
i1,i2

ai1 ⊗ bi2 ⊗ ci3 ⊗ di4 .

The projection to a factor Fnj×mj
q is a matrix code, which can be seen as the

3-tensor ∑
i1,i2,i3

(
C

(j)
i3

)
i1,i2

ai1 ⊗ bi2 ⊗ ci3 ,
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where the action of (A,B,M) is intended as the left-right multiplication for A and
Bt, while M is a change of basis.

Let δi,j be the Kronecker’s delta and define the map

Φ :SR(d,N,M)→

(
d⊕
i=1

A

)
⊗

(
d⊕
i=1

B

)
⊗

(
d⊕
i=1

C

)
⊗ D,

〈C1, . . . ,Ck〉

7→
∑

i1,...,i4

(
C

(i4)
i3

)
i1,i2

(δi4,1ai1 , . . . , δi4,dai1)

⊗ (δi4,1bi2 , . . . , δi4,dbi2)⊗ (δi4,1ci3 , . . . , δi4,dci3)⊗ di4 .

(19)

Now we show that sum-rank codes C and D, with bases {C1, . . . ,Ck} and
{D1, . . . ,Dk}, are equivalent if and only if Φ(C) and Φ(D) are monomially isomor-
phic.

“ =⇒ ”. Suppose that C andD are linear equivalent via the matrices A1, . . . , Ad,
B1, . . . , Bd and the permutation σ in Sd. Suppose that, for every i, Mi is the k× k
invertible matrix sending the basis {AiC(σ(i))

j Bi}j to the basis {D(i)
j }j . Then we

define the matrices

L̃ =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ad

 , R̃ =


Bt1 0 . . . 0
0 Bt2 . . . 0
...

...
. . .

...
0 0 . . . Btd

 ,

S̃ =


M1 0 . . . 0
0 M2 . . . 0
...

...
. . .

...
0 0 . . . Md

 , and Q̃ = Pσ.

We can see that (L̃, R̃, S̃, Q̃) ? Φ(C) = Φ(D), in fact∑
i1,...,i4

(
C

(i4)
i3

)
i1,i2

(0, . . . , Ai1ai1 , . . . , 0)

⊗ (0, . . . , Bi2bi2 , . . . , 0)⊗ (0, . . . ,Mi3ci3 , . . . , 0)⊗ dσ(i4),

(20)

and this, by construction, is exactly Φ(D).
“⇐= ”. Suppose that Φ(C) and Φ(D) are monomially isomorphic via invertible

matrices L, R, S and the monomial matrix Q = DP . We can see matrices L, R
and S as block matrices, for example, we have

L =


L11 . . . L1d

L21 . . . L2d

...
. . .

...
Ld1 . . . Ldd

 ,

where Lij is an N × N matrix for every i and j. Analogously, R and S have the
same structure, with blocks of dimension M ×M and k× k, respectively. Now, for
simplicity, we will focus on the action of L on Φ(C), but the same argument can be
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used for R and S. As in the proof of Proposition 13, we assume that the matrix
Q is the identity matrix, otherwise we need take care of the permutation σ in the
indexes and the scalars of D. We write projdk ((L,R, S,Q) ? Φ(C))∑

i1,i2,i3

(
C

(k)
i3

)
i1,i2

(L1kai1 , . . . , Ldkai1)

⊗ (R1kbi2 , . . . , Rdkbi2)⊗ (S1kci3 , . . . , Sdkci3).

(21)

Consider the same projection of Φ(D)∑
i1,i2,i3

(
D

(k)
i3

)
i1,i2

(0, . . . , ai1 , . . . , 0)⊗ (0, . . . , bi2 , . . . , 0)⊗ (0, . . . , ci3 , . . . , 0), (22)

this tensor is equal to the one of Eq. (21), and this holds for every k. Now consider
the tensor

v
(k)
`2,`3

= (0, . . . , b`2︸︷︷︸
k-th

, . . . , 0)⊗ (0, . . . , c`3︸︷︷︸
k-th

, . . . , 0).

The projection to v
(k)
`2,`3

of projdk(Φ(D)) is given by∑
i1

(
D

(k)
`3

)
i1,`2

(0, . . . , ai1 , . . . , 0), (23)

while, for (L,R, S,Q) ? Φ(C), we have∑
i1,i2,i3

(Rkk)`2,i2 (Skk)`3,i3

(
C

(k)
i3

)
i1,i2

(L1kai1 , . . . , Ldkai1). (24)

By hypothesis, Eq. (23) and Eq. (24) are equal. Then, for k̄ 6= k, we have that
Lk̄k = 0. We can use the same argument for R and S, using the following tensors
and the projections to them

(0, . . . , a`1︸︷︷︸
k-th

, . . . , 0)⊗ (0, . . . , c`3︸︷︷︸
k-th

, . . . , 0) ;

(0, . . . , a`1︸︷︷︸
k-th

, . . . , 0)⊗ (0, . . . , b`2︸︷︷︸
k-th

, . . . , 0).

Finally, we obtain that L, R and S are block diagonal of the form

L =


L11 0 . . . 0
0 L22 . . . 0
...

. . .
...

0 . . . 0 Ldd

 , R =


R11 0 . . . 0
0 R22 . . . 0
...

. . .
...

0 . . . 0 Rdd

 ,

and S =


S11 0 . . . 0
0 S22 . . . 0
...

. . .
...

0 . . . 0 Sdd

 .

Since the matrices L, R and S are invertible, so are the matrices on their diagonal.
We can conclude that codes C and D are equivalent via matrices L11, . . . , Ldd,
Rt11, . . . , R

t
dd and the permutation σ.
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Example 5. Let C be the sum-rank code with parameters d = 2, n1 = 3, n2 =
m1 = m2 = 2 generated by {C1,C2}, where

C
(1)
1 =

1 1
0 0
1 0

 , C
(2)
1 =

(
0 0
0 1

)
, and C

(1)
2 =

1 0
0 0
0 0

 , C
(2)
2 =

(
0 0
1 0

)
.

After applying the embeddings gi from above, we can see C as a sum-rank code
with parameters d = 2, n1 = n2 = 3,m1 = m2 = 2 and we have

C
(1)
1 =

1 1
0 0
1 0

 , C
(2)
1 =

0 0
0 1
0 0

 , and C
(1)
2 =

1 0
0 0
0 0

 , C
(2)
2 =

0 0
1 0
0 0

 .

Using the notation from the previous proof, define A = F3
2, B = F2

2, C = F2
2 and

D = F2
2. The image of C under Φ is the following 4-tensor in (A⊕ A)⊗ (B⊕ B)⊗

(C⊕ C)⊗ D

Φ(C) = (e1, 0)⊗ (e1, 0)⊗ (e1, 0)⊗ e1

+(e1, 0)⊗ (e2, 0)⊗ (e1, 0)⊗ e1

 C
(1)
1

+(e3, 0)⊗ (e1, 0)⊗ (e1, 0)⊗ e1

+(e1, 0)⊗ (e1, 0)⊗ (e2, 0)⊗ e1

}
C

(1)
2

+(0, e2)⊗ (0, e2)⊗ (0, e1)⊗ e2

}
C

(2)
1

+(0, e2)⊗ (0, e1)⊗ (0, e2)⊗ e2.
}
C

(2)
2

Using the same strategy adopted in the proof of Theorem 14, and since the map
Φ is polynomial-time computable, the above result implies that CErk reduces to 4-
TI∗. This fact, combined with Theorem 2 and Theorem 15 leads to the following
corollary.

Corollary 17. The problem CEsr is TI-complete. In particular, it is polynomially
reducible to CErk.

A “proof” of the above result can be seen in Figure 1, showing the path of the
reduction from CEsr to CErk.
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