
cqlin: Efficient linear operations on KZG

commitments with cached quotients

Liam Eagen
Blockstream Research

Ariel Gabizon
Zeta Function Technologies

October 16, 2023

Abstract

Given two KZG-committed polynomials f(X), g(X) ∈ F<n[X], a matrix M ∈
Fn×n, and subgroup H ⊂ F∗ of order n, we present a protocol for checking that
f |H · M = g|H. After preprocessing, the prover makes O(n) F-operations and G1-
operations. This is a significant improvement for dense matrices compared to the
lincheck protocols in [CHM+19, COS19], where the prover’s run-time (also after
preprocessing) was quasilinear in the number of non-zeroes of M , which could be
n2.

1 Introduction

The landscape of pairing-based zk-SNARKs is mostly populated by members of two
families:

1. zk-SNARKs for QAP/R1CS following the approach originating in [GGPR13]; hav-
ing their most popular and optimized form in [Gro16].

2. Universal zk-SNARKs based on the polynomial commitment scheme of [KZG10],
introduced in [MBKM19] with later popular members being Marlin [CHM+19] and
PlonK [GWC19].

The second group has the big advantage of only requiring a trusted setup once per circuit
size bound, rather than once per circuit. This practical advantage makes it a frequent
choice for real-world use.

The first group, however, has the following attractive feature the second usually
lacks: As often put, it can do “addition gates for free”.1

1The one caveat to this informal statement is that when starting with an input to an arithmetic
circuit, P must compute and store an extended witness that contains the values of all intermediate
circuit gates to feed into the R1CS corresponding to the circuit. This extension of the witness obviously
depends on the number and fan-in of the addition gates.

1

Concretely, suppose we consider circuits with fan-in two multiplication gates and
unlimited fan-in addition gates; and define somewhat oddly the size of a circuit as the
number of multiplication gates. Say C is a circuit of size n under this definition. The
approach of [GGPR13] allows us to prove knowledge of a satisfying assignment for C in
O(n log n) operations, regardless of the number and structure of the addition gates!

A natural question is whether the advantages of both groups - cheap linear constraints
and universal setup - can be combined?

In fact, the work of Groth, Kohlweiss, Maller, Meiklejohn, and Miers [GKM+18]
provides a positive answer to this question, with some caveats.

� For circuits of size n, [GKM+18] requires a structured reference string (SRS) of
size O(n2).

� Given a circuit C of size n, the process of “specializing” the SRS to C, enabling a
prover to later run in time O(n log n), requires time O(n3).2

� The universality of the SRS is with respect to all circuits of size n rather than size
at most n. Thus, to use an SRS generated for size n on circuits of size m < n, one
must either pad the circuit and obtain a running time proportional to n, or run a
setup for all circuit sizes that are powers of two up to n, resulting in an SRS of
size O(n2 log n).

In this work, we present a protocol called cqlin, that can improve upon the above caveats.
Specifically, using cqlin one can obtain a universal SNARK where

� For circuits of size at most n, we require a single trusted setup generating an SRS
of size O(n2).

� Given a specific circuit of size m ≤ n, the process of “specializing” the SRS to the
circuit, enabling a prover to run in time O(m logm), requires time O(m2 · logm).

cqlin in itself is not a full SNARK, but rather a protocol for a central component of
SNARKs, called lincheck. This is exactly the component responsible for the caveats in
[GKM+18] mentioned above.

1.1 The lincheck problem and our results

We describe the problem formally in the context of KZG-commitments [KZG10]. For a
subgroup H =

{
ω, ω2, ωn = 1

}
⊂ F∗ of order n and polynomial f ∈ F[X], define f |H as3

the vector v ∈ Fn with vi = f(ωi).
Fix a public matrix M ∈ Fn×n. Suppose a prover P has polynomials f, g ∈ F[X],

and a verifier V has the commitments cm1, cm2 of f, g respectively. P now wants to
convince V that f |H ·M = g|H.

2[GKM+18] only says the cost of the specialization step is polynomial time; but this is what our
calculations show.

3We assume some canonical way to choose a generator ω of H, so that the definition of f |H indeed
depends only on f and H.

2

This problem, in a more general setting of arbitrary polynomial commitment schemes,
was dubbed lincheck in [BCR+19], following which [CHM+19, COS19] provided lincheck
protocols with succinct verification. These papers gave protocols for lincheck where the
number of prover operations was quasilinear in the number of non-zero entries in M ,
which can grow up to n2.

For the special case of KZG commitments, cqlin requires only O(n) F-operations and
G1-operations for P, regardless of the structure of M .

1.2 Comparison to [GKM+18]

Though [GKM+18] does not explicitly discuss the lincheck problem, it implicitly contains
a lincheck solution also requiring only O(n) prover operations!4 The lincheck protocol
derived from [GKM+18] compares to cqlin similarly to what was mentioned earlier re-
garding the resultant SNARKs:

� For lincheck on n× n matrices, [GKM+18] requires a trusted setup with SRS size
O(n2) for each value of n, while cqlin requires one trusted setup of such SRS size
for all values up to a given n.

� Given a matrix M ∈ Fn×n, the preprocessing step in cqlin requires O(n2 · log n)
operations, while [GKM+18] requires O(n3) operations.

1.3 Usefulness of result and future work

The setup time makes cqlin less attractive for sparse matrices. Such matrices arise for
example, when making an R1CS instance out of a circuit with constant fan-in addition
gates, resulting in an n×n matrix with O(n) non-zeroes. Dense matrices, as might arise
in zkML, are a better fit for cqlin.

Ideally, we would want a protocol merging the good qualities of [CHM+19, COS19]
with those of cqlin and [GKM+18]. Namely, a lincheck protocol with setup time quasi-
linear in the matrix sparsity and prover time O(n). This is an interesting direction for
future research, and would imply a fully satisfying solution to combining the good fea-
tures of both families of pairing-based SNARKs.

We now give a semi-formal overview of our protocol.

2 Technical Overview

Our starting point is observing that working with univariate polynomials of degree n2,
we can “simulate” matrix-vector multiplication with a combination of polynomial mul-
tiplication and modular reductions:

4It takes considerable work to extract the lincheck protocol. One step, for example, is reducing the
case of checking M · f |H = g|H to checking M ′ · v|H = 0 where M ′ is the matrix (M,−I) and v’s values
on a subgroup of size 2n are the concatenation (f |H, g|H).

3

We represent the vector a = (a1, . . . , an) ∈ Fn by the polynomialA(X) :=
∑

i∈[n] aiLi(X
n),

where {Li} is a Lagrange base of the subgroup H of order n.
Fix a matrix M ∈ Fn×n. For each i ∈ [n] let Ri(X) :=

∑
j∈[n]Mi,jLj(X) be the

polynomial representing the i’th row of M . Finally, represent M by the polynomial

M(X) :=
∑
i∈[n]

Li(X
n)Ri(X).

Observe that for g ∈ F<n[X], g|H = a · M if and only g(X) =
∑

aiRi(X). Thus, our
task given commitments to A, g,M , is to show that g is indeed of this form.

As we’ll see in Section 6, we have that the product A(X)M(X) taken modulu
Z(X) := Xn2 − 1 is equal to

R(X) =
∑

aiLi(X
n)Ri(X).

Thus, the polynomial g(X) representing the matrix-vector product can be obtained
(roughly) by modding out R(X) by Xn.

A natural path to a protocol from these calculations, is having the prover P send
a commitment r to R and show R satisfies the desired modular relations with A,M
and g. To show such relations hold, P usually needs to compute quotient polynomials
corresponding to the modular relations. However, these quotients have degree close to n2

in our case, while we want to maintain an O(n) prover. This is where cached quotients
come into the picture.

The cached commitments and cached quotients techniques The cached quotients tech-
nique was introduced in [EFG22]. In fact, this technique is a special case of what we
could call the “cached commitments method”, that is implicitly used in many pairing-
based protocols e.g. [ZBK+22, GGPR13, GKM+18].

The idea is simple: Suppose we have a polynomial-IOP where the prover sends a
polynomial f(X) of high degree but low sparsity in some pre-determined basis. More-
over, suppose f is involved only in verifier equations of degree at most two. Then we can
precompute the KZG commitments to the basis elements - these precomputed commit-
ments are what we call the cached commitments. Later, during protocol run time, we can
compute the commitment to f from the cached commitments in a number of operations
depending only on the sparsity. Now, the question is if having only the commitment to
f is sufficient for our protocol. Then answer is yes - since f is involved only in degree
at most two equations, they can be verified directly from commitments using pairings.

The cached quotients method from [EFG22] focuses on the following special case
of this framework. We have predetermined polynomials M(X), Z(X). P wishes, for
a committed witness polynomial A(X) ∈ F[X], to prove correctness of the polynomial
R(X) = A(X) ·M(X) mod Z(X). The natural way to prove correctness of R is checking
deg(R) < deg(Z), and in addition supplying the quotient polynomial Q(X) such that

A(X) ·M(X) = Q(X)Z(X) +R(X).

4

Note that deg(Q) = deg(A) + deg(M)− deg(Z); which can be larger than the degree of
polynomials we want to explicitly work with. For example, when setting A,M,Z as in
the above setting of matrix-vector multiplication, deg(Q) = n2 − n ∼ n2.

Here an important observation is that if A is k-sparse in a basis of polynomials
{Bi(X)}, i.e. A(X) =

∑
j∈[k] cijBij (X) for some

{
cij

}
j∈[k]; then Q is k-sparse in the

basis {Qi} of the polynomials Qi(X) such that

Bi(X) ·M(X) = Qi(X)Z(X) +Ri(X),

for someRi of degree smaller than deg(Z). Quite simply, we haveQ(X) =
∑

j∈[k] cijQij (X).
Thus, we can precompute the commitments of the {Qi}, and during proving compute the
commitment q of Q in only k group operations! Moreover, we can use this commitment
to check correctness of r via

e(a,m)
?
= e(q, z)e(r, [1]2)

where a = [A(x)]1 ,m = [M(x)]2 , z = [Z(x)]2. Note also that, similarly, R(X) =∑
j∈[k] cijRij (X). Thus r can also be computed in k operations if we “cache” the re-

mainders {[Ri(x)]1}.
Coming back to our lincheck protocol, we see that we have a good fit for the cached

quotients method: Our witness polynomial A has degree close to n2, but is n-sparse in
the basis of functions {Li(X

n)}i∈[n]. Similarly, the polynomial R inherits A’s sparseness
from the first modular reduction; and thus we can use the method again for proving the
correctness of R’s reduction by Xn.

For the full details, see the subsequent sections, with the main protocol being pre-
sented in Section 8.

3 Preliminaries

3.1 Terminology and Conventions

We assume our field F is of prime order. We denote by F<d[X] the set of univariate
polynomials over F of degree smaller than d. We assume all algorithms described receive
as an implicit parameter the security parameter λ.

Whenever we use the term efficient, we mean an algorithm running in time poly(λ).
Furthermore, we assume an object generator O that is run with input λ before all
protocols, and returns all fields and groups used. Specifically, in our protocol O(λ) =
(F,G1,G2,Gt, e, g1, g2, gt) where

� F is a prime field of super-polynomial size r = λω(1) .

� G1,G2,Gt are all groups of size r, and e is an efficiently computable non-degenerate
pairing e : G1 ×G2 → Gt.

� g1, g2 are uniformly chosen generators such that e(g1, g2) = gt.

5

We usually let the λ parameter be implicit, i.e. write F instead of F(λ). We write G1

and G2 additively. We use the notations [x]1 := x · g1 and [x]2 := x · g2.
We often denote by [n] the integers {1, . . . , n}. We assume throughout the paper

that n is a power of two. We use the acronym e.w.p for “except with probability”; i.e.
e.w.p γ means with probability at least 1− γ.

universal SRS-based public-coin protocols We describe public-coin (meaning the verifier
messages are uniformly chosen) interactive protocols between a prover and verifier; when
deriving results for non-interactive protocols, we implicitly assume we can get a proof
length equal to the total communication of the prover, using the Fiat-Shamir transform/a
random oracle. Using this reduction between interactive and non-interactive protocols,
we can refer to the “proof length” of an interactive protocol.

We allow our protocols to have access to a structured reference string (SRS) that
can be derived in deterministic poly(λ)-time from an “SRS of monomials” of the form{[

xi
]
1

}
a≤i≤b

,
{[
xi
]
2

}
c≤i≤d

, for uniform x ∈ F, and some integers a, b, c, d with absolute

value bounded by poly(λ). It then follows from Bowe et al. [BGM17] that the required
SRS can be derived in a universal and updatable setup requiring only one honest par-
ticipant; in the sense that an adversary controlling all but one of the participants in
the setup does not gain more than a negl(λ) advantage in its probability of producing a
proof of any statement.

For notational simplicity, we sometimes use the SRS srs as an implicit parameter in
protocols, and do not explicitly write it.

3.2 The algebraic group model

We introduce some terminology from [GWC19] to capture analysis in the Algebraic
Group Model of Fuchsbauer, Kiltz and Loss[FKL18].

In our protocols, by an algebraic adversary A in an SRS-based protocol we mean a
poly(λ)-time algorithm which satisfies the following.

� For i ∈ {1, 2}, whenever A outputs an element A ∈ Gi, it also outputs a vector v
over F such that A =< v, srsi >.

First we say our srs has degree Q if all elements of srsi are of the form [f(x)]i for f ∈
F<Q[X] and uniform x ∈ F. In the following discussion let us assume we are executing a
protocol with a degree Q SRS, and denote by fi,j the corresponding polynomial for the
j’th element of srsi.

Denote by a, b the vectors of F-elements whose encodings in G1,G2 an algebraic
adversary A outputs during a protocol execution; e.g., the j’th G1 element output by A
is [aj]1.

By a “real pairing check” we mean a check of the form

(a · T1) · (T2 · b) = 0

for some matrices T1, T2 over F. Note that such a check can indeed be done efficiently
given the encoded elements and the pairing function e : G1 ×G2 → Gt.

6

Given such a “real pairing check”, and the adversary A and protocol execution during
which the elements were output, define the corresponding “ideal check” as follows. Since
A is algebraic when he outputs [aj]i he also outputs a vector v such that, from linearity,
aj =

∑
vℓfi,ℓ(x) = Ri,j(x) for Ri,j(X) :=

∑
vℓfi,ℓ(X). Denote, for i ∈ {1, 2} the vector

of polynomials Ri = (Ri,j)j . The corresponding ideal check, checks as a polynomial
identity whether

(R1 · T1) · (T2 ·R2) ≡ 0

The following lemma is inspired by [FKL18]’s analysis of [Gro16], and tells us that
for soundness analysis against algebraic adversaries it suffices to look at ideal checks.
Before stating the lemma we define the Q-DLOG assumption similarly to [FKL18].

Definition 3.1. Fix integer Q. The Q-DLOG assumption for (G1,G2) states that given

[1]1 , [x]1 , . . . ,
[
xQ

]
1
, [1]2 , [x]2 , . . . ,

[
xQ

]
2

for uniformly chosen x ∈ F, the probability of an efficient A outputting x is negl(λ).

Lemma 3.2. Assume the Q-DLOG for (G1,G2). Given an algebraic adversary A partic-
ipating in a protocol with a degree Q SRS, the probability of any real pairing check passing
is larger by at most an additive negl(λ) factor than the probability the corresponding ideal
check holds.

See [GWC19] for the proof.

4 Preliminaries about polynomials

Let H ⊂ F be a multiplicative subgroup of order n. Let L1(X), . . . , Ln(X) be a Lagrange
basis for H. Namely, for a fixed generator ω ∈ H; Li(X) is the unique element of F<n[X]
with Li(ω

i) = 1 and Li(ω
j) = 0 for i ̸= j ∈ [n]. Denote Z(X) := Xn2 − 1, and

ZH(X) := Xn − 1.

Operations on polynomials For polynomials f(X), g(X) ∈ F[X] where d := deg(g(X)) >
0, we denote by f(x) mod g(X) the unique polynomial R(X) ∈ F<d[X] such that for
some q(X) ∈ F[X],

f(X) = q(X) · g(X) +R(X).

4.1 Power polynomials

We review some facts we will use for polynomials that are n’th powers.

Composed Lagranges We work with Lagrange polynomials composed internally with
raising to the n’th power; i.e. polynomials of the form L′

i(X) := Li(X
n). We use the

following claim.

Claim 4.1. We have

7

1. For any i ∈ [n]
L2
i (X

n) = Li(X
n) mod Z(X).

2. For any i ̸= j ∈ [n], we have

Li(X
n) · Lj(X

n) = 0 mod Z(X).

Proof. The claim follows from the similar more commony used one, without the compo-
sition with the n’th power, i.e. that

1. For any i ∈ [n]
L2
i (X) = Li(X) mod ZH(X).

2. For any i ̸= j ∈ [n], we have

Li(X) · Lj(X) = 0 mod ZH(X).

For example, note that the first item implies for each i ∈ [n], that for some Q(X) ∈ F[X],

L2
i (X) = Q(X) · ZH(X) + Li(X)

Which implies
L2
i (X

n) = Q(Xn) · ZH(Xn) + Li(X
n)

Since ZH(Xn) = Z(X) and deg(Li(X
n)) < n2, this indeed implies

L2
i (X

n) = Li(X
n) mod Z(X).

We’ll use the following easy claim.

Claim 4.2. Any polynomial A ∈ F<n2 [X] that is of the form A(X) = f(Xn) for f ∈
F[X] can be written as

A(X) =
∑
i∈[n]

ai · Li(X
n)

for some a1, . . . , an ∈ F.

Proof. We know that f can be written as

f(X) =
∑
i∈[n]

aiLi(X),

for some a1, . . . , an ∈ F so we have

A(X) = f(Xn) =
∑
i∈[n]

aiLi(X
n).

8

KZG for n’th powers: The following claim is easy to verify.

Claim 4.3. Fix any r, z ∈ F and polynomial P (X) ∈ F[X].

1. If (Xn − rn) divides P (X)− z, then P (r) = z.

2. If P (X) = A(Xn) for some A ∈ F[X], and P (r) = z, then (Xn−rn) divides P (X).

4.2 FFT “in the exponent”

We state without proof a few facts following from standard FFT techniques. They are
based on FFT operations being linear, and thus possible to do on encoded elements [a]1
without knowing the underlying scalar a. In the lemma we denote for B ∈ F[X], by
(B)[i] the coefficient of Xi in B(X).

Lemma 4.4. For B ∈ F<n[X], let SB :=
{[

(B)[i]
]
1

}
i∈{0,...,n−1}

.

1. Given SB we can compute in O(n log n) F-operations and G1-operations the set
{[B(a)]1}a∈H.

2. Given {[B(a)]1}a∈H we can compute SB in O(n log n) F-operations and G1-operations.

5 Extensions of the FK scheme

Feist and Khovratovich [FK, Tom] present an efficient method to compute all KZG open-
ing proofs for a polynomial P (X) ∈ F[X] over a subgroup H. Their result has become
an important component in recent pairing-based schemes [ZBK+22, PK22, ZGK+22,
EFG22]. We present a simple extension of their result that is important for the precom-
putations presented in the next section.

Lemma 5.1. Fix a power of two n, and polynomials A,P ∈ F<n[X]. Let H ⊂ F be a
multiplicative subgroup of order n. Given the vector

([
A(x) · xni

]
1

)
i∈{0,...,n−1} of G1 ele-

ments, we can compute in O(n log n) G1-operations the vector
([

A(x)(P (xn)−P (a))
xn−a

]
1

)
a∈H

.

Proof. [FK] provide an algorithm computing the KZG proofs
{[

P (x)−P (a)
x−a

]
1

}
a∈H

from

the vector
([
xi
]
1

)
i∈{0,...,n−1} in O(n log n) G1-operations. Since their algorithm only

performs F-linear operations, it follows that substituting
([
A(x) · xni

]
1

)
i∈{0,...,n−1} as

the input, and noticing that
[
A(x) · xni

]
1
= A(x) ·

[
si
]
1
for s := xn, gives the desired

output.

Next, we present a further extension of [FK] in a batched setting, where we want to
compute a set of combinations of k opening proofs at each point a ∈ H. “Combination”
here is in the sense of Lemma 5.1 that the opening proof is multiplied by A(x) for some
polynomial A(X). Invoking Lemma 5.1 independently k times and combining the results

9

would give an algorithm requiring O(kn log n) field and group operations. We improve
on this by giving an algorithm requiring only O(kn) G1-operations after a one time
O(kn log n) G1-operations computation independent of the polynomials being opened.

Lemma 5.2. Fix integers k, n, and polynomials A1, . . . , Ak ∈ F<n[X]. Given srs ={[
xi
]
1

}
i∈{0,...,2n−1}, there is

� An algorithm A0 taking srs, A1, . . . , Ak as input that performs O(kn log n) F-operations
and G1-operations producing a vector srs∗ of G1 elements.

� An algorithm A1 taking srs∗ and any P1, . . . , Pk ∈ F<n[X] as input, performing
O(kn log n) F-operations and O(kn) G1-operations, and producing the G1-elements
{πa}a∈H, where

πa :=

∑
j∈[k]

Aj(x) ·
Pj(x)− Pj(a)

x− a


1

.

Moreover, if srs =
{[

xi
]
1

}
i∈{0,...,n2−1}, the same claim holds when A1 is computing

instead the modified elements

π′
a :=

∑
j∈[k]

Aj(x) ·
Pj(x

n)− Pj(a)

xn − a


1

.

Proof. Let V ⊂ F be a subgroup of order 2n. We begin by describing A0. Given srs, A0

first computes in O(k · n) operations the elements
{[

Aj(x)x
i
]
1

}
j∈[k],i∈{0,...,n−1}

Now, before proceeding with A0, define the polynomial

Tx(Y) :=
xn − Y n

x− Y
=

n−1∑
i=0

xn−1−iY i.

We use Y instead of X as the variable to emphasize the srs secret x is simply a constant
on which the coefficients of Tx depend. A0 computes in O(kn log n) operations the set
srs∗ :=

{
[Aj(x)Tx(a)]1

}
j∈[k],a∈V

We move to A1. For deductic purposes, assume for a moment we simply wanted
to compute the KZG proofs of some D ∈ F<n[X] over H. That is, the set of elements

KZGD,H :=
{[

D(x)−D(a)
x−a

]
1

}
a∈H

. We define a polynomial hD(Y) related to D as

hD(Y) :=
D(x)−D(Y)

x− Y
.

The important point is that for any a ∈ F, [hD(a)]1 is precisely the KZG opening
proof of D at a! And so KZGD,H = {[hD(a)]1}a∈H. Thus, we need to compute the
encodings of hD’s values on H. Moreover, we need to do this without direct access to
hD’s coefficients as they depend on x.

10

For this purpose, we multiply the equation defining hD by (xn − Y n) and obtain

hD(Y)(xn − Y n) =
D(x)−D(Y)

x− Y
· (xn − Y n) = (D(x)−D(Y)) · Tx(Y).

Shifting terms we get

hD(Y)Y n = D(Y)Tx(Y)−D(x)Tx(Y) + hD(Y)xn.

Note that on the RHS, all monomials of degree at least n in Y come from the term
D(Y)Tx(Y). It follows that the last n− 1 coefficients of D ·Tx are the coefficients of hD;
i.e. (hD)[i] = (D ·Tx)[n+i] for i = 0, . . . , n−2. Thus, given the values {[D(a)Tx(a)]1}a∈V,
we can apply Lemma 4.4 to obtain

{[
(hD)[i]

]
1

}
i∈{0,...,n−2}

, and apply it again to obtain

{[hD(a)]1}a∈H.
To summarize - to compute KZGD,H forD ∈ F<n[X] it suffices to obtain {[D(a)Tx(a)]1}a∈V.
Coming back to what A1 needs to compute, define cj := Aj(x) for j ∈ [k], and

D ∈ F<n[X] as

D(Y) :=
∑
j∈[k]

cjPj(Y).

So we have

hD(Y) =
∑
j∈[k]

cj ·
Pj(x)− Pj(Y)

x− Y

Note that πa = [hD(a)]1 for a ∈ H so A1 in fact needs to compute KZGD,H. As explained
above, for this purpose it suffices to compute {[D(a)Tx(a)]1}a∈V. Hence, we need to show
how this set can be computed in O(kn) G1-operations and O(kn log n) F-operations from
srs∗. This is done as follows.

1. For each j ∈ [k], compute in O(n log n) F-operations the set of field elements
{Pj(a)}a∈V.

2. For each j ∈ [k], a ∈ V, compute the element [cjPj(a)Tx(a)]1, as a product of the
element Pj(a) computed in the previous step, and the element [cjTx(a)]1 from srs∗.

3. Compute for each a ∈ V, [D(a)Tx(a)]1 as a sum of k elements from the previous
step:

[D(a)Tx(a)]1 =
∑
j∈[k]

[cjPj(a)Tx(a)]1 .

Finally, the “moreover” part of the lemma is derived by having A0 initially compute
the elements

{
Aj(x)x

ni
}
rather than

{
Aj(x)x

i
}
. Since all operations are linear, if A0

and A1 proceed in the same way, we end up with {π′
a} rather than {πa}.

11

6 Representing matrix-vector multiplication with univariate polynomi-
als

Given a matrix M ∈ Fn×n we identify M with the univariate polynomial M ∈ F<n2 [X]
defined as

M(X) :=
∑
i∈[n]

Li(X
n)Ri(X),

where for i ∈ [n] we define

Ri(X) :=
∑
j∈[n]

Mi,jLj(X).

When “simulating” a matrix-vector mutiplication via polynomial multiplication, we
use a polynomial containing only n’th powers. Specifically, to represent the vector a ∈ Fn

we use the polynomial

A(X) :=
∑
i∈[n]

ai · Li(X
n).

The following claim follows from Claim 4.1.

Claim 6.1. For any M(X), A(X) ∈ F[X] defined as above we have

A(X) ·M(X) =
∑
i∈[n]

ai · Li(X
n) · Ri(X) mod Z(X).

Proof. One thing to notice is that indeed deg(Li(X
n)Ri(X)) = n · (n − 1) + (n − 1) =

n2 − 1 < n2.

7 Precomputing cached quotients

We define the cached quotients, and also some “cached remainders”, we use in our
protocol.

1. For i ∈ [n], letQi(X), Ri(X) = Li(X
n)Ri(X) ∈ F<n2 [X] be the unique polynomials

such that
Li(X

n) ·M(X) = Qi(X)Z(X) +Ri(X).

2. For i ∈ [n], define Si(X) ∈ F<n2 [X] to be the unique polynomial such that

(Li(X
n)− 1/n) · Ri(X) = XnSi(X).

Lemma 7.1. Suppose srs ∈ Gn2

1 is of the form srs =
{[
xi
]
1

}
i∈[0..n2−1]

for some x ∈ F.
There is an algorithm that given srs performs O(n2 log n) F- and G1-operations and
produces a vector srs∗ of G1-elements such that the following holds.

Given srs∗ and any M ∈ Fn×n, there is an algorithm computing the elements

{[Qi(x)]1 , [Ri(x)]1 , [Si(x)]1}i∈[n]

in O(n2) G1-operations and O(n2 log n) F-operations.

12

Proof. srs∗ consists of the elements

� For each i, j ∈ [n], [Ui,j(x)]1 := [Li(x
n)Lj(x)]1.

� For each j ∈ [n], [Vj(x)]1 :=
[
xn

2−nLj(x)/n
]
1
,

� When setting k := n, and Aj(X) := Lj(X) for j ∈ [n], the elements computed by
A0 in the “Moreover” part of Lemma 5.2.

These can all be computed in O(n2 log n) group operations independently of the ma-
trix M . Note Wi,2j(x) = Ui,j(x) and Wi,2j+1(x) = Ui,j(ω

−1
2n x).

Si(x): To compute the [Si(x)]1 commitments, the setup algorithm will exploit an identity
also used in [EFG22]:

Li(X)− 1/n = x(ω−iLi(X)−Xn−1/n).

composing internally with Xn, and multiplying with Lj(X) we get

(Li(X
n)−1/n)·Lj(X) = Xn(ω−iLi(X

n)−Xn2−n/n)·Lj(X) = ω−iXn(Ui,j(X)−Vj(X)).

Which implies for each i ∈ [n] that

Si(X) =
∑
j∈[n]

Mi,j · ω−i(Ui,j(X)− Vj(X)).

Letting N be the number of non-zero entries in M . Thus, given srs∗ we can compute in
O(N) = O(n2) group operations for all i ∈ [n], the element

[Si(x)]1 =

n−1∑
j=0

Mi,j · (ω−i [Ui,j(x)]1 − [Vj(x)]1).

Ri(x): We can easily compute [Ri(x)]1 from srs∗ as

[Ri(x)]1 =
∑
j∈[n]

Mi,j [Li(x
n) · Lj(x)]1 =

∑
j∈[n]

Mi,jUi,j .

Qi(x):
To compute the quotients [Qi(x)]1 we show this reduces to the setting of Lemma 5.2.

First, we set k = n, and Aj(X) = Lj(X) for j ∈ [n]. We write M(X) as a combination
of column polynomials:

M(X) =
∑
j∈[n]

Cj(X
n)Lj(X),

where Cj(X) :=
∑

i∈[n]Mi,jLi(X).

13

We will compute Qi as a sum of “per-column” quotients. Specifically, for i, j ∈ [n]
define Qi,j(X) as the unique solution to

Li(X
n) (Cj(X

n)Lj(X)) = Li(X
n) (Mi,jLj(X)) + Z(X)Qi,j(X).

Note that summing the above equation for fixed i ∈ [n] over all j ∈ [n] gives

Li(X
n)M(X) = Ri(X) + Z(X) ·

∑
j∈[n]

Qi,j(X),

so that we indeed have Qi(X) =
∑

j∈[n]Qi,j(X).

Rearranging terms in the equation defining Qi,j , and using Cj(ω
i) = Mi,j , we get

Qi,j(X) =
Lj(X)Li(X

n)(Cj(X
n)− Cj(ω

i))

Z(X)
.

We now use a technique from Lemma 3.1 of [EFG22], but adapted to n’th powers:

Using the identity Li(X
n) = ci · Z(X)

Xn−ωi for the constant ci := (ωi/n), we can rewrite Qi,j

as a modified form of the KZG opening of Cj(X) at ωi.

Qi,j(X) = ciLj(X) · Cj(X
n)− Cj(ω

i)

Xn − ωi
.

And thus

Qi(X) = ci ·
∑
j∈[n]

Lj(X) · Cj(X
n)− Cj(ω

i)

Xn − ωi
.

At this point, we can see that computing the set {[Qi(x)]1}i∈[n], excluding multiplication
by the scalars ci which we can do separately, corresponds to the setting of Lemma 5.2:
Set k = n, and for each j ∈ [n] set Aj(X) = Lj(X) and Pj(X) = Cj(X).

8 Main Protocol

We give a natural definition of a lincheck protocol secure in the algebraic group model.

Definition 8.1. A lincheck protocol is a pair P = (gen, lincheck) such that

� gen(n,M) is a randomized algorithm receiving as input parameters integer n and
M ∈ Fn×n. Given these inputs gen outputs a string srsM of G1 and G2 elements.

� lincheck(f, g,M, srsM ,H; f(X), g(X)) is an interactive public coin protocol between
P and V where P has private input f, g ∈ F<n[X], and both parties have access to
f, g and srsM = gen(n,M); such that

– Completeness: If f = [f(x)]1 , g = [g(x)]1 and f |H ·M = g|H then V outputs
acc with probability one.

14

– Knowledge soundness in the algebraic group model: The probability
of any efficient algebraic A winning the following game is negl(λ).

1. A chooses parameter n and a matrix M ∈ Fn×n.

2. We compute srsM = gen(n,M) and send it to A.

3. A sends messages f, g and f, g ∈ F<d[X] such that f = [f(x)]1 , g = [g(x)]1
where d is the smallest integer such that all G1 elements in srsM are linear
combinations of

{[
xi
]
1

}
i∈{0,...,d−1}.

4. A and V engage in the protocol lincheck(f, g,M, srsM ,H; f(X), g(X)),
with A taking the role of P.

5. A wins if

* V outputs acc, and

* f |H ·M ̸= g|H.

We are now ready to present our main protocol.

8.1 The cqlin protocol

gen(n,M):

1. Choose random x ∈ F compute and output
{[
xi
]
1

}
i∈{0,...,n2−1} ,

{[
xi
]
2

}
i∈{0,...,n2}.

2. Compute and output the elements
{[

xn
2−n · Li(x)

]
1
, [Li(x

n)]1

}
i∈[n]

,
{
[Li(x

n)Lj(x)]1
}
i,j∈[n]

3. Compute and output z := [Z(x)]2.

4. As explained in Section 6, identify the matrix M , with the polynomial

M(X) :=
∑
i∈[n]

Li(X
n)Ri(X),

where for i ∈ [n] we define

Ri(X) :=
∑
j∈[n]

Mi,jLj(X)

Compute and output m := [M(x)]2.

5. For i ∈ [n], using the method explaind in Lemma 7.1, compute and output:

(a) ri = [Ri(x)]1 where Ri(X) := Li(X
n)Ri(X)

(b) qi = [Qi(x)]1 such that

Li(X
n) ·M(X) = Qi(X)Z(X) +Ri(X),

15

(c) si = [Si(x)]1 such that

(Li(X
n)− 1/n) · Ri(X) = XnSi(X)

lincheck(srsM , f, g; f(X), g(X)):

Round 1: Checking matrix multiplication is correct and degree checking g

1. Let A(X) := f(Xn) =
∑

i∈[n] ai · Li(X
n). P computes and sends a := [A(x)]1.

2. P computes r := [R(x)]1, and q := [Q(x)]1, where R,Q ∈ F<n2 [X] are such that

A(X) ·M(X) = Z(X) ·Q(X) +R(X).

3. P sends r, q.

4. V checks correctness of r via the pairing check

e(a,m) = e(q, z) · e(r, [1]2).

5. P computes s := [S(x)]1 where S ∈ F<n2 [X] is such that

R(X)− (1/n) · g(X) = S(X) ·Xn.

6. V checks that R(X) = (1/n) · g(X) mod Xn via the pairing check

e(r − (1/n) · g, [1]2) = e(s, [xn]2)

7. P computes p := [P (x)]1 where P (X) := g(X) ·Xn2−n.

8. V checks that deg(g) < n via the pairing check

e(g,
[
xn

2−n
]
2
) = e(p, [1]2)

Round 2: Checking that A(X) = f(Xn) on a random challenge

1. V chooses and sends random γ ∈ F.

2. Let z := f(γn) = A(γ). P computes π = [h(x)]1 where

h(X) :=
f(X)− z

X − γn

16

3. and π1 = [h1(x)]1 where

h1(X) :=
A(X)− z

Xn − γn

4. V checks that A(γ) = f(γn) via the pairing checks:

e(f − [z]1 + γn · π, [1]2) = e(π, [x]2),

e(a− [z]1 + γn · π1, [1]2) = e(π1, [x
n]2).

5. V outputs rej if any of the pairing checks failed, and acc otherwise.

For the rest of the section we will prove

Theorem 8.2. cqlin = (gen, lincheck) as described above, is a lincheck protocol where

� Running gen(n,M) for any matrix M requires O(n2 log n) F-operations and O(n2)
G1-operations, after an initial computation of O(n2 log n) F-operations and G1-
operations.

� In lincheck,

1. P requires O(n) F-operations and 7n G1-operations.

2. V requires six pairings.

The claim on the runtime of gen follows from Lemma 7.1. The claim that V only
requires six pairings uses the standard method of randomly combining pairings with

identical G2 arguments. The different G2 arguments are m,z,[1]2,[x
n]2,

[
xn

2−n
]
2
,[x]2.

Regarding prover runtime - P computes the seven commitments a,r,q,s,p,π,π1, where
all respective polynomials are n-sparse in bases for which we have precomputed the
commitments. One thing to notice is that the coefficients of h1 in the basis {Li(X

n)}
are the same as the coefficients of h in the basis {Li}; and the latter can be computed
in O(n) F-operations. We proceed to show the knowledge soundness property holds.

Knowledge soundness proof: Let A be an efficient algebraic adversary participating in
the Knowledge Soundness game from Definition 8.1.

We show its probability of winning the game is negl(λ). Let f, g ∈ F<n2 [X] be the
polynomials sent by A in the third step of the game such that f = [f(x)]1 , g = [g(x)]1. As
A is algebraic, when sending the commitments r,a,q,s,p,π,π1 during protocol execution
it also sends polynomials R,A,Q, S, P, h, h1 ∈ F<n2 [X] such that the former are their
corresponding commitments. Let E′ be the event that V outputs acc. Let E be the
event that A wins the knowledge soundness game. Note that E ⊂ E′. We show that E
is contained in the union of two events E0, E1 each of probability negl(λ).

E implies all pairing checks have passed. Let E0 ⊂ E be the subevent where one of
the corresponding ideal pairing checks as defined in Section 3.2 didn’t pass. According
to Lemma 3.2, Pr(E0 = negl(λ)). Let E1 be the event that E0 didn’t happen and

17

A(X) ̸= f(Xn). Given that E0 didn’t occur, we have from the checks in step 4 of Round
2, that:

f(X)− z = h(X) · (X − γn), A(X)− z = h1(X)(Xn − γn);

which implies according to Claim 4.3 that f(γn) = z and A(γ) = z. If A(X) ̸= f(Xn)
there are less than n3 choices of γ ∈ F such that the above holds. Hence the probability
of E1 is at most n3/|F| = negl(λ). Now assume that both E0 and E1 didn’t occur. Thus
we have A(X) =

∑
i∈[n] aiLi(X

n) where {ai} are such that f(X) =
∑

i∈[n] aiLi(X). We
have

� From Round 1, Step 4

A(X)M(X) = Q(X)Z(X) +R(X)

since deg(R) < n2 this means, by claims 4.1,6.1 that

R(X) = A(X)M(X) mod Z(X) =
∑
i∈[n]

aiLi(X
n)Ci(X).

� From Round 1, step 8, we have that P (X) = g(X) ·Xn2−n, and so deg(g) < n.

� From Round 1, step 6, we have that

R(X)− (1/n) · g(X) = S(X) ·Xn.

Since deg(g) < n, this means that

(1/n)g(X) = R(X) mod Xn =
∑
i∈[n]

ai(1/n) · Ci(X)

And so g(X) =
∑

i∈[n] ai ·Ci(X), which means g|H = f |H ·M . In summary, we have
shown the event that A wins the knowledge soundness game is contained in two
negligible probability events E0, E1 and so knowledge soundness holds for cqlin.

Acknowledgements

The second author thanks the Ethereum Foundation for a grant supporting this work.
We thank Pratyush Mishra for bringing up the connection to [GKM+18]. We thank
Josh Beal and Pun Waiwitlikhit for corrections.

References

[BCR+19] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Advances in
Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part I, pages 103–128, 2019.

18

[BGM17] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation for zk-
snark parameters in the random beacon model. Cryptology ePrint Archive,
Report 2017/1050, 2017. https://eprint.iacr.org/2017/1050.

[CHM+19] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. P. Ward. Marlin:
Preprocessing zksnarks with universal and updatable SRS. IACR Cryptology
ePrint Archive, 2019:1047, 2019.

[COS19] A. Chiesa, D. Ojha, and N. Spooner. Fractal: Post-quantum and trans-
parent recursive proofs from holography. IACR Cryptology ePrint Archive,
2019:1076, 2019.

[EFG22] L. Eagen, D. Fiore, and A. Gabizon. cq: Cached quotients for fast lookups.
IACR Cryptol. ePrint Arch., page 1763, 2022.

[FK] D. Feist and D. Khovratovich. Fast amortized kate proofs.

[FKL18] G. Fuchsbauer, E. Kiltz, and J. Loss. The algebraic group model and its
applications. In Advances in Cryptology - CRYPTO 2018 - 38th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2018, Proceedings, Part II, pages 33–62, 2018.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span pro-
grams and succinct nizks without pcps. In Advances in Cryptology - EU-
ROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013.
Proceedings, pages 626–645, 2013.

[GKM+18] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, and I. Miers. Updat-
able and universal common reference strings with applications to zk-snarks.
IACR Cryptology ePrint Archive, 2018.

[Gro16] J. Groth. On the size of pairing-based non-interactive arguments. In Ad-
vances in Cryptology - EUROCRYPT 2016 - 35th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 305–326, 2016.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: permutations
over lagrange-bases for oecumenical noninteractive arguments of knowledge.
IACR Cryptology ePrint Archive, 2019:953, 2019.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-size commitments to
polynomials and their applications. pages 177–194, 2010.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. Sonic: Zero-
knowledge snarks from linear-size universal and updateable structured ref-
erence strings. IACR Cryptology ePrint Archive, 2019:99, 2019.

19

https://eprint.iacr.org/2017/1050

[PK22] J. Posen and A. A. Kattis. Caulk+: Table-independent lookup arguments.
2022.

[Tom] A. Tomescu. Feist-khovratovich technique for computing kzg proofs fast.

[ZBK+22] A. Zapico, V. Buterin, D. Khovratovich, M. Maller, A. Nitulescu, and
M. Simkin. Caulk: Lookup arguments in sublinear time. IACR Cryptol.
ePrint Arch., page 621, 2022.

[ZGK+22] A. Zapico, A. Gabizon, D. Khovratovich, M. Maller, and C. Ràfols. Baloo:
Nearly optimal lookup arguments. IACR Cryptol. ePrint Arch., page 1565,
2022.

20

	Introduction
	The lincheck problem and our results
	Comparison to firstuniversal
	Usefulness of result and future work

	Technical Overview
	Preliminaries
	Terminology and Conventions
	The algebraic group model

	Preliminaries about polynomials
	Power polynomials
	FFT ``in the exponent''

	Extensions of the FK scheme
	Representing matrix-vector multiplication with univariate polynomials
	Precomputing cached quotients
	Main Protocol
	The cqß255lin protocol

	References

