
Hashing to elliptic curves through
Cipolla–Lehmer–Müller’s square root algorithm

Dmitrii Koshelev[0000−0002−4796−8989] ⋆

dimitri.koshelev@gmail.com

Parallel Computation Laboratory, École Normale Supérieure de Lyon, France

Abstract. The present article provides a novel hash function H to any
elliptic curve of j-invariant ̸= 0, 1728 over a finite field Fq of large charac-
teristic. The unique bottleneck of H consists in extracting a square root
in Fq as well as for most hash functions. However, H is designed in such a
way that the root can be found by (Cipolla–Lehmer–)Müller’s algorithm
in constant time. Violation of this security condition is known to be
the only obstacle to applying the given algorithm in the cryptographic
context. When the field Fq is highly 2-adic and q ≡ 1 (mod 3), the
new batching technique is the state-of-the-art hashing solution except
for some sporadic curves. Indeed, Müller’s algorithm costs ≈ 2 log2(q)
multiplications in Fq. In turn, original Tonelli–Shanks’s square root al-
gorithm and all of its subsequent modifications have the algebraic com-
plexity Θ(log(q) + g(ν)), where ν is the 2-adicity of Fq and a function
g(ν) ̸= O(ν). As an example, it is shown that Müller’s algorithm actually
needs several times fewer multiplications in the field Fq (whose ν = 96)
of the standardized curve NIST P-224.

Keywords: Cipolla–Lehmer–Müller’s algorithm · conic bundles · gen-
eralized Châtelet surfaces · genus 2 curves of zero trace · gluing elliptic
curves · hashing to elliptic curves · highly 2-adic fields

1 Introduction

The idea of this paper came to the author when he was working on the other
recent one [32] on the same topic. There and here one addresses the problem of
efficient hashing to elliptic curves E : y2 = f(x) := x3 +ax+ b over highly 2-adic
fields Fq of characteristic p > 3. By definition, q − 1 = 2νm for ν,m ∈ N and ν
is quite large. A lot of modern elliptic curves are defined over such finite fields
(see, e.g., [4]), because they are the most suitable for the fast Fourier transform
(FFT). At the same time, it is a favourite tool of developers belonging to the
zero-knowledge (ZK) community.

Over highly 2-adic fields for extraction of a square root
√
· ∈ Fq one usually

prefers Müller’s algorithm [37], which is an enhancement of the classical Cipolla–
Lehmer’s algorithm [13,35]. Unfortunately, the first stage of the algorithm is not

⋆ https://www.researchgate.net/profile/dimitri-koshelev
The author was supported by Ethereum Foundation

https://www.researchgate.net/profile/dimitri-koshelev

2 D. Koshelev

deterministic in contrast to its subsequent one. So, applying the given algorithm
in cryptography is often not safe with regards to timing attacks. That is why
in the RFC [17, Appendix I], devoted to hashing to elliptic curves, Müller’s
algorithm is not employed.

The authors of the mentioned RFC are content only with a constant-time
version of Tonelli–Shanks’s algorithm [41,48]. The point is that the probabilis-
tic part of the latter (unlike Müller’s algorithm) does not depend on an input
quadratic residue, but only on q. Meanwhile, at least in elliptic curve cryptog-
raphy the field Fq is fixed all the time. The problem is that (original) Tonelli–
Shanks’s algorithm becomes extremely slow for 2-adicity ν → log2(q), namely it
carries out Θ(log(q) + ν2) operations in Fq.

There are enhancements of the given algorithm based on faster discrete log-
arithm computation in the 2-power subgroup (F∗

q)m = µ2ν . The sources [38],
[42, Section 12.5.1] propose the divide-and-conquer strategy to obtain the sub-
quadratic complexity Θ(log(q) + ν log(ν)). Finally, Sutherland [44] invents a
variant working in time

Θ

(
log(q) +

ν log(ν)

log(log(ν))

)
.

In any case, Sutherland’s algorithm asymptotically loses to Müller’s one as ν
(and so log2(q)) tending to infinity.

It is impossible not to remark that all the Tonelli–Shanks-type methods can
be even more accelerated with the help of precomputed tables containing in
total Θ(2ων/ω) finite field elements, where ω ∈ N is an auxiliary parameter.
In addition to exponential growth in ω of occupied memory, this approach is in
fact not a panacea in the constant-time setting. Indeed, as said in [38], “All table
lookups must use a constant-time process which reads all entries and combines
them using Boolean operations to retain only the value of the correct entry. The
cost of a lookup is then proportional to the table size (2ω), which disfavours large
tables”.

In view of all the above, in [32] the author tries to bypass painful square root
computation during hashing to E. For this purpose, he provides some cubic Fq-
polynomial in one variable having a unique Fq-root. Since its coefficients depend
on an element of the field Fq, this eventually results in a desired hash function.
The approach of this article is cardinally opposite. Instead of computing Fq-roots
of higher-degree Fq-polynomials, we will make Müller’s algorithm completely
deterministic. This turns out to be possible, because we are free to generate
specific quadratic residues in Fq equipped with additional data.

Let’s pick once and for all any quadratic non-residue v ∈ Fq. Suppose that
we possess a quadratic residue z2 with the unknown square root z ∈ Fq. Recall
that Cipolla–Lehmer–Müller’s algorithm of determining z starts with searching
for an element x ∈ Fq such that x2 − z2 is a non-square in Fq. Put another way,
x2 − z2 = vy2 for some y ∈ Fq. In Müller’s paper [37] the expression z2x2 − 4
is instead chosen, but this of course does not play any role. There is a long-
standing open problem about how to find x in constant polynomial time and

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 3

without assuming unproven conjectures of number theory. By the way, the more
malleable problem of constructing an arbitrary quadratic non-residue in Fq is
solved in [46].

Substituting the separable cubic Fq-polynomial f(t) to the place of z2, we
get the so-called Châtelet surface Sf : x2 − vy2 = f(t) originating from [12].
This equation can be imagined as an example of the function field analogue of
general(ized) Pell’s equation [3, Chapter 4]. We deal with an absolutely irre-
ducible cubic surface different from the cone over a plane cubic curve. Moreover,
Sf (Fq) ̸= ∅ as the field Fq is always large in cryptography. As a result, Sf is Fq-
unirational according to [24], that is, there is a rational (not necessarily proper)
Fq-parametrization π : A2 → Sf .

Thereby, we are able to generate for free points (x, y, t) ∈ Sf (Fq) to execute

Müller’s algorithm of finding
√
f(t). Only the element x is essentially necessary

in the algorithm, but y will not hurt in its low-level optimizations. The trouble
is that f(t) may be a non-square in Fq. So, the parametrization π does not give
a hash function to E(Fq), but just to E(Fq) ∪ ET (Fq), where ET : vy2 = f(x) is
the (unique) quadratic twist of E.

To fix the given imperfection, it is suggested to consider a genus 2 curve
H : s2 = h(t) having two (quadratic) Fq-covers φ : H → E and φT : H → ET .
We will derive the desired H for all curves E of j-invariants ̸= 0, 1728, i.e., of
the coefficients a, b ̸= 0. In addition, introduce HT : vs2 = h(t), the quadratic
hyperelliptic twist of H. Up to the isomorphism (x, y) 7→ (x, vy), formulas of φT

equally define an Fq-cover HT → E. By abuse of notation, it will be also denoted
by φT . It turns out that the generalized Châtelet surface Sh : x2 − vy2 = h(t)
is still Fq-unirational for our degree 6 polynomials h(t). And the corresponding
formulas are elementary. Thus, we will get a way to map into E(Fq) through
H(Fq) ∪HT (Fq).

The equation of Châtelet surfaces is very similar to that of elliptic curves.
So, it is no wonder that these surfaces occur in the context of elliptic curve
cryptography. In Ska lba’s seminal work [43, Lemma 2] a certain Châtelet surface
is also utilized (but in another way) for hashing to elliptic curves provided that
a ̸= 0. Curiously, the other remarkable sources [11, Section 3.1], [40, Section
5] on the topic are based on a surface resembling a Châtelet one. Furthermore,
whenever a = 0, the former becomes the latter. This is a rough explanation why
Chavez-Saab et al.’s (indifferentiable) hash function SwiftEC from [11] is always
valid for curves of j-invariant 0.

1.1 Alternative hash-to-curve functions

In the literature, there exist numerous hash functions of the wanted form {0, 1}∗ →
E(Fq). The author collects state-of-the-art ones in [27, Tables 1, 2], because the
RFC [17] is rather outdated as this regularly happens with RFCs. Among others,
the hash-to-curve RFC misses SwiftEC, although this hash function is recognized
to be the best for the majority of elliptic curves defined over non-highly 2-adic
fields. Recall that finding

√
· ∈ Fq (via an exponentiation in Fq) is the only

bottleneck of SwiftEC as well as most hash functions, especially to curves of

4 D. Koshelev

j-invariants ̸= 0, 1728. As an example, SwiftEC is appropriate for the popular
standardized curves NIST P-256 and Curve25519 (a.k.a. Edwards25519) from
[10, Section 3.2].

Let’s now talk about existing hash functions friendly to fields of considerable
2-adicities ν. First of all, the hash function Hold from [32] is relevant only for
curves having an Fq-isogeny of degree 3, which is a pretty restrictive condition.
Moreover, it requires ≳ 4 log2(q)− ν multiplications in Fq, which is a fairly large
number. We will construct a new hash function H improving the former on the
both indicators. It is applicable to all elliptic Fq-curves of j-invariants ̸= 0, 1728.
At the same time, its running time amounts to that of Müller’s algorithm, namely
to ≈ 2 log2(q) multiplications in Fq. As seen, H has to perform ≳ log2(q) fewer
field multiplications than Hold even in the borderline scenario ν ≈ log2(q).

Whenever q ≡ 2 (mod 3), we can utilize Icart’s hash function HI [23],
which extracts a (unique) cubic root in Fq instead of a square one. The solu-
tion of Icart is thereby optimal for the given case. Nevertheless, the opposite
case q ≡ 1 (mod 3) arises quite often. For instance, this is known to be a
necessary condition for the ordinariness (a.k.a non-supersingularity) of curves
Eb : y2 = x3 + b of j-invariant 0. Therefore, HI is absolutely useless for them.
Meanwhile, ordinary curves Eb are very attractive, especially in pairing-based
cryptography, because they (and only they) enjoy order 6 automorphisms and
degree 6 twists. This positively influences the efficiency of diverse operations on
Eb.

The work [28] succeeds in obtaining an indifferentiable hash function H3 to
Eb provided that

√
b ∈ Fq and hence 3 | #Eb(Fq). Surprisingly, it also extracts

3
√
· ∈ Fq, but in the desired case q ≡ 1 (mod 3). Since highly 3-adic fields are not

so popular in practice as their 2-adic counterparts, H3 costs one exponentiation
in Fq, at any rate for q ̸≡ 1 (mod 27). The order 3 automorphism [ω](x, y) :=
(ωx, y) on Eb, where ω := 3

√
1 ̸= 1 and ω ∈ Fq, underlies the established result.

Unfortunately, other elliptic curves do not possess a non-trivial automorphism
of odd order. Consequently, the result cannot be generalized, at least staying
within elliptic curves.

One more hashing method unsaid earlier is the naive one from [15, Section
8.1], i.e., scalar multiplication on E with a fixed Fq-point, but with a variable
scalar. This hashing can obviously work in constant linear time Θ(log(q)) as we
wish, but it is often insecure. That source demonstrates how to forge a signature
without a secret key in the BLS (Boneh–Lynn–Shacham) signature scheme [15,
Section 1.4.3]. More generally, the so-called Pedersen hash function HPed (see,
e.g., [6]) with n ∈ N “independent” points Pk ∈ E(Fq) is likewise unsafe. It is
easily shown that, given n known pairs (message, signature), a malicious entity
is able to sign any message by solving a system of linear equations. And it is
not even required to know a non-trivial linear relation between Pk. The same
conclusions can be found at the end of [23, Section 1] for the Boneh–Franklin
IBE (identity-based encryption) [15, Section 1.6.4].

In both mentioned schemes the input numerical arguments mk of HPed are
public. The attack seemingly does not work whenever mk are secret as in the

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 5

setting of the current article. However, there is a danger that some inputs mk will
be leaked when their relevance is outdated. An adversary may try to somehow
find any n of them, because over time, less and less effort will be made to ensure
the secrecy of old mk. Even if they are assumed to be destroyed, there is a
chance that copies of this data will be saved on one of devices by accident or
by intent. The attack can be mitigated by taking large values n. But in this
case, the hashing complexity becomes equal to Θ(n log(q)), i.e., it is not linear
anymore. It is also worth noting that HPed is not a random oracle regardless
of n, hence many protocols using HPed can no longer be considered provably
secure.

2 Algebraic geometry preliminaries

Let Fq be a finite field of characteristic p > 3 and 2-adicity ν > 1. The last
assumption means that

√
−1 ∈ Fq. For our objectives, it will be more convenient

to work with the more general form

E : y2 = f(x) := x3 + a2x
2 + a4x+ a6

of an elliptic Fq-curve. It still has the unique infinity point ∞ := (0 : 1 : 0) ∈ P2.
It is helpful to have before our eyes the expression of the j-invariant

j(E) =
−28(a22 − 3a4)3

4a32a6 − a22a
2
4 − 18a2a4a6 + 4a34 + 27a26

. (1)

Besides, denote by r0, r1, r2 the (pairwise distinct) roots of the polynomial f(x).
As usual,

a2 = −(r0 + r1 + r2), a4 = r0r1 + r0r2 + r1r2, a6 = −r0r1r2.

Fix once and forever a quadratic non-residue v ∈ Fq. Consider the quadratic
twist ET : vy2 = f(x) having the Weierstrass form

y2 = fT (x) := x3 + a2vx
2 + a4v

2x+ a6v
3.

By abuse of notation, ET will also stand for this form. There is the Fq2-isomorphism

θ : E → ET (x, y) 7→ (vx, v
√
v ·y).

Obviously, θ(rk, 0) = (vrk, 0), that is, vrk are roots of fT (x).
As is clear from the introduction, generalized Châtelet surfaces

Sh : x2 − vy2 = h(t) ⊂ A3
(x,y,t),

with separable Fq-polynomials h(t), are main geometric objects of the current
article. They are ones of the simplest examples of conic bundles or, alternatively,
of conics over the function field Fq(t). It is useful to remember that we are
primarily interested in elements t ∈ Fq for which trivially Fq(t) = Fq. Conic

6 D. Koshelev

bundles are a fairly common tool in applied mathematics. For instance, as seen
in [31,26], they appear in the context of compressing points on elliptic curves of
j-invariant 0.

Below, we will tacitly use the program code [33] written in Magma to verify
underlying formulas. Among other things, we need the following folklore result
about blowing up and down [19, Section V.3]. It will be later actively utilized to
successively simplify the surfaces Sh by reducing polynomials h(t).

Lemma 1. Assume that a quadratic Fq-polynomial Q(t) = t2 − Tt+N is irre-
ducible, i.e., its discriminant D := T 2 − 4N is a quadratic non-residue in Fq.
Then, we have the blow-up Fq-maps

blQ,± : Sh → ShQ (x, y) 7→
((
t− T

2

)
x±

√
Dv

2
y, ±

√
Dv

2v
x+

(
t− T

2

)
y
)
,

identical on t. They are linear transformations whose determinant is equal to
Q(t). In particular, the maps blQ,± are invertible for every t ∈ Fq.

Corollary 1. For T = 0 and the non-square d := −N the blow-up maps from
the previous lemma take the form

blQ,± : Sh → ShQ (x, y) 7→
(
tx±

√
dv ·y, ±

√
d

v
·x+ ty

)
.

By default, put blQ := blQ,+. The notation Sh(α) will mean the fiber of Sh

over an arbitrary element α ∈ Fq. Evidently, it is degenerate if and only if α is
a root of h(t). In this circumstance,

Sh(α) = L+(α) ∪ L−(α), where L±(α) :=

x = ±
√
v ·y,

t = α.

More concretely, let α± := (T ±
√
D)/2 be the roots of Q(t). In geometric terms,

the blow-down, i.e., inverse map bl−1Q,+ : ShQ → Sh (respectively, bl−1Q,− : ShQ →
Sh) contracts the two Fq-conjugate lines L±(α±) (respectively, L±(α∓)) on the
surface ShQ to two Fq-conjugate points on the one Sh.

Throughout the section, we will encounter the quadratic cone Sc ⊂ A3
(x,y,t)

over the plane conic C : x2 − vy2 = c with c ∈ F∗
q . The latter has the Fq-point

P0 :=


(
√
c, 0) if

√
c ∈ Fq,(

0,

√
−c
v

)
if

√
c ̸∈ Fq.

It is a classical fact (see, e.g., [14, Section 3.1]) that, given an abstract conic
C : ax2 + by2 + 1 = 0 having a point P0 = (x0, y0), the map inverse to the
projection of C from P0 has the form

pr−1P0
: A1

u → C u 7→
(ax0u2 + 2by0u− bx0

au2 + b
,
ay0u

2 − 2ax0u− by0
au2 + b

)
.

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 7

In our situation, a = −1/c and b = v/c. As a result, acting identically on t, we
obtain the map

pr−1P0
: A2

(u,t) → Sc u 7→


(√

c· u
2 + v

u2 − v
,
√
c· −2u

u2 − v

)
if

√
c ∈ Fq,(√

−c
v

· −2vu

u2 − v
,

√
−c
v

· u
2 + v

u2 − v

)
if

√
c ̸∈ Fq

with the same notation. Conveniently, the denominator u2 − v does not vanish
for u ∈ Fq.

Hereafter, we proceed to analyzing step by step several separate cases. First,
in Section 2.1 we will consider the scenario in which one of the roots rk, e.g., r0
belongs to Fq or, equivalently, r0 = 0. There are two possible subcases when the
remaining roots r1, r2 ∈ Fq (Section 2.1.1) and conversely r1, r2 ̸∈ Fq (Section
2.1.2). Finally, the most complicated situation arises in Section 2.2, where none
of the roots rk lies in Fq.

2.1 The case when r0 ∈ Fq
Without loss of generality, put r0 = a6 = 0 and O := (0, 0). Under this premise,
a2 = −(r1 + r2) and a4 = r1r2. Let’s glue the curves E, ET along their 2-torsion
subgroups as follows:

ψ : E[2] → ET [2] O 7→ O, (r1, 0) 7→ (vr2, 0), (r2, 0) 7→ (vr1, 0).

No matter r1, r2 ∈ Fq or not, the map ψ respects the Frobenius action on E[2]
and ET [2]. In addition, note that ψ ̸= θ|E[2].

Owing to [22, Section 3.2], there are two quadratic Fq-covers

φ : H → E (t, s) 7→
(a4(vt2 + 1)

−va2t2
,

a4
a22t

3
·s
)
,

φT : H → ET (t, s) 7→
(a4(vt2 + 1)

−a2
,
va4
a22

·s
) (2)

from a genus 2 curve H : s2 = h(t). Here,

h(t) := c·Q0(t)·Q1(t)·Q2(t) = c(t6 + b2t
4 + b4t

2 + b6), (3)

where Qk(t) := t2 − δk and

c := −a2a4, δ0 := −1

v
, δ1 :=

r1
vr2

, δ2 :=
r2
vr1

, (4)

b2 := −(δ0 + δ1 + δ2), b4 := δ0δ1 + δ0δ2 + δ1δ2, b6 := −δ0δ1δ2 =
1

v3
.

Whenever j(E) ̸= 1728 (as supposed), it is clear that r1 ̸= ±r2, i.e., a2 ̸= 0. As
a consequence, c ̸= 0 and the covers φ, φT are correctly defined. Keep in mind
that φ(0,

√
cb6) = ∞ and besides

√
cb6 ∈ Fq ⇔

√
c ̸∈ Fq.

8 D. Koshelev

For the sake of convenience, put γk :=
√
δk. For our polynomial h(t) the

generalized Châtelet surface Sh fits with that discussed by Swinnerton-Dyer [45].
Furthermore, the polynomial Q0(t) is irreducible over Fq, i.e., γ0 ̸∈ Fq, hence we
are able to eliminate it by virtue of Corollary 1. Thereby, we get an (ordinary)
Châtelet surface Sh0

for which

h0(t) := c·Q1(t)·Q2(t) = c(t4 + d2t
2 + d4),

d2 := −(δ1 + δ2), d4 := δ1δ2 =
1

v2
.

2.1.1 The case when all rk ∈ Fq

The subcase
√
a4 ∈ Fq (still r0 = 0). If so, then γ1, γ2 ̸∈ Fq or, equivalently, the

polynomials Q1(t), Q2(t) are irreducible over Fq. Therefore, nothing prevents
to likewise eliminate the remaining degenerate fibers of Sh0 , arriving at the
quadratic cone Sc.

The subcase
√
a4 ̸∈ Fq (still r0 = 0). It is the most difficult, because the degener-

ate fibers of the surface Sh0
, viz. Sh0

(±γ1), Sh0
(±γ2) cannot be liquidated over

Fq. Indeed, γ1, γ2 ∈ Fq, hence every of them consists of a pair of Fq-conjugate
lines. Shifting, e.g., γ1 to the infinity point (1 : 0) ∈ P1, we immediately obtain
a cubic surface birationally Fq-isomorphic to Sh0 . Due to [24], we thus have a
constructive proof of Fq-unirationality of Sh0 .

In fact, one can reduce the subcase under consideration to the case from
Section 2.1.2 with the help of the next lemma. In this way, we are able to hash
into E through a transitional elliptic Fq-curve by analogy with [11, Section 4.3],
[49, Section 4.3].

Lemma 2. Whenever we are in the subcase conditions (and j(E) ̸= 1728), there
is an elliptic Fq-curve E′ : y2 = x(x2 + A2x + A4) (also of j-invariant ̸= 1728)
such that E, E′ are 2-isogenous over Fq and O is the only Fq-point of order 2 on
E′.

Proof. As seen in [18, Example 9.6.9], the quotient curve E′ := E/O possesses
the coefficients A2 = −2a2 and A4 = a22 − 4a4. In accordance with the formula
(1) applied to E′,

j(E′) = 1728 ⇔ A2 = 0 or A4 =
2A2

2

9
⇔ a2 = 0 or a4 =

a22
62
.

The second equality is never fulfilled, since
√
a4 ̸∈ Fq. So, we do not hit a

j = 1728 curve if the initial curve E is not. By the same reason, the discriminant
A2

2 − 4A4 = 42a4 is a non-square. This is nothing but the lemma’s statement. □

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 9

2.1.2 The case when r0 ∈ Fq, but r1, r2 ̸∈ Fq. If so, then δ1, δ2 ̸∈ Fq as
well. However, γ1, γ2 ∈ Fq2 , because the norm NFq2/Fq (δk) = d4 is a quadratic

residue in Fq. Not losing generality, let γq1 = γ2. We have the factorization h0(t) =
c·Q+(t)·Q−(t) into two irreducible quadratic Fq-polynomials

Q±(t) := (t∓ γ1)(t∓ γ2) = t2 ∓ (γ1 + γ2)t+
1

v
.

Applying twice Lemma 1, we again come to the quadratic cone Sc.

2.2 The case when all rk ̸∈ Fq

Suppose that rqk = rk+1, where the index k is taken modulo 3. Let’s glue the
curves E, ET along their 2-torsion subgroups in the following way:

ψ : E[2] → ET [2] (rk, 0) 7→ (vrk+1, 0).

The map ψ respects the Frobenius action on E[2] and ET [2]. Furthermore, note
that ψ ̸= θ|E[2]. For the sake of compactness, it is worth introducing the new
Fq-values

numy := (r0 − r1)(r0 − r2)(r1 − r2), R := r0r
2
1 + r1r

2
2 + r2r

2
0 + 3a6,

denT
x := a22 − 3a4, RT := r0r

2
2 + r1r

2
0 + r2r

2
1 + 3a6.

Owing to [22, Section 3.2], there are two quadratic Fq-covers

φ : H → E (t, s) 7→
(
vR·t2 − numy

v ·denTx ·t2
,

numy

(denTx)2 ·t3
·s
)
,

φT : H → ET (t, s) 7→
(
v ·numy ·t2 +RT

denTx
,
v ·numy

(denTx)2
·s
) (5)

from a genus 2 curve H : s2 = h(t). Here, h(t) has the same shape as the
polynomial (3) except that

c := numy ·denTx , δk :=
rk−1 − rk
v(rk − rk+1)

, (6)

and b6 = −1/v3. In addition, put ĥ(t) := h(t)/c. Due to the formula (1), the
covers φ, φT are correctly defined (equivalently, c ̸= 0) if and only if j(E) ̸= 0 as
assumed. Keep in mind that φ(0,

√
cb6) = ∞ and besides

√
cb6 ∈ Fq ⇔

√
c ̸∈ Fq.

It is readily seen that δqk = δk+1 ̸∈ Fq. In turn, γk :=
√
δk ̸∈ Fq3 , because

the norm NFq3/Fq (δk) = −b6 is a quadratic non-residue in Fq. Consequently,

the polynomial h(t) is Fq-irreducible. Without loss of generality, let γq0 = γ1,
γq1 = γ2, and γq2 = −γ0. The components of the degenerate fibers on the surface
Sh constitute two Frobenius orbits, namely{
L+

(
(−1)kγk

)
, L−

(
(−1)k+1γk

)}2

k=0
,

{
L+

(
(−1)k+1γk

)
, L−

(
(−1)kγk

)}2

k=0
.

10 D. Koshelev

We can contract over Fq any of them, obtaining the quadratic cone Sc as
before. As a consequence, the composition

blĥ,± := blQ0,± ◦ blQ1,∓ ◦ blQ2,± : Sc → Sh

is defined over Fq (unlike blQk,±). More precisely,

blĥ,± : Sc → Sh (x, y) 7→
(
ρ(t)·x±

√
v ·ϱ(t)·y, ±ϱ(t)√

v
·x+ ρ(t)·y

)
,

where

ρ(t) := t3 + (−γ0γ1 + γ0γ2 − γ1γ2)t, ϱ(t) := (γ0 − γ1 + γ2)t2 − γ0γ1γ2.

By default, put blĥ := blĥ,+.

3 New hash function

Let’s stick to the symbolism of Section 2. In it we established the following
theorem.

Theorem 1. Take the polynomial h(t) = c·(t2 − δ0)(t2 − δ1)(t2 − δ2) with the
suite (4) or (6) of the values c, δk except for the case r0 = 0, r1, r2 ∈ Fq, but√
a4 ̸∈ Fq. Then, there is a birational Fq-parametrization π : A2

(u,t) → Sh of the

generalized Châtelet surface Sh. Moreover, π is well defined on the whole set F2
q .

To be more precise,

π =


blQ0

◦ blQ1
◦ blQ2

◦ pr−1P0
if r0 = 0 and r1, r2,

√
a4 ∈ Fq,

blQ0 ◦ blQ+ ◦ blQ− ◦ pr−1P0
if r0 ∈ Fq, but r1, r2 ̸∈ Fq,

blĥ ◦ pr−1P0
if rk ̸∈ Fq.

The exceptional case of the theorem is treated by means of Lemma 2, hence it
is excluded from our discussion. For uniformity of notation, S := Sh henceforth.
In fact, the restriction of the map π to the line u = t gives rise to an Fq-section
σ : A1

t → S of the conic bundle prt : S → A1
t or, alternatively, to an Fq(t)-point

of S as a conic. To further simplify the formulas of π it is reasonable to actually
put u = t as it is originally done for Ska lba’s map [43].

Denote by HT : vs2 = h(t) the hyperelliptic quadratic twist of H. Clearly,
any cover φT : H → ET can be interpreted (up to an Fq-isomorphism) as the
cover φT : HT → E. Since the curves E, ET possess opposite traces and H is
obtained by gluing them, H (and hence HT) is a curve of zero trace, that is,

#H(Fq) = #HT (Fq) = q + 1.

The polynomial h(t) with the suite (4) fits [30, Section 5], because d :=
b4/b2 = 1/v is a quadratic non-residue and the coefficient b6 = d3. Therefore,

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 11

we enjoy bijective maps P1(Fq) → H(Fq) and P1(Fq) → HT (Fq) extracting a
square root in Fq. These maps are based on a non-hyperelliptic involution of H,
HT defined over Fq2 , but not over Fq. It is not hard to prove that the geometric
automorphism group Aut(H) of the general H is isomorphic to the dihedral
group D8 of order 8. Interestingly, the hash function from [32] is built in a
similar way on other genus 2 curves H having Aut(H) ≃ D12. By the way, there
are no other dihedral groups Aut(H) for genus 2 curves (see details in [8,9]).

The facts of the previous paragraph are wrong if we talk about the suite
(6). The point is that the (geometric) automorphism group of the general H
is just isomorphic to (Z/2)2. Roughly speaking, the curve H is not sufficiently
“symmetric”. That is why instead of mapping separately to H(Fq) and HT (Fq)
it is suggested to map onto U(Fq) from two copies of P1(Fq), where

U := H ⊔HT ⊂ A2
(t,s) × {0, 1}

for compactness. We purposely introduce the disjoint union, because the curves
H, HT intersect at the points (±γk, 0). Unless stated otherwise, the subsequent
exposition is carried out for the both suites (4), (6).

Given x, y ∈ Fq such that x2 − vy2 = z2 for z ∈ Fq, denote by M(x, y)
Müller’s algorithm returning z by using the values x, y. It should be noted that
x = y = 0 is the only possible situation for z = 0. Consider the twisted surface
ST : v(x2 − vy2) = h(t). In contrast to the twisted curves ET , HT , there is the
Fq-isomorphism

ι : S → ST (x, y) 7→
(
iy,

ix

v

)
,

where i :=
√
−1 ∈ Fq.

Eventually, we get the map

τ : S(Fq) × {0, 1} → U(Fq)

τ(x, y, t, b) :=


(t, 0, b) if

(h(t)
q

)
= 0,(

t, (−1)bM(x, y), 0
)

if
(h(t)

q

)
= 1,(

t, (−1)bM
(
ι(x, y)

)
, 1
)

if
(h(t)

q

)
= −1.

Here,
(·
q

)
is nothing but the Legendre symbol in Fq supplemented by the equality(

0
q

)
= 0. It is worth emphasizing that it (as well as the inversion in F∗

q) can be

implemented in fast constant time in compliance with [5], [11, Section 2.1]. On
the same subject, an implementer must call M(0, 0) in the first case to achieve
a deterministic execution of τ for all input arguments.

We also lack the auxiliary map

Φ : U(Fq) → E(Fq) Φ(P, b) :=

φ(P) if b = 0,

φT (P) if b = 1.

12 D. Koshelev

Lastly, we obtain the map

e := Φ ◦ τ ◦ σid : Fq × {0, 1} → E(Fq),

where σid := σ × id. It can be extended to P1(Fq) × {0, 1} by tinkering with the
Fq-points of P1, S, H, HT , and E at infinity. Nonetheless, this is unnecessary in
practice.

In cryptographic language, we also have the hash function H := e◦η, picking
any one η : {0, 1}∗ → Fq × {0, 1}. For convenience, a step-by-step description
of H containing all its components is represented in Algorithm 1. Among other
things, the dummy multiplications of x, y by 0, 1 are included in the algorithm
to respect its constant-timeness.

Example 1. As far as the author knows, the 2-adicity ν = 96 is maximal among
the basic fields of standardized elliptic curves (around the world). It is attained
by the curve NIST P-224 from the standard [10, Section 3.2.1.2] recently up-
dated. As the name indicates, the curve is defined over a field Fq of length
⌈log2(q)⌉ = 224. Its order q ≡ 1 (mod 3), hence Icart’s hash function HI is not
applicable to the curve as opposed to H and Hold from the former work [32].
By the way, a reference variable-time implementation in Magma of H to NIST
P-224 is included in [33]. Before Hold, the so-called simplified SWU hash function
HsSWU (see, e.g., [49, Section 4.1]) was the best for this curve.

Recall that HsSWU extracts a square root in Fq as well as H. A constant-
time implementation of [38, Algorithm 4] has running time close to ≈ log2(q) +
ν(2⌈log2(ν)⌉ − 1) finite field multiplications. This amounts to ≈ 224 + 96(2·7 −
1) = 1472 ones in the field Fq under consideration. In turn, Müller’s algorithm
performs ≈ 2 ·224 = 448 ones (see a further optimization in the patent [34]).
Finally, Hold has to compute ≈ 865 field multiplications in accordance with [32,
Table 1]. To sum up, the new hash function H carries out ≈ 417 (respectively,
≈ 1024) fewer multiplications than Hold (respectively, HsSWU). In other terms,
there is an acceleration of about 2 and 3.25 times, respectively.

The reader may wonder what is the approximate number of multiplications
in Sutherland’s square root algorithm. At the moment, it is difficult to give
an answer to this question, because there is no article yet (similar in style to
[38]) that likewise analyzes all the implementation details. Sutherland does not
care about constant-timeness, hence the average estimates from [44, Tables 1, 2]
cannot be taken as a basis for comparison with Müller’s algorithm. On the other
hand, investigating practicality of Sutherland’s approach goes beyond the scope
of the present article.

Example 2. There may be an objection that the curve NIST P-224 is obsolete
and is maintained in the standard only for the sake of compatibility with old
software. In this connection, the relevance of this paper may seem overpriced at
first glance. This is not so, since there are at least two relatively new elliptic
curves dubbed stark curve [1] and starkjub [2]. They are defined over the same
252-bit field Fq with ν = 192 ≫ 96. For such finite fields, the supremacy of

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 13

Algorithm 1: The new hash function H : {0, 1}∗ → E(Fq)

Data: a finite field Fq of characteristic p > 3 such that i =
√
−1 ∈ Fq,

an elliptic Fq-curve E : y2 = x3 + a2x
2 + a4x + a6 of j-invariant ̸= 0, 1728

(except for the subcase
√
a4 ̸∈ Fq of Section 2.1.1),

a hash function η : {0, 1}∗ → Fq × {0, 1} and a string str ∈ {0, 1}∗,
the genus two Fq-curves H : s2 = h(t) and HT : vs2 = h(t), where

√
v ̸∈ Fq,

the Fq-covers φ : H → E and φT : HT → E,
the surface S : x2 − vy2 = h(t) and the Fq-section σ : A1

t → S,
Müller’s algorithm M ;

Result: the point H(str) ∈ E(Fq);
begin

(t, b) := η(str);
(x, y, t) := σ(t);

L :=
(h(t)

q

)
;

if L = 0 then
X := 0·x;
Y := 0·y;
b′ := b;

end
else if L = 1 then

X := 1·x;
Y := 1·y;
b′ := 0;

end
else

X := i·y;
Y := (i/v)·x;
b′ := 1;

end

s := (−1)bM(X,Y);
b := b′;
if b = 0 then

return φ(t, s).
end
else

return φT (t, s).
end

end

14 D. Koshelev

Müller’s algorithm compared to other square root algorithms should be even
clearer.

It is important to realize that the magnitude of ν for the the mentioned
curves is not accidental. The point is that in the case of the high 2-adicity of Fq
one can apply the fast Fourier transform (FFT) to speed up the arithmetic of
Fq-polynomials. This becomes in demand more and more in advanced protocols
of elliptic curve cryptography. A confirmation of the given words can be seen in
the up-to-date survey [4]. It also contains a lot of modern real-world curves, but
frankly speaking, ν < 96 concretely for those curves.

To be honest, H is not the best hash function for the stark(jub) curves,
because q ≡ 2 (mod 3) for them and thereby Icart’s hash function (extracting
3
√
· ∈ Fq) is relevant. Hence, it makes little sense to analyze (as in the previous

example) the multiplication counts for H, Hold (if applicable), and HsSWU .
However, it is quite possible that alternative STARK-friendly curves will emerge
in the near future, for which ν ≳ 192 and conversely q ≡ 1 (mod 3). Any
redundant condition (including on the reminder of q modulo 3) no doubt leads to
complication of curve generation. According to [39], producing truly transparent
curves (even without looking at ν) is not as simple as may appear at first sight.

3.1 Indifferentiability from a random oracle

In this section we will encounter some statistical notions, which are common in
the current research area. They can be found, e.g., in [7, Sections 2, 3].

Lemma 3. For the covers (2) and any affine point P = (x, y) ∈ E(Fq) there is
the criterion

φ−1(P) ∩H(Fq) = ∅ ⇔ (φT)−1(P) ∩HT (Fq) = ∅.

The lemma immediately follows from the simple equality

(prx ◦ φT)(t) = (prx ◦ φ)
(1

vt

)
.

For the other pair of covers (5) the given lemma is false. In particular, the
situation Φ−1(P)∩U(Fq) = ∅ occurs quite often. A counterexample can be easily
found by sampling randomly the appropriate parameters q, rk, and P .

We see that the map Φ (and hence e) is itself far from surjective. This implies
non-regularity of the maps Φ, e. By this reason, we are forced to resort to the
tensor squares

Φ⊗2 := [+] ◦ Φ×2 : U2(Fq) → E(Fq),

e⊗2 := Φ⊗2 ◦ τ×2 ◦ σ×2
id : F2

q × {0, 1}2 → E(Fq),

where

[+] : E2 → E (P, P ′) 7→ P + P ′.

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 15

Despite the fact that the original map π acts from the whole plane A2
(u,t),

we cannot benefit from this circumstance. We conclude that restricting π to the
diagonal u = t is actually justified. Otherwise, the output length (and hence
the running time) of the auxiliary hash function η would be doubled without
any advantage. For the provably secure η this would significantly slow down a
cryptosystem. In comparison, certain maps from F2

q in the recent works [11,28,29]
lead to indifferentiable hash functions requiring only one root extraction.

Theorem 2. The map Φ⊗2 is admissible.

Proof. We lack the quantities

WS(ϕ, χ) :=
∑
P∈S

(χ ◦ ϕ)(P), ∆(ϕ) :=
∑

P∈E(Fq)

∣∣∣∣#ϕ−1(P)

#S
− 1

#E(Fq)

∣∣∣∣ ,
where χ : E(Fq) → C∗ is a complex character and ϕ : S → E(Fq) is any map from
a finite set S. The first quantity is an analogue of Weil sum [36, Section 5.4].
The second is the statistical distance between the uniform distribution on E(Fq)
and that induced by ϕ (provided that the distribution on S is also uniform).

Due to [16, Theorem 7], the cover φ is 2-well-distributed, i.e., |WS(φ, χ)| ⩽
2
√
q for every non-trivial character χ. Besides, since φ is a quadratic cover,

φ−1(P) contains at most two Fq-points for each P ∈ E(Fq). The same properties
are true for φT . We have the right to suppose (for simplicity) the near-equality
#E(Fq) ≈ q. So, in accordance with [47, Corollary 1], the tensor products

φ⊗2, (φT)⊗2, φ⊗ φT , φT ⊗ φ

are ϵ-regular, where the value ϵ ≈ 2
√

2/q is negligible.
Note that

U2 = H2 ⊔ (HT)2 ⊔ H ×HT ⊔ HT ×H

and thereby #U2(Fq) = 4(q + 1)2. It is readily seen that

∆(Φ⊗2) ⩽
∆(φ⊗2) +∆((φT)⊗2) +∆(φ⊗ φT) +∆(φT ⊗ φ)

4
⩽ ϵ.

By definition, the map Φ⊗2 is also ϵ-regular. Formally speaking, we established
regularity when the domain of Φ⊗2 includes all pairs of Fq-points on H, HT

(together with two bits) such that at least one of them lies at infinity. Nonethe-
less, restricting to U2(Fq) ⊂ F4

q × {0, 1}2 remains regular, because we discard a
negligible number of points, viz. O(q), with respect to 4(q + 1)2.

Further, the map Φ⊗2 is computable in constant time as the “basic” maps φ,
φT are of the same degree (two) and have similar formulas. That is why evaluat-
ing them can be easily implemented without time difference. Lastly, their pair-
wise tensor products are samplable according to [47, Algorithm 1]. This entails
samplability of Φ⊗2, because nothing prevents to choose uniformly at random
the pairs of φ, φT . Eventually, all the admissibility characteristics are proved. □

16 D. Koshelev

Let Σ ⊂ S stand for the image of the section σ. The restriction τ : Σ(Fq) ×
{0, 1} → U(Fq) is bijective. Indeed, it is effortlessly checked that the inverse map
to τ has the form

τ−1 : U(Fq) → Σ(Fq) × {0, 1}

τ−1(t, s, b) =


(0, 0, t, b) if s = 0,

(x, y, t, 0) if s = M
(
ιb(x, y)

)
̸= 0,

(x, y, t, 1) if s = −M
(
ιb(x, y)

)
̸= 0,

where (x, y, t) = σ(t) and ι0 := id.
In general, the composition operation leads beyond the class of admissible

maps as said in [7, Appendix C.1]. However, the bijective maps τ , σid (and hence
τ×2, σ×2

id) admit a deterministic evaluation along with their inverses. Conse-
quently, we arrive at the next statement.

Theorem 3. The map e⊗2 is admissible.

Corollary 2. Whenever η×2 : {0, 1}∗ → F2
q × {0, 1}2 is an indifferentiable hash

function, so is the composition H⊗2 := e⊗2 ◦ η×2 : {0, 1}∗ → E(Fq).

The output length of η×2 is only two bits longer than 2⌈log2(q)⌉, hence the
executing time of η×2 is (almost) identical to that of hash functions {0, 1}∗ →
F2
q of a more classical kind. At the same time, the operating time for H⊗2 is

obviously two times greater than for H from Section 3, that is, Müller’s algorithm
is executed twice. Likewise, the hash functions Hold, HsSWU from Example 1 are
not indifferentiable themselves as opposed to H⊗2

old, H⊗2
sSWU . Therefore, all the

multiplication counts of that example should be doubled in the random oracle
setting.

4 Conclusion

The hashing approach of the present article can be extended to elliptic Fq-curves
of j-invariants 0, 1728 whose Frobenius trace has a small divisor. To this end,
one should study the generalized Châtelet surfaces Sh with polynomials h(t) (of
degrees 5, 6) written out in [30, Sections 3, 4]. The only potential obstacle on the
path might be non-unirationality of Sh over the field Fq. Fortunately, [25, Section
8] concludes that any conic Fq-bundle with ⩽ 6 degenerate fibers (in particular,
Sh) is actually Fq-unirational provided that the surface has a smooth Fq-point.
And this condition automatically holds over finite fields of cryptographic sizes.

Meanwhile, (most) modern elliptic curves of j-invariants 0, 1728 over highly
2-adic fields are initially equipped with an Fq-isogeny χ of small degree to another
elliptic curve. The SNARK-friendly j = 0 curves from the web pages [20,21] can
serve as a confirmation of the given words. Therefore, indirect hashing via χ
takes place. Let’s repeat again that the hash function Hold is relevant only if
deg(χ) = 3. So, Hold does not cover any curve of j = 0, 1728 that H could not

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 17

cover indirectly. At this stage of development of elliptic curve cryptography we
hereby handled (almost) all real-world elliptic curves over fields of large 2-adicity
ν.

Finally, it is worth stressing one more time that there are even more efficient
hash functions HI , H3, and H7 represented in Table 1 (in addition to H). Their
bottleneck consists in finding a radical ℓ

√
· ∈ Fq of odd degree ℓ ∈ N. For most

fields Fq this is nothing but one exponentiation in Fq requiring n ∈ N field mul-
tiplications, where log2(q) ≲ n ≲ 2 log2(q). Nevertheless, as opposed to H, the
other table hash functions suffer from specific limitations on E and Fq. Surpris-
ingly, H3 behaves as a random oracle unlike HI , H7, though the tensor squares
H⊗2

I , H⊗2
7 as usual become random oracles (cf. Corollary 2).

Hash function Year Author Reference Bottleneck Conditions Is indiff.?

HI 2009 Icart [23]
3
√
·

q ≡ 2 (mod 3) no

H3 2022

K.

[28] q ≡ 1 (mod 3),
a = 0,

√
b ∈ Fq

yes

H7
2023

[27, Section 2.2] 7
√
· q ≡ 2, 4 (mod 7),

j-invariant −3353
no

H Section 3
√
· = M(·, ·) ab ̸= 0

Table 1. State-of-the-art hash functions to elliptic curves E : y2 = x3 + ax + b over
highly 2-adic fields Fq

Acknowledgements. The author expresses his gratitude to Damien Stehlé
for hiring him as a postdoc at École Normale Supérieure de Lyon.

References

1. stark curve, https://docs.starkware.co/starkex/crypto/stark-curve.html

2. starkjub (2023), https://github.com/hashcloak/starkjub

3. Andreescu, T., Andrica, D.: Quadratic diophantine equations, Developments in
Mathematics, vol. 40. Springer, New York (2015)

4. Aranha, D.F., El Housni, Y., Guillevic, A.: A survey of elliptic curves for proof
systems. Designs, Codes and Cryptography 91(11), 3333–3378 (2023)

5. Aranha, D.F., Salling Hvass, B., Spitters, B., Tibouchi, M.: Faster constant-time
evaluation of the Kronecker symbol with application to elliptic curve hashing. In:
CCS 2023: ACM SIGSAC Conference on Computer and Communications Security.
pp. 3228–3238. Association for Computing Machinery, New York (2023)

6. Bottinelli, P.: Breaking Pedersen hashes in practice (2023), https://research.

nccgroup.com/2023/03/22/breaking-pedersen-hashes-in-practice

https://docs.starkware.co/starkex/crypto/stark-curve.html
https://github.com/hashcloak/starkjub
https://research.nccgroup.com/2023/03/22/breaking-pedersen-hashes-in-practice
https://research.nccgroup.com/2023/03/22/breaking-pedersen-hashes-in-practice

18 D. Koshelev

7. Brier, E., Coron, J.S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) Advances
in Cryptology – CRYPTO 2010. Lecture Notes in Computer Science, vol. 6223,
pp. 237–254. Springer, Berlin, Heidelberg (2010)

8. Cardona, G.: Q-curves and abelian varieties of GL2-type from dihedral genus 2
curves. In: Cremona, J.E., Lario, J.C., Quer, J., Ribet, K.A. (eds.) Modular Curves
and Abelian Varieties. Progress in Mathematics, vol. 224, pp. 45–52. Birkhäuser,
Basel (2004)

9. Cardona, G., Quer, J.: Curves of genus 2 with group of automorphisms isomorphic
to D8 or D12. Transactions of the American Mathematical Society 359(6), 2831–
2849 (2007)

10. Chen, L., Moody, D., Regenscheid, A., Robinson, A., Randall, K.: Recommen-
dations for discrete logarithm-based cryptography: Elliptic curve domain pa-
rameters (NIST Special Publication 800-186) (2023), https://csrc.nist.gov/

publications/detail/sp/800-186/final

11. Chávez-Saab, J., Rodŕıguez-Henŕıquez, F., Tibouchi, M.: SWIFTEC: Shallue-van
de Woestijne indifferentiable function to elliptic curves. In: Agrawal, S., Lin, D.
(eds.) Advances in Cryptology – ASIACRYPT 2022. Lecture Notes in Computer
Science, vol. 13791, pp. 63–92. Springer, Cham (2022)

12. Châtelet, F.: Points rationnels sur certaines courbes et surfaces cubiques.
L’Enseignement Mathématique 5(3), 153–170 (1959)

13. Cipolla, M.: Un metodo per la risolutione della congruenza di secondo grado. Ren-
diconto dell’Accademia delle Scienze Fisiche e Matematiche 9, 154–163 (1903)

14. Cremona, J., Rusin, D.: Efficient solution of rational conics. Mathematics of Com-
putation 72(243), 1417–1441 (2003)

15. El Mrabet, N., Joye, M. (eds.): Guide to pairing-based cryptography. Cryptography
and Network Security Series, Chapman and Hall/CRC, New York (2017)

16. Farashahi, R.R., Fouque, P.A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Mathematics
of Computation 82(281), 491–512 (2013)

17. Faz-Hernandez, A., Scott, S., Sullivan, N., Wahby, R.S., Wood, C.A.: Hash-
ing to elliptic curves (RFC 9380) (2023), https://datatracker.ietf.org/doc/

draft-irtf-cfrg-hash-to-curve

18. Galbraith, S.D.: Mathematics of public key cryptography. Cambridge University
Press, New York (2012)

19. Hartshorne, R.: Algebraic geometry, Graduate Texts in Mathematics, vol. 52.
Springer, New York, 8 edn. (1997)

20. Hopwood, D.: The Pasta curves for Halo 2 and beyond (2020), https://

electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond

21. Hopwood, D.: Pluto/Eris supporting evidence (2021), https://github.com/

daira/pluto-eris

22. Howe, E.W., Leprévost, F., Poonen, B.: Large torsion subgroups of split Jacobians
of curves of genus two or three. Forum Mathematicum 12(3), 315–364 (2000)

23. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) Advances in Cryptol-
ogy – CRYPTO 2009. Lecture Notes in Computer Science, vol. 5677, pp. 303–316.
Springer, Berlin, Heidelberg (2009)

24. Kollár, J.: Unirationality of cubic hypersurfaces. Journal of the Institute of Math-
ematics of Jussieu 1(3), 467–476 (2002)

25. Kollár, J., Mella, M.: Quadratic families of elliptic curves and unirationality of
degree 1 conic bundles. American Journal of Mathematics 139(4), 915–936 (2017)

https://csrc.nist.gov/publications/detail/sp/800-186/final
https://csrc.nist.gov/publications/detail/sp/800-186/final
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://github.com/daira/pluto-eris

Hashing to elliptic curves through Cipolla–Lehmer–Müller’s algorithm 19

26. Koshelev, D.: New point compression method for elliptic Fq2 -curves of j-invariant
0. Finite Fields and Their Applications 69, Article 101774 (2021)

27. Koshelev, D.: Some remarks on how to hash faster onto elliptic curves (2021),
https://eprint.iacr.org/2021/1082

28. Koshelev, D.: Indifferentiable hashing to ordinary elliptic Fq-curves of j = 0 with
the cost of one exponentiation in Fq. Designs, Codes and Cryptography 90(3),
801–812 (2022)

29. Koshelev, D.: The most efficient indifferentiable hashing to elliptic curves of j-
invariant 1728. Journal of Mathematical Cryptology 16(1), 298–309 (2022)

30. Koshelev, D.: Optimal encodings to elliptic curves of j-invariants 0, 1728. SIAM
Journal on Applied Algebra and Geometry 6(4), 600–617 (2022)

31. Koshelev, D.: Batch point compression in the context of advanced pairing-based
protocols. Applicable Algebra in Engineering, Communication and Computing
(2023), https://link.springer.com/article/10.1007/s00200-023-00625-3

32. Koshelev, D.: Hashing to elliptic curves over highly 2-adic fields Fq with O(log q)
operations in Fq (2023), https://eprint.iacr.org/2023/121

33. Koshelev, D.: Magma code (2023), https://github.com/dishport/

Hashing-to-elliptic-curves-through-Cipolla-Lehmer-Muller-square-root-algorithm
34. Lambert, R.J.: Method to calculate square roots for elliptic curve cryptography

(2013), https://patents.google.com/patent/US9148282B2/en, United States
patent No. 9148282B2

35. Lehmer, D.H.: Computer technology applied to the theory of numbers. In: LeVeque,
W.J. (ed.) Studies in Number Theory. Studies in Mathematics, vol. 6, pp. 117–151.
Mathematical Association of America, Washington (1969)

36. Lidl, R., Niederreiter, H.: Finite fields, Encyclopedia of Mathematics and its Ap-
plications, vol. 20. Cambridge University Press, Cambridge (1997)

37. Müller, S.: On the computation of square roots in finite fields. Designs, Codes and
Cryptography 31(3), 301–312 (2004)

38. Pornin, T.: Optimized discrete logarithm computation for faster square roots in
finite fields (2023), https://eprint.iacr.org/2023/828

39. Sedlacek, V., Suchanek, V., Dufka, A., Sys, M., Matyas, V.: DiSSECT: Distin-
guisher of standard and simulated elliptic curves via traits. In: Batina, L., Dae-
men, J. (eds.) Progress in Cryptology – AFRICACRYPT 2022. Lecture Notes in
Computer Science, vol. 13503, pp. 493–517. Springer, Cham (2022)

40. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) Algorithmic Number
Theory Symposium. ANTS 2006. Lecture Notes in Computer Science, vol. 4076,
pp. 510–524. Springer, Berlin, Heidelberg (2006)

41. Shanks, D.: Five number-theoretic algorithms. In: Thomas, R.S.D., Williams, H.C.
(eds.) Proceedings of the Second Manitoba Conference on Numerical Mathematics.
Congressus Numerantium, vol. 7, pp. 51–70. Utilitas Mathematica Publishing Inc.,
Winnipeg (1973)

42. Shoup, V.: A computational introduction to number theory and algebra. Cam-
bridge University Press, Cambridge, 2 edn. (2008)

43. Ska lba, M.: Points on elliptic curves over finite fields. Acta Arithmetica 117(3),
293–301 (2005)

44. Sutherland, A.V.: Structure computation and discrete logarithms in finite abelian
p-groups. Mathematics of Computation 80(273), 477–500 (2011)

45. Swinnerton-Dyer, P.: Rational points on some pencils of conics with 6 singular
fibres. Annales de la Faculté des Sciences de Toulouse: Mathématiques (Série 6)
8(2), 331–341 (1999)

https://eprint.iacr.org/2021/1082
https://link.springer.com/article/10.1007/s00200-023-00625-3
https://eprint.iacr.org/2023/121
https://github.com/dishport/Hashing-to-elliptic-curves-through-Cipolla-Lehmer-Muller-square-root-algorithm
https://github.com/dishport/Hashing-to-elliptic-curves-through-Cipolla-Lehmer-Muller-square-root-algorithm
https://patents.google.com/patent/US9148282B2/en
https://eprint.iacr.org/2023/828

20 D. Koshelev

46. Sze, T.W.: On taking square roots without quadratic nonresidues over finite fields.
Mathematics of Computation 80(275), 1797–1811 (2011)

47. Tibouchi, M., Kim, T.: Improved elliptic curve hashing and point representation.
Designs, Codes and Cryptography 82(1–2), 161–177 (2017)

48. Tonelli, A.: Bemerkung über die auflösung quadratischer congruenzen. Nachrichten
von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-
Universität zu Göttingen pp. 344–346 (1891)

49. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR Transactions on Cryptographic Hardware and Embedded
Systems (CHES) 2019(4), 154–179 (2019)

	Hashing to elliptic curves through Cipolla–Lehmer–Müller's square root algorithm

