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Abstract
The Digital Markets Act (DMA) is a nascent European Union
regulation adopted in May 2022. One of its most controversial
provisions is a requirement that so-called “gatekeepers” offer-
ing end-to-end encrypted messaging apps, such as WhatsApp,
implement “interoperability” with other messaging apps: in
essence, encrypted messaging across service providers. This
requirement represents a fundamental shift in the design as-
sumptions of existing encrypted messaging systems, most of
which are designed to be centralized. Technologists have not
really begun thinking about the myriad security, privacy, and
functionality questions raised by the interoperability require-
ment; given that the DMA’s interoperability mandate may
take effect as soon as mid-2024, it is critical for researchers
to begin understanding the challenges and offering solutions.

In this paper, we take an initial step in this direction. We
break down the DMA’s effects on the design of encrypted
messaging systems into three main areas: identity, or how to
resolve identities across service providers; protocols, or how
to establish a secure connection between clients on different
platforms; and abuse prevention, or how service providers can
detect and take action against users engaging in abuse or spam.
For each area, we identify key security and privacy require-
ments, summarize existing proposals, and examine whether
proposals meet our security and privacy requirements. Finally,
we propose our own design for an interoperable encrypted
messaging system, and point out open problems.

1 Introduction

End-to-end encrypted (E2EE) messaging has, in the last
decade, become perhaps the most widely-used privacy tech-
nology in the world. Well over two billion people use some
form of E2EE messaging to communicate privately. Most of
these use a centralized E2EE messaging app run by a single
service provider, such as WhatsApp or Signal. These ser-
vice providers manage user identities, forward traffic between
users, and detect and prevent harmful content on the platform,

like abuse and spam. Generally, users of these apps can only
message other users of the same app—e.g., a WhatsApp user
cannot message someone on Signal.

In May of last year, the European Union adopted a regu-
lation called the Digital Markets Act (DMA). Its focus is to
reduce what regulators view as unfair and anti-competitive be-
havior by large tech companies. The DMA places a particular
emphasis on reducing the extent to which large “gatekeeper”
companies can “lock in” users to their ecosystems, and ex-
ploit network effects to make switching costs high and deter
users moving to other services. Among its provisions is a
rule that gatekeepers who operate E2EE messaging services
must make them interoperable with E2EE messaging from
non-gatekeeper providers. So, for example, if Signal, a non-
gatekeeper, requests to interoperate with WhatsApp, Signal
users would be able to message WhatsApp users without mak-
ing a WhatsApp account, or indeed an account on any Meta
service.

Almost as soon as the interoperability mandate was an-
nounced, a loud, polarized, and often acrimonious debate [39,
47] began online between supporters of the mandate and its
opponents. What both sides generally agree on is that this
interoperability mandate represents a fundamental change to
the basic centralized architecture of today’s E2EE systems.

But how will these interoperable E2EE messaging systems
look, exactly? What new security and privacy risks could be
introduced by interoperability across service providers? How
do the details of the DMA’s requirements affect the design
space? These and other crucial questions lack clear answers
today; since the mandate may take effect as soon as mid-2024,
it is critical to answer them as soon as possible.

Our contributions. In this work, we begin the formal study
of interoperable end-to-end encrypted messaging. We begin
with a detailed analysis of Article 7 of the DMA, which de-
scribes the interoperability mandate. Our analysis points both
to places where requirements are very clear—for example,
that end-to-end encryption must be preserved in interoperable
chats—and places where requirements are ambiguous.
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With this analysis, we then identify the components of
existing centralized E2EE messaging systems that will be
affected the most. We find that the DMA’s mandate will affect
three components in particular: (1) identity systems, (2) E2EE
protocols, and (3) abuse prevention. For each component, we
explain why the DMA will affect it, give its API in an in-
teroperable setting, explain the unique security and privacy
challenges that arise because of interoperability, and briefly
survey some early proposals for implementing interoperabil-
ity. Finally, we propose our own design for interoperable
versions of these three components. We also highlight open
problems we believe need further research.

General findings. Our study of interoperability uncovers
many interesting challenges that are unique to specific compo-
nents, such as identity or abuse prevention; these are described
in the next few paragraphs. Our study also uncovers other,
more general, facts about interoperable E2EE.

The first is that there are two basic architectures for interop-
erable E2EE: client-to-server, where a client of one provider
directly communicates with another provider, and server-to-
server, where the client’s own provider helps them communi-
cate with other providers. We explain the security and privacy
tradeoffs of these two designs in Section 3; ultimately, we
believe server-to-server is the right design.

Our second finding is that strong privacy for communica-
tion metadata is easier to achieve in interoperable E2EE than
in non-interoperable settings. Intuitively, this is because each
client’s server can act as an anonymizing proxy, hiding their
identity from the other provider.

Identity. To set up a session in E2EE messaging, the sender
and receiver must agree on each others’ long-term identity
keys to perform mutual authentication. This process is what
we refer to as the identity component of the E2EE messaging
system, which we examine in further detail in Section 4. A
key finding of ours is that a new service will need to be incor-
porated into interoperable identity systems: service discovery,
which will provide a means for users to learn which apps
they can use to message other users. (Service discovery is
irrelevant in centralized E2EE messaging, as there is only one
app.) We note that although this component is not explicitly
required by the DMA, we deem this functionality important
for the end-to-end interoperable chat pipeline. We then ex-
plore the second major step of identity, which is how a user
retrieves the recipient’s key material.

Protocols. Once the sender and receiver learn each others’
identity keys, they can initiate a secure session and begin ex-
changing data; we refer to this as the “protocols” component.
In Section 5 we discuss how to interoperate protocols. The
challenge here is readily apparent: if two users are on differ-
ent apps that do not “speak” the same protocol, they cannot
hope to establish a secure session. We describe three possible
solutions to this problem: (1) clients either know the protocol

of every app their app interoperates with, and they choose
the appropriate one when making an interoperable session,
(2) clients are protocol-agnostic, and servers translate between
protocols by terminating connections across providers, or
(3) all interoperable apps agree on a common protocol for in-
teroperability, such as MLS [11]. A key observation we make
is that the text of the DMA seems to specifically preclude
option (2), which has been suggested several times [30, 68]:
it requires end-to-end encryption to be preserved for interop-
erable chats. In Appendix B, we also point to a number of
interesting subtleties in the case of interoperable group chats.

Abuse prevention. If the sender’s message is unwanted by
the receiver, either because it is annoying, a scam, or even
threatening, the receiver may want to prevent the sender from
sending them another message. If the sender sends unwanted
messages to enough people, the platform may detect them
as a spammer and prevent them from sending more mes-
sages. Collectively, we refer to this set of features of an E2EE
messaging system as “abuse prevention”. In Section 6 we
explore interoperable abuse prevention. Our analysis of the
DMA’s text uncovers an important fact about abuse preven-
tion, namely that the DMA gives gatekeepers the explicit right
to protect their users from harmful content coming from other
platforms. Thus, interoperable abuse prevention is not only
advantageous, it is likely to be required in practice, given the
magnitude of the spam problem on existing E2EE messag-
ing [1]. We also identify an interesting challenge with interop-
erable abuse prevention, namely how to enable functionality
like cross-platform reporting and blocklisting without reveal-
ing metadata across platforms.

Our interoperable messaging design. We use the API we
define for identity, protocols, and abuse prevention to propose
a design for two-party interoperable E2EE messaging in Sec-
tion 7. At a high level, our design introduces a third-party
server to handle service name discovery, to which clients can
query to learn target recipients’ preferred apps when initiat-
ing new communication sessions. Upon finding the service
provider of the recipient, a message sender can retrieve the
recipient’s key material by encrypting the recipient’s identifier
to the recipient provider, thereby hiding the recipient’s id from
the sender’s service provider. Furthermore, our design makes
use of a sender-anonymous E2EE protocol to hide the sender
identity from the recipient provider during the established
secure session. Hiding the recipient identity from the sender’s
provider is even easier in our protocol: the sender can sim-
ply encrypt the recipient’s identity to the recipient’s provider.
We also identify an interesting benefit of the interoperable
setting over centralized E2EE messaging: sender-anonymity
that is resistant to network traffic analysis comes naturally to
interoperability because providers are limited to seeing only
partial traffic. Finally, our design introduces mechanisms to
address spam filtering, user reporting, and blocklisting.

We highlight that we neither describe an existing protocol
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for interoperability (ours is novel) nor do we propose a proto-
col meant for standardization. Instead, the goal of this work
is to describe how the existing components of widely used
E2EE messengers can and should be extended to fulfill the re-
quirements of the DMA. Our interoperable messaging design
therefore incorporates elements of messaging that are nec-
essary (e.g., key distribution, metadata hiding, blocklisting)
and those that are optional but useful (e.g., service discovery,
verifiable user reporting).

Related work and concepts. There has been some initial
interest in interoperability from the IETF, who have convened
a new working group, More Instant Messaging Interoperabil-
ity (MIMI) [45], to standardize protocols for interoperability.
This group’s focus is on specific protocols for a general notion
of interoperable E2EE messaging, whereas in this work we
try to build a holistic view of the problem space for interoper-
ability as specifically defined by the DMA. There have also
been analyses that provide a high level view of open problems
and challenges with the DMA as it relates to interoperable
E2EE messaging, such as that by Brown [21].

One concept related to interoperability is third-party clients,
where users interact with a service provider via a client other
than the “official” one distributed by the provider itself. Third-
party client usage varies widely across E2EE apps—for exam-
ple, Telegram officially sanctions third-party clients, whereas
WhatsApp actively tries to stop the distribution of third-party
clients [60, 66]. Third-party clients are distinct from interop-
erable E2EE because they do not allow sending messages
across providers.

Another concept related to interoperable E2EE is decentral-
ized messaging, in which messages are routed between clients
without the use of a centralized service provider. Examples
include Briar and Bridgefy [2, 19]. Decentralized E2EE apps
sometimes use a distributed ledger or blockchain to manage
metadata and identities. Interoperable E2EE is incomparable
to decentralized E2EE because centralized service providers
still exist in interoperable E2EE, and messages are still routed
between users by centralized service providers.

Finally, one messaging architecture that could be used for
interoperability is federated messaging, such as Matrix [43].
In federated messaging, users register with and are based at
a “home” server, but can interact with users on other servers
via some common protocol. Servers connected together via
this protocol need not be controlled by a single party. Notably,
this is the approach that has thus far been recommended by
MIMI.

However, we note that federation is not the only solution for
interoperability and is not required by the DMA. Furthermore,
techniques and design patterns from federated messaging
might not fit neatly into the model for interoperable E2EE
messaging as defined by the DMA. First, in federated settings
typically all servers are equal participants in the federation; in
interoperable E2EE, gatekeeper servers have different roles

in the protocol than non-gatekeepers. Also, federated E2EE
apps are designed from the ground up to be federated, and
have only a single protocol that everyone uses; in contrast,
interoperability as defined by the DMA means connecting
systems that were not designed to be connected, and that have
two distinct ways of being used: within-platform and across
platforms.

Identity management presents another case where it is un-
clear whether federation is a practical solution for DMA in-
teroperability. In a federated system like Matrix, for instance,
different servers must adhere to a common convention for
identity—for example, everyone is identified by their user-
name at their home server URL. In contrast, interoperating
E2EE identity means using different kinds of identifiers, such
as usernames and phone numbers, for which there is no obvi-
ous common semantics.

2 Digital Markets Act (DMA) Background

The DMA was adopted by the EU parliament in May 2022,
after having been introduced roughly two years earlier. The
law is focused on “fair markets in the digital sector”; specifi-
cally, ensuring that digital markets remain competitive even
in the presence of large players that control a majority of
the market. These large players have a special designation—
“gatekeepers”—under the DMA. The DMA defines certain
conditions to test whether a company is a gatekeeper; the
details are not relevant for this work.

The DMA can be understood as a series of requirements
gatekeepers must abide by if they want to conduct business in
the EU. These requirements govern the way gatekeepers offer
services to their customers. They also prevent gatekeepers
from compelling users to interact with gatekeeper services in
a certain way—for example, forcing users to make an account
with one product to use another for the same gatekeeper. For
this work, the most important part of the DMA is Article 7,
which describes the interoperability requirement. We quote
the full text of Article 7 in Appendix C.

Interoperability requirements for gatekeepers. Article 7
requires that gatekeepers who provide “number-independent
interpersonal communication services” [48] (NIICS) interop-
erate their NIICSs with third parties upon request and free
of charge. The legal definition of an NIICS relies upon EU
precedent [48]; the reader can safely understand an NIICS
as a means for two or more people to communicate directly
that (a) is not operated by a traditional phone company—
hence “number-independent” and (b) enables an interactive
and interpersonal exchange of information. So, for example,
WhatsApp is an NIICS provided by the gatekeeper Meta; in
contrast, the Facebook social networking platform is not an
NIICS. The most important paragraph is paragraph 3. We
quote it here verbatim:

“The level of security, including the end-to-end encryption,
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where applicable, that the gatekeeper provides to its own end
users shall be preserved across the interoperable services.”

Paraphrasing, this paragraph says that if the gatekeeper
operates an end-to-end encrypted NIICS for its own end users,
and the third party requesting interoperation also provides
end-to-end encryption, then cross-platform messages must
be end-to-end encrypted. (That the regulation goes out of its
way to mention end-to-end encryption is important to note;
we will return to this point later.) Notably, the paragraph also
refers to the “level of security,” which could refer to specific
properties of the E2EE protocol, such as forward secrecy.

Article 7 contains some language that specifies how inter-
operability requests between providers work, and a paragraph
that requires users on both providers to be able to opt out of us-
ing interoperable messaging. The regulation makes two more
statements that are important for us. The first, in paragraph 8,
relates to what information the gatekeeper can learn about end
users to be able to implement interoperability. Specifically,
it says that the gatekeeper can collect personal information
of end users, and exchange it with the third-party provider,
only if it is “strictly necessary” to implement interoperabil-
ity. This suggests that data and metadata about users and
communications should be protected wherever possible.

The second statement, in paragraph 9, says the gatekeeper
cannot be prevented from protecting its own platform from
third-party providers who may endanger the “integrity, se-
curity, and privacy of its services.” (The statement says that
measures taken must, as above, be “strictly necessary.”) We
interpret this paragraph as allowing gatekeepers to implement
abuse prevention (e.g. spam filtering) for interoperable traffic.

Requirements for interoperable functionality. Our paper
focuses on one particular kind of NIICS functionality: basic
chat messaging and media sharing between two parties. We
note briefly that Article 7 will also require interoperability
for other NIICS functionality in the future. Two years after
the initial implementation of the DMA, interoperating group
chats will be required; two years after that, interoperating
voice and video calls will be required as well. E2EE must
be preserved in all cases. To keep the scope of this paper
manageable we focus on the first set of requirements and
leave it to future work to extend our framework to the case of
group, voice, and video chats.

Important questions. Some things in Article 7 are very
clear: for example, E2EE must be preserved, transfer of per-
sonal data across providers must be minimal, and gatekeepers
must be able to protect their own users from harm coming
from other providers. The scope of interoperability require-
ments is also fairly clear: paragraph 2 spells out which NIICS
features must be interoperated. A few important points are
left ambiguous by the text. We summarize here the ones that
affect the design of interoperable systems.

First, the phrase “strictly necessary” occurs in several
places in Article 7. What this actually means is presumably

left up to implementors. However, deciding what really is
“strictly necessary” has important implications for the secu-
rity and privacy of interoperable systems, since that phrase
governs both the amount and type of user data that can be
exchanged between service providers (paragraph 8) and what
measures gatekeepers can take to protect their own users from
harms from third-party providers (paragraph 9). Indeed, one
of the goals of this paper is to give an initial answer of what
is “strictly necessary,” to inform the discussion and debate
between gatekeepers and regulators.

A related question is the meaning of “level of security” in
paragraph 3. It is unclear what kinds of features pertain to the
“level” of security (e.g., do disappearing messages count?);
also unclear is how fine-grained the measurement is (e.g.,
does forward-secrecy count as more secure?).

Other forms of interoperability. While this section, and
the remainder of this paper, focuses on interoperability as
required by the DMA, we want to briefly discuss other exam-
ples of interoperability in the E2EE ecosystem. Recently, a
few client-facing apps have been created with the express pur-
pose of interoperating messaging. These apps include Beeper,
Texts, and Mio [12, 46, 59]. All claim to support interoperat-
ing widely-used apps like WhatsApp and iMessage, but little
information about their implementation is publicly available.
All seem to require the user to have accounts on all services,
so are unlikely to satisfy the DMA.

3 Overview

The DMA’s Article 7, as described above, does not explain
how any of its requirements could, or should, be implemented.
If we want to understand the possible security and privacy
implications of interoperability, understanding the things that
must change in an interoperable setting, and what the design
space of those changes is, is the first step.

Because end-to-end encryption must be preserved, two
components of the E2EE messaging system are implicated
immediately: first, the identity component must be involved,
so that users can acquire other users’ identity keying material
for cross-provider chats. We discuss interoperable identity in
Section 4. Second, the protocol itself must change so that a
secure session can be established across service providers,
even if the providers use different protocols for intra-provider
sessions. Section 5 discusses interoperable protocols. A third
system component that must be changed is abuse prevention:
since paragraph 9 gives gatekeepers the right to protect their
users from abuse from third-party providers, there must be a
way of (e.g.) detecting spam messages sent across providers,
and giving users the ability to block users on other providers.
Section 6 covers interoperable abuse prevention.

In each of these three sections, we explain what pieces of
the component would change and give an API that specifies
the logical input/output behavior of an interoperable solution

4



for the given component. We also highlight security and pri-
vacy properties needed for each solution in an interoperable
setting. Finally, we give a brief overview of solutions that have
been proposed (if any), and study how (or if) they achieve the
security and privacy properties we identify.

Notation. We assume communication between a clearly-
defined sender and recipient through their service providers,
with the following notation. We refer to the user Usid that
sends the message as the sender and denote sid as the sender’s
identity on its own provider, which is a unique identifier string
(e.g., an email or phone number) used by the provider. Like-
wise, the recipient Urid is the user that receives the message
and rid denotes the recipient’s identity on its provider. We
refer to the identifier for some user U in which it does not
matter whether they are the sender or the recipient as uid.

We refer to the sender’s provider as SP, the recipient’s
provider as RP, and a generic provider as P. We assume SP
and RP function both as identity providers and message de-
livery servers. This means they also maintain key directories
that map usernames to their public key bundles.

Threat model and assumptions. We provide an indepen-
dent threat model for each component. This approach is a
standard one in E2EE messaging, where entities can have
different capabilities. For instance, when considering the pro-
tocol, we might assume a provider can be malicious because
its goal is to learn user conversations; in contrast, we assume
that for abuse prevention the provider behaves honestly, since
it has little reason to deviate from its own platform policies.
We make the following assumptions throughout our paper.
We assume each provider has an identity certificate signed
by some trusted certificate authority, and that each provider’s
certificate is publicly available. We also assume that each user
we describe has an account with one or more providers.

A meta-question: communication patterns. Before we go
into more detail about the design of the three different compo-
nents, we want to highlight and discuss an overarching design
question about interoperable messaging: how the sender inter-
acts with the recipient’s service provider and vice versa. There
are two basic ways this interaction could happen, each with
tradeoffs: either Usid’s client interacts with RP (perhaps even
as an RP client would)—we call this “client-to-server”—or
Usid interacts with RP through the sender provider SP—we
call this “server-to-server”. We highlight the difference be-
tween these two architectures in Figure 1.

We base our component designs on the server-to-server ar-
chitecture, which we argue is the most realistic to deploy. For
example, this design minimizes changes to clients, which con-
tinue to communicate only with their provider as before. This
also results in easier authentication techniques for interopera-
ble traffic—the trust relation between providers means that
clients do not need to handle authenticating their messages
when sending them to another provider. Furthermore, server-

SP RPUsid Urid

Figure 1: (Top) The client-to-server architecture for interoperable
message communication. (Bottom) The server-to-server architecture.
Usid, SP, RP, and Urid are defined as in Section 3.

to-server interactions seem to make implementing abuse pre-
vention measures like spam detection easier, since SP can use
the metadata of interoperable traffic to find and ban spammers
on its platform. Finally, as we expand on in Section 5, server-
to-server has the counterintuitive property that hiding com-
munication metadata from the providers comes essentially for
free. Specifically, by encrypting the receiver’s identity with
RP’s public key, the sender can hide the receiver from SP (and
vice versa); since the providers transfer messages, network-
level metadata like IP addresses of users is not revealed either.
This is strictly better than what existing centralized E2EE
apps can do: while techniques like Signal’s Sealed Sender
can hide application-layer metadata, they cannot also hide
network metadata.

4 Identity Discovery and Interoperability

Consider a very basic E2EE chat scenario: user Alice, who
uses app AliceChat, wishes to chat with user Bob, who is on
BobChat. To enable a cross-provider encrypted channel of
communication, two important steps need to happen: (1) Al-
ice needs to discover which app Bob is using, and (2) Alice’s
client app will need to obtain Bob’s keying material from
BobChat. We identify these steps as the two fundamental
problems for identity interoperability:
(1) Service Name Discovery (SND): the way the sender dis-
covers the preferred app name of the recipient without inter-
acting with them directly.
(2) Retrieving Keying Material (RKM): the way the sender re-
trieves the keying material of the recipient from the recipient’s
preferred app.

While Alice could obtain the name of Bob’s provider
(BobChat, in our example) through some out-of-band mecha-
nism such as talking to Bob directly over a different channel
(which is sufficient based on the DMA requirements), it could
be that Alice does not have the means to do so. The focus of
SND, therefore, is in formalizing this step as an automated
mechanism executed by a client and understanding its desir-
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able security and privacy features.

4.1 Service Name Discovery (SND)

The most natural solution that comes to mind, when thinking
of SND, is a directory service that maintains a mapping be-
tween user identifiers and the list of app names (corresponding
to the apps they are registered on). We could imagine a server
maintaining this directory, responding to lookup queries and
updating the directory on appropriate (i.e., authorized) up-
date requests. We build SND on this intuitive notion. SND
is a primitive that is executed between the querying party
(sid) and a server, which we denote as the Service Directory
Server (SDS). SDS is a logical server, distinct from SP and
RP (but could be implemented in a distributed way) that main-
tains a directory mapping user identifiers to their preferred
messaging apps, along with their preference number pref.

User identifier collisions. Before discussing the API for
SND, let us highlight a subtle issue that arises in maintain-
ing this directory. In the current E2EE centralized ecosystem,
each service provider uses its preferred user identifier (e.g.,
phone number [65], email address [41], or random string [49]).
While the identifier is unique for a given service provider,
there is no global namespace where each identifier is unique.
In SND, we strive to develop an API (and, consequently, a
protocol) that allows for any identifier chosen by the corre-
sponding provider without enforcing a global namespace. We
believe this will lead to the least amount of friction in adoption
as compared to developing a new globally unique namespace
such as that for email identifiers, which reveal the name of
the service provider by default.

This leads us to handling the issue of user identifier col-
lision at the API layer, where there can be such collisions
across different apps. For instance, a user can have accounts
on multiple apps with the same identifier, or different users
can have the same identifier across multiple apps. We model
this in our API by letting SDS maintain a multi-map for the di-
rectory and report the list of apps in response to a given query.
We note that this is common on social media platforms, where
a search returns all profiles that match a queried username.

API. We now describe the SND API. We assume that the
connection between the client and the server happens over an
encrypted and authenticated channel (i.e., over TLS).
• SND.UpdateEntry(stSDS,uid,pref,app,b,aux) → 1/0:

The SDS receives its input from Uuid, runs this algorithm
locally, and responds with a bit indicating success or
failure. In more detail, the SDS receives a request from
Uuid to add or remove app to their list of apps stored in
the directory along with some authorization token (from
their corresponding provider) in aux. If the authorization
is valid, the SDS does the following. If b = 1, then the
SDS adds app with preference pref. If b = 0, then the
SDS removes app from their existing list of apps. Once the

request has been successfully processed, the SDS responds
with a success bit (failure otherwise).

• SND.LookupAuth(stP)(stuid,query ; stSDS) → (resp ; ⊥):
We model lookup as an interactive algorithm where the
client Uuid requests query to the SDS. The parties also have
access to Uuid’s provider P to authenticate Uuid as a regis-
tered user of P. This is to ensure that no arbitrary party can
run Lookup with the SDS and extract the entire directory.
At the end of the protocol execution, Uuid receives response
resp while SDS has no output.

Basic Threat Model. The servers P and SDS are considered
semi-honest. They are assumed to not collude and to faith-
fully execute the protocol, but are not trusted for privacy. The
clients are considered malicious—they can try to learn the
entire SDS directory via enumeration, or try to forge updates.

Security Goals. First we enumerate the basic security and
privacy requirements of a SND and then discuss some possible
extensions.

• Unforgeability of authorization mechanism. We require
that no unauthorized user should be able to change the
SND database. In other words, no PPT adversary should be
able to forge a service provider’s authorization mechanism
except with negligible probability.

• Privacy of uid from SDS. We require that identifier uid of
the user Uuid making the query should not be revealed to the
SDS. This, in turn, implies that the transcript of communi-
cation of the SDS with Auth(stP) and Uuid should contain
no information about uid.

• Privacy of query from P. We also require that query is
hidden from P. Since P already knows uid, i.e., identity
of the querying party, if P learns for which identifier Uuid

is querying, then P can learn sensitive information about
with whom Uuid is initiating communication. So, the privacy
property requires that the social network of Uuid is hidden
from the P.

Privacy Discussion. Given that SND employs a centralized
oracle service, it is important to highlight some of the privacy
implications with this component. In particular, mitigation
that prevent attackers from scraping the database stored by
the SDS would need to be deployed, such as rate limiting.
Note, however, that the authentication mechanism we require
during Lookup naturally provides some rate-limiting: it pre-
vents arbitrary parties from querying the SDS without autho-
rization from a valid service provider. In addition, because
the service reveals all apps used by a particular user during a
valid query, users would need to be careful in what apps they
add to the SDS by refraining from adding any sensitive apps
on which they might not want to be publicly discoverable.
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4.2 Retrieving Key Material (RKM)

RKM is the primitive used for retrieving the keying material
of the user Urid. Recall that after a user learns their target re-
cipient’s app, which can happen either through SND or some
out-of-band mechanism, this is the next step in forming the
handshake for establishing a secure channel. As discussed in
Section 3, we model this using the server-to-server architec-
ture.
• RKM.Init(stsid, rid,SP,RP)→ (stsid,q): This algorithm is

run by Usid to prepare the query packet for retrieving Urid’s
keying material from RP. Usid prepares the query packet
q which it forwards to its own provider, i.e., SP. It also
updates its state in case it needs to open a session for this
query (which it will close upon receiving the corresponding
response back from SP).

• RKM.Lookup(stSP,q ; stRP) → (resp ; ⊥): We model
RKM.Lookup as an interactive algorithm between provi-
ders SP and RP. SP gets an input q and (possibly processes
and) forwards it to RP. RP parses the query, prepares re-
sponse resp, and sends it back to SP.

• RKM.Reconstruct(stsid, resp) → (stsid,km): Usid, which
runs this algorithm locally, parses the response from SP
to extract key material km for Urid (which can be ⊥ if the
extraction fails). Usid updates its state to reflect any change
in possibly ongoing sessions (i.e., close the appropriate
session).

Basic Threat Model. The servers SP and RP are considered
semi-honest. They are assumed to not collude and to faith-
fully execute the protocol, but they are not trusted for privacy.
The clients are considered malicious. This means they may
not follow the protocol and can try to send ill-formed query
packets.

Security Goals. Even though clients can be potentially mali-
cious in our threat model, there is not much they can achieve
beyond sending ill-formed queries. This can be cheaply miti-
gated by having the providers check for well-formedness of
queries before processing them; we therefore do not make it
an explicit security goal.
• Privacy of sid from RP. We require that no single provider

can learn both sid and rid since that would reveal the social
graphs of Usid and Urid to the providers. This means that
since RP already knows rid, we require that RP does not
learn sid even when Usid initiates an RKM.Lookup for rid.

• Privacy of rid from SP. Likewise, SP already knows sid.
We therefore require that SP does not learn rid, even though
it contacts RP to retrieve Urid’s key material.

Comparing to centralized E2EE. It is worth noting here
that in the current ecosystem of centralized providers, the
provider naturally learns the social graphs of its users. How-
ever, the decentralization enabled by interoperability points to
an interesting benefit of this setting: we can aim for the strong
privacy property of hiding the social graph from providers.

4.3 Current Proposals
In this section, we describe existing proposals for identity
discovery and interoperability.

Introducing a global namespace. Rescorla [54] suggests
two possible ways to introduce a global namespace: (1) intro-
ducing a hierarchical namespace or (2) introducing an unqual-
ified namespace where any user identifier can be attached to
any service (requiring a PKI where some roots of trust will
have to attest to user identities and their public keys in a uni-
form manner.). In proposal (1) the uid will be fully qualified,
so SND will not be needed any more. But proposal (2) will
require SND to find out which service a certain identity is
using. Both these proposals will need to implement RKM.

Creating uids with each provider. Rescorla [54] also pro-
poses an alternative where each provider can continue using
their identity system, but the users would need to create an
identifier with each provider, which already violates the spirit
of interoperability. If each user has an account on each of
the E2EE providers, SND may not be required any more.
However, it is unclear which uid a certain user should use
for discovering/retrieving key material for another user on a
different provider. RKM will still be needed if such a proposal
is implemented.

Phone numbers as globally unique uids. A second line of
proposals [53, 55] suggest using phone numbers as universal
identifiers. Rescorla [53] proposes using a centralized direc-
tory service for identity mapping where each phone number
can be mapped to the list of apps it uses. This is very close
to our SND proposal where the centralized directory can be
directly mapped to our SDS, but violates our security and
privacy goals (SDS should not learn the social graphs of the
users, since an unauthorized user can scrape this directory
to find out which app(s) a certain user is using). Rosenberg
et al. [55] proposed their protocol SPIN as an alternative
to replace the centralized server by having each client do
its own phone number-to-app mapping via SMS. This is a
complex protocol that will require OS vendors to implement
new APIs. But most notably, with SPIN, a user will not be
able to discover other users who are not online at the same
time, which will be a significant problem for asynchronous
E2EE chats. Viewed through the lens of SND and RKM, in
SPIN the SDS is implemented in a distributed way and the
clients run SND.Lookup and RKM.Lookup directly with the
(distributed) SDS and the RP. Finally, there has been some
discussion about using Decentralized Identifiers (DIDs) as a
globally unique identifier for discoverability [25].

5 Protocol-Layer Interoperability

Communication between users will be done by an (interop-
erable) messaging protocol. To understand requirements for
such a protocol, we specify the parties’ APIs for sending and
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delivering messages, list established security goals and define
extended properties that we derive from our interpretation of
the DMA, and discuss available tools.

5.1 API
We specify the API for the protocol of sending and deliv-
ering messages, which we refer to as PRO, as generically
as possible—focusing on a server-to-server architecture (see
Section 3). This is illustrated with the following protocol flow:
• PRO.Send(stsid,m, rid,RP,aux)→ (stsid,c): Executed lo-

cally by user Usid to compile ciphertext c to user Urid, whose
intended Recipient Provider is RP, taking possibly auxiliary
information such as authorization credentials.

• PRO.Forward(stSP,c,RP,aux)→ (stSP,1/0): SP receives
a request to deliver the ciphertext c and either forwards it
to Recipient Provider RP or rejects c (q.v. §6).

• PRO.Deliver(stRP,c,aux)→ (stRP,1/0): Recipient Provi-
der RP obtains the (processed) ciphertext c from SP to
internally process and deliver or reject it (q.v. §6).

• PRO.Receive(strid,SP,c) → (strid,m): Recipient Urid re-
ceives ciphertext c from its provider RP to recover plaintext
message m. It also takes as input (an identifier of) the Sender
Provider SP to help with authenticating the sender.

5.2 Security and Privacy Properties
We divide the security properties into basic concepts and more
sophisticated extensions. The basic concepts are achieved by
the majority of messaging apps for two-party communication.
Furthermore, the DMA clearly states that these basic concepts
must be carried over from ordinary messaging to the inter-
operable setting. The extended properties are also achieved
by many popular messaging apps, and achieving them in an
interoperable setting is in some cases not difficult. It is not
clear if such properties are covered by paragraph 3 of the
DMA.

Basic Threat Model. All users are considered malicious
except for those who a user expects to have a secure commu-
nication with. All involved servers are considered malicious.

Security Goals. The first goal is Authorized Messaging:
only registered users can send messages to other providers’
users; second, we want Confidentiality: messages can only be
read by their senders and recipients; third, Authenticity: mes-
sages as well as their metadata (e.g., sender identity) cannot
be altered in transmission. Because of the DMA’s require-
ment to limit data collection and exchange across providers to
what is strictly necessary (see paragraph 8), we also include
two metadata hiding goals. First, we want Sender Privacy:
providers learn as little information about senders as possible
(e.g., RP learns sid infrequently or not at all); second, we want
Recipient Privacy: providers learn as little information about
recipients as possible (same as above for SP learning rid).

With our protocol proposal in Section 7, we demonstrate
that interoperable messaging naturally supports metadata hid-
ing, in particular sender privacy and recipient privacy.

Extended Threat Model: Device Corruption. Beyond
these basic security goals with respect to the above weak
adversary model, we consider temporary corruption of user
devices a realistic threat: all user devices may be corrupted
temporarily. That means, for a limited time, all stored secrets
can be exposed and all random coins can be sampled adver-
sarially. This is a standard assumption in messaging litera-
ture [6,10,14,15,17,22,23,28,52,56,57]. Extra considerations
exist for the setting of groups. Due to space limitations, our
discussion of the group setting appears only in Appendix B.

Extended Security Goals. An extension of our basic se-
curity goals is to also include Forward Secrecy (FS) and
Post-Compromise Security (PCS). This means we require
confidentiality, authenticity, and metadata hiding even if a de-
vice is corrupted in the future (FS) and even after a temporary
past corruption (PCS). Many messengers that implement vari-
ants of Signal’s Double Ratchet [50] (e.g., WhatsApp [65],
Messenger [41], Matrix [43], Wire [67]) as well as the upcom-
ing MLS standard [11] achieve FS and PCS.

5.3 Possible Solutions

Standard protocols for secure two-party communication can
be used for interoperable messaging, but there are important
obstacles and open problems that complicate their use. We
structure our discussion with the three major components of
a protocol: (1) session initialization to establish (2) a secure
channel with which users communicate; this channel also
uses (3) metadata hiding to preserve privacy.

Session Initialization. Messengers generally use a One-Pass
Key Exchange (OPKE) protocol to establish a shared secret
between parties. The most common OPKE, called X3DH [40],
is based on Signal’s protocol stack [36, 40, 50]. It derives the
initial secret via a composition of Diffie-Hellman exchanges
between long-term and ephemeral key pairs. For this, users
refresh their ephemeral key pairs with the server periodically.
A similar KEM-based session initialization is implemented
in MLS [11].

Secure Channel. One may consider Signal’s Double
Ratchet [50] as the de-facto standard secure channel pro-
tocol since its variants are implemented in Signal as well as in
WhatsApp [65], Facebook Messenger [41], Skype [44], Ma-
trix [43], Wire [67], and many other messengers. Two issues
exist for making this the channel for interoperability: incom-
patible implementations exist (e.g., Signal uses AES-CBC
but Wire uses ChaCha20) and some messengers use totally
different secure channels (e.g., iMessage and Telegram both
use custom protocols). Agreeing on a unified protocol and
harmonizing these variations may require a difficult standard-
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ization effort. An alternative is using a near-standard like
MLS [5, 7, 8, 11, 16, 24, 37, 64].

Given the short timeline of the DMA, it seems likely that
gatekeepers will fix a protocol that other apps must “speak”.
Yet, a global interoperability standard might be an option in
the long run, too. Either way, the gatekeepers are required to
publish a corresponding protocol documentation in a so-called
reference offer that the non-gatekeepers may implement in
their app. These implementations serve as so-called client
bridges. A variant of the client bridge approach would be
that the gatekeepers publish a library that implements their
protocol along with their reference offer. We note that this
solution comes with drawbacks: if a gatekeeper’s implemen-
tation contains vulnerabilities, then these will be propagated
to other interoperating apps, which will have limited power
to resolve these themselves.

Metadata Hiding. A simple way to realize metadata pro-
tection is via anonymous encryption: essentially, encrypting
ciphertexts and recipient information in a nested way. This
allows SP to only learn the sender identity and destination
RP, but not the actual recipient identity; this is also true in
reverse for RP. Key-private public-key encryption [13] is a
basic tool to achieve this, but more evolved designs of ef-
ficient anonymous wrappers are deployed in practice—an
example is Signal’s Sealed Sender protocol [36]. However, a
recent study [63] showed a battery-draining attack by mali-
cious senders against Sealed Sender; fixes are possible with
some performance overhead. Achieving FS and PCS with
anonymous wrappers can be challenging, but first proposals
exist in the literature [28].

Other Issues. An important subtlety with using different
protocols for within- and across-provider messaging is the
possibility of cross-protocol (aka. protocol confusion) at-
tacks [9, 20, 49]. Care must be taken to enforce proper la-
belling and domain separation in implementations. Finally,
as we discuss in Appendix B, group messaging poses many
more open problems that we leave for future work—note
that paragraph 2.b of the DMA requires interoperable group
messaging only 2 years later than two-party chats.

6 Abuse Prevention

As discussed above, the DMA gives gatekeepers the explicit
right to protect their users from potential abuse coming from
third-party providers (Article 7, paragraph 9). This raises ques-
tions about what reasonable measures gatekeepers may de-
mand for abuse prevention while still maintaining the DMA’s
strict user privacy requirements (Article 7, paragraph 8). In
this section, we consider how three common abuse prevention
mechanisms—server-side spam filtering, user reporting, and
blocklisting—could work in an interoperable setting.

Spam filtering. Spam will form a dominant concern for

gatekeeper apps, with WhatsApp already citing it as one of the
main challenges to adopting interoperability [47]. Providers
like WhatsApp [1] combat spam by deploying server-side
spam classifiers to block spam from reaching users. Spam
classifiers use as features the age of the sender’s account, the
rate of messages being sent, and other reputational features of
the account. Once an account is classified as a spammer, the
platform can block it. Making a new account is possible but
can be expensive—e.g., on WhatsApp, banned users would
need to get new phone numbers.

These methods work primarily because existing centralized
messaging apps have all the features needed to make accu-
rate spam classifications. Even still, messaging apps struggle
to remove spam from their platforms. Adding interoperabil-
ity to this setting could make this much worse. A notable
example of an interoperable system with a severe spam prob-
lem is email—spam comprises upwards of 50 percent of sent
emails [38]. E2EE spam detection is harder than for emails,
since only metadata can be used. Available metadata may vary
for interoperable chats: for instance, a provider’s automatic
spam detection might be based on reputational features such
as account registration and phone numbers, but this would
not work on a message coming from a different provider
that does not use phone numbers to identify users. Even if a
spammer was blocked on a gatekeeper platform, the spam-
mer could potentially create accounts on other platforms with
lower barriers to entry and continue their abuse. Gatekeepers
could potentially demand information about users on other
providers, such as their identities or account ages, as a neces-
sary condition for protecting their users in accordance with
the DMA, but it is possible that this could violate the DMA’s
Article 7, paragraph 8, which specifies that only “strictly nec-
essary” cross-provider information flow is allowed. Therefore,
“strictly necessary” metadata leakage will be determined by
technical solutions, and we argue that there exist practical
solutions that obviate the need for such leakage.

One option is client-side spam classifiers, used (e.g.) by
Google Messages [31]. This is better for privacy but creates
storage and compute overheads for clients and has poor UX.

We thus claim that server-side spam filtering will continue
to be the main method for spam prevention but can be de-
ployed in a privacy-preserving way such that it still satisfies
the requirements of the DMA. Gatekeepers could include an
API function for spam filtering and require other providers
to run the filter on all messages before sending them to the
gatekeeper. This approach presents a major benefit of our
server-to-server architecture: the sender provider will know
the account information needed to classify spammers and
filter messages. Furthermore, this solution shows that any
demands by the gatekeeper to learn potentially sensitive iden-
tifying information about users on other apps is not in fact
“strictly necessary.”

User reporting. User reporting, in which users can report
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messages they believe constitute spam or harassment to the
provider, is another important tool in abuse prevention. In
particular, Pfefferkorn found from a survey of companies
and organizations on trust and safety techniques that user
reporting was the most popular approach [51]. When users
report spam, their client often includes information about the
sender’s identity, such as their phone number, and the message
in question, which is the approach taken by iMessage [35]
and Google Messages [32].

For user reporting in interoperable messaging, the DMA
could enable a gatekeeper to require other providers to re-
veal the identities of all senders so that the gatekeeper could
directly block any reported senders. However, as we argued
above, RP should not be able to learn an arbitrary sender
identity. Thus, we need to hide an arbitrary sender’s identity
from RP while still enabling RP to ban malicious users.

Blocklisting. Blocklisting is a common feature of many
E2EE apps and presents an interesting challenge when consid-
ering interoperable abuse prevention. In particular, we explore
how users can block other users across providers. Just as for
user reporting, the goal for blocklisting should be that the
recipient does not receive messages from specified senders us-
ing other providers without the need for RP to learn arbitrary
sender identities.

Furthermore, a novel goal introduced in the interoperability
setting is how to blocklist the same identity across several
apps. For example, imagine Alice has an account on What-
sApp while Bob has accounts on both WhatsApp and Tele-
gram. If Alice blocks Bob on WhatsApp, then Bob could
continue harassing Alice on WhatsApp from his Telegram ac-
count. Therefore, an extended challenge here is how to detect
and prevent such cross-platform Sybil attacks by blocklisting
an identity registered across various platforms.

6.1 API

Here we present our API ABP for abuse prevention. It handles
spam filtering, user reporting, and blocklisting.
• ABP.SpFilter(stSP,sid,c,aux) → (stSP,1/0): Sender

Provider SP runs the spam filtering algorithm to determine
which ciphertexts it sees are spam. It takes as input its state,
the sender identifier sid, the ciphertext c to be delivered,
and auxiliary information aux about the sender’s identity
for spam classification. It outputs the updated state and a
spam/not spam (0/1) bit.

• ABP.GenReport(strid,sid,aux)→ ρ: Recipient Urid reports
a message sent by the sender identified by sid by generating
report ρ to send to the recipient provider RP. The algorithm
additionally takes as input any auxiliary information to help
with the report, such as the messages being reported or an
explanation of why the user is being reported.

• ABP.ReportRcv(stRP,ρ)→ stRP: Recipient Provider RP
processes user reports by taking as input its state and a

report ρ and outputting its updated state.
• ABP.Block(strid,sid ; stRP)→ (⊥ ; stRP): Recipient Urid

blocks Usid by running this interactive algorithm with Re-
cipient Provider RP. Urid takes as input its state and the
identifier sid of the user to block and has no output. RP
takes as input its state and outputs its updated state.

6.2 Security and Privacy Properties

We now describe the threat model we consider and expand on
the needed security and privacy properties.

Threat model. All users are considered malicious and ca-
pable of abusive behavior, including spam and harassment.
Servers are considered honest-but-curious for abuse preven-
tion – they seek to learn information, including identities,
about users but execute all appropriate abuse prevention mech-
anisms honestly. (As discussed in Section 3, servers have little
motivation not to follow their own abuse prevention policies.)

Minimizing metadata leakage. A property we need is pre-
venting providers from collecting sensitive data about users
on other providers, (e.g. RP learning the sender identity). This
causes a tension with abuse prevention, for which many of
the classic mechanisms rely on providers already knowing
such data about their users. Gatekeepers may argue this infor-
mation is “strictly necessary” (q.v.§2) for abuse prevention;
we argue in Section 7 that this is not the case and should be
disallowed. Our proposed abuse prevention mechanisms hide
arbitrary sender identities from RP and vice versa.

Verifiable user reporting with deniability. For user re-
porting, it is important that the provider can verify a sender
actually sent a reported message. This is formalized by [33] as
receiver binding. They also formalize sender binding, which
guarantees that an abusive message sender cannot send an
unreportable message. Both properties are needed for inter-
operable reporting as well. However, a potential issue with
user reporting described in [61] is that the reporting protocol
may render sent messages non-repudiable by users after de-
vice compromise. Thus, user reporting also needs deniability,
i.e. only the provider can verify reports. This is a goal of
Messenger [41].

6.3 Current Proposals

Proposals for interoperable abuse prevention have thus far
been relatively sparse. Element has proposed their “scalable,
crowdsourced" moderation tooling approach could work for
interoperable communication mandated by the DMA [29].
Their approach is tailored for a decentralized network, not
interoperable E2EE. For instance, their suggestion of shar-
ing Access Control Lists across providers breaks our privacy
property; it also requires global identifiers for users. Notably,
their proposal does not address interoperable spam filtering
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or blocklisting. Scheffler and Mayer’s SoK on content mod-
eration in E2EE [58] shows that prior literature exists on
detecting spam for E2EE email, but most rely either on client-
side filtering or more expensive cryptographic primitives like
homomorphic encryption. They also show that prior literature
exists for (centralized) E2EE messaging, but for which nearly
all rely on client-side detection. To our knowledge, there has
been no prior work or proposals focused on interoperable
blocklisting.

An approach that we believe does work is asymmetric mes-
sage franking [61], which allows report verification in a de-
niable way. In Section 7 we describe how to use asymmetric
message franking for interoperable abuse prevention.

7 Design Proposal

In this section, we provide an overview of our proposed de-
sign for interoperable E2EE messaging using our APIs intro-
duced in Sections 4, 5 and 6. As described in Section 3, our
design uses the server-to-server architecture, with the client-
to-server model used only for identity discovery. We present
an overview of the design in Figure 2.

Preliminaries. We describe the building blocks we use in
our protocol in detail in Appendix A and give a brief overview
here.
Initial Key Exchange Protocol. Scheme KE = (Gen,EGen,
Send,Recv) is a quadruple of algorithms which enables the
initial key exchange between two parties at the start of a
session in a secure messaging protocol. Gen and EGen are
used to generate static and ephemeral key pairs for the client,
respectively. KE.Send and KE.Recv are run by the sender
and the recipient, respectively, when initiating a new session
to derive a shared key. We assume a KE scheme provides
authenticity and confidentiality of the established key with
forward secrecy.
Secure Messaging Protocol. Scheme SM = (InitS, InitR,
Send,Recv) is a quadruple of algorithms which forms the
core secure E2EE messaging protocol between the sender
and recipient. SM.InitS and SM.InitR are run by the sender
and the recipient, respectively, to initialize their states, on in-
put a symmetric key k. SM.Send is run by the sender on its
state and plaintext message m to produce ciphertext c, which
is received and decrypted by the receiver through SM.Recv.
We assume an SM scheme satisfies authenticity and confi-
dentiality of transmitted messages with forward secrecy and
post-compromise security.
Sender-Anonymous Wrapper. Scheme AW = (Gen,Send,
Recv) is a triple of algorithms which enables sender-anony-
mous encryption on top of a non-sender-anonymous SM
scheme. Gen generates a pair (sk,pk). AW.Send takes the
sender secret key, the recipient public key, and the message
as input and outputs a ciphertext that hides the sender’s iden-
tity. AW.Recv takes recipient secret key and a ciphertext as

input and outputs the corresponding plaintext m as well as
the sender identifier sid. AW should achieve cryptographic
sender anonymity (in addition to authenticity and confiden-
tiality of the payload) so that the service provider cannot learn
the identity of the sender from c.
Asymmetric Message Franking. An Asymmetric Message
Franking (AMF) scheme [61] is a cryptographic primitive
that enables secure metadata-private moderation. An AMF
scheme is run between three parties: the message sender, the
message recipient, and a third-party moderator (also known as
the judge) to which message recipients can report abusive mes-
sages. The message franking algorithm Frank is run by the
message sender to generate a franking tag which can be veri-
fied by the recipient using Verify. The judge authentication
algorithm is run by the third-party moderator when a message
has been reported; it takes as input the sender public key, the
recipient public key, the judge’s secret key, the message, and
the message franking tag and outputs a bit that determines
whether the message franking tag is valid. We require that
AMFs should achieve (1) sender binding, which prevents a
sender from forming a signature that can be verified by the
receiver but not the moderator; (2) receiver binding, which
prevents a receiver from creating a franking tag on a message
that was not sent by the sender; and (3) deniability, for when
keys or messages are posted publicly after a compromise.

Key Material. Our design relies on clients and providers to
maintain various key material. As described in Section 3, we
assume some PKI which verifies the public keys of providers
and which can be accessed by clients. As such, in our design
we assume that both Usid and Urid know the Sender Provider’s
public key pkSP and the Recipient Provider’s public key pkRP.

We further assume that each client has a static public key
that serves as their identity key registered with their provider.
In particular, we express Usid’s public key as pksid and Urid’s
public key as pkrid. In actuality, our design makes use of mul-
tiple cryptographic primitives that each has its own keying
material, so a static key pk is actually a tuple of static keys
(pkKE,pkAW,pkAMF). To simplify notation, we overload ter-
minology and simply refer to a client’s identity public key
or identity secret key where it is obvious what protocol, and
hence which key, is used.

Identity. When user Usid on service provider SP wants to
begin communication with Urid, the first steps are to execute
SND to find Urid’s provider and then RKM to retrieve their
public key material from RP. For SND, we assume there is
one SDS (which could be implemented as a single third-party
server or could be implemented in a distributed manner). The
server maps user identifiers to their associated lists of apps.
Recall that there could be identifier collisions on different
apps (Alice can have user accounts on multiple apps with
the same uid= alice, or there can be multiple accounts with
the same uid= alice on different apps belonging to different
persons). In our protocol, we let the SDS return all the apps
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Figure 2: An overview of the flow for our proposed design, with the numbers referring to the specific API functions as defined in
Section 7. (Left) The flow for SND and RKM. (Right) The flow for PRO and ABP, with dashed lines indicating those for ABP.

corresponding to a given query uid.

1 SND.UpdateEntry(stSDS,uid,pref,app,b,aux)→ 1/0:
The SDS receives a request from Uuid to add or remove app
to their list of apps stored on the server. Before process-
ing this request, the SDS first retrieves the signature σP that
provider P signed over (uid,app) and verifies it by computing
SIG.Verify(pkRP,σP,(uid,app)). If b = 1, then the SDS adds
app with preference pref, meaning it adds it as index pref into
their list of apps. Else if b = 0, then the SDS removes app
from their existing list of apps. Once the request has been
processed, the SDS responds with a success or failure bit.

2 SND.LookupAuth(stP)(stuid,query ; stSDS)→ (resp;⊥):
The client Uuid looks up the user with identifier rid by ini-
tiating a lookup request with the SDS. The SDS first au-
thenticates the client as a valid user of an approved ser-
vice provider by beginning a challenge-response protocol
with Uuid. For this, the SDS chooses a random nonce n and
sends it to the client. The client then calls protocol Auth to
send a request to its provider P to sign over n by comput-
ing σ← SIG.Sign(skP,n). The client finally completes the
challenge-response protocol by sending back P,n,σ and the
identifier rid to look up. The SDS verifies the signature by
computing SIG.Verify(pkP,σ,n) and looks up rid to retrieve
the associated list of apps −→app, which it returns to the client.

3 RKM.Init(stsid, rid,SP,RP)→ (stsid,q): Since RP’s re-
sponse back to client Usid should be hidden from SP, the
client first runs (ske,pke)←$PKE.KeyGen() to generate an
ephemeral key pair, which RP will use to encrypt its response.
Usid then computes ciphertext c←$PKE.Enc(pkRP, rid∥pke)
and forms q← (RP,c), which is sent to SP.

4 RKM.Lookup(stSP,q ; stRP)→ (resp ; ⊥): SP receives
query (RP,c) ← q from Usid and forwards c to RP. RP
decrypts by computing rid∥pke ← PKE.Dec(skRP,c) and
then looks up the associated initial key material for its
user with identifier rid. Key material kmrid is composed of
(pkrid,epkrid,anon): the static identity public key and the

ephemeral public key of Urid, respectively, and the flag anon
which indicates whether Urid accepts sender-anonymous pack-
ets from anybody. RP then encrypts this by computing
c′←$PKE.Enc(pke,km) and forms resp← c′, which it sends
back to SP who then forwards this back to Usid.

5 RKM.Reconstruct(stsid, resp)→ (stsid,km): Client Usid

receives resp from its provider SP and decrypts it by retrieving
ske from its state and computing kmrid←PKE.Dec(ske, resp).
It then stores kmrid in its state.

Messaging Protocol. Here we propose an interoperable
messaging protocol for two-party communication. As dis-
cussed in Appendix B, such a solution offers basic tools that
suffice already for a simple, yet inefficient, extension to in-
teroperable group messaging: intuitively, group messages are
sent via the pairwise two-party channels between all group
members—causing a linear communication overhead—, and
the membership management is conducted on the user-to-user
layer. We assume the sender has already executed the SND
and RKM steps to retrieve the recipient’s key material.

6 PRO.Send(stsid,m, rid,RP)→ (stsid,c): This protocol
is executed locally by sender Usid. The final ciphertext is sent
to SP.

(a) If the calling user Usid does not have an ongoing ses-
sion with recipient Urid in their local state stsid yet, the
client establishes a new session by extracting Urid’s
key material (pkrid,epkrid,anon) from stsid. The send-
ing client runs an initial, one-pass key exchange protocol
(e.g., X3DH [40]) to establish key material for Usid’s
part of the session state with Urid by retrieving Usid’s
key exchange state stKE,sid from stsid and then comput-
ing (k,cKE)←$KE.Send(stKE,sid,pkrid,epkrid). It then
creates new session state by running stSM,sid,rid ←
SM.InitS(k), which Usid stores in its state. Usid also re-
trieves SP’s signature σpk over (sid,pksid) so that Urid

can later verify that Usid actually owns pksid.
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(b) The client encrypts message m with the interopera-
ble pairwise messaging protocol (e.g., Double Ratchet),
using Usid’s part of the session state with Urid. If
Usid has not yet shared its access key πsid to enable
Urid to form sender-anonymous packets back to Usid,
it appends this to m as m ← m∥πsid. It then com-
putes (stSM,sid,rid,cSM)←$SM.Send(stSM,sid,rid,m). Fi-
nally, it computes the message franking tag by running
σfr←$AMF.Frank(sksid,pkrid,pkRP,m).

(c) If anon= true or Usid already received something from
Urid in this session, Usid can hide their own identity from
the recipient provider as follows:

i. The client wraps ciphertext cSM and mes-
sage franking tag σfr in a sender-anonymous
packet (e.g., via Sealed Sender [36]) to Urid.
It does so by retrieving its anonymous wrap-
per secret key asksid from stsid and computing
cAW←$AW.Send(asksid,pkrid,cSM∥σfr) if a ses-
sion already exists between Usid and Urid. Else
if Usid is initiating a session with Urid, then Usid

computes c ← cKE∥cSM∥σfr∥(sid,pksid)∥σpk and
cAW←$AW.Send(asksid,pkrid,c).

ii. The client then attaches Urid’s access key πrid that
shows to RP that Urid accepts sender-anonymous
packets from Usid, which results in c′ = cAW∥πrid.
Just as for Signal’s Sealed Sender [36], this proof
is a symmetric secret that Urid distributes to all its
session partners (including Usid) as well as RP. If
anon= true, then π←⊥.

(d) Else if anon= false and this is the first time Usid is con-
tacting Urid, Usid sets c′ = cKE∥cSM∥σfr∥(sid,pksid)∥σpk.

(e) To hide the recipient’s identity from SP, encrypt c′∥rid
to RP by computing c′′←$PKE.Enc(pkRP,c′∥rid).

(f) The client then returns its updated state and c′′, which it
sends to SP.

7 PRO.Forward(stSP,c,sid,RP,aux) → (stSP,1/0): In
this protocol, SP forwards the ciphertext c it received from
Usid to RP. SP verifies that Usid is permitted to send a cipher-
text to recipient providerRP (e.g. Usid could have been banned
from RP because of spam or harassment) and performs other
abuse prevention mechanisms like spam filtering. If these
fail, then SP returns 0 and drops the message. Otherwise, SP
returns 1 and proceeds with delivery of c to RP.

8 PRO.Deliver(stRP,c) → (stRP,1/0): RP receives ci-
phertext c from SP. It processes c as follows:

(a) RP first decrypts c to recover the recipient identifier:
c′∥rid← PKE.Dec(skRP,c).

(b) If c′ = cKE∥cSM∥σfr∥(sid,pksid)∥σpk, RP retrieves the
blocklist from its state. If rid has blocked sid, then RP
drops the ciphertext and returns 0. Otherwise, it forwards
c′ and SP to Urid and returns 1.

(c) Else if c′ = cAW∥π, RP verifies that π is a valid proof for
rid. If π=⊥, then it verifies that Urid has set anon= true.
If the proof is invalid, it drops the message and returns 0.
Otherwise, it forwards cAW and SP to Urid and returns 1.

9 PRO.Receive(strid,SP,c) → (strid,m): Urid receives a
ciphertext from RP and processes it as follows:

(a) If c = cAW, Urid gets skrid from its state and runs
(sid,c′)← AW.Recv(skrid,cAW). Then if c′ = cSM∥σfr,
Urid retrieves stSM,sid,rid from its state.

(b) If c or c′ can be parsed as cKE∥cSM∥σfr∥(sid,pksid)∥σpk,
Urid needs to establish a new session with
Usid. Urid first verifies Usid’s key by computing
SIG.Verify(pkSP,σpk,(sid,pksid)). It then runs (pk′sid,k)
← KE.Recv(stKE,rid,cKE) and verifies that pk′sid = pksid,
meaning the sender’s public key used in the key exchange
protocol is correct. It runs stSM,sid,rid← SM.InitR(k) to
generate the new session state.

(c) Finally, Urid computes m← SM.Recv(stSM,sid,rid,cSM)
to get back the plaintext message. If m can be
parsed as m∥πsid ← m, it then stores the sender’s
access key πsid in its state. Urid next verifies
AMF.Verify(pksid,skrid,pkRP,m,σfr) and returns m and
its updated state.

Abuse Prevention. Here we present our interoperable abuse
prevention protocol that enables spam filtering, user reporting,
and blocklisting.

10 ABP.SpFilter(stSP,sid,c,aux) → (stSP,1/0): This al-
gorithm is run by SP when it receives ciphertext c to be
sent. As part of its state, SP stores data about each user’s
account, such as the identifier used to create the account (e.g.
phone number, email, etc.) and the age of the account. It also
keeps track of the number of ciphertexts sent by each user
over some time period, such as the last 60 seconds, which is
used as the auxiliary data aux. The algorithm itself can be
a spam classifier trained on data that enables the model to
classify spam based on the mentioned features, such as that
deployed for WhatsApp. If SP is a non-gatekeeper, this clas-
sifier could be provided as part of the gatekeeper’s API. The
algorithm outputs the updated state of SP and also outputs
1 if the message is deemed as benign or 0 if the message is
deemed spam and should be dropped. In this latter case, SP
drops the message and updates its state to note the sender of
the message as a spammer. For instance, it could deactivate
the account and notify the banned user.

11 ABP.GenReport(strid,sid,aux)→ ρ: The auxiliary data
aux consists of the message m to be reported, the associated
message franking tag σfr, and an optional reason this violates
the Terms of Service of the provider, which we call R. The
recipient retrieves the sender’s key pksid from its state strid
and compiles the report as ρ← (sid,pksid, rid,m,σfr,R).
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12 ABP.ReportRcv(stRP,ρ) → stRP: RP receives report
(sid,pksid, rid,m,σfr,R)← ρ. It then retrieves the key pkrid
of the recipient and its own secret key skRP from its state
stRP and verifies the message franking tag by computing
AMF.Judge(pksid,pkrid,skRP,m,σfr). If it returns 0, RP re-
jects the report and aborts. Otherwise, the provider reviews
the message and explanation (if available) by the recipient.
If the provider decides that the sender violated their Terms
of Service and should be banned from their platform, then
RP can send sid to SP and request them to block this user
from sending messages to their platform. We note that it is
possible for SP to refuse, but then RP could have grounds to
discontinue interoperability.

13 ABP.Block(strid,sid ; stRP)→ (⊥ ; stRP): The client
Urid sends a block request for sender with identifier sid to the
recipient provider RP. Once RP receives the request, it rotates
the access key for Urid and sends the new access key π′rid back
to Urid. RP also updates the blocklist in its state to add sid as
a blocked sender for Urid. The client Urid stores π′rid in its state
and sends messages to each of its non-blocked contacts so
that they can get Urid’s new access key. Note that if Urid has
set anon to true, meaning that they accept sender-anonymous
messages from anybody, then they do not have the ability to
blocklist users.

Security and Privacy Properties. We describe how our
protocol meets our security and privacy goals.
Identity. The authorization mechanism used in SND is un-
forgeable due to the EUF-CMA unforgeability of the digital
signature scheme. The privacy of uid from SDS is preserved
by construction: the Uuid does not present it to the SDS when
running a Lookup query and the challenge-response proto-
col transcript does not contain any information about uid
either. The privacy of query from P is also preserved by con-
struction: the challenge-response protocol does not need any
information about the query. In RKM, SP does not learn any
information about rid since it is encrypted to RP. The IND-
CCA security of PKE ensures this privacy. By construction,
SP does not send sid to RP, so sid remains hidden from RP.
Messaging Protocol. Depending on the properties of the em-
ployed protocols KE, SM, and AW, their overall composi-
tion achieves the security properties specified in Section 5.2.
More concretely, by letting SP check whether Usid is permit-
ted to send something to the specified RP, a first authorization
check is conducted. Due to the second authorization check,
performed by RP, Urid is guaranteed to only receive cipher-
texts from accepted contacts. This enables our protocol to
achieve Authorized Messaging. Furthermore, based on the
key-indistinguishability of the initial key exchange as well as
the FS and PCS of the messaging protocol, the transmitted
payload remains confidential and authentic with FS and PCS.

Finally, as rid is encrypted to RP, SP never learns the re-
cipient identity, which ensures Recipient Privacy. Similarly,

Usid hides their identity towards RP if the recipient accepts
anonymous ciphertexts or as soon as the recipient accepted
their shared, ongoing session by distributing a corresponding
access key, which ensures Sender Privacy. However, as men-
tioned in Section 5.3, none of the deployed sender-anonymous
wrapper protocols prevents the battery draining attack, pro-
vides FS and PCS, and is practically efficient simultaneously.
Abuse Prevention. Our spam filtering mechanism reduces
metadata about sender identities leaked to RP since SP runs
the filter on its own users. Furthermore, Usid’s identity is only
revealed to RP by Urid during reporting or blocklisting. Note
that outside of this, RP has no way of learning Usid’s identity.
We argue this is acceptable metadata leakage, since our model
assumes malicious clients which could reveal a sender’s iden-
tity to RP at any point anyways. The notions of verifiable
reporting and deniability are achieved by the AMF scheme.

8 Future Directions

Identifying major open problems and challenges in the world
of interoperable E2EE is an important contribution of this
paper. Our attempt at defining a uniform API uncovers a fun-
damental tension between the communication pattern and
security and privacy trade-offs. Our APIs mostly assume a
server-to-server communication pattern (q.v.§3). A second
important tension arises between privacy (metadata leakage
minimization) and abuse/spam prevention. In our construc-
tion (Section 7) we strive to achieve a reasonable trade-off
by choosing a mix of communication patterns and privacy-
enhancing cryptographic building blocks. Achieving better
trade-offs remains an interesting and important open question:
for example, our protocol reveals both sender and receiver
identity to RP in one case, but this may not be inherently
needed. It would also be desirable to improve the privacy of
reporting and blocklisting: for example, hiding the sender’s
identity from RP during reporting. Finally, by design our
protocol does not allow cross-provider spam filtering: using
secure computation, it may be possible to implement more
accurate spam detection with privacy.

Another extension would be improving the privacy of SND.
Tools like PIR and anonymous credentials may be useful
here. Applying key transparency to protect against malicious
providers giving incorrect keys during RKM is another open
direction. Lastly, we have surfaced several nuances of extend-
ing our 1:1 chats to group chats in the Appendix. Extending
our framework and analyses to encrypted voice and video
chats also remains an open problem.
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A Preliminaries

We describe in more detail the cryptographic primitives that
we use in our construction in Section 7.

Public Key Encryption. A public key encryption scheme is
a triple of algorithms PKE= (KeyGen,Enc,Dec). Key gener-
ation is a probabilistic algorithm that generates a secret-public
key pair: (sk,pk)←$PKE.KeyGen(). Encryption is a proba-
bilistic algorithm that encrypts a message using a public key:
c←$PKE.Enc(pk,m). Finally, decryption is a deterministic
algorithm that recovers the plaintext message using the cor-
responding secret key: m← PKE.Dec(sk,c). We assume any
PKE scheme used meets the traditional notions of correctness
and IND-CCA security.

Digital Signature Scheme. A digital signature scheme is a
triple of algorithms SIG= (KeyGen,Sign,Verify). Key gener-
ation is a probabilistic algorithm that generates a secret sign-
ing key and public verification key: (sk,vk)←$SIG.KeyGen().
Sign is a probabilistic algorithm that signs a message
using the secret signing key to produce a signature:
σ←$SIG.Sign(sk,m). Verify is a deterministic algorithm that
takes as input the public verification key, the message, and
the signature and outputs a bit indicating either acceptance
or rejection of the signature: 1/0← SIG.Verify(vk,σ,m). We
assume any SIG scheme used meets the traditional notions
of correctness and existential unforgeability under chosen
message attack (EUF-CMA).

Initial Key Exchange Protocol. Scheme KE= (Gen,EGen,
Send,Recv) is a quadruple of algorithms which enables the
initial key exchange between two parties at the start of a
session in a secure messaging protocol:

• (st,pk)←$KE.Gen(): Generates a static key pair, where the
secret key is stored in a new client state.

• (st,epk)←$KE.EGen(st): Generates an ephemeral key
pair, adding the secret component to the client state.

• (k,cKE)←$KE.Send(sts,pkr,epkr): Is run by a sender
when initiating a new session with a recipient to derive
a shared key. It takes as input the sender state, the recipient
static public key, and the recipient ephemeral public key
and outputs a shared symmetric key k and ciphertext cKE.

• (pks,k)← KE.Recv(str,cKE): Is run by a recipient when
receiving a session initiation request from a sender in order
to derive a shared key. It takes as input the recipient state
and the ciphertext output by Send and outputs the sender’s
public key and the shared symmetric key.

We assume a KE scheme that meets the security goals of
authenticity and confidentiality of the established key with
forward secrecy [18, 23, 27, 34].

Secure Messaging Protocol. Scheme SM = (InitS, InitR,
Send,Recv) is a quadruple of algorithms which forms the
core secure E2EE messaging protocol between two parties,
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the sender and recipient:

• sts ← SM.InitS(k) and str ← SM.InitR(k): Is run by the
sender resp. recipient to initialize its secret state on input a
symmetric key k.

• (sts,c)←$SM.Send(sts,m): Is run by the sender on its state
and plaintext message m to produce ciphertext c.

• (str,m)← SM.Recv(str,c): Is run by the recipient on its
state and a ciphertext c to obtain the corresponding plaintext
message m.

We assume an SM scheme that meets the security goals of
authenticity and confidentiality of transmitted messages with
forward secrecy and post-compromise security [6, 17, 22, 23].

Sender-Anonymous Wrapper. Scheme AW = (Gen,Send,
Recv) is a triple of algorithms which enables sender-anony-
mous encryption. This scheme forms a wrapper on top of the
non-sender-anonymous E2EE scheme SM.

• (sk,pk)←$AW.Gen(): Generates a key pair.
• c←$AW.Send(sks,pkr,m): Takes as input the sender secret

key, the recipient public key, and the message and outputs
a ciphertext that hides the sender’s identity.

• (sid,m)← AW.Recv(skr,c): Takes as input the recipient
secret key and a ciphertext and outputs the corresponding
plaintext m as well as the sender identifier sid.

This scheme can be viewed as an abstraction of sender-
anonymous protocols like Signal’s Sealed Sender [36]. As
described by Tyagi et al. [62], AW should achieve crypto-
graphic sender anonymity (in addition to authenticity and
confidentiality of the payload) so that the service provider
cannot learn the identity of the sender from c.

Asymmetric Message Franking. An Asymmetric Message
Franking (AMF) scheme [61] is a cryptographic primitive
that enables secure metadata-private moderation. An AMF
scheme is run between three parties: the message sender, the
message recipient, and a third-party moderator (also known
as the judge) to which message recipients can report abusive
messages. It is comprised of algorithms AMF = (KeyGen,
Frank,Verify,Judge,Forge,RForge,JForge). Key generation
generates a secret-public key pair. The message franking al-
gorithm is run by the message sender and takes as input the
sender’s secret key, the recipient’s public key, the judge’s pub-
lic key, and the message to be sent and outputs the message
franking tag: σfr←$AMF.Frank(sks,pkr,pk j,m). The verifi-
cation algorithm is run by the message recipient and takes
as input the sender public key, the recipient secret key, the
judge’s public key, the message, and the message franking
tag and outputs a bit that determines whether the message
franking tag is valid: b← AMF.Verify(pks,skr,pk j,m,σfr).
The judge authentication algorithm is run by the third-party
moderator when a message has been reported; it takes as in-
put the sender public key, the recipient public key, the judge’s
secret key, the message, and the message franking tag and

outputs a bit that determines whether the message franking
tag is valid: b← AMF.Judge(pks,pkr,sk j,m,σfr).

We assume any AMF scheme used meets the correctness,
accountability, and deniability notions as defined in [61]. At
a high level, we require that AMFs should achieve (1) sender
binding, which prevents a sender from forming a signature
that can be verified by the receiver but not the moderator; (2)
receiver binding, which prevents a receiver from creating a
franking tag on a message that was not sent by the sender; and
(3) deniability for when keys or messages are posted publicly
after a compromise.

B Group Messaging Overview

Generalizing the two-party case from Section 5 to interopera-
ble group messaging adds challenges and opens several design
choices. We present three relevant options for implementing
interoperable group messaging. Each option comes with its
own API requirements that we do not spell out formally.

B.1 Pairwise Channels

The first option is the simplest as it only relies on components
that are necessary for interoperable two-party messaging al-
ready. Hence, it would directly extend a two-party solution
to interoperable group messaging: every group message is
sent as n− 1 individual pairwise messages, where n is the
number of group members. Messages between two users of
the same provider are sent via their ordinary provider-internal
messaging channel. We note that, thereby, a group conversa-
tion can be realized based on multiple independent pairwise
channel protocols as we will elaborate in the next paragraph
Illustration of Federation vs. Interoperability.

An existing real-world example for pairwise channel-based
group messaging was an earlier version of Signal’s group
chat protocol (see Rösler et al. [56]). At a high level, it sends
group messages as n− 1 two-party messages, where each
message is prepended with a secret, random group identi-
fier. Whenever the set of group members changes, the group
identifier is freshly sampled at random and distributed to all
members. Thereby, this identifier serves as a simple proof of
membership.

The main advantages of this approach are its simplicity
as well as the fact that all peculiarities of groups, such as
membership management, are handled on the user-to-user
layer without the need for additional server functionalities.
Beyond the most obvious disadvantage—the linear communi-
cation overhead—, handling concurrent, potentially colliding,
membership changes poses a problem. E.g., consider a sit-
uation in which user A adds B to the group and removes C
from the group, and, simultaneously, C removes A from the
group. Solving this issue efficiently (i.e., without relying on
expensive consensus mechanisms) remains an open problem;
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Weidner et al. [64] propose a candidate solution that is not
entirely applicable to the setting we consider here.

Illustration of Federation vs. Interoperability. Pairwise
channels exemplify a difference between federated messaging
and interoperable messaging. While in federated messaging,
all users must execute the same protocol, pairwise channels
for interoperable (group) messaging can be based on multiple
different, incompatible protocols: consider a group of users A,
B, and C who use providers SPA, SPB, and SPC, respectively.
When A sends a group message, she could send the message to
B via a client bridge using SPB’s ordinary two-party messag-
ing protocol, and to C via another client bridge using SPC’s
ordinary two-party messaging protocol. A second group mes-
sage sent from B might be sent back to A through A’s client
bridge via SPB’s ordinary two-party messaging protocol, and
to C via B’s client bridge using SPC’s ordinary two-party
messaging protocol. That means users may speak different
protocols depending on the their communication partners’
providers and also depending on the communication direction
with these partners.

We note that the DMA is not explicit about requiring more
than two providers (one gatekeeper and one non-gatekeeper)
to provide interoperability to their users. Thus, we want to
mention that the above example can also be simplified by
observing that the situation of using different pairwise channel
protocols to realize a (group) conversation can already occur
with two providers: two users A and B with different providers
could use one protocol for messages sent from A to B and
another protocol for messages sent from B to A. The decision
which protocol is used for which communication direction is
not only technical: it may depend on further interpretations of
the DMA and/or negotiations between gatekeepers and other
providers. However, there might be technical reasons (e.g.,
security or performance properties) to prefer one protocol
over another.

B.2 Subset Groups

Just as pairwise channels, subset groups can rely on proto-
col components that are already necessary for intra-provider
group messaging as well as interoperable two-party messag-
ing. The core idea is to split the interoperable group into its
natural intra-provider sub-groups. Based on this idea, the en-
hancement over pairwise chats is to leverage this sub-group
structure by forwarding only the communication from one
provider’s sub-group to the other providers’ sub-groups via
interoperable channels: More concretely, for a group with
users A, B, and C who use provider SP1 and D, E, and F who
use provider SP2, messages sent by A are sent as 3 pairwise
messages to D, E, and F , respectively, and as a single group
message to B and C via SP1’s ordinary group messaging pro-
tocol. A refinement of this option could be: the message sent
by A is converted into a single message to the group of D, E,

and F at provider SP2 (i.e., A must be permitted to send to
this group from outside), and an ordinary provider-internal
group message to B and C.

This approach solves the performance disadvantage of pair-
wise channels but not the membership consistency issue.

B.3 Standardized Protocol
A third option is to standardize a dedicated protocol that
can process interoperable (group) messaging, which is, for
example, the goal of the MIMI standardization initiative [45].
In contrast to the above to options, this third option may
need further, potentially protocol-dependent interfaces at the
involved servers.

Despite the fact that group messaging can be used to illus-
trate differences between federated and interoperable messag-
ing, a federated messaging protocol can be used as a solution
for interoperable messaging: The involved providers would
need to agree on jointly deploying the same (federated) pro-
tocol instead of composing parts of their internal messaging
protocols with connection-protocols for interoperability.

An existing example for federated messaging is Ma-
trix [42]. However, recent attacks [3] suggest that further
cryptographic analyses are necessary to establish trust in Ma-
trix’s protocols. Another example that is often discussed in
the context of interoperable (group) messaging is the MLS
standardization initiative [11]. Federated deployment is,
however, not in the current scope of MLS. Moreover, the cur-
rent protocol relies on a central server that maintains member-
ship consistency and resolves concurrently executed protocol
operations. Such a central server could be deployed by each
of the involved providers; deciding which provider’s server is
responsible for which interoperable group might be a rather
non-technical question.

Instead of using a centralized server to handle concurrently
acting users, several recent articles propose messaging pro-
tocols that work in decentralized environments [4, 5, 16, 64].
While some of these protocols focus on maintaining low com-
munication overhead [4,5,16], Weidner et al. [64] particularly
focus on solving the membership consistency problem in a
decentralized setting—yet, their protocol incurs linear com-
munication overhead and relies on lossless, in-order delivery.

C Text of Article 7 of the DMA

Here we quote the full text of Article 7 of the DMA, which
describes the interoperability mandate. We take the text from
a PDF distributed by the European Parliament [26]. The text
references Article 3 at points; this article lays out the process
for designating a company as a gatekeeper for the purposes
of the DMA.

1. Where a gatekeeper provides number-independent in-
terpersonal communications services that are listed in
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the designation decision pursuant to Article 3(9), it shall
make the basic functionalities of its number-independent
interpersonal communications services interoperable
with the number-independent interpersonal communi-
cations services of another provider offering or intend-
ing to offer such services in the Union, by providing
the necessary technical interfaces or similar solutions
that facilitate interoperability, upon request, and free of
charge.

2. The gatekeeper shall make at least the following basic
functionalities referred to in paragraph 1 interoperable
where the gatekeeper itself provides those functionalities
to its own end users:

(a) following the listing in the designation decision
pursuant to Article 3(9):

i. end-to-end text messaging between two indi-
vidual end users;

ii. sharing of images, voice messages, videos and
other attached files in end-to-end communica-
tion between two individual end users.

(b) within 2 years from the designation:

i. end-to-end text messaging within groups of
individual end users;

ii. sharing of images, voice messages, videos and
other attached files in end-to-end communica-
tion between a group chat and an individual
end user;

(c) within 4 years from the designation:

i. end-to-end voice calls between two individual
end users;

ii. end-to-end video calls between two individual
end users;

iii. end-to-end voice calls between a group chat
and an individual end user;

iv. end-to-end video calls between a group chat
and an individual end user.

3. The level of security, including the end-to-end encryp-
tion, where applicable, that the gatekeeper provides to its
own end users shall be preserved across the interoperable
services.

4. The gatekeeper shall publish a reference offer laying
down the technical details and general terms and con-
ditions of interoperability with its number-independent
interpersonal communications services, including the
necessary details on the level of security and end-to-end
encryption. The gatekeeper shall publish that reference
offer within the period laid down in Article 3(10) and
update it where necessary.

5. Following the publication of the reference offer pursuant
to paragraph 4, any provider of number-independent in-
terpersonal communications services offering or intend-
ing to offer such services in the Union may request inter-
operability with the number-independent interpersonal
communications services provided by the gatekeeper.
Such a request may cover some or all of the basic func-
tionalities listed in paragraph 2. The gatekeeper shall
comply with any reasonable request for interoperability
within 3 months after receiving that request by rendering
the requested basic functionalities operational.

6. The Commission may, exceptionally, upon a reasoned
request by the gatekeeper, extend the time limits for
compliance under paragraph 2 or 5 where the gatekeeper
demonstrates that this is necessary to ensure effective
interoperability and to maintain the necessary level of
security, including end-to-end encryption, where appli-
cable.

7. The end users of the number-independent interpersonal
communications services of the gatekeeper and of the re-
questing provider of number-independent interpersonal
communications services shall remain free to decide
whether to make use of the interoperable basic function-
alities that may be provided by the gatekeeper pursuant
to paragraph 1.

8. The gatekeeper shall collect and exchange with the
provider of number-independent interpersonal communi-
cations services that makes a request for interoperability
only the personal data of end users that is strictly nec-
essary to provide effective interoperability. Any such
collection and exchange of the personal data of end users
shall fully comply with Regulation (EU) 2016/679 and
Directive 2002/58/EC.

9. The gatekeeper shall not be prevented from taking mea-
sures to ensure that third-party providers of number-
independent interpersonal communications services re-
questing interoperability do not endanger the integrity,
security and privacy of its services, provided that such
measures are strictly necessary and proportionate and
are duly justified by the gatekeeper.

21


	Introduction
	Digital Markets Act (DMA) Background
	Overview
	Identity Discovery and Interoperability
	Service Name Discovery (SND)
	Retrieving Key Material (RKM)
	Current Proposals

	Protocol-Layer Interoperability
	API
	Security and Privacy Properties
	Possible Solutions

	Abuse Prevention
	API
	Security and Privacy Properties
	Current Proposals

	Design Proposal
	Future Directions
	Preliminaries
	Group Messaging Overview
	Pairwise Channels
	Subset Groups
	Standardized Protocol

	Text of Article 7 of the DMA

