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Abstract. Homomorphic secret sharing (HSS) is a form of secret sharing that supports the local
evaluation of functions on the shares, with applications to multi-server private information retrieval,
secure computation, and more.
Insisting on additive reconstruction, all known instantiations of HSS from “Learning with Error (LWE)”-
type assumptions either have to rely on LWE with superpolynomial modulus, come with non-negligible
error probability, and/or have to perform expensive ciphertext multiplications, resulting in bad concrete
efficiency.
In this work, we present a new 2-party local share conversion procedure, which allows to locally con-
vert noise encoded shares to non-noise plaintext shares such that the parties can detect whenever a
(potential) error occurs and in that case resort to an alternative conversion procedure.
Building on this technique, we present the first HSS for branching programs from (Ring-)LWE with
polynomial input share size which can make use of the efficient multiplication procedure of Boyle
et al. (Eurocrypt 2019) and has no correctness error. Our construction comes at the cost of a – on
expectation – slightly increased output share size (which is insignificant compared to the input share
size) and a more involved reconstruction procedure.
More concretely, we show that in the setting of 2-server private counting queries we can choose ciphertext
sizes of only a quarter of the size of the scheme of Boyle et al. at essentially no extra cost.

1 Introduction

In 1979, Shamir introduced the concept of secret sharing information in his seminal paper How to Share
a Secret [Sha79]. In the two-party setting, secret sharing allows to split up a secret value into two secret
shares, such that each share individually hides the secret, whereas the shares together allow to recover
it. The simplest secret-sharing scheme is additive secret sharing, where a value x in an additive group
G is split into x0, x1, such that x0, x1 are distributed uniformly at random conditioned on x0 + x1 = x.
Despite its simplicity, additive secret sharing comes with a number of nice properties. For example, it
allows the local evaluation of linear functions on the shares.
In 2019, Boyle, Gilboa and Ishai [BGI16a] extended this notion to homomorphic secret sharing (HSS),
which allows the local evaluation of larger classes of function on the shares, while keeping the nice
properties of additive secret sharing (so far possible). More precisely, a homomorphic secret-sharing
scheme for a function class F (over some input space G) has the following properties:
– The secret shares individually hide the message (computationally).
– The secret shares are succinct, i.e., they are polyomial in the size of the secret to be shared (in

particular, they are independent of the complexity of the function class F).
– The secret shares allow local evaluation of all functions f ∈ F . More precisely, there exists an

evaluation procedure Eval, such that given secret shares x0, x1 of x ∈ G, it holds Eval(f, x0) +
Eval(f, x1) = f(x).

Note that the last condition explicitly requires additive reconstruction, i.e., evaluation results in an
additive secret sharing of the output. While this requirement can be relaxed to more general recon-
struction functions (as we will do in this work), it has a number of useful features, such as allowing the
local postprocessing with linear functions.
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Since their introduction, homomorphic secret sharing has found numerous applications, including 2-
server private-information retrieval [GI14, BGI15, CBM15, BGI16b, WYG+17], low-communication
secure computation [BGI16a, BGI17, BCG+17, CM21], and succinct generation of correlated (pseu-
do-)randomness [BCGI18, BCG+19].
In [BGI16a], Boyle et al. presented a homomorphic secret-sharing scheme from the decisional Diffie-
Hellman assumption for the class of restricted multiplication straight-line (RMS) programs. These pro-
grams are restricted in that they only allow multiplication between an input value and a memory value
(where a memory value is an intermediate value in the computation), but not a multiplication between
two memory values. It can be shown that this captures the class of polynomial-size branching programs,
and circuits of constant fan-out and logarithmic depth (i.e., circuits in the complexity class NC1).
Since then, further HSS constructions for RMS programs have been proposed based on the decisional
Diffie-Hellman assumption [BCG+17], the Paillier assumption [FGJS17, OSY21, RS21], and based
on the learning with errors (LWE) assumption [DHRW16, BKS19, COS+22]. All schemes, however,
come with some efficiency bottleneck: either the evaluation is computationally expensive [BGI16a,
DHRW16, FGJS17, BCG+17, OSY21, RS21, COS+22] and/or the input shares have high concrete
overhead resulting in bad communication complexity [DHRW16, BKS19, COS+22].
In particular, while the scheme of Boyle et al. BKS [BKS19] comes with desirable properties such
as (plausible) post-quantum security and (comparatively) efficient multiplication on ciphertexts, it
inherently has to rely on LWE with (double-)superpolynomial modulus (and thus large ciphertexts) in
order to keep the error probability negligible. The reason for their (double-)superpolynomial modulus
is a two-tiered share conversion procedure to locally convert noise encoded shares modulo q first to non-
noisy shares modulo p and second lift these shares to non-noisy shares modulo q. In order to achieve
negligible error probability, they need to choose moduli p, q with 1� p� q, where each � denotes a
superpolynomial gap. The starting point for our work can thus be phrased as follows.

Is it possible to design a share-conversion procedure for polynomial-sized p, q
without introducing a non-negligible error?

1.1 Our Contribution
In this paper, we answer this question (somewhat) affirmatively and present an HSS scheme from LWE
for RMS programs with polynomial modulus, which otherwise inherits the nice properties from BKS.
Our core technique is a share conversion which allows to locally detect and tentatively correct potential
errors. On the downside, we have to relax additive reconstruction to a more involved reconstruction
procedure, where the parties choose the output from an expected constant-size list of potential output
values. In the following we give a high-level overview of our main results, which we discuss in more
detail in the technical overview.

Our core lemmas. Our core technique can be captured in the following two lemmas for share con-
version, a crucial step in the homomorphic evaluation of multiplications. Informally, the lemma states
that (for rounding) there exist local conversion procedures that, when given shares of a noisy encoding
of x ∈ Zp, return shares flag0, z0 and flag1, z1, z

′
1, respectively, such that either x = z0 + z1 mod p or

x = z0 + z′1 mod p,where the latter holds if and only if flag0 = flag1 = 1. This extends the technique
of BKS, who only consider the case flag0 = flag1 = 0 and choose parameters to ensure that this holds
except with negligible probability.

Lemma 1 (Rounding with correction [Lemma 5, 6]). Let p, q ∈ N with p|q. Then, there exist
efficient procedures Round0 : Zq → {0, 1} × Zp and Round1 : Zq → {0, 1} × Z2

p such that the following
holds:
For any x ∈ Zp, any e ∈ Z with |e| < q/(4p), and any t0, t1 with

t0 + t1 = q

p
· x+ e mod q,

it holds

x =
{
z0 + z1 mod p if flag0 = 0 ∨ flag1 = 0 ,
z0 + z′1 mod p if flag0 = flag1 = 1 ,

where (flag0, z0)← Round0(t0) and (flag1, z1, z
′
1)← Round1(t1).

Further, for t0, t1 chosen at random, it holds flag0 = flag1 = 0 with probability at least 1− (4 · |e| · p)/q.
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Bmax N log q

2 2048 71
216 2048 86
232 4096 104
264 4096 136
2128 8192 202
2256 8192 330

Table 1: Our HSS parameters for
program size |P | = 220, γ = 2.

Bmax N log q

2 4096 137
216 4096 167
232 8192 203
264 8192 267
2128 16384 399
2256 16384 655

Table 2: BKS HSS parameters with
per gate error probability 2−40.

Similarly, we extend their lemma for lifting.

Lemma 2 (Lifting with correction [Lemma 8, 9]). Let p, q ∈ N with p|q. Then, there exist efficient
procedures Lift0 : Zp → {0, 1} × Zq and Lift1 : Zp → {0, 1} × Z2

q such that the following holds:
For any x ∈ Zp, with |x| < p/6, and any z0, z1 with

z0 + z1 = x mod p,

it holds

x =
{
v0 + v1 mod q if flag0 = 0 ∨ flag1 = 0 ,
v0 + v′1 mod q if flag0 = flag1 = 1 ,

where (flag0, v0)← Lift0(z0) and (flag1, v1, v
′
1)← Lift1(z1).

Further, for z0, z1 chosen at random it holds flag0 = flag1 = 0 with probability at least 1− (4 · |x|)/p.

Our HSS. We show that building on the core lemma, we obtain an HSS with one-sided error correction.
More precisely, P0 will follow a fixed computation path (remembering the wires where flag0 = 1). Party
P1 on the other hand, continues the computation for both z1 and z′1 whenever flag1 = 1 for some wire.
In the end, the parties can reconstruct the value by choosing the computation path that resorts to
the alternative computation for P1 whenever flag0 = 1 and flag1 = 1 for some wire. Note that this
potentially results in exponential computation time for P1. We resolve this by choosing the parameters
depending on the number of multiplications to be performed, such that the overall number of expected
errors is 1 (or less). This means that on expectation P1 has to perform the computation twice (from
some point in the program on) and finally obtains two output shares. We want to stress that the output
shares (corresponding to plaintext values) are typically several orders of magnitude smaller than the
input shares (corresponding to ciphertext values). The increase in output values is therefore insignificant
compared to the savings in input shares.
For instantiating our HSS, we present a trade-off between ciphertext size (equaling the input share
size) and expected number of output shares. More precisely, instantiating the underlying public-key
encryption scheme PKE with the Ring-LWE based encryption scheme of Lyubashevsky, Peikert and
Regev [LPR13] over the ring R = Z[X]/(XN + 1), we obtain the following.

Lemma 3 (Corollary of Lemma 11). Let γ > 1. Let P be a branching program with multiplicative
size |P | (i.e., number of load and multiplication operations) and magnitude bound Bmax (i.e., upper bound
on all intermediary computation values). Then, setting p ≥ 8·Bmax ·N ·|P |/ ln γ and q ≥ 8·p·N ·|P |/ ln γ
in our HSS construction party P1 obtains at most γ output shares on expectation.

Setting γ = 1 + λ−ω(logλ) (and thus obtaining 1/ ln γ ≈ λω(logλ)) we can recover the negligible error
probability at the cost of superpolynomial ciphertext sizes of BKS.

HSS with perfect correctness. As a corollary of our techniques, we can obtain an HSS for RMS
programs that satisfies perfect correctness, since the parties can always detect and correct the errors.
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Concrete efficiency. In Tables 1 and 2, we give concrete parameter sizes in comparison with the scheme
of BKS, depending on the program size |P |. Note that the parameters of the BKS HSS scheme also
have to grow with the program size of the underlying program |P | to ensure a fixed error probability,
similarly to our scheme. Even without taking this into account (i.e., considering an error probability of
2−40 after one operation rather than |P |), it can be seen that our scheme can achieve a factor 4 shorter
ciphertexts.

HSS with expected constant-time evaluation. The focus of our paper are applications where there
is no privacy requirement for reconstruction, and thus expected constant-time evaluation can be dealt
with by cutting off the computation after a fixed certain number of operations. We note though that the
expected running time of the evaluation algorithms imposes challenges in applications such as secure
two-party computation, where party P0 can potentially derive information about the input from the
response time of P1. We leave dealing with this issue as an interesting open question.

Share reconstruction with privacy. We note that (apart from the above described problem concerning
run-time leakage) the problem of share reconstruction with privacy can be viewed as (one-server) private
information retrieval by keywords [CGN97] satisfying a strong notion of database privacy, where the
client (here party P0) is not allowed to learn anything about the number and content of the database
held by the server (here party P1), except for the queried entry. This can be viewed as a special
case of labelled private-set intersection [CHLR18, CMdG+21] and can be instantiated by relying on
somewhat homomorphic encryption. (Note here that the database for share reconstruction is very small
on expectation, and thus even using expensive ciphertext multiplication for the final reconstruction
would in typical applications not have a significant impact on the overall run time.)

Impossibility of fully local share conversion. To complement our result, we show that no direct
local share conversion (i.e., not resorting to an alternative conversion procedure) can achieve negligible
error, showing that the BKS HSS scheme inherently requires either superpolynomial ciphertext or some
postprocessing on the outputs.

Limitation to 2-party HSS. As for BKS, our techniques are inherently limited to the two-party case,
since we use some “symmetry” properties between the two shares. More precisely, we rely on the fact
that if t0 + t1 = q

p
· x + e, then the distance of t0 and t1 to the next (potentially different) multiple

of q
p
differs only by |e|. This is no longer true for three or more parties, where local rounding results

in a constant error probability (independent of p and q). Going beyond the two-party case therefore
inherently requires new techniques.

Beyond HSS. A corollary of our core lemma is that the secure reconstruction of x mod p given
t0 + t1 = q

p
· x+ e can be performed using a single string-OT, where party P0 acts as the sender with

input-bit flag0 and P1 acts as the receiver inputting (z1, z1) if flag1 = 0 and (z1, z
′
1) else. This might have

applications to encryption with 2-party distributed decryption, as used, e.g., in lattice-based electronic
voting schemes.

HSS rounding vs. learning with rounding (LWR). The rounding function which underlies [BKS19]
and this paper is essentially the same as the rounding function used for LWR [BPR12]. While [BPR12]
uses non-distributed rounding to reduce the hardness of LWR to LWE (essentially building on the
fact that the LWE error is “rounded away” with high probability), the line of work on constructing
HSS via rounding needs a stronger property on distributed rounding towards achieving correctness.
In particular, the techniques to reduce the modulus in the reduction from LWR to LWE from super-
polynomial to polynomial [AKPW13, BGM+16] do not appear to help in reducing the modulus for
LWE-based HSS constructions.

1.2 Technical Overview

In the following, we give an overview of the idea behind our core lemma and our HSS construction. For
the purpose of the technical overview, we assume R = Z, n ∈ N, and p = p(λ), q = q(λ) ∈ N such that
p|q. By writing p� q, we denote that q/p ∈ λω(1).
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Restricted Multiplication Straight-Line Programs (RMS). Recall that for RMS programs there is a
distinction between input values (inputs to the program) andmemory values (intermediary computation
values) and the following operations are supported:
– Loading an input value into memory;
– Adding two memory values;
– Multiplying an input value with a memory value;
– Outputting a memory value.

The HSS scheme of [BKS19]. Our starting point is the HSS scheme of [BKS19]. The basis of
their construction is an encryption scheme with nearly linear decryption. More precisely, let PKE =
(Gen,Enc,Dec) be a public-key encryption scheme over message space Zp, such that the secret key and
ciphertext space is Zdq . Recall that PKE satisfies nearly linear decryption, if for all secret keys s, all
messages m ∈ Zp, and and all encryptions c of m, it holds

〈s, c〉 ≈ q

p
·m mod q.

Further, BKS requires that s has only entries in {−1, 0, 1} (or otherwise small bounded values). As
observed in [BKS19], these requirements are indeed satisfied by (variants of) many lattice-based en-
cryption schemes [Reg05, ACPS09, LPR10, BPR12, LS15].
Now, if Bmax ∈ N with Bmax � p � q/Bmax, then an HSS for RMS programs with magnitude bound
Bmax can be obtained as follows.
Key generation. The HSS key generation generates a key pair according to the key generation algo-

rithm PKE.Enc and outputs secret key shares ek0 := s0 to P0 and ek1 := s1 to P1, s.t., s0 + s1 = s
for the secret key s ∈ {0, 1}d.

Input and memory values. Values are stored as follows.
– Input values: Input values |x| ≤ B are encrypted as {Enc(x · si)}i∈[d], where si is the i-th

component of s. (Note that by the techniques of BKS this is possible given knowledge only of
the public key of the underlying encryption scheme. We will give more details on this in the
main body of the paper.)

– Memory values: Memory values |y| ≤ B are secret shared as t0, t1, such that t0 + t1 = y · s
mod q.

Note that adding two memory values is straightforward by the linearity of additive secret sharing.
Further, assuming that the first component of the secret key s is always one (which is straightforward
to achieve), outputting a memory value mod q can be done by simply outputting the first entry of the
corresponding share. Finally, loading an input value is equivalent to multiplying an input value by 1.
We therefore restrict to describing the restricted multiplication in the following.
To perform a multiplication of an input value x encrypted as {ci}i∈[d] with a memory value y shared
as (t0, t1), the idea is for the parties to locally compute tpre

b as tpre
b,i := 〈ci, tb〉. By the property of nearly

linear decryption, this yields:

tpre
0,i + tpre

1,i = 〈ci, y · s〉 = y · 〈ci, s〉 ≈
q

p
· x · y · si mod q,

and thus
tpre

0 + tpre
1 ≈

q

p
· x · y · s mod q.

The challenging part is to locally convert the shares tpre
b into memory values, i.e., tout

0 + tout
1 = x · y · s

mod q. To that end, BKS [BKS19] introduce the rounding and lifting technique, which allow local share
conversion. In the following, we will focus on the rounding technique, since the lifting technique (to lift
shares modulo p to shares modulo q) can be adapted similarly.

Lemma 4 (Rounding [BKS [BKS19]]). Let p, q ∈ N such that p|q. Let x ∈ Zp and let e ∈ Z with
|e| � q/p. Let t0, t1 ∈ Zq be sampled uniformly at random subject to

t0 + t1 = q

p
· x+ e mod q.

Then there exists an efficient deterministic procedure Round such that

Round(t0) + Round(t1) = x mod p

except with negligible probability.
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P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundRound

RoundRound

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundRound

RoundRound

Fig. 1: Depiction of the local rounding procedure. If both shares are outside the area highlighted
in red, then no rounding error occurs.

P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundDownRoundDown

RoundDownRoundDown

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

RoundUpRoundUp

RoundUpRoundUp

Fig. 2: Depiction of the alternative local rounding procedure. If at least one of the shares is
inside the area highlighted in red, then no rounding error occurs.

Towards HSS from polynomial-modulus LWE. A straightforward approach towards HSS with poly-
nomial modulus is to choose p, q of polynomial-size and handle the resulting non-negligible error with the
generic error correction techniques of [BGI16a] introduced towards HSS from decisional Diffie-Hellman
(where a non-negligible error is inherent [DKK18]). These generic error correcting techniques come with
a high concrete overhead though: If the error probability is a constant, then ω(log λ)-repetitions are
necessary to achieve negligible error-probability via a majority vote. Thus, both the evaluation time
and the size of the output shares are increased by a factor of ω(log λ).

This work: HSS from polynomial-modulus LWE with fine-grained error correction. In this work,
we show that in the case of LWE – and unlike decisional Diffie-Hellman – it is actually possible to
detect (potential) errors, and therefore only correct if an error really occurs (or is very likely to occur).
In order to outline our techniques, in the following we take a closer look at the rounding procedure
from above.
To simplify presentation, for the rounding technique we assume p = 2 and 4|q (to ensure q

2 and q
4 are

integers). We give a depiction of the rounding procedure in Figure 1, where Round : Zq → Z2 is defined
as

Round(y) :=
⌊

2
q
· y
⌉

mod 2.

6



P0 P1

q
4 ± |e|

0→ 0

− q4 ± |e|

q
2 → 1

Round(Down)Round

RoundRound(Down)

q
4 ± 2|e|

0→ 0

− q4 ± 2|e|

q
2 → 1

RoundRound

RoundRound

q
4 ± 2|e|

0→ 0

− q4 ± 2|e|

q
2 → 1

Round, flag = 0Round, flag = 0

Round, flag = 0Round, flag = 0

RoundUp, flag = 1

RoundUp, flag = 1

Fig. 3: Depiction of the asymmetric local rounding procedure, where party P1 is fully in charge
of the error correction.

Now, assume to be given shares t0, t1 chosen at random conditioned on

t0 + t1 = q

2 · x+ e,

where x ∈ {0, 1} and e is some error. Then, as observed in BKS [BKS19], if at least one of the shares
t0, t1 is outside the red area

[
− q4 ± |e|

]
∪
[
q
4 ± |e|

]
,4 then no rounding error occurs, i.e.,⌊

2
q
· t0
⌉

+
⌊

2
q
· t1
⌉

= x mod 2.

This crucially relies on the fact that for the shares it holds that t0 + t1 = e mod q or t0 + t1 = q
2 + e

mod q. Now, assume t0 is outside the red area and Round(t0) = 0 (the other cases are similar). Then, it
must hold that t0 has distance < q

4 − |e| from 0. Thus, if t0 + t1 = e, it must hold that t1 has distance
< q

4 from 0, and thus Round(t1) = 0 as required. On the other hand, if t0 + t1 = q
2 + e mod q, then t1

must have distance < q
4 from q

2 , and thus Round(t1) = 1 as required.
If |e| � q

2 , then the probability of a random element y $← Zq lying in the red area is negligible, and
thus by the above considerations no rounding error occurs except with negligible probability.
Towards correcting the error, we observe that – on the other hand – if at least one of the shares t0, t1 is
inside one of the bad areas, then following an alternative procedure (depicted in Figure 2) no rounding
error occurs. The alternative rounding procedures RoundDown,RoundUp are defined as

RoundDown(x) :=
⌊

2
q
· x
⌋

mod 2, RoundUp(x) :=
⌈

2
q
· x
⌉

mod 2.

4 Here, we consider Zq to be represented as integers in the interval
(
− q2 ,

q
2

]
. For y ∈

{
− q4 ,

q
4

}
, by [y ± |e|] we denote

the interval containing all z ∈ Zq having at most distance |e| from y (considered as integer).
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In other words, party P0 rounds all negative numbers
(
− q2 ,−1

]
to −1 = 1 mod 2, and all positive

number
[
1, q2
]
to 0, and P1 rounds all negative numbers

(
− q2 ,−1

]
to 0, and all positive numbers

[
1, q2
]

to 1 (and 0 is always rounded to 0).
The idea here is that if at least one of the shares t0, t1 is inside the red area, then the other share is
also |e|-close to the red area, and therefore one party rounding up and the other party rounding down
always yields the correct result (as long as |e| < q

4 ). More precisely, assume that t0 is in the red area
and Round′(0, t0) = 0, i.e., t0 ∈

[
q
4 ± |e|

]
(the other cases are similar). Now, if t0 + t1 = e mod q, then

t1 ∈
[
− q4 ± 2 · |e|

]
, and thus Round′(1, t1) = 0. If t0 + t1 = q

2 + e mod q, on the other hand, it holds
t1 ∈

[
q
4 ± |e|

]
and thus Round′(1, t1) = 1 as required.

Given these two observations, we obtain our first core lemma (Lemma 1). We present the corresponding
rounding procedures in Figure 3. Here, P0 always follows a fixed rounding procedure, where P0 uses
the normal rounding procedure outside the red area, and the rounding procedure RoundDown inside
the red area. If its share is within the red area, it sets flag = 1 for the corresponding wire, and flag = 0
otherwise. If the share of P1 is outside the (now larger) red area, it follows the standard rounding
procedure, and sets flag = 0. If the share of P1 is inside the larger red area, it follows both the standard
rounding procedure (depicted by the blue arrows) and the RoundUp rounding procedure (depicted by
the dashed arrows) and sets the flags to 0 and 1, respectively. For reconstruction, the parties resort to
the alternative (“dashed”) computation path whenever both parties set flag = 1 on the corresponding
wire.
Together with our new lifting lemma, this yields our HSS scheme. A crucial part of our construction is
carefully taking account of the gates with flag = 1, which we explain in the main body.

2 Preliminaries

In this section we define the HSS primitive as well as the computational model for programs supported
by our construction. We begin by introducing some notation. For n ∈ N, [n] denotes the set {1, . . . , n}.
We denote by λ the security parameter.
We will work with the ringR = Z[X]/(XN+1), where N ≤ poly(λ) is a power of 2. The infinity norm on
R is defined as ‖x‖∞ = maxi∈[n] |xi| for x ∈ R with coefficients x1, . . . , xn. For q ∈ N, let Rq = R/qR,
where we consider elements of Rq to have all their coefficients in the interval (−q/2, . . . , q/2].

2.1 Homomorphic Secret Sharing

We consider homomorphic secret sharing with a general decoding algorithm for the reconstruction of
shares, as defined by Boyle et al. [BGI+18], in the public-key setting. We note that HSS is commonly
defined with the stronger requirement of additive reconstruction, which enjoys several useful properties.
By considering the more general definition, our scheme is able to forego some of those properties
for efficiency. Moreover, we show that the decoding functionality can be easily and securely realized,
depending on the application setting.

Definition 1 (Homomorphic Secret Sharing). A 2-party public-key homomorphic secret sharing
(HSS) scheme for a class of programs P consists of algorithms (Gen,Enc,Eval,Dec) with the following
syntax:
– Gen(1λ) : On input a security parameter 1λ, the key generation algorithm outputs a public key pk

and a pair of evaluation keys (ek0, ek1).
– Enc(pk, x) : On input the public key pk and an input value x, the encryption algorithm outputs a

ciphertext c.
– Eval(σ, ekσ, (c1, . . . , cn), P, β) : On input a party index σ ∈ {0, 1}, evaluation key ekσ, a vector of
n ciphertexts, a program P ∈ P with n input values, and an output modulus β, the homomorphic
evaluation algorithm outputs a share yσ.

– Dec(y0, y1, β) : On input shares y0, y1 and an output modulus β, the decoding algorithm outputs a
value y.
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The algorithms (Gen,Enc,Eval,Dec) should satisfy the following correctness and security requirements:

Perfect correctness. For all λ ∈ N, inputs x1, . . . , xn, program P ∈ P, and integer β ≥ 2, we have

Dec(y0, y1, β) = P (x1, . . . , xn),

where (pk, ek0, ek1)← Gen(1λ), ci ← Enc(pk, xi) for i ∈ [n] and yσ ← Eval(σ, ekσ, (c1, . . . , cn), P, β) for
σ ∈ {0, 1}.

Security. For all λ ∈ N and for all PPT adversaries A,

Pr

A(state, pk, ekσ, c) = b

∣∣∣∣∣∣∣∣∣
(σ, x0, x1, state)← A(1λ)
b← {0, 1}

(pk, ek0, ek1)← Gen(1λ)
c← Enc(pk, xb)

− 1
2 ≤ negl(λ).

Moreover, Gen,Enc,Dec are polynomial-time algorithms and Eval is a deterministic algorithm with
running time TEval such that, for any program P ∈ P with inputs x1, . . . , xn, index σ ∈ {0, 1} and
modulus β,

E[TEval(σ, ekσ, (c1, . . . , cn), P, β)] ≤ poly(λ),
where the expectation is taken over the randomness of (pk, ek0, ek1) ← Gen(1λ) and ci ← Enc(pk, xi)
for i ∈ [n].

Remark 1. Our definition encompasses perfect correctness, while other works on HSS (e.g. [BGI16a,
BKS19, OSY21]) require only a form of non-adaptive correctness, where evaluation and reconstruction
succeed with high probability when the inputs are fixed before sampling the key. As a trade-off, our
evaluation algorithm is not polynomial-time, but rather satisfies a non-adaptive definition of expected
polynomial time. For both approaches the “non-adaptive” condition is an issue in certain applica-
tions, such as secure computation, but not in scenarios where ciphertexts are assumed to be honestly
generated, such as in private database queries.

2.2 Restricted Multiplication Straight-line Programs

Our HSS scheme supports homomorphic evaluation of the class of Restricted Multiplication Straight-
line (RMS) programs. These are a restricted form of arithmetic circuits in which multiplication of
intermediate values is not possible; only multiplication of an input value by an intermediate value (or
memory value) is allowed.

Definition 2 (RMS programs).
An RMS program over the ring R consists of a magnitude bound Bmax and a sequence of instructions of
the four types below, each indicating its ingoing and outgoing wires and ordered by a unique identifier
id ∈ N.
– Load input into memory: instruction (load, id, x, w) sets input x as a memory value in wire w

(ŷw ← x̂).
– Add values in memory: instruction (add, id, u, v, w) adds the values in wires u and v (ŷw ← ŷu+ŷv).

5

– Multiply input by memory value: instruction (mult, id, x, v, w) multiplies the input x and the memory
value in wire v (ŷw ← x̂ · ŷv).

– Output from memory: instruction (out, id, w) outputs the value in wire w as an element of Rβ.
If at any step of execution the magnitude of a memory value exceeds the bound Bmax (i.e. ‖ŷw‖∞ > Bmax),
the output of the program on the corresponding input is undefined. Otherwise the output is the sequence
of values given by the out instruction.
We define the multiplicative size of an RMS program P as its number of load and mult instructions,
and we denote it by |P |.

5 We assume that for every instruction (add, id, u, v, w) such that u (resp. v) is the output wire of a previous instruction
with id idu (resp. idv) we have idu < idv. This ensures that shares corresponding to u are computed before shares
corresponding to v in our evaluation algorithm.
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Note the distinction between the magnitude bound Bmax and the output modulus β. For example, in
an RMS program computing a Boolean function f : {0, 1}k → {0, 1}, the input values 0 and 1 would
be interpreted as integers, Bmax would be a bound on the greatest integer appearing as the result of an
operation, and the output modulus would be β = 2. Our HSS scheme will require β ≤ Bmax < p < q,
where p and q are, respectively, the plaintext modulus and ciphertext modulus of the underlying
encryption scheme.

Remark 2. The definition of RMS program in [BKS19] includes an additional operation type which
allows input values to be added. The class of functions computable with this additional operation is
the same, but it allows some functions to be computed using fewer multiplications, which may result
in a more efficient homomorphic evaluation. We omit this operation from our definition, but we note
that our HSS also supports it, in identical fashion to the BKS scheme. In both constructions this
feature requires adjusting the bound on the ciphertext noise according to the maximum number of
input additions, which influences the parameters of the scheme.

3 The Homomorphic Secret Sharing Scheme

In this section, we describe our homomorphic secret sharing scheme. Our HSS is an adaptation of
the BKS scheme [BKS19]. It supports homomorphic evaluations of the same class of functions: Re-
stricted Multiplication Straight-Line (RMS) programs. Informally, we adapt the original BKS scheme
by incorporating a new error reconciliation procedure. The protocol parameters of the BKS scheme
are chosen such that correctness errors only occur with negligible probability. By contrast, our recon-
ciliation procedure allows for smaller protocol parameters, since potential errors occurring during the
homomorphic evaluations are corrected by the error reconciliation procedure. As a result the internal
protocol parameters can be chosen to be polynomial in the security parameter, whereas BKS scheme
requires superpolynomial protocol parameters, thereby reducing the communication complexity.

3.1 The Protocol

Both the BKS scheme and our adaptation crucially rely on a public-key encryption scheme
PKE = (PKE.Gen,PKE.Enc,PKE.Dec) with nearly linear decryption, i.e., for all key-pairs (pk, s) ←
PKE.Gen(1λ), messages m ∈ Zp and ciphertexts c← PKE.Encpk(m), it holds that

〈c, s〉 = q

p
·m+ e mod q ,

for some “small” noise term |e| ≤ Berr.
Since the PKE has nearly linear decryption, the decryption procedure simply rounds the inner-product
〈c, s〉 of the ciphertext and the secret key, multiplied by 0 < p/q < 1, to the nearest integer, i.e.,

PKE.Dec(c, s) =
⌈
p

q
· 〈c, s〉

⌋
mod p .

We assume that the first coefficient of the secret key s ∈ Zd equals 1. This property is crucially required
by the HSS construction, and it is satisfied by most PKE schemes with nearly linear decryption.
Further, for simplicity, we assume PKE to be defined over Z. For this reason, our homomorphic secret
sharing scheme will also be defined over Z. However, all techniques and results have a straightforward
generalization to rings of the form R = Z[X]/(XN + 1) for N a power of 2, namely, the rounding and
lifting procedures are applied to each of the N coordinates of elements of R.
As shown in [BKS19], if PKE has nearly linear decryption and pseudorandom ciphertexts, there exists a
Key Dependent Message (KDM) oracle PKE.OKDM that, without knowledge of the secret key, outputs
encryptions of scalar multiples of the secret key ([BKS19], Lemma 3). More precisely, for all j ∈
{1, . . . , d} and x ∈ Z,

cj ← PKE.OKDM(pk, x, j) s.t. 〈cj , s〉 = x · sj + e mod q ,

where s = (s1, . . . , sd) and |e| ≤ Berr. By linearity, the KDM oracle allows encryptions of arbitrary
linear combinations of the secret key to be generated.

10



Fig. 4: Homomorphic Secret Sharing - Key Generation

HSS.Gen(1λ): Generate (pk, s)← PKE.Gen(1λ) and sample a PRF key K ← {0, 1}λ uniformly at
random. Sample s0 ← Zdq and define

s1 := s− s0 mod q.

Output (pk, ek0, ek1), where ek0 := (K, s0), ek1 := (K, s1) ∈ {0, 1}λ × Zdq .

Fig. 5: Homomorphic Secret Sharing - Encryption

HSS.Enc(pk, x): Compute cj ← PKE.OKDM(pk, x, j) for j = 1, . . . , d. Output the ciphertext
C := (c1, . . . , cd).

Let us now continue to describe our 2-party homomorphic secret sharing scheme HSS. Besides a PKE
scheme with the above properties, the HSS construction also requires a keyed pseudorandom function
PRF. The key-generation of our HSS scheme, described in Figure 4, is identical to that of the BKS
scheme. The HSS public key is simply a public key for the PKE scheme and each evaluation key contains
an additive secret share sσ of the secret key together with a PRF key K.
The second functionality of the HSS is encryption. It allows parties to encrypt the inputs to the RMS
program that is to be evaluated. However, an HSS encryption of an input value x ∈ Z is different from
a standard PKE encryption of x. Instead, it is an encryption of the key-dependent vector x · s ∈ Zdq ,
where s ∈ Zdq is the secret key corresponding to the public key pk generated in the key generation.
Hence, the HSS encryption of x is a vector of d PKE encryptions, each to a different key-dependent
message x · si for i ∈ {1, . . . , d}. Note that, since s = (1, s2, . . . , sd) ∈ Zdq , the first component of an
HSS encryption is a standard PKE encryption of x · 1 = x. The HSS encryption functionality, again
identical to the one used by the BKS scheme, is described in Figure 5. Intuitively, security of our HSS
scheme follows from the security of OKDM and from each share sσ individually hiding s.
The reason for using this “key-dependent” encryption is that, by deploying a distributed decryption,
the two parties can take encrypted input values and obtain additive secret shares of the vector x ·s. The
BKS scheme shows how to perform certain operations on secret shares of key-dependent messages of
this form. More precisely, it shows that the following operations can be performed locally (i.e., without
requiring interaction between the two parties):
– Addition: given a secret share of x · s and a secret share y · s, obtain a secret share of (x+ y) · s.
– Multiplication by Input Value: given an HSS encryption of x and a secret share of y · s, obtain

a secret share of xy · s.
The HSS scheme thus distinguishes between (encrypted) input values and intermediate computation
values, also referred to as memory values. The above functionalities immediately imply an HSS for
RMS programs.
Our scheme deviates from BKS in how it performs the above HSS operations. In the BKS scheme these
operations involve a distributed decryption, which in turn involves the rounding of a noisy value followed
by a “lifting” of shares mod p to shares mod q. Both of these steps may fail, causing a correctness error,
and the BKS scheme chooses its parameters such that such errors only occur with negligible probability.
In our approach, we employ procedures Round and Lift (defined in Section 3.2) which indicate whether
an error may have occurred and correct it if necessary.
In more detail, for party P0, the output of Round is of the form (flag0, z0) ∈ {0, 1} × Zp. If flag0 = 0
(no error can occur), then z0 is obtained by rounding as usual, while if flag0 = 1 (an error may occur),
then z0 is the result of an alternative “error-correcting” rounding.
Before describing the procedure for party P1, note that, since the parties cannot communicate, there
is no guarantee that their flags will coincide. Moreover, the error-correcting requires the two parties
to be in sync, i.e., correctness is not guaranteed if one party follows the usual rounding and the other
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Fig. 6: Homomorphic Secret Sharing - Evaluation for party P0

HSS.Eval(0, ek0, (C1, . . . ,Cn), P, β): Parse ek0 = (K, s0) and P as a sequence of RMS instructions.
Initialize pos0 as the empty binary string. Proceed as follows for each instruction in P .

– Load input into memory: On instruction (load, id,C, w), compute

(tw0 , pos0)← Mult0(K, id,C, s0, pos0) ,

where Mult0 is the algorithm described in Figure 9.
– Add values in memory: On instruction (add, id, u, v, w), set

tw0 := tu0 + tv0 mod q .

– Multiply input by memory value: On instruction (mult, id,C, v, w), compute

(tw0 , pos0)← Mult0(K, id,C, tv0 , pos0) ,

where Mult0 is the algorithm described in Figure 9.
– Output from memory: On instruction (out, id, w), parse tw0 as tw0 = (x0, t̂0) for some x0 ∈ Zq, t̂0 ∈

Zd−1
q and output

y0 := (H(pos0), x0 mod β),
where H(a1, . . . , ak) = {i ∈ [k] | ai = 1}.

the alternative rounding. Therefore, it may seem necessary that each party computes both the usual
and alternative values when their flag is positive, in order to use one of them depending on the flag of
the other party. However, we are able to define Round in a way such that whenever flag0 = 1 we have
flag1 = 1 as well. This allows us to define Round for P0 as described above, always computing a single
value z0, and have only P1 compute two different values when flag1 = 1.
For P1, Round either outputs flag1 = 0 and z1, or flag1 = 1 and (z1, z

′
1), where z1 and z′1 denote the

outputs of the usual and alternative rounding, respectively. The following table displays the 3 different
scenarios that may occur, and whether the parties should use corrected values or not.

Flag of P0
0 1

Flag of P1
0 No Correction ———–
1 No Correction Error Correction

Similarly, errors can occur and be mitigated in the so-called lifting step, which always follows rounding.
The homomorphic evaluation procedure for party P0 is presented in Figure 6. For every wire w in the
RMS program P we compute a vector tw0 ∈ Zdq which is P0’s additive share of xws, where xw is the value
of P at wire w. Throughout this algorithm we keep track of the variable pos0 ∈ {0, 1}∗ which denotes
the sequence of flags of P0. After each “multiplicative” operation (i.e., load or mult instruction), the flags
generated during that operation are appended to the string pos0 ∈ {0, 1}∗. Adding a pseudorandom
value before each rounding step guarantees that the shares are always close to uniform, and therefore
the occurrences of positive flags are independent from one instruction to another. Finally, the output of
Eval consists of a compression H(pos0) of the flag sequence of P0 and the first component of tw0 , which
is an additive share of P (x1, . . . , xn). The compression function H simply outputs the list of indices
with a flag set to 1 (which will be constant in number). The use of H is crucial in obtaining succinct
output shares, as the size of pos0 is proportional to the size |P | of the program.
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Fig. 7: Homomorphic Secret Sharing - Evaluation for party P1

HSS.Eval(1, ek1, (C1, . . . ,Cn), P, β): Parse ek1 = (K, s1) and P as a sequence of RMS instructions.
Initialize L1 as an empty list. Proceed as follows for each instruction in P .

– Load input into memory: On instruction (load, id,C, w), compute

(Tw1 , L1)← Mult1(K, id,C, {(ε, s1)}, L1),

where Mult1 is the algorithm described in Figure 10 and ε denotes the empty binary string.
– Add values in memory: On instruction (add, id, u, v, w), set

Tw1 :=
{

(pos1, tu1 + tv1 mod q)
∣∣ pos1 ∈ L1, (posu1 , t

u
1 ) ∈ Tu1 ,

(posv1 , t
v
1) ∈ T v1 , posu1 ⊆ posv1 ⊆ pos1

}
.

– Multiply input by memory value: On instruction (mult, id,C, v, w), compute

(Tw1 , L1)← Mult1(K, id,C, T v1 , L1),

where Mult1 is the algorithm described in Figure 10.
– Output from memory: On instruction (out, id, w), output the list

y1 :=
{

(H(pos), x1 mod β)
∣∣ (pos, t1) ∈ Tw1 , t1 = (x1, t̂1), x1 ∈ Zq, t̂1 ∈ Zd−1

q

}
,

where H(a1, . . . , ak) = {i ∈ [k] | ai = 1}.

Fig. 8: Homomorphic Secret Sharing - Decoding

HSS.Dec(y0, y1, β): Parse the shares as y0 = (u0, x0) and y1 = {(u(1)
1 , x

(1)
1 ), . . . , (u(k)

1 , x
(k)
1 )}.

Output x0 + x
(i)
1 mod β, where i is the unique index such that u0 = u

(i)
1 .

In Figure 7 we present the homomorphic evaluation procedure for party P1, which is similar to that
of P0 but has an added degree of complexity, since P1 generates two different possible values for its
additive share whenever it gets a positive flag, and must keep track of all possible combinations. The
global variable L1 in this algorithm is the list of binary strings which includes all possible sequences of
flags of P0 – recall that whenever P1 has flag1 = 0 it knows that flag0 = 0, but if flag1 = 1 then flag0
can be either 0 or 1. To each wire w in P we associate a list Tw1 of pairs of the form (pos1, tw1 ), where
tw1 is the additive share corresponding to the value of P at w and pos1 is the corresponding sequence
of flags. The output of the evaluation algorithm for P1 is a list of pairs of the same form as the output
for P0, one for each possible flag sequence.
Finally, in the decoding algorithm, depicted in Figure 8, we identify the additive shares x0, x1 which
correspond to the same sequence of flags and add them to obtain P (x1, . . . , xn).

Remark 3. We omit an optimization step consisting of checking if the two values associated with a
positive flag for P1 are the same, which provides a reduction of the flag probability by a factor of 2 in
both rounding and lifting.

Remark 4. Like the BKS scheme, our protocol can also be converted into a secret-key HSS version,
which is more efficient for those applications which do not require the public-key capabilities.
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Fig. 9: Algorithm Mult0, employed by party P0 on loading and multiplication instructions.

Input (K, id,C, t, pos)

Parse C = (c1, . . . , cd)
For each i ∈ [d] :

(flagi, zi)← Round(0, 〈t, ci〉+ PRF(K, (id, i)) mod q)
(flag′i, vi)← Lift(0, zi)

t′ ← (v1, . . . , vd)
pos′ ← pos||flag1||flag′1|| . . . ||flagd||flag′d

Output (t′, pos′)

3.2 Rounding and Lifting

Below we present our rounding procedure and analyze its properties. The corresponding step in the
BKS protocol consists of multiplying the share v ∈ Zq by p/q and rounding it to the nearest integer
to obtain a share in Zp. This introduces a correctness error with probability proportional to p/q (see
Lemma 7). Our approach solves this issue by flagging instances in which an error could occur if both
parties were to round their shares to the nearest integer and correcting it by having one party round
up and the other round down in those instances.
Recall that we consider the representation Zn = {−d(n − 1)/2e, . . . , b(n − 1)/2c} for any n ∈ N. We
first define the operations RoundDown, RoundUp and RoundNear, which map a value v from Zq to Zp
by scaling and then rounding it down, up, or to the nearest integer, respectively:

RoundDown(v) = b(p/q) · vc mod p,

RoundUp(v) = d(p/q) · ve mod p,

RoundNear(v) = d(p/q) · vc mod p.

The deterministic procedure Round, which takes as input a party identifier σ ∈ {0, 1} and a value
v ∈ Zq, is defined as follows:

Round(0, v) =
{

(1,RoundDown(v)), if v ∈ badBerr ,
(0,RoundNear(v)), otherwise,

Round(1, v) =
{

(1,RoundNear(v),RoundUp(v)), if v ∈ bad2Berr ,
(0,RoundNear(v),⊥), otherwise,

where badBerr =
{
v ∈ Zq

∣∣ |v mod (q/p)| ≥ q/(2p)−Berr
}
and bad2Berr is analogously defined.

Lemma 5 (Rounding correctness). Let p, q, Berr ∈ N be such that q is a multiple of p and Berr <
q/(4p). Then, for any v0, v1 ∈ Zq, m ∈ Zp and e ∈ Z such that |e| ≤ Berr and

v0 + v1 = (q/p) ·m+ e mod q,

the outputs (flag0, z0)← Round(0, v0), (flag1, z1, z
′
1)← Round(1, v1) satisfy the following:

(i) If flag0 = 0, then z0 + z1 = m mod p.
(ii) If flag0 = 1, then flag1 = 1 and z0 + z′1 = m mod p.

Proof. Let v0, v1,m, e be such that v0 + v1 = (q/p) ·m+ e mod q and |e| ≤ Berr, and let (flag0, z0)←
Round(0, v0), (flag1, z1, z

′
1)← Round(1, v1). To prove the first claim, assume that flag0 = 0. Then there

exist k, r ∈ Z such that v0 = (q/p) · k + r and |r| < q/(2p)−Berr. Therefore

v1 = (q/p) · (m− k) + e− r mod q
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Fig. 10: Algorithm Mult1, employed by party P1 on loading and multiplication instructions.

Input (K, id,C, T, L)

Parse C = (c1, . . . , cd), T = ((pos1, t1), . . . , (pos`, t`))
For each (i, j) ∈ [d]× [`] :

Vij ← ∅
(flagij , z0

ij , z
1
ij)← Round(1, 〈tj , ci〉 − PRF(K, (id, i)) mod q)

(flag0
ij , v

00
ij , v

01
ij )← Lift(1, z0

ij)
Vij ← Vij ∪ {(00, v00

ij )}
If flag0

ij = 1:
Vij ← Vij ∪ {(01, v01

ij )}
If flagij = 1:

(flag1
ij , v

10
ij , v

11
ij )← Lift(1, z1

ij)
Vij ← Vij ∪ {(10, v10

ij )}
If flag1

ij = 1:
Vij ← Vij ∪ {(11, v11

ij )}
T ′ ←

{(
pos||a1|| . . . ||ad, (v1, . . . , vd)

) ∣∣ j ∈ [`], pos ∈ L, posj ⊆ pos, (ai, vi) ∈ Vij
}

L′ ←
{

pos
∣∣ (pos, t) ∈ T ′

}
Output (T ′, L′)

and |e− r| ≤ |e|+ |r| < q/(2p). It follows that

z0 = d(p/q) · v0c = dk + (p/q) · r︸ ︷︷ ︸
∈(−1/2,1/2)

c = k mod p,

z1 = d(p/q) · v1c = dm− k + (p/q) · (e− r)︸ ︷︷ ︸
∈(−1/2,1/2)

c = m− k mod p,

which shows that z0 + z1 = m mod p.
We now prove the second claim. If flag0 = 1, there exist k, r ∈ Z such that v0 = (q/p) · k + r and
q/(2p) − Berr ≤ r ≤ q/(2p) + Berr. The other share is then v1 = (q/p) · (m − k) + e − r mod q, where
q/(2p)− 2Berr ≤ e− r ≤ q/(2p) + 2Berr, since |e| ≤ Berr. Therefore |v1 mod (q/p)| ≥ q/(2p)− 2Berr and
flag1 = 1. Moreover, observe that e < r and (p/q) · (r − e) < 1, since

r ≤ q/(2p) +Berr < q/p−Berr ≤ q/p+ e.

It follows that

z0 = b(p/q) · v0c = bk + (p/q) · r︸ ︷︷ ︸
∈[0,1)

c = k mod p,

z′1 = d(p/q) · v1e = dm− k + (p/q) · (e− r)︸ ︷︷ ︸
∈(−1,0]

e = m− k mod p,

and therefore z0 + z′1 = m mod p.

Lemma 6 (Rounding flag probability). Let p, q, Berr ∈ N be such that q is a multiple of p and
Berr < q/(4p). Let v0, v1 ∈ Zq be uniformly random subject to

v0 + v1 = (q/p) ·m+ e mod q,

where m ∈ Zp and |e| ≤ Berr are fixed. Let also (flag1, z1, z
′
1)← Round(1, v1). Then

Pr[flag1 = 1 and z1 6= z′1] = 2Berr · (p/q).
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Proof. Let u1 = v1 mod (q/p) and note that u1 is uniformly distributed in Zq/p. Recall that flag1 = 1
if and only if |u1| ≥ q/(2p)−2Berr. Moreover, RoundNear(v1) 6= RoundUp(v1) if and only if the fractional
part of (p/q) · v1 is in the interval (0, 1/2), which holds if and only if 0 < u1 < q/(2p). Define the set

S =
{
u ∈ Zq/p

∣∣ q/(2p)− 2Berr ≤ u < q/(2p)
}
.

If q/p = 2k + 1 for some k ∈ N, then S = {k − 2Berr + 1, . . . , k}, while if q/p = 2k then S =
{k − 2Berr, . . . , k − 1}. In both cases |S| = 2Berr. Therefore Pr[flag1 = 1 and z1 6= z′1] = Pr[u1 ∈ S] =
|S| · (p/q) = 2Berr · (p/q).

Lemma 7 (Rounding error probability). Let p, q, Berr ∈ N be such that q is a multiple of p and
Berr < q/(4p). Let v0, v1 ∈ Zq be random subject to

v0 + v1 = (q/p) ·m+ e mod q,

where m ∈ Zp and |e| ≤ Berr are fixed. Then

Pr[RoundNear(v0) + RoundNear(v1) 6= m mod p] ≥ (|e| − 1) · (p/q).

Proof. Define uσ = vσ mod (q/p), for σ = 0, 1, and assume first that e < 0. Observe that, if u0, u1 ∈
(0, q/(2p)), then a rounding error occurs: since e = u0 + u1 mod (q/p) and −(q/p) < e < 0, it must be
the case that e = u0 +u1−(q/p), and therefore RoundNear(v0)+RoundNear(v1) = m−1. If q/p = 2k+1
for some k ∈ N, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k + e+ 1, . . . , k}] = |e| · (p/q).

Alternatively, if q/p = 2k, then

Pr[u0, u1 ∈ (0, q/(2p))] = Pr[u0 ∈ {k + e+ 1, . . . , k − 1}] = (|e| − 1) · (p/q).

By a similar reasoning it can be seen that in the case e ≥ 0 a rounding error occurs with probability
at least |e| · (p/q), if q/p is odd, or (|e|+ 1) · (p/q), if q/p is even.

Now we present the lifting procedure, which always follows rounding. In the BKS protocol this step is
simply an inclusion: a share z ∈ Zq becomes z ∈ Zp. However, as shown in Lemma 10, a correctness
error occurs with probability proportional to 1/p. Again, our new procedure overcomes this issue
by predicting and correcting possible errors to guarantee that additive shares modulo p are always
converted into shares modulo q of the same secret value.
The deterministic procedure Lift, which takes as input a party identifier σ ∈ {0, 1} and a value z ∈ Zp,
is defined as follows:

Lift(0, z) =


(1, z), if z ∈ bad+

Bmax
,

(1, z + p), if z ∈ bad−Bmax
,

(0, z), otherwise,

Lift(1, z) =


(1, z, z − p), if z ∈ bad+

2Bmax
,

(1, z, z), if z ∈ bad−2Bmax
,

(0, z,⊥), otherwise,

where bad+
Bmax

= [p/2 − B, p/2), bad−Bmax
= [−p/2,−p/2 + B], and bad+

2Bmax
, bad−2Bmax

are analogously
defined.

Lemma 8 (Lifting correctness). Let p,Bmax ∈ N be such that Bmax < p/6. Then, for any z0, z1 ∈ Zp,
m ∈ Z such that |m| ≤ Bmax and

z0 + z1 = m mod p,

the outputs (flag0, v0)← Lift(0, z0), (flag1, v1, v
′
1)← Lift(1, z1) satisfy the following:

(i) If flag0 = 0, then v0 + v1 = m over Z.
(ii) If flag0 = 1, then flag1 = 1 and v0 + v′1 = m over Z.
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Proof. Let z0, z1,m be such that z0 + z1 = m mod p and |m| ≤ Bmax, and let (flag0, v0)← Lift(0, z0),
(flag1, v1, v

′
1)← Lift(1, z1). We first prove claim (i). Observe that v0 = z0 and v1 = z1. If flag0 = 0, then

|z0| < p/2− Bmax. Since |z1| ≤ p/2, we have |z0 + z1| < p− Bmax. It follows that z0 + z1 cannot differ
from m by a non-zero multiple of p, as |m| ≤ Bmax, and therefore z0 + z1 = m holds over the integers.
This proves the claim.
In order to prove claim (ii), first observe that, since z0 + z1 = m mod p, z1 is at most at distance Bmax
from z0 in Zp. Therefore if flag0 = 1 then flag1 = 1. The remainder of the proof is split into four cases,
according to the signs of z0 and z1. We begin with the case z0 ≥ 0, z1 ≥ 0. Since v0 = z0, v′1 = z1 − p,
our goal is to show that z0 +z1 = m+p. Suppose flag0 = 1 and let k ∈ Z be such that z0 +z1 = m+kp.
Then p/2−Bmax ≤ z0 ≤ p/2 and 0 ≤ z1 ≤ p/2, hence

m < p/2−Bmax ≤ z0 + z1 ≤ p < m+ 2p,

since |m| ≤ Bmax and Bmax < p/6. Therefore it must be the case that k = 1 and z0 + z1 = m + p over
Z. Analogously, in the case z0 < 0, z1 < 0 we have v0 = z0, v′1 = z1 + p (since flag1 = 1) and

m− 2p < −p ≤ z0 + z1 ≤ −p/2 + 2Bmax < m,

hence z0 + z1 = m− p and v0 + v′1 = m.
Now we consider the case z0 < 0, z1 ≥ 0. Since v0 = z0, v′1 = z1, our goal is to show that z0 + z1 = m.
Let k ∈ Z be such that z0 + z1 = m + kp and assume flag0 = 1. Then −p/2 ≤ z0 ≤ −p/2 + Bmax and
0 ≤ z1 ≤ p/2, hence

m− p < −p/2 ≤ z0 + z1 ≤ Bmax < m+ p,

since |m| ≤ Bmax and Bmax < p/6. We conclude that k = 0 and z0 + z1 = m over Z. The proof of the
case z0 ≥ 0, z1 < 0 is analogous.

Lemma 9 (Lifting flag probability). Let p,Bmax ∈ N be such that Bmax < p/6. Let z0, z1 ∈ Zp be
random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Let also (flag1, v1, v
′
1)← Lift(1, z1). Then

Pr[flag1 = 1 and v1 6= v′1] = 2Bmax/p.

Proof. Define S = {z ∈ Zp | p/2− 2Bmax ≤ z < p/2}. Clearly the event flag1 = 1 and v1 6= v′1 holds if
and only if z1 ∈ S and, similarly to the proof of Lemma 6, we have |S| = 2Bmax. Since z1 is uniformly
distributed in Zp, Pr[z ∈ S] = |S|/p = 2Bmax/p.

Lemma 10 (Lifting error probability). Let p,Bmax ∈ N be such that Bmax < p/6. Let z0, z1 ∈ Zp
be random subject to

z0 + z1 = m mod p,

where m ∈ Zp. Then
Pr[z0 + z1 6= m] ≥ (|m| − 1)/p.

Proof. Suppose first that m < 0. Then z0 + z1 6= m if and only if z0 + z1 = m + p. Observe that z0
is uniformly chosen and z1 is the only integer such that z1 ∈ [−p/2, p/2) and z1 = m − z0 mod p.
Therefore

Pr[z0 + z1 6= m] = Pr[m− z0 + p ∈ [−p/2, p/2) ]
= Pr[z0 ∈ (m+ p/2, p/2) ]
≥ (|m| − 1)/p,

since the interval (m+ p/2, p/2) has size |m| if p is odd or |m| − 1 if p is even. A similar argument can
be applied in the case m ≥ 0 to show that the probability of z0 + z1 6= m is bounded below by |m|/p,
if p is odd, or (|m|+ 1)/p, if p is even.

We can now prove our main result.

17



Theorem 1 (HSS correctness and security). Let PKE be a public-key encryption scheme with
plaintext space Rp and ciphertext space Rdq , satisfying the properties of nearly linear decryption (with
error bound Berr) and pseudorandom ciphertexts, such that Berr < q/(4p). Let also PRF be a pseudo-
random function taking values in Zq. Then the 2-party homomorphic secret sharing scheme described
in Figures 4 to 8 is perfectly correct and secure, as per Definition 1, and supports homomorphic eval-
uation of polynomial-sized RMS programs with magnitude bound Bmax and output modulus β such that
β ≤ Bmax < p/6.

Proof. Security follows immediately from the security of the BKS HSS [BKS19], as the algorithms
Gen and Enc are identical in the two schemes and the security definition is independent of the Eval
algorithm. Note that this is a consequence of KDM security and of the fact that the evaluation keys
individually hide the secret encryption key.
We will now show that our scheme satisfies perfect correctness. Let y0 = (H(pos0), z0) and y1 =
{(H(pos(1)

1 ), z(1)
1 ), . . . , (H(pos(k)

1 ), z(k)
1 )} be the evaluated shares corresponding to an RMS program P

on input x1, . . . , xn.
Observe that, according to the definition of the algorithms Mult0 and Mult1, there always exists i∗ ∈ [k]
such that pos(i∗)

1 = pos0. This follows from the fact that, at any rounding or lifting step with position
tag pos, party P1 always computes a value associated to pos||0 and, by part (ii) of Lemmas 5 and 8,
if P0 has a value associated to pos||1 then so does P1. Furthermore, the index i∗ is unique, since the
binary strings pos(j)

1 are all distinct. Since the compression function H is injective, the only index i
such that H(pos(i)

1 ) = H(pos0) is i∗.
We will show below that, during homomorphic evaluation of P , for all wires w we have

tw0 + tw1 = xws mod q (1)

whenever (pos1, tw1 ) ∈ Tw1 and posw1 = posw0 , where posw0 is the flag sequence pos0 of P0 at the time
wire w is evaluated, xw ∈ R denotes the value of P at w and s = (1, ŝ) ∈ R×Rd−1 is the PKE secret
key.
The final output will be Dec(y0, y1, β) = z0 + z

(i∗)
1 mod β, where (z0, t̂0) = tw0 , (z(i∗)

1 , t̂1) = tw1 ,
(pos(i∗)

1 , tw1 ) ∈ Tw1 for an output wire w and pos(i∗)
1 = pos0. If equation (1) holds, then by looking only

at the first component of each vector in the equation we see

z0 + z
(i∗)
1 = xw · 1 = P (x1, . . . , xn) mod q,

hence Dec(y0, y1, β) = P (x1, . . . , xn) with probability 1. 6

It remains only to check that equation (1) holds for every instruction in P of type load, add or mult.
– For instruction (load, id, (c1, . . . , cd), w), where ci ← PKE.OKDM(pk, y, i), by the nearly linear

decryption property we have

(tw0 )i + (tw1 )i = 〈s0, ci〉+ PRF(K, (id, i)) + 〈s1, cj〉 − PRF(K, (id, i))
= 〈s, ci〉 = (q/p) · y · si + ei mod q

for some |ei| ≤ Berr. 7 We can thus apply Lemma 5 followed by Lemma 8 to conclude that, for the
matching flags (i.e., posw1 = posw0 ), the corresponding shares tw0 , tw1 satisfy tw0 + tw1 = y s mod q.

– For instruction (add, id, u, v, w), assume equation (1) holds for (tu0 , tu1 ) and (tv0 , tv1), where posu1 ⊆
posv1 ⊆ posw1 and posτ0 = posτ1 for τ ∈ {u, v, w}. Then

tw0 + tw1 = tu0 + tv0 + tu1 + tv1 = xus + xvs = xws mod q.

– For instruction (mult, id, (c1, . . . , cd), v, w), assuming equation (1) holds for (tv0 , tv1) we have

(tw0 )i + (tw1 )i = 〈tv0 , ci〉+ PRF(K, (id, i)) + 〈tv1 , cj〉 − PRF(K, (id, i))
= xv〈s, ci〉 = (q/p)xv · y · si + ei mod q

and as in the load instruction we conclude that tw0 + tw1 = xv y s mod q.

6 We assume here that β divides q, so that shares mod q are also shares mod β. If we wish to avoid this assumption,
we can simply perform a lifting step to obtain shares over Z before reducing them mod β.

7 Here we again consider the caseR = Z for simplicity. ForR of dimension N , the equation applies to each coordinate
of y.
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3.3 Impossibility of Local Share Conversion

The next theorem shows that the local share conversion procedure that lies at the heart of lattice-based
HSS cannot achieve perfect correctness with additive reconstruction. Therefore one must either allow
correctness error (which can only be made negligible with a superpolynomial modulus) or relax the
requirement for reconstruction.

Theorem 2 (Correctness error of share conversion). Let m ∈ Zp and e ∈ D, where {0, 1,−1} ⊆
D ⊆ (−q/(2p), q/(2p)). Let also v0, v1 ∈ Zq be sampled uniformly subject to

v0 + v1 = (q/p) ·m+ e mod q.

Then, for any local share conversion functions g0, g1 : Zq → Zq, there exist m ∈ Zp and e ∈ D such
that

Pr[g0(v0) + g1(v1) 6= m mod q] ≥ p/(3q).

Proof. We show that in each interval Ik ⊆ Zq of the form Ik := [k · q/p, (k + 1) · q/p) there exists
v0 ∈ Ik such that an error g0(v0) + g1(v1) 6= m occurs for at least one of the pairs (m, e) := (0, 0),
(m, e) := (1,−1) or (m, e) := (0, 1). Since there are p disjoint intervals Ik, one of these three choices
of (m, e) must have at least p/3 values v0 in the above conditions and the result follows from the fact
that v0 is uniform.
To prove the above claim, consider v0 := k · q/p and v1 := −v0. If g0(v0) + g1(v1) 6= 0 we have found
an error for (m, e) := (0, 0), as v0 + v1 = 0 and v0 ∈ Ik. Meanwhile, v′0 := (k + 1) · q/p − 1 satisfies
v′0 + v1 = q/p · 1− 1, hence if g0(v′0) + g1(v1) 6= 1 we have found an error for (m, e) := (1,−1). Suppose
now that g0(v0) + g1(v1) = 0 and g0(v′0) + g1(v1) = 1. Then g0(v0) 6= g0(v′0) and there must exist
ṽ0 ∈ [v0, v

′
0) such that g0(ṽ0) 6= g0(ṽ0 + 1). Note that ṽ0, ṽ0 + 1 ∈ Ik. Then, unless an error occurs with

ṽ0 and (m, e) := (0, 0) or ṽ0 + 1 and (m, e) := (0, 1), by taking ṽ1 := −ṽ0 we obtain

g0(ṽ0) + g1(ṽ1) = g0(ṽ0 + 1) + g1(ṽ1) = 0,

since ṽ0 + ṽ1 = 0 and (ṽ0 + 1) + ṽ1 = 1. This contradicts the assumption g0(ṽ0) 6= g0(ṽ0 + 1).

4 Efficiency and Parameters

In this section we compute concrete parameters for our HSS scheme and compare them with the BKS
scheme [BKS19]. The next lemma gives us an expression for the average number of elements of the list
that constitutes the share y1 of party P1 after evaluating a program P . We are then able to choose
parameters such that this number is bounded by a constant. Since the running time of the evaluation
algorithm of P1 is proportional to this quantity, the lemma also implies that it runs in expected
polynomial time.

Lemma 11 (Expected share size). Let PRF be a secure pseudorandom function with values in Zq
and consider the HSS scheme described above, with ciphertext space Rdq , where R = Z[X]/(XN + 1).
Let P be an RMS program of multiplicative size |P |. Denote by pround, plift the probabilities of party P1
having a positive flag in a single rounding or lifting step, respectively. Then the expected total number
E of terminal values in the homomorphic evaluation of P by P1 on any input (x1, . . . , xn) is, up to a
negligible additive term,

E =
(
(1 + pround)(1 + plift)

)dN|P |
.

Proof. The main challenge in this proof is to show that the values that constitute the shares of P1
throughout the computation are all (very close to) uniform and independent. Recall that, in our con-
struction, a fresh pseudorandom value PRF(k, (id, i)) is added to every share coefficient immediately
before the rounding step. Let us first examine the simplified setting in which these pseudorandom val-
ues are replaced by random values ui ← Zq. Note that we only need to re-randomize the shares before
each rounding step and it is not necessary to do so again before lifting. To see why, consider the group
isomorphism Zp × Zq/p ∼= Zq given by (a, b) 7→ a(q/p) + b and observe that, under this representation,
the occurrence of a positive flag on the rounding step depends only on the value b, while the lifting
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step depends only on a. Therefore, for a uniform element of Zq, the rounding flag and the lifting flag
are independent.
For k ≥ 0, let Xk be the number of values computed by P1 after k (rounding or lifting) steps and let
p ∈ {pround, plift} be the flag probability associated to the next step.8 Recall that a 0-flag generates a
single value (additive share) and a 1-flag two values. Each current value generates a single value at the
next step with probability 1− p and two values with probability p, thus

E[Xk+1] = (1− p)E[Xk] + 2pE[Xk] = (1 + p)E[Xk].

Since X0 = 1, after L steps the expectation would be E[XL] = (1 + p)L.
We now consider the the proper setting of the scheme, in which values from a PRF are used. For k ∈ [L],
let Vk be the k-th value to be rounded or lifted and denote by bad the set which determines a positive
flag (i.e., a 1-flag occurs at step k if Vk ∈ bad).

Claim. For any k ∈ [L] there exists a PRF distinguisher Ak with advantage

AdvPRF
Ak

= |Pr[Vk ∈ bad]− p|.

Proof of claim. The adversary Ak runs HSS.Gen(1λ) (with the exception of the PRF key generation)
and then HSS.Eval(1, ek1, (C1, . . . ,Cn), P, β), with every PRF evaluation replaced by a query to the
PRF oracle. Finally, it outputs 1 if the k-th value is in bad, and 0 otherwise. Clearly, the probability
that Ak outputs 1 is p if the values returned by the oracle are random and Pr[Vk ∈ bad] if they are
PRF values. �

We thus have that α := maxk∈[L] |Pr[Vk ∈ bad]− p| is a negligible function of the security parameter.
Therefore

E[Xk+1] = (1− Pr[Vk+1 ∈ bad])E[Xk] + 2 Pr[Vk+1 ∈ bad]E[Xk] ≤ (1 + p + α)E[Xk]

and, consequently,
E[XL] ≤ (1 + p + α)L ≤ (1 + p)L + negl(λ)

for a negligible function negl(·). By applying this reasoning to the rounding and lifting steps, we conclude
E ≤ (1 + pround)dN|P |(1 + plift)dN|P | + negl(λ). �

As a consequence of Lemmas 6, 9 and 11, we obtain the following bound, which we can use to choose
parameters for the HSS scheme:

E ≤
(
(1 + 2Berrp/q)(1 + 2Bmax/p)

)dN|P |
.

We instantiate PKE with the Ring-LWE based encryption scheme of Lyubashevsky, Peikert and Regev
[LPR13] over the ring R = Z[X]/(XN + 1), giving us Berr = 1, d = 2. Then, if we wish to bound
the expected number of terminal values E by some value γ > 1, setting p ≥ 8BmaxN |P |/ ln γ and
q ≥ 8pN |P |/ ln γ gives

E ≤ (1 + ln γ/(4N |P |))4N|P | ≤ γ,
which justifies that γ is indeed an upper bound. For instance, if we choose γ = 2, party P1 will have,
on average, a single positive flag throughout the homomorphic evaluation and two terminal values on
which to perform reconstruction.
In Tables 3 and 4 we present parameters of our scheme in this RLWE instantiation, namely the ring
dimension N and the ciphertext modulus q, when we choose the bound γ = 2 for the expected number
of terminal values and maximum program sizes 210 and 220, respectively. These are given in function
of the magnitude bound Bmax of plaintexts during the computation. For comparison, Table 5 shows the
parameters for the corresponding instantiation of the BKS HSS scheme. We observe that our scheme
reduces the size of the modulus q by nearly a factor of 2 for programs with up to 220 operations (or
by a greater factor, if we further restrict the program size) while also reducing N by a factor of 2 and
attaining similarly high estimated computational security.

8 This sequence of random variables {Xk} constitutes a stochastic process very similar to a Galton-Watson branching
process, the only difference being that the offspring distribution alternates between odd and even generations,
according to the probabilities pround and plift of producing two offspring.
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Bmax N log q Security

2 2048 51 147.3
216 2048 66 109.4
232 2048 82 86.0
264 4096 116 122.9
2128 8192 182 159.5
2256 8192 310 89.1

Table 3: HSS parameters
for |P | = 210, γ = 2.

Bmax N log q Security

2 2048 71 100.9
216 2048 86 81.6
232 4096 104 139.0
264 4096 136 103.0
2128 8192 202 141.7
2256 8192 330 83.6

Table 4: HSS parameters
for |P | = 220, γ = 2.

Bmax N log q Security

2 4096 137 103.3
216 4096 167 83.7
232 8192 203 142.0
264 8192 267 104.9
2128 16384 399 143.9
2256 16384 655 84.6

Table 5: BKS HSS parameters,
with error probability 2−40.

The security estimates on Tables 3 – 5 were obtained by computing, for magnitude bound Bmax, the
smallest pair (N, q) with at least 80 bits of computational security, as predicted by the lattice estimator
tool of Albrecht et al. [APS15]. Note that the parameters of the BKS HSS scheme are also dependent
on the size of the program P . The parameters on Table 5 correspond to a correctness error probability
of 2−40 for each (multiplicative) operation in P .
The parameter γ can be adjusted to reduce the frequency of raised flags for a relatively small cost in
the size of lattice parameters. For instance, setting γ = 1.01 boosts the probability that there are no
raised flags in the entire computation to at least 1 − (γ − 1) = 0.99, at the price of increasing the
modulus q by a factor of (ln 2/ ln 1.01)2 ≈ 212, compared to the choice γ = 2.
On the other hand, since the size of the input shares is much larger than the size of the output shares,
it can make sense to choose larger parameter γ for certain applications. One should note though, that
if the parties wish to execute linear postprocessing on the output shares (e.g., a counting query over a
large database), then the total expected number of shares scales with 2γ .

5 Applications

Our scheme retains most of the standard applications of HSS, even without having the usual property
of additive reconstruction. It is particularly suited for scenarios where there is asymmetry between the
parties performing the computation (e.g., two servers of different sizes).

Private database queries. We explore in detail one of the applications of the BKS HSS scheme and
show that our construction provides an overall improvement in efficiency. A 2-server private database
query protocol involves two non-colluding servers, each holding a copy of a public database DB, and a
client, who can issue queries on the database. The protocol should allow the client to obtain the answer
of its query while hiding both the query and the answer from the servers. HSS gives a simple solution to
this problem with only one round of communication: in this protocol the client sends an encryption of
its query to both servers, who then homomorphically compute shares of the answer and return them to
the client. HSS for branching programs supports many expressive queries, such as conjunctive keyword
search and pattern matching.

Remark 5. Unlike with secure 2-party computation, in this setting there are no concerns with the
security of the reconstruction procedure. We can simply have both servers send their shares to the
client, who evaluates the decoding algorithm directly with minimal computational cost.

Linear post-processing of shares. There are scenarios in which the additive reconstruction property
of other HSS schemes is quite useful, such as when computing a counting query. This type of query
returns the number of elements of the database satisfying some predicate Q, which can be written
as
∑

x∈DB Q(x), where Q(x) = 1 if x satisfies Q and Q(x) = 0 otherwise. Because of this additive
representation, instead of homomorphically evaluating the query on the database at once, the servers
can evaluate the predicate individually on each database element. The shares qxσ corresponding to each
element x can then be locally summed to obtain qσ =

∑
x∈DB q

x
σ and this value sent to the client, who

recovers the result of the query as q0 + q1 mod β. In the BKS HSS scheme, this approach allows using
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the optimal case of Bmax = 2 on the individual HSS evaluations, even though the query output is not
bounded by 2.
Although our construction does not benefit from the additive reconstruction property, we can employ
a similar technique and show that even in this setting we obtain a performance improvement. Recall
that, in our scheme, a share evaluated by party P0 is of the form (u, q) where u is the compression of
the flag sequence of P0 and q is the additive share of the result, while a share evaluated by P1 is a list
of pairs of the same form. P0 can homomorphically evaluate Q on each x ∈ DB to obtain (ux0 , qx0 ) and
then send y0 = (ux1

0 , . . . , uxM
0 , q0 :=

∑
x∈DB q

x
0 ) as its final share to the client, where M = |DB| is the

database size. Similarly, P1 obtainsM lists from evaluating Q on every database element and its output
to the client is a list of shares of the same form as y0, one for each possible choice of a single element
from each of the M lists. The client can then reconstruct by summing q0 and the corresponding value
from P1’s share. This solution may look terribly inefficient for the fact that the size of P1’s output is
proportional to the product of the number of elements of all M lists, but we can set the probability of
any list having more than one element to be very low.

A concrete example. Consider a database DB with entries of the form (x,Wx) where x is a document
and Wx is a list of keywords. Given a target list of keywords W , we wish to count the number of
documents containing all the keywords in W . That is, we consider a counting query for the predicate
QW (x,Wx) = 1 if W ⊆ Wx. Suppose the database size is M = 1024, the client’s query consists of
4 keywords, and each document has 10 keywords with 128 bits of length. This can be achieved by
an RMS program P with around |P | = 5120 multiplications. For this application the BKS scheme
requires as parameters N = 4096 and log q = 137, which gives a share size of 3N log q ≈ 210kB
for each input bit, for a total of 107MB of communication to each server. In our scheme, choosing
γ = 1.0001 allows us to use N = 2048, log q = 81. This results in an input share size of 60.7kB and
a total of 31MB sent from client to server. Since the (expected) size of the compressed flag sequence
is |H(pos)| = γ log |pos| and the output modulus of the query should be β = M , the size of the first
output share is |y0| = Mγ log(4N |P |) + log β ≈ 3.2kB and the size of the second output share is
|y1| = γM |y0| ≈ 3.5kB. Meanwhile, the output share size in BKS is only log β ≈ 1.2B for both servers.
Note that only a single output share is sent from each server to the client, so the bulk of communication
lies in the input sharing step for both approaches.
A drawback of our solution is that the size of the output shares grows with the size of the database
(linearly for P0, and exponentially with base γ for P1). However, the communication bottleneck is still
the size of the input shares and not of the output, as illustrated in the example above. For more general
queries, for which this technique relying on additive reconstruction is not applicable, our scheme again
provides an improvement over BKS HSS in both computation and communication costs.
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