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ABSTRACT

For Nakamoto’s longest-chain consensus protocol, whose proof-

of-work (PoW) and proof-of-stake (PoS) variants power major

blockchains such as Bitcoin and Cardano, we revisit the classic

problem of the security–performance tradeoff: Given a network

of nodes with finite communication- and computation-resources,

against what fraction of adversary power is Nakamoto consen-

sus (NC) secure for a given block production rate? State-of-the-art

analyses of NC fail to answer this question, because their bounded-

delay model does not capture the rate limits to nodes’ processing

of blocks, which cause congestion when blocks are released in

quick succession. We develop a new analysis technique to prove a

refined security–performance tradeoff for PoW NC in a bounded-

capacitymodel. In thismodel, we show that, in contrast to the classic

bounded-delay model, Nakamoto’s private attack is no longer the

worst attack, and a new attack we call the teasing strategy, that ex-

ploits congestion, is strictly worse. In PoS, equivocating blocks can

exacerbate congestion, making traditional PoS NC insecure except

at very low block production rates. To counter such equivocation

spamming, we present a variant of PoS NC we call Blanking NC

(BlaNC), which achieves the same resilience as PoW NC.
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Figure 1: Regions of fraction 𝛽 of adversary nodes and block

production rate 𝜆 with security proofs ( ) and attacks ( )

for NC under a fixed processing capacity of 𝐶 = 1 block

per second. Analysis in the bounded-delay model [24, 30]

(with Δ = 1 s) proves that the private attack ( ) succeeds

( ) iff 𝛽 ≥ 1−𝛽
1+(1−𝛽 )𝜆 , and that for all other values of 𝛽, 𝜆, no

attack succeeds ( ). Our teasing strategy exploits congested

block processing and succeeds at lower adversary 𝛽 than the

private attack ( , ). Our analysis in a bounded-capacity

model yields a security region ( ) for PoW NC.

1 INTRODUCTION

In order to remain secure against adversaries controlling up to 50%

of the network, blockchains that utilize Nakamoto’s proof-of-work

(PoW) longest-chain consensus protocol [28, 45] have been param-

eterized to leave a security margin between the throughput under

normal operation and each node’s capacity limits. For instance,

in expectation, Bitcoin produces only one block of transactions

every ten minutes, though it usually only takes a few seconds for

a node to download and verify a block’s contents [23]. On the

other hand, Bitcoin Cash forked off to increase the block size for

better throughput, a proposal whose security implications were

hotly debated [1]. The fundamental question that protocol design-

ers face is:What is the security–performance trade-off between the

block production rate (relative to the nodes’ capacity limit) and the

fraction of adversary power that the protocol tolerates? In this work,

we show the inadequacy of the bounded-delay model that most pre-

vious works utilized to analyze the security of Nakamoto consensus

(NC) [24, 28, 30, 35, 37, 50, 52, 55], and instead provide security anal-

ysis in a bounded-capacity model that better captures real-world

effects such as congestion due to a backlog of blocks that need to

be communicated and validated by nodes.
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In PoW NC, collectively starting with a well-known “genesis”

block, each node continuously works to solve a computational

puzzle to extend the longest chain of blocks it sees with a new block

containing pending transactions (“mining a new block”). When

successful, the node pushes the new block’s header to the network,

and makes its content available for download. In order to extend a

chain, nodes must first process, i.e., download and verify, the content

of blocks in that chain, to ensure that the content is both available

and valid. Downloading blocks may take time, especially if blocks

are extremely large [23], but in systems that contain smart contracts,

even smaller blocks may take a while to process—mostly due to the

time it takes to execute and validate smart contracts [42].

In PoW, block production occurs at random times, which makes

the processing load of the network bursty. Moreover, the adversary

can selectively withold its own mined blocks and release them

opportunistically. Both these factors further stress the processing

(communication, computation, ...) capacities of nodes. With limited

processing capacity, during times of high load, blocks will be queued

for processing. Since nodes cannot mine new blocks extending

chains that they have not yet fully processed, queueing further

delays the growth of the honest nodes’ chain. As the security of

NC is based on the honest chain outgrowing any adversary chain,

the reduced growth of the honest nodes’ chain makes it easier for

an adversary to attack the system. To analyze security under such

effects, it is important to consider the scheduling policy that nodes

use in deciding which blocks to download and verify first, given

a set of new block headers. Since a node extends its longest chain

to produce new blocks, an obvious policy is to first process blocks

along the longest header chain that the node has seen. Indeed, this

policy can be found in the Bitcoin implementation [9].

Limitations of the Bounded-Delay Model. Previous work has

focused on the security analysis of Bitcoin in the synchronous

setting: All messages are assumed to arrive after a maximum delay

ofΔ [24, 28, 30, 35, 37, 50, 52, 55]. Using this model, [24, 30] calculate

a tight bound on the fraction 𝛽 of adversary nodes, for given block

production rate 𝜆 and delay bound Δ, for which the protocol is

secure against all attacks. However, the Δ-delay model assumes

that the delay is the same irrespective of the total processing load, and

specifically, that the adversary cannot manipulate the load to its

advantage. Thus, the model fails to capture the security implications

of bursty release of blocks by an adversary or due to the stochastic

nature of PoW mining even by honest nodes alone.

The bounded-delay analysis [24, 30] concludes that the well-

known private attack [45] (along with delaying every message

by Δ) is the worst-case attack strategy since its attack threshold

matches the security threshold, i.e., under parameters where the

private attack fails, the analysis concludes that all other attacks

must fail, too. If we only consider the private attack and low block

production rates, then the bounded-delay analysis, with Δ taken as

the time to process one block, is a good approximation to calculate

the fraction of adversary power with which the attack succeeds (see

Fig. 1, validated by simulations in Sec. 2). This is because during

the private attack, the adversary does not release any blocks (only

“benign” random congestion), and the effect of bursty honest mining

is less significant at low block rates.

However, there are other strategies in which the adversary adds

to the processing load to increase queuing delays. We simulate one

such strategy, the teasing strategy (Sec. 2), that is stronger than

the private attack, i.e., it succeeds in regions of (𝜆, 𝛽) where the
private attack does not (Fig. 1). In the teasing strategy, the adversary

“teases” honest nodes to process a longer chain it announces, but

makes this effort “useless” by not releasing the block contents for

the entire chain. The adversary effectively doubles the processing

load and queuing delays, thus slowing the growth of the honest

nodes’ chain, while the adversary builds a longer chain to break

security. This halves the maximum secure block rate 𝜆 for any given

𝛽 (Fig. 1). While the concrete quantitative impact of this attack may

be considered modest, it highlights conceptual limitations of earlier

analyses and emphasizes the need for security analysis under more

realistic network models, especially to rule out that unbeknown to

us there could be even more serious queuing-based attacks.

Security Bounds under Bounded Processing Capacity. To re-

establish the security of NC in a more realistic model, we adopt

the bounded-capacity model from [48]. Under this model, we con-

sider the scheduling policy as a part of the protocol description

as it affects the security of the protocol. Henceforth, we continue

to use the verb “to process” to abstract a variety (or combination) of

tasks (communication/download, computation/execution/verification,

input-output/storage access, ...) that are typically subject to rate con-

straints in real-world systems, and we refer to the corresponding rate

limit abstractly as “(processing) capacity”.

Result 1. Using the bounded-capacity model and a novel analysis

technique, we characterize a region of block mining rate 𝜆 and adver-

sary fraction 𝛽 for which we prove that PoW NC, with a wide range

of suitable scheduling policies, is secure (Thm. 4.10). This region is

shown in Fig. 1. Specifically, this analysis expands the set of adver-

sary strategies captured by earlier bounded-delay analyses to include

adversary strategies that exploit effects from bounded capacity.

In Fig. 2, we plot the adversary resilience versus bandwidth re-

quirement for PoW NC with cautious (e.g. Bitcoin) and ambitious

(e.g. Bitcoin Cash) parameters. It shows the importance of model-

ing and studying congestion effects on security, in particular, for

protocols that aim for maximum performance, and our analysis

provides tools to do so. While our work demonstrates that earlier

analyses have failed to capture some security-critical phenomena,

the quantitative gap between our best-known attack (Fig. 1 ) and

our best-known security analysis (Fig. 1 ) points to a need for

future work.
1

Proof-of-Stake (PoS) NC. Nakamoto consensus has been adapted

to proof-of-stake in protocols of the Ouroboros [4, 22, 35] and Sleepy

Consensus [19, 52] families. In PoS NC, the block production lottery

is independent of the block’s content or parent [5]. This, unlike

in PoW NC, allows an adversary to reuse a “winning PoS lottery

ticket” to create infinitely many valid blocks (called equivocations).

As observed in [48], the adversary can spam nodes with many

1
We focus on the security–throughput tradeoff of NC, i.e., for what tuples (𝜆, 𝛽 ) does
the consensus-failure probability 𝜀 decay exponentially to zero under some appropriate

scaling of the confirmation latency 𝑇
live

. On a finer point, in our bounded-capacity

analysis, latency scales𝑇
live
∼ (log(1/𝜀 ) )2 (Thm. 4.10), in contrast to earlier bounded-

delay analyses that required only𝑇
live
∼ log(1/𝜀 ) [10, 30, 55]. Exploring the possibility

of tighter latency scaling under bounded capacity requires future work.
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Figure 2: For cautiously parameterized PoW NC (e.g., Bit-
coin’s 𝜆 = 1/600 blocks/s, block size 4 MB, recommended min.

per-node bandwidth 0.4 Mbps [8, 18]), earlier analyses as-

suming bounded delay ( ) predicted security against any

adversary controlling up to 48% of hash power ( ), including

Nakamoto’s private attack [45], which was concluded to be

worst-case. The teasing strategy still requires 46% adversary

( a, ). In contrast, PoW NC parameterized ambitiously

(e.g., Bitcoin Cash’s same 𝜆, but max. block size 32 MB, same

bandwidth [54]) withstands only a 37% private attacker ( ),

while the teasing strategy resilience drops to 27% ( ).

equivocating blocks, aggravating the problem of congestion. While

slashing [11, 12, 49, 59] may deter rational adversaries to some

extent, protocols need to tolerate equivocations to handle plausibly

irrational Byzantine adversaries [48].

Analytical work [48] gives a security proof for PoS NC in the

bounded-capacity model. However, [48] proves security only when

nodes have enough capacity so that for each block, they can process

potentially different versions of its 𝑘 predecessors, where 𝑘 is the

confirmation depth chosen for the chain. This increases the network

load by 𝑘 times, thus reducing the maximum secure block rate 𝜆

by 𝑘 times (Fig. 3). Decreasing the probability of consensus failure

requires increasing 𝑘 , which means that for security with over-

whelming probability, the throughput must approach zero. This is

not merely an artifact of the security analysis of [48]: Augmenting

our teasing strategy with equivocations demonstrates this behavior

(we discuss this in Sec. 2 and App. B.2). On the other hand, PoW

NC does not suffer from such vanishing throughput (Fig. 1).

Result 2. We propose and prove the security of a new PoS protocol

we call Blanking NC (BlaNC), a variant of PoS NC, that is secure in

the same region of block production rate 𝜆 and adversary fraction 𝛽

as PoW NC. Thus, similar to PoW NC, security with overwhelming

probability requires increasing the confirmation depth, which affects

latency, but not decreasing the block production rate, which affects

throughput (see Fig. 3).

On a high level, in BlaNC, honest nodes establish consensus on

PoS lottery tickets for which they have seen equivocations. The

contents of blocks from those equivocating PoS lottery tickets are

then blanked, i.e., all blocks from those tickets are treated as empty

blocks. This absolves honest nodes from processing more than

one block per PoS lottery ticket, restoring the non-equivocation
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Figure 3: The region of fraction 𝛽 of adversary nodes and

block production rate 𝜆 where PoS NC is secure according

to [48] ( ) shrinks as the NC confirmation depth increases,

i.e., the desired consensus failure probability decreases (in

order: to ). Thus, for the PoS NC protocol of [48],

security requires vanishing throughput. In contrast, our new

BlaNC protocol achieves a security region ( ) that is inde-

pendent of the desired consensus failure probability. Thus,

BlaNC is secure with non-vanishing constant throughput.

(For all lines, processing capacity is fixed to 𝐶 = 1 block/s.)

behavior of PoW from a capacity point of view. From there, the

security proof closely follows that of PoW NC.
2

Blanking block contents undermines predictability of transaction

validity (cf. Sec. 1.2.3). In particular, it is harder to ensure, at the

time of composing a block, whether transactions are able to pay

their fees. Many modern consensus protocols share this problem

(e.g., [2, 20, 43, 61, 63]). We suggest some solutions in Sec. 5.2.

1.1 Related Works

Earlier works have analyzed the security of PoW [24, 28, 30, 37, 45,

50, 55] and PoS [4, 5, 19, 22, 24, 35, 52] NC in the bounded-delay

model. Our analysis builds on tools from several of these works,

primarily pivots [52] (Nakamoto blocks [24]) and convergence op-

portunities [37, 50, 52] (or similar [24, 55]). Markov decision pro-

cesses were used [31, 60] to computationally find optimal attack

strategies, assuming honest nodes do not suffer any delay.

Limitations of the bounded-delay model have been observed in

previous work [6, 27, 48]. To use the bounded-delay model to set the

protocol’s block production rate, one needs to find the value of the

bound Δ. This is tricky because unlike the capacity limit, which is a

physical limit of the hardware used, delay depends on the network

load. One approach is to set the delay to the time taken to process

one block, i.e., Δ = 1/𝐶 . While this may be reasonable at rates much

smaller than the capacity (as processing queues are mostly empty),

queuing delay breaks this bound otherwise. In [27], a queuing

model is used to calculate a delay bound that holds throughout

the execution with overwhelming probability. However, such a tail

bound is too pessimistic because the queuing delays cannot always

be large, due to limited block production. In contrast, our finer-

grained analysis captures limited block production. Another work

[57] analyzes security in a random (iid) delay model. However, the

network load, hence queuing delay, is not purely a random process,

but is controlled by the adversary. Network experiments [23, 38, 56]

2
The confirmation latency of BlaNC under bounded capacity scales quadratically with

the security parameter, just like PoW NC’s latency.
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help estimate the delay distribution but cannot show us the impact

of all possible adversary manipulations.

In analytical work [48], the bounded-capacity model captures

adversarial manipulations. Our paper’s bounded-capacity model is

that of [48]. Our paper differs from [48] two-fold: (a) Only PoS is

studied in [48]. Due to equivocations in PoS, the security bounds

of [48] are too pessimistic for PoW NC. We develop new analysis

machinery (cf. Sec. 1.2.1) to prove security for PoW. Furthermore,

the attack in [48] does not apply to PoW, while our teasing strategy

does. (b) PoS NC with the freshest-block policy proposed in [48] is

secure only when its throughput approaches zero. In contrast, our

new PoS protocol, BlaNC, is secure with non-vanishing throughput.

Concurrently, [62] analyzes specific congestion-based attacks on

PoW DAG protocols but does not provide a security proof against

all attacks. Propagation delays also exacerbate selfish mining strate-

gies [41], and congestion is another way to increase propagation

delays. However, the goal of this work is to analyze security under

bounded capacity, and selfish mining does not affect the two secu-

rity properties of consensus: safety and liveness. It affects incentives

and fairness, which are orthogonal.

Capacity limits apply not only to downloads but also to execution

of transactions and smart contracts. For instance, earlier works [53]

have shown that execution times can vary by orders of magnitude

between benign and maliciously crafted transactions (with equal

gas consumption). While download and execution are similar in

that the time taken increases with the number of transactions, they

are different in some aspects. Execution is harder to parallelize due

to transactions that depend on each other. Methods to parallelize

execution of smart contracts are studied in [25, 58]. Additionally,

executing transactions can be delayed until after confirmation, such

as in [2, 21], but delaying downloads could lead to data availability

attacks (cf. Sec. 5.1).

1.2 Overview of Key Ideas and Methods

1.2.1 New Analysis Technique. Our key contribution is a new anal-

ysis technique for PoW NC under bounded capacity. Traditional

NC security analysis (Fig. 4(a)) is based on the notion of a pivot [52].

Pivots are special honest blocks (⇒ liveness) which by a combina-

torial argument remain in the chain forever (⇒ safety), and by a

probabilistic argument happen frequently. Safety and liveness of

NC with suitable parameters follow swiftly.

Under bounded delay, the qualities required for the probabilis-

tic and combinatorial argument, respectively, are equivalent. As a

result, it has not been widely noted that these properties are not

identical. Under bounded capacity, these properties are no longer

equivalent. Our first conceptual contribution is to decompose

pivots’ probabilistic/combinatorial qualities into ppivots and cpivots

(Fig. 4(b)). Ppivots are honest block production events where in

every time interval around them there are more honest than adver-

sary block production opportunities (same as pivots in the bounded-

delay analysis). Cpivots are honest block production events where

in every time interval around them there are more chain growth

events than non-chain-growth events (chain growth occurs only

when an honest block is produced and soon processed by honest

nodes).

(a) Sleepy analysis [48, 52]:

Probabil.

argument

Probabil.

pivot

Combinat.

pivot

Security

Bounded delay model

Exists

one

Combinat.

argument

Pivot

(b) Our analysis:

Probabil.

argument

Probabil.

pivots

(ppivot)

Combinat.

pivot

(cpivot)

Security

Bounded-capacity model

Lem. D.12 Def. D.2 Lem. D.17 Def. D.3 Lem. D.5 Thm. 4.10

Exist

many Many to one

Combinat.

argument

Figure 4: (a) Sleepy analysis [52] is based on pivots. Pivots are
special honest blocks (⇒ liveness) which by a combinatorial

argument remain in the chain forever (⇒ safety), and by a

probabilistic argument happen frequently. Equivalence of

the pivot qualities required for each of both arguments fol-

lows from bounded delay [51, Fact 1]. The bounded-capacity

analysis of [48] also follows the same procedure by choosing

a large enough delay parameter. (b) We (red) decompose piv-

ots’ probabilistic vs. combinatorial qualities into ppivots vs.
cpivots. These are no longer equivalent under bounded ca-

pacity, but of many consecutive ppivots one is a cpivot (new

combinatorial argument), and ppivots are abundant (new

probabilistic argument).

Some ppivots no longer turn into cpivots under bounded capacity,

because adversary block release can delay the processing of hon-

estly produced blocks, and thus some honest block production op-

portunities might not translate to chain growth. Previous bounded-

capacity analysis [48] side-stepped this difference by choosing a

specific scheduling policy and such a low block production rate

that every ppivot becomes a cpivot. Instead, our second technical

contribution is a combinatorial argument to show that if there is

a sufficiently high density of ppivots over a long time interval, then

at least one of these ppivots is typically a cpivot. This relies on the

adversary’s limited budget of blocks it can spam with, and holds for

a wide range of scheduling policies (including longest-header-chain

and freshest-block [48]).

The original probabilistic argument of [52] guarantees only a

fairly low density of ppivots. Proving a high density is challenging

because the occurrence of ppivots are dependent events, so standard

Chernoff-style tail bounds are not enough. Our third technical

contribution is to show, by leveraging the weak dependence of

ppivot occurrences, that long time intervals typically have a high

density of ppivots. This completes the analysis for PoW NC.

1.2.2 Blanking Nakamoto Consensus. In BlaNC, every honest node

processes at most one out of several equivocations, and instead

considers equivocating blocks to be blank. This makes honest nodes

immune to the effects of equivocation spamming. However, we

need to ensure that honest nodes can still switch from one chain

to another longer chain, both of which might contain different

equivocating blocks. For this, note that headers of two equivocating
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blocks from the same PoS lottery can serve as a succinct equivocation

proof to convince other nodes that an equivocation was committed.

Therefore, in BlaNC, if an honest node sees an equivocation for a

block in its longest chain, it publishes an equivocation proof in the

block that it produces, which allows all nodes to consistently treat

the equivocating block’s content as blank without processing it.

A caveat so far is that an adversary could reveal an equivocation

late and cause inconsistent ledgers across honest nodes and/or time.

To avoid this, we enforce a deadline for how late an equivocation

proof can be included in the chain. Our security proof shows how

to parameterize the deadline and the protocol’s confirmation depth

such that if any honest node has blanked the content of any equivo-

cating block on its longest chain, then an appropriate equivocation

proof is timely included on-chain, and all honest nodes blank the

block’s content before it reaches the output ledger.

1.2.3 Ensuring Fees Get Paid despite Lack of Predictable Validity.
Blanking of blocks in BlaNC leads to lack of predictable transaction

validity, i.e., honest nodes do not know whether transactions they

include in their block will be valid, since the content of blocks in the

prefix may later be blanked due to an equivocation. Many modern

consensus protocols in which consensus proceeds without execut-

ing transactions [2, 20, 43, 61, 63] also lack predictable transaction

validity. This risks that the adversary gets to spam the ledger with

invalid transactions for free. In one solution to prevent this, we

focus on guaranteeing transaction fees are always paid regardless

of equivocations, by introducing gas deposit accounts that can only

be used to pay transaction fees. Any deposit to such an account

takes effect only after the deadline has passed for the inclusion of

any equivocation proof that might lead to removal of transactions

from the deposit’s prefix. This gives honest block producers a lower

bound on the account’s balance which they can use to reliably

determine whether a transaction can pay fees.

2 THE TEASING STRATEGY

We begin by exploring a strategy that the attacker can adopt which

forces honest nodes to waste capacity on blocks that do not con-

tribute to chain growth. This strategy demonstrates that the well-

studied private attack [24, 45] is not the worst case behavior of

the attacker, and that the previously established security bounds

of the bounded-delay model do not hold in the bounded-capacity

setting. We go on to simulate our teasing strategy and to show how

it compares to the private attack (summarized in Fig. 5).

Previous analyses concluded that the private attack (Fig. 5) is

worst-case based on the false assumption that delays, and hence the

honest chain growth rate, do not depend on whether the adversary

releases blocks and causes congestion. We exploit congestion to

develop the teasing strategy.

Description of the Teasing Strategy. The key idea in the teasing

strategy (summarized in Fig. 6) is that the adversary can strategi-

cally time the release of blocks it had mined in order to take up

some of the capacity of honest nodes.
3
In a nutshell, while the

adversary continues to mine a private chain, every time an honest

node announces a block at a new height, the adversary releases the

3
While similar to the BDoS attack of [44], we note that while they exploit miner incen-

tives to depress honest mining, our teasing strategy exploits network and processing

congestion to attack safety.

𝜆
grwth 𝜆

adv

Honest chain Adversary chain

Longest chain when

private attack starts

txTransaction to deconfirm

Figure 5: Private attack (recap): Based on the tip of the longest

chain when the private attack starts, the adversary mines a

private adversary chain, while honest nodes jointly grow a

public honest chain. The adversary’s goal is to deconfirm a

transaction tx included on the honest chain just below where

the adversary chain forks off. Adversary mining is perfectly

coordinated so that the adversary chain grows at the adver-

sary block production rate 𝜆
adv

. Honest nodes suffer from

forking due to network delay so that the honest chain grows

at a lower rate 𝜆
grwth

< 𝜆
hon

than the total block production

rate 𝜆
hon

of honest nodes. The attack succeeds if the adver-

sary chain grows faster than the honest chain (𝜆
adv

> 𝜆
grwth

)

and thus, irrespective of the confirmation depth 𝑘
conf

chosen

for NC, the adversary chain can eventually displace the hon-

est chain as the longest chain and with that deconfirm tx.

headers of a segment of its longer withheld chain and the contents

of only the first block. Due to longest-header-chain scheduling,

honest nodes prioritize processing blocks on the chain announced

by the adversary. Only after an honest node has processed the first

adversary block and realizes that the content for the remaining

blocks in the announced adversary chain segment are unavailable,

does the longest-header-chain rule switch back to processing the

newly created honest block. Therefore, the adversary ‘teased’ the

honest nodes to spend some of their resources processing the ad-

versary chain, but without actually gaining a longer chain of blocks

compared to the chain they already possessed. The result of this

strategy is delayed processing of honest blocks that extend the

longest honest chain. Processing is delayed by a factor of 2 com-

pared to the private attack. This in turn results in more honest

blocks forking, thus slowing down the honest chain growth rate

(Fig. 7 ) to 𝜆teaser
grwth

< 𝜆
privt

grwth
.

Conditions for success of the teasing strategy. Formally, in both

the private attack and the teasing strategy, the length difference

between the adversary chain and the honest chain is a random

walk [24] which increases at the rate 𝜆
adv

and decreases at the rate

𝜆
grwth

. If 𝜆
adv

> 𝜆
grwth

, the random walk has a positive drift, so in

the long run, the adversary chain will outgrow the honest chain

indefinitely and the attack succeeds. Conversely, if 𝜆
adv

< 𝜆
grwth

,

the random walk has a negative drift and the attack will eventually

fail. Thus, 𝜆
grwth

determines the fraction 𝛽 of total mining power

that the adversary needs for the attack, i.e., the attack succeeds if

𝛽 ≜
𝜆
adv

𝜆
adv
+ 𝜆

hon

>
𝜆
grwth

𝜆
grwth

+ 𝜆
hon

. (1)

Note that the teasing strategy requires the adversary to maintain

a lead of at least two blocks with respect to the honest chain at

all times (to proceed in steps (a), (e) in Fig. 6). If this fails, then

the adversary must give up and try the attack again. We show a



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Lucianna Kiffer, Joachim Neu, Srivatsan Sridhar, Aviv Zohar, and David Tse

(a) G

1 1

2

3

(b) G

1

2

1

2

3

(c) G

1

2

1

2

3

(d) G

1

2

1

2 ?

3 ?

(e) G

1

22

1

2 ?

3 ?

4

(f) G

1

22

3

1

2

3 ?

4 ?

Figure 6: Teasing strategy: Green/red are honest/adversary

blocks, and numbers on blocks indicate height in the

blockchain. Semi-transparent blocks have been announced

(i.e., headers released) but were not yet processed by honest

nodes. Blocks with a dashed outline are mined privately by

the adversary but not announced. (a) The adversary begins

with a short private lead, while honest nodes attempt to ex-

tend the honest block 1. (b) An honest node mines a block at

height ℎ = 2, and announces it. Until this block is processed,

all honest nodes (except the onewhomined blockℎ) continue

to mine on top of the block at height ℎ − 1. (c) The adversary
announces its chain with height ℎ + 1, and the honest nodes

prioritize its processing beginning with block 1. (d) Honest

nodes keep mining as before while requesting the content

of the longest chain (the adversary’s chain). When honest

nodes request the adversary’s block of height ℎ = 2, they find

it to be unavailable (‘?’), i.e., the adversary did not release its

content. Honest nodes then resume processing the honest

block of height ℎ = 2. (e) Eventually, all honest nodes process

some block at height 2. The delay in this processing means

new blocks by honest nodes could have been mined at height

2, thereby not growing the chain. Meanwhile, if the adversary

mined another block, then they are back to step (a), i.e., the
adversary has a 2 block lead and can repeat steps (b)–(e) at

the next height ℎ + 1, as shown in step (f).

sample plot of the adversary’s lead for different mining rates in

Fig. 8. For a large enough adversary (if 𝜆
adv

> 𝜆
privt

grwth
), it is clear the

lead has a positive drift and eventually stays positive. However, the

teasing strategy succeeds even when the lead has a negative drift

initially (e.g. for 𝜆teaser
grwth

< 𝜆
adv

< 𝜆
privt

grwth
), as it only needs a random

lucky short burst to kickstart step (a). The resulting congestion then

decreases the average growth rate of the honest chain to 𝜆teaser
grwth

,

and the adversary with mining power 𝜆
adv

> 𝜆teaser
grwth

can positively

bias the random walk, thus eventually maintaining a positive lead,

and succeed. We see this process in Fig. 8 : the adversary’s

lead rises and drops to zero a few times, causing the adversary to

try again. However, eventually, the adversary manages to maintain

a permanent lead. On the other hand, when 𝜆
adv

< 𝜆teaser
grwth

, the

adversary’s lead has a negative drift even after the congestion
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Figure 7: Results of a simulation showing that attackers can

slow the growth of the honest chain using the teasing strat-

egy. Shown, is the rate of chain growth relative to honest

block production rate, when nodes prioritize processing to-

wards the longest header chain, for various capacity limits.

When the attacker does not release any blocks (no attack or

private attack), we already see 𝜆
grwth

< 𝜆
hon

due to natural

congestion ( ). The honest chain growth rate under the pri-

vate attack is approximately the same for a network with

finite processing capacity 𝐶 ( ), or for an idealized network

with bounded delay Δ = 1/𝐶 ( ). With a teasing strategy,

processing is slowed roughly by a factor of 2, which lowers

the growth rate of the chain further ( ). This lowers security

compared to a private attack, cf. Fig. 1.
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Figure 8: Adversary lead (difference between adversary and

honest chain lengths) under private attack and teasing strat-

egy. The simulation consists of 100 honest nodes with capac-

ity𝐶 = 2 blocks per second, collectivelymining 𝜆
hon

= 1 block

per second, and one adversary nodewith variablemining rate

𝜆
adv

blocks per second. With these parameters, 𝜆
privt

grwth
= 0.67

and 𝜆teaser
grwth

= 0.50 (from Fig. 7). A weak adversary (𝜆
adv

= 0.45,

) is unable to mine fast enough to gain a lead on the

network. A stronger adversary (𝜆
adv

= 0.60) fails to gain a per-

manent lead through the private attack ( ). But, through

the teasing strategy, after repeatedly retrying during the first

200 seconds, eventually manages to maintain a lead ( ).

An even stronger adversary (𝜆
adv

= 0.75) succeeds almost at

once under both strategies ( , ).

effects kick in (Fig. 8 ), and therefore the teasing strategy is

bound to run out of blocks and fail.
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With the combined mining rate 𝜆 ≜ 𝜆
hon
+ 𝜆

adv
of honest nodes

and adversary, and the honest chain growth rates from Fig. 7, we

use eqn. (1) to calculate the adversary fraction 𝛽 required for each

attack and plot it in Fig. 1.

Simulation details. We simulate
4
both the private attack and

the teasing strategy on a network of 100 nodes. Honest nodes

collectively mine blocks at a rate 𝜆
hon

= 1 block per second. Each

node has a limited processing rate of 𝐶 blocks per second. Blocks

consist of content (transactions) and a header (PoWand parent block

pointer). Since the header contains all information necessary to

verify the PoW, nodes only process validly created blocks. All honest

nodes and the adversary can directly send valid block headers to one

another. Given a tree of valid block headers, nodes run the longest-

header-chain policy, i.e., nodes attempt to process (download and

verify) the first unprocessed block along the longest header chain.

If the longest chain is already processed, or if the content of any

block on that chain is unavailable or invalid, then the rule considers

the next longest header chain, and so on. We further elaborate on

the setup and other simulation details in App. A.

Practical aspects of the teasing strategy. The teasing strategy

may not acutely break specific real-world implementations of PoW

NC, mainly because miners have over-provisioned capacity. Al-

though the teasing strategy is specific to the longest-header-chain

policy, it is possible to devise attacks that exploit congestion even

for other policies (see App. B.1). We also note that in basic PoS NC,

the adversary can exacerbate the teasing strategy by equivocating

the whole adversary chain every time before it releases a block. As

the attack goes on, the length of the new announced chain increases.

This increases the time honest nodes spend processing this chain,

and decelerates the honest chain growth until it comes to a halt. As

a result, the chain growth rate under the equiv-teasing attack is

nearly zero (details in App. B.2). The key takeaway from the teasing

strategy is that exploiting congestion results in attacks that are

more severe than the private attack, even in PoW where the block

production is limited, and even when the block production rate is

below the capacity of nodes. This invalidates the bounded-delay

model’s predictions and emphasizes the need for a security analysis

under models that capture the effects of congestion, especially for

protocols that aim to saturate physical performance limits.

Effect of SPV miners. Rational miners in PoW NC face a veri-

fier’s dilemma [15, 21, 42]: there is no incentive to download and

verify a block’s content before mining to extend it. Some so called

SPV miners (named after simple-payment-verification clients who

download only block headers) mine empty blocks without verifying

the parent block’s content first, and thus get more time to mine, in-

creasing their chances of being rewarded for mining the next block.

Since SPV miners are immune to congestion (as they do not process

block content), how does their presence affect the teasing strategy?

Under the teasing strategy, SPV miners would mine on the adver-

sary’s longer header chain (red block 3 in Fig. 6(d)) without waiting

for its contents. However, the remaining honest miners (who we

assume still outnumber the SPV miners) still do not consider this

chain valid (due to unavailable content). They continue mining on

the honest chain, and would still be slowed down by the teasing

strategy just as before. We added SPV miners to our simulation and

4
Source code: https://github.com/avivz/finitebwlc
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Figure 9: Teasing strategy in the presence of SPV miners,

compared with teasing strategy and private attack without

SPV miners (same as in Fig. 7). Total mining rate of SPV

miners is 𝜆spv blocks per second. Total mining rate of honest

miners is 𝜆
hon

= 1 block per second. SPV miners are not

counted as honest. Teasing strategy still succeeds with lower

adversary power than private attack (Fig. 9).

verified that the teasing strategy still succeeds with lower adversary

power than the private attack (Fig. 9). Thus, the qualitative insight

from the teasing strategy, that congestion enables worse attacks

than the private attack, persists.

3 PROTOCOL & MODEL

We briefly recap Nakamoto consensus (NC) and the bounded-capa-

city model of [48]. Detailed pseudocode of the protocol is provided

in App. C.1. Technical details about the model are provided in

App. C.3. For ease of exposition, the execution features a static set

of 𝑁 equipotent nodes, each of which runs an independent instance

of the protocol. Temporary crash faults (‘sleepiness’) of nodes, het-

erogeneous distribution of hash power, or difficulty adjustment

are left to be addressed with techniques from [28, 29, 52]. We are

interested in the large system regime 𝑁 →∞. Nodes interact with
each other and with the adversary A through an environmentZ
that models the network. A andZ are summarized below.

Nakamoto’s Longest Chain Consensus Protocol. For ease of

analysis, we consider the protocol (pseudocode in Alg. 1) to proceed

in discrete slots of duration 𝜏 . Consider 𝜏 to be a small quantum of

timewhere 𝜏 → 0. At each slot 𝑡 , the protocol queries the PoWblock

production (‘mining’) oracle (idealized functionality in Alg. 2) in an

attempt to extend the longest processed chain dC in the node’s view

with a new block of pending transactions txs. Each block production
attempt is committed to a parent block and block content, and only

a single block is produced when the attempt is successful. Per slot,

each node can make one block production attempt that will be

successful with probability 𝜌/𝑁 where 𝜌 = Θ(𝜏), independently of

other nodes and slots. If successful, the node disseminates both the

resulting (block) header C′ and the associated (block) content txs via
the environmentZ to all nodes. Finally, the protocol identifies the

𝑘
conf

-deep prefix dC ⌈𝑘conf containing all but the last 𝑘
conf

blocks of

dC. The transactions along dC ⌈𝑘conf are concatenated to produce

the output ledger LOG𝑡 .
When a node 𝑝 receives a new valid block header C from Z

(push-based header broadcasting), then 𝑝 adds C to its header tree

https://github.com/avivz/finitebwlc


CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Lucianna Kiffer, Joachim Neu, Srivatsan Sridhar, Aviv Zohar, and David Tse

hT and relays C to all other nodes viaZ. Throughout the execution,

the protocol requests from Z (pull-based content downloading)

the content for block headers decided by a scheduling policy. As

a concrete example, we use the longest-header-chain rule (pseu-

docode in Alg. 3) in which a node downloads content for the first

block header with unknown content on the longest header chain it

sees. Once a block’s content is received and verified by executing

its transactions, the node makes it available to other nodes viaZ,

and updates its dC.
Bounded-Capacity Network. We borrow the bounded-capacity

network model of [48] (see Fig. 16 for an illustration). In this model,

Z abstracts push-based flooding of ‘small’ block headers and pull-

based downloading of ‘large’ block contents from peers. Broadcasted

block header chains are delivered byZ to every node, with a per-

node per-header delay determined byA, up to a commonly known

delay upper bound Δ
h
. Block content made available for download

is kept by Z in what can be thought of as a ‘cloud’. Nodes can

request the content associated with a particular header. If content

matching the header is available, then it is delivered byZ to the

node. Content download and verification is subject to a per-node

capacity constraint of 𝐶 . Blocks have a fixed maximum size, hence

𝐶 is measured in blocks per second. See App. C.3 for a more formal

description ofZ.

The ‘cloud’ captures key properties of pull-based peer-to-peer

downloading. At first, content matching a particular header might

not be available (e.g., A produced a block and disseminated its

header, but withheld its content). Later, such content can become

available (e.g.,A releases the content to one node). Thus, the ‘cloud’

ensures neither data availability nor strong consistency of query

outcomes, unlike stronger primitives such as verifiable information

dispersal [13, 33, 46, 63]. However, once content for a header does

become available, it is unique and remains available. This captures

the header’s binding commitment to the content, and the fact that

honest nodes share content with peers. Requests for unavailable

content do not count towards the processing budget.

Also note that the adversary can push additional headers and

contents to nodes at will. This models non-uniform capacity (higher

than the lower bound 𝐶) and non-uniform delay (lower than the

upper bound Δ
h
) across nodes (analogous to adversary delay up to

maximum Δ in the bounded-delay model).

The Adversary. The static adversary A chooses a set of nodes

(up to a fraction 𝛽 of all 𝑁 nodes, where 𝛽 is common knowledge)

to corrupt before the randomness of the execution is drawn and

the execution commences. Uncorrupted honest nodes follow the

protocol at all times. Corrupted adversary nodes have arbitrary

computationally-bounded Byzantine behavior, coordinated byA in

an attempt to break consensus. Among other things, the adversary

can: withhold block headers and contents, or release them late or

selectively to honest nodes; push headers and contents to nodes

while bypassing the delay and capacity constraints; break ties in

the chain selection and schdeuling policy. Note that all miners that

deviate from the honest protocol (including crash faults and SPV

miners) are modeled as adversary.

Security. For an execution of PoW NC where every honest node

𝑝 at every slot 𝑡 outputs a ledger LOG𝑡𝑝 , we recall the security

desiderata.

• Safety: For all adversary strategies, all slots 𝑡, 𝑡 ′, and all honest

nodes 𝑝, 𝑞 (same or different): LOG𝑡𝑝 ⪯ LOG𝑡
′
𝑞 or LOG𝑡

′
𝑞 ⪯

LOG𝑡𝑝 .
• 𝑇

live
-Liveness: For all adversary strategies, if a transaction tx is

received by all honest nodes by slot 𝑡 , then for every honest

node 𝑝 and for all slots 𝑡 ′ ≥ 𝑡 +𝑇
live

, tx ∈ LOG𝑡 ′𝑝 .
Note that since blocks have a fixed maximum size, liveness is

expected only if transactions are received at a bounded rate. The

following definition captures this.

Definition 3.1. The environmentZ is (𝜃,𝑇
txlim
)-tx-limited, if the

cumulative size of all transactions received by honest nodes during

any interval of 𝑇
txlim

slots is at most 𝜃 ·𝑇
txlim

times the maximum

block size.

Liveness will be proved under transaction-limited environments.

The parameter 𝜃 is thus the worst-case throughput (𝜆 being the best-

case throughput). The burstiness of transaction arrival is measured

by 𝑇
txlim

; large 𝑇
txlim

may increase confirmation latency 𝑇
live

.

A consensus protocol is secure over time horizon 𝑇
hrzn

slots with

transaction rate 𝜃 iff for some finite 𝑇
txlim

,𝑇
live

, for all (𝜃,𝑇
txlim
)-

tx-limited environments, it satisfies safety, and 𝑇
live

-liveness with

overwhelming probability
5
over executions of time horizon 𝑇

hrzn

slots. The properties can also be redefined in terms of real-time

units instead of slots.

4 SECURITY PROOF

Due to space constraints, we focus on the intuition for the proof.

The security theorem for PoW NC is Thm. 4.10. The detailed full

proof is provided in App. D.

4.1 Definitions

For any sequence {𝑋𝑘 } and index set 𝐼 , let 𝑋𝐼 ≜
∑
𝑘∈𝐼 𝑋𝑘 .

Probabilistic Model for PoWNCExecutions.A block production

opportunity (BPO) is a pair (𝑝, 𝑡) where according to the PoW block

production lottery, node 𝑝 is eligible to produce a block in slot 𝑡 .

A BPO is honest (resp. adversary) if 𝑝 is honest (resp. adversary).

Since 𝑁 → ∞, and mining power is homogeneous, honest (resp.

adversary) BPOs per slot are Poisson distributed with parameter

(1 − 𝛽)𝜌 (resp. 𝛽𝜌). An execution refers to a particular realization

of the block production lottery for all slots.

Good, Bad, and Empty Slots. Slots without a BPO are called

‘empty’. A slot is ‘good’ iff it has exactly one honest BPO and no

adversary BPOs, and is followed by 𝜈 empty slots (inspired by

convergence opportunities [37, 50, 52], loners [24], and laggers

[55]). Here, 𝜈 is an analysis parameter. We define another analysis

parameter𝐶 which is related to 𝜈 as (𝜈 + 1)𝜏 ≜ Δ
h
+𝐶/𝐶 . Thus, 𝜈,𝐶

are chosen so that for a good slot, every honest node can receive

the block header for the honest BPO, and process content for 𝐶

blocks, before the next BPO. Any non-empty slot which is not good

is called ‘bad’.

We denote by 𝑡𝑘 the 𝑘-th non-empty slot. Then, we can introduce

random processes over indices, with index 𝑘 corresponding to the

5
As is customary, we denote by 𝜅 the security parameter. Event E𝜅 occurs with

overwhelming probability if Pr [E𝜅 ] ≥ 1−negl(𝜅 ) . Here, a function 𝑓 (𝜅 ) is negligible
negl(𝜅 ) , if for all 𝑛 > 0, there exists 𝜅∗𝑛 such that for all 𝜅 > 𝜅∗𝑛 , 𝑓 (𝜅 ) < 1

𝜅𝑛
.
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𝑘-th non-empty slot 𝑡𝑘 . Considering only indices simplifies notation

considerably. The process {𝐺𝑘 } (‘𝐺 ’ for good) counts good slots,

with 𝐺𝑘 ≜ 1{Good(𝑡𝑘 ) } . Correspondingly, let 𝐺𝑘 ≜ 1 − 𝐺𝑘 . The
following fact shows the distribution of good indices.

Proposition 4.1. The {𝐺𝑘 } are independent and identically dis-

tributed (iid) with Pr [𝐺𝑘 = 1] ≜ 𝑝G = (1 − 𝛽) 𝜌𝑒
−𝜌 (𝜈+1)

1−𝑒−𝜌 .

Throughout the analysis, we assume 𝑝G > 1

2
(‘honest majority’

assumption).

Some Good Slots Imply Growth. A special role is played by good

slots 𝑡𝑘 with the additional property that the block produced at 𝑡𝑘 is

‘soon’ processed by all honest nodes. Intuitively, these lead to chain

growth, the cornerstone of NC security [24, 52]. We count these

slots with {𝐷𝑘 } (‘𝐷’ for downloaded). Specifically, 𝐷𝑘 ≜ 1 if 𝑡𝑘 is

good and the block produced at 𝑡𝑘 has been processed by all honest

nodes by the end of slot 𝑡𝑘 +𝜈 , 𝐷𝑘 ≜ 0 otherwise, and 𝐷𝑘 ≜ 1−𝐷𝑘 .
Note that {𝐺𝑘 } are iid, and not affected by adversary action, while

{𝐷𝑘 } do depend on the adversary action and are thus in particular

not iid.

Probabilistic and Combinatorial Pivots.

Definition 4.2. We call an index 𝑘 a ppivot (probabilistic pivot), de-

noted as PPivot(𝑘), iff PPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝐺 (𝑖, 𝑗 ] > 𝐺 (𝑖, 𝑗 ] ).6

Definition 4.3. We call an index 𝑘 a cpivot (combinatorial pivot),

denoted as CPivot(𝑘), iff CPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝐷 (𝑖, 𝑗 ] >

𝐷 (𝑖, 𝑗 ] ).

This definition of ppivots and cpivots decouples [52, Def. 5] into

its probabilistic aspects [52, Sec. 5.6.3] and combinatorial aspects [52,

Sec. 5.6.2], and casts them as conditions on a random walk, inspired

by [24, 40], to simplify the analysis. The decoupling is one of the

key differences from the analysis in [52] (see Fig. 4). Note that a

cpivot is also a ppivot because 𝐷𝑖 = 1 implies 𝐺𝑖 = 1.

4.2 Analysis in the Probabilistic Model

We follow Fig. 4(b). First, we show (Sec. 4.2.1) that blocks from

cpivots stabilize, i.e., they are in the longest processed chain of

all nodes forever (Lem. 4.5). This is useful because if we know that

cpivots occur frequently, then honest nodes can confirm transactions

that must lie in the prefix of a cpivot’s block (safety), and cpivots’

blocks (being produced by honest nodes) bring any outstanding

transactions onto chain (liveness). We then show that cpivots occur

frequently: We show with a new probabilistic argument (Sec. 4.2.2)

that ppivots are abundant, i.e., in every ‘sufficiently long’ interval

(i.e., of length Ω(𝜅2)), a constant fraction of the slots are ppivots

(Lem. 4.6). Due to the decoupling of cpivots and ppivots, the proof

up to this point does not depend on the capacity constraint and

the scheduling policy. Then, we show with a new combinatorial

argument (Sec. 4.2.3) that the adversary cannot prevent all ppivots

from becoming cpivots, i.e., in every ‘sufficiently long’ interval, there

is at least one cpivot (Lem. 4.8). As a result, if honest nodes confirm

transactions that are still on their longest processed chain after

‘sufficiently long’ time (i.e., confirmation latency Ω(𝜅2)), then PoW

NC is safe and live under bounded capacity (Sec. 4.3).

6
We denote intervals as (𝑖, 𝑗 ] ≜ {𝑖 + 1, ..., 𝑗 }, with (𝑖, 𝑗 ] ≜ ∅ if 𝑗 ≤ 𝑖 .

2𝐾1 2𝐾1 2𝐾1

2𝐾1𝐾2

Figure 10: An illustration for the proof of abundance of ppiv-

ots (Prop. D.11). Given a long interval of size 2𝐾1𝐾2, we par-

tition it into 𝐾2 intervals of size 2𝐾1 each, and we group the

indices as indicated by different colors. All indices of the

same color are at least 2𝐾1 apart, so that intervals of size at

most 𝐾1 surrounding two indices from the same group are

disjoint, and hence the corresponding ppivot conditions are

independent (conditioned on the fact that the ppivot condi-

tion holds for all long intervals).

4.2.1 Combinatorial Pivots Stabilize. We now show that the honest

block produced in a slot corresponding to a cpivot persists in the

longest processed chain of all honest nodes forever after 𝜈 slots

after it was produced. Towards this, we first show:

Proposition 4.4 (Formal version: Prop. D.4). At every index 𝑘

with 𝐷𝑘 = 1, the length of the “shortest (across honest nodes) longest

processed chain” grows.

That is, good slots where all honest nodes process the produced

block are chain growth events. Due to this and since, by Def. 4.3,

all intervals around a cpivot contain more indices with 𝐷𝑘 = 1

than those with 𝐷𝑘 = 0, there are not enough blocks for any other

chain to outnumber the chain growth events that contributed to the

growth of the processed chain containing the cpivot’s block. Thus,

we show the following (proven analogously to the combinatorial

argument of [52]):

Lemma 4.5 (Formal version: Lem. D.5). Let 𝑏∗ be the block pro-
duced in a non-empty slot 𝑡𝑘 such that CPivot(𝑘). Then, for all slots
𝑡 ≥ 𝑡𝑘 + 𝜈 : 𝑏∗ is in the longest processed chains of all honest nodes.

4.2.2 Probabilistic Pivots Are Abundant. Previous analyses of NC [24,

52] show that sufficiently long intervals contain at least one ppivot

(Fig. 4(a)). This was enough for the bounded-delay analysis because

in the bounded-delay setting, every ppivot is also a cpivot [51, Fact

1]. However, in the bounded-capacity setting, not every cpivot is a

ppivot, because not every good slot results in growth of the longest

processed chain of honest nodes (Fig. 4(b)). Thus, existence of one

ppivot in every large interval is not enough to conclude existence

of one cpivot in every large interval. Instead, we prove, using a

concentration bound on the number of ppivots, that long intervals

of indices in fact contain a number of ppivots proportional to the

interval length (Lem. 4.6). Then, in Sec. 4.2.3, we prove that out of

those many ppivots, at least one must also be a cpivot, which allows

us to continue with the safety and liveness proofs from [52].

The key challenge in proving that there are many ppivots is that

for two indices 𝑘1, 𝑘2, the events that 𝑘1 is a ppivot and that 𝑘2 is a

ppivot are dependent, because both events depend on overlapping

intervals. But a key observation is that since the ppivot condition

(Def. 4.2) already holds for large intervals with high probability (

Prop. D.8), we only need to look at the small intervals. Then, for

two indices 𝑘1, 𝑘2 that are sufficiently far apart, these short inter-

vals are disjoint, and thus the corresponding ppivot conditions are

independent. Therefore, we decompose a long interval of indices
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into several groups of far-apart indices. This is illustrated in Fig. 10,

each group indicated by a different color. Within each group, by

a concentration bound for iid random variables, there are many

ppivots. Further, by a union bound, the concentration holds in all

the groups simultaneously with high probability (Prop. D.11). Using

this, we show:

Lemma 4.6 (Formal version: Lem. D.12). For 𝐾cp = Ω(𝜅2), with
overwhelming probability, in every interval of size at least 𝐾cp, at

least (1 − 𝛿)𝑝ppivot fraction of the indices in the interval are ppivots.

4.2.3 Many Probabilistic Pivots Imply One Combinatorial Pivot. The
longest-header-chain ruleDlong (Alg. 3) has a few useful properties.

Nodes using this rule

(P1) process a BPO’s block’s content at most once,

(P2) either process the most recent honest block, or fully utilize

their capacity to process other blocks (i.e., do not stay idle),

and

(P3) prioritize blocks that were produced ‘recently’.

(P1) holds by construction. (P2) holds because this rule is never

idle, and will always process towards an honest block when it

has processed all longer chains and there is capacity remaining.

Moreover, we expect that in a secure execution, (P3) holds because

a node’s longest header chain cannot fork off too much from its

longest processed chain. More precisely, due to Lem. 4.5, any longest

header chain in any honest node’s view must extend the block

produced in the most recent cpivot, and therefore blocks with the

highest process priority must have been produced after the most

recent cpivot. Thus, if the adversary wants to prevent honest nodes

from processing the block produced at a good index 𝑘 , so that

𝐺𝑘 = 1 but 𝐷𝑘 = 0, then it can only “distract” them by providing 𝐶

blocks produced after the most recent cpivot (Prop. 4.7).

While we subsequently use Dlong as a concrete example, the

proofs only use (P1), (P2), (P3), and thus apply to several other

simple scheduling policies, including the freshest-block rule of [48].

Proposition 4.7. If𝐺𝑘 = 1 and𝐷𝑘 = 0, then during slots [𝑡𝑘 , 𝑡𝑘 +
𝜈], all honest nodes using the longest-header-chain scheduling policy

process content of at least 𝐶 blocks that are produced in (𝑖, 𝑘], where
𝑖 < 𝑘 is the largest index such that CPivot(𝑖) (if such an 𝑖 does not

exist, 𝑖 = 0).

Proof. In slot 𝑡𝑘 , there is exactly one block 𝑏 produced by an

honest node, the block header is made public at the beginning of the

slot, and is seen by all honest nodes within Δ
h
time. Thereafter, each

node has enough time to process 𝐶 blocks during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈].
Under the longest-header-chain scheduling policy, if 𝐷𝑘 = 0, i.e.

an honest node did not process content for the block 𝑏 before the

end of slot 𝑡𝑘 + 𝜈 , then that honest node must process the content

for at least𝐶 blocks on chains longer than the height of the block 𝑏

or in the prefix of the block 𝑏. Since honest nodes produce blocks

extending their longest chain,𝑏 extends the longest processed chain

of some honest node at slot 𝑡𝑘 − 1. Let 𝑏∗ be the block produced in

slot 𝑡𝑖 where CPivot(𝑖) (suppose 𝑖 exists). CPivot(𝑖) =⇒ 𝑌𝑖 = 1,

therefore this block is unique, and also 𝑡𝑘 > 𝑡𝑖 + 𝜈 . Due to Lem. 4.5,

any valid header chain longer than 𝑏 (which is some node’s longest

processed chain) at time slot 𝑡𝑘 must contain 𝑏∗. Therefore, the only
blocks that are processed by an honest node during slots [𝑡𝑘 , 𝑡𝑘 +𝜈]

(a) − + + + − + + + − + + + −
0

𝐾cp

(b) − + + + − + + + − + + + −

Figure 11: (a) Example realization of BPOs in

(
0, 𝐾cp

]
, with

good (+) and bad (−) indices, and resulting ppivots ( ). (b) To

prevent a ppivot from being a cpivot, the adversary needs

to prevent timely processing ( ) of some blocks produced

at good indices, so that around the respective ppivot there

is an interval ( ) in which the cpivot condition (cf. Def. 4.3)

is violated. Here, the first two ppivots are not cpivots. To

prevent timely processing of a block from a good index, the

adversarymust ‘spend’𝐶 blocks. Once the adversary runs out

of blocks, a ppivot remains a cpivot (here the third ppivot).

(1) must be produced after 𝑡𝑖 because they extend 𝑏∗, and
(2) must be produced no later than 𝑡𝑘 because there are no blocks

produced in (𝑡𝑘 , 𝑡𝑘 + 𝜈].
In case a cpivot 𝑖 < 𝑘 does not exist, the claim is trivial. □

Given the above properties of the scheduling policy, we now

want to show that cpivots occur once in a while. Fig. 11 illustrates

the key argument for this. To start, let us show that there is at least

one cpivot in

(
0, 𝐾cp

]
. From Lem. 4.6, there are many ppivots in(

0, 𝐾cp
]
. If there were no cpivots in

(
0, 𝐾cp

]
, then the adversary

must prevent each ppivot from turning into a cpivot. We know

that in any interval around a ppivot, good indices outnumber bad

indices by a margin proportional to the interval size (Prop. D.8,

see top row in Fig. 11). Therefore, for a ppivot to not be a cpivot,

the adversary must prevent an honest node from processing the

most recent honest block in several of these good indices (so that

the corresponding 𝐺𝑘 = 1 indices have 𝐷𝑘 = 0). Fig. 11 shows an

example where the adversary prevented processing of the honest

block in one good index, and as a result, two of the ppivots fail to

become a cpivot. From Prop. 4.7, for each such index, the adver-

sary must ‘spend’ at least 𝐶 blocks that the honest node processes.

These blocks come from a ‘limited budget’. In Lem. D.13, through

a combinatorial argument, we show that this ‘budget’ falls short

of the number of blocks required to overthrow all cpivots. Thus,

there must be at least one cpivot in

(
0, 𝐾cp

]
. Next, we would like

to show that there is at least one cpivot in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
for

all𝑚 ≥ 0 (by induction, where we just saw the base case𝑚 = 0).

Here, one may be concerned that the adversary could save up many

blocks from the past and attempt to make honest nodes process

these blocks at a particular target slot 𝑡𝑘 . But, given that one cpivot

occurred in

(
(𝑚 − 1)𝐾cp,𝑚𝐾cp

]
(by induction hypothesis), Prop. 4.7

ensures that honest nodes will only process blocks that are pro-

duced after (𝑚 − 1)𝐾cp. This allows us to bound the ‘budget’ of

blocks that the adversary can use to prevent ppivots from becoming

cpivots, and we can complete the induction and conclude:

Lemma 4.8 (Formal version: Lem. D.17). If honest nodes use the

longest-header-chain scheduling policy, and in every interval of size at

least 𝐾cp, at least a certain fraction of BPOs are ppivots (which holds

for 𝜌, 𝜆 chosen as a function of the model and analysis parameters,

as per eqn. (3)), then for all𝑚 ≥ 0, the interval

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
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has at least one cpivot. It follows that any arbitrary interval of length

2𝐾cp contains at least one cpivot.

4.3 Security of Proof-of-Work Nakamoto

Consensus

From Lems. 4.6 and 4.8, we conclude that for suitable 𝜆, with

overwhelming probability, cpivots occur in every 2𝐾cp-interval.

This allows us, together with Lem. 4.5 (cpivots stabilize), to prove

safety and liveness of the protocol for a confirmation depth 𝑘
conf

=

Θ(𝐾cp). The key arguments are in the proof of the following lemma.

Lemma 4.9. If for some 𝐾cp > 0,

∀𝑘 : ∃𝑘∗ ∈
(
𝑘, 𝑘 + 2𝐾cp

]
: CPivot(𝑘∗), (2)

then the PoW Nakamoto consensus protocol Π𝜌,𝜏,𝑘conf with 𝑘
conf

=

2𝐾cp+1 satisfies safety. Further, if the environment is (( 1
2
−𝛽)𝜌, 2𝐾cp/𝜌)-

tx-limited, then Π𝜌,𝜏,𝑘conf also satisfies liveness with 𝑇
live

= Θ(𝐾cp).

Proof. Safety: Denote the longest processed chain of node 𝑝

at slot 𝑡 as dC𝑝 (𝑡) and its 𝑘
conf

-deep prefix as dC𝑝 (𝑡) ⌈𝑘conf . For
an arbitrary slot 𝑡 , let 𝑘 be the largest index such that 𝑡𝑘 ≤ 𝑡 .

From Lem. 4.8, every interval of 2𝐾cp indices contains at least one

cpivot. Therefore, there exists 𝑘∗ ∈
(
𝑘 − 2𝐾cp − 1, 𝑘 − 1

]
such that

CPivot(𝑘∗). Let 𝑏∗ be the block from index 𝑘∗. Due to Lem. 4.5, for

all honest nodes 𝑝, 𝑞 and 𝑡 ′ ≥ 𝑡 , 𝑏∗ ∈ dC𝑝 (𝑡) and 𝑏∗ ∈ dC𝑞 (𝑡 ′). But
𝑘∗ ≥ 𝑘 − 𝑘

conf
, so the block 𝑏∗ cannot be 𝑘

conf
-deep in any chain

at slot 𝑡 . Therefore, LOG𝑡𝑝 is a prefix of 𝑏∗ which in turn is a prefix

of dC𝑞 (𝑡 ′). We can thus conclude that either LOG𝑡𝑝 ⪯ LOG𝑡
′
𝑞 or

LOG𝑡
′
𝑞 ⪯ LOG𝑡𝑝 . Therefore, safety holds.

Liveness (proof sketch, details in App. D.4): Recall that since indices

count slots with block production, 𝑇 slots corresponds to roughly

𝜌𝑇 indices. Again let 𝑘 be the largest index such that 𝑡𝑘 ≤ 𝑡 . We will

first prove that all transactions received between indices 𝑘 − 2𝐾cp
and𝑘 , which are of total size at most (1−2𝛽)𝐾cp as per the tx-limited

environment, will be added to the longest processed chains of all

nodes by index𝑘+2𝐾cp. We know that there exists𝑘∗ ∈ (𝑘, 𝑘+2𝐾cp]
such that CPivot(𝑘∗). Since 𝑘∗ is a cpivot, there are more indices 𝑗

with 𝐷 𝑗 = 1 than indices with 𝐷 𝑗 = 0 in the interval

(
𝑘, 𝑘 + 2𝐾cp

]
(by Def. 4.3). Since each index with 𝐷 𝑗 = 1 leads to chain growth,

every honest node’s longest processed chain grows by at least

𝐾cp between indices 𝑘 and 𝑘 + 2𝐾cp. There are at most 𝛽 · 2𝐾cp
adversary block productions in the interval

(
𝑘, 𝑘 + 2𝐾cp

]
, hence

every honest node’s longest processed chain grows by at least

𝐾cp−2𝛽𝐾cp honest blocks. These honest blocks will include pending
transactions, whose size is at most (1 − 2𝛽)𝐾cp. Moreover, in the

interval

(
𝑘 + 2𝐾cp, 𝑘 + 2𝐾cp + 2𝑘conf

]
, every honest node’s longest

processed chain grows by at least 𝑘
conf

. Thus, the newly added

transactions are 𝑘
conf

-deep, hence confirmed, by all nodes by index

𝑘 + 2𝐾cp + 2𝑘conf , which is a latency of 𝑇
live

=
6𝐾cp+2
𝜌 slots. □

Subsequently, we take 𝜏 → 0 and 𝜆 ≜ 𝜌/𝜏 in order to model PoW

accurately. Finally, since𝐶, 𝜈 were analysis parameters chosen arbi-

trarily, we maximize over these parameters to find the best possible

security–performance tradeoff (Thm. 4.10). The result is plotted for

Δ
h
≈ 0 (reasonable approximation for large block content relative

to headers) in Fig. 1.

Theorem 4.10. For all 𝛽 < 1/2, 𝜆 > 0, such that

𝜆 < max

𝐶

1

Δ
h
+𝐶/𝐶

ln

(
2(1 − 𝛽)𝐶

𝐶 + 4 +
√︁
8𝐶 + 16

)
, (3)

the PoW Nakamoto consensus protocol with the longest-header-chain

scheduling policy, 𝜏 → 0, 𝜌 = 𝜆𝜏 , and 𝑘
conf

= Θ(𝜅2) is secure with
transaction rate ( 1

2
− 𝛽)𝜆, confirmation latency Θ(𝜅2) over a time

horizon of 𝑇
hrzn

= poly(𝜅).

Thm. 4.10 is proved in App. D.4.

5 PROOF-OF-STAKE NAKAMOTO CONSENSUS

Nakamoto consensus has been adapted to proof-of-stake in pro-

tocols of the Ouroboros [4, 22, 35] and Sleepy Consensus [19, 52]

families. The protocol is identical to what was described in Sec. 3

and formalized in Alg. 1, except for a few key differences. The block

production oracle for proof-of-stake (idealized in Alg. 4) behaves

differently. As in PoW, each node can make one block production

attempt per slot that will be successful with probability 𝜌/𝑁 , inde-

pendently of other nodes and slots
7
, modeling uniform stake. In

PoS, however, (even past) block production opportunities can be

‘reused’ to produce multiple blocks with different parents and/or

content, i.e., to equivocate.

5.1 Blanking Nakamoto Consensus (BlaNC)

In the classic bounded-delay analysis, the tradeoff between 𝛽 and 𝜆

is the same for PoW and PoS NC [24, 30], because, conceptually, NC

security depends only on a race between the honest chain and adver-

sary chains. Even in PoS, the adversary cannot use equivocations to

boost its chain growth rate, because blocks within one chain must

be from strictly increasing slots, i.e., different BPOs. Under bounded

capacity, however, as observed in [48], honest nodes may waste

their limited capacity processing equivocations rather than staying

up-to-date with the longest chain. Thus, blocks they produce may

not contribute to honest chain growth. As a result, the honest chain

growth rate decreases, and with it PoS NC security [48] (compared

to PoW). The key idea in BlaNC is to modify the scheduling policy

of PoS NC such that per BPO at most one block is processed. This

restores the one assumption of the bounded-capacity PoW NC anal-

ysis (Sec. 4.2.3 (P1)) that was previously violated in PoS NC due to

equivocations. With the modification of BlaNC, the analysis from

Sec. 4 carries over to PoS.

One may consider this alternative: defer content processing until

after consensus has been reached on a header chain. This, however,

requires ensuring that the contents belonging to headers will be

available for download. Sampling-based approaches [3] to check

data availability come with various challenges [47] and VID-based

approaches [17, 63] do not scale to the large 𝑁 found in PoS NC.

5.1.1 Protocol. BlaNC is PoS NC (cf. [35, 52]), with the following

modifications.

The Scheduling Policy in BlaNC. BlaNC uses any scheduling

policy that is secure for PoW NC (such as longest-header-chain),

modified as follows: a node does not process content for a header

7
There may be multiple blocks in one slot, as in the Ouroboros [4, 22, 35] and Sleepy

Consensus [19, 52] protocols.
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(denoted by the corresponding header chain C) if it has seen an-

other equivocating header from the same BPO as C. Instead, the
node pretends that content was “processed” and sets it to be empty.

The node can then continue processing content for headers that

extend C, and these blocks will be candidates for the node’s longest
processed chain. With only the above scheduling policy, one hon-

est node may process the real content for a header while another

may set it to be empty (depending on when each node saw an

equivocating header). In order to output a consistent transaction

ledger, reaching consensus on the header chain is no longer enough.

Instead, we ensure that honest nodes also agree on which blocks

had an equivocation, through equivocation proofs, so that they can

consistently blank their contents.

Equivocation Proofs. An equivocation proof consists of two head-

ers C, C′ from the same BPO. Whenever a node produces a new

block header extending its longest processed chain, it includes an

equivocation proof for any header C among the last 𝑘
epf

headers

(on the new block’s prefix) for which it has seen an equivocating

header C′ but no equivocation proof was recorded on chain yet.

Equivocation Proof Deadline. The deadline 𝑘
epf

for adding equi-

vocation proofs ensures that the adversary cannot use equivocations

or equivocation proofs to make honest nodes blank the content of

an old block whose transactions they have already confirmed. A

header C is thus invalid if it contains an equivocation proof against

a block that is not within 𝑘
epf

blocks above C.
Ledger Construction in BlaNC. At the end of each slot, each

node confirms all blocks on its longest processed chain that are

𝑘
conf

-deep, except it blanks the contents of blocks against which

there is an equivocation proof on chain.

5.1.2 Security Proof. The scheduling policy of BlaNC ensures that,

just like in PoW NC, honest nodes process at most one block per

BPO. This eliminates additional block processing delays caused by

equivocations, allowing the honest chain growth rate to match that

of PoW NC. Given this, the security proof of PoW NC in Sec. 4 can

be adapted to BlaNC to show that the 𝑘
conf

-deep header chains of

all nodes are consistent.

To ensure that their ledgers are consistent, and complete the secu-

rity proof, we need two more steps. First, liveness of BlaNC follows

easily because the contents of blocks produced by honest nodes

will never be blanked. Second, for safety, we show (a) honest nodes

have processed the content for all blocks against which there is no

equivocation proof on chain (these blocks must not be blanked),

and (b) honest nodes blank content in their ledger consistently, that

is, any honest node blanks the contents of a block in its ledger iff all

honest nodes do so. We prove (a) and (b) in Thm. 5.1 by choosing

appropriate values for 𝑘
conf

and 𝑘
epf

.

Since the analysis of PoW NC from Sec. 4 (details in App. D)

applies to BlaNC as well, Lem. 4.5 (cpivots stabilize the longest

processed chains of all nodes) and Lem. 4.8 (cpivots recur) hold for

BlaNC. Thus, eqn. (3) also determines the parameters under which

BlaNC is secure, i.e., the security–throughput tradeoff of BlaNC.
8

In Fig. 3, we plot the solutions of eqn. (3) with 𝐶 = 1 and Δ
h
≈ 0

8
Technically, since PoS protocols run in slots of fixed duration, unlike PoW, 𝜏 must

match the slot duration. If 𝜏 is small relative to the block production and processing

times (such as 1 second in Cardano), we can still use the approximation 𝜏 → 0, just

like in PoW. We calculate the parameters for general 𝜏 in App. D.3.3.

𝑏 𝑏 𝑗 𝑏𝑘 𝑏𝑙

dC𝑞 (𝑡 ′ )

dC𝑝 (𝑡 )
... ...... ...... ...

𝑘
epf

= 4𝐾cp blocks

𝑘
conf

= 6𝐾cp + 1 blocks

Latest possible equivocation proof against 𝑏 stabilizes

Includes equivocation proof against 𝑏 (if any)

All honest nodes have processed 𝑏 or seen an equivocation

Figure 12: Illustration for the security proof of BlaNC

(Thm. 5.1). Consider a block 𝑏 that is 𝑘
conf

-deep in the longest

processed chain of a node. Indices 𝑗, 𝑘, 𝑙 are cpivots. Since

cpivots stabilize (Lem. 4.5), the corresponding blocks 𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙
are in all honest nodes’ processed longest chains. At cpivot

𝑗 , we know for sure that all honest nodes either processed

𝑏’s content or saw an equivocation for it, because they have

processed 𝑏 𝑗 ’s content. At cpivot 𝑘 , we know for sure that if

𝑏 had an equivocation, preventing processing of its content,

then an equivocation proof against 𝑏 must have entered the

chain. At cpivot 𝑙 , we know for sure that the last block that

can add an equivocation proof against 𝑏 has stabilized (as the

deadline of 𝑘
epf

blocks has passed). Thus, a ledger formed

from 𝑘
conf

-deep blocks (sufficient to obtain three cpivots) will

remain safe.

(approximation for block content much larger than headers). Since

eqn. (3) does not depend on 𝜅, for any given 𝛽 , the block rate 𝜆 is

non-vanishing. Only latency scales with 𝜅, similar to PoW NC.

In both Thm. 5.1 (for BlaNC) and Thm. 4.10 (for PoW NC), we

prove an upper bound on the confirmation latency that scales

with the security parameter 𝜅 as 𝑂 (𝜅2). Concretely, our bound on

BlaNC’s latency (Thm. 5.1) is 3× our bound for PoWNC (Lem. D.20).

Theorem 5.1. For all 𝛽 < 1/2,𝐶 , Δ
h
, 𝜌 , 𝜏 satisfying eqn. (3), there

exists 𝑘
epf
, 𝑘

conf
= Θ(𝜅2) such that the BlaNC protocol is secure

with transaction rate (1 − 2𝛽)𝜆, confirmation latency 𝑇
live

= Θ(𝜅2)
slots over a time horizon of 𝑇

hrzn
= poly(𝜅).

Proof. Set 𝑘
conf

≜ 6𝐾cp + 1, 𝑘epf ≜ 4𝐾cp. Denote the longest

processed chain of node 𝑝 at slot 𝑡 as dC𝑝 (𝑡) and its 𝑘
conf

-deep

prefix as dC𝑝 (𝑡) ⌈𝑘conf . Safety holds if the following three prop-

erties hold for all slots 𝑡 ≤ 𝑡 ′ and for all honest nodes 𝑝, 𝑞: (1)

dC𝑝 (𝑡) ⌈𝑘conf ⪯ dC𝑞 (𝑡 ′) ⌈𝑘conf or dC𝑞 (𝑡 ′) ⌈𝑘conf ⪯ dC𝑝 (𝑡) ⌈𝑘conf . (2)
If 𝑏 ∈ dC𝑝 (𝑡) ⌈𝑘conf and there is no equivocation proof in a block

header following it, then node 𝑝 must have processed the content

of 𝑏 before slot 𝑡 . (3) If 𝑏 ∈ dC𝑝 (𝑡) ⌈𝑘conf and 𝑏 ∈ dC𝑞 (𝑡 ′) ⌈𝑘conf , then
𝑝 blanks the content of 𝑏 in LOG𝑡𝑝 iff 𝑞 blanks it in LOG𝑡

′
𝑞 .

Consider an arbitrary block 𝑏𝑖 (produced at some index 𝑖) that is

confirmed by an honest node 𝑝 at slot 𝑡 , i.e., 𝑏𝑖 ∈ dC𝑝 (𝑡) ⌈𝑘conf . Since
𝑏𝑖 is 𝑘conf -deep, there must have been at least 6𝐾cp + 1 indices after
𝑖 . Due to Lem. 4.8, there must have been at least three cpivots 𝑗, 𝑘, 𝑙

after index 𝑖 . Due to Lem. 4.5, the blocks produced at these indices,

𝑏 𝑗 , 𝑏𝑘 , 𝑏𝑙 are in dC𝑞 (𝑡 ′) for all 𝑡 ′ ≥ 𝑡 and for all 𝑞 (see Fig. 12).

Therefore, dC𝑝 (𝑡) ⌈𝑘conf ⪯ dC𝑞 (𝑡 ′), and from this, we can prove (1).

To prove (2), suppose that node 𝑝 did not process the content of

block 𝑏𝑖 . Since block 𝑏 𝑗 , and hence also 𝑏𝑖 , is in every honest node’s
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longest processed chain at slot 𝑡𝑘+1−1 (Lem. 4.5), it must have been

that 𝑝 saw an equivocation for 𝑏𝑖 before slot 𝑡𝑘+1 − 1 (otherwise it
must have actually processed the content of 𝑏𝑖 ). Due to synchrony,

all honest nodes see the headers of𝑏𝑖 and its equivocation. Since the

block 𝑏𝑘 is produced by an honest node, and 𝑘 < 𝑖 + 4𝐾cp = 𝑖 +𝑘
epf

,

𝑏𝑘 must contain an equivocation proof against 𝑏𝑖 (see Fig. 12).

To prove (3), we show that while confirming the block 𝑏𝑖 , either

all nodes see an equivocation proof against 𝑏𝑖 or none of them do.

The latest that an equivocation proof against 𝑏𝑖 can be included

is 𝑘
epf

blocks below 𝑏𝑖 . Since 𝑘conf > 𝑘epf + 2𝐾cp, due to Lem. 4.8,

the cpivot 𝑙 must have occurred after 𝑏𝑖 became 𝑘
epf

-deep and

before it became 𝑘
conf

-deep (see Fig. 12). Thus, for all 𝑝 and 𝑡 ,

if 𝑏𝑖 ∈ dC𝑝 (𝑡) ⌈𝑘conf , then 𝑏𝑙 ∈ dC𝑝 (𝑡), hence all nodes agree on

whether or not an equivocation proof was included.

Liveness follows similarly to PoW NC: Within 2𝐾cp indices, there

are enough honestly produced blocks to include new transactions,

and their contents will never be blanked. In Θ(𝐾cp) slots, these
blocks will become 𝑘

conf
-deep and will be confirmed. □

5.2 Handling Loss of Predictable Validity

5.2.1 Predictable Transaction Validity. In UTXO-based chains like

Bitcoin (account-based like Ethereum), a transaction is valid iff its

inputs are unspent (its execution succeeds and fees are paid).

Definition 5.2. A transaction has predictable validity iff: validity

at the time an honest node adds it to a block implies validity when

that block gets executed.

The blanking in BlaNC leads to a loss of predictable transaction

validity. An honest block 𝐵 may include a transaction that depends

on the contents of a previous block 𝐴 whose equivocations were

not known at the time. After block 𝐵 is produced, the adversary

could release an equivocation for the block 𝐴, forcing honest nodes

to blank block 𝐴’s contents, which may invalidate the transaction

in block 𝐵. Such invalidated transactions take up free space in

honest blocks and lower the effective throughput (valid confirmed

transactions) of the ledger.

We propose a simple solution to recover predictable validity for

BlaNC: If nodes limit transactions they include in a block to those

that don’t depend on any recently changed state, then they can be

sure that all equivocations that could affect the validity of a transac-

tion already have a corresponding equivocation proof included on

chain. This is because at the time of creating a block, honest nodes

have seen all transactions which will be executed, however, not all

transactions nodes have seen will be executed. The following lemma

follows easily.

Lemma 5.3. If a node produces a block whose transactions do not

share state with any transaction included in the last 𝑘
epf

blocks, then

the block satisfies Def. 5.2.

5.2.2 Predictable Fee Validity. In practice, in popular DeFi-ecosystems,

which consist of very interdependent transactions [16, 32], it may

not always be practical to limit the interaction between transac-

tions. We propose instead preserving the minimum requirement

that each transaction pays its fee, regardless of the outcome of its

execution. This guarantees that miners are compensated for space

used in their blocks, and also makes it costly for the adversary to

take up space with invalid transactions.

Definition 5.4. A transaction has predictable fees iff: ability to

pay fees when an honest node adds it to a block implies ability to

pay fees when the block executes.

In systems like Ethereum, transactions have a max gas value

set by the sender which limits the computation allowed by the

transaction and ultimately its fee. We consider a protocol with this

gas mechanism, as well as a base transaction cost that covers the

block space taken up by the transaction. We introduce a notion of

gas deposit accounts to BlaNC that can only be used for transaction

fees (transactions internally do not have access to these accounts).

When a miner includes a transaction, it checks that the account

funding the transaction has enough funds to cover the maximum

gas, even if all transactions in its recent ancestor blocks make it to

the blanked ledger and consume their maximum gas. Users thus

need to maintain a balance proportional to the complexity and

frequency of the transactions they make. We also require that any

deposit to the account is not considered in the balance until 𝑘
epf

blocks after the deposit transaction. Withdrawals can take place

immediately, as direct transactions.

Lemma 5.5. If a node produces a block whose transactions are

funded by gas deposit accounts with sufficient balance (balance before

𝑘
epf

blocks minus any fees since), then all transactions in the block

satisfy Def. 5.4.

The solutions in Secs. 5.2.1 and 5.2.2 are complementary and

could each be adopted as per-validator heuristics (i.e., not a con-

sensus rule), or by the system based on the use-case (e.g., expected

inter-dependency of transactions).

6 DISCUSSION

Tightening the Analysis. Our teasing strategy and security anal-

ysis (cf. Fig. 1) serve as the first lower and upper bounds on nodes’

minimum capacity required to ensure security in the bounded-

capacity PoW setting. A question remains on how to tighten the

gap. One avenue for future work is whether the adversary has bet-

ter strategies than the teasing strategy, which we believe may be

optimal in the bounded-capacity model.

Conjecture 6.1. For the PoWNC protocol with the longest-header-

chain scheduling policy, for all 𝛽 < 1/2, 𝜆 for which the teasing

strategy is unsuccessful, the protocol is secure (against all attacks).

Conversely, we expect that the security analysis can be improved

in multiple ways. The current analysis uses only a few basic proper-

ties (P1), (P2), (P3) of the scheduling policy. As a result, we assume

that any valid block can be used by the adversary to spam honest

nodes. However, when using the longest-header-chain policy, the

adversary can only force honest nodes to process blocks that are on

their longest header chain, which is already hard for the adversary

given that the honest chain has been growing so far. An improved

analysis should account not just for the number of block produc-

tions in the adversary’s budget but also their blocktree structure.

Further, good slots are sufficient but not necessary for chain growth.

Improved analysis of the chain growth rate using techniques such

as blocktree partitioning [24] can further tighten the analysis.

Variable Difficulty. In practice, PoW blockchains implement a diffi-

culty adjustment algorithm (DAA) to maintain the target block rate
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as players join and leave the system. This introduces new avenues

for attack [7]. The variable difficulty protocol has so far been proven

secure only in the lock-step synchronous model (i.e., messages de-

livered in exactly one round) [29]. Security in the bounded-delay

and bounded-capacity models remains an open problem. We note,

however, that the DAA seems to apply even more stress to limited

capacity nodes, as it would lower the difficulty to compensate for

chain growth rate lost due to congestion, leading to an increase in

the overall block rate of the system. In turn, this would increase

congestion, in particular if honestly produced orphaned blocks are

processed by honest parties, leading to a vicious cycle. Under the

longest-header-chain scheduling policy that we consider in this

work, honest nodes do not prioritize processing orphaned blocks,

but this appears to be the case for scheduling policies that allow for

processing multiple blocks in parallel. The nuance in this analysis

is left for future work.
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A SIMULATION DETAILS

Nodes in our simulation
9
generate blocks in a Poisson process with

rate proportional to their mining power. We assume the mining

difficulty is fixed, and do not include any adjustment by a difficulty

adjustment algorithm. In fact, difficulty adjustment algorithms tend

to worsen processing problems as they increase the block creation

rate if the chain does not grow fast enough—which in turn requires

more processing from nodes.

Nodes process blocks one at a time according to the priority

dictated by the processing policy, at a rate determined by their

capacity. They are allowed to preempt their current task if new

information (headers that are published, blocks that they mined)

presents them with a higher priority target. Since queues can grow

large if nodes do notmanage to process all blocks in a timelymanner,

we maintain priority queues of bounded size (typically 100) and

evict low priority tasks from the queue as needed. As preemption of

9
Source code: https://github.com/avivz/finitebwlc

tasks may cause nodes to alternate between tasks, we allow nodes

to retain partial work in an LRU cache of size 10.

Except where we note otherwise, headers are assumed to propa-

gate instantly in the simulations. To simulate an idealized bounded-

delay network, where needed, we set the header propagation delay

to Δ and the capacity of each node to be∞. Block headers contain

the relevant lottery information which can be easily validated. We

therefore assume the adversary never publishes headers it did not

actually mine.

To remain close to the theoretical analysis, we model all process-

ing tasks as dependent only on the resources available to the node

itself. In reality, things are much more complex: nodes typically

propagate blocks in a peer-to-peer network, which means both the

overlay network topology and the underlying internet topology

both greatly impact block download rates and performance. Our

simplified setting allows us to focus more on the congestion effects

in isolation from the effects of topology and other peer-to-peer

related issues.

B OTHER CONGESTION-BASED ATTACKS

B.1 Forking Attack

The teasing strategy relied on the fact that the adversary could

entice nodes with a long header chain that is later discovered to

be unavailable for processing. It is natural in this case to consider

adjusting the scheduling policy to one that prefers the proverbial

‘bird in the hand over two birds in the bush’, i.e., to extend the

blocks we already processed over the illusive promise of a longer

chain that the adversary may withhold from us.

Greedy policy. This policy prioritizes processing blocks that

extend the chain a node has already processed. If a header of a

block at height ℎ is announced, and we already have ℎ𝑖 blocks from

that chain, we set the priority of the block to be (ℎ𝑖 , ℎ) and compare

between the two priorities lexicographically.

While the greedy policy performs well at high processing rates,

we unfortunately find that it performs poorly in the low processing

rate regime. Specifically, if a fork in the chain occurs, and nodes

are split evenly between the two alternatives, the fork may never

resolve. This is because nodes extend their own chain, and prioritize

processing on their side of the split while having insufficient pro-

cessing power to catch up with the other alternative chain. A fork

in the chain can result from a deliberate attack by an adversary that

releases blocks selectively to different nodes, by a network split, or

worse, by an unlucky timing of honest node mining events. In this

case, the blockchain fails even for small adversaries. Importantly, a

fork that never resolves is either a safety or a liveness failure, as no

transaction on either side of the split can be safely accepted.

To demonstrate this scheduling policy in action, we simulate a

network of 100 nodes that are split evenly between two partitions

for only 15 seconds, i.e., for an expected time required to produce 15

blocks.
10

Once the network split ends, the simulation continues for

another 4000 seconds, allowing nodes the opportunity to converge

on a chain. Wemeasure the height of the latest block all nodes agree

upon. If nodes do not recover from the partition, this block will be

10
Such short splits are relatively easy to induce in reality (transient problems with

Internet routing, denial-of-service on the network, etc.) and thus a practical scheduling

rule must recover from such splits.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.paradigm.xyz/2022/08/das
https://eprint.iacr.org/2016/918
https://news.bitcoin.com/running-bitcoin-cash-an-introduction-to-operating-a-full-node/
https://news.bitcoin.com/running-bitcoin-cash-an-introduction-to-operating-a-full-node/
https://eprint.iacr.org/2019/943
https://arxiv.org/abs/1605.09193v2
https://eprint.iacr.org/2023/1089
https://github.com/avivz/finitebwlc
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Figure 13: The rate nodes grow the agreed chain after the

network splits into two sets of 50 nodes for 15 secs, when the

scheduling policy is “longest-header-chain” ( ) or “greedy”

( ). Nodes using the greedy policy prioritize processes on

their current chain. Under low capacity, they do not recover

from the split, resulting in two chains forking at genesis,

providing no growth of the agreed chain. Thus, longest chain

is insecure without an adversary (cf. Fig. 1(c)).
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Figure 14: Results of a simulation of the Equiv-teasing attack

comparing the rate of chain growth relative to honest block

production rate, when nodes prioritize processing towards

the longest header chain, for various capacity limits. The

honest chain growth rate falls to almost zero as the adversary

spams honest nodes with longer chains. The teasing strategy

is shown for comparison.

the genesis and the liveness of the protocol has failed. Otherwise,

nodes quickly agree on the main chain and the height of the latest

agreed block is just a little behind the longest tip of the chain.

We simulate the evolution after a brief partition for both the

longest-header-chain policy as well as for the greedy policy. Our

results (Fig. 13) show that in settings where capacity is greater than

1/2, nodes manage to catch up with the chain and the rate of growth

matches for both scheduling policies. In lower capacity settings,

however, nodes never catch up. Note that this attack requires no

adversary mining, yet the protocol is insecure (cf. Fig. 1(c)). This

is in stark contrast to the bounded-delay analysis which suggests

that the protocol retains security against a non-mining adversary

at any capacity (cf. Fig. 1(a)), and highlights again the need to study

the security of blockchains at capacity.

B.2 The Equiv-Teasing Attack (PoS)

In PoS, the adversary can greatly increase the network’s processing

load using equivocations. The equiv-teasing attack, described in

Fig. 15, uses equivocations to announce a whole new chain at every
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Figure 15: Equiv-teasing attack: Steps (a)-(e) are the same as

in the teasing strategy (Fig. 6). Recall that in (c), to delay the

processing of the honest block at height ℎ = 3, the adversary

announces a block at height ℎ + 1 which it was withholding.

Since this is the longest announced chain, honest nodes pri-

oritize processing block 2 on this chain. New steps: (f) Once

an honest node produces a block at height 4, the adversary an-

nounces equivocations 1
′, 2′, ... of its withheld chain of length

5 instead of announcing one new block extending the chain

1, 2, ... Therefore, honest nodes have to process blocks 1
′, 2′

even though they processed 1, 2 earlier. The adversary makes

content available for only 1
′, 2′, 3′. As the attack goes on, the

adversary’s announced chain gets longer, and it consumes

even more of the honest node’s processing capacity.

instance when the teasing strategy would have announced a single

new block. As the attack goes on, the length of the new announced

chain increases. This increases the time honest nodes spend pro-

cessing this chain, and decelerates the honest chain growth until it

comes to a halt. As a result, in Fig. 14, the chain growth rate under

the equiv-teasing attack is nearly zero.

As in the teasing strategy, the adversary starts by producing a

private chain. Assuming the adversary’s block production rate 𝜆
adv

is less than the honest chain growth rate before the attack (𝜆
privt

grwth
),

the probability that the adversary produces a chain of length 𝑘

before the honest chain reaches length 𝑘 is 𝑒−𝑂 (𝑘 ) [24, 45]. This
means that with probability 𝜖 , the adversary eventually produces a

private chain of length 𝑘 = 𝑂 (log(1/𝜖)), of which it can announce

equivocations during the attack. Since this chain is longer than

the honest chain, it has higher scheduling priority. It takes honest

nodes 𝑘/𝐶 time to process such a chain, during which time, honest

nodes do not process blocks on the honest chain. So, any honest

blocks produced within 𝑘/𝐶 time after the first honest block at

height ℎ do not grow the honest chain (Fig. 6(e)). If 𝜆
hon

𝑘/𝐶 is

large, then there are many honest blocks that do not lead to chain

growth, causing the chain growth rate 𝜆
grwth

to drop (Fig. 14). As

in the teasing strategy, if the adversary’s block production rate

𝜆
adv

exceeds 𝜆
grwth

, then the adversary succeeds in maintaining

the number of block productions required for the attack to go on

forever. This eventually slows honest chain growth to a halt. Thus,

if 𝜆
hon

𝑘/𝐶 is large, i.e., 𝜆
hon

= Ω(1/𝑘) = Ω
(

1

log(1/𝜖 )

)
, then the

attack succeeds with probability 𝜖 .
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Algorithm 1 Idealized NC protocol Π𝜌,𝜏,𝑘conf with scheduling pol-

icy (helper functions: App. C.2, environmentZ: App. C.3, function-

ality F PoW,𝜌,𝜏

hdrtree
: Alg. 2)

1: ⊲ Global counter of slots 𝑡 ← 1, 2, ... of duration 𝜏 (𝜏 → 0 for PoW)

2: on init(genesisC, genesisTxs)
3: ⊲ Initialize header tree hT , longest processed chain dC, and mappings from block header to

content blkTxs

4: hT, dC ← {genesisC}, genesisC
5: blkTxs[genesisC] ← genesisTxs ⊲ Unset entries of blkTxs are UNKNOWN

6: on receivedHeaderChain(C) ⊲ Called by Z or A
7: assert FPoW,𝜌,𝜏

hdrtree
.verify(C) ⊲ Validate header chain

8: hT ← hT ∪ prefixChainsOf (C) ⊲ Add C and its prefixes to hT
9: Z.broadcastHeaderChain(C)
10: on receivedContent(C, txs) ⊲ Called by Z or A
11: ⊲ Defer processing the content until all prefixes’ contents are processed

12: defer until ∀C′ ≺ C : blkTxs[C′ ] ≠ UNKNOWN
13: assert C.txsHash = Hash(txs)
14: receivedHeaderChain(C) ⊲ Validate header chain
15: assert AreTxsValid(txs) ⊲ Validate content of chain
16: blkTxs[C] ← txs
17: Z.uploadContent(C, txs)
18: ⊲ Update the longest processed chain

19: T′ ← {C′ ∈ hT | blkTxs[C′ ] ≠ UNKNOWN}
20: dC ← argmaxC′ ∈T′ | C′ |
21: at slot 𝑡 ← 1, 2, ... ⊲ NC protocol main loop

22: txs← Z.receivePendingTxs( )
23: ⊲ Produce and disseminate a new block if eligible

24: if C′ ≠ ⊥ with C′ ← FPoW,𝜌,𝜏
hdrtree

.extend(dC, txs)
25: Z.broadcastHeaderChain(C′ )
26: Z.uploadContent(C′, txs)
27: ⊲ Confirm all but the last 𝑘

conf
blocks on the longest processed chain

28: LOG𝑡 ← txsLedger(blkTxs, dC ⌈𝑘conf ) ⊲ Ledger of node 𝑝 at 𝑡 : LOG𝑡𝑝
29: do throughout

30: Download content for some C chosen by scheduling policy (e.g. Alg. 3)

Algorithm2 Idealized functionalityF PoW,𝜌,𝜏

hdrtree
: block production lot-

tery and header chain structure for PoW (helper functions: App. C.2)

1: on init(genesisC, numNodes)
2: 𝑁 ← numNodes
3: T ← {genesisC} ⊲ Global set of valid header chains

4: on extend(C, txs) from node 𝑃 (possibly adversary) at slot 𝑡
5: ⊲ Abstraction of proof-of-work lottery: each node can call this once per slot and produces a

block with probability 𝜌/𝑁 independently of other nodes and slots

6: if lottery[𝑃, 𝑡 ] ≠ ⊥ return ⊥ ⊲ Only one ticket per node and slot

7: lottery[𝑃, 𝑡 ] $← (true with probability 𝜌/𝑁 , else false)
8: if C ∈ T ∧ lottery[𝑃, 𝑡 ] ⊲ Parent chain C is valid and lottery was won?

9: ⊲ Produce a new block header extending C
10: C′ ← C∥ newBlock(txsHash : Hash(txs) )
11: T ← T ∪ {C′ } ⊲ Register new header chain in header tree

12: return C′
13: return ⊥
14: on verify(C)
15: return C ∈ T ⊲ Header chain is valid if previously added to header tree

Algorithm 3 Longest-header-chain rule Dlong

1: function dlLongestHdrChain(hT, blkTxs)
2: T′ ← {C ∈ T′ | blkTxs[C] = UNKNOWN} ⊲ Ignore processed chains

3: C ← argmaxC′ ∈T′ | C′ | ⊲ Select the longest chain

4: C′ ← argminC′′⪯C : blkTxs[C′′ ]=UNKNOWN | C′′ | ⊲ First unknown block on that chain (if

non-existent: ⊥)
5: return C′

C PROTOCOL & MODEL DETAILS

C.1 Nakamoto Consensus Pseudocode

Pseudocode of an idealized NC protocol Π𝜌,𝜏,𝑘conf is provided in

Alg. 1. Details of the PoW-based block production lottery, i.e., of

production and verification of blocks, are abstracted through an

idealized functionality F PoW,𝜌,𝜏

hdrtree
whose pseudocode is provided in

Content
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Figure 16: Bounded-capacity network model [48, Fig. 4]: 1

Honest node produces a block, made of header and content.

A hash in the header commits to the content. 2 Header

is flooded (Z.broadcastHeaderChain), and arrives at all

nodes (Π𝜌,𝜏,𝑘conf .receivedHeaderChain) with at most Δ
h

delay. 3 Content is made available for peer-to-peer pull-

based download (Z.uploadContent). 4 Content associated

with the header is processed (i.e., downloaded and verified)

(Π𝜌,𝜏,𝑘conf .receivedContent), subject to a maximum rate

of𝐶. 5 The adversary can push headers and content to nodes,

bypassing the delay and capacity constraints.

Alg. 2 (cf. [52, Fig. 2], [48, Alg. 3]). Pseudocode for the longest-

header-chain scheduling policy Dlong is provided in Alg. 3. Helper

functions used in the pseudocode are detailed in App. C.2.

C.2 Helper Functions for Nakamoto Consensus

Pseudocode

• Hash(txs): Cryptographic hash function to produce a binding

commitment to txs (modelled as a random oracle)

• C′ ⪯ C, C ⪰ C′: Relation that C′ is a prefix of C
• C∥C′: Concatenation of C and C′
• |C|: Length of C
• (true with probability 𝑥 , else false): Bernoulli random vari-

able with success probability 𝑥

• prefixChainsOf (C): Set of prefixes of C, i.e., all C′ with C′ ⪯ C
• newBlock(txsHash : Hash(txs)) and
newBlock(time : 𝑡, node : 𝑃, txsHash : Hash(txs)): Produce a

new PoW and PoS block header with given parameters, respec-

tively

• txsLedger(blkTxs, C): Concatenates the block contents stored

in blkTxs for the blocks along the chain C, to obtain the corre-

sponding transaction ledger

C.3 Bounded-Capacity Model EnvironmentZ
We study PoW NC (App. C.1) using the following model for a

network Z with finite capacity (Fig. 16), and for the powers and

limits of an adversary A.

The environmentZ initializes 𝑁 nodes and lets A corrupt up

to 𝛽𝑁 nodes at the beginning of the execution. Corrupted nodes

are controlled by the adversary. Honest nodes run Π𝜌,𝜏,𝑘conf . The
environment maintains a mappingZ.blkTxs from block headers

to the block content (transactions). This mapping is referred to as
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the ‘cloud’ in Fig. 16. Z also maintains for each node a queue of

pending block headers to be delivered after a delay determined by

the adversary. IfA has not instructedZ to deliver a header Δ
h
real

time after it was added to the queue of pending block headers, then

Z delivers it to the node.

Honest nodes andA interact withZ via the following functions:

• Z.broadcastHeaderChain(C):
If called by an honest node, Z enqueues C in the queue of

pending block headers for each node, and notifies A. Then, for

each node 𝑃 , on receiving deliver(C, 𝑃) from A, or when Δ
h

time has passed since C was added to the queue of pending

headers,Z triggers 𝑃 .receivedHeaderChain(C).
• Z.uploadContent(C, txs):
Z stores a mapping from the header chain C to the content txs
of its last block by settingZ.blkTxs[C] = txs.Z only stores the

content txs if Hash(txs) = C.txsHash.
• Z.receivePendingTxs():
Z generates a set of pending transactions and returns them.

• If node 𝑃 at slot 𝑡 requests the content associated with a block

header C, Z acts as follows. If Z.blkTxs[C] is set, then let

txs = Z.blkTxs[C] (if not, Z ignores the request). If the re-

quest was received from an honest node 𝑃 , if Z has recently

triggered 𝑃 .receivedContent(.) at a rate below𝐶 , thenZ trig-

gers 𝑃 .receivedContent(C, txs) (else,Z ignores the request).

If the request was received from A,Z sends (C, txs) to A.

At all times, A can trigger 𝑃 .receivedHeaderChain(C) and
𝑃 .receivedContent(C, txs) for honest nodes 𝑃 (bypassing header

delay and capacity constraint in an adversarially chosen way).

D FULL SECURITY PROOF

This section provides a self-contained proof of the argument devel-

oped in Sec. 4.

Nodes are identified using 𝑝, 𝑞. We distinguish between three

notions of ‘time’: Slots of Π𝜌,𝜏,𝑘conf are indicated by 𝑟, 𝑠, 𝑡 . Slots in

which one or more blocks are produced form a sub-sequence {𝑡𝑘 },
defined in App. D.2. Indices into this sub-sequence are denoted by

𝑖, 𝑗, 𝑘 . The physical parameters of our model, header propagation

delay Δ
h
and capacity 𝐶 , as well as the mining rate 𝜆, are specified

in units of real time.

We denote by dC𝑝 (𝑡) the longest fully processed chain of an

honest node 𝑝 at the end of slot 𝑡 , and let |𝑏 | denote the height of
a block 𝑏. We use the same notation |C| to denote the length of a

chain C, define 𝐿𝑝 (𝑡) =
��
dC𝑝 (𝑡)

��
and 𝐿min (𝑡) = min𝑝 𝐿𝑝 (𝑡) (where

“min𝑝 ” ranges only over honest nodes).

We denote intervals of indices (or slots) as (𝑖, 𝑗] ≜ {𝑖 + 1, ..., 𝑗},
with the convention that (𝑖, 𝑗] ≜ ∅ for 𝑗 ≤ 𝑖 . We study executions

over a finite horizon of𝑇
hrzn

slots (or𝐾
hrzn

indices), and any interval

(𝑖, 𝑗] with 𝑖 < 0 or 𝑗 > 𝐾
hrzn

considered truncated accordingly. The

notation (𝑖, 𝑗] ≻ 𝐾 (resp. ⪰, ≺, ⪯,≍) is short for 𝑗 − 𝑖 > 𝐾 (resp.

≥, <, ≤,=). In the analysis, we denote with upper-case Latin letters

several random processes over indices (e.g.,𝑋𝑘 ) or slots (e.g.,𝐻𝑡 ). For

any set 𝐼 of indices (analogously for slots), we define𝑋𝐼 ≜
∑
𝑘∈𝐼 𝑋𝑘 .

We denote by 𝜅 the security parameter. An event E𝜅 occurs with

overwhelming probability if Pr [E𝜅 ] ≥ 1− negl(𝜅). Here, a function
𝑓 (𝜅) is negligible negl(𝜅), if for all 𝑛 > 0, there exists 𝜅∗𝑛 such that

for all 𝜅 > 𝜅∗𝑛 , 𝑓 (𝜅) < 1

𝜅𝑛 .

D.1 Probabilistic Model for PoW NC Executions

Recall that the protocol runs in slots of duration 𝜏 . A block produc-

tion opportunity (BPO) is a pair (𝑝, 𝑡) where according to the PoW

block production lottery, node 𝑝 is eligible to produce a block in slot

𝑡 . A BPO is called honest (resp. adversary) if node 𝑝 is honest (resp.

adversary). The random variables 𝐻𝑡 and 𝐴𝑡 denote the number of

honest and adversary BPOs in slot 𝑡 , respectively. When the number

of nodes 𝑁 →∞ and each node holds an equal rate of block produc-

tion, by the Poisson approximation of a binomial random variable,

we have 𝐻𝑡
i.i.d.∼ Poisson((1 − 𝛽)𝜌) and 𝐴𝑡 i.i.d.∼ Poisson(𝛽𝜌), inde-

pendent of each other and across slots. The total number of BPOs

per slot is 𝑄𝑡 ≜ 𝐻𝑡 +𝐴𝑡 . An execution refers to a particular realiza-

tion of the random process {(𝐻𝑡 , 𝐴𝑡 )}.

D.2 Definitions

Good, Bad, and Empty Slots. Slots without a BPO are called

‘empty’. A slot is ‘good’ iff it has exactly one honest BPO and no

adversary BPOs, and is followed by 𝜈 empty slots. This definition is

inspired by convergence opportunities [37, 50, 52], loners [24], and

laggers [55]. Here, 𝜈 is an analysis parameter. We define another

analysis parameter 𝐶 which is related to 𝜈 as

(𝜈 + 1)𝜏 ≜ Δ
h
+𝐶/𝐶. (4)

Thus, 𝜈,𝐶 are chosen such that for a good slot, every honest node

can receive the block header for the honest BPO, and process con-

tent for 𝐶 blocks, before the next BPO. Any non-empty slot which

is not good is called ‘bad’.

Definition D.1. We call a slot 𝑡 good, bad, empty, respectively,

denoted as Good(𝑡), Bad(𝑡), Empty(𝑡), respectively, iff:
Good(𝑡) ≜ (𝐻𝑡 = 1) ∧ (𝐴𝑡 = 0)

∧ (𝐻 (𝑡,𝑡+𝜈 ] +𝐴(𝑡,𝑡+𝜈 ] = 0) (5)

Bad(𝑡) ≜ (𝐻𝑡 +𝐴𝑡 > 0) ∧ ¬Good(𝑡) (6)

Empty(𝑡) ≜ (𝐻𝑡 +𝐴𝑡 = 0). (7)

Note that Empty(𝑡) = ¬Good(𝑡) ∧ ¬Bad(𝑡).
We denote by 𝑡𝑘 the 𝑘-th non-empty slot. Then, we can introduce

random processes over indices, with index 𝑘 corresponding to the

𝑘-th non-empty slot 𝑡𝑘 . Considering only indices simplifies analysis

by not having to deal with empty slots. The process {𝐺𝑘 } counts
good slots, with 𝐺𝑘 ≜ 1{Good(𝑡𝑘 ) } . Correspondingly, {𝐺𝑘 } counts
bad slots, 𝐺𝑘 ≜ 1 −𝐺𝑘 .

The following fact shows the distribution of good indices.

Proposition 4.1. The {𝐺𝑘 } are independent and identically dis-

tributed (iid) with Pr [𝐺𝑘 = 1] ≜ 𝑝G = (1 − 𝛽) 𝜌𝑒
−𝜌 (𝜈+1)

1−𝑒−𝜌 .

Proof. First, for any 𝑘 ,

Pr [𝐺𝑘 = 1] = Pr [Good(𝑡𝑘 ) | ¬Empty(𝑡𝑘 )] (8)

=
Pr [Good(𝑡𝑘 )]

Pr [¬Empty(𝑡𝑘 )]
=
(1 − 𝛽)𝜌𝑒−𝜌 (𝜈+1)

1 − 𝑒−𝜌 . (9)

Let 𝑝E ≜ Pr [𝐻𝑡 +𝐴𝑡 = 0]. Take an iid random process {𝑇𝑘 } with
Pr [𝑇𝑘 = 𝑡] = (1 − 𝑝E)𝑝𝑡

E
for 𝑡 ≥ 0. The random variables {𝑇𝑘 }

describe the inter-arrival times between non-empty slots. Take

another iid random process {𝐺 ′
𝑘
}, independent of {𝑇𝑘 }, such that
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𝐺 ′
𝑘

= 1 with probability Pr [𝐻𝑡 = 1 ∧𝐴𝑡 = 0 | 𝐻𝑡 +𝐴𝑡 > 0] and
𝐺 ′
𝑘
= 0 otherwise. The random process {𝐺𝑘 } can be equivalently

defined as 𝐺𝑘 = 1 iff 𝐺 ′
𝑘
= 1 and 𝑇𝑘 ≥ 𝜈 . The independence of the

random variables {𝐺𝑘 } then follows from the independence of the

random variables {(𝑇𝑘 ,𝐺 ′𝑘 )}. □

Throughout the analysis, we assume 𝑝G > 1

2
(‘honest majority’

assumption).

Some Good Slots Imply Growth. A special role is played by good

slots 𝑡𝑘 with the additional property that the block produced at 𝑡𝑘
is ‘soon’ processed by all honest nodes. Intuitively, these lead to

chain growth, the cornerstone of NC security [24, 52]. We count

these slots with {𝐷𝑘 }, and all other non-empty slots with {𝐷𝑘 }.
Specifically, 𝐷𝑘 ≜ 1 if Good(𝑡𝑘 ) and the block produced at 𝑡𝑘 has

been processed by all honest nodes by the end of slot 𝑡𝑘 +𝜈 , 𝐷𝑘 ≜ 0

otherwise, and𝐷𝑘 ≜ 1−𝐷𝑘 . Finally, we define two randomwalks on

indices of non-empty slots with increments {𝑋𝑘 } and {𝑌𝑘 } that are
handy for the definition of probabilistic and combinatorial pivots:

𝑋𝑘 ≜ 𝐺𝑘 −𝐺𝑘 𝑌𝑘 ≜ 𝐷𝑘 − 𝐷𝑘 (10)

Note that the increments {𝑋𝑘 } are iid, and not affected by adversary
action, while the increments {𝑌𝑘 } do depend on the adversary action
and are thus in particular not iid. Also note that ∀𝑘 : 𝑌𝑘 ≤ 𝑋𝑘 since

𝐷𝑘 = 1 =⇒ 𝐺𝑘 = 1.

Probabilistic and Combinatorial Pivots.

Definition D.2. We call an index 𝑘 a ppivot (short for probabilistic

pivot), denoted as PPivot(𝑘), iff:
PPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑋 (0,𝑖 ] < 𝑋 (0,𝑘 ] ≤ 𝑋 (0, 𝑗 ] ) (11)

Definition D.3. We call an index 𝑘 a cpivot (short for combinato-

rial pivot), denoted as CPivot(𝑘), iff:
CPivot(𝑘) ≜ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑌(0,𝑖 ] < 𝑌(0,𝑘 ] ≤ 𝑌(0, 𝑗 ] ) (12)

This definition of ppivots and cpivots decouples [52, Def. 5] into

its probabilistic aspects [52, Sec. 5.6.3] and combinatorial aspects [52,

Sec. 5.6.2], and casts them as conditions on a random walk, inspired

by [24, 40], to simplify the analysis. The decoupling is one of the key

differences from the analysis in [52] (see Fig. 4). Note that a cpivot is

also a ppivot because𝑌𝑖 ≤ 𝑋𝑖 . Also, Def. D.2 is equivalent to Def. 4.2,
and Def. D.3 is equivalent to Def. 4.3 (cf. proof of Prop. D.7).

D.3 Analysis in the Probabilistic Model

We now develop the tools needed to prove safety and liveness of

PoWNC in the bounded-capacity model, following Fig. 4. First, anal-

ogously to the combinatorial argument of [52], we show (App. D.3.1)

that blocks from cpivots stabilize, i.e., they remain in the longest

processed chain of all honest nodes forever. This is useful because

if we know that cpivots occur frequently, then honest nodes can

confirm transactions that must lie in the prefix of a cpivot’s block

(safety), and cpivots’ blocks (being produced by honest nodes) bring

any outstanding transactions onto chain (liveness). We then show

that cpivots do indeed occur frequently: We show with a new prob-

abilistic argument (App. D.3.2) that ppivots are abundant, i.e., in

every ‘sufficiently long’ interval (i.e., of length Ω(𝜅2)), a constant
fraction of the slots are ppivots (Lem. D.12). Then, we show with a

new combinatorial argument (App. D.3.3) that the adversary cannot

prevent all ppivots from becoming cpivots, i.e., in every ‘sufficiently

long’ interval, there is at least one cpivot (Lem. D.17). As a result, if

honest nodes confirm transactions that are still on their longest pro-

cessed chain after ‘sufficiently long’ time (i.e., confirmation latency

Ω(𝜅2)), then PoW NC Π𝜌,𝜏,𝑘conf is safe and live under bounded

capacity.

D.3.1 Combinatorial Pivots Stabilize. Wenow show that the honest

block produced in a slot corresponding to a cpivot persists in the

longest processed chain of all honest nodes forever after 𝜈 slots

after it was produced. Towards this, we first show that if 𝐷𝑘 = 1,

i.e., if all honest nodes process the block produced in the good slot

𝑡𝑘 , then the length of the longest processed chain of honest nodes

increases, i.e., a chain growth event (made precise in Prop. D.4). Due

to this, since, by Def. D.3, all intervals around a cpivot contain

more indices with 𝐷𝑘 = 1 than those with 𝐷𝑘 = 0, there can

never be some honest node with a longest processed chain that

does not contain the block corresponding to the cpivot (Lem. D.5).

This is because there are not enough blocks for any other chain to

outnumber the chain growth events that contributed to the growth

of the processed chain containing the cpivot’s block. Thus, the block

corresponding to the cpivot remains in all honest nodes’ longest

processed chains forever. Lem. D.5 is proven analogously to the

combinatorial argument of [52].

Recall that dC𝑝 (𝑡) is the longest processed chain of node 𝑝 at the

end of slot 𝑡 , |C| denotes the length of chain C, 𝐿𝑝 (𝑡) =
��
dC𝑝 (𝑡)

��
and

the length of the “shortest (across honest nodes) longest processed

chain” is 𝐿min (𝑡) = min𝑝 𝐿𝑝 (𝑡) (where “min𝑝” ranges only over

honest nodes). The following proposition says that 𝐿min (𝑡) grows
for every index 𝑘 with 𝐷𝑘 = 1, i.e., these are “chain growth events”.

Proposition D.4. If 𝐷𝑘 = 1, then 𝐿min (𝑡𝑘 +𝜈) ≥ 𝐿min (𝑡𝑘 −1) +1.

Proof. Since 𝐷𝑘 = 1, slot 𝑡𝑘 is a good slot. Let 𝑏 be the unique

honest block produced in slot 𝑡𝑘 , and let honest node 𝑝 be its pro-

ducer. Since honest nodes produce blocks on their longest processed

chain, |𝑏 | = 𝐿𝑝 (𝑡𝑘 −1) +1 ≥ 𝐿min (𝑡𝑘 −1) +1. Further, 𝐷𝑘 = 1means

that the block 𝑏 is processed by all honest nodes by the end of slot

𝑡𝑘 + 𝜈 . Therefore, 𝐿min (𝑡𝑘 + 𝜈) ≥ |𝑏 |. □

Lemma D.5. Let 𝑏∗ be the block produced in a non-empty slot 𝑡𝑘
such that CPivot(𝑘). Then, for all header chains C′ that are valid at
slot 𝑡 ≥ 𝑡𝑘 + 𝜈 and |C′ | ≥ 𝐿min (𝑡): 𝑏∗ ∈ C′. Also then, for all honest
nodes 𝑝 and for all slots 𝑡 ≥ 𝑡𝑘 + 𝜈 : 𝑏∗ ∈ dC𝑝 (𝑡).

The following proposition is helpful for proving Lem. D.5.

Proposition D.6. For any 𝑖 < 𝑗 ,

𝐿min (𝑡 𝑗 + 𝜈) ≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖, 𝑗 ] . (13)

Proof. By noting that if 𝐷𝑘 = 1, then 𝑡𝑘+1 > 𝑡𝑘 + 𝜈 , and adding

the result of Prop. D.4 for each index with 𝐷𝑘 = 1. □

Proof of Lem. D.5. Note that dC𝑝 (𝑡) is a valid chain at slot 𝑡

and

��
dC𝑝 (𝑡)

�� = 𝐿𝑝 (𝑡) ≥ 𝐿min (𝑡). Therefore, it suffices to show the

first claim of the lemma.

For contradiction, let 𝑠 ≥ 𝑡𝑘 + 𝜈 be the first slot in which there is

a valid header chain C′ such that |C′ | ≥ 𝐿min (𝑠) and 𝑏∗ ∉ C′.



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Lucianna Kiffer, Joachim Neu, Srivatsan Sridhar, Aviv Zohar, and David Tse

Let 𝑏′ be the block with maximum height on the chain C′, such
that 𝑏′ was produced in a slot 𝑡𝑖 with 𝐷𝑖 = 1. For C′ to be a valid

chain at slot 𝑠 , we need 𝑡𝑖 ≤ 𝑠 . Since the block 𝑏′ is produced
by an honest node, 𝑏′ extends dC𝑞 (𝑡𝑖 − 1) for some honest node

𝑞. Therefore, dC𝑞 (𝑡𝑖 − 1) is a prefix of C′. This means that 𝑏∗ ∉

dC𝑞 (𝑡𝑖 − 1). Moreover,

��
dC𝑞 (𝑡𝑖 − 1)

�� = 𝐿𝑞 (𝑡𝑖 − 1) ≥ 𝐿min (𝑡𝑖 − 1). If
𝑖 > 𝑘 , then 𝑡𝑖 − 1 ≥ 𝑡𝑘 + 𝜈 (since 𝐷𝑘 = 1) and 𝑡𝑖 − 1 < 𝑠 (shown

above). This is a contradiction because we assumed that 𝑠 is the

first slot such that 𝑠 ≥ 𝑡𝑘 + 𝜈 and 𝑏∗ ∉ C′ and |C′ | ≥ 𝐿min (𝑠) for
some valid chain C′. Since 𝑏∗ is the only block produced in slot 𝑡𝑘 ,

𝑖 = 𝑘 is also not possible. We conclude that 𝑖 < 𝑘 .

Since 𝐷𝑖 = 1 and 𝑏′ is produced in slot 𝑡𝑖 ,

𝐿min (𝑡𝑖 + 𝜈) ≥
��𝑏′��. (14)

By assumption, ��C′�� ≥ 𝐿min (𝑠). (15)

Let 𝑡 𝑗 be the last non-empty slot such that 𝑡 𝑗 ≤ 𝑠 . Note that

𝑗 ≥ 𝑘 > 𝑖 . We must consider two cases:

(1) Case 1: 𝑠 ≥ 𝑡 𝑗 + 𝜈 or 𝐷 𝑗 = 0. If 𝐷 𝑗 = 0, we don’t have to

worry about whether the block from slot 𝑡 𝑗 was processed by

all honest nodes. If 𝐷 𝑗 = 1 but 𝑠 ≥ 𝑡 𝑗 + 𝜈 , then we know that

all honest nodes have processed the block from slot 𝑡 𝑗 before

the end of slot 𝑠 . That is,

𝐿min (𝑠) ≥ 𝐿min (𝑡 𝑗 + 𝜈) (16)

≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖, 𝑗 ] (from Prop. D.6) (17)

≥ 𝐿min (𝑡𝑖 + 𝜈) + 𝐷 (𝑖, 𝑗 ] . (18)

By definition of 𝑏′, all blocks in C′ appearing after 𝑏′ corre-
spond to indices 𝑙 with 𝐷𝑙 = 0. These blocks must be from

distinct indices greater than 𝑖 but at most 𝑗 . So,��C′�� ≤ ��𝑏′�� + 𝐷 (𝑖, 𝑗 ] . (19)

From eqns. (14), (15), (18) and (19), we derive

𝐷 (𝑖, 𝑗 ] ≤ 𝐷 (𝑖, 𝑗 ] =⇒ 𝑌(𝑖, 𝑗 ] ≤ 0 =⇒ 𝑌(0,𝑖 ] < 𝑌(0, 𝑗 ] (20)

where 𝑖 < 𝑘 ≤ 𝑗 .
(2) Case 2: 𝑡 𝑗 ≤ 𝑠 < 𝑡 𝑗 + 𝜈 and 𝐷 𝑗 = 1. In this case, the block from

slot 𝑡 𝑗 may not have enough time to be processed by all honest

nodes before the end of slot 𝑠 . However, for any 𝑙 < 𝑗 such that

𝐷𝑙 = 1, 𝑡𝑙 + 𝜈 < 𝑡 𝑗 ≤ 𝑠 , so there is enough time to process the

block from slot 𝑡𝑙 . Let 𝑙 ∈ (𝑖, 𝑗 − 1] be the greatest index such
that 𝐷𝑙 = 1. Then, 𝑡 𝑗 > 𝑡𝑙 + 𝜈 , and 𝐷 (𝑖,𝑙 ] = 𝐷 (𝑖, 𝑗−1] .

𝐿min (𝑠) ≥ 𝐿min (𝑡 𝑗 ) (21)

≥ 𝐿min (𝑡𝑙 + 𝜈) (22)

≥ 𝐿min (𝑡𝑖+1 − 1) + 𝐷 (𝑖,𝑙 ] (from Prop. D.6) (23)

≥ 𝐿min (𝑡𝑖 + 𝜈) + 𝐷 (𝑖, 𝑗−1] . (24)

Note that since 𝐷 𝑗 = 1, 𝐷 (𝑖, 𝑗 ] = 𝐷 (𝑖, 𝑗−1] . Therefore, as in the

previous case, ��C′�� ≤ ��𝑏′�� + 𝐷 (𝑖, 𝑗−1] . (25)

From eqns. (14), (15), (21) and (25),

𝐷 (𝑖, 𝑗−1] ≤ 𝐷 (𝑖, 𝑗−1] =⇒ 𝑌(𝑖, 𝑗−1] ≤ 0

=⇒ 𝑌(0,𝑖 ] < 𝑌(0, 𝑗−1] . (26)

𝑘

𝑋 (0,𝑘 ]
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Figure 17: Illustration of ppivot (eqn. (29)): A ppivot as an

index 𝑘 so that 𝑋𝑘 = 1 ( ) and 𝑋 (0,.] is strictly below 𝑋 (0,𝑘 ]
left of 𝑘 and weakly above 𝑋 (0,𝑘 ] right of 𝑘 ( , ).

Note that since we assumed 𝑠 ≥ 𝑡𝑘 + 𝜈 and 𝑠 < 𝑡 𝑗 + 𝜈 , we know
that 𝑗 > 𝑘 . Therefore, 𝑖 < 𝑘 ≤ 𝑗 − 1.

In either case, eqn. (20) or eqn. (26) contradict the assumption

CPivot(𝑘) (Def. D.3). □

D.3.2 Probabilistic Pivots Are Abundant. Previous analyses of NC [24,

52] show that sufficiently long intervals contain at least one ppivot

(Fig. 4(a)). This was enough for the bounded-delay analysis because

in the bounded-delay setting, every ppivot is also a cpivot. However,

in the bounded-capacity setting, not every cpivot is a ppivot, be-

cause not every good slot results in growth of the longest processed

chain of honest nodes (Fig. 4(b)). Thus, existence of one ppivot in ev-

ery large interval is not enough to conclude existence of one cpivot

in every large interval. Instead, we prove, using a concentration

bound on the number of ppivots (Prop. D.11), that long intervals

of indices in fact contain a number of ppivots proportional to the

interval length (Lem. D.12). Then, in App. D.3.3, we prove that out

of those many ppivots, at least one must also be a cpivot, which

allows us to continue with the safety and liveness proofs from [52].

The key challenge in proving that there are many ppivots is that

for two indices 𝑘1, 𝑘2, the events that 𝑘1 is a ppivot and that 𝑘2 is a

ppivot are dependent, because both events depend on overlapping

intervals. But a key observation is that since the ppivot condition (

Def. D.2) already holds for large intervals with high probability (

Prop. D.8), we only need to look at the small intervals. Then, for

two indices 𝑘1, 𝑘2 that are sufficiently far apart, these short inter-

vals are disjoint, and thus the corresponding ppivot conditions are

independent. Therefore, we decompose a long interval of indices

into several groups of far-apart indices. This is illustrated in Fig. 10,

each group indicated by a different color. Within each group, by

a concentration bound for iid random variables, there are many

ppivots. Further, by a union bound, the concentration holds in all

the groups simultaneously with high probability. This summarizes

the proof of Prop. D.11, which culminates in Lem. D.12 showing that

with overwhelming probability, there are many ppivots in every

long enough interval.

We first identify insightful alternative characterizations of ppiv-

ots, and a few propositions to help prove Prop. D.11. Lem. D.12

follows from there.

Proposition D.7.

PPivot(𝑘) ⇐⇒ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝑋 (𝑖, 𝑗 ] > 0) (27)

⇐⇒ (∀ (𝑖, 𝑗] ∋ 𝑘 : 𝐺 (𝑖, 𝑗 ] > 𝐺 (𝑖, 𝑗 ] ) (28)
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⇐⇒ (𝑋𝑘 = 1) ∧ (∀𝑗 ≥ 𝑘 : 𝑋 (𝑘,𝑗 ] ≥ 0)
∧ (∀𝑖 < (𝑘 − 1) : 𝑋 (𝑖,𝑘−1] ≥ 0) (29)

Proof. Elementary, using 𝑋 (𝑖, 𝑗 ] = 𝑋 (0, 𝑗 ] − 𝑋 (0,𝑖 ] . □

In particular, eqn. (29) characterizes a ppivot as an index 𝑘 such

that 𝐺𝑘 = 1 and the simple random walks ℓ ↦→ 𝑋 (𝑘,𝑘+ℓ ] and ℓ ↦→
𝑋 (𝑘−1−ℓ,𝑘−1] starting at 0 remain non-negative forever (Fig. 17).

Due to this, we easily see that the probability that any given index

is a ppivot is the probability that the index is good and the two

random walks never return to zero (Prop. D.10). In Prop. D.8 by a

simple concentration bound over iid random variables, we show

that in all large intervals, with high probability, the randomwalk𝑋𝑘
advances proportionally to the interval length (due to its positive

drift).

Throughout this section, assume that 𝑝G = 1

2
+ 𝜀G with 𝜀G ∈

(0, 1/2].

Proposition D.8. With 𝛼2 ≜ 2𝜀2
G
, ∀ (𝑖, 𝑗], ∀𝛿 ≥ 0:

Pr

[
𝑋 (𝑖, 𝑗 ] ≤ (1 − 𝛿)2𝜀G ( 𝑗 − 𝑖)

]
≤ exp(−𝛼2𝛿2 ( 𝑗 − 𝑖)) . (30)

Proof. By Hoeffding’s inequality [34] [26, Thm. 4]. □

Proposition D.9 (Hoeffding’s ineqality [34] [26, Thm. 4]).

Let 𝑍1, ..., 𝑍𝑛 be independent bounded random variables with ∀𝑖 :

𝑍𝑖 ∈ [𝑎, 𝑏], where −∞ < 𝑎 ≤ 𝑏 < ∞. Then, ∀𝑡 ≥ 0:

Pr

[(
𝑛∑︁
𝑖=1

𝑍𝑖

)
≥ E

[
𝑛∑︁
𝑖=1

𝑍𝑖

]
+ 𝑡𝑛

]
≤ exp

(
−2𝑛𝑡2
(𝑏 − 𝑎)2

)
(31)

Pr

[(
𝑛∑︁
𝑖=1

𝑍𝑖

)
≤ E

[
𝑛∑︁
𝑖=1

𝑍𝑖

]
− 𝑡𝑛

]
≤ exp

(
−2𝑛𝑡2
(𝑏 − 𝑎)2

)
(32)

Proposition D.10.

∀𝑘 : Pr [PPivot(𝑘)] ≥ (2𝑝G − 1)2/𝑝G ≜ 𝑝ppivot (33)

Proof. In eqn. (29), PPivot(𝑘) is characterized as the intersection
of three independent events:

E1 ≜ {𝑋𝑘 = 1} (34)

E2 ≜ {∀ℓ : 𝑋 (𝑘,𝑘+ℓ ] ≥ 0} (35)

E3 ≜ {∀ℓ : 𝑋 (𝑘−1−ℓ,𝑘−1] ≥ 0} (36)

Their probabilities are easily calculated [39]:

Pr [E1] = 𝑝G Pr [E2] = Pr [E3] = (2𝑝G − 1)/𝑝G (37)

□

The process {𝑃𝑘 } counts ppivots, with 𝑃𝑘 ≜ 1{PPivot(𝑘 ) } .

Proposition D.11. With 𝛼3 ≜ 2𝑝2
ppivot

,

∀ (𝑖, 𝑗] ≍ 2𝐾1𝐾2 : Pr

[
𝑃 (𝑖, 𝑗 ] ≤ (1 − 𝛿)𝑝ppivot2𝐾1𝐾2

]
≤ 2𝐾1 exp(−𝛼3𝛿2𝐾2) + 𝐾2

hrzn
exp(−𝛼2𝐾1). (38)

Proof. Let E ≜ {∀ (𝑖, 𝑗] ⪰ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0}. From Prop. D.8 with

𝛿 = 1, and a union bound over all intervals (≤ 𝐾2

hrzn
many), we get

Pr [¬E] ≤ 𝐾2

hrzn
exp(−𝛼2𝐾1). (39)

For any given index 𝑘 , we can partition the intervals of eqn. (27)

into ‘long’ and ‘short’ intervals (length at least vs. less than 𝐾1):

E𝑘 ≜ {PPivot(𝑘)} = EL
𝑘
∧ ES

𝑘
(40)

EL
𝑘
≜ {∀ (𝑖, 𝑗] ∋ 𝑘, (𝑖, 𝑗] ⪰ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0} (41)

ES
𝑘
≜ {∀ (𝑖, 𝑗] ∋ 𝑘, (𝑖, 𝑗] ≺ 𝐾1 : 𝑋 (𝑖, 𝑗 ] > 0}. (42)

Note that EL
𝑘
⊇ E. Also, for any two given indices 𝑘1, 𝑘2 that are

‘far apart’, i.e., if |𝑘1 − 𝑘2 | ≥ 2𝐾1, then E𝑘1 and E𝑘2 are conditionally
independent given E (since ES

𝑘1
and ES

𝑘2
are).

We decompose 𝐼∗ ≜ (𝑖, 𝑗] = (𝑖, 𝑖 + 2𝐾1𝐾2] =
⋃

2𝐾1

ℓ=1
𝐼ℓ :

∀ℓ ∈ {1, ..., 2𝐾1} : 𝐼ℓ ≜ {𝑖 + 0 · 2𝐾1 + ℓ, ...
..., 𝑖 + (𝐾2 − 1) · 2𝐾1 + ℓ}. (43)

See Fig. 10 for illustration. We define corresponding events, ∀ℓ ∈
{1, ..., 2𝐾1}:

E∗ ≜
{
𝑃𝐼 ∗ ≤ (1 − 𝛿)𝑝ppivot2𝐾1𝐾2

}
(44)

Eℓ ≜
{
𝑃𝐼ℓ ≤ (1 − 𝛿)𝑝ppivot𝐾2

}
. (45)

Clearly, E∗ ⊆ ⋃
2𝐾1

ℓ=1
Eℓ . Thus, by a union bound,

Pr

[
E∗

�� E] ≤ 2𝐾1∑︁
ℓ=1

Pr [Eℓ | E] . (46)

Furthermore, ∀ℓ ∈ {1, ..., 2𝐾1}, and with 𝜇ℓ ≜ E
[
𝑃𝐼ℓ

�� E] :
Pr [Eℓ | E] = Pr

[
𝑃𝐼ℓ ≤ (1 − 𝛿)𝑝ppivot𝐾2

�� E] (47)

(a)

≤ Pr

[
𝑃𝐼ℓ ≤ (1 − 𝛿)𝜇ℓ

�� E] (48)

(b)

≤ exp(−2𝛿2𝜇2ℓ /𝐾2)
(c)

≤ exp(−2𝑝2
ppivot

𝛿2𝐾2), (49)

where (a) and (c) use

𝜇ℓ = 𝐾2E
[
1{PPivot(𝑘 ) }

�� E] ≥ 𝐾2E [
1{PPivot(𝑘 ) }

]
≥ 𝐾2𝑝ppivot (50)

(Prop. D.10), and (b) uses that {PPivot(𝑘1)} and {PPivot(𝑘2)} are
conditionally independent given E for 𝑘1, 𝑘2 ∈ 𝐼ℓ , and Hoeffding’s

inequality (Prop. D.9).

To complete the proof, with 𝛼3 = 2𝑝2
ppivot

,

Pr

[
E∗

]
= Pr

[
E∗ ∩ E

]
+ Pr

[
E∗ ∩ ¬E

]
(51)

≤ Pr

[
E∗

�� E] + Pr [¬E] (52)

≤ 2𝐾1 exp(−𝛼3𝛿2𝐾2) + 𝐾2

hrzn
exp(−𝛼2𝐾1). (53)

□

Lemma D.12. For 𝐾cp = Ω(𝜅2), and 𝐾
hrzn

= poly(𝜅),

Pr

[
∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑃 (𝑖, 𝑗 ] ≥ (1 − 𝛿)𝑝ppivot𝐾cp

]
≥ 1 − exp(−Ω(𝜅)) = 1 − negl(𝜅) . (54)

Proof. From Prop. D.11 by setting 𝐾1, 𝐾2 = Ω(𝜅) and 𝐾cp =

2𝐾1𝐾2. □

D.3.3 Many Probabilistic Pivots Imply One Combinatorial Pivot.
The longest-header-chain rule Dlong (Alg. 3) has a few useful prop-

erties. Intuitively, nodes using this rule

(P1) process a BPO’s block’s content at most once,

(P2) either process the most recent honest block, or fully utilize

their capacity to process other blocks (i.e., do not stay idle),

and

(P3) prioritize blocks that were produced ‘recently’.
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(P1) holds by construction. (P2) holds because the scheduling

policy Dlong is never idle, and will always process towards an

honest block when it has processed all longer chains and there is

capacity remaining. Moreover, we expect that in a secure execution,

(P3) holds because the longest header chain cannot fork off toomuch

from the longest processed chain of an honest node, otherwise it

would imply a safety violation. More precisely, due to Lem. D.5,

any longest header chain in any honest node’s view must extend

the block produced in the most recent cpivot, and therefore blocks

with the highest processing priority must have been produced after

the most recent cpivot. If the adversary wants to prevent honest

nodes from processing the block produced at a good index 𝑘 , so that

𝐺𝑘 = 1 but 𝐷𝑘 = 0, then it can only “distract” them by providing 𝐶

blocks produced after the most recent cpivot (Prop. 4.7).

Proposition 4.7. If𝐺𝑘 = 1 and𝐷𝑘 = 0, then during slots [𝑡𝑘 , 𝑡𝑘 +
𝜈], all honest nodes using the longest-header-chain scheduling policy

process content of at least 𝐶 blocks that are produced in (𝑖, 𝑘], where
𝑖 < 𝑘 is the largest index such that CPivot(𝑖) (if such an 𝑖 does not

exist, 𝑖 = 0).

Proof. In slot 𝑡𝑘 , there is exactly one block 𝑏 produced by an

honest node, the block header is made public at the beginning of the

slot, and is seen by all honest nodes within Δ
h
time. Thereafter, each

node has enough time to process 𝐶 blocks during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈].
Under the scheduling policy Dlong, if 𝐷𝑘 = 0, i.e. an honest

node did not process content for the block 𝑏 before the end of slot

𝑡𝑘 + 𝜈 , then that honest node must process the content for at least

𝐶 blocks on chains longer than the height of the block 𝑏 or in the

prefix of the block 𝑏. Since honest nodes produce blocks extending

their longest chain, 𝑏 extends dC𝑝 (𝑡𝑘 − 1) for some 𝑝 . Let 𝑏∗ be
the block produced in slot 𝑡𝑖 where CPivot(𝑖) (suppose 𝑖 exists).
CPivot(𝑖) =⇒ 𝑌𝑖 = 1, therefore this block is unique, and also

𝑡𝑘 > 𝑡𝑖 + 𝜈 . Due to Lem. D.5, any valid header chain longer than 𝑏

at time slot 𝑡𝑘 must contain 𝑏∗. Therefore, the only blocks that are

processed by an honest node during slots [𝑡𝑘 , 𝑡𝑘 + 𝜈]
(1) must be produced after 𝑡𝑖 because they extend 𝑏∗, and
(2) must be produced no later than 𝑡𝑘 because there are no blocks

produced in (𝑡𝑘 , 𝑡𝑘 + 𝜈].
In case a cpivot 𝑖 < 𝑘 does not exist, the claim is trivial. □

Given the above properties of the scheduling policy, we now

want to show that cpivots occur once in a while. Fig. 11 illustrates

the key argument for this. To start, let us show that there is at least

one cpivot in

(
0, 𝐾cp

]
. From Lem. D.12, there are many ppivots in(

0, 𝐾cp
]
. If there were no cpivots in

(
0, 𝐾cp

]
, then the adversary

must prevent each ppivot from turning into a cpivot. We know that

in any interval around a ppivot, there are more good indices than

bad indices (see top row in Fig. 11). In fact, good indices outnumber

bad indices by a margin that increases linearly with the size of

the interval (Prop. D.8). Therefore, for a ppivot to not be a cpivot,

the adversary must prevent an honest node from processing the

most recent honest block in several of these good indices (so that

the corresponding 𝐺𝑘 = 1 indices have 𝐷𝑘 = 0). Fig. 11 shows an

example where the adversary prevented processing of the honest

block in one good index, and as a result, two of the ppivots fail to

become a cpivot. In Lem. D.13, through a combinatorial argument,

we show that to prevent all of 𝑛 ppivots in

(
0, 𝐾cp

]
from becoming

cpivots, the adversary must prevent processing of the honest block

in at least 𝑛/4 good indices in

(
0, 2𝐾cp

]
. From Prop. 4.7, for each

such index, the adversary must ‘spend’ at least 𝐶 blocks that the

honest node processs. These blocks must come from a ‘budget’

that can contain at most all blocks mined during

(
0, 2𝐾cp

]
. If this

‘budget’ falls short of the number of blocks required to overthrow

all cpivots, then there must be at least one cpivot in

(
0, 𝐾cp

]
.

Next, we would like to show that there is at least one cpivot

in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
for all𝑚 ≥ 0 (where we just saw the base

case𝑚 = 0). Here, one may be concerned that the adversary could

save up many blocks from the past and attempt to make honest

nodes process these blocks at a particular target slot 𝑡𝑘 . But given

that one cpivot occurred in

(
(𝑚 − 1)𝐾cp,𝑚𝐾cp

]
, Prop. 4.7 ensures

that honest nodes will only process blocks that are produced after

(𝑚 − 1)𝐾cp. This allows us to bound the ‘budget’ of blocks that the

adversary can use to overthrow cpivots, and therefore show that

there is at least one cpivot in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. This argument is

formalized in Lem. D.17.

Below, we first show the proof for the base case (i.e. for the

interval

(
0, 𝐾cp

]
) to highlight the key techniques. Here,𝑄 (.,.] is the

total number of blocks mined in an interval (bounds the adversary’s

block budget), and the expressions on the left in eqns. (73) and (74)

are the minimum number of blocks the adversary needs to produce

to ensure that there are no cpivots, in terms of the number of ppivots

𝑃 (.,.] and number of good indices 𝐺 (.,.] .

Lemma D.13. If honest nodes use the scheduling policyDlong and

∀ (𝑖, 𝑗] ⪰ 𝐾cp, 𝑖 < 𝐾cp :
𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
> 𝑄 (0, 𝑗 ] , (55)

𝐶

4

𝑃(0,𝐾cp] > 𝑄 (0,2𝐾cp] , (56)

then ∃𝑘∗
1
∈

(
0, 𝐾cp

]
: CPivot(𝑘∗

1
).

Towards proving Lem. D.13, we show two simple corollaries of

the cpivot conditions (Props. D.14 and D.15) and show that in any

interval, good indices outnumber bad indices by at least the number

of ppivots in that interval.

Proposition D.14.

¬CPivot(𝑘) =⇒ ∃ (𝑖, 𝑗] ∋ 𝑘 : 𝑌(𝑖, 𝑗 ] ≤ 0. (57)

Proof. From Def. D.3. □

Proposition D.15. If 𝑌(𝑖, 𝑗 ] ≤ 0, then

𝐷 (𝑖, 𝑗 ] ≥ 𝐷 (𝑖, 𝑗 ] , 𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ] ≥
1

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
. (58)

Proof. We obtain eqn. (58) from the definition 𝑌𝑖 = 𝐷𝑖 − 𝐷𝑖 .
Then,

𝐺 (𝑖, 𝑗 ] +𝐺 (𝑖, 𝑗 ] = 𝐷 (𝑖, 𝑗 ] + 𝐷 (𝑖, 𝑗 ] (59)

𝐺 (𝑖, 𝑗 ] +𝐺 (𝑖, 𝑗 ] ≥ 2𝐷 (𝑖, 𝑗 ] (60)

2𝐺 (𝑖, 𝑗 ] − 2𝐷 (𝑖, 𝑗 ] ≥ 𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ] . (61)

□

Proposition D.16. If 𝑃 (𝑖, 𝑗 ] > 0, then 𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ] ≥ 𝑃 (𝑖, 𝑗 ] .
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(a)

𝐴 𝐵𝐶

(b)

Figure 18: Blue circles represent ppivots, red crosses repre-

sent indices with𝐺𝑘 = 1 and 𝐷𝑘 = 0. (a) Given intervals𝐴, 𝐵,𝐶

all containing the 2nd blue circle from left, interval 𝐶 is re-

dundant. (b) Given 𝑛 blue circles, the adversary needs at least

𝑛/4 red crosses to draw a set of intervals satisfying eqns. (62)

and (63). Here is a placement of red crosses relative to blue

circles that achieves the minimum number of red crosses.

Proof. Let 𝑛 = 𝑃 (𝑖, 𝑗 ] . First, consider 𝑛 = 1. There is exactly

one ppivot 𝑘 ∈ (𝑖, 𝑗]. From Def. D.2, 𝑋 (0,𝑖 ] < 𝑋 (0, 𝑗 ] . Therefore,
𝑋 (𝑖, 𝑗 ] > 0, hence 𝐺 (𝑖, 𝑗 ] − 𝐺 (𝑖, 𝑗 ] ≥ 1. For the general case, let

𝑘1, ..., 𝑘𝑛 be the ppivots in (𝑖, 𝑗]. Then, we apply the 𝑛 = 1 case

on the disjoint intervals (𝑖, 𝑘1], (𝑘1, 𝑘2] , ..., (𝑘𝑛−1, 𝑗] and then sum

up. □

Proof of Lem. D.13. Due to eqn. (56), there is at least one ppivot

in

(
0, 𝐾cp

]
(otherwise 𝑃(0,𝐾cp] = 0). Suppose for contradiction that

there is no cpivot in

(
0, 𝐾cp

]
. Since cpivots are also ppivots, it is

enough to consider that none of the ppivots is a cpivot. Then around

each ppivot, there must be at least one interval which violates the

combinatorial pivot condition. Formally, there is a set of intervals

I such that: ⋃
𝐼 ∈I

𝐼 ⊇
{
𝑘 ∈

(
0, 𝐾cp

]
: PPivot(𝑘)

}
(62)

∀𝐼 ∈ I : 𝑌𝐼 ≤ 0 (by Prop. D.14). (63)

Without loss of generality, each interval 𝐼 ∈ I contains at least

one ppivot (removing all intervals that do not contain a ppivot

maintains eqns. (62) and (63)). Then if (𝑖, 𝑗] ∈ I, 𝑖 < 𝐾cp.
First, consider the large intervals with |𝐼 | ≥ 𝐾cp. Consider indices

𝑘 ∈ 𝐼 for which 𝐺𝑘 = 1 (good) but 𝐷𝑘 = 0 (block not processed).

From Prop. 4.7, for each such index, all honest nodes process 𝐶

blocks that are produced no later than 𝑡𝑘 . The number of indices

𝑘 ∈ 𝐼 with𝐺𝑘 = 1 and 𝐷𝑘 = 0 is𝐺𝐼 −𝐷𝐼 . For each such index, there

must exist 𝐶 distinct blocks produced in or before the interval 𝐼 .

Therefore, if 𝐼 = (𝑖, 𝑗],

𝑄 (0, 𝑗 ] ≥ 𝐶
(
𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ]

)
(64)

≥ 𝐶
2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
(by Prop. D.15). (65)

This contradicts eqn. (55). Therefore, all intervals 𝐼 ∈ I are small

(|𝐼 | < 𝐾cp). Then for each 𝐼 ∈ I, 𝐼 ⊂
(
0, 2𝐾cp

]
. Also,

𝐺𝐼 − 𝐷𝐼 ≥
1

2

(
𝐺𝐼 −𝐺𝐼

)
≥ 1

2

𝑃𝐼 (by Props. D.15 and D.16). (66)

Consider the indices 𝑘 ∈
(
0, 2𝐾cp

]
with 𝐺𝑘 = 1 and 𝐷𝑘 = 0. Let

I𝑘 = {𝐼 ∈ I : 𝑘 ∈ 𝐼 } be the set of intervals that contain 𝑘 . Let 𝐼𝐿
𝑘
be

an interval in I𝑘 that stretches farthest to the left, and let 𝐼𝑅
𝑘
be an

interval that stretches farthest to the right (these may also be the

same). Note that all other intervals in I𝑘 are contained in 𝐼𝐿
𝑘
∪ 𝐼𝑅

𝑘
.

Therefore, all intervals in I𝑘 except 𝐼𝐿
𝑘
and 𝐼𝑅

𝑘
can be removed from

I while maintaining eqns. (62) and (63) (see Fig. 18(a)). This process

is repeated for all 𝑘 ∈
(
0, 2𝐾cp

]
with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, so that in

the resulting set I, each such index 𝑘 is contained in at most two

intervals. Then,∑︁
𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | ≤
∑︁

𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0
2 (67)

= 2

(
𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp]

)
. (68)

This sum can be rewritten as∑︁
𝑘∈(0,2𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | =
∑︁
𝐼 ∈I
(𝐺𝐼 − 𝐷𝐼 ) (69)

≥
∑︁
𝐼 ∈I

1

2

𝑃𝐼 ≥
1

2

𝑃(0,𝐾cp] (by eqn. (62)). (70)

From eqns. (68) and (70),

𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp] ≥
1

4

𝑃(0,𝐾cp] . (71)

This can also be seen from Fig. 18(b). Finally, as shown before, for

each 𝑘 with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, all honest nodes process at least 𝐶

distinct blocks produced in or before index 𝑘 (Prop. 4.7). This gives

𝑄 (0,2𝐾cp] ≥ 𝐶
(
𝐺(0,2𝐾cp] − 𝐷(0,2𝐾cp]

)
≥ 𝐶

4

𝑃(0,𝐾cp] (72)

which is a contradiction to eqn. (56). □

Lem. D.17 proves that at least one cpivot exists in successive

intervals of 𝐾cp length. Lem. D.17 is proved by induction, where

the base case is Lem. D.13.

Lemma D.17. If honest nodes use the scheduling policyDlong and

∀ (𝑖, 𝑗] ⪰ 𝐾cp :
𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
> 𝑄 (𝑖−2𝐾cp, 𝑗] , (73)

∀𝑚 ≥ 0 :

𝐶

4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] > 𝑄 ( (𝑚−2)𝐾cp,(𝑚+2)𝐾cp] , (74)

then ∀𝑚 ≥ 0 : ∃𝑘∗𝑚 ∈
(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: CPivot(𝑘∗𝑚).

Proof. This will be proved through induction. For the base case

(𝑚 = 0), Lem. D.13 shows that ∃𝑘∗
1
∈

(
0, 𝐾cp

]
: CPivot(𝑘∗

1
).

For𝑚 ≥ 1, assume that ∃𝑘∗
𝑚−1 ∈

(
(𝑚 − 1)𝐾cp,𝑚𝐾cp

]
such that

CPivot(𝑘∗
𝑚−1). Nowwewant to show that∃𝑘∗𝑚 ∈

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
such that CPivot(𝑘∗𝑚). Suppose for contradiction that there is no

cpivot in

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
. As in the proof of Lem. D.13, there is

a set of intervals I such that:⋃
𝐼 ∈I

𝐼 ⊇
{
𝑘 ∈

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
: PPivot(𝑘)

}
(75)

∀𝐼 ∈ I : 𝑌𝐼 ≤ 0. (76)

Without loss of generality, each interval 𝐼 ∈ I contains at least one

ppivot. Then if (𝑖, 𝑗] ∈ I, 𝑖 < (𝑚 + 1)𝐾cp and 𝑗 > 𝑚𝐾cp.

First, consider the large intervals with |𝐼 | ≥ 𝐾cp. Consider indices
𝑘 ∈ 𝐼 for which 𝐺𝑘 = 1 (good) but 𝐷𝑘 = 0 (block not processed).

From Prop. 4.7, for each such index 𝑘 , all honest nodes process 𝐶

blocks that are produced in the interval

(
𝑘∗
𝑚−1, 𝑘

]
. The number of

indices 𝑘 ∈ 𝐼 with 𝐺𝑘 = 1 and 𝐷𝑘 = 0 is exactly 𝐺𝐼 − 𝐷𝐼 . For each
such index, there must exist 𝐶 distinct blocks from distinct BPOs

that are processed by honest nodes. Therefore if 𝐼 = (𝑖, 𝑗],

𝑄 (𝑘∗𝑚−1, 𝑗] ≥ 𝐶
(
𝐺 (𝑖, 𝑗 ] − 𝐷 (𝑖, 𝑗 ]

)
(77)

≥ 𝐶
2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
(from Prop. D.15). (78)
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But 𝑘∗
𝑚−1 > (𝑚 − 1)𝐾cp and 𝑖 < (𝑚 + 1)𝐾cp. Therefore𝑄 (𝑘∗𝑚−1, 𝑗] ≤

𝑄 (𝑖−2𝐾cp, 𝑗] . Then we have a contradiction to eqn. (73). Therefore

all intervals 𝐼 ∈ I are small (|𝐼 | < 𝐾cp). Then for each 𝐼 ∈ I,
𝐼 ⊂

(
(𝑚 − 1)𝐾cp, (𝑚 + 1)𝐾cp

]
. Also,

𝐺𝐼 − 𝐷𝐼 ≥
1

2

(
𝐺𝐼 −𝐺𝐼

)
≥ 1

2

𝑃𝐼 (Props. D.15 and D.16) (79)

Consider the indices 𝑘 ∈
(
(𝑚 − 1)𝐾cp, (𝑚 + 1)𝐾cp

]
with 𝐺𝑘 = 1

and 𝐷𝑘 = 0. Following the arguments in the proof of Lem. D.13, we

can reduce the set I so that in the resulting set I, each such index

𝑘 is contained in at most two intervals. Then,∑︁
𝑘∈( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 |

≤ 2

(
𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

)
. (80)

This sum can be rewritten as∑︁
𝑘∈( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] : 𝐺𝑘=1,𝐷𝑘=0

|I𝑘 | (81)

=
∑︁
𝐼 ∈I
(𝐺𝐼 − 𝐷𝐼 ) (82)

≥
∑︁
𝐼 ∈I

1

2

𝑃𝐼 (83)

≥ 1

2

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] . (84)

Therefore,

𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

≥ 1

4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] . (85)

Finally, for each 𝑘 with 𝐺𝑘 = 1 and 𝐷𝑘 = 0, all honest nodes

process at least 𝐶 distinct blocks produced in or before the most

recent cpivot before (𝑚 − 1)𝐾cp. By induction assumption, we have

a cpivot 𝑘∗
𝑚−2 ∈

(
(𝑚 − 2)𝐾cp, (𝑚 − 1)𝐾cp

]
. This gives

𝑄 ( (𝑚−2)𝐾cp,(𝑚+1)𝐾cp]
≥ 𝐶

(
𝐺( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp] − 𝐷( (𝑚−1)𝐾cp,(𝑚+1)𝐾cp]

)
(86)

≥ 𝐶
4

𝑃(𝑚𝐾cp,(𝑚+1)𝐾cp] (87)

which is a contradiction. □

Finally, using the fact that, with overwhelming probability, a

constant fraction of indices are ppivots, we calculate the condition

on the parameters 𝜌, 𝜏 in terms of 𝜈,𝐶 for which the conditions

eqns. (73) and (74) in Lem. D.17 hold with overwhelming probability.

Precisely, we show that, with overwhelming probability, for any

index 𝑘 throughout the time horizon, there is at least one cpivot in

the interval

(
𝑘, 𝑘 + 2𝐾cp

]
.

Lemma D.18. If
𝐶
16

(2𝑝G−1)2
𝑝G

> 1, then for 𝐾cp = Θ(𝜅2), 𝐾
hrzn

=

poly(𝜅), with overwhelming probability, for all 𝑘 < 𝐾
hrzn
− 2𝐾cp,

∃𝑘∗ ∈
(
𝑘, 𝑘 + 2𝐾cp

]
: CPivot(𝑘∗).

Proof. Define the event E1 ={
∀ (𝑖, 𝑗] ⪰ 𝐾cp : 𝑃 (𝑖, 𝑗 ] > (1 − 𝛿)𝑝ppivot ( 𝑗 − 𝑖)

}
. Suppose that

E1 occurs, and 𝐶
16
𝑝ppivot (1 − 𝛿) > 1 for some 𝛿 ∈ (0, 1). Then,

∀ (𝑖, 𝑗] ⪰ 𝐾cp :
𝐶

4

𝑃 (𝑖, 𝑗 ] >
𝐶

4

(1 − 𝛿)𝑝ppivot ( 𝑗 − 𝑖) (88)

> 4( 𝑗 − 𝑖) (89)

(a)

= 𝑄 (𝑖−2𝐾cp, 𝑗+𝐾cp] (90)

where (a) is because as 𝜏 → 0, each non-empty slot has exactly one

BPO. This satisfies eqn. (74) in Lem. D.17. Further,

𝐶

2

(
𝐺 (𝑖, 𝑗 ] −𝐺 (𝑖, 𝑗 ]

)
≥ 𝐶

2

𝑃 (𝑖, 𝑗 ] > 3( 𝑗 − 𝑖) > 𝑄 (𝑖−2𝐾cp, 𝑗] (91)

which satisfies condition eqn. (73) in Lem. D.17. Therefore there is

at least one cpivot in every interval of the form

(
𝑚𝐾cp, (𝑚 + 1)𝐾cp

]
.

It also follows that for all 𝑘 , there is at least one cpivot in the

interval

(
𝑘, 𝑘 + 2𝐾cp

]
. By choosing 𝐾cp = Ω(𝜅2), 𝐾

hrzn
= poly(𝜅),

and using Lem. D.12 and a union bound, the probability of failure

of E1 is negl(𝜅). □

While the analysis above is for the scheduling policy Dlong, the

proofs only use properties (P1), (P2), (P3) and thus apply to several

other simple scheduling policies. Another such scheduling policy is

“process only blocks that are consistent with the node’s confirmed

chain”. In this work, we did not adopt this rule because it would

fail to recover from a network split, as demonstrated in the forking

attack mentioned in App. B.1.

D.4 Security of Proof-of-Work Nakamoto

Consensus

In Lem. D.18, we showed that under the longest-header-chain sched-

uling policy, cpivots occur in every 𝐾cp-interval. This allows us, to-

gether with Lem. D.5 (cpivots stabilize), to prove safety and liveness

of the protocol for a suitable confirmation depth𝑘
conf

. Subsequently,

we take 𝜏 → 0 and 𝜆 ≜ 𝜌/𝜏 in order to model PoW accurately. We

then identify the values of 𝜆 for which given an adversary fraction

𝛽 , the conditions required in Lem. D.17 for cpivots to occur hold

with overwhelming probability. Finally, since 𝐶 was an analysis

parameter chosen arbitrarily, we maximize over this parameter to

find the best possible security–performance tradeoff (Thm. 4.10).

The result is plotted for Δ
h
≈ 0 (reasonable approximation for large

block sizes) in Fig. 1.

Theorem 4.10. For all 𝛽 < 1/2, 𝜆 > 0, such that

𝜆 < max

𝐶

1

Δ
h
+𝐶/𝐶

ln

(
2(1 − 𝛽)𝐶

𝐶 + 4 +
√︁
8𝐶 + 16

)
, (3)

the PoW Nakamoto consensus protocol with the longest-header-chain

scheduling policy, 𝜏 → 0, 𝜌 = 𝜆𝜏 , and 𝑘
conf

= Θ(𝜅2) is secure with
transaction rate ( 1

2
− 𝛽)𝜆, confirmation latency Θ(𝜅2) over a time

horizon of 𝑇
hrzn

= poly(𝜅).

For PoW, we take 𝜏 → 0, and we would like to express parame-

ters such as mining rate, confirmation latency, and execution time

horizon in terms of real-time rather than the fictitious slots or in-

dices. We use Prop. D.19 to bridge from indices to units of real-time,

which uses a Poisson tail bound to show that the inter-arrival time

between BPOs cannot be too large or too small.
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Proposition D.19.

∀𝑘, 𝐾 ∈ N : Pr

[
𝜏 (𝑡𝑘+𝐾 − 𝑡𝑘 ) ≥

𝐾

𝜆(1 − 𝛿)

]
≤ 𝑒

−𝐾𝛿2
2(1+𝛿 ) , (92)

Pr

[
𝜏 (𝑡𝑘+𝐾 − 𝑡𝑘 ) ≤

𝐾

𝜆(1 + 𝛿)

]
≤ 𝑒

−𝐾𝛿2
2(1+𝛿 ) . (93)

Proof. This results from a Poisson tail bound [14] for the num-

ber of BPOs in real time 𝐾/𝜆, and noting that non-empty slots have

exactly one BPO for 𝜏 → 0. □

To prove Thm. 4.10, we recall that there is at least one cpivot in

the interval

(
𝑘, 𝑘 + 2𝐾cp

]
(Lem. D.18). Given this, we prove safety

and liveness of PoW NC in Lem. D.20. Finally, in Thm. 4.10, we

calculate for given 𝛽,𝐶,Δ
h
, the protocol parameters 𝜌, 𝜏 for which

PoW NC is secure. In doing so, since𝐶 is just an analysis parameter,

we optimize over 𝐶 to find the maximum 𝜆.

Lemma D.20. If for some 𝐾cp > 0,

∀𝑘 : ∃𝑘∗ ∈
(
𝑘, 𝑘 + 2𝐾cp

]
: CPivot(𝑘∗), (94)

then the PoW Nakamoto consensus protocol Π𝜌,𝜏,𝑘conf with 𝑘
conf

=

2𝐾cp + 1 satisfies safety. Further, if the environment is (𝜃,𝑇
txlim
)-

tx-limited with 𝜃 = (1 + 𝛿)
(
1

2
− 1−𝑒−𝛽𝜌

1−𝑒−𝜌 (1 + 𝛿)
)
𝜆𝜏 and 𝑇

txlim
=

2𝐾cp

𝜆𝜏 (1+𝛿 ) , and

∀𝑘 ∈ N, 𝐾 ≥ 𝐾cp :
𝐾

𝜆𝜏 (1 + 𝛿) < 𝑡𝑘+𝐾 − 𝑡𝑘 <
𝐾

𝜆𝜏 (1 − 𝛿) , (95)

then it also satisfies liveness with 𝑇
live

= max

{
𝑇
txlim

,
2𝐾cp

𝜆𝜏 (1−𝛿 )

}
+

4𝐾cp+2
𝜆𝜏 (1−𝛿 ) .

Proof. Safety: For an arbitrary slot 𝑡 , let 𝑘 be the largest in-

dex such that 𝑡𝑘 ≤ 𝑡 . From eqn. (94), every interval of 2𝐾cp in-

dices contains at least one cpivot. Therefore, there exists 𝑘∗ ∈(
𝑘 − 2𝐾cp − 1, 𝑘 − 1

]
such thatCPivot(𝑘∗). Let 𝑏∗ be the block from

index 𝑘∗. Due to Lem. D.5, for all honest nodes 𝑝, 𝑞 and 𝑡 ′ ≥ 𝑡 ,

𝑏∗ ∈ dC𝑝 (𝑡) and 𝑏∗ ∈ dC𝑞 (𝑡 ′). But 𝑘∗ ≥ 𝑘 − 𝑘conf , so the block

𝑏∗ cannot be 𝑘
conf

-deep in any chain at slot 𝑡 Therefore, LOG𝑡𝑝
is a prefix of 𝑏∗ which in turn is a prefix of dC𝑞 (𝑡 ′). We can thus

conclude that either LOG𝑡𝑝 ⪯ LOG𝑡
′
𝑞 or LOG𝑡

′
𝑞 ⪯ LOG𝑡𝑝 . Therefore,

safety holds.

For an arbitrary slot 𝑡 , let 𝑘 be the largest index such that 𝑡𝑘 ≤ 𝑡 .
We will first prove that all transactions received in slots 𝑡 −𝑇

txlim

to 𝑡 , which are of total size at most 𝜃𝑇
txlim

as per the tx-limited

environment, will be added to the longest processed chains of all

nodes by the slot corresponding to index 𝑘 + 2𝐾cp. Let 𝐾txlim =

max{2𝐾cp, 𝜆𝜏 (1 + 𝛿)𝑇txlim}. We know that there exists 𝑘∗ ∈ (𝑘, 𝑘 +
2𝐾

txlim
] such thatCPivot(𝑘∗). Since 𝑘∗ is a cpivot, for all (𝑖, 𝑗] ∋ 𝑘∗,

𝐷 (𝑖, 𝑗 ] > 𝐷 (𝑖, 𝑗 ] (Def. D.3 and eqn. (10)), and hence 𝐷 (𝑖, 𝑗 ] >
𝑗−𝑖
2
.

Particularly,

=⇒ 𝐷 (𝑘,𝑘+𝐾
txlim
−1] >

𝐾
txlim
− 1

2

. (96)

Then from Prop. D.6,

𝐿min (𝑡𝑘+𝐾
txlim
−1 + 𝜈) − 𝐿min (𝑡𝑘+1 − 1) ≥ 𝐷 (𝑘,𝑘+𝐾

txlim
−1]

≥ 𝐾
txlim

2

. (97)

This means that the 𝐾
txlim
/2 last blocks in any node’s longest pro-

cessed chain at slot 𝑡𝑘+𝐾
txlim
−1+𝜈 are from the indices (𝑘, 𝑘 + 𝐾

txlim
− 1].

Among these, the number of blocks produced by the adversary can

be, by a concentration bound, at most
1−𝑒−𝛽𝜌
1−𝑒−𝜌 (1 + 𝛿)𝐾txlim. There-

fore, at least

(
1

2
− 1−𝑒−𝛽𝜌

1−𝑒−𝜌 (1 + 𝛿)
)
𝐾
txlim

blocks are produced by

honest nodes. The cumulative size of pending transactions is at

most 𝜃𝑇
txlim

, which fits in these honest blocks. Finally, we use

Prop. D.6 again to show:

𝐿min (𝑡𝑘+𝐾
txlim
+2𝑘

conf
−1 + 𝜈) − 𝐿min (𝑡𝑘+2𝑘

conf
+1 − 1) ≥ 𝑘conf . (98)

Thus, the newly added transactions are𝑘
conf

-deep, hence confirmed,

by all nodes by index 𝑘 + 2𝐾cp + 2𝑘conf . Finally, with eqn. (95),

𝑡𝑘+𝐾
txlim
+2𝑘

conf
−1 + 𝜈 − 𝑡 ≤ 𝑡𝑘+𝐾

txlim
+4𝐾cp+1 + 𝜈 − 𝑡𝑘

≤ 𝑡𝑘+6𝐾cp+2 − 𝑡𝑘

<
𝐾
txlim
+ 4𝐾cp + 2

𝜆𝜏 (1 − 𝛿) . (99)

Therefore, tx ∈ LOG𝑡 ′𝑝 for all 𝑡 ′ ≥ 𝑡 +𝑇
live

. □

Proof of Thm. 4.10. From Lem. D.18, assuming

𝐶

16

(2𝑝G − 1)2
𝑝G

(1 − 𝛿) > 1, (100)

and from a union bound over horizon 𝐾
hrzn

= poly(𝜅) on the result

of Prop. D.19, the conditions required for Lem. D.20 are satisfied

with overwhelming probability. Then Lem. D.20 guarantees safety

and liveness with 𝑘
conf

= 2𝐾cp = Θ(𝜅2) and 𝑇
live

=
6𝐾cp+2
𝜆𝜏 (1−𝛿 ) =

Θ(𝜅2).
Indices are mapped to real time as 𝑇 real

live
≜ 𝑇

live
𝜏 . Further, the

event {𝜏𝑡𝐾
hrzn

>
𝐾
hrzn

𝜆 (1+𝛿 ) } also occurs except with negligible prob-

ability (Prop. D.19), and therefore the time horizon 𝐾
hrzn

indices

corresponds to at least a time horizon of 𝑇
hrzn

≜ 𝐾
hrzn

𝜆 (1+𝛿 ) real-time

units.

Finally, we take the limit 𝜏 → 0. With the relations 𝜆 = 𝜌/𝜏 ,
(𝜈 + 1)𝜏 ≥ Δ

h
+𝐶/𝐶 , and 𝑝ppivot = (2𝑝G − 1)2/𝑝G,

𝑝G = (1 − 𝛽) 𝜌𝑒
−𝜌 (𝜈+1)

1 − 𝑒−𝜌 → (1 − 𝛽)𝑒−𝜆
(
Δ
h
+𝐶/𝐶

)
. (101)

Moreover, the value of 𝜃 from Lem. D.20 converges to (1+𝛿) ( 1
2
−

𝛽 (1 + 𝛿))𝜆 in real-time units.

Note that 𝐶 is an analysis parameter whose value is arbitrary.

To find the maximum block production rate 𝜆 that the protocol

can achieve, we optimize over 𝐶 . To find the maximum achievable

𝜆, we can take 𝛿 → 0 as we can increase the latency through

increasing 𝐾cp to still satisfy the error bounds. Maximizing over 𝐶

from eqns. (100) and (101) gives the resulting threshold. □

E PROOF-OF-STAKE MODEL DETAILS

Details of the PoS-based block production and verification are ab-

stracted through an idealized functionality F PoS,𝜌,𝜏

hdrtree
whose pseu-

docode is provided in Alg. 2 (cf. Alg. 2, [52, Fig. 2], [48, Alg. 3]).

As in PoW, each node can make one block production attempt

per slot that will be successful with probability 𝜌/𝑁 , independently
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Algorithm 4 Idealized functionality F PoS,𝜌,𝜏

hdrtree
: block production lot-

tery and header chain structure for PoS (helper functions: App. C.2)

1: ⊲ init(genesisC, numNodes) and verify(C) same as in Alg. 2

2: on isLeader(𝑃, 𝑡 ) from A (only for adversarial node 𝑃 ) or FPoS,𝜌,𝜏
hdrtree

3: ⊲ Abstraction of proof-of-stake lottery: each node is chosen leader in each slot with probability

𝜌/𝑁 independently of other nodes and slots

4: if lottery[𝑃, 𝑡 ] = ⊥
5: lottery[𝑃, 𝑡 ] $← (true with probability 𝜌/𝑁 , else false)
6: return lottery[𝑃, 𝑡 ]
7: on extend(𝑡 ′, C, txs) from A (only for adversarial node 𝑃 ) or FPoS,𝜌,𝜏

hdrtree

8: ⊲ New header chain is valid if parent chain C is valid, 𝑃 is leader for slot 𝑡 ′ , and 𝑡 ′ is later
than the tip of C and is not in the future

9: if (C ∈ T) ∧ FPoS,𝜌,𝜏
hdrtree

.isLeader(𝑃, 𝑡 ′ ) ∧ (C.time < 𝑡 ′ ≤ 𝑡 )
10: ⊲ Produce a new block header extending C
11: C′ ← C∥ newBlock(time : 𝑡 ′, node : 𝑃, txsHash : Hash(txs) )
12: T ← T ∪ {C′ } ⊲ Register new header chain in header tree

13: return C′
14: return ⊥
15: on extend(C, txs) from node 𝑃 (possibly adversarial) at slot 𝑡

16: return FPoS,𝜌,𝜏
hdrtree

.extend(𝑡, C, txs)

of other nodes and slots (Alg. 4, l. 5)
11
, modeling uniform stake. In

PoS, however, (even past) block production opportunities can be

‘reused’ to produce multiple blocks with different parents and/or

content, i.e., to equivocate (Alg. 4, ll. 2 and 7).

11
There may be multiple blocks in one slot, as in the Ouroboros [4, 22, 35] and Sleepy

Consensus [19, 52] protocols.
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