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Abstract

To be useful and widely accepted, automated contact tracing / expo-
sure notification schemes need to solve two problems at the same time:
they need to protect the privacy of users while also protecting the users’
from the behavior of a malicious adversary who may potentially cause a
false alarm. In this paper, we provide, for the first time, an exposure
notification construction that guarantees the same levels of privacy as ex-
isting schemes (notably, the same as CleverParrot of [CKL+20]), which
also provides the following integrity guarantees: no malicious user can
cause exposure warnings in two locations at the same time; and any up-
loaded exposure notifications must be recent, and not previously used.
We provide these integrity guarantees while staying efficient by only re-
quiring a single broadcast message to complete multiple contacts. Also,
a user’s upload remains linear in the number of contacts, similar to other
schemes. Linear upload complexity is achieved with a new primitive: zero
knowledge subset proofs over commitments. Our integrity guarantees are
achieved with a new primitive as well: set commitments on equivalence
classes. Both of which are of independent interest.
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1 Introduction

In 2020, the COVID-19 virus spread across the world and as of this writing, the
virus has claimed over 6 million lives [Org22]. Countries have responded with
a number of measures such as: distributing masks and vaccines, requiring test-
ing, and restricting travel. One of these measures is contact tracing. Contact
tracing is the process of discovering who a person interacted with while they
were contagious with a virus. This can help inform others to isolate to stop the
spread of the virus. Contact tracing can be performed by interviewing patients
who have been exposed and notifying those who the patient claims to have come
into contact with. Automated contact tracing (also known as automated expo-
sure notification) skips the need for an in-person interview, instead, relying on
devices to track and notify users. This makes the contact tracing process more
efficient. But ensuring the privacy and integrity of automated contact tracing
simultaneously is not trivial. A contact tracing system that lacks privacy could
deter people from using the system, reducing its effectiveness [ACK+20]. An
authoritarian regime could also use the guise of public health to track civilians.
These issues make privacy critical to ensuring an automated contact tracing
system is effective and safe. But making contact tracing completely anonymous
could have potential issues as well as unchecked users could wreak havoc on the
system by spoofing outbreaks [RG20].

In this work, we introduce a new construction, “ProvenParrot,” which goes
further to ensure that it is difficult to create fake outbreaks. We also introduce
a definition (PACIFIC) that, when met, ensures that no adversary can violate
the privacy or integrity of the contact tracing scheme. We then prove our
construction meets this definition.
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1.1 Automated contact tracing

To give context to our discussion in the rest of this introduction, we first describe
a simple automated contact tracing scheme. This simple automated exposure
notification protocol uses a person’s phone to broadcast random messages over
bluetooth. Then, if a user tests positive for COVID-19, they upload all of the
random messages they broadcasted to a public database where others can check
to see if they were exposed. This naive scheme suffers from a multitude of
problems, but gives the basic blueprint for a contact tracing scheme:

Scheme 1 (Example automated contact tracing scheme)

1. Chirp. Users in close proximity exchange bluetooth messages (commonly
referred to as “chirps”). These messages could be randomly generated bit
strings.

2. Listen. Users listen and record any chirps nearby.

3. Upload. When they determine they’re infected (through a test by a health
authority), users upload some set of ciphertexts to a database (we refer to this
upload as a “batch” of notifications). This set of ciphertexts could simply be
the random bit strings heard.

4. Check. Users regularly check if the database suggests that they should quar-
antine (e.g. if some batch includes a chirp they made, indicating that they
were in contact).

The Chirp and Listen steps can occur many times before an upload occurs,
allowing an uploader to notify many other users.

We can inspect this scheme to see that it will correctly notify users who
were in contact with others, thus providing contact tracing functionality. But
a malicious user could upload any chirps they heard, or inspect the database
to link the chirps to messages they heard. If these malicious users took note of
the people around them when they heard these messages, they could learn who
was infected. A malicious user could then look at other chirps in the batch to
determine other locations where that same user had been.

Upload-what-you-heard This naive scheme follows the “upload-what-you-
heard” model used by [CKL+20], where users upload chirps that they heard.
Some existing schemes instead use a “upload-what-you-sent” model where in-
stead, users upload chirps that they sent and users instead check the database
for chirps they heard. This model is used by DP3T, Google and Apple’s con-
tact tracing scheme (sometimes referred to as “GAPPLE”), and ReBabbler
[TPH+20, GA20, CKL+20] . Upload-what-you-sent models can be more effi-
cient, but generally sacrifice privacy at upload time as users can link the upload
to chirps they heard, so we’ll be focusing on the upload-what-you-heard model
for this paper.
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1.2 Attacks and related work

In this section, we’ll discuss a few schemes and attacks that are related to
our scheme. There is a much larger body of work on contact tracing which
we reference here [RAC+20, CFG+20, BRS20, PAJ20, BDH+20, DDL+20,
Tan20, PR21, ABIV20, Vau20b, RBS21, DSM+22, NMD+22, WL20, CBB+20a,
GhP+20, JBQ20, RBS20, CBB+20b, TSS+20, Tra20, Daw20]. To keep the dis-
cussion concise, we’ll only highlight a few schemes in this section.

We’ll now explain existing attacks in the literature, as well as describe our
own attacks that affect existing schemes. We categorize these attacks into two
categories: attacks on privacy and attacks on integrity.

1.2.1 Integrity attacks

Vaudenay [Vau20a] introduced the idea that an automated contact tracing
scheme could be used to launch a sort of “terrorist attack” where an entire
city could be falsely notified of being in contact with an infected person and
thus need to quarantine. He also constructs a solution to this problem which
requires an interactive chirp [Vau20a].

Gennaro et al [RG20] explains how a more targeted attack could create fake
outbreaks in right or left leaning neighborhoods during the two-week period
before an election to sway the outcome. By targeting a specific neighborhood
known to vote a certain way, a malicious attacker could exploit a weakness in
a contact tracing scheme in order to suggest those voters should quarantine
during the election, thus affecting the outcome of the election.

We paraphrase the terrorist attack below, accounting for the politically tar-
geted variant.

Attack 1 (Terrorist attack)

1. A malicious user enrolls many devices in the contact tracing scheme.

2. The malicious user places the devices all over an area such as a city or
neighborhood.

3. The malicious collects chirps in the area for a period of time on the order of
weeks.

4. The malicious user uploads all chirps they heard, indicating that everyone in
the area should isolate.

We can see that our naive scheme in Scheme 1 is susceptible to this attack
as the server does not do any checking to ensure that uploaders are honest.
Thus, a malicious user can listen in areas across a city simultaneously and
upload all chirps they heard. The mitigation to any integrity attack involves
registering users so that the server can verify that the user is acting honestly
during upload (e.g. imposing “upload limits,” ensuring no user uploads too
many times per week). In this paper, we’ll refer to the authority registering
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users as the “registration party.” Many schemes [CKL+20, BCK+20] leverage
a registration party in order to provide privacy guarantees.

Even if we register users, a terrorist attack can be facilitated by replaying and
relaying chirps to other honest users. This is known as the “Chirp replay/relay
Attack” [CKL+20]. A replay/relay attacker can listen to a chirp, then replay
it at another time/place fooling another honest user into believing that the
replayed chirp was honestly created and including it in their upload, thus falsely
exposing an honest user.

Auerbach et al. [ACK+20] discovered another weakness in existing schemes
called the “inverse-Sybil attack.” This attack works by having many devices
controlled by one adversary who listens in many different areas at the same time
and then combines all chirps heard into one upload. Auerbach et al. provide
a solution to the inverse-Sybil attack which relies on uploaders computing hash
chains and assuming that the adversary cannot have their devices communicate
with each other quickly.

We motivate the integrity definitions of [ACK+20] as well as our own in-
tegrity definition by posing a new attack: the event attack. This attack works
similar to the voter variant of the terrorist attack [RG20] but takes the possible
damage further by noting that it could be more effective to instead upload data
that would indicate that everyone at a single event should quarantine. Exam-
ples include: a rally or a political convention which takes place in a shorter time
(hours) than the period where an honest user would normally upload data for
(multiple days). This attack would be more appealing for an adversary to pull
off compared to the terrorist attack as the event attacker would only need to
attend a single event where they know all attendees will be voting for one can-
didate, rather than patrolling a neighborhood for weeks to find enough contacts
to upload.

We now describe a new attack: the event attack:

Attack 2 (Event attack)

1. A malicious user enrolls many devices in the contact tracing scheme. This
could be done by cloning the keys from a single device onto many devices.

2. The malicious user places the devices across the area of the event.

3. During the event (perhaps a few hours) the malicious user has each device
listen for chirps in separate areas.

4. After the event, the malicious user combines all chirps heard and uploads all
of the chirps in a single batch, thus falsely exposing everyone at the event.

In order to pull off an event attack in a scheme with user registration, the
attacker would need to “clone” their device, i.e., recover the key to copy to
multiple devices such that they could use the scheme in different areas at the
same time. We call the defence against this attack “clone protection” which
explains the name of this paper. Applying upload limits to the event attack
doesn’t solve it as an adversary could allocate all of their permitted notifications
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to a single event. An honest user would instead upload data that would be
spread out over more time (maybe a week). This concentration of notifications
into a few hours is one weakness we address in our definition and construction.

We also solve another problem not in the literature, the “upload replay/delay
attack.” This differs from the replay/relay attacks in the literature in that it
focuses on replaying uploads rather than the chirps passed between devices. In
this attack, a malicious user listens to a chirp, then uploads the chirp multiple
times, thus increasing the severity of the contact. An extreme case of this
attack could allow adversaries to continue to falsely expose an honest user of the
scheme, resulting in the system showing that they should isolation indefinitely.
Obviously, this false alarm would not be followed if it the recommendation were
to isolate indefinitely, but this could be used to mask real exposure notifications
by overloading the system with false ones. Further, if an adversary were careful
about overdoing the number of false exposures, they could cause some false
isolations for an honest user months after the actual contact. This attack works
as follows:

Attack 3 (Upload replay/delay attack)

1. A malicious user has a contact with the honest user, receiving a chirp from
that user.

2. The malicious user then uploads that chirp to the database. If they can upload
the same chirp multiple times to falsely increase the severity of their contact,
then the scheme does not have upload replay protection.

3. The honest user then checks the database and learns that they had a contact
with an infected user, potentially isolating if the contact was long enough.

4. The malicious user then waits for a few months and reuploads that same
chirp without actually ever coming in contact with the honest user again.

5. The honest user then falsely believes that they were exposed again, and po-
tentially isolates again. If this occurs, the malicious user has violated the
upload delay integrity of the scheme.

This problem does not arise in schemes where upload privacy is not a concern,
since users checking the database can associate an upload with the time it
happened, thus learning if the contact is old or a replay. But, while constructing
a scheme which achieves upload privacy, it is possible to open the scheme up to
this attack and an existing scheme suffers this problem [CKL+20].

1.2.2 Privacy attacks

Vaudenay lists a few attacks on the privacy of D3PT [Vau20a] which apply
to any contact tracing scheme. We’ve included attacks from Avitabile et al.
[ABIV20] and Canetti et al. [CKL+20] as well. In this paper, we’ll focus on the
strongest attacks from these papers, described below.
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� The “Paparazzi” attack is where a malicious user listens to chirps from devices
and then, uses these chirps to track users, such as linking chirps to uploads
or linking multiple chirps together to track where a user has been.

� The “Matrix Attack” involves collusion with the government in various ways
to de-anonymize users of the scheme by using all the information available to
any authorities in the scheme and actively creates malicious chirps to try to
de-anonymize users.

� The “Brutus” attack involves the authority leaking the mapping of a regis-
tration to users.

� The “Sybil” attack is where a user changes their identity for each interaction,
thus tying any exposure to a specific interaction.

We can see that our naive scheme is susceptible to the paparazzi attack by
a malicious user who remembers the time and location they were when they
chirped each bit string. This attacker can then link these times and locations
to notifications from the public database. We could potentially restrict users
from downloading the database during the check function, and instead have
users upload their sent chirps and have the server determine if they should
quarantine. This solution suffers from the matrix attack as in this attack, the
attacker can use the information on the server. Even if we prevent a single user
from linking a notification to a specific chirp, an attacker could generate a new
identity for each chirp (the “Sybil” attack), effectively acting as a different user
for each chirp. Through correctness of the scheme, the attacker would be able
to know which identity each notification was related to and thus which chirp.
To solve this issue, we can add a registration step to the scheme where users’
identities are first verified. This solution opens the door to the “Brutus attack”
as the server now knows which registered users were infected.

In our definition, we combine the paparazzi, matrix, and Brutus attacks
into one property: “upload privacy” and prove our construction secure in the
presence of a semi-honest authority colluding with malicious devices. We also
solve a variant of the paparazzi attack (where honest users do not upload) in
the presence of a fully malicious authority. We call this second property: “chirp
privacy” as it only holds for users who do not upload. This is a similar division
of properties to [CKL+20].

1.3 Threat model and assumptions

Some schemes separate the health authority from the database owner and as-
sume non-collusion in order to attain privacy properties [ABIV20]. In our con-
struction, we assume that all central servers are pooling information to de-
anonymize users, but run the server code faithfully. We pair this “semi-honest”
central authority with fully malicious users who can chirp and upload any ci-
phertext they want. By “semi-honest” we mean the adversary knows all the
information contained in the central database and can create and register new
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devices which are fully malicious, but, the registration secret key is kept secret
and only used honestly. Registration is pointless if the adversary has unre-
stricted access to the registration secret key, so this is a necessary assumption
for any level of security. This is a useful definition since a real-world adversary
would have an easier time misbehaving on their own device where they can run
any code they want, but would likely have a harder time running a malicious
central server. The central server could be made to be semi-honest through
some technology such as multi-party computation or replacing the server with
a blockchain. Running multi-party computation or blockchain across all the
devices would be prohibitively expensive, but running this across a few central
servers and assuming one of them is honest is better in terms of the strength of
the assumption as well as efficiency. It is also easier to audit a central server,
potentially discovering traces of misbehavior by admins of the system.

Time and location. We rely on location data (known as “measurements”)
to generate a notion of location for users [CKL+20]. Like in [CKL+20], our
measurements include things like GPS data, background noise, and possibly
information from wifi signals. Differing from [CKL+20], we separate time out
from the list of measurements, treating it as a separate attribute. These mea-
surements are used instead of simple GPS data since GPS isn’t always reliable
and using unpredictable data in the area also provides some integrity against
users who might try to broadcast chirps to an area without being present there
[CKL+20].

Tying attacks to resources. It’s impossible to prevent a user from truly
infecting themselves and going to an event to truly expose many people there.
It is also a separate problem to verify that users have covid and it is possible
that adversaries could get unverified uploads into the database or pay those
with covid to misbehave [AFV20]. Thus, instead of stopping these attacks, we
need to instead limit the amount of damage that cheating adversaries can do
by tying the effectiveness of their attacks to real-world costs such as paying for
a phone or bribing “covid mules” to upload maliciously crafted batches. To do
this, we need to operate in a semi-honest model for the registration party in
order to ensure that they don’t create a separate identity for each interaction to
trivially violate any privacy and integrity guarantees. Assuming a semi-honest
registration party allows us to count the number of registrations the adversaries
make (in our definition) and link the number of fake exposures and leakage to
this number. While for upload privacy and integrity, we require a semi-honest
authority, we do get chirp privacy for users who do not upload in the presence
of a malicious authority. 1

1We also allow our adversary to chirp in many areas at the same time with a single device.
This might open our construction up to an attack, but is not as big of an attack as the
paparazzi, matrix, or Brutus attacks as the adversary essentially “dilutes” the information
they learn by chirping in multiple areas. This could be solved with techniques from [CHK+06]
if this attack were deemed important.
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Like many other contact tracing schemes [ABIV20, CKL+20], we do not
consider privacy attacks on the BLE protocol itself, e.g. using power analysis
or linking a bluetooth id. Solving these issues is an independent problem.

1.4 Our contribution

New contact tracing definition In this work, we create a new type
of scheme with associated security games and definitions which we call
privacy-preserving automated contact tracing featuring integrity against cloning
(PACIFIC). This game models a real-world adversary interacting with honest
users in a contact tracing scheme. We introduce integrity and privacy defini-
tions which captures the paparazzi, matrix, Brutus, and event attacks described
in Section 1.2. We’ll address the privacy attacks simulating chirps and batch
uploads in the game, restricting the simulator to only information that an hon-
est user would gain. To address the event attack, we’ll introduce the notion
of clone protection. This will prevent an upload from exposing honest users in
different locations at the same time.

In schemes without clone protection, an event attacker can use their entire
upload limit to focus on an event, covering the entire event and falsely alerting
everyone, making it seem like a super spreader event. With clone protection,
each device the adversary has can only act like a single person at the event, as
they cannot be in multiple places at the same time. Thus, to cover the whole
event, they would need to purchase multiple devices. The number of devices
depends on how closely the location services on a phone can pinpoint users. If
we can pinpoint locations exactly and only accept chirps within 6 feet, then
a conference room of about 5000 square feet would take about 140 devices to
fill. Enforcing this resource requirements makes this attack more costly. Also,
without clone protection, multiple attacks at different events can be carried out
at the same time.

Compared to the constructions in the inverse-Sybil paper [ACK+20], our
definition ensures that we do not leak the ordering of our contacts (which both
of their protocols do). Comparing to their first protocol, our construction has
a lower round-complexity as it does not require an interaction to establish a
contact. Their second protocol assumes that a user’s location can be measured
alongside their assumption that adversarial devices cannot communicate, mak-
ing our scheme have fewer assumptions than their second protocol (we only
assume location is measured).

New construction and primitives In this work, we construct ProvenParrot
and prove that it satisfies the security definitions of PACIFIC. Our construction
keeps chirping complexity to a single broadcast and uploads are constructed
in time linear to the number of chirps heard. This is the same complexity as
many existing schemes [CKL+20, ACK+20, ABIV20, TPH+20, GA20] while
achieving equal privacy guarantees and stronger integrity guarantees. We will
use mercurial signatures [CL18] to sign chirpers’ and uploaders’ keys to verify
them while remaining anonymous. We use VRFs [DY05] in a similar way to
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[CHK+06] in order to prevent replay/delay attacks as well as prevent event
attacks. We also introduce two new primitives: Set commitments on equivalence
classes (CoEC) and zero knowledge subset proofs over commitments (zk-SPoC)
in order to keep our scheme efficient.

CoECs have a stronger binding guarantee than traditional commitment
schemes. The binding game for CoECs allows the adversary to use two com-
mitments when attempting a double-opening as long as those two commitments
are in the same equivalence class. We’ll see that this definition is perfect to pair
with mercurial signatures as we can reduce a forged signing on a set of attributes
to a violation of the binding of the commitment scheme when the equivalence
class is the same, or a violation of the unforgeability of the mercurial signature
scheme if the equivalence class is not the same. In our scheme, users sign a
commitment to the time and location when chirping. An uploader can then
prove that their batch does not include commitments that violate clone protec-
tion while another user can check the database to see if it contains any of their
signatures. A naive way of providing clone protection in uploads is to prove that
each pair of notifications is either at the same location or at a different time.
This would have a quadratic blowup in complexity. Our zk-SPoC construction
allows us to construct a linear complexity proof that a user did not violate clone
protection. Both of these new definitions and constructions, set commitments
on equivalence classes and zero knowledge subset proofs over commitments are
of independent interest.

While we use expensive public key operations and NIZKs, we stress that
our construction does not use any interactive protocols at any stage beyond
registration (which is a necessary two-round protocol). Crucially, chirping is a
simple broadcast. We present a strong definition of contact tracing, requiring
that batches be simulated and the scheme could possibly become more efficient
by relaxing this definition and using tricks to reduce the number of group ele-
ments, computations, and NIZKs. Also, our NIZKs are very efficient, requiring
only a handful of black-box proofs of knowledge of discrete logs for any given
relation.

Paper roadmap We review preliminaries in Section 2. We then define our
scheme, PACIFIC, in Section 3, defining the high-level protocol in Section 3.1 and
our definition of integrity and privacy including security games in Section 3.2.
When then introduce definitions of our two new primitives: set commitments
on equivalence classes in Section 3.3 and zero knowledge subset proofs over
commitments in Section 3.4. We then construct “ProvenParrot” in Section
4 which meets our security definitions from Section 3.2. A proof of security
for ProvenParrot is given in Appendix D.1. We construct set commitments
on equivalence classes in Appendix B.1 and zero knowledge subset proofs over
commitments in Appendix B.2.
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2 Notation and preliminaries

2.1 Notation

By (m, ∗) ∈ S we mean there is a tuple in set S such that the first element of the
tuple is m and the second element is another value which could be anything.
{(m, ∗) ∈ S : A} is the set of all tuples in S with m as their first element
meeting condition A. Applying a function, f , onto a set of inputs results in a
set of outputs. I.e. if f : X → Y , then for S ⊆ X, f(S) = {f(s) : s ∈ S}.
Adding two vectors, A = {a0, a1, ..., a`−1}, B = {b0, b1, ..., b`−1}, each of size `,
results in C = A + B = {a0 + b0, a1 + b1, ..., a`−1 + b`−1}. If a set is given to
an adversary, it gives the adversary no information about the ordering of the
elements in the set (you can imagine a set is a vector that is shuffled whenever

a challenger gives it to an adversary). We use r
$←− S or r ←$ S to denote

a random choice from a set. By PPT A we mean that A is a probabilistic
polynomial-time adversary.

2.2 Preliminaries

Decisional Diffie-Hellman (DDH) The DDH assumption states that:
given a group generated by an element, G = 〈P 〉, of prime order p, no PPT
adversary can distinguish distribution: {(P, P a, P b, P ab) : a, b ←$ Zp} from
{(P, P a, P b, P c) : a, b, c ←$ Zp}. The symmetric external DDH (SXDH) states
that the DDH holds in G1 and G2 for the two groups of a bilinear pairing, and
there is no efficient isomorphism between the groups.

Cryptographic bilinear pairings A bilinear pairing [GPS06] is a set of
groups, G1,G2,GT , along with a “pairing function,” e: e : G1×G2 → GT where
GT is the “target group” and G1 and G2 are the “source groups.” In this work,
we instantiate type III pairings, which means that there is no efficient, non-
trivial homomorphism between G1 and G2. The pairing function is efficiently
computable and has a bilinearity property such that if 〈P 〉 = G1 and 〈P̂ 〉 = G2,
then e(P a, bP̂ ) = e(P, P̂ )ab. We instantiate bilinear pairings using elliptic curves
and some pairing similar to the Tate pairing which allows |G1| = |G2| = |GT | =
p for some prime where all 3 groups are cyclic. In the bilinear pairing we
use, the decisional Diffie-Hellman assumption holds in the related groups, such
that: (P a, P b, P ab) ∼ (P a, P b, P c) and (P̂ a, P̂ b, P̂ ab) ∼ (P̂ a, P̂ b, P̂ c) and given
(P a, P b) it is difficult to compute P ab. We give a more formal definition of the
hardness assumptions of cryptographic bilinear pairings in Appendix A.

Commitments A commitment is a hiding and binding ciphertext that is
“committed” to some value. Hiding implies that no adversary can distinguish
between commitments to different values and binding means that no adversary
can open a commitment to two different values. One common commitment is
the Pedersen commitment [Ped92] which uses two generators of a prime order
(p) group: 〈P 〉 = 〈H〉 = G to create commitment of the form: C = P vHr
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where v is the committed value and r ←$ Zp is the opening. One then opens
the commitment by revealing v, r which allows a verifier to then recompute C.
Opening C to multiple values allows one to recover the discrete log dlogP (H)
and the commitments are perfectly hiding since multiplying by a random value
in Zp is bijective.

2.2.1 Non-interactive zero knowledge proofs of knowledge (NIZKs)

We use NIZKs to prove knowledge of witness that satisfies a verifiable rela-
tionship, R. By the definition of NIZKs, a witness can be extracted from any
proof in the programmable random oracle model with black-box access to the
proof creator (ability to rewind). Further, in the programmable random oracle
model, there exists a simulator which can construct a verifying NIZK without
knowledge of the witness.

NIZKs can be constructed for general circuits, but this is inefficient. NIZKs
are far more efficient for proving relationships of algebraic structures such as
the discrete logs between group elements and the equivalence of discrete log
between two pairs of group elements..

We will use the notation from [CS97] for proofs π =
NIZK [known values : condition to prove] where the known values are se-
cret to the prover. This allows a verifier to use π and some public values in the
condition to verify that the condition holds and that the creator of the NIZK
must know some witness for the relation.

2.2.2 Mercurial Signatures

A mercurial signature scheme (introduced in [CL18]) consists of the following
functions (which we prefix with MS).

Part of the functions in mercurial signatures form a standard sig-
nature scheme: MS.PPGen outputs public parameters for the scheme,
MS.KeyGen(ppMS, `): Outputs a public (verification) key and a secret (sign-
ing) key: (PK , sk), MS.Sign(sk ,M) outputs a signature (σ) on the message M ,
MS.Verify(PK ,M, σ) verifies a signature given a public key and message.

Where mercurial signatures differ from normal signatures is that public keys,
messages, and signatures can be randomized so that they are unlinkable from
their original forms while still verifying. This involves the use of “equivalence
classes” which are the set of allowed randomizations for each element of the
scheme. In the construction for mercurial signatures [CL18], the equivalence
classes are defined over tuples of group elements such that the discrete log
between them is constant. To define the equivalence classes, we first define a
relation for messages (RM ), and keys (Rsk ,RPK ):
RM = {(M,M ′) ∈ (G∗1)` × (G∗1)`|∃r ∈ Z∗p such that M = Mr}
Rsk = {(sk , sk ′) ∈ (Z∗p)` × (Z∗p)`|∃r ∈ Z∗p such that sk = r ∗ sk}
RPK = {(PK ,PK ′) ∈ (G∗2)` × (G∗2)`|∃r ∈ Z∗p such that PK = PK r}
These relations define equivalence classes which are represented as [M ]RM

so
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that: [M ]RM
= [M ′]RM

if (M,M ′) ∈ RM . For our schemes, we use ` = 2 as
this is enough to sign our commitments.

Public keys are randomized with the function: MS.ConvertPK(PK , ρ) →
PK ′, where ρ is a “key converter.” The new PK ′ can be thought of
as a pseudonym for the original PK . Signatures can be randomized with
MS.ConvertSig(PK ,M, σ, ρ) → σ′ such that if the same ρ is used, then
Verify(PK ′,M, σ′) = 1. Messages and signatures can be randomized jointly
with MS.ChangeRep(PK ,M, σ, µ)→ (M∗, σ∗) where µ is a blinding factor (also
known as a “key/message converter”). The correctness of these functions en-
sures that, given a public key, message, and signature, then, after calling these
functions in the order they were presented (using the converted PK ′ and σ′ as
input for MS.ChangeRep) we retrieve a new public key, message, and signature:
PK ′,M∗, σ∗ which is unlinkable from the starting public key, message, and
signature, yet still verifies. Knowing how these elements are made unlinkable
should give the reader good intuition for understanding our construction.

If two mercurial schemes are initialized together, they can be created such
that the message space of one is the key space of another [CL18]. This is done
by using G2 as the message space in the second scheme (where G2 is the key
space in the first scheme). Because messages and keys are randomized in the
same way, this allows a user to use the first scheme to sign a key from the
second scheme and allow that key to be randomized while still verifying and
being able to sign more messages. We use this property in our construction.
Formal definitions of mercurial signatures are shown in Appendix A.

We also need a special function, MS.Recognize(sk ,PK ), which operates on
public keys from the mercurial signature scheme, determining if they are in the
corresponding equivalence class for a given secret key. This function does not
exist in the literature.

2.2.3 Verifiable random function

Let G be a group of prime order, p, generated by an element, P = 〈G〉. Let
fG,Ps (x) be the function P 1/(s+x). Dodis and Yampolskiy proved that func-
tion acts like a pseudo random function under the y-DDHI (y-decisional Diffie-
Hellman inversion) assumption [DY05]. Further, given Y = fG,Ps (x), x, P , H,
PK = P sHr, r, s, it can be proven in zero knowledge that PK is a commit-
ment to the s used in the VRF calculation (without revealing s). This x can
be hidden inside a commitment as well, which our construction makes use of.
The introduction of VRFs saw security with a restriction on the input space. A
later work [CHK+06] proved the security of VRF under inputs from Z∗p in the
GGM.
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3 Definitions

3.1 PACIFIC : Privacy-preserving automated contact trac-
ing featuring integrity against cloning

A privacy-preserving automated contact tracing scheme featuring integrity
against cloning is described in Definition 1.

Usage In an example deployment of this protocol in the case of a viral out-
break, personal devices like phones or smartwatches could be used to complete
an interaction for users in close proximity. For a PACIFIC scheme, to record an
interaction, one user would chirp (via the Chirp function) and another would
listen (via the Listen function). Interactions are meant to take place repeat-
edly at a set interval on the order of seconds or minutes. In order to ensure
that users cannot violate integrity, users must register their devices to receive a
certificate which they use in the chirp function. Some semi-trusted party such
as a government agency acts as the registration party. This party creates a
registration key pair using RegPartyKeyGen and users trust the public part to
verify certificates. Users generate a key pair via UserKeyGen and give the public
part to the registration party for registration. Users who test positive for the
virus would be verified by a health authority. The infected user would then
proceed to compute a “batch” of “notifications” generated by computing Notify
on the chirps that they heard within the infection window. They then upload
this batch to a public database that other users can check if they were exposed
using: VerifyBatch2 and CountExposures. Users are only meant to upload at
most once per “epoch.” Uploading notifications in batches like this models a
real-world system and allows our construction to be more efficient. 3 This epoch
is the length of time that users are infectious before they test positive. This
epoch is meant to be much larger than the interval between chirps. An epoch
is measured on the order of days or weeks while a chirp interval is measured
in seconds or minutes. In our scheme, a database, labeled DB , is simply a set
of batches. A database authority receives batches and appends them to the
database after running VerifyBatch.

Definition 1 A privacy-preserving automated contact tracing featuring in-
tegrity against cloning scheme consists of a set of algorithms: ParamGen,
RegPartyKeyGen, UserKeyGen, RegisterUser, Chirp, Listen, Notify, VerifyBatch,
and CountExposures.

� ParamGen(1λ, e) → (pp): The parameter generation function takes as input:
a complexity parameter, 1λ, and an epoch length, e, and outputs public pa-
rameters: pp which includes an epoch function, Epoch, which is t 7→ bt/ec.
2VerifyBatch can be run once by the database owner and since we assume they are semi-

honest, integrity still holds.
3We address problems where batches are split across an epoch in Appendix E.
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� RegPartyKeyGen(pp) → (sk rp ,PK rp): The registration party key generation
function takes the public parameters as input and outputs a public/private key
for the registration party that users trust to ensure integrity of the scheme.
The registration party will sign users’ public keys.

� UserKeyGen(pp,PK rp)→ (skU ,PKU ): The user key generation function gen-
erates a user’s public/private keys.

� RegisterUser(pp, skrp,PKU ) → (cert): Register a user’s public key resulting
in a certificate.

� Chirp(pp, skU ,PK rp , cert , t, l)→ (c): The chirp function outputs a chirp using
a user’s secret key and certificate. This chirp corresponds to the given time
and location: (t, l).

� Listen(pp, sk Û ,PK rp , t, l, c) → (0 or 1): The listen function verifies that a
chirp is fresh (matches the given t, l and is not a replay) and valid (signed by
the registration party PK rp) and then remembers the chirp (and metadata)
for a potential upload later.

� Notify(pp, skU , C, d)→ (B): The Notify The notify function creates a batch of
notifications which indicate that other users should quarantine. The function
accepts a set of chirps, C. These notifications are related to chirps that were
heard within the epoch, d.

� VerifyBatch(pp,PK rp ,DB , B, d) → (0 or 1): This ensures that the batch of
notifications includes interactions in a single epoch, d, and was uploaded by
a registered user that hasn’t already uploaded for epoch d. This function also
ensures that clone protection was not violated.

� CountExposures(pp, skU ,PK rp ,DB , d) → (⊥ or λ): The count exposures
function allows any user to check a database to determine how many con-
tacts they’ve had with any infected user.

3.2 PACIFIC security definitions

In this section, we define a number of oracles that make up games that allow
us to define correctness, integrity, and privacy. These oracles share some global
state initialized by SetupGame. The adversary’s interaction with the oracles can
be thought of as an interaction with a challenger, but this oracle-style definition
helps us define the games, with some games sharing oracle definitions. We then
define a number of games for integrity, chirp privacy (where the registration
party is malicious), and upload privacy (where the registration party is semi-
honest).

Summary of integrity game. In the integrity game (Game 6), we allow the
adversary to create honest and corrupted users, send their own chirps to honest
users, listen to chirps from honest users, have honest users upload batches,
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and upload malicious batches. After the adversary exits, we are left with a
resulting global state that records all the chirps sent and batches uploaded. We
can then use this global state to create a set of possible interactions (Equation
8) that we expect to be in the database due to correctness. We then ensure
that the interactions extracted from the database are a subset of those possible
interactions (in Equation 11). Each extracted interaction is a tuple consisting
of the identities of two users, a time, and location. We then require that users
must count no more exposures from the database than what the extracted set
indicates (Equation 10). And we ensure that no tuple in the extracted set
constitutes a clone protection violation (Equation 12). Using the extractors in
this way ensures that the truth (that defines what the users draw their counted
exposures from) maps to some subset of the possible interactions that doesn’t
violate clone protection. Thus, there exists an adversary that could produce this
exact set of counted exposures simply by acting as a number of honest users
equal to the number of registrations the adversary makes. This ensures that no
user can do more damage than simply purchasing devices or bribing others and
using those devices like an honest user would. This is a strong guarantee and
gives us upload replay/delay protection as well as clone protection as both of
these require users to act differently than an honest users. An honest user never
replays/delays uploads and never violates clone protection. In our definition,
we’ll extract a set from the database: the “extracted interactions,” labeled EI.
This can be thought of as a map, with Equation 1 ensuring that it is well defined
on the multiset of counted notifications and Equations 2 and 3 ensuring that
the interactions during the game explain the map.

To show an attack that our definition prevents, let’s say that an adversary
obtains two devices and reverse engineers their keys, learning sk1 and sk2. They
now place beacons in various areas with both of these keys. Now, let’s say that
at the start of a week (time t = 0) two honest users (u1 and u2) are at two
different locations. We’ll label these as locations 1 and 2 (l = 1, l = 2). After
the adversary uploads to the database, we find that both users are exposed
twice. If this scenario is valid, we should be able to extract a map explaining
the adversary’s movements, but we’ll see that we cannot. This map can be
thought of as a set of tuples (one for each notification) each of which containing
a corrupted identity, an honest user, and a time and location. So we need to
extract four valid tuples. We can see that the only way to extract these four
tuples across the adversary’s keys is: {(sk1, u1, t = 0, l = 1), (sk2, u1, t = 0, l =
1), (sk1, u2, t = 0, l = 2), (sk2, u2, t = 0, l = 2)} since we need these tuples to
be valid with the reality of the game (that u1 was at location l = 1 and u2
was at location l = 2). We can see that these tuples violate clone protection as
we have a tuple indicating that the corrupted user sk1 was at locations l = 1
at t = 0 and another tuple indicating they were at location l = 2 at the same
time. Thus, no valid map can be extracted, and if an adversary can create these
exposures with only sk1 and sk2, they must have violated clone protection.
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Summary of privacy games. Our chirp privacy game (where honest users
only chirp) is private even in the presence of a malicious registration party, while
our upload privacy game (where honest users can be directed to upload batches)
only defines security in the presence of a semi-honest registration server with
fully malicious devices.

In our chirp privacy game, we allow the chirp simulator to know the time
and location, but critically not the identity of the honest user. We allow the
time and location to leak since this chirp is broadcasted locally, so any nearby
adversary would know this information. Our upload privacy game builds on
the chirp privacy game, by allowing for honest users to upload. We generate
the simulated batches with random times and locations (as well as random user
keys), thus enforcing that batches are unlinkable to any given time and location.

The adversary can gain a lot of information by computing CountExposures
on honest batches from honest users who interacted with different corrupted
users at different locations. This is because of correctness: the batch must
reveal the number of exposures corresponding to each of the corrupted users.
But, critically, the amount of information that the adversary gets through the
simulated honest upload oracle scales with the number of corrupted users that
the adversary creates. To simulate a batch, we extract an identity from each
chirp heard by the honest user. We then ensure they map to registrations in
the game. If a chirp is from an honest user, we create a new chirp with a fresh
identity and attributes. If the chirp is from a corrupted registration, we create
a chirp on random attributes that are only linkable to the extracted corrupted
identity. Thus, the adversary only learns the number of contacts that each of
their corrupted users had with each uploader as well as the number of honest
interactions that uploader had and nothing more.

We provide the following informal definition and defer the formal definition
to Appendix C.

Below, we describe the set of oracles that can be called by the adversary in
our games. We will use different sets of oracles for different games. Each oracle
shares global state and is run by a challenger. We define values in the global
state alongside the oracles in this informal definition.

� RegisterHonest(1λ) → (i,PKU ): Generate and register an honest user.
Generate a user key pair (skU ,PKU ) using UserKeyGen(pp,PK rp). Generate
a certificate for this user: cert ← RegisterUser(pp, skrp,PKU ). Return the
handle for this honest user, i and the public key, PKU .

� RegisterCorrupt(PKU ) → (cert): Register a corrupted user. Return a
certificate on PKU : cert ← RegisterUser(pp, skrp,PKU ).

� RecvChirp(i, l)→ (c): Receive a chirp from an honest user. Takes a user
handle, i (received by the adversary from RegisterHonest), and a location, l.
If this user already chirped at this time, abort. Otherwise, compute the chirp:
c ← Chirp(pp,HUsk (i),PK rp,Hcert(i), tnow, l) where tnow is the current time
(initially set to 0), HUsk (i) is honest user i’s secret key, and Hcert(i) is the
honset user i’s certificate. Return c.
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� SendChirp(i, l, c)→ (⊥): Send a chirp to an honest user. If this user al-
ready listened to a chirp at a different location at this same time, abort. Com-
pute: Listen(pp,HUsk (i),PK rp , tnow, l, c) and update the user’s set of heard
chirps.

� HonestInteraction(i, j, l) → (⊥): Have two honest users interact. Run c
← RecvChirp(i, l) and SendChirp(j, l, c).

� IncrementTime(1λ)→ (⊥): Increment the current time. Set tnow = tnow +
1. If, after the increment, we enter a new epoch, reset the database by
forgetting all previous batches.

� HonestUpload(i) → (B): Have an honest user upload to the server.
Return a batch computed by the honest user: B = Notify(pp,HUsk (i), C)
where C is the set of all chirps they heard and verified during the game.

� CorruptedUpload(B)→ (⊥): A corrupted user uploads to the database.
Run VerifyBatch(pp,PK rp ,DB , B,Epoch(tnow)) where DB is the current set
of batches. If this outputs 1, add B to the database, DB.

Game 1 (Correctness game) Run AOcorr(pp,PK rp , 1
k), where Ocorr =

{RegisterHonest, HonestInteraction, IncrementTime, HonestUpload}. After A ex-
its, ensure that the counted exposures matches the interactions from the game
that were uploaded. This equation is shown below where HUsk (i) is the secret
key for the honest user with handle i and HIsk ,sk is a set of interactions where
the first entry is the secret key of the chirper and the second entry is the secret
key of the listener.

∀i ∈ HU,

CountExposures(pp,HUsk (i),PK rp ,DB , tnow)

= #{(HUsk (i),HUsk (j)) ∈ HIsk ,sk : honest user j uploaded}

Where HU is the set of honest users. If this check fails, output 1 indicating that
the adversary won, otherwise, output 0.

Definition 2 (Correctness) An automated exposure notification scheme, Π,
is correct if no PPT adversary can win Game 1 with probability greater than
negligible for all valid epoch values.

3.2.1 Clone integrity

Game 2 (Clone integrity game) Run (sk rp ,PK rp) ←
RegPartyKeyGen(1λ). Run AOintegrity(pp,PK rp , 1

λ), where Ointegrity =
{RegisterHonest, RegisterCorrupt, RecvChirp, SendChirp, HonestInteraction,
IncrementTime, HonestUpload, CorruptedUpload}. When A exits, the challenger
uses the resulting global state to determine if the adversary won.
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� The challenger computes the set of possible interactions (PI) which
contains each chirp emitted by honest users paired with each corrupted
secret key registered as well as any interactions between honest users.
Thus, the size of this set is: (number of honestly emitted chirps) ×
(number of corrupted users) + (number of honest interactions). The tuples
in this set include an honest chirper secret key, a listener secret key, a time,
and location (PI ⊂ SK × SK × T × L).

� The challenger computes the set of extracted interactions (EI) from the
database which would notify an honest user using the extractor EDB . These
tuples are of the same form as PI.

We are now ready to check conditions and output 1 if any fail, indicating
that the adversary wins. Otherwise, output 0.

1. Correct exposure count. Ensure the extracted interactions match the
exposures counted by honest users:
∀i ∈ HU,

CountExposures(pp,HUsk (i),PK rp ,DB , tnow)

= #{(skU , skU
′, t, l) ∈ EIsk : skU = HUsk (i)}

(1)

Where HU is the set of honest users and HUsk (i) is the secret key of the
honest user, i.

2. Database contains a subset of possible interactions. Ensure these
extractions are within the set of chirps sent by honest users during the game:
EI ⊆ PI (2)

3. Clone protection. Ensure that no corrupted user was in two locations at
the same time:
6 ∃
(
(∗, skU , t, l), (∗, skU

′, t′, l′)
)
∈ EI

s.t. skU = skU
′ ∧ t = t′ ∧ l 6= l′

(3)

Definition 3 (Clone integrity) An automated exposure notification scheme,
Π, has clone integrity if there exists a set of extractors, E, such that no PPT
adversary can win Game 2 with probability greater than negligible for all valid
epoch values.

3.2.2 Privacy definitions

To define chirp privacy, we create a simulator for chirps in the ideal game:

� RecvChirpsim(⊥, l) → (c): Functions exactly like the real version, RecvChirp,
except this simulated version computes the chirp with a new user. I.e.: to com-
pute the chirp, first generate a new keypair: skU ,PKU ← UserKeyGen(PK rp).
Then register this user: cert ← RegisterUser(sk rp ,PKU ). Compute a chirp for
this user on the given time and location, c ← Chirp(skU ,PK rp , cert , tnow, l).
Output this chirp, c.
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In the chirp privacy game, we allow the adversary to create a corrupted regis-
tration party. The registration party secret key is extracted to be used in the
RecvChirpsim oracle. We define a function that allows the adversary to create
their own certificates for honest users.

� RegisterHonestmal(1λ) → (i,PKU ): Generate a key pair, skU ,PKU ←
UserKeyGen(pp,PK rp). Call the adversary with PKU to receive cert . Re-
turn the handle for this honest user, i and the public key, PKU .

Game 3 (Chirp privacy game) Run (PK rp , st) ← A(pp, 1λ) and use the
PK rp for oracles in the game. Extract sk rp = EPK rp (PK rp) for registering
new users in the simulator. Flip a random bit, b ←$ {0, 1}. If b = 0, run
b′ ← AOreal (pp, 1λ, st), otherwise, if b = 1, run b′ ← AOsim (pp, 1λ, st), where:
Oreal = {RegisterHonestmal , RecvChirp, SendChirp, IncrementTime} and Osim =
{RegisterHonestmal , RecvChirpsim , SendChirp, IncrementTime}. The adversary
wins if b = b′.

Definition 4 (Chirp privacy) An automated exposure notification scheme,
Π, is privacy-preserving with respect to chirps if there exists a set of extrac-
tors, E, such that no PPT adversary has greater than 1

2 + negl(λ) advantage in
Game 3 for all valid epoch values.

To define upload privacy, we need another simulator for batches4

� HonestUploadsim(i) → (B): First, compute a new uploader key-
pair, sk Û ,PK Û ← UserKeyGen(pp) and register this user: cert Û ←
RegisterUser(pp, sk rp ,PK Û ). Next, reconstruct a simulated set of chirps, C,
to be used by the Notify function. For each tuple in the chirps received by user
i during the game, extract the secret key of the sender from the chirp, labeling
the multiset of these extracted secret keys: RCi. Then count the number of
honest senders in this set: KHU = #{sk ∈ RCi : sk ∈ HUsk . Next, we need to
extract all secret keys of corrupted users with Esk (PKU ) using the public keys
provided during registration. For each adversarial user, count the number of
interactions with that user: KskA = #{sk ∈ RCi : sk = skA}. Then compute
a total of KHU new chirps for new random users, times and locations, using
skU ,PKU ← UserKeyGen(pp,PK rp), cert ← RegisterUser(sk rp ,PKU ). Then,
for each adversarial secret key, compute KskU new chirps for the extracted
adversarial secret key, with random new times and locations, doing the same
as was done for honest chirps, but skipping the key generation and using the
corrupted key instead. Label the set of all these new simulated chirps from
honest and corrupted users as C. Now compute a batch using the new up-
loader and simulated chirps: B ← Notify(sk Û ,PK rp , C, tnow). Output this
batch, B.

We are now ready to define the game:

4Note that while a user handle is given to HonestUploadsim , it is only used to compute
leakage such as batch size.
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Game 4 (Upload-privacy game) Run (sk rp ,PK rp) ←
RegPartyKeyGen(1λ). Flip a random bit, b

$←− {0, 1}. If b = 0, run
st ← AOreal (pp,PK rp , 1

λ), otherwise, if b = 1, run st ← AOsim (pp,PK rp , 1
λ),

where: Oreal = {RegisterHonest, RegisterCorrupt, RecvChirp, SendChirp,
IncrementTime, HonestUpload} and Osim = {RegisterHonest, RegisterCorrupt,
RecvChirpsim , SendChirp, IncrementTime, HonestUploadsim}. Next, run
b′ ← A(sk rp , st). The adversary wins if b = b′.

Definition 5 (Upload privacy) An automated contact tracing scheme, Π, is
privacy-preserving if there exists a set of extractors, E, such that no PPT ad-
versary has greater than 1

2 + negl(λ) advantage in Game 4 for all valid epoch
values.

3.3 Set Commitments on equivalence classes (CoECs)

In this Section, we describe CoECs, commitments that are binding across equiv-
alence classes. Traditional commitments ensure that an adversary cannot pro-
duce a commitment with openings to distinct messages. Commitments on equiv-
alence classes assume a slightly weaker adversary in that the adversary is allowed
to output two commitments with openings to distinct sets of messages as long
as the commitments are in the same equivalence class. This allows CoECs to
compose well with mercurial signatures, which ensure the equivalence class of
messages are unforgeable. We also include a property: “class-hiding” which
ensures that even if an adversary creates the commitment, it is still indistin-
guishable after it has been randomized. This function takes a group description,
G, of prime size p and outputs commitments in an equivalence class:

RC = {(C,C ′) ∈ (G∗1)` × (G∗1)`|∃r ∈ Z∗p s.t. C ′ = Cr}

Here we define a CoEC scheme for ` = 2 in Definition 6. Later, in Appendix
B.1, we construct a CoEC scheme in Definition 27.

Definition 6 (CoECs scheme)

� InitializeCoEC(1k, s,G)→ pp: Initialize the commitment scheme for a number
of attributes, s, outputting public parameters, pp.

� Commit(pp,M = {m0,m1, ...})→ (C,O): Commit to a set of attributes, M ,
where |M | = s. Output the commitment, C, and opening information O.
|C| = 2 and possible outputs of this function are defined on an equivalence
class: [C]RC

= {C ′ : dlogC′
0
(C ′1) = dlogC0

(C1)}.

� RandomizeCom(pp, C,O)→ (C ′, O′): Randomizes the commitment so that C
and C ′ are unlinkable but still a commitment to the same set.

� Open(pp, C,M,O)→ (0 or 1): Take opening information and output whether
C is a commitment to M .

22



Definition 7 (CoEC correctness) A commitment scheme is correct if ∀
s, k, and attributes M where |M | = s, then given pp ← InitializeCoEC(1k, s),
the following holds:
Pr[(C,O)← Commit(pp,M);Open(pp, C,M,O) = 1] = 1
And:
∀C,M,O such that Open(pp, C,M,O) = 1] = 1,

Pr[(pp,M); (C ′, O′) = Randomize(C,O);Open(pp, C ′,M,O′) = 1] = 1

Definition 8 (CoEC binding) A commitment scheme is binding if for all
s, k, and for all PPT adversary, A, then given pp ← InitializeCoEC(1k, s), the
following holds: then the following probabilities are negligible:
Pr[(C,C ′,M,M ′, O,O′)← A(pp)

Open(pp, C,M,O) = 1

∧ Open(pp, C ′,M ′, O′) = 1 ∧M 6= M ′

∧ [C]RC
= [C ′]RC

] ≤ negl(k)

Definition 9 (CoEC hiding) A commitment scheme is hiding if for all s, k,
and for all PPT adversary, A, then given pp ← InitializeCoEC(1k, s), the fol-
lowing holds:

Pr[b
$←− {0, 1}; (M0,M1, st)← A(pp); (C,O)← Commit(pp,Mb);

b∗ ← A(st , C) : b = b∗] ≤ 1

2
+ negl(k) (4)

Definition 10 (CoEC class-hiding) A commitment scheme is class-
hiding if for all s, k, PPT adversary, A, pp ← InitializeCoEC(1k, s,G),
C,O,M,C ′, O′,M ′ ← A(pp, 1k) (where Open(pp, C,M,O) =
Open(pp, C ′,M ′, O′) = 1), C0 ← Randomize(C,O) is indistinguishable
from C1 ← Randomize(C ′, O′).

We construct CoECs in Appendix B.1 and prove our construction secure in
Appendix D.2.

Theorem 1 The CoEC scheme in Definition 27 is correct, hiding, origin-
hiding, and binding as defined in Definitions 7, 8, 10, and 9 as long as the
SXDH assumption (from Section 2) holds and mercurial signatures are message
class-hiding (in Appendix A).

3.4 Zero knowledge subset proofs over commitments (zk-
SPoCs)

Overview As a wordy summary: zk-SPoCs prove that the set of sets of at-
tributes committed to by one set of commitments is a subset of another set
of sets of attributes committed to by another set of commitments. Let’s clar-
ify with notation: let’s say you have two sets of commitments, each of size m
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and n: A = {a0, a1, ..., am} and B = {b0, b1, ..., bn}. Each of these commit-
ments are committed to a set of attributes. We’ll label the set of all these sets
of attributes as: M = {m0,m1, ...,mm} and L = {l0, l1, ..., ln} i.e. each ai
opens to the set mi and each bi opens to the set li. A zk-SPoC proves that all
openings are known and that M ⊆ L without revealing M or L. Note that
we do not consider duplicates in this subset i.e. if there are two commitments
to the same set in A (∃mi = mj , i 6= j) but B only has one copy of this set
(∃lk = mi,mi 6= lq∀q 6= k), we still say M ⊆ L. In other words, we consider
M and L sets, not vectors or multisets. This is easily accomplished in n2 time
using a ZKP OR proof. We create definitions so that we can construct proofs
in time linear to n while retaining security properties. The high level protocol
has an initialization function, a prove function and a verify function:

� InitZKSPoC(1k): Initialize the commitment scheme, ppSC ← Setup(1k). Out-
put pp = ppSC along with a description of the given commitment scheme.

� ProveSubset(pp, {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n])→ (W ): Takes in two sets
of commitments and outputs a proof that {Li}i∈[m] ⊆ {Mi}i∈[n] and the
commitments open to these sets.

� VerifSubset(pp, {Ai}i∈[m], {Bi}i∈[n],W )→ (1 or 0): Takes in the witness and
outputs 1 if A is a commitment to a set, {Li}i∈[m], which is a subset of
{Mi}i∈[n], which are the message sets that {Bi}i∈[n] are commitments to.

These subset functions have a correctness property and two security prop-
erties:

Definition 11 (Correctness)
For all sets of commitments and openings, {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n],

such that Open(Ai, Li, Oi) = Open(Bi,Mi, Pi) = 1 and {Li}i∈[m] ⊆ {Mi}i∈[n],
then given W ← ProveSubset(pp, {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n]), the follow-
ing holds: VerifSubset(pp, {Ai}i∈[m], {Bi}i∈[n],W ) = 1

Definition 12 (Soundness)
For all PPT adversaries, A:
Pr[({Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n],W )← A(pp, 1k);

VerifSubset({Ai}i∈[m], {Bi}i∈[n],W ) = 1

∧ ∀i ∈ [m],Open(Ai, Oi, Li) = 1

∧ ∀i ∈ [n],Open(Bi, Pi,Mi) = 1

∧ {Li}i∈[m] 6⊆ {Mi}i∈[n]] ≤ negl(k)

Definition 13 (Zero knowledge)
A zk-SPoC scheme is zero knowledge if there exists a simulator (SProveSubset)

that, when given only the commitments (no messages or openings), can output a
witness that is indistinguishable from a witness computed with valid information
of the sets and openings. Formally, a zk-SPoC scheme is zero knowledge if the
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probability below holds for all PPT A and all pp ← InitZKSPoC(1k):
Pr[(st , {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n])← A(pp);

W 0 ← ProveSubset(pp, {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n]);
W 1 ← SProveSubset({Ai}i∈[m], {Bi}i∈[n]);
b← {0, 1};
b′ ← A(pp, st ,W b);

Open(Ai, Oi, Li) = Open(Bi, Pi,Mi) = 1 ∧ b = b′] ≤ 1

2
+ negl(k)

We construct CoECs in Appendix B.2 and prove our construction secure in
Appendix D.3.

Theorem 2 The zk-SPoC scheme described in Definition 28 meets Definition
11.

Theorem 3 The zk-SPoC scheme described in Definition 28 meets Definition
13 with the simulator defined in Definition 34 given a subset-sound FHS19 com-
mitment scheme described in Appendix .

Theorem 4 The zk-SPoC scheme described in Definition 28 meets Definition
12 given a binding FHS19 commitment scheme described in Appendix .

4 Construction of ProvenParrot

4.1 Description

Anonymous registration, chirps, and uploads. In order to register users
without opening ourselves up to the Brutus attack, i.e. linking registrations
to uploads (described in Section 1.2), we will use mercurial signatures. We re-
viewed mercurial signatures in Section 2. Mercurial signatures allow users to
randomize their pseudonym after registration so that, while users can verify
that the new randomized pseudonym is signed, they cannot link it to any other
pseudonym used during registration, chirping, or uploading. Mercurial signa-
tures further allow for signing messages which then verify under pseudonyms
(where the pseudonyms can be signed by a trusted public key). We will use this
property to allow users to sign commitments to the current time and location
for chirping preventing replay attacks. A clever reader will see that this could
potentially cause problems during upload as a user could potentially rerandom-
ize their pseudonym many times in order to pretend to be many users, thus
negating any rate-limiting we attempted. We solve this problem using verifiable
random functions (VRFs) [DY05, CHK+06]. This allows us to compute a pseu-
dorandom function (PRF) of the current time and a function of the user’s secret
key which remains constant across all pseudonyms. Thus, if a user only uploads
at most once per epoch (as honest users do) the output will look random. But
when a malicious user attempts to upload twice in the same time period, the
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VRF will output the same value, thus exposing their misbehavior. We also use
VRFs to ensure that users do not chirp more than once per chirp interval. This
is shown in blue text and stops an obscure attack on our scheme described in
Appendix E but can be removed if this attack is deemed impractical.

Clone protection. To solve the event attack described in Section 1.2, we need
to utilize time and location. The idea is that devices will use the current time as
well as their location when creating chirps. Listeners can then compute the time
and location themselves and verify that the chirp was indeed meant for the given
time and their location. This immediately prevents chirp relay/replay attacks
as a relayed chirp would have an incorrect location and a replayed chirp would
have an incorrect time, allowing the listener to discard the chirp. This is done
in [CKL+20]. The key improvement that we add is using this time and location
data when these chirps are uploaded to the server. During upload, we have the
server check if an upload suggests that they were in two different locations at the
same time (thus preventing cloned devices). To make this information private
while still allowing verification, we form randomizable commitments to the time
and location data. An uploader then proves to the server that the time and
locations of the commitments does not violate clone protection. We introduce
two new definitions and constructions to make this possible and efficient: set
commitments on equivalence classes (CoECs) and zero knowledge subset proofs
over commitments (zk-SPoCs). These are defined in Sections 3.3 and 3.4 and
constructed in Appendices B.1 and B.2.

Our construction proceeds as follows: users generate a mercurial key pair
and have the public portion signed by the registration party. To create a chirp,
the user randomizes their public key and signature from the registration party,
and signs a commitment to the current time and location. They then broadcast
this chirp (including the opening of the commitment) to nearby users. Listeners
can then verify that the commitment is valid (for the current time and location)
and then verify that it is signed by the chirper and that the chirper’s public
key is signed by the registration party. Later, during upload, a user takes these
heard chirps and randomizes all elements: the heard public key, the signature,
and the commitment. These are uploaded to the public database all at once
in a batch. Then, any other users can query the database and recognize their
public key (and verify their signature) to determine that they had were exposed.
Because these chirps were randomized (and the commitments are class-hiding),
users who check the database cannot link any exposure to a specific chirp, time,
or location.

Uploaders must prove that the times and locations committed to by the
chirps do not violate clone protection, i.e., no two commitments have the same
time but different locations. A trivial way to do this is to run a zero-knowledge
proof across each pair of commitments. But this requires quadratic complexity.
We can do better using zero knowledge subset proofs over commitments. In-
stead, an uploader will create a shuffled copy of the set of commitments across
all heard chirps and remove any duplicates. This copy is now a superset of

26



the commitments in the heard chirps as it contains all attribute sets from the
chirps. They upload this copy as well as the commitments from the heard chirps
along with a proof of subset (zk-SPoC). They then compute a VRF on each time
value committed to by this shuffled set. This effectively proves that the batch
uploaded does not violate clone protection as a commitment to the same time
at two locations would mean a second commitment to this time would remain
in the superset (since t, l and t, l′ are distinct values) and thus the computed
VRF would match. An honest user can remove all duplicates of any t, l, thus
making all their VRF computations distinct and random.

Chirpers also sign a nonce and uploaders compute a VRF on this value to
ensure that they do not rerandomize the same chirp multiple times. We compute
this nonce by hashing the randomized public key to prevent a de-anonymization
attack described in Appendix E.

4.2 ProvenParrot

We name our construction: “ProvenParrot” as it is similar to CerfifiedClever-
Parrot from [CKL+20] but requires the uploader to prove properties of their
upload (that their notifications do not violate clone protection).

We use mercurial signatures as summarized in Section 2 and defined in Ap-
pendix A We define a function, fMS

(·) (·) as a VRF as described in 2, but this func-

tion will take in a mercurial secret key and compute the PRF using dlogsk0
(sk1),

thus ensuring that, given any equivalence class representation of a key, it com-
putes the PRF with the same key no matter how the key has been randomized.
We show a more complete zero knowledge construction of VRFs on mercurial
signatures in Appendix B.3. We implicitly pass the corresponding PKU to any
function where skU is used.

Definition 14 (ProvenParrot construction)

� ParamGen(1k, e) → (pp): Generate two mercurial signature schemes such
that the message space of one is the public key space of the other. This
means generating the schemes so that the first scheme generates public keys
in G1 and the second scheme generates them in G2 (the message space of
the first scheme). The second scheme then signs messages in G1: ppMS,1 ←
MS.PPGen1(1k), ppMS,2 ← MS.PPGen2(1k). We generate the CoEC and zk-
SPoC schemes so that they operate on the message space for the second
mercurial signature scheme, G1: Initialize a commitment scheme for four
attributes: ppCom ← InitializeCoECG1(1k, 4). Initialize a zk-SPoC scheme
ppzk−SPoC ← InitZKSPoCG1(1k). Create an epoch function Epoch which di-
vides and floors any given time: Epoch : t 7→ b tec. Output the public parame-
ters: pp = {Epoch, ppMS,1, ppMS,2, ppCom, ppzk−SPoC}.

� RegPartyKeyGen(pp) → (sk rp ,PK rp): Generate a mercurial key-
pair: sk rp ,PK rp ← MS.KeyGen1(ppMS,1), for the registration
party. Construct a NIZK proving that sk rp is known: πrp =
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NIZK
[
sk rp , r : PK rp ← MS.KeyGen1(ppMS,1; r)

]
. Output (sk rp ,PK rp)

where πrp is implicitly part of the public key.

� UserKeyGen(pp,PK rp)→ (skU ,PKU ): First check if πrp is correct for PK rp,
aborting and outputting ⊥ if not. Run skU ,PKU ← MS.KeyGen2(ppMS,2)
and output both the public and private key along with a proof simliar to
RegPartyKeyGen.

� RegisterUser(pp, sk rp ,PKU ) → (cert): Verify proof of PKU . Sign PKU with
sk rp: σ ← MS.Sign(sk rp ,PKU ) and return σ as the certificate, cert.

� Chirp(pp, skU ,PK rp , cert , t, l)→ (c):

– Verify that our certificate is valid (that PKU verifies under PK rp with
cert = σ). If not, output ⊥.

– Derive an epoch from t: d← Epoch(t).

– Randomize the user’s public key and certificate: ρ ←$ Z∗p ; PKU
′, cert ′ ←

MS.ChangeRep(PK rp ,PKU , cert , ρ)

– Generate a random nonce from the randomized public key: r = H(PKU
′)

where H is a hash function: H : (G2)2 → Zp.

– Generate a commitment:

C,O = Commit(ppCom, (t, l, d, r))

– Sign C with a randomized secret key and certificate using the blinding factor

from the randomization of the public key, ρ:
skU

′ ← MS.ConvertSK(skU , ρ)

σc ← MS.Sign(skU
′, C)

– Compute a VRF on the secret key and the time and prove that this is cor-
rectly computed:
πt = NIZK [skU

′ : Y t = fMS
skU ′(t)

∧ PKU
′ = skU

′P ]

– Broadcast c = (C, O, σc, PKU
′, cert ′, πt, Y t ).

� Listen(pp,PK rp , t, l, c) → (1 or 0): Use the t given as input and recompute
d = Epoch(t). Recompute the nonce: r = H(PKU

′). Use the location
given as input, l, along with the opening, O, from the chirp to ensure that

Open(ppCom, C, (t, l, d, r), O)
?
= 1. Verify that 1

?
= MS.Verify(C,PKU , σc) and

1
?
= MS.Verify(C,PK rp , cert). Verify the NIZK with the given public key and

current time and check the listener’s state to ensure that Y t is new. If all
these checks pass, output 1. Otherwise, output 0. Remember the chirp along
with the time and location for uploading later.

� Notify(pp, sk Û , {ci}i∈[n], dnow) → (B): (Note: we’ve labeled the key pair for
the executor of this function (the uploader) as: sk Û ,PK Û , to distinguish it
from the public keys in the chirps).
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– Compute a randomized copy of the uploader’s keys and certificate:
PK ′Û , cert ′ ← MS.ChangeRep(ppMS,2,PK Û , cert , ρ̂)

sk ′Û ← MS.ConvertSK(ppMS,2, sk Û , ρ̂)
where ρ̂←$ Z∗p is a blinding factor.

– Compute and prove a PRF on sk ′Û and dnow:

πPK = NIZK [sk ′Û : Y PK = fMS
sk ′

Û
(dnow) ∧ PK ′Û = sk ′ÛP ]

– Randomize all n chirps heard. This means randomizing public keys,
signatures, certificates, and commitments:
∀i ∈ [n],

ρi ←$ Z∗p, µi ←$ Z∗p
PKU

′
i ← MS.ConvertPK(PKU i, ρi)

σ∗c,i ← MS.ConvertSig(PKU i, Ci, σc,i, ρi)

C ′i, σ
′
c,i ← MS.ChangeRep(PKU i, Ci, σ

∗
c,i, µi)

O′i = Oi ∗ ρi
cert ′i = cert i

– Prove that every commitment has d = dnow each resulting in a proof, πdi :
∀i ∈ [n],

πdi = NIZK [O′i, ti, li, ri :

Open(C ′i, O
′
i, ti, li, dnow, ri) = 1]

– For each of the nonces in the chirp commitments, ri, compute Y ri and
prove that is is the output of a PRF on a normalized sk ′Û and ri:

∀i ∈ [n],

πri = NIZK [O′i, sk Û , ti, li, ri : Open(C ′i, O
′
i, {ti, li, di, ri}) = 1

∧ Y ri = fMS
sk ′

Û
(ri), sk ′Û = PK ′ÛP ]

– To prove clone protection, create commitments to t, l for each C ′i, re-
sulting in a set {Ctli }i∈[n]. Prove equivalency for this new set of com-
mitments. Create a second set of commitments, {C∗i }i∈[n], such that:

{C∗i }i∈[n] ≈ {Ctli }i∈[n] but do not prove equivalency. Iterate through each
duplicate commitment (two commitments to the same t, l) in {C∗i }i∈[n] and
replace each with a new commitment to random attributes, t, l ←$ Z2

p. Af-
ter this is done, {C∗i }i∈[n] should include a commitment to each t, l from

{Ctli }i∈[n], but not have any duplicates. Compute a proof, πtl, that {C∗i } is

committed to a superset of the values committed to by {Ctli }i∈[n] using the
ProveSubset function from Section 3.4. Compute a VRF of each t commit-
ted to by {C∗i }i∈[n] combined with the uploader’s secret key, sk Û :

πti = NIZK [O′i, sk ′Û , {t
∗
i , l
∗
i } : Open(C∗i , O

∗
i , {t∗i , l∗i }) = 1

∧ Y ti = fMS
sk ′

Û
(t∗i ), sk ′ÛP = PK ′Û ]

– Shuffle and output each chirp with randomized public keys and signatures
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along with their proofs. This is the batch which is outputted by this function,
B:
B =

(
PK ′Û , cert ′, Y PK , πPK , πtl,

{PKU
′
i, σ
′
c,i, C

′
i, C

tl
i , π

d
i , π

r
i , Y

r
i }i∈[n],

{C∗i , πti , Y ti }i∈[n]
)

� VerifyBatch(pp,PK rp,DB , B) → (1 or 0): Verify that the certificate

in the batch is a valid signature for PK ′Û under PK rp using 1
?
=

MS.Verify(PK rp ,PK ′Û , cert ′). Verify all NIZK proofs. Ensure there’s no du-
plicates in {Y ri }i∈[n] or {Y ti }i∈[n] across the batch. Ensure there’s no duplicate
Y PK across the database.

� CountExposures(pp, skU ,PK rp ,DB) → k: Iterate through each
pair of public key, PK ′U,i, and signature, σ′c,i, in each batch and

run MS.Recognize(ppMS, skU ,PK ′U,i). If this passes, ensure that

MS.Verify(PK ′U,i, C
′
i, σ
′
c,i) is true. If both are true, this is a valid expo-

sure. Sum the number of valid exposures across the database and output the
resulting number.

4.3 Proofs of security

We introduce the theorem here that we then prove in Appendix D.1 after intro-
ducing more formal versions of our security definitions.

Theorem 5 The ProvenParrot scheme described in Definition 14, using the
set of extractors: E from Definition 33, has clone integrity (meeting Definition
3) and is chirp-private (meeting Definition 4) and is upload-private (meeting
Definition 5).
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A Additional preliminaries

Note that we switch to using the additive notation for group operations in this
appendix. Thus, an “exponentiation” of P ∈ G1 by a ∈ Zp is denoted as: aP

and a “discrete log” between two group elements, P and P ′ is denoted: P ′

P .

A.1 Verifiable random functions (VRFs)

A VRF [DY05] allows a user to compute and prove the output of a pseudoran-
dom function using their secret key with some public input where the verifier
only sees a (potentially randomized) commitment to the public key. A VRF is
composed of three functions (and an initialization function):

� Initialize(1k): Outputs the public parameters we implicitly use in the other
functions.

� VRFsk (x)→ Y : Outputs a deterministic pseudorandom string computed with
key sk on input x. We also write this as fsk (x) when it is unambiguous.

� Prove(sk ,PK , o, Y, x) → π: Outputs a proof that Y is correct for the given
randomized public key, PK and x.

� Verify(PK , Y, x, π)→ {0 or 1}: Verifies a proof that Y is correct for the given
randomized public key, PK and x.

Definition 15 (Correctnesss)
If VRFsk (x) = Y and Prove(sk ,PK , o, Y, x) = π, where o is a valid opening of
sk on commitment PK , then Verify(PK , Y, x, π) = 1.

Definition 16 (VRF Uniqueness)
A verifiable random function is unique if no adversary can compute
(PK , x, Y1, Y2, π1, π2) such that Verify(PK , x, Y1, π1) = Verify(PK , x, Y2, π2) = 1
and Y1 6= Y2.
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Definition 17 (VRF Pseudorandomness)
A verifiable random function is pseudorandom if for all PPT advesaries, the
following probaiblity is negligible:
Pr[b = b′ :

(PK , sk , o)← Commit(1k);

(x, st)← AVRF(sk ,·),Prove(sk ,PK ,o,·,·)(PK );

Y0 = VRFsk (x);Y1 ← {0, 1}k;

b← {0, 1};

b′ ← AVRF.Prove(·)(Yb, st)] ≤ 1

2
+ negl(k)

VRF injectivity Let the group G be an elliptic curve group of prime order.
Let G be generated by an elliptic curve point such that G = 〈P 〉. Let this group
be a R-module with the ring, Zp, where p = |〈P 〉| and p is prime. These are the
types of groups used by the Weil and Tate pairings, yielding efficient Type-III
bilinear pairings [Cos12]. To prove that Dodis-Yampolskiy VRFs [DY05] are
injective, we assume the opposite and come to a contradiction: If this VRF
weren’t injective, this would imply that: 1/(s + x)P = 1/(s + x′)P where
x 6= x′. This implies that: 1/(s + x) = 1/(s + x′), since assuming otherwise
would imply that aP = a′P (where a = 1/(s+x) and a′ = 1/(s+x′)). WLOG,
let a′ < a < p. This implies that (a− a′)P = O, but (a− a′) < p and we know
the order of P is p, so we have a contradiction. We can see that Z∗p is a group
on multiplication and Zp is a group on addition. Groups have unique inverses
and Z∗p has the cancellation property. This allows us to make the following
implications:(
1/(s+ x) = 1/(s+ x′)

)
=⇒

(
(s+ x) = (s+ x′)

)
=⇒

(
x = x′

)
(5) Which

leads to a contradiction.

A.2 Mercurial signatures

A mercurial signature scheme is comprised of the functions: MS.PPGen,
MS.KeyGen, MS.Sign, MS.Verify, MS.ConvertSK, MS.ConvertPK, MS.ConvertSig,
and MS.ChangeRep. A mercurial signature scheme is parameterized by a length,
`, which determines how large of messages can be signed.

� MS.PPGen(1k) → pp: Outputs public parameters, pp, including parameter-
ized equivalence relations for the message, public key, and secret key space:
RM , Rpk , Rsk and the sample space for key and message converters.

� MS.KeyGen(pp, `)→ (pk , sk): Generates a key pair of length `.

� MS.Sign(sk ,M)→ σ: Signs a message, M with the given secret key.

� MS.Verify(pk ,M, σ) → (0 or 1): Given a signature, σ, verify that M was
signed by pk .
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� MS.ConvertPK(pk , ρ) → pk ′: Given a key converter, ρ, randomize a public
key so that is it unlinkable to any other public key (including pk).

� MS.ConvertSK(sk , ρ) → sk ′: Randomize a secret key such that it now cor-
responds to a public key which has been randomized with the same ρ
(i.e. signatures by sk ′ = MS.ConvertSK(sk , ρ) verify by the randomized
pk ′ = MS.ConvertPK(pk , ρ)).

� MS.ConvertSig(pk ,M, σ, ρ)→ σ′: Randomize the signature so that it verifies
with a randomized pk ′ (which has been randomized with the same ρ) and M ,
but σ′ is unlinkable to any other signature (including σ).

� MS.ChangeRep(pk ,M, σ, µ) → (M ′, σ′): Randomize the message and signa-
ture so that they are unlinkable, but still verify with each other.

Mercurial signatures define relations which for messages and keys as:

Definition 18 (Mercurial signatures equivalence classes)
RM = {(M,M ′) ∈ (G∗1)` × (G∗1)`|∃r ∈ Z∗p s.t. M ′ = rM}
Rpk = {(pk , pk ′) ∈ (G∗2)` × (G∗2)`|∃r ∈ Z∗p s.t. pk ′ = rpk}
Rsk = {(sk , sk ′) ∈ (Z∗p)` × (Z∗p)`|∃r ∈ Z∗p s.t. sk ′ = rsk}

These relations define equivalence classes which are represented as [M ]RM
so

that: [M ]RM
= [M ′]RM

if (M,M ′) ∈ RM .

Definition 19 (Mercurial Signatures Unforgeability) A mercurial signa-
ture scheme (PPGen, KeyGen, Sign, Verify, ConvertSK, ConvertPK, Convert-
Sig, ChangeRep) for parameterized equivalence relations RM , Rpk , and Rsk

is unforgeable if for all polynomial- length parameters (k) and all probabilistic,
polynomial-time (PPT) algorithms A having access to a signing oracle, there
exists a negligible function ν such that:
Pr[PP← PPGen(1k); (pk , sk)← KeyGen(PP , (k));

(Q, pk∗,M∗, σ∗)← ASign(sk,·)(pk) :

∀M ∈ Q, [M∗]RM
6= [M ]RM

∧ [pk∗]Rpk
= [pk]Rpk

∧ Verify(pk∗,M∗, σ∗) = 1] ≤ ν(k)

Definition 20 (Message class-hiding) For all polynomial-length parameters
`(k) and all PPT adversaries A, there exists a negligible ν such that:

Pr[pp ← PPGen(1k);M1 ←M;M0
2 ←M;M1

2 ← [M1]RM
;

b← {0, 1}; b′ ← A(pp,M1,M
b
2) : b′] = b ≤ 1

2
+ ν(k) (6)
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Definition 21 (Public key class-hiding) For all polynomial-length parame-
ters `(k) and all PPT adversaries A, there exists a negligible ν such that:

Pr[pp ← PPGen(1k); (PK 1, sk1)← KeyGen(pp, `(k));

(PK 0
2, sk

0
2)← KeyGen(pp, `(k)); ρ← sampleρ(pp);

PK 1
2 = ConvertPK(PK 1, ρ); sk1

2 = ConvertSK(sk1, ρ); b← {0, 1};

b′ ← ASign(sk1,·),Sign(sk
b
2,·)(pp,PK 1,PK b

2) : b′] = b ≤ 1

2
+ ν(k) (7)

Definition 2 (Correctness) A mercurial signature scheme (PPGen, KeyGen,
Sign, Verify, ConvertSK, ConvertPK, ConvertSig, ChangeRep) for parameter-
ized equivalence relations RM ,Rpk,Rsk is correct if it satisfies the following
conditions for all k, for all ppMS ∈ MS.PPGen

(
1k
)
, for all ` > 1, for all (pk, sk)

∈ KeyGen (ppMS, `) :
Verification For all M ∈M, for all σ ∈ Sign(sk,M),Verify(pk,M, σ) = 1.
Key conversion For all ρ ∈ sample ρ, (ConvertPK ( pk, ρ), ConvertSK ( sk,

ρ) ) ∈ KeyGen(PP, `). Moreover, ConvertSK ( sk,ρ) ∈ [ sk ]Rsk
and ConvertPK

( pk,ρ) ∈ [pk]Rpk

Signature conversion For all M ∈M, for all σ such that Verify (pk,M, σ) =
1, for all ρ ∈ sample ρ, for all σ̃ ∈ ConvertSig(pk,M, σ, ρ), Verify (ConvertPK
(pk, ρ), M, σ̃) = 1

We have to define an extra version of correctness for Mercurial signatures
which was implicitly used in the original paper:

Definition 22 (Cross-scheme correctness) Let pp1 ← MS.PPGenG1

and pp2 ← MS.PPGenG2
. Let sk1,PK 1 ← MS.KeyGen(pp1) and

sk2,PK 2 ← MS.KeyGen(pp2). Let σ1 ← MS.Sign(pp2, sk2,PK 1). Let
µ← Z∗p.

Let PK ′1σ
′
1 ← MS.ChangeRep(pp2,PK 1, σ1, µ). Let sk ′1 ←

MS.ConvertSK(pp1,PK 1, µ). Let M me any message in G2. Let
σM ← MS.Sign(pp1, sk ′1,M). Ensure that MS.Verify(pp2,PK 2,PK ′1, σ1) =
1 ∧ Verify(pp1,PK ′1,M, σM ) = 1.

Cryptographic bilinear pairings A bilinear pairing is a set of groups along
with a “pairing function,” such that: e : G1 × G2 → GT where GT is the
“target group.” In this work, we instantiate type III pairings, which means
that there is no efficient, non-trivial homomorphism between G1 and G2. The
pairing function is efficiently computable and has a bilinear property such that
if 〈P 〉 = G1 and 〈P̂ 〉 = G2, then e(aP, bP̂ ) = e(P, P̂ )ab. We instantiate bilinear
pairings using elliptic curves and some pairing similar to the tate pairing which
allows |G1| = |G2| = |GT | = p for some prime where all 3 groups are cyclic.
In the bilinear pairing we use, the decision Diffie-Hellman assumption holds in
the related groups, such that: (aP, bP, abP ) ∼ (aP, bP, cP ) and (aP̂ , bP̂ , abP̂ ) ∼
(aP̂ , bP̂ , cP̂ ).
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The Symmetric eXternal Diffie-Hellman assumption (SXDH)
[ACHdM05] The decisional DH problem holds in G1 and G2 for the crypto-
graphic bilinear pairing based on elliptic curves described above.

A.3 FHS19 Commitments

A set-commitment scheme from [FHS14] has the functions:
Setup(1k, 1s), Commit(pp, S), Open(pp, C, S,O), OpenSubset(pp, C, S,O, T ),
VerifySubset(pp, C, T,W ) where S is a set of attributes (of max size s), C is a
commitment, O is an opening, T is a subset of attributes, and W is a witness.

� Setup(1k, 1s) → pp: Generate a bilinear pairing, BG =
(p,G1,G2,GT , P, P̂ , e) ← BGGen(1k) where the groups are of size p.

Pick α ← Zp and output (BG, (Pα
i

, P̂α
i

)i∈[s]) as the public parameters and
α as the trapdoor.

� Commit(pp, S)→ C: On a set S of messages, pick a random opening, ρ← Z∗p,
compute C ← P fS(α)ρ using the public parameters where fS(α) is

∏
i∈[s](α−

Si). Output commitment C and opening information O = ρ.

� Open(pp, C, S,O) → (1 or 0): Recompute the commitment using C ′ ←
Commit(pp,S) with ρ = O and check if C = C ′.

� OpenSubset(C, S,O, T ) → W : Ensure that T is a subset of S and compute
the witness: W = P fS\T (α) using the public parameters similar to Commit.

� VerifySubset(C, T,W )→ (1 or 0): Ensure that e(W, P̂ fT (α)) = e(C, P̂ ).

We make use of the structure of the VerifySubset in our zk-SPoC construction
in Section B.2. The set-commitment scheme has the following properties:

Definition 23 (Correctness)
A FHS19 set-commitment scheme is correct if for all S,T where T ⊂ S, the
following holds:
Pr[(C,O)← Commit(pp, S) :

Open(pp, C, S,O) = 1] = 1

Pr[(C,O)← Commit(pp, S);

(W )← OpenSubset(pp, C, S,O, T )

: VerifySubset(pp, C, T,W ) = 1] = 1

Definition 24 (Binding)
A FHS19 set-commitment scheme is binding if for all polynomial adversaries,
A, the following holds:
Pr[(C, S,O, S′, O′)← Adv(pp) :

Open(pp, C, S,O) = 1

∧ Open(pp, C, S′, O′) = 1] ≤ negl(k)
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Definition 25 (Subset soundness)
A FHS19 set-commitment scheme has subset soundness if for all polynomial
adversaries, A, the following holds:
Pr[(C, S,O, T,W )← Adv(pp) :

Open(pp, C, S,O) = 1

∧ VerifySubset(pp, C, T,W ) = 1 ∧ T 6⊆ S] ≤ negl(k)

Definition 26 (Hiding)
A FHS19 set-commitment scheme is hiding if for all polynomial adversaries,
A, the following holds:
Pr[(S0, S1, st)← Adv(pp);

b← {0, 1};
(C,O)← Commit(pp, Sb) :

(b′)← AdvOpenSubset(pp,C,Sb,·∩S0∩S1)(pp, C, st);

b′ = b] ≤ 1

2
+ negl(k)

B Additional constructions

B.1 Set commitments on equivalence classes (CoEC) con-
struction

Here we construct a scheme which satifies the definitions in Section 3.3.

CoEC scheme intuition We’re going to generate a number of random points
(we’ll call them “bases”). Then, given a set of messages, M , a committer will
construct two group elements such that their discrete log is dependent on the
messages as well as the discrete log of the random points (relative to a generator
of the group, P ). Because the discrete log of the commitment is dependent on
the discrete log of these random points, we’ll see that an attempt to forge or
distinguish commitments reduces to the computational and decisional Diffie-
Hellman problems. Because mercurial signatures use type III bilinear pairings,
a hash function exists for at least one of the bilinear groups [GPS06, Cos12].
Thus, in practice, we can create these random bases verifiably using the hash
function. Though we can also use a CRS to generate these.

Definition 27 (CoEC construction) A commitment scheme on equivalence
classes has the following functions:

� InitializeCoEC(1k, 1s) → pp: Compute pairs of random points:

(B0,0, B0,1, B1,0, B1,1, ..., Bs−1,1)
$←− (G2)s. Output these points as pp.

� Commit(pp,M) → (C,O): Let M = {m0,m1, ...,ms−1}. Generate a random

α ← Z∗p. Compute a vector of size 2: C = (C0, C1), C0 =

(
s−1∑
i=0

Ai,0

)
and
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C1 =

(
s−1∑
i=0

Ai,1

)
where Ai,0 = (αBi,0) and Ai,1 = (αmiBi,1) and O = α.

� RandomizeCom(pp, C,O): β ← Z∗p, C ′ = βC, O = β ∗ α.

� Open(pp, C,M,O): Compute C ′ = Commit(pp,M ;O) where α = O when
computing Commit. Ensure that C ′ = C.

We prove Theorem 1 in Appendix D.2.

B.2 Zero knowledge subset proofs over commitments (zk-
SPoC) construction

We’ll use the commitment scheme from [FHS14] for this scheme which we’ll refer
to as the “FHS19 commitment scheme.” This commitment scheme is described
in Appendix A.3. To help the reader understand zk-SPoCs, we’ll first construct
them with trivial blinding factors (equal to 1) and have each commitment be to
a single message instead of a set. This will allow us to show off the complicated
parts of the scheme in the simplest manner.

Reviewing the goal of zk-SPoCs, we want to create a witness based on
two vectors of commitments ( ~A, ~B) to two vectors of messages (~L, ~M) of size

m and n such that ∀i ∈ [m],∃ri : Open( ~Ai, ~Li, ri) = 1 and ∀i ∈ [n],∃si :

Open( ~Bi, ~Mi, si) = 1. In this instantiation, we consider commitments in G2

but there is a symmetric scheme for commitments in G1. Let L be the set of
messages {~Li}i∈[m] and let M be the set of messages { ~Mi}i∈[n]. We want any
verifier with our witness to be convinced that L ⊆ M (and that all the above
relations hold such as a known opening) given only the commitments and the
witness.

Let us define Ni = { ~M1, ~M2, ..., ~Mi} (Ni is the set of messages with index

less than or equal to i). We will compute a commitment, ~Ci, to each Ni.
Thus, ~Cn is a commitment to Nn = M. Next, we use each element of ~B as a
“witness” in a FHS19-style subset opening: e(~Ci, ~Bi+1) = e(~Ci+1, P̂ ). Starting

with e(g, ~B0) = e(~C0, P̂ ) and ending with: e(~Cn−1, ~Bn) = e(~Cn, P̂ ). Thus, each

successive ~Ci is a commitment to a superset of the last commitment and includes
the message from another commitment in ~B. Using each ~Ci to recompute these
equivalencies, a verifier should be convinced that ~Cn is a commitment to M.
Next, we iterate through each commitment in ~A and prove that its corresponding
message is committed to by ~Cn: e( ~Wi, ~Ai) = e(~Cn, P̂ ). Where the witness, ~Wi

is an FHS19 commitment to M \ {~Li}. To take your intuition from this toy
example to the full construction, there are three more important parts: (1)
we use a concatenation function to merge the attributes in each set into a
single attribute for a larger commitment scheme (a technique from [CHK+06]).
This allows our real construction to work for sets of messages instead of single
messages. (2) We use blinding factors and need to include NIZKs to ensure they
can be extracted. (3) We create a NIZK for proving the bilinear relations. This
NIZK ensures that the construction composes well into larger protocols.

41



The concatenation function requires that the size of the elliptic curves used
for zk-SPoCs can contain all attributes, meaning it needs enough bits for at-
tributes. If attributes need to use the 256 bits for each attribute, meaning we
have commitments in a group of size 256 in bits, we can use a proof of equiva-
lent discrete log [CM99, COPZ22] in order to still compute this concatenation
function. For example, if we want to combine two attributes of size 256, we
can use elliptic curve groups of size 512 bits for the zk-SPoC scheme and use a
proof of equivalent discrete log to first convert the regular 256 bit commitments
into commitments of size: 512 bits and then proceed with the concatenation
function with no issues.

Definition 28 (A zk-SPoC scheme)

� ProveSubset(pp, {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n])→ (W ):

1. First, create new commitments, A′i, B
′
i, to L′i = c(Li) and M ′i = c(Mi)

respectively with openings O′i, P
′
i such that |A′| = |A| and |B′| = |B|.

Compute NIZKs to prove equivalence of these commitments.

2. Define variables as described in the toy example: Define Ni =
{M ′1,M ′2, ...,M ′i}, i.e.: Ni is the set of messages with index less than or
equal to i.

3. Compute a commitment, Ci, to each Ni, in G1.

4. Prove that each Ci is a commitment to both Ni−1 and M ′i by using the

given commitments as witnesses: e(Ci−1, B
′
i)
∼= e(Ci, P̂ ). Where ∼= is a

NIZK proof that the discrete log is known between the two values.

5. Iterate through each element in A and construct a witness to prove that
it is committed to a subset of Cn: e(Wi, A

′
i)
∼= e(Cn, P̂ ). This is done

by computing Wi as an FHS19 commitment to the vector of messages:
{M ′i}j∈[m] \ {Li}.

6. Output each iterative commitment, Ci, witness, Wi, and NIZK proofs, πi.

� VerifSubset(pp, ~A, ~B,W )→ (1 or 0): Use the NIZKs in W to verify the com-

mitments ~B′ and ~A′. Recompute all values in GT from the given commit-
ments: e(~Ci−1, ~B

′
i), e(

~Ci, P̂ ), e( ~Wi, ~A
′
i), and e(~Cn, P̂ ) for all i. Use the

NIZKs in W to verify that: e(~Ci−1, ~B
′
i)
∼= e(~Ci, P̂ ) and e( ~Wi, ~A

′
i)
∼= e(~Cn, P̂ ).

B.3 Verifiable random functions for mercurial signatures

Given a mercurial public key: PK = PK 0,PK 1 ∈ G1, secret key: sk =
sk0, sk1 ∈ Zp, and input to the VRF, x, where G1 = 〈P 〉, compute a VRF:
πY = NIZK

[
s = dlogsk0(sk1) : PK 0 ∗ s = PK 1 ∧ (1/(s+ x))P = Y

]
The lat-

ter part of the AND proof can be computed using discrete log proofs in parallel
[HL10, Dam10].
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C Formal definition of PACIFIC

In this section, we restate the theorems and definitions from Section 3.1 in more
formal terms in order to have a more precise proof.

Labels. We use a number of ciphertext spaces to define sets and maps: CH is
the set of all chirps (i.e. CH = Image(Chirp)), PK is the set of all public keys,
SK is the set of all secret keys, BA is the set of all batches, and CRT is the
set of all user certificates. ID is the set of all user identities. T is a set of all
possible times (totally ordered). L is the set of all possible locations.

SetupGame(1λ, e) → (pp,PK rp): Initialize global state for the game.
To store the state, we use a number of (initially empty) lists and maps shown
below. Maps initially send all user handles to ⊥. The set of user handles, times,
and locations are defined by the construction but must be at least exponential in
the size of the security paramter. Each of these sets can be thought of as a large
set of integers.

� HU : ID → PK: Honest user public keys. A map from user handles to
user public keys.

� HUsk : ID → SK: Honest user secret keys. A map from user handles to
user secret keys.

� HCert : ID → CRT : Honest user certificates. A map from user handles
to user certificates.

� HDB : ID → BA: Batches uploaded by honest users. Maps honest user
handles to batches.

� RC ⊆ (SK × T × L × CH): Received chirps A multiset containing tuples
that represent chirps received by the adversary. Each tuple contains an honest
user’s secret key, time, location, and a chirp. The user handle corresponds to
the honest user that sent the chirp.

� SC ⊆ (SK × T × L × CH): Sent chirps A multiset containing tuples that
represent chirps sent by the adversary that were accepted. Each tuple contains
an honest user’s secret key, time, location, and a chirp. The user handle
corresponds to the honest user that received the chirp.

� HI ⊆ (SK × SK × T × L × CH): Honest interactions A set containing
tuples that represent interactions between honest users that the adversary did
not hear or modify. Each tuple contains two user handles (indicating the
sender and then the recipient), a time, a location, and a chirp.

� CU ⊆ PK: Corrupted users. A set of public keys of corrupted users.

� CDB ⊆ BA: Batches uploaded by corrupted users. A set that records
batches uploaded by corrupted users.
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� tnow: The current time. An integer that is initialized to 0.

� pp: Public parameters for the game. Initialized to pp ←
ParamGen(1λ, e).

� PK rp , sk rp: Registration party keys. Initialized to sk rp ,PK rp ←
RegPartyKeyGen(pp).

Return (pp,PK rp).

Below, we describe the set of oracles that can be called by the adversary in
our games. We will use different sets of oracles for different games. Each oracle
shares global state and is run by a challenger.

� RegisterHonest(1λ) → (i,PKU ): Generate and register an honest user.
Generate a key pair, skU ,PKU ← UserKeyGen(pp,PK rp). If this outputs ⊥,
abort and return ⊥. Pick an i ∈ ID such that HU(i) =⊥. Update HU such
that HU(i) = PKU . Update HUsk such that HUsk (i) = skU . Generate a cer-
tificate for user i: cert ← RegisterUser(pp, skrp,PKU ). Store their certificate
by defining: HCert(i) = cert . Return the handle for this honest user, i and
the public key, PKU .

� RegisterCorrupt(PKU ) → (cert): Register a corrupted user. Add PKU to
CU and return a certificate on PKU : cert ← RegisterUser(pp, skrp,PKU ).

� RecvChirp(i, l)→ (c): Receive a chirp from an honest user. If HU(i) =⊥
or a tuple like (HUsk (i), tnow, ∗) exists in RC, abort and return ⊥. Compute:
c ← Chirp(pp,HUsk (i),PK rp,Hcert(i), tnow, l). Add (HUsk (i), tnow, l, c) to RC.
Return c.

� SendChirp(i, l, c)→ (⊥): Send a chirp to an honest user. If HU(i) =⊥ or
a tuple like (HUsk (i), tnow, l

′) exists in SC such that l′ 6= l, abort and return
⊥. Compute: Listen(pp,HUsk (i),PK rp , tnow, l, c) and if this outputs 1, we add
(HUsk (i), tnow, l, c) to SC.

� HonestInteraction(i, j, l) → (⊥): Have two honest users interact. Run
c ← RecvChirp(i, l) but don’t update RC. If c 6=⊥, run SendChirp(j, l, c) but
don’t update SC. If HUsk (i),HUsk (j) 6=⊥, add (HUsk (i),HUsk (j), t, l, c) to HI.

� IncrementTime(1λ) → (⊥): Increment time. Set tnow = tnow + 1. If, after
the increment, Epoch(tnow) > Epoch(tnow − 1), reset the database by setting:
HDB(i) =⊥ for all i ∈ ID and resetting SC,RC,CDB each to an empty set.

� HonestUpload(i) → (B): Have an honest user upload to the server. If
HDB(i) 6=⊥, abort and return ⊥. Otherwise, return a batch computed by the
honest user on all the chirps they heard and verified during the game:
C = {(c) : (HUsk (i), ∗, ∗, c) ∈ RC} ∪ {(c) : (HUsk (i), ∗, ∗, ∗, c) ∈ HI})
B = Notify(pp,HUsk (i), C)
Set HDB(i) = B. Return B.
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� CorruptedUpload(B) → (⊥): A corrupted user uploads to

the database. Compute DB =

( ⋃
i∈ID

HDB(i)

)
∪CDB. If

VerifyBatch(pp,PK rp ,DB , B,Epoch(tnow)) outputs 1, set CDB = CDB∪{B}.
Return ⊥.

Game 5 (Correctness game) Run (pp,PK rp) ← SetupGame(1k, e). Run
AOcorr(pp,PK rp , 1

k), where Ocorr = {RegisterHonest, HonestInteraction,
IncrementTime, HonestUpload}. After A exits, ensure that the counted expo-
sures matches the interactions from the game that were uploaded:

DB =
⋃
i∈ID

HDB(i)

∀i ∈ ID,
CountExposures(pp,HUsk (i),PK rp ,DB , tnow)

= #{(HUsk (i),HUsk (j), t, l) ∈ HI : HDB(j) 6=⊥}

If this check fails, output 1 indicating that the adversary won, otherwise, output
0.

Definition 29 (Correctness) An automated exposure notification scheme, Π,
is correct if no probabilistic-polynomial-time adversary can win Game 5 with
probability greater than negligible for all valid epoch values.

C.1 Clone integrity

To define integrity and privacy, we define some extractors:

� EPKU : PK → SK: Takes a public key and outputs the secret key for this
public key.

� Ec : CH → SK: Takes in a chirp and outputs a secret key of the user who
created the chirp.

� EB : BA → (SK × SK × T × L)∗: Takes in a batch and outputs a list of
notifications of variable size where each notification is a tuple which holds a
chirper’s secret key, a receiver’s secret key, a time, and a location (in that
order).

� EDB : DB → (SK × SK× T ×L)∗: Takes in a database and outputs a list of
notifications of variable size in a similar form to EB .

Game 6 (Clone integrity game) Run (pp,PK rp) ← SetupGame(1λ, e).
Run AOintegrity(pp,PK rp , 1

λ), where Ointegrity = {RegisterHonest, RegisterCorrupt,
RecvChirp, SendChirp, HonestInteraction, IncrementTime, HonestUpload,
CorruptedUpload}. When A exits, the challenger uses the resulting global state
to determine if the adversary won.
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� The challenger computes all possible interations where an honest user could
be exposed:
PI = {(HUsk (i), sk j , l, t)∀sk j ,∈ EPK (CU), (HUsk (i), l, t, ∗) ∈ RC}
∪ {(HUsk (i),HUsk (j), ∗, ∗) ∈ SC ∪ HI : HDB(j) 6=⊥}

(8)

� The challenger computes the set of extracted interactions from the database
which would notify an honest user:
EI = {(skU , ∗, ∗, ∗) ∈ EDB (pp,DB) : skU ∈ HUsk} (9)

We are now ready to check conditions and output 1 if any fail, indicating
that the adversary wins. Otherwise, output 0.

1. Correct exposure count. Ensure the extracted interactions match the
counted interactions:
∀i ∈ Z,

CountExposures(pp,HUsk (i),PK rp ,DB , tnow)

= #{(HUsk (i), ∗, ∗, ∗) ∈ EI}
(10)

2. Database contains a subset of possible interactions. Ensure these
extractions are within the set of chirps sent by honest users during the game:
EI ⊆ PI (11)

3. Clone protection. Ensure that no corrupted user was in two locations at
the same time:
6 ∃
(
(∗, skU , t, l), (∗, skU

′, t′, l′)
)
∈ EI

s.t. skU = skU
′ ∧ t = t′ ∧ l 6= l′

(12)

Definition 30 (Clone integrity) An automated exposure notification
scheme, Π, has clone integrity if there exists a set of extractors, E, such that
no PPT adversary can win Game 6 with probability greater than negligible for
all valid epoch values.

C.2 Privacy definitions

To define upload privacy, we first define two oracles which are simulated versions
of the oracles they replace.5

� RecvChirpsim(⊥, l) → (c): Functions exactly like the real version, RecvChirp,
except this simulated version computes the chirp with a new user. I.e.: to com-
pute the chirp, first generate a new keypair: skU ,PKU ← UserKeyGen(PK rp).
Then register this user: cert ← RegisterUser(sk rp ,PKU ). Compute a chirp for
this user on the given time and location, c ← Chirp(skU ,PK rp , cert , tnow, l).
Output this chirp, c.

5Note that while a user handle is given to HonestUploadsim , it is only used to compute
leakage such as batch size.
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� HonestUploadsim(i) → (B): First, compute a new uploader key-
pair, sk Û ,PK Û ← UserKeyGen(pp) and register this user: cert Û ←
RegisterUser(pp, sk rp ,PK Û ). Next, reconstruct a simulated set of chirps, C,
to be used by the Notify function. For each tuple in the receiver chirps, SC,
and honest interaction chirps, HI, that indicate this uploader was the receiver,
extract the secret key of the sender from the chirp: skU = Ec(c). Put the re-
sulting interactions in a set, RCi. , removing any duplicates. 6

RCi = {(skU , t, l) : (skU , t, l, c) ∈ SC ∧ skU = Ec(c)}
∪ {(skU , t, l) : (i, j, t, l, c) ∈ HI ∧ skU = HUsk (j)}

(13)

Then count the number of honest senders in this set: KHU = #{(skU , t, l) ∈
RCi : skU ∈ HUsk}. And then, for each adversarial user, count the number
of interactions with that user: ∀skU ∈ EskU (CU),Ksk = #{(sk , t, l) ∈ RCi}.
Then compute KHU new chirps for new random users, times and locations, us-
ing skU ,PKU ← UserKeyGen, cert ← RegisterUser(sk rp ,PKU ), t← T , l← L,
and c← Chirp(skU ,PK rp , cert , t, l), adding the resulting chirp (c) to our simu-
lated chirps, C. Then, for each adversarial secret key (∀skU ∈ EskU (CU)) com-
pute KskU new chirps for the extracted adversarial secret key, with random
new times and locations, doing the same as was done for honest chirps, but
skipping the key generation and using the corrupted key instead (assuming the
public key is included in the secret key). Label the combination of these new
random chirps from honest and corrupted users as C. Now compute a batch
using the new uploader and simulated chirps: B ← Notify(sk Û ,PK rp , C, tnow).
Output this batch, B.

We are now ready to define the game:

Game 7 (Upload-privacy game) Run (pp,PK rp) ← SetupGame(1λ, e).

Flip a random bit, b
$←− {0, 1}. If b = 0, run st ← AOreal (pp,PK rp , 1

λ),
otherwise, if b = 1, run st ← AOsim (pp,PK rp , 1

λ), where: Oreal

= {RegisterHonest, RegisterCorrupt, RecvChirp, SendChirp, IncrementTime,
HonestUpload} and Osim = {RegisterHonest, RegisterCorrupt, RecvChirpsim ,
SendChirp, IncrementTime, HonestUploadsim}. Next, run b′ ← A(sk rp , st). The
adversary wins if b = b′.

Definition 31 (Upload privacy) An automated contact tracing scheme, Π,
is privacy-preserving if there exists a set of extractors, E, such that no PPT
adversary has greater than 1

2 + negl(λ) advantage in Game 7 for all valid epoch
values.

In the chirp privacy game, we allow the adversary to create a corrupted regis-
tration party. The registration party secret key is extracted to be used in the
RecvChirpsim oracle. We define a function that allows the adversary to create
their own certificates for honest users.

6In our construction, meeting this requirement of removing duplicates naively requires a
NIZK in the chirp. If we allow duplicates, we can remove this NIZK.

47



� RegisterHonestmal(1λ) → (i,PKU ): Generate a key pair, skU ,PKU ←
UserKeyGen(pp,PK rp). If this outputs ⊥, abort and return ⊥. Pick an i ∈ Z
such that HU(i) =⊥. Update HU such that HU(i) = PKU . Update HUsk such
that HUsk (i) = skU . Call the adversary with PKU to receive cert . Store their
certificate by defining: HCert(i) = cert . Return the handle for this honest
user, i and the public key, PKU .

Game 8 (Chirp privacy game) Run (pp, ∗) ← SetupGame(1λ, e). Run
(PK ′rp , st ′) ← A(pp, 1λ) and replace the PK rp in the global state of the game

with PK ′rp. Extract sk rp = EPK rp
(PK rp). Flip a random bit, b

$←− {0, 1}. If

b = 0, run b′ ← AOreal (pp, 1λ, st), otherwise, if b = 1, run b′ ← AOsim (pp, 1λ, st),
where: Oreal = {RegisterHonestmal , RecvChirp, SendChirp, IncrementTime} and
Osim = {RegisterHonestmal , RecvChirpsim , SendChirp, IncrementTime}. The ad-
versary wins if b = b′.

Definition 32 (Chirp privacy) An automated exposure notification scheme,
Π, is privacy-preserving with respect to chirps if there exists a set of extractors,
E, such that no PPT adversary has greater than 1

2 +negl(λ) advantage in Game
8 for all valid epoch values.

We now restate the theorems from Section 4.3 for our formal definitions.

Theorem 6 The ProvenParrot scheme described in Definition 14 has clone
integrity (meeting Definition 30) using the set of extractors, E from Definition
33.

Theorem 7 The ProvenParrot scheme described in Definition 14 is chirp-
private (meeting Definition 32) using the set of extractors, E from Definition
33.

Theorem 8 The ProvenParrot scheme described in Definition 14 is upload-
private (meeting Definition 31) using the set of extractors, E from Definition
33.

D Security proofs

D.1 ProvenParrot proofs

D.1.1 Proof of Clone integrity

Let E be the following set of extractors. We define an extra extractor that is
not required for the definition, EB , but we’ll see that this is useful for defining
the proof.

Definition 33 (Extractors for security proofs)

� EPK (pp,PK ): Use the trapdoor to compute skU
′ such that skU

′P = PK .
Normalize this so that skU 0 = 1 (multiply skU

′
1 by (skU

′
0)−1 to derive skU 1).

Output skU .
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� Ec(pp, c): Use EPK for the given PKU .

� EPK rp
(pp, c): Use EPK for the given PK rp.

� EB(pp, B): Take PK ′Û from the batch and use EPK to extract a secret key,
sk Û . Also extract the attributes, t, l, from the NIZKs for each chirp. Extract
sk from the public key in each chirp. Output a set of each interaction with
sk Û as the receiver.

� EDB (pp,DB): Iterate through each B ∈ DB and compute EB(B) and union
the result i.e. output:

⋃
B∈DB

EB(B).

The adversary in Game 6 can win if after the game, any of the 3 conditions
(Equations 10, 11, and 12) in the integrity definition are false. We will go
through each equation and prove that the probability of any PPT adversary
violating them is negligible.

Proving Equation 12 - Clone protection. To prove that this equation
holds, we’ll break it up into two equations which each ensure a separate guar-
antee: The first equation ensures that clone protection holds within a batch:
6 ∃ ((∗, ∗, t, l), (∗, ∗, t′, l′)) ∈ (EB(pp, B))2

s.t. t = t′ ∧ l 6= l′
(14)

and this second equation ensures that no two batches share a listener:
∀B ∈ DB , 6 ∃B′ ∈ DB \ {B} s.t.

∃(∗, skU , ∗, ∗) ∈ B ∧ ∃(∗, skU , ∗, ∗) ∈ B′
(15)

We can see that, because EI =
⋃
EB(DB), if the Equations 14 and 15 hold, then

Equation 12 holds. This is because for pair of tuples to exist in EI that violate
Equation 12, they need to have the same listener, thus, by Equation 15, they
are in the same batch and by Equation 14, then they must have distinct time
values or the same locations.

First we’ll prove Equation 15. Informally, we use the fact that the up-
loader must compute fMS

sk ′
Û

(d), and prove that this is related to PK ′Û , resulting

in Y PK , πPK . Y PK is checked for uniqueness among batches in DB , during
VerifyBatch. Because DB is emptied when Epoch(dnow) changes, we know that
each of these Y PK across batches are computed on the same d. Because fMS

(·) (·)
normalizes the secret key before evaluation of the PRF, then, even if the user
randomizes their keys, this function will still be evaluated on the same values,
sk1

sk0
and dnow. Thus, if two batches are uploaded with equivalent public keys,

then the Y PK values in the batches will be the same. This will be detected and
rejected during VerifyBatch, thus ensuring Equation 15 can’t be violated.

More formally, because Y PK can be extracted (in the random oracle model
using the NIZK associated with Y PK ) and because VRFs are deterministic, we
know we can extract a distinct value for each computation on (sk Û , d). Thus,
if all Y PK values are distinct, we must be able to extract distinct sk Û , d from
each. Because d is public and each is fixed for each proof in the database, πPK ,

49



then each sk must be distinct. This formal proof is inspired by the soundness
proof in [CHK+06].

Because our extractor uses this single PK Û to output the listener value for
each tuple in the batch, we can see that if one of these sk Û values is not shared
across any batch, then all of the sk Û in the tuples of this batch are not shared
with any other batch. Thus, Equation 15 cannot be violated.

For Equation 14, we see that the adversary proves that the pairs of times
and locations committed to by the commitments in their chirps, {C ′i}i∈[n], are
a subset of the pairs committed to by {C∗i }i∈[n]. Thus, if any of the pairs in
{C ′i}i∈[n] collide such that ti = tj , li 6= lj , then for {C∗i }i∈[n] to be a super set of
the messages, it must include two pairs where ti = tj (to include pairs for (ti, li)
and (tj , lj)). We also see that Y ti = fMS

sk Û
(ti) is computed for each ti committed

to by {C∗i }i∈[n]. Thus, because each Y ti is computed solely on the t value, if
these values are computed honestly, we’ll see that Y ti = Y tj (for i 6= j) and we’ll
be able to reject this batch in VerifyBatch (thus, it will not be extracted, so this
property cannot be violated). Attempting to include a false Y ti or Y tj requires

the adversary to produce a fake proof of subset πtl or a fake proof for at least
one of the VRFs, πti or πtj . Because the proof also opens the commitments, if
the adversary computes a Y ti for a ti which the honest chirper did not intend,
we can use this extracted opening from πti along with the honest adversary’s
opening to double open the commitment, thus breaking Definition 8.

Proving Equation 10 - Correct exposure count. This equation ensures
that the count of exposures by each user matches the extracted interactions
from the database, fulfilling the equality in Equation 10.

We first need to prove that there’s no duplicated tuples extracted in the
batch that indicate that a chirp from the same honest user at the same time
and location was sent. Because CountExposures would double count this, while
extracting a duplicate into a set would only count it once, we need to ensure this
doesn’t happen. So we need to prove that a batch does not contain duplicates
of any interaction where the sender is honest. Let’s reduce an adversary that
violates the integrity in this way to an adversary that can open a commitment
to two openings or a mercurial signature forgery. An honest user will never
chirp twice on one t and so they will never sign two commitments that share a t
and have difference nonces (r). An uploader must compute a VRF on the nonce
committed to by the chirp, fMS

sk Û
(r). We can see that simply rerandomizing

another chirp honestly will not yield a new PRF output as it is still committed
to the same nonce and private key class. Thus, if the adversary is able to produce
a distinct Y ri for this rerandomized proof, they must have been able to open
the commitment up to another r′i, forged a signature on a new commitment, or
violated the soundness of the NIZK.

More formally, let’s say this adversary produced two commitments C,C ′ such
that we extract the same tuple from them using the extractor EB . If [C]R =
[C]′R, because the adversary creates a proof of knowledge of each attribute that
the commitment is committed to as well as the opening information, we can
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extract this information from both openings and output this in the game for
Definition 8. If these two commitments are not in the same equivalence class,
and we have t = t′, r 6= r′,PKU = PKU

′, then we have another two cases:
(1) this is a forgery in the game in Definition 19, since honest users never sign
two nonces for a single t in the PACIFIC game. Or (2) one of these is a double
opening from another commitment the user made. Even if the adversary did
not include this second commitment in the upload, we can look back on chirps
that honest users made to find the opening information and attributes.

Now that we’ve proven that duplicates in the extraction are prevented by
our assumptions on underlying schemes, we can see that Equation 10 holds from
inspection of the extractor, EB , the CountExposures function, and MS.Recognize.
CountExposures uses MS.Recognize to count exactly the number of chirper public
keys in the batch where the discrete log is equivalent to the normalized user’s
secret key, HUsk (i). This is exactly what we’re counting in the extracted tuples,
the normalized secret key from the chirper.

Proving Equation 11 - Batch reflects possible interactions. This equa-
tion ensures that the extracted interactions are a subset of a set of possible
interactions.

During extraction, if we have B such that EB(pp, B) 6⊂ PI, there must exist
a tuple (sk , sk ′, t, l) ∈ EB(pp, B) such that (sk , sk ′, t, l) is not in PI (remember
the format of tuples: (chirper, listener, time, location)).

Let’s create a reduction B that plays either the commitment binding game or
the mercurial signature unforgeability game. B acts as the challenger, setting up
the fake-outbreak resistance game and providing honest responses to the oracle
queries of A until they exit. The reduction, B, will transform the adversary’s
inputs to the oracles and the adversary’s state in a number of ways dependent
on how the integrity game fails. We will prove that this transformation of the
adversary’s input will constitute a violation of either the commitment binding
game or the mercurial signature unforgeability game.

We’ll break down this violation into 3 different restrictions on the tuple
to make the proof easier to follow. These restrictions only concern qualities
of the chirper and listener and together constitute all possible combinations,
thus exhausting possible pairs of uploader and listener. Let U be the set of all
registered users:

U = CU ∪
⋃
i∈Z

HU(i)

(Restriction 1) sk or sk ′ 6∈ U

(Restriction 2) sk , sk ′ ∈ (HU)2

(Restriction 3) sk ∈ HU and sk ′ ∈ CU.

Restriction 1 If sk ′ 6∈ U , then the certificate, certB , for this batch holds a
forgery, since the secret keys are extracted from the public keys and signatures
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of these public keys are contained within the certificates. The secret key for
the uploader, sk ′, is extracted from PK ′Û , which cert ′ has a signature on. Also,
because the batch also includes randomized versions of each chirp’s certificate,
if sk 6∈ U , then there exists a certificate with a forgery in the batch.

Restriction 2 Let’s look at the case where sk , sk ′ ∈ (HU)2. We know from
equation 15 that no two batches share an uploader. Because honest users upload
their batches before the adversary learns them, the adversary cannot upload a
second batch by replaying that user’s public key and signature. This is because
the Y PK would be the same for the second upload, and so the database would
reject it in the VerifyBatch function. This would hold even if the adversary
could recover the user’s private key to recompute NIZKs in the batch. Thus
this interaction must have come from an honest user’s batch and is in PI due to
the correctness of the scheme.

Restriction 3 Our last, but most important case: sk ∈ HU and sk ′ ∈ CU,
indicates a fake exposure. Because, for every chirp that an honest user made,
we add a tuple to PIHC for each sk ′ ∈ CU, this means that the adversary never
signed a commitment with t, l. Thus, the adversary must have either opened this
commitment to another t, l or forged a signature. The reduction, B, is assured
that the adversary knows the t, l as well as the opening for this commitment
because the NIZK proves knowledge of these witnesses in the batch. Similarly to
our proof Equation 10, we’ll break this into the case where this violation shares
an equivalence class with another commitment and the case where it doesn’t.
If this violating commitment shares an equivalence class with a commitment
in another chirp, the adversary violated the commitment scheme to open the
commitment in a second way. Thus, B, can recover this information from the
adversary and use the original opening information and attributes from the game
to produce a double opening. If this commitment doesn’t share an equivalence
class with any other commitment signed by the user, then it is a forgery in the
mercurial signature scheme.

Note that to find these double openings from the game, we can choose a
commitment in the game randomly. Because the adversary can only call a
polynomial number of functions, we have a non-negligible chance of producing
a double opening.

To formalize the forgery, the reduction would have to choose a user and allow
the mercurial signatures challenger to sign for them instead of producing the
signatures themselves. This is identical to the fake-outbreak resistance game
and so the adversary acts as normal. By rerunning the game multiple times
and choosing this user randomly, the reduction has a non-negligible chance
that the adversary will forge a signature for this user (since the adversary can
only create a polynomial number of users) and thus, we output the adversary’s
forgery to win. This proves that Equation 11 cannot be violated given the
security definitions of our commitment scheme along with the unforgeability of
mercurial signatures.
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We have now proven that Equations 11, 10, and 14 cannot be violated by a
PPT adversary given our construction and extractors, thus proving Theorem 6
which is part of Theorem 5.

D.1.2 Proof of chirp privacy

Proof intuition. We’re going to reduce this to the mercurial public key class-
hiding game. In the ideal function, RecvChirpideal , we’ve used a new random
user for each simulated chirp. The mercurial public key class-hiding game This
means we need to construct a hybrid argument where we iteratively replace calls
of RecvChirp with simulated values using the PK b

2 given to us from the mercurial
signature public key class-hiding game. We do not need to hide the attributes
since this is given as input to the chirp function in the ideal function.

Proof of Theorem 7 Let’s say an adversary can win in Game 8 with non
negligible probability. Using this adversary, we’ll create a reduction BMS that
wins the mercurial public key class-hiding game.

Let q be the maximum number of times that the adversary queries any oracle.
Thus, this q bounds the number of times the adversary queries RecvChirp for
any user and the number of honest users the adversary creates. Note that if
the adversary is PPT, then q is less than p(λ) for some polynomial, p. Let
Hybrid i,j be similar to Game 8 but for the first j chirps computed by any user
whose handle is in {0, ..., i−1}, the keys and certificate (skU ,PKU , cert) for the
chirp are replaced by new, randomly generated keys (skU ,PKU ) and a freshly
issued certificate on those keys. These hybrids use the original location given to
RecvChirp, l, and the time stored in the global state, tnow. Note that: for i < q,
Hybrid i,q+1 and Hybrid i+1,0 are identical since for j = 0 the hybrid doesn’t
replace any chirps for user i + 1 and for j = q + 1, the hybrid has replaced all
the chirps for user i that the adversary could have received.

Let BMS be a reduction that chooses a random Hybrid i,j to act like, but
acts differently for the j-th chirp from user i. During the registration for user i,
the reduction uses sk1,PK 1 given by the class-hiding game. Then, for the j-th
chirp for that user, the reduction uses PK b

2 for that chirp. We can see that if
q ≥ j ≥ 0, this reduction looks like Hybrid i,j+b. Thus, which hybrid we look
like depends on the bit in the class-hiding scheme and thus distinguishing the
hybrids is equivalent to distinguishing the public keys in the class-hiding game.

Because Hybrid0,0 is our real game and Hybridq,q is our simulated game, and
we’ve shown that distinguishing each step is negligible, we can see that these
two games are indistinguishable.

In order to complete this reduction, we need to show that sk rp is accessible by
a PPT reduction. This is why we have the adversary include a NIZK that they
know the secret key of the registration party. In the random oracle model, this
NIZK proves that sk rp is somewhere in the adversary’s state. If this extraction
fails, the proof of the registration party’s key must be incorrect and thus the
adversary cannot create any honest users in the game as they will all output ⊥,
aborting the honest user creation.
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D.1.3 Proof of upload privacy

Proof intuition. Similarly to the proof of chirp privacy, we will reduce this to
the hiding definitions of mercurial signatures. In contrast to the proof of chirp
privacy, we also need to simulate the time and locations of interactions. We’ll
see that distinguishing the simulator (which uses random times and locations
instead of the real ones) will reduce to the class-hiding or origin-hiding properties
of our CoEC commitment scheme.

Proof of Theorem 8 Let’s say an adversary can win in Game 7 with non
negligible probability. We’ll create a reduction BMS that plays the mercurial
public key class-hiding game and a reduction BCom that plays the commitment
hiding game (for Set commitments on equivalence classes in Definition 9), both
using this assumed adversary that can win Game 8.

Let q be defined as in the proof for Theorem 7. Let Hybrid c
i,j use fresh,

random users and certificates for the first j chirps from users with handles in
{0, ..., i − 1} just like the hybrids in the proof of Theorem 7. Let HybridBi,j
use the simulator for the first j batches uploaded by user i with batches from
the simulator 7. Note that: for i < q, similarly to the proof of Theorem 7,
Hybrid c

i,q+1 = Hybrid c
i+1,0 and HybridBi,q+1 = HybridBi+1,0. Also, observe that

Hybrid c
q+1,q+1 = HybridB0,0.

Claim 1 HybridBi,j is indistinguishable from HybridBi,j+1

We will now construct hybrids and reductions to prove Claim 1. We construct
one hybrid for each chirp given to Notify and the simulator. We first create
hybrids for the honest chirps, which we’ll label HybridB,HUi,j,k . This hybrid acts

like HybridBi,j but, for the chirps {0, ..., k−1}, passed to Notify, we generate each

of these chirps using a freshly registered user: skU ,PKU ← UserKeyGen(1k),
cert ← RegisterUser(pp, sk rp ,PKU ). Also, in these simulated chirps, we create

commitments on random t′, l′
$←− (Z∗p)2 and use these as input to the Chirp

function. Next, we’ll create hybrids for chirps from corrupted users, HybridB,CUi,j,k .

These hybrids simulate all chirps for honest users like HybridB,HUi,j,q+1 but simulate
a fraction of the corrupted chirps, {0, ..., k − 1}. The corrupted chirps are
simulated in the same ways as the honest chirps, but the secret keys are not
regenerated. Instead the simulated chirps are created using the secret keys of
the adversaries that sent chirps to this user during this time period.

Claim 2 HybridB,CUi,j,k is indistinguishable from HybridB,CUi,j,k+1

7A reader that just read the integrity definition might be confused as to why there are
multiple batches for a single user. This is because the adversary’s decision in the privacy
game can be informed by older batches from previous time periods. These batches are not
considered in the integrity game.
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Proof of Claim 2 If we only replace the public key and its certificate,
PKU , cert , by randomizing them, the origin-hiding of MS.ChangeRep proves
that this new public key and signature looks entirely independent from any
other public key aside from the fact that it is in the same equivalence class,
which the adversary already learns in the real game using MS.Recognize be-
cause they have the associated secret key. Thus, replacing the public key and
certificate from the batch is indistinguishable. Next, we can replace the com-
mitment and reduce this to our hiding game for CoEC by creating a reduction,
BCom that chooses M0 as the original attributes (t, l, d, r) for this chirp and M1

as random attributes. Depending on what CoEC returned to our reduction, we
would either be replacing the commitment with random attributes or not. This
reduction can be done both for C ′i and Ctli . Because we use a NIZK to prove
that C ′i and Ctli agree on attributes, we can simulate the NIZK to replace the
two commitments one-by-one using hybrids. More formally, we create a hybrid
that replaces C ′i and we simulate the NIZK that proves its equivalence to Ctli .
Then, we reduce this to the CoEC hiding game as described (BCom). Then we
replace both C ′i and Ctli with independently random attributes, simulate the
NIZK and create a reduction similar to the described BCom, but this time to
another commitment scheme which only has the two attributes t and l (but
still has the same bases). We can see that our hiding should still hold for two
attributes as this is just another valid commitment scheme for two attributes
instead of four8.

Claim 3 HybridB,HUi,j,k is indistinguishable from HybridB,HUi,j,k+1

Proof of Claim 3 First, we consider a simulated chirp where we replace the
honest user’s sk with a new, randomly generated one, along with the public
key PK . We can see that if the adversary can distinguish this from the honest
user’s public key, we can reduce to the public key class-hiding game by using
the PK 1 given to the reduction in the public key class-hiding game as the user
i when they are registered. Since this hybrid already has simulated chirps for
all RecvChirp outputs, we can generate random users for these chirps as this
reduction. Continuing to act like HybridB,HUi,j,k , we simulate chirps for the Notify
function accordingly using MS.Sign(sk1, ·) for any real chirps used in Notify,
except for chirp k in batch j where we use MS.Sign(sk b2, ·). We can see that this

makes our reduction look like one of these two hybrids HybridB,HUi,j,k+b depending
on the bit for the public key class-hiding challenger. We can also replace the
attribute sets in the commitment as we did for the proof of Claim 2, reducing
to the hiding of the commitment scheme.

We now have to prove that the number of corrupt and honest chirps in the
batch are correct. The simulated chirps are extracted from the set of chirps sent
by the adversary SC and the set of chirps sent between honest users HI. The
only way we could get an inaccurate number is if the adversary were able to

8Our CoEC scheme uses message class-hiding to prove its hiding property and can be read
in Section D.2.
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include two chirps for the same time for a single user, since we only count the
distinct times from each user (in Equation 13). This is impossible for tuples in
HI since honest users will not chirp twice in the same location. For tuples in SC,
this is prevented by including a PRF of the chirper’s secret key and t. We can
see that if the user wanted to have one adversarial id chirp twice for a single
honest user at the same time, they would need to forge the Y r value included
in the chirp and prove that it is valid.

Claim 4 HybridB,CUi,j,q+1 is indistinguishable from HybridBi,j+1

Proof of Claim 4 In this proof, we aren’t simulating any new chirps in the
batch, but rather the other elements such as PK ′Û , cert ′, Y PK , πPK , .... We
can immediately use the indistinguishability property of VRFs/PRFs to replace
all Y values with random values. This is because fMS

(·) (·) is a PRF and each
invocation by an honest user depends on secrets not known to the adversaries
(the user’s secret key). Since the user is honest, we know that none of these Y
values collide (they never listen for the same t at multiple locations and they
never upload twice for a given Epoch(t)9). We can then simulate all proofs
π using the simulator for the NIZK. This includes running the simulator for
the proof of subset. All C∗i can then be randomly generated as shown by the
simulator and any PRFs computed on them can be simulated.

Claim 5 HybridBi,q+1 is indistinguishable from HybridBi+1,0

Proof of Claim 5 From Claims 4, 3, and 2, we can see that Claim 1 is
true. Now from Claim 1, the fact that Hybrid c

0,0 = Hybrid c
q+1,q+1 (shown in

the proof of chirp privacy), Hybrid c
q+1,q+1 = HybridB0,0 as well as the fact that

HybridBi,q+1 = HybridBi+1,0, we find that Hybrid c
0,0 is indistinguishable from

HybridBq+1,q+1. Noticing that Hybrid c
0,0 is the real game and HybridBq+1,q+1 is

the ideal game proves Theorem 7.

D.2 Proofs for CoECs

Theorem 9 The commitment scheme in Definition 27 is binding as defined by
Definition 8 under the discrete logarithm problem.

Proof of Theorem 9 Breaking this definition means this adversary outputs
(C,C ′,M,O,M ′, O′) where M 6= M ′, [C]R = [C ′]R and both C,M,O and
C ′,M ′, O′ are valid openings. Let’s first look at the scenario where there’s only
one pair of bases, B0,0, B0,1 (s = 1). Because these were valid openings, we
know that: C = (αB0,0, αmB0,1) C ′ = (βB0,0, βm

′B0,1) where O = α and

O′ = β. If [C]R = [C ′]R, then C1/C0 = C ′1/C
′
0 =

b0,1
b0,0

m =
b0,1
b0,0

m′ where bi,i is

9To ensure that no t = Epoch(t), we simply need to make the output of Epoch distinct
from its input. Imagining the t values as a Unix timestamp, we can possibly make all outputs
of Epoch negative or multiply the output by 264 or similar.
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Bi,i = bi,iP . Thus, m = m′ so we have a contradiction. This implies that for
one attribute, this scheme is perfectly binding. This changes to a computational
hardness when we increase s.

Now we will prove this holds for s > 1. Because M 6= M ′, we know ∃j such
that mj 6= m′j . Because [C]R = [C ′]R, we know that:

C1/C0 = C ′1/C
′
0

C1 ∗ C ′0 = C ′1 ∗ C0

Thus

α(
∑

miBi,1) ∗ β(
∑

Bi,0) = α(
∑

m′iBi,1) ∗ β(
∑

Bi,0)

αβ(
∑

miBi,1) ∗ (
∑

Bi,0) = αβ(
∑

m′iBi,1) ∗ (
∑

Bi,0)

(
∑

miBi,1) = (
∑

m′iBi,1)

0 = (
∑

m′iBi,1)− (
∑

miBi,1)

mjBj,1 −m′jBj,1 = (
∑

i∈[s]\{j}

m′iBi,1)− (
∑

i∈[s]\{j}

miBi,1)

(mj −m′j)Bj,1 = (
∑

i∈[s]\{j}

m′iBi,1)− (
∑

i∈[s]\{j}

miBi,1)

(16)
Because we know mj −m′j is non-zero, the left side of Equation 16 must also
be non-zero. Thus, the right side must be non-zero.

Knowing that an adversary that can break the binding of our commitment
scheme produces a set with the property described in Equation 16, we’ll create
a reduction that solves the discrete log problem with this.

We now describe a reduction to the discrete log problem: our reduction
receives P, P ′ = aP and is tasked with recovering a. The reduction then creates
a commitment scheme with any number of random bases (s) where we know all
the discrete logs over P , i.e., we know all bi,e such that: (bi,e = Bi,e/P ). Except
one base, Bj,1, where the reductions instead replaces put in our challenge from
the discrete logarithm game, Bj,1 = P ′, for a random j ∈ [s]. The reduction
now gives pp = {Bi,0, Bi,1}i∈[s] to the adversary. Observing Equation 16, we
can see that we retrieve some C,C ′,M,M ′, O,O′ such that the adversary can
compute:

(mk −m′k)B0,1 =
∑

i∈[s]\{k}

(m′i −mi)Bi,1

Where k is the index of the attribute that the adversary has changed (which
must exist due to this being a double opening). We rerun this experiment until
we happen to pick j = k. This will happen with non-negligible probability since
the j base is a randomly sampled element just like the other bases we’ve made:

{aP : a
$←− Z∗p} ≈ {Q : Q

$←− G}. So for the rest of the proof, set j = k. Because
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we know the discrete logs of all the other bases, we can find d such that:

(mj −m′j)Bj,1 =
∑

i∈[s]\{j}

(m′i −mi)biP

Bj,1 =
∑

i∈[s]\{j}

bi(m
′
i −mi)/(mj −m′j)P

We can divide by (mj −m′j) if these values are distinct, which is true because
we know this is where the message sets, M and M ′ differ. Thus, because we
set Bj,1 = P ′, we can recompute a =

∑
i∈[s]\{j}

bi(m
′
i −mi)/(m0 −m′0) since we

know all the bi,e values aside from bj,1. Thus, we find the discrete log: a = P ′

P .

Theorem 10 The commitment scheme in Definition 27 is hiding as defined
by Definition 9 as long as mercurial signatures are message class-hiding as de-
scribed in Definition 20 using the equivalence classes in Definition 18.

Our reduction to the class-hiding game for mercurial signatures accepts
M1,M

b
2 and computes pp1 = {ai,0M1, ai,1M1}i∈[s] where ai,0, ai,1 ←$ Z∗p. The

reduction gives this to the adversary and retrieves M,M ′. The reduction then
runs the commitment scheme using pp2 = {ai,0M1, ai,2bM

b
2}i∈[s]. The reduction

now computes: C0 = Commit(pp2,M) and C1 = Commit(pp2,M
′) and returns

Cb
′

to the adversary where b′
$←− {0, 1}. The adversary then make their guess,

b∗, and if b∗ = b′, the reduction outputs b† = 0 as its guess. If b∗ 6= b′, then the
reduction outputs b† = 1 instead.

Analysis If the secret bit for the public-key hiding challenger, b is zero, we can
see that our commitment Cb is a valid commitment to M or M ′ and thus, the
game looks identical. If b = 1 though, this becomes a commitment to a random
set of messages, Mr, and so the adversary has no advantage in distinguishing
b′. To see why this second case (b = 1) results in a commitment to a random
message, let’s first label d1 = M1,1/M1,0 and d2 = M1

2,1/M
1
2,0. We can now see

that the discrete log, C1
1/C

1
0 is:

d2(Σai,0)/(Σm′iai,1)

Thus, the discrete log could be any value, depending entirely on d2. I.e., for any
set of messages, Mr, we can find a d2 such that when b = 1, the commitment
given to the commitment hiding adversary is a commitment to that set of mes-
sages: Commit(pp2,M

r) = C2. Thus, this adversary cannot have any advantage
in guessing b′ when b = 1, but still has an identical view to the real game when
b = 0. Thus, the reduction can defeat public-key hiding by outputting a guess,
b† = 0 when the guess given by the commitment hiding adversary, b∗ equals the
reduction’s secret bit, b′, and outputting b† = 1 otherwise.

Theorem 11 The commitment scheme in Definition 27 is class-hiding as de-
fined by Definition 10 as long as mercurial signatures are message class-hiding
as described in Definition 20 using the equivalence classes in Definition 18.
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Proof of Theorem 9 Again, our reduction takes M1,M
b
2 from the challenger

and computes pp1 = {ai,0M1, ai,1M1}i∈[s]. The reduction gives this to the ad-
versary and retrieves C,O,M,C ′, O′,M ′. We then generate new commitments
C0 and C1 to M and M ′ (respectively) and one of these randomly to the adver-
sary. If M = M ′, then, because randomizing a commitment perfectly chooses a
random commitment in the same equivalence class, C and C ′ are indistinguish-
able. If M 6= M ′, then we can instead reduce using our previous reduction from
the proof of Theorem 10. This is done passing the adversary’s M,M ′ to that
reduction to mercurial message class-hiding and returning the given Cb

′
to the

class-hiding adversary and having the reduction return b† dependent on whether
the adversary guesses correctly just like the proof of Theorem 10. Again, be-
cause randomizing a commitment perfectly chooses another representative in
the equivalence class, being able to specify the opening (O,O′) does not help
the adversary distinguish this reduction since the commitments returns to the
adversary will always be entirely independent of O,O′.

D.3 Proofs for zk-SPoCs

Proof of Theorem . Let SProveSubset be a simulator as defined below:

Definition 34 (SProveSubset({Ai}i∈[m], {Bi}i∈[n])) First, create random com-
mitments, messages, and openings: A′i, O

′
i, L
′
i and B′i, P

′
i ,M

′
i and simulate the

proof that these are equivalent to the concatenation of the original messages.
Next, create random elements, {Wi}i∈[m], {Ci}i∈[n] and simulate the proof that

e(Ci−1, B
′
i)
∼= e(Ci, P̂ ) and e(Wi, A

′
i)
∼= e(Cn, P̂ ).

Let’s define a number of hybrid games (labeled: GameProveSubset
j ) where

GameProveSubset
j will act like the simulator for commitments: [1...j − 1] then

replace the j-th with elements from a FHS19 hiding challenger (shown in Defi-
nition 26) and acts like the real function for elements [j+1...m] or [j+1...n]. Be-
cause we replace multiple elements, between Gamej and Gamej+1 we’ll need to
also construct intermediate hybrid games: Gamej,A, Gamej,A,B , Gamej,A,B,C ,
and Gamej,A,B,C,W

Definition 35 (GameProveSubset
j ) Takes {Ai, Oi, Li}i∈[m], {Bi, Pi,Mi}i∈[n])

from the adversary. First, create random commitments, messages, and
openings: A′i, O

′
i, L
′
i and B′i, P

′
i ,M

′
i up to i = j − 1, then for i = j, use

a commitment from the FHS19 challenger, supplying either c(Li), c(Mi) or
the random elements: L′i,M

′
i . For i = j + 1 and on, use the real elements

L′i = c(Li),M
′
i = c(Mi). Next, create random elements, Wi, Ci up to i = j − 1

and for i = j, use an FHS19 scheme on G1 instead of G2 and commit to the
correct sets needed for these witnesses. For i = j + 1 and on, generate Wi, Ci
as the real function would. If “W ′′j ∈ S, then Wj is taken from the challenger.

Definition 36 (GameProveSubset
j,A ) Acts like Gamej−1 but replaces Aj like Gamej

would.
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Definition 37 (GameProveSubset
j,A,B ) Acts like Gamej−1 but replaces Aj and Bj like

Gamej would.

Definition 38 (GameProveSubset
j,A,B,C ) Acts like Gamej−1 but replaces Aj, Bj and

Cj like Gamej would.

Definition 39 (GameProveSubset
j,A,B,C,W ) Acts like Gamej−1 but replaces Aj, Bj, Cj,

and Wj like Gamej would.

Let’s define a number of hybrid schemes (labeled: Hybrid j,A) as well (defined
analogously s.t. Hybrid j,A replaces Aj with real elements instead of giving Aj

to a challenger). We can see that GameProveSubset
j,A appears as Hybrid j−1 when

the challengers bit is b = 1 (indicating random elements are used for Aj) and
is exactly like Hybrid j,A when b = 0 (indicating real elements are used for Aj).

GameProveSubset
j,A,B appears as Hybrid j,A when the challengers bit is b = 1 (indicat-

ing random elements are used for Bj) and is exactly like Hybrid j,A,B when b = 0.

GameProveSubset
j,A,B,C appears as Hybrid j,A,B when the challengers bit is b = 1 and is

exactly like Hybrid j,A,B,C when b = 0. GameProveSubset
j,A,B,C,W appears as Hybrid j,A,B,C

when the challengers bit is b = 1 and is exactly like Hybrid j,A,B,C,W when b = 0.
Then, we can see that Hybrid j,A,B,C,W is equivalent to Hybrid j+1, thus, allow-
ing us to repeat the previous intuition to reach any polynomial value for j such
as n or m. We can see that Hybrid0 is the same as the real ProveSubset and
Hybridn (or Hybridm if m > n) is equivalent to SProveSubset. Since all the steps
reduce to the hiding of the underlying commitment scheme, SProveSubset is in-
distinguishable from ProveSubset and thus is a valid simulator proving that our
zk-SPoC construction is zero-knowledge.

Proof of Theorem 4. If an adversary can produce a W that violates sound-
ness, we can violate the binding of FHS19 set commitments by using the NIZKs
to extract the openings of A′i and Wi. We can then use these openings to de-

randomize the values such that e(W ∗i , (a − L′i)P̂ ) = e(C∗n, P̂ ). We can do the

same to extract the openings of B′i, finding e(C∗i−1, (a − M ′i)P̂ ) = e(C∗i , P̂ ).
If {L′i} 6⊆ {M ′i}, we’ll be able to create a witness, W ∗i , that each Ai is com-
mitted to a message included in C∗n and create witnesses that each successive
C∗i includes another message committed to by B. But, because this is not a
correct proof, this means that ∃j : L′j 6∈ {M ′i}. This means that either (1)

e(W ∗j , (a − L′j)P̂ ) = e(C∗n, P̂ ) and we can open C∗n to {M ′i} which actually
doesn’t contain L′j , or, (2) the adversary was able to sneak in an extra value
into C∗n. In the case of (1) we immediately have a forgery. For (2), after de
randomizing, know that C∗n =

∏
(a −Mi)P̂ . This means that we can open C∗n

up to {Mi} and produce a witness that Lj is committed to by C∗n, which is a
violation of subset soundness.
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E Details

E.1 Splitting uploads across batches

In the PACIFIC scheme defined in Definition 1, if a user needs to upload shortly
after a change in epoch such that they have relevant contacts from the last epoch,
this scheme does not clearly support this. There are a few ways of supporting
this: We can have the adversary upload two batches, one for the previous period
and another from the new period. This method leaks information as users who
check the database could learn which batch and thus which epoch they had
an interaction with the user during. Another method would be to run two
versions of the scheme simultaneously. These schemes would define epochs that
are double the length of an infection window, then offset them by half their
length. Thus, the user never needs to split their notifications across two batches
as one of the two schemes will contain all the chirps they need. This doubles
the computation and bandwidth for chirps though as chirps for both schemes
need to be broadcasted. The last method is to allow batches to be verified for
two epochs (using NIZKs). This retains the privacy, integrity, and complexity,
but requires a relatively complicated definition and solution, so we leave this to
future work.

E.2 Necessity of VRF in chirp

If we don’t compute VRFs on the time in chirps, an adversary could potentially
de-anonymize honest users in our scheme by chirping some prime number of
times and using a different prime number in each location. Thus, if the number
of interactions does not exceed the lowest of these prime numbers (and adver-
saries are never in two different locations), the adversary can divide the number
of contacts they had with the user by each prime to determine in which location
they had their interaction. If we decide that this attack is not practical, we can
remove the NIZK computation from chirps, removing the text in blue from the
construction. This attack would require an adversary to broadcast a number
of times relative to than the maximum number of times two users could poten-
tially interact, which could be a lot of communication within a small time span.
We could also reduce this NIZK to some extra group elements as was originally
done to compute proofs of VRFs [DY05], but we leave this as future work.

E.3 Preventing de-anonymization with nonces

Nonces can lead to a problem where a malicious user choses a nonce from another
nearby honest user to distinguish uploaders (making two VRFs on the same
nonce appear) or suppress honest users’ chirps if listeners discard duplicate
nonces. This can be prevented by ensuring the nonce is a hash (H : (G2)` → Zp)
of the chirper’s randomized public key, PKU

′.
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