
Efficient Homomorphic Evaluation of
Arbitrary Uni/Bivariate Integer Functions and

Their Applications⋆

Daisuke Maeda1, Koki Morimura1, Shintaro Narisada2, Kazuhide Fukushima2,
and Takashi Nishide1

1 University of Tsukuba, Japan
nishide@risk.tsukuba.ac.jp

2 KDDI Research, Inc., Saitama, Japan.

Abstract. We propose how to homomorphically evaluate arbitrary uni-
variate and bivariate integer functions such as division. A prior work
proposed by Okada et al. (WISTP’18) uses polynomial evaluations such
that the scheme is still compatible with the SIMD operations in BFV
and BGV, and is implemented with the input domain size Z257. However,
the scheme of Okada et al. requires the quadratic number of plaintext-
ciphertext multiplications and ciphertext-ciphertext additions in the in-
put domain size, and although these operations are more lightweight
than the ciphertext-ciphertext multiplication, the quadratic complexity
makes handling larger inputs quite inefficient.

In this work, first we improve the prior work and also propose a new
approach that exploits the packing method to handle the larger input
domain size instead of enabling the SIMD operation, thus making it pos-
sible to work with the larger input domain size, e.g., Z215 in a reasonably
efficient way. In addition, we show how to slightly extend the input do-
main size to Z216 with a relatively moderate overhead. Further we show
another approach to handling the larger input domain size by using two
ciphertexts to encrypt one integer plaintext and applying our techniques
for uni/bivariate function evaluation.

We implement the prior work of Okada et al., our improved scheme of
Okada et al., and our new scheme in PALISADE with the input domain
size Z215 , and confirm that the estimated run-times of the prior work and
our improved scheme of the prior work are still about 117 days and 59
days respectively while our new scheme can be computed in 307 seconds.

Keywords: Fully Homomorphic Encryption, Polynomial Interpolation,
Homomorphic Evaluation of Non-Linear Bivariate Function

⋆ A preliminary version of this work appeared in WAHC’22 [MMN22, https://doi.
org/10.1145/3560827.3563378]. In this extended version, we add to Appendix A
how to extend the input domain size from Zt to Zt2 by using two ciphertexts to
encrypt one integer plaintext and how to realize basic integer operations with the
extended input domain Zt2 .

mailto:nishide@risk.tsukuba.ac.jp
https://doi.org/10.1145/3560827.3563378
https://doi.org/10.1145/3560827.3563378

2 Maeda, Morimura, Narisada, Fukushima, Nishide

1 Introduction

1.1 Background

Fully homomorphic encryption (FHE) is a promising tool for achieving privacy
in the data analysis, and has the advantage that it enables non-interactive secure
computation compared with, e.g., secret sharing based secure computation. After
the first FHE construction of Gentry [Gen09], many FHE schemes are proposed
and already implemented in modern software libraries like [HS14,PAL20,SEA22].
FHE schemes can be categorized into three classes. The first class deals with
Boolean circuits and lookup tables based on functional bootstrapping and the
FHEW and TFHE (also known as CGGI) schemes [DM15,CGGI20,GBA21,CLOT21]
are included in this class. The second class can encrypt vectors, and supports
modular arithmetic over a finite field in each slot of the vectors (called SIMD
functionality), which is typically used to simulate integer arithmetic. The Brakerski-
Gentry-Vaikuntantan (BGV) and Brakerski-Fan-Vercauteren (BFV) schemes
[BGV12,Bra12,FV12,KPZ21] are included in this class. The third class supports
approximate computation of vectors consisting of real and complex numbers, and
the Cheon-Kim-Kim-Song (CKKS) scheme [CKKS17] is included in this class.
The security of these classes is based on Ring Learning With Errors (RLWE),
and each of these FHE schemes can be useful depending on the types of com-
putation we need to perform securely. In general, the FHE schemes in the first
class are the most versatile, and for example, in [GBA21], any computation can
be performed by representing it as a lookup table (ZB)

n → ZB where B is a
small radix (e.g., ≤ 26) and by applying the technique called “functional boot-
strap” iteratively to select the final output from the lookup table3. On the other
hand, the second and third classes can be more suitable for integer/fixed-point
arithmetic computation including many addition and multiplication operations.

In this work, we focus on the BFV scheme of the second class4. In the BFV
scheme supporting integer-wise operations, addition and multiplication can be
performed easily without the bit-wise/digit-wise encryption approach, and if we
can realize the mixed computation in which these addition and multiplication
can be combined with complex non-linear functions seamlessly, it will be advan-
tageous. One standard way to compute a non-linear function f in the second
and third classes is to perform polynomial evaluation by representing f as a
polynomial via polynomial interpolation. If the non-linear function f we want
to homomorphically evaluate is univariate and the input domain size is small,
a simple approach based on polynomial evaluation is viable, but if f is bivari-
ate and the input domain size N is relatively large (e.g., N = 215), it can be
non-trivial to compute an arbitrary non-linear function f : ZN × ZN → ZN in a
reasonably efficient way even if we use polynomial evaluation.

3 As mentioned in [GBA21], evaluating lookup tables homomorphically inherently
requires the exponential time complexity in the input size.

4 We believe most of our idea can be used for BGV as well.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 3

1.2 Our Contributions

First we improve the prior work of Okada et al. [OCHK18] that shows how
to homomorphically compute an arbitrary bivariate integer function based on
polynomial evaluation. Our improved scheme of [OCHK18] has the advantage
that it can still be combined with the SIMD functionality [SV14] of BFV/BGV,
i.e., the parallel computation of the same bivariate function in multiple slots is
supported, but as our experiment shows, it is still prohibitively inefficient with,
e.g., our typical input domain size 5 N = 215 and plaintext modulus t = 216+1.

To overcome the above issue, we also propose another approach at the price
of allowing only a single slot to be used during the computation of bivari-
ate functions. That is, the SIMD functionality of BFV/BGV is usually used
for parallel computation, but instead we exploit the SIMD functionality to
realize an arbitrary non-linear univariate function f : ZN → ZN , which we
call One-HotSlot technique. Further combining One-HotSlot with the Paterson-
Stockmeyer method [PS73], we show how to compute an arbitrary bivariate
non-linear function f : ZN × ZN → ZN , which is much faster than homomor-
phically computing the bivariate function in all the slots in parallel (i.e., with
fully packed ciphertexts)6. Further we show that the input domain size can be
extended such that the bivariate function is of type Z2N × Z2N → Z2N with a
relatively moderate overhead. In Appendix A, we slightly extend our above tech-
niques for uni/bivariate function evaluation so that they can handle functions
of type Zt → Zt and Zt × Zt → Zt where t is a plaintext modulus, and show
another approach to extending the input domain size from Zt to Zt2 by using
two ciphertexts to encrypt one integer plaintext.

1.3 Related Work

Computing non-linear arbitrary functions including integer-wise comparison and
division can be a challenging task in the context of CKKS, BFV, and BGV, and
polynomial interpolation and evaluation are the important tools for realizing
non-linear functions over a prime finite field or ring and even for performing
bootstrap procedures [CH18,HS21].

Lu et al. [LZS18] proposed a homomorphic comparison operation for BFV/BGV,
and it was extended by Ishimaki and Yamana [IY18]. The underlying idea is to
encode a plaintext integer a as a polynomial Xa before encrypting it by FHE.
Although such an encoding can achieve better efficiency for a comparison oper-
ation, the special-purpose encoding makes it inefficient to perform ciphertext-
ciphertext additions and multiplications.

Kaji et al. [KMNN19] investigated how to represent non-linear max and
argmax functions as concrete bivariate polynomials over a prime finite field Fp

in relation to a homomorphic comparison operation, but their results are not

5 As shown in §4.2, our estimate shows that it requires about 59 days in our experi-
mental environment.

6 It takes 307 seconds (§4.2) compared with 59 days of our improved scheme of
[OCHK18] in the setting of our typical input domain size 215.

4 Maeda, Morimura, Narisada, Fukushima, Nishide

so efficient in the sense that O(p2) ciphertext-ciphertext multiplications are re-
quired.

Tan et al. [TLW+20] proposed the special-purpose comparison operation us-
ing BGV and equality function proposed by Kim et al. [KLLW16]. Roughly
speaking, the input integers are represented as vectors in the base-p representa-
tion, and the vectors are encrypted by using the SIMD functionality and com-
pared in lexicographical order by using the bivariate polynomial.

Cheon et al. [CKK20] proposed the comparison function for CKKS. Roughly
speaking, based on composite polynomial approximation, they represent the
comparison function f by finding f ′ such that f ′(d) = f ′ ◦ f ′ ◦ · · · ◦ f ′ gets
closer to f by increasing d. Here the computation is approximate and the inputs
to the comparison function need to be within a specific range, and allowing the
two inputs to be close to each other can increase the computational cost of the
comparison function.

Iliashenko and Zucca [IZ21] proposed how to represent the comparison func-
tion as concrete bivariate and univariate polynomials over a prime finite field
Fp where BFV and BGV are the underlying FHE schemes. Also they showed
that polynomial evaluations can be done with O(p) ciphertext-ciphertext mul-
tiplications in the case of the bivariate polynomial, and with O(

√
p) ciphertext-

ciphertext multiplications in the case of the univariate polynomial. For homo-
morphic comparison of large inputs, in [IZ21], input integers need to be repre-
sented in the base-p representation, encoded as elements in the extension field
Fpd assuming p is not large, and the corresponding vectors of of coefficients are
compared in lexicographical order, so the comparison operation does not seem
to be combined with homomorphic additions and multiplications seamlessly to
simulate integer arithmetic.

Iliashenko et al. [INZ21] showed that several non-linear univariate functions
such as “modulo”, “is power of b”, “Hamming weight” and “Mod2” can have nice
polynomial structures like an odd function when the related parameters satisfy
specific conditions7, which allows more efficient polynomial evaluation compared
with the well-known Paterson-Stockmeyer method [PS73].

Okada et al. [OCHK18] proposed how to compute the division function us-
ing BGV by combining the polynomial evaluations of two univariate functions,
equality function and division function with a public divisor, and showed that
8-bit integer division can be computed in 795.8 seconds. Their method to com-
pute the division function can easily be generalized to realize arbitrary bivariate
integer functions.

To realize arbitrary bivariate integer functions rather than specific or special-
purpose non-linear functions, we improve the work of [OCHK18] and also propose
a new approach enabling to handle the larger input domain size.

7 For example, a “modulo m” function can be represented by a univariate polynomial
similar to an odd polynomial when p ≡ m− 1 mod m.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 5

2 Preliminaries

2.1 Notation

We summarize the symbols used in this work in Table 1. One of the typical
settings for this work is N = 215 and t = 2N + 1 = 65537 8.

Table 1. Notation

Notation Description

N Power of two

t, q Integers for plaintext and ciphertext moduli
where t≪ q and t is a prime s.t. 2N | t− 1

Z[X] Set of integer coefficient polynomials of variable X

R Ring Z[X]/(XN + 1)

Rt Ring defining plaintext space
Zt[X]/(XN + 1)

Rq Ring defining ciphertext space
Zq[X]/(XN + 1)JMK Ciphertext of plaintext M

⊕, ⊖, ⊗ Homomorphic addition, subtraction and multiplication

L[j] j-th element of list/array L with zero-based index

2.2 Packing Method in Fully Homomorphic Encryption

The BGV [BGV12] and BFV [FV12] schemes support integers operations and
CKKS [CKKS17] scheme supports fixed-point arithmetic. In this work, we focus
on the BFV scheme [FV12], which is one of the schemes that support the follow-
ing functionalities: integer-wise addition/multiplication, Galois automorphism,
and packing method.

2.2.1 Packing Method
The FHE schemes based on Ring-LWE can pack a set of integers into a sin-
gle plaintext or ciphertext polynomial by setting some variables appropriately
[SV14]. Let t and N be such that 2N | t−1, and g be a generator of Zt satisfying

gt−1 ≡ 1 mod t. Then ω ≡ g
t−1
2N ∈ Zt is the primitive 2N -th root of 1 in Zt, i.e.,

ω2N ≡ 1 mod t.
In this setting, a ciphertext of a polynomial f(X) = a0 + a1X + · · · +

aN−1X
N−1 ∈ Rt can be viewed as a ciphertext that packs a plaintext vector

(a′0, a′1, . . . , a
′
N−1) ∈ ZN

t determined by the following matrix W .

8 Another possible example is N = 215 and t = 3 × 218 + 1. In this setting, the
ciphertext size becomes larger and it causes lower performance, but meanwhile we
can have a larger level parameter (multiplicative depth).

6 Maeda, Morimura, Narisada, Fukushima, Nishide


a′0
a′1
a′2
...

a′N−1


︸ ︷︷ ︸

ZN
t

=



1 ω · · · ωN−1

1 ω3 · · ·
(
ω3

)N−1

1 ω5 · · ·
(
ω5

)N−1

...

1 ω2N−1 · · ·
(
ω2N−1

)N−1


︸ ︷︷ ︸

W∈ZN×N
t


a0
a1
a2
...

aN−1


︸ ︷︷ ︸

ZN
t

=


f(ω)
f
(
ω3

)
f
(
ω5

)
...

f
(
ω2N−1

)

 =



a0 + a1ω + · · ·+ aN−1ω
N−1

a0 + a1ω
3 + · · ·+ aN−1

(
ω3

)N−1

a0 + a1ω
5 + · · ·+ aN−1

(
ω5

)N−1

...

a0 + a1ω
2N−1 + · · ·+ aN−1

(
ω2N−1

)N−1


Here the packed ciphertext is denoted by Jf(X)K = J(a′0, a′1, . . . , a

′
N−1)K,

and similarly, the packed plaintext is denoted by [f(X)] = [(a′0, a′1, . . . , a
′
N−1)].

We call the i-th element of a vector the i-th slot. Here the addition and mul-
tiplication of vectors are performed element-wise on each slot. I.e., when we
consider two packed ciphertexts Jf(X)K = J(a′0, a′1, . . . , a′N−1)K and Jg(X)K =J(b′0, b′1, . . . , b′N−1)K, it holds that

Jf(X)K⊕ Jg(X)K = J(a′0 + b′0, a
′
1 + b′1, . . . , a

′
N−1 + b′N−1)KJf(X)K⊗ Jg(X)K = J(a′0b′0, a′1b′1, . . . , a′N−1b
′
N−1)K

where the computation in each slot is done modulo t.

2.3 Polynomial Interpolation

Polynomial interpolation is a method to derive a polynomial f satisfying yi =
f(xi) for 0 ≤ i ≤ N − 1, given N points {(xi, yi)} where xi ̸= xj if i ̸= j, and
f(x) is obtained by the following equation 9.

f(x) ≡
N−1∑
i=0

 ∏
0≤j≤N−1,j ̸=i

x− xj

xi − xj

 · yi mod t

2.4 Paterson-Stockmeyer Method

Given polynomial f(x) = c0 + c1x + c2x
2 + · · · + cN−1x

N−1, the naive method
to evaluate f(x) requires computing powers x, x2, · · · , xN−1, leading to O(N)
multiplications. However, by using the well-known Paterson-Stockmeyer method

9 We note that if t is not a prime, polynomial interpolation may not work.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 7

(PS method) [PS73], the number of multiplications required for polynomial eval-
uation can decrease to O(

√
N). In the PS method, f(x) is transformed as follows,

and evaluated with precomputed {x, x2, . . . , xp−1} and {xp, (xp)2, . . . , (xp)s−1}
where p, s ≈

√
N .

f(x) =c0 + c1x+ · · ·+ cN−1x
N−1 (where N = ps)

=
(
c0 + c1x+ · · ·+ cp−1x

p−1
)

+
(
cp + cp+1x+ · · ·+ c2p−1x

p−1
)
× xp

+
(
c2p + c2p+1x+ · · ·+ c3p−1x

p−1
)
× (xp)

2

...

+
(
c(s−1)p + c(s−1)p+1x+ · · ·+ c(s−1)p+p−1x

p−1
)
× (xp)

s−1

3 Proposed Schemes

First we recall the prior work of Okada et al. [OCHK18] that shows how to com-
pute an arbitrary bivariate integer function with BFV/BGV by using polynomial
evaluations. Next we show how to improve [OCHK18] by reducing the number
of polynomial evaluations. While the prior work [OCHK18] and our improved
variant of [OCHK18] can work with the SIMD functionality to enable parallel
computation, as shown in our experiment (§4.2), these are quite inefficient when
the input domain size becomes relatively large. To address this issue, we also
propose another approach that exploits the packing method to handle the larger
input domain size instead of enabling the SIMD operation.

3.1 Prior Method for Homomorphically Computing Bivariate
Function Based on Polynomial Evaluation

Here we recall the homomorphic integer-wise division [OCHK18] (Algorithm 2).
As in [OCHK18], for simplicity, we describe Algorithm 2 assuming that the plain-
text is a scalar rather than a vector for the SIMD operation, but Algorithm 2 can
easily be adapted to work with the SIMD functionality. We consider computing
the division ⌊ad⌋ where a, d ∈ Zt

10. First we can precompute the coefficients of
polynomials fi(x)

11, gi(x) : Zt → Zt satisfying

fi(x) =
⌊x
i

⌋
, gi(x) =

{
1 (if x = i)
0 (otherwise)

via polynomial interpolation. Next we compute the ciphertexts of powers Cpow
a ←

Pows(JaK, t), Cpow
d ← Pows(JdK, t) necessary for polynomial evaluation with

10 Here we use the division operation as an example of a bivariate function, but actually
any bivariate function Zt × Zt → Zt can be computed.

11 Here we use the division as an example, but by changing fi(x), an arbitrary bivariate
function can actually be computed.

8 Maeda, Morimura, Narisada, Fukushima, Nishide

multiplicative depth O(log2(t)) where Pows is given in Algorithm 1. In ConstDiv
and ConstEq, we obtain J⌊a

i

⌋K and Ji = dK respectively by homomorphically com-
puting the inner products between the powers and the coefficients of fi(x), gi(x)

12.
We note that Ji = dK equals J1K if i = d, and J0K otherwise, which means thatJ⌊a

i

⌋K ⊗ Ji = dK equals J⌊a
d

⌋K when i = d and J0K otherwise. Finally we obtain

the encrypted division result J⌊a
d

⌋K in S.

Algorithm 1 Pows

Input: JaK, u
1: k = ⌊log(u)⌋
2: for i = 0 to (k − 1) do
3: for j = 1 to 2i do

4: Ja2i+jK← Ja2iK⊗ JajK
5: end for
6: end for
7: if 2k < u− 1 then
8: for i = 1 to u− 1− 2k do
9: Ja2k+iK← Ja2kK⊗ JaiK
10: end for
11: end if
Output: Cpow

a = (Ja0K, JaK, Ja2K, . . . , Jau−1K)

Algorithm 2 Homomorphic Division J⌊a
d

⌋K
Input: JaK, JdK
1: S ← J0K
2: Cpow

a ← Pows(JaK, t), Cpow
d ← Pows(JdK, t)

3: for i = 0 to t− 1 do
4: J⌊a

i

⌋K = ConstDiv(Cpow
a , i)

5: Ji = dK = ConstEq(Cpow
d , i)

6: S ← S ⊕ J⌊a
i

⌋K⊗ Ji = dK
7: end for
Output: S = J⌊a

d

⌋K
3.2 Reducing the Number of Polynomial Evaluations

In [OCHK18], polynomial evaluations (corresponding to computing the inner
products between the powers and polynomial coefficients) are performed in both
ConstDiv for division and ConstEq for equality check. Although the polynomial

12 For this polynomial evaluation, computing all the necessary powers first is more effi-
cient than using the PS method. It is because the polynomial evaluation is iterated t
times and in each iteration, we can go without ciphertext-ciphertext multiplications.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 9

evaluations do not include ciphertext-ciphertext multiplications, this computa-
tion is the dominant part of the whole computation due to t iterations in the for
loop. Algorithm 2 of [OCHK18] is natural and seems optimal, but we show that
the number of polynomial evaluations can be reduced further by half.

3.2.1 Precomputation
We consider the division

⌊
a
d

⌋
where a, d ∈ Zt′ and t′ ≤ t (i.e., t′ is the input

domain size and t is the plaintext modulus). If d is fixed, we can precompute the
coefficients (c0,d, c1,d, c2,d, . . . , ct′−1,d) of polynomial fd(x) : Zt′ → Zt′

fd(x) =
⌊x
d

⌋
= c0,d + c1,dx+ c2,dx

2 + · · ·+ ct′−1,dx
t′−1 mod t

via polynomial interpolation. Also for 0 ≤ j ≤ t′ − 1 we define polynomials
gj(x) : Zt′ → Zt′

gj(x) = c′0,j + c′1,jx+ c′2,jx
2 + · · ·+ c′t′−1,jx

t′−1 mod t

that, given d as x, returns the j-th coefficient cj,d of fd(x). Now let V, Y,D and
Z be

V =


00 01 02 · · · 0t

′−1

10 11 12 · · · 1t
′−1

...

(t′ − 1)0 (t′ − 1)1 (t′ − 1)2 · · · (t′ − 1)t
′−1

 ,

Y =


c0,0 c0,1 · · · c0,t′−1

c1,0 c1,1 · · · c1,t′−1
...

ct′−1,0 ct′−1,1 · · · ct′−1,t′−1

 ,

D =


⌊ 00⌋ ⌊ 01⌋ · · · ⌊

0
t′−1⌋

⌊ 10⌋ ⌊ 11⌋ · · · ⌊
1

t′−1⌋
...

⌊ t
′−1
0 ⌋ ⌊

t′−1
1 ⌋ · · · ⌊

t′−1
t′−1⌋

 ,

Z =


c′0,0 c′0,1 · · · c′0,t′−1

c′1,0 c′1,1 · · · c′1,t′−1
...

c′t′−1,0 c′t′−1,1 · · · c′t′−1,t′−1


and then we have

V Y = D and V Z = Y ⊤,

so the coefficients of polynomials gj(x) can be precomputed from

Z = V −1D⊤V −⊤ mod t.

10 Maeda, Morimura, Narisada, Fukushima, Nishide

3.2.2 Our Improved Algorithm
Now we describe, given J(a0, a1, . . . , aN−1)K and J(d0, d1, . . . , dN−1)K, how to
compute s(⌊

a0
d0

⌋
,

⌊
a1
d1

⌋
, . . . ,

⌊
aN−1

dN−1

⌋){
.

First from the input ciphertexts, we compute the following t′ ciphertexts of
powers

J(ai0, ai1, . . . , aiN−1)K, J(di0, di1, . . . , diN−1)K where 0 ≤ i ≤ t′ − 1

by Pows (Algorithm 1). Next, for each di, we want to obtain the coefficients of
fdi

(x), i.e., (c0,di
, c1,di

, . . . , ct′−1,di
). For that, we compute the j-th coefficients

(cj,d0
, cj,d1

, . . . , cj,dN−1
) by polynomial evaluation of gj(x) for 0 ≤ j ≤ t′ − 1 as

J(cj,d0
, cj,d1

, . . . , cj,dN−1
)K← [(c′0,j , c

′
0,j , . . . , c

′
0,j)]

⊕ [(c′1,j , c
′
1,j , . . . , c

′
1,j)]⊗ J(d0, d1, . . . , dN−1)K

⊕ [(c′2,j , c
′
2,j , . . . , c

′
2,j)]⊗ J(d20, d21, . . . , d2N−1)K
...

⊕ [(c′t′−1,j , c
′
t′−1,j , . . . , c

′
t′−1,j)]⊗ J(dt′−1

0 , dt
′−1
1 , . . . , dt

′−1
N−1)K.

Finally we compute the encrypted division result by parallel polynomial evalu-
ation of fdi

(x) ass(⌊
a0
d0

⌋
,

⌊
a1
d1

⌋
, . . . ,

⌊
aN−1

dN−1

⌋){
← J(c0,d0

, c0,d1
, . . . , c0,dN−1

)K
⊕ J(c1,d0

, c1,d1
, . . . , c1,dN−1

)K⊗ J(a0, a1, . . . , aN−1)K
⊕ J(c2,d0

, c2,d1
, . . . , c2,dN−1

)K⊗ J(a20, a21, . . . , a2N−1)K
...

⊕ J(ct′−1,d0
, ct′−1,d1

, . . . , ct′−1,dN−1
)K⊗ J(at′−1

0 , at
′−1
1 , . . . , at

′−1
N−1

)K.
The prior method [OCHK18] requires t′ polynomial evaluations for each equality
check and division respectively, that is, 2t′ times in total, while our method
requires only t′ polynomial evaluations, thus leading to better efficiency. We note
that each polynomial evaluation includes t′ plaintext-ciphertext multiplications
and t′ ciphertext-ciphertext additions. The run-times of one plaintext-ciphertext
multiplication and ciphertext-ciphertext addition are small, but the total number
of these required operations is quadratic in t′, so as the input domain size t′

becomes larger, the damage to the efficiency is non-negligible (see Table 2).
When t′ = 215, the estimate of the total computation time is about 59 days in
our experimental environment (see §4.2) even if our improved algorithm is used.
Therefore, we propose another method (§3.4) to compute an arbitrary bivariate

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 11

integer function in a reasonably efficient way even when the input domain size
is t′ = 215 at the price of allowing only a single slot to be used during the
computation of bivariate functions.

3.3 Homomorphic Evaluation of Arbitrary Univariate Function

3.3.1 One-HotSlot
As a very simple but important building block, first we propose Algorithm 3
which we call One-HotSlot and it can be used to compute an arbitrary univariate
function later. On input J(a, a, . . . , a)K where a ∈ ZN , One-HotSlot computes a
packed ciphertext in which only the a-th slot is 1 and all other slots are 0 with a
zero-based index. We note that in Step 3 of Algorithm 3 all non-zero slot values
are set to 1 by Fermat’s little theorem since t is a prime.

Algorithm 3 One-HotSlot

Input: Packed ciphertext JaK = J(a, a, . . . , a)K
1: S ← [(0, 1, 2, . . . , N − 1)]
2: ℓ← JaK⊖ S

= J(a, a− 1, a− 2, . . . , 0, . . . , a−N + 1)︸ ︷︷ ︸
only a-th slot is 0

K
3: m← ℓt−1 // computed by repeated squaring modulo t

= J(1, 1, . . . , 0, 1, . . . , 1)K
4: n← [(1, 1, . . . , 1)]⊖m

= J(0, 0, . . . , 1, 0, . . . , 0)K︸ ︷︷ ︸
only a-th slot is 1

Output: n

3.3.2 Univariate Function Evaluation with One-HotSlot and EvalSum
By recalling the packing method in §2.2, we observe that if we take the sum of
all the elements of the k(̸= 0)-th column of the matrix W ∈ ZN×N

t , we obtain

N−1∑
i=0

ω(2i+1)k ≡ ωk + (ω3)k + (ω5)k + (ω7)k + · · ·+ (ω2N−1)k

≡ ωk(1 + ω2k + · · ·+ ω2(N−1)k)

≡ ωk(1 + ω2k + · · ·+ (ω2k)(N−1))

≡ ωk · 1− (ω2k)N

1− ω2k

≡ 0 mod t (∵ ω2N ≡ 1 mod t).

12 Maeda, Morimura, Narisada, Fukushima, Nishide

Based on the observation above, further we can derive the following useful fact
regarding Jf(X)K = J(a′0, a′1, . . . , a′N−1)K:

N−1∑
i=0

a′i ≡ N · a0

+ a1 · {ω + (ω3) + · · ·+ (ω2N−1)}
+ a2 · {ω2 + (ω3)2 + · · ·+ (ω2N−1)2}
...

+ aN−1 · {ωN−1 + (ω3)N−1 + · · ·+ (ω2N−1)N−1}
≡ N · a0
≡ N · f(0) mod t (1)

In [IY18], an algorithm called ConstantTermExtract is proposed to computeJf(0)K from Jf(X)K, which is based on the idea from [CH18, A.1]. ConstantTermExtract
can be realized by using Galois automorphisms and key switching. By combining
the relation in Eq. (1) with ConstantTermExtract, we can construct EvalSum of Al-
gorithm 4 which, on input the ciphertext encrypting [f(X)] = [(a′0, a

′
1, . . . , a

′
N−1)],

returns the packed ciphertext consisting of the sums of all the slots
∑N−1

i=0 a′i. We
can construct EvalSum just by slightly modifying ConstantTermExtract in [IY18].

Algorithm 4 EvalSum

Input: Packed ciphertext Jf(X)K = J(a′
0, a

′
1, . . . , a

′
N−1)K

1: c← σN+1(J(a′
0, a

′
1, . . . , a

′
N−1)K)

2: c← J(a′
0, a

′
1, . . . , a

′
N−1)K⊕ c

3: for k = 1 to log2(N)− 1 do
4: c′ ← σ N

2k
+1

(c)

5: c← c⊕ c′

6: end for
Output: c (= JN · f(0)K = J∑N−1

i=0 a′
iK = J(∑N−1

i=0 a′
i,
∑N−1

i=0 a′
i, . . . ,

∑N−1
i=0 a′

i)K)
Here σi(f(X)) means the automorphism mapping for i ∈ Z∗

2N . For example,
if N = 22, given f(X) = 1 + 2X + 3X2 + 4X3, we have

σ5(f(X)) = 1+ 2(X5) + 3(X5)2 + 4(X5)3 = 1− 2X + 3X2 − 4X3 mod XN + 1.

The plaintext polynomial encrypted in the output ciphertext c of EvalSum con-
sists of only a constant term N ·f(0), so all the slots have the same value

∑N−1
i=0 a′i

according to Eq. (1).
Now we propose Algorithm 513 to compute arbitrary univariate functions

such as bit/digit decomposition, which is realized by the table lookup method
combining One-HotSlot and EvalSum.

13 The range of function f can actually be Zt.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 13

Algorithm 5 Homomorphic Evaluation of Arbitrary Univariate Function

Input: Packed ciphertext JaK = J(a, a, . . . , a)K and packed plaintext T =
[(f(0), f(1), . . . , f(N − 1))] representing a lookup table of function f : ZN → ZN

1: ℓ← One-HotSlot(JaK)
2: m← ℓ⊗ T = ℓ⊗ [(f(0), f(1), . . . , f(N − 1))]
3: n← EvalSum(m)
Output: n = Jf(a)K

EvalSum performs automorphism mapping14 and addition of ciphertexts log2(N)
times, and its computational cost is about 6 times as large as that of a ciphertext-
ciphertext multiplication. In our experiment, it takes about one second to per-
form EvalSum once. Hence we try to minimize the number of EvalSum operations
as well as ciphertext-ciphertext multiplication in our construction.

3.3.3 Set-Membership Predicate by Univariate Function
We can see that a set-membership predicate fS(x) = (x ∈ S) ∈ {0, 1} can
be easily constructed by slightly modifying univariate function evaluation (Al-
gorithm 5). I.e., if we use S of fS(x) in One-HotSlot (Algorithm 3) and T =
[(1, 1, . . . , 1, 1)] (= [1]) in Algorithm 5, then clearly this variant of Algorithm 5
returns fS(a).

3.3.4 Comparison Operation by Univariate Function
We can see that One-HotSlot(JaK) (Algorithm 3) returns the all-zero vectorJ(0, . . . , 0)K if a ̸∈ S(= {0, 1, . . . , N − 1}) as mentioned in §3.3.3. Hence, given
the two ciphertexts of a, b ∈ {0, 1, . . . , N − 1}, we can compute the ciphertext
of the comparison result (a ≤ b) ∈ {0, 1} just by inputting Jb − aK and T =
[(1, 1, . . . , 1, 1)] to Algorithm 5 where we note that the computation of b− a is
done modulo t and we have −(N − 1) ≤ b− a ≤ N − 1. This way of computing
(a ≤ b) works correctly because we have 0 ≤ b − a ≤ N − 1 if and only if
(a ≤ b) = 1 and Algorithm 5 returns J1K if 0 ≤ b− a ≤ N − 1 and J0K otherwise.

3.3.5 Simulating Bivariate Function by Univariate Function
Assuming that the input domain size is small, we can simulate a bivariate func-
tion just by computing a univariate function ZN → ZN using One-HotSlot.
For example, suppose we compute the division J⌊ad⌋K with inputs JaK and JdK
where a < 27, d < 28 and the input domain size N of the univariate function
is N = 215. In this case, first we compute Ja× 28 + dK, and the division can be
realized by preparing a lookup table T whose i-th slot is the division result ⌊ad⌋
when i = a · 28 + d, i.e., T =

[(⌊
0
0

⌋
,
⌊
0
1

⌋
, . . . ,

⌊
0

28−1

⌋
,
⌊
1
0

⌋
, . . . ,

⌊
27−1
28−1

⌋)]
. We

show this division algorithm (which we call SmallDivision) in Algorithm 6.

14 An automorphism actually needs a key switching operation, but we omit it here
because the detail of it is not essential in this work.

14 Maeda, Morimura, Narisada, Fukushima, Nishide

Algorithm 6 SmallDivision

Input: Packed ciphertexts JaK = J(a, a, . . . , a)K, JdK = J(d, d, . . . , d)K where a <
27, d < 28

1: T ←
[(⌊

0
0

⌋
,
⌊
0
1

⌋
, . . . ,

⌊
0

28−1

⌋
,
⌊
1
0

⌋
, . . . ,

⌊
27−1
28−1

⌋)]
2: k ← JaK⊗ 28 ⊕ JdK
3: ℓ← One-HotSlot(k)
4: m← ℓ⊗ T
5: n← EvalSum(m)
Output: n // corresponding to J⌊a

d
⌋K

This way of computing a bivariate function is simple, but if we compute
a bivariate function f : ZN × ZN → ZN , we need to use the ciphertext space
Zq[X]/(XN2

+ 1), which will be prohibitive when N = 215. In the next section,
we overcome this issue by showing how to compute f : ZN ×ZN → ZN with the
ciphertext space Zq[X]/(XN + 1).

3.4 Homomorphic Evaluation of Arbitrary Bivariate Function

We show how to compute an arbitrary bivariate function f(x, y) : ZN × ZN →
ZN

15 by combining the table lookup method using One-HotSlot with a parallel
polynomial evaluation using the PS method.

First we define a polynomial fd(x) = f(x, d)

fd(x) = c0,d + c1,dx+ c2,dx
2 + · · ·+ cN−1,dx

N−1 mod t

and the coefficients ci,d of fd(x) can be precomputed via polynomial interpola-

tion16. Hence we can precompute all the coefficients of polynomials f0(x), . . . , fdi(x), . . . fN−1(x)
where d = 0, 1, . . . , di, . . . , N − 1.

Next given the input packed ciphertexts JaK = J(a, a, . . . , a)K17, we want to
compute Jf0(a), . . . , fdi(a), . . . fN−1(a)K
by using the PS method (§2.4). For that, we use Pows and compute the following
powers

(JaK, Ja2K, . . . , Jap−1K), (JapK, J(ap)2K, . . . , J(ap)s−1K)
with multiplicative depth log(p) and log(ps) respectively where N = ps.

15 The input domain size can be smaller than N , and the range can actually be Zt.
16 As an alternative, we can use ga(x) = f(a, x) instead of fd(x) if the polynomial

ga(x) has a simpler structure (such as an odd polynomial) than fd(x).
17 If the input ciphertext is of form J(0, . . . , 0, a, 0, . . . , 0)K, it can be transformed into

the required form by applying EvalSum.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 15

Now we can obtain Jf0(a), . . . , fdi
(a), . . . fN−1(a)K by computing

Jf0(a), . . . , fdi(a), . . . fN−1(a)K←
(c0 + c1JaK + · · ·+ cp−1Jap−1K)
+
(
cp + cp+1JaK + · · ·+ c2p−1Jap−1K)× JapK

+
(
c2p + c2p+1JaK + · · ·+ c3p−1Jap−1K)× J(ap)2K

...

+
(
c(s−1)p + c(s−1)p+1JaK + · · ·+ c(s−1)p+p−1Jap−1K)× J(ap)s−1K

where each ci (0 ≤ i < N) is the following packed plaintext

c0 =
[
(c0,0, c0,1, . . . , c0,d, . . . , c0,N−1)

]
c1 =

[
(c1,0, c1,1, . . . , c1,d, . . . , c1,N−1)

]
...

cN−1 =
[
(cN−1,0, cN−1,1, . . . , cN−1,d, . . . , cN−1,N−1)

]
.

Further by multiplying Jf0(a), . . . , fdi(a), . . . fN−1(a)K with the packed cipher-
text One-HotSlot(JdK) in which only the d-th slot is 1 and all other slots are
0, we obtain the packed ciphertext in which the d-th slot contains the function
output fd(a) (= f(a, d)) and the other slots are set to 0. This can be viewed as
a table lookup operation using a one-hot vector. Finally by applying EvalSum,
we obtain the final packed ciphertext in which all the slots contain the function
output. The above procedure is given in Algorithm 7.

Algorithm 7 Homomorphic Evaluation of Arbitrary Bivariate Function

Input: Packed ciphertexts JaK = J(a, a, . . . , a)K, JdK = J(d, d, . . . , d)K
1: (Precomputations): Precompute coefficients ci,d of the polynomials fd(x) where

0 ≤ d < N , and obtain the packed plaintexts ci where 0 ≤ i < N .
2: Cpow

a ← Pows(JaK, p)
3: Cpow

ap ← Pows(JapK, s) where N = ps
4: S ← 0
5: for i = 0 to s do
6: f ← 0
7: for j = 0 to p do
8: f ← f ⊕ ci×p+j ⊗ Cpow

a [j]
9: end for
10: S ← S ⊕ f ⊗ Cpow

ap [i]
11: end for
12: S ← S ⊗ One-HotSlot(JdK)
13: r ← EvalSum(S)
Output: r // corresponding to the ciphertext of f(a, d)

16 Maeda, Morimura, Narisada, Fukushima, Nishide

3.5 Complexity Analysis

Here we summarize the complexities of (i) our algorithm in §3.2, (ii) Algorithm 7,
and (iii) [OCHK18], and for ease of exposition, we refer to (i) as Proposal 1 and
(ii) as Proposal 2. Table 2 shows the approximate numbers of operations required
for one invocation of f : Zt′×Zt′ → Zt′ in terms of plaintext-ciphertext multipli-
cation (pt × ct), ciphertext-ciphertext addition (ct + ct), ciphertext-ciphertext
multiplication (ct × ct), and MakePackedPlaintext. Here MakePackedPlaintext
is an operation18 that creates packed plaintexts used as coefficients in polyno-
mial evaluations. As shown in Table 4, this operation is at least heavier than
pt × ct in our experimental environment, so this operation is counted in the
complexity analysis. In Proposal 2, t′ needs to satisfy t′ ≤ N where N is the
degree defining R = Z[X]/(XN +1), and the parameters p, s for the PS method
need to satisfy t′ = p× s and p, s ≈

√
t′, and t is the plaintext modulus.

We note that, in [OCHK18], Proposal 1, and Proposal 2, the degree of the
polynomials to be evaluated is t′−1, and computing the powers (Ja0K, JaK, Ja2K, . . . ,Jat′−1K) with Pows(JaK, t′) (Algorithm 1) requires approximately t′ multiplica-
tions (i.e., ct × ct). In [OCHK18] and Proposal 1, the polynomial evaluation
(related to ConstDiv,ConstEq in Algorithm 2) is done by computing the inner
product between the powers and polynomial coefficients, which involves pt ×
ct and ct + ct. In Proposal 2, the polynomial evaluation is done with the PS
method, and in addition, Proposal 2 involves One-HotSlot and EvalSum. From
these facts, we can derive the complexities in Table 2. When t′ = N = 215, we can
see that the term t′

2
in pt × ct, ct + ct, and MakePackedPlaintext of [OCHK18]

and Proposal 1 becomes quite large, and this causes the computational bottle-
neck even if the complexities of pt × ct, ct + ct, and MakePackedPlaintext are
smaller than that of ct × ct, thus yielding the efficiency gaps among the schemes.

We summarize the tradeoff between Proposals 1 and 2. In Proposal 1, the
input domain size can be set flexibly without being limited to N , and the SIMD
functionality can be available with an appropriate parameter setting, but the
term t′

2
in the complexity affects the run-time severely as shown in Table 3.

Meanwhile in Proposal 2, the input domain size is limited to19 N which is also
related to the ciphertext size and the SIMD functionality is not available during
the computation of bivariate functions, but by removing the term t′

2
in the

complexity, the increase of the run-time is much smaller compared with Proposal
1 as shown in Table 3.

3.6 Possible Extensions

3.6.1 Extending Input Domain Size
The input domain size of Algorithm 7 is N , and we can extend it such that the
bivariate function f(x, y) is of type Z2N ×Z2N → Zt with a relatively moderate
overhead. Our idea is simple, that is, we separately deal with the cases where

18 This operation is called MakePackedPlaintext in PALISADE [PAL20].
19 This can be slightly extended to 2N and t as shown in §3.6.1 and §A.1.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 17

Table 2. Complexity Comparison of Computing f : Zt′ × Zt′ → Zt′

[OCHK18] Proposal 1 Proposal 2

pt × ct 2t′
2

t′
2

t′

ct + ct 2t′
2
+ t′ t′

2
+ t′ t′ + log2(N) + s

ct × ct 3t′ 3t′ log2(t− 1) + p+ 2s

MakePackedPlaintext 2t′
2

t′
2

t′

the second input is between 0 and N−1, and between N and 2N−1. We modify
Algorithm 7, and give Algorithm 8 for larger inputs.

Algorithm 8 Homomorphic Evaluation of Arbitrary Bivariate Function with
Larger Inputs (Z2N × Z2N → Zt)

Input: Packed ciphertexts JaK = J(a, a, . . . , a)K, JdK = J(d, d, . . . , d)K
1: (Precomputations): Precompute coefficients ci,d of the polynomial fd(x) where 0 ≤

d < N and coefficients c′i,d of fd(x) where N ≤ d < 2N , and obtain the packed
plaintexts ci and c′i where 0 ≤ i < 2N .

2: Cpow
a ← Pows(JaK, p)

3: Cpow
ap ← Pows(JapK, s) where 2N = ps

4: S ← 0, S′ ← 0
5: for i = 0 to s do
6: f ← 0, f ′ ← 0
7: for j = 0 to p do
8: f ← f ⊕ ci×p+j ⊗ Cpow

a [j]
9: f ′ ← f ′ ⊕ c′i×p+j ⊗ Cpow

a [j]
10: end for
11: S ← S ⊕ f ⊗ Cpow

ap [i]
12: S′ ← S′ ⊕ f ′ ⊗ Cpow

ap [i]
13: end for
14: r ← S ⊗ One-HotSlot(JdK)⊕ S′ ⊗ One-HotSlot(Jd−NK)
15: r ← EvalSum(r)
Output: r // corresponding to the ciphertext of f(a, d)

One-HotSlot(JdK) returns a one-hot packed ciphertext if 0 ≤ d < N , and J0K
otherwise. Similarly One-HotSlot(Jd−NK) returns a one-hot packed ciphertext if
N ≤ d < 2N , and J0K otherwise20. Hence the correct value is selected depending
on the second input d at Step 14 of Algorithm 8. By using the same technique,
actually we can realize the bivariate function of type Zt × Zt → Zt, and in the

20 We can see that One-HotSlot(Jd−NK) corresponds to invoking One-HotSlot(JdK) with
a packed plaintext [(N, N + 1, N + 2, . . . , 2N − 1)] instead of [(0, 1, 2, . . . , N − 1)]
in Algorithm 3.

18 Maeda, Morimura, Narisada, Fukushima, Nishide

typical setting t = 2N + 1, we need three invocations of One-HotSlot at Step 14
of Algorithm 8 (see Algorithm 10) 21.

3.6.2 Applying Bootstrap Procedure
The limitation of our scheme is that it consumes a relatively large multiplica-
tive depth, and it is roughly log2(t − 1) when t is a plaintext modulus. In our
experiments with PALISADE’s BFVrns, the maximal depth is 23 with the set-
ting (N, t) = (215, 216 + 1) and the maximal depth is 42 with the setting
(N, t) = (215, 3 × 218 + 1). To have the more remaining depth, one possible
solution is of course to apply the general bootstrap procedure [CH18], assuming
that FHE applications we deal with do not require real-time response. Another
possibility is to apply the more lightweight TFHE-style bootstrap procedure
[CGGI20]22, assuming that the bootstrapped ciphertext has the plaintext in
only one slot. The message encoding method of BFV is the same as TFHE, i.e.,
the encoding of a ∈ ZN (⊂ Zt) is

⌊
q
t · a

⌉
∈ Zq, so in general the TFHE-style boot-

strap procedure can be applied, but there is an issue we need to address. When
the input domain size is ZN , we need to have a ciphertext space Zq[X]/(XN ′

+1)
during the TFHE-style bootstrap procedure where N ′ > N because N ′ needs to
have “finer granularity” to tolerate and remove the noise, but this can damage
the efficiency of bootstrapping. To keep N ′ = N , the plaintext in the boot-
strapped ciphertext should not be so large, so we homomorphically decompose
the plaintext into the base-d representation where d ≪ N , and the ciphertext
of each digit is bootstrapped to be combined later. This digit decomposition
can be done simultaneously in a univariate/bivariate function f we originally
want to compute. Now we briefly describe the procedure assuming the reader’s
familiarity with the TFHE-style bootstrap procedure.

1. Let f(x, y) : ZN ×ZN → ZN be the bivariate function we originally want to
compute. Then we define functions {fi(x, y)}0≤i≤ℓ−1 where ℓ = ⌊logd(N −
1)⌋ + 1 such that if z = f(a, b) and the base-d representation of z is
(zℓ−1, zℓ−2, . . . , zi, . . . , z1, z0)d, then

fi(a, b) = N ·

z′
i︷ ︸︸ ︷⌊

1

2
· 1
d
· t
2
+

1

d
· t
2
· zi

⌉
︸ ︷︷ ︸

< t
2

mod t.

The reason why we have fi(a, b) = N · z′i mod t instead of fi(a, b) = z′i
comes from the technicality of letting z′i correspond to the constant term
as in Eq. (1). The reason why z′i < t

2 is necessary is that the TFHE-style
bootstrap procedure has the “negacyclicity” constraint. The value fi(a, b)

21 This technique is also applicable to Algorithm 5 to realize the univariate function of
type Zt → Zt (see Algorithm 9).

22 We note that this bootstrap procedure can also be used in the setting different from
the torus as in [MP21,KS21].

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 19

is determined such that zi ∈ {0, 1, . . . , d− 1} is mapped to the center of the
zi-th block of width 1

d ·
t
2 .

2. After computing fi with Algorithm 7 but without23 invoking EvalSum in
Step 13, we obtain the ciphertext cti,BFV encrypting a polynomial whose
constant term is z′i. Next by applying TFHE’s SampleExtract to cti,BFV, we

obtain the LWE ciphertext cti,LWE whose plaintext is
⌊
q
t · z

′
i

⌉
+ e where e is

the noise to be removed.
3. To apply the TFHE-style bootstrap procedure called “functional bootstrap-

ping” to cti,LWE with TFHE’s BlindRotate, we use the following test polyno-

mial24 vi(X),

vi(X) =

coef. vi,k =
⌊ q

t · 0 · di
⌉︷ ︸︸ ︷

vi,0 + vi,1X + vi,2X
2 + · · ·︸ ︷︷ ︸

width N
d

+

coef. vi,k =
⌊ q

t · 1 · di
⌉︷ ︸︸ ︷

· · · · · ·︸ ︷︷ ︸
width N

d

+ · · ·+

coef. vi,k =
⌊ q

t · (d − 1) · di
⌉︷ ︸︸ ︷

+ vi,N−1X
N−1︸ ︷︷ ︸

width N
d

.

As a result, we obtain the BFV ciphertext ct′i,BFV encrypting a polynomial

whose constant term is zi · di ∈ ZN (⊂ Zt) (corresponding to
⌊
q
t · zi · d

i
⌉
∈

Zq).

4. We compute the BFV ciphertext ct′BFV ←
∑ℓ−1

i=0 ct
′
i,BFV encrypting a poly-

nomial whose constant term is the result of f(x, y) ∈ ZN .
5. We apply SampleExtract to ct′BFV and obtain the LWE ciphertext ct′LWE

whose plaintext is the result of f(x, y). Further by applying TFHE’s TLWE-
to-T(R)LWE algorithm [CGGI20] to ct′LWE, we obtain the BFV ciphertext
ct′′BFV

25 encrypting a polynomial consisting of only a constant term corre-
sponding to the result of f(x, y).

Implementing the above procedure in PALISADE [PAL20] with the instantiated
parameters can be a challenging task, and we leave it as future work.

3.6.3 Further Extending Input Domain Size
We show another approach to extending the input domain size from Zt to Zt2

in Appendix A by using two ciphertexts to encrypt one integer plaintext. More
precisely we realize the homomorphic operations for addition, multiplication,
subtraction, comparison, and arbitrary univariate functions in Zt2 by employing
our techniques for uni/bivariate function evaluation in Zt.

4 Implementation

We show the implementation results of (i) our algorithm in §3.2 (referred to as
Proposal 1), (ii) Algorithm 7 (referred to as Proposal 2), and (iii) [OCHK18]
where we adopt the division operation as a bivariate integer function.

23 We avoid EvalSum for efficiency reason.
24 This is also known as a test vector.
25 As an alternative, we can obtain ct′′BFV just by computing N−1 · EvalSum(ct′BFV)

because EvalSum can extract JN · f(0)K from Jf(X)K.

20 Maeda, Morimura, Narisada, Fukushima, Nishide

4.1 Implementation Details

Our implementation was done with C++ using multi-threaded PALISADE [PAL20].
The PC used for the experiment was Ubuntu 20.04 OS with Ryzen 5 3600@3.6GHz
CPU (6 cores, 12 threads) and 128 GB RAM. We note that the run-time required
for precomputation and the run-time required to read the precomputation re-
sults from the file are not included. The FHE scheme we use is PALISADE’s
BFVrns, and the securityLevel variable is set to HEStd 128 classic as a security
parameter. In the implementation of [OCHK18] without a packing method, for
each bit length ℓ of input integers, i.e., for the input domain size 2ℓ, the small-
est prime greater than 2ℓ can be used as a plaintext modulus t. On the other
hand, since our scheme uses a packing method, the plaintext modulus is fixed
as t = 2N + 1 where N = 215 in our implementation.

4.2 Experimental Result

Table 3 shows the results of our experiment where L0, L1 and L2 are the level
parameter required by [OCHK18], Proposal 1 and Proposal 2 respectively. The
level parameter should be at least the multiplicative depth the underlying algo-
rithm requires.

Table 4 shows the run-times of plaintext-ciphertext multiplication (pt × ct),
ciphertext-ciphertext addition (ct + ct), ciphertext-ciphertext multiplication (ct
× ct), and MakePackedPlaintext respectively where the plaintext modulus is
t = 216 + 1 and L is the level parameter.

Table 3. Run-Time (s) of Bivariate Function f : Z2ℓ × Z2ℓ → Z2ℓ

ℓ L0 L1 L2 [OCHK18] Proposal 1 Proposal 2

3 4 4 17 0.65 0.61 10.74
4 5 5 17 1.75 1.27 11.00
5 6 6 17 6.44 3.76 11.74
6 7 7 17 18.89 10.96 12.56
7 8 8 17 69.62 36.35 14.52
8 9 9 17 268.33 131.82 16.01
9 10 10 17 1083.41 537.65 20.79
10 11 11 17 4236.46 2140.61 25.90
11 12 12 17 43703.7 21499.1 38.86
12 - - 17 - - 57.49
13 - - 17 - - 98.72
14 - - 17 - - 163.28
15 - - 17 - - 306.93

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 21

Table 4. Run-Time (ms) of Each Basic Operation

L pt × ct ct + ct ct × ct MakePackedPlaintext

4 0.30 0.67 17.35 0.57
5 0.33 0.77 17.21 0.62
6 0.31 0.75 19.17 0.63
7 0.33 0.86 20.67 0.63
8 0.67 0.63 23.56 0.69
9 0.30 0.98 22.69 0.72
10 0.57 0.62 24.95 0.81
11 0.44 0.68 25.66 0.76
12 0.53 1.63 58.73 1.64
13 0.43 2.14 66.28 1.79
14 0.47 1.81 67.20 1.80
15 0.49 2.35 74.98 1.91
16 0.47 2.35 74.82 1.91

From Table 3, we can see that Proposal 1 (our improved version of [OCHK18])
is faster than Proposal 2 when ℓ ≤ 6, 26 but Proposal 2 outperforms Proposal 1
when ℓ ≥ 7. Although Proposal 1 halves the number of polynomial evaluations
compared to the prior work [OCHK18], the estimation27 based on Tables 2 and
4 indicates that the run-time of Proposal 1 with ℓ = 15 (i.e., input domain size
N = 215) is about 58.7 days in our experimental environment and it also means
that the run-time of the prior work [OCHK18] is about 117.3 days, which can
be prohibitively inefficient. The estimated amortized run-time (corresponding to
the run-time per slot) is 154.8 seconds in Proposal 1 when ℓ = 15, and unless
the parallel computation needs more than about 16523 slots, Proposal 2 can be
more advantageous.

5 Conclusion

In this work, we improved the efficiency of the prior work [OCHK18] for homo-
morphically evaluating arbitrary bivariate integer functions. We decreased the
number of polynomial evaluations, thereby halving the run-time of the prior work
[OCHK18]. We also proposed another algorithm for homomorphically evaluat-
ing arbitrary bivariate integer functions with a relatively large input domain size

26 The reason for this comes from the difference in the key generation part. Pro-
posal 2 requires additional key generation for automorphism mappings (equivalent to
PALISADE’s EvalAutomorphismKeyGen). The automorphism keyGen always takes
about 7.3 seconds in our experimental environment regardless of ℓ in Proposal 2,
whereas it takes only 0.1 seconds in Proposal 1 and [OCHK18]. Hence Proposal 1 is
finished during the key generation in Proposal 2 in these cases.

27 In our experimental environment, the estimated run-times tend to be smaller than
the real run-times.

22 Maeda, Morimura, Narisada, Fukushima, Nishide

(ZN × ZN → ZN) by exploiting the packing technique instead of enabling the
SIMD operation. Further we showed that the input domain size can be extended
such that the bivariate function is of type Z2N × Z2N → Z2N with a relatively
moderate overhead. Investigating the viability of implementing the combination
of our approach and the TFHE-style bootstrap procedure is left as future work.

Acknowledgments. We would like to thank Koji Nuida for informing us of a
simple polynomial expression formula [KMNN15, Theorem 2] that can be used
to compute multiplication carry over a finite prime field, which led to the more
efficient construction in Appendix A.3. This work was supported in part by JSPS
KAKENHI Grant Number 20K11807.

References

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS, pages 309–325.
ACM, 2012. 2, 5

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In CRYPTO, pages 868–886. Springer, 2012. 2

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, 2020. 2, 18, 19

CH18. Hao Chen and Kyoohyung Han. Homomorphic lower digits removal and
improved FHE bootstrapping. In Eurocrypt, pages 315–337. Springer, 2018.
3, 12, 18

CKK20. Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomor-
phic comparison methods with optimal complexity. In Asiacrypt, pages
221–256. Springer, 2020. 4

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomor-
phic encryption for arithmetic of approximate numbers. In Asiacrypt, pages
409–437. Springer, 2017. 2, 5

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Asiacrypt, pages 670–699. Springer, 2021.
2

DM15. Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Eurocrypt, pages 617–640. Springer,
2015. 2

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. 2,
5

GBA21. Antonio Guimarães, Edson Borin, and Diego F Aranha. Revisiting the func-
tional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 229–253, 2021. 2

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
pages 169–178. ACM, 2009. 2

HS14. Shai Halevi and Victor Shoup. Algorithms in HElib. In CRYPTO, pages
554–571. Springer, 2014. 2

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 23

HS21. Shai Halevi and Victor Shoup. Bootstrapping for HElib. Journal of Cryp-
tology, 34(1):1–44, 2021. 3

INZ21. Ilia Iliashenko, Christophe Negre, and Vincent Zucca. Integer functions
suitable for homomorphic encryption over finite fields. In WAHC, pages
1–10. ACM, 2021. 4

IY18. Yu Ishimaki and Hayato Yamana. Non-interactive and fully output expres-
sive private comparison. In Indocrypt, pages 355–374. Springer, 2018. 3,
12

IZ21. Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison oper-
ations for BGV and BFV. PoPETs, 2021(3):246–264, 2021. 4

KLLW16. Myungsun Kim, Hyung Tae Lee, San Ling, and Huaxiong Wang. On the
efficiency of FHE-based private queries. IEEE Transactions on Dependable
and Secure Computing, 15(2):357–363, 2016. 4

KMNN15. Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata. Poly-
nomial expressions of carries in p-ary arithmetics. arXiv preprint
arXiv:1506.02742, 2015. 22, 27

KMNN19. Shizuo Kaji, Toshiaki Maeno, Koji Nuida, and Yasuhide Numata. Poly-
nomial expressions of p-ary auction functions. Journal of Mathematical
Cryptology, 13(2):69–80, 2019. 3

KPZ21. Andrey Kim, Yuriy Polyakov, and Vincent Zucca. Revisiting homomorphic
encryption schemes for finite fields. In Asiacrypt, pages 608–639. Springer,
2021. 2

KS21. Kamil Kluczniak and Leonard Schild. FDFB: Full domain functional boot-
strapping towards practical fully homomorphic encryption. Cryptology
ePrint Archive, Report 2021/1135, 2021. 18

LZS18. Wen-jie Lu, Jun-Jie Zhou, and Jun Sakuma. Non-interactive and output
expressive private comparison from homomorphic encryption. In ASIACCS,
pages 67–74. ACM, 2018. 3

MMN22. Daisuke Maeda, Koki Morimura, and Takashi Nishide. Efficient homo-
morphic evaluation of arbitrary bivariate integer functions. In Workshop
on Encrypted Computing & Applied Homomorphic Cryptography (WAHC),
pages 13–22. ACM, 2022. 1

MP21. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like cryp-
tosystems. In WAHC, pages 17–28. ACM, 2021. 18

NO07. Takashi Nishide and Kazuo Ohta. Multiparty computation for interval,
equality, and comparison without bit-decomposition protocol. In PKC,
pages 343–360. Springer, 2007. 26

OCHK18. Hiroki Okada, Carlos Cid, Seira Hidano, and Shinsaku Kiyomoto. Linear
depth integer-wise homomorphic division. In IFIP International Conference
on Information Security Theory and Practice, pages 91–106. Springer, 2018.
3, 4, 7, 8, 9, 10, 16, 17, 19, 20, 21

PAL20. PALISADE Lattice Cryptography Library (release 1.10.6). https://

palisade-crypto.org/, December 2020. 2, 16, 19, 20
PS73. Michael S Paterson and Larry J Stockmeyer. On the number of nonscalar

multiplications necessary to evaluate polynomials. SIAM Journal on Com-
puting, 2(1):60–66, 1973. 3, 4, 7

SEA22. Microsoft SEAL (release 4.0). https://github.com/Microsoft/SEAL,
March 2022. Microsoft Research, Redmond, WA. 2

SV14. Nigel P Smart and Frederik Vercauteren. Fully homomorphic SIMD oper-
ations. Designs, codes and cryptography, 71(1):57–81, 2014. 3, 5

https://palisade-crypto.org/
https://palisade-crypto.org/
https://github.com/Microsoft/SEAL

24 Maeda, Morimura, Narisada, Fukushima, Nishide

TLW+20. Benjamin Hong Meng Tan, Hyung Tae Lee, Huaxiong Wang, Shuqin Ren,
and Khin Mi Mi Aung. Efficient private comparison queries over encrypted
databases using fully homomorphic encryption with finite fields. IEEE
Transactions on Dependable and Secure Computing, 18(6):2861–2874, 2020.
4

A Extending Input Domain Size from Zt to Zt2

Here we extend the input domain size from Zt to Zt2 by using two ciphertexts
to encrypt one integer plaintext. Now let A = a1 × t+ a0 = (a1, a0)t ∈ Zt2 and
B = b1×t+b0 = (b1, b0)t ∈ Zt2 in the base-t representation where a0, a1, b0, b1 ∈
Zt, and to encrypt plaintexts A,B, we have four (BFV) ciphertexts encrypting
a0, a1, b0, b1. Then we consider how to simulate homomorphic operations in Zt2

by homomorphic operations in Zt with the ciphertexts of a0, a1, b0, b1. In this
appendix, we assume the typical setting (N, t) = (215, 2N +1) = (215, 216 +1),
and give several optimizations using the properties of this setting.

A.1 Extending Algorithms 5 and 8

Before describing the homomorphic operations in Zt2 , first we extend Algorithm
5 for a function of type ZN → ZN such that the evaluated function is of type
Zt → Zt (Algorithm 9). Similarly we extend Algorithm 8 for a function of type
Z2N → Z2N such that the evaluated function is of type Zt×Zt → Zt (Algorithm
10).

Algorithm 9 Univariate Function Evaluation for f : Zt → Zt

Input: JaK = J(a, a, . . . , a)K, 3 packed plaintexts T = [(f(0), f(1), . . . , f(N − 1))],
T ′ = [(f(N), f(N + 1), . . . , f(2N − 1))], T ′′ = [(f(t− 1︸ ︷︷ ︸

2N

), 0, . . . , 0)]

1: ℓ← One-HotSlot(JaK)
2: ℓ′ ← One-HotSlot(Ja−NK)
3: m← ℓ⊗ T ⊕ ℓ′ ⊗ T ′ ⊕ {1⊖ (JaK⊖ 2N)t−1} ⊗ T ′′︸ ︷︷ ︸

handling case of a = t − 1 (= 2N)

4: n← EvalSum(m)
Output: n = Jf(a)K

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 25

Algorithm 10 Bivariate Function Evaluation for f : Zt × Zt → Zt

Input: JaK = J(a, a, . . . , a)K, JbK = J(b, b, . . . , b)K
1: (Precomputations): Precompute coefficients ci,b of the polynomial fb(x) (= f(x, b))

where 0 ≤ b < N , coefficients c′i,b of fb(x) where N ≤ b < 2N , and coefficients
c′′i,2N where b = t − 1 (= 2N), and obtain the packed plaintexts ci, c

′
i, c

′′
i where

0 ≤ i < t.
2: Cpow

a ← Pows(JaK, p)
3: Cpow

ap ← Pows(JapK, s) where p, s ≈
√
t & t ≤ ps

4: S ← 0, S′ ← 0, S′′ ← 0
5: for i = 0 to s do
6: f ← 0, f ′ ← 0, f ′′ ← 0
7: for j = 0 to p do
8: f ← f ⊕ ci×p+j ⊗ Cpow

a [j]
9: f ′ ← f ′ ⊕ c′i×p+j ⊗ Cpow

a [j]
10: f ′′ ← f ′′ ⊕ c′′i×p+j ⊗ Cpow

a [j]
11: end for
12: S ← S ⊕ f ⊗ Cpow

ap [i]
13: S′ ← S′ ⊕ f ′ ⊗ Cpow

ap [i]
14: S′′ ← S′′ ⊕ f ′′ ⊗ Cpow

ap [i]
15: end for
16: r ← S ⊗ One-HotSlot(JbK) ⊕ S′ ⊗ One-HotSlot(Jb − NK) ⊕

S′′ ⊗ {1⊖ (JbK⊖ 2N)t−1} ⊗ [(1, 0, . . . , 0)]︸ ︷︷ ︸
handling case of b = t − 1 (= 2N)

17: r ← EvalSum(r)
Output: r // corresponding to the ciphertext of f(a, b)

In Algorithm 10, fb(x) is a function that returns f(a, b) for the input a.
Since t = 2N + 1 and the number of slots in one ciphertext is N , we need
three intermediate ciphertexts S, S′, and S′′ to handle the cases of 0 ≤ b < N，
N ≤ b < 2N , and b = t− 1 (= 2N) separately, and these cases can be processed
in parallel.

A.2 Addition

We compute the ciphertexts of two digits of A + B mod t2 = (s1, s2)t in the
base-t representation. This addition can be represented in the following column
addition (we note that actually a0, a1, b0, b1 ∈ Zt are ciphertexts):

a1 a0

+ b1 b0

∗
{
carry(a0, b0)+
a1 + b1 mod t

}
︸ ︷︷ ︸

s1

(a0 + b0 mod t)︸ ︷︷ ︸
s0

26 Maeda, Morimura, Narisada, Fukushima, Nishide

Table 5. Truth Table for δ = (a0 ≥ b′)

α =
(
a0 ≤ t−1

2

)
β =

(
b′ ≤ t−1

2

)
γ =

(
(a0 − b′ mod t) ≤ t−1

2

)
δ = (a0 ≥ b′)

1 0 * 0

0 1 * 1

0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1

Here we can ignore the ∗ part because the computation is done modulo
t2, and (a0 + b0 mod t) and (a1 + b1 mod t) can be computed simply by ho-
momorphic addition in Zt. Next we consider how to compute the addition
carry carry(a0, b0) ∈ {0, 1}. This carry can be computed as (a0 ≥ b′) where
b′ = t − b0 (= −b0 mod t) by a bivariate function evaluation of Zt × Zt → Zt.
However, we show that the computation of this carry can be decomposed into
more lightweight univariate function evaluations as follows. First we define the
following bits α, β, γ,

α =

(
a0 ≤

t− 1

2

)
, β =

(
b′ ≤ t− 1

2

)
, γ =

(
(a0 − b′ mod t) ≤ t− 1

2

)
∈ {0, 1}.

By employing the truth table from [NO07] shown in Table 5, we observe that
δ = (a0 ≥ b′) can be computed as

δ = ᾱβ ∨ ᾱβ̄γ ∨ αβγ

= (1− α)β + (1− α)(1− β)γ + αβγ

= β − αβ + γ + γ(2αβ − β − α),

and note that α, β, γ can be computed (in parallel) by univariate function evalu-
ations of Zt → Zt in Algorithm 9. Further in the typical setting where t = 2N+1,
we have

α =

(
a0 ≤

t− 1

2

)
=

(
0 ≤ a0 ≤

t− 1

2

)
= (0 ≤ a0 ≤ N),

and α = (0 ≤ a0 ≤ N) ∈ {0, 1} can be computed as

α = (0 ≤ a0 ≤ N) = ¬(N + 1 ≤ a0 ≤ t− 1) = 1− (N + 1 ≤ a0 ≤ t− 1︸ ︷︷ ︸
2N

).

Hence actually α can be computed from (N + 1 ≤ a0 ≤ t − 1), which can
be viewed as a set-membership predicate28 and computed by Algorithm 5 (as
mentioned in §3.3.3) that is more lightweight than Algorithm 9. We can also
compute β, γ similarly to α by Algorithm 5 (rather than Algorithm 9).

28 We note that the number of elements in the set of the set-membership predicate is
N here, so we can use (a variant of) Algorithm 5 instead of Algorithm 9.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 27

A.3 Multiplication

We compute the ciphertexts of two digits of A × B mod t2 = (s1, s0)t in the
base-t representation. This multiplication can be represented in the following
column multiplication:

a1 a0

× b1 b0
mcarry(a0, b0) (a0 × b0 mod t)

∗ (a1 × b0 mod t)
∗ (a0 × b1 mod t)
∗ ∗

∗ ∗


mcarry(a0, b0)

+a1 × b0
+a0 × b1 mod t

︸ ︷︷ ︸
s1

(a0 × b0 mod t)︸ ︷︷ ︸
s0

Here we can ignore the ∗ part, and (a0×b0 mod t), (a1×b0 mod t) and (a0×
b1 mod t) can be computed (in parallel) simply by homomorphic multiplication
in Zt. Next we consider how to compute the multiplication carry mcarry(a0, b0) ∈
Zt. This carry can be computed by a bivariate function evaluation of Zt×Zt → Zt

in Algorithm 10. However, again we show that the computation of this carry can
be decomposed into more lightweight univariate function evaluations thanks to a
polynomial Ψ(x) given in [KMNN15]. In Theorem 2 of [KMNN15], it was proved
that29 for an odd prime t,

mcarry(a0, b0) ≡ a0b0 × (Ψ(a0b0)− Ψ(a0)− Ψ(b0) + Ψ(1)) mod t (2)

where Ψ(x) is a degree-(t − 2) polynomial determined solely by t and can be
represented concretely with the Bernoulli numbers.

Since Ψ(x) can be viewed as a univariate function Zt → Zt, we can use
Algorithm 9 to compute Ψ(a0b0), Ψ(a0), and Ψ(b0) (in parallel) in Eq. (2)30.

Further we can notice that mcarry(a0, b0) = 0 if a0 = 0 or b0 = 0 because
Eq. (2) has a factor a0b0. Hence in computing the intermediate result (Ψ(a0b0)−
Ψ(a0)−Ψ(b0)+Ψ(1)) in Eq. (2), we may assume that a0 ̸= 0 and b0 ̸= 0 because
even if a0 = 0 or b0 = 0, we have mcarry(a0, b0) = 0 correctly by multiplying
the intermediate result by a0b0 last. Thus actually we can use a slightly more
lightweight variant of Algorithm 9 to compute Ψ(x) in which we need only two

29 In [KMNN15, Theorem 2], a more general multivariate version of mcarry is given,
but the bivariate version suffices for our purpose.

30 As a small optimization, the invocations of EvalSum(·) (Step 4 of Algorithm 9) to
compute Ψ(a0b0), Ψ(a0), and Ψ(b0) can be merged into one.

28 Maeda, Morimura, Narisada, Fukushima, Nishide

packed plaintexts T = [(Ψ(1), Ψ(2), . . . , Ψ(N))] and T ′ = [(Ψ(N + 1), Ψ(N +
2), . . . , Ψ(t− 1︸ ︷︷ ︸

2N

))] and can go without T ′′31.

A.4 Comparison

We compute one (BFV) ciphertext representing the comparison result (A <
B) ∈ {0, 1}. We note that with the plaintext space Zt2 , the plaintext integers
can be viewed as both unsigned numbers in [0, t2 − 1] and signed numbers in

[− t2−1
2 , t2−1

2]. We handle both cases.

A.4.1 Case of Unsigned Number Encoding
In this encoding, we let Zt2 = {0, 1, . . . , t2 − 1}, and then we can compute
(A < B) simply by the digit-by-digit comparison as

(A < B) = (a1 == b1)× (a0 < b0) + (a1 < b1), (3)

where (a1 < b1) and (a0 < b0) can be computed (in parallel) similarly to δ =
(a0 ≥ b′) computed in §A.232, and (a1 == b1) can be computed as 1 − (a1 −
b1)

t−1 mod t with repeated squaring.

A.4.2 Case of Signed Number Encoding

In this encoding, {0, 1, . . . , t2 − 1} is viewed as {0, 1, . . . , t2−1
2 , − t2−1

2 , − t2−1
2 +

1, . . . ,−2, −1}. Here we can take the approach similar to that in §A.2. We note
that if A and B have the same sign, the final output is (A < B) computed just
by Eq. (3), but if A and B have the different signs, the final output should be

(B ≤ t2−1
2) (i.e., (A < B) = 1 if and only if B is non-negative). Hence first we

compute λ = (A ≤ t2−1
2), θ = (B ≤ t2−1

2) and (A < B) (in parallel) by using
Eq. (3) where33

λ =

(
A ≤ t2 − 1

2

)
= 1−

(
t2 − 1

2
< A

)
∈ {0, 1}

θ =

(
B ≤ t2 − 1

2

)
= 1−

(
t2 − 1

2
< B

)
∈ {0, 1}

t2 − 1

2
= Nt+N = (N, N)t.

31 Accordingly we use One-HotSlot(Ja − 1K) and One-HotSlot(Ja − 1 − NK) in Steps 1
and 2 of Algorithm 9 respectively.

32 We note that, e.g., (a1 < b1) = 1− (a1 ≥ b1).
33 Since t2−1

2
is a known value, we can compute, e.g., (t2−1

2
< A) as(

t2 − 1

2
< A

)
= (N == a1)× (N < a0) + (N < a1)

= (N == a1)× (N + 1 ≤ a0 ≤ t− 1) + (N + 1 ≤ a1 ≤ t− 1).

by simplifying Eq. (3) with (a variant of) Algorithm 5 as in §A.2.

Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions 29

Then we can compute the final output (A < B)final ∈ {0, 1} by

(A < B)final = (λ == θ)︸ ︷︷ ︸
A,B have same sign

×(A < B) + (λ != θ)× θ

= (1− (λ− θ)2)× (A < B) + (λ− θ)2 × θ

= (1− λ+ 2λθ − θ)× (A < B)− λθ + θ (∵ λ, θ ∈ {0, 1}).

A.5 Subtraction

We compute the ciphertexts of two digits of A − B mod t2 = (s1, s0)t in the
base-t representation. Given the ciphertext of B, it is usually easy to obtain the
ciphretext of −B in FHE, but in our setting of Zt2 , we need an additional task
of obtaining t2 − B before computing A − B mod t2. If b0 ̸= 0, t2 − B can be
computed by column subtraction with t2 = (t− 1)× t+ t as

t− 1 t
− b1 b0

(−1− b1 mod t) (−b0 mod t),

and if b0 = 0, with t2 = t× t+ 0 as

t 0
− b1 0

(−b1 mod t) 0.

As a result, we observe t2 − B = (−b1 − bt−1
0 , −b0)t (where bt−1

0 ∈ {0, 1}),
and can compute

(s1, s0)t = (A−B mod t2) = (A+t2−B) = (a1, a0)t+(−b1−bt−1
0 , −b0)t mod t2

by using homomorphic (column) addition in §A.2.

A.6 Univariate Function Evaluation in Zt2

We can compute an arbitrary univariate function f : Zt2 → Zt2 on A = (a1, a0)t
by performing bivariate function evaluation of Zt × Zt → Zt in Algorithm 10
twice (in parallel) to obtain (s1, s0)t = f(A).

30 Maeda, Morimura, Narisada, Fukushima, Nishide

A.7 Implementation Results

In Table 6, we show the implementation results34 of EvalAdd′ in §A.2, EvalMult′

in §A.335, EvalUnsignedComp in §A.4.1, EvalSignedComp in §A.4.2, and EvalSub′

in §A.5. The experimental environment here is the same as the one in §4, and L
is the multiplicative depth necessary for each operation.

Table 6. Run-Time (s) of Extended Operations in Zt2

Operation L Time (s)

EvalAdd′ 18 14.57
EvalMult′ 18 17.76

EvalUnsignedComp 19 26.42
EvalSignedComp 20 49.15

EvalSub′ 18 15.96

34 Although there are several parts that can be computed in parallel, the computations
are done sequentially as a baseline.

35 As in §4, the run-time required for precomputation of Ψ(x) and the run-time required
to read the precomputation results from the file are not included.

	Efficient Homomorphic Evaluation of Arbitrary Uni/Bivariate Integer Functions and Their Applications

