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Abstract. In a recent presentation, we promoted the use of 12-round instances of
KEccAK, collectively called “TurboSHAKE”, in post-quantum cryptographic schemes,
but without defining them further. The goal of this note is to fill this gap: The defi-
nition of the TurboSHAKE family simply consists in exposing and generalizing the
primitive already defined inside KANGAROOTWELVE.

Keywords: symmetric cryptography, hashing, Keccak

Cryptography involves careful trade-offs between performance and security. In sym-
metric cryptography, an important such trade-off is the choice of the number of rounds,
which on the one hand is proportional to the amount of time taken to evaluate a primi-
tive and on the other needs to be high enough to provide safety margin against possible
progresses in attacks. Ideally, this choice is driven by cryptanalysis on round-reduced
versions, but cryptanalysis requires hard work by cryptographic experts. Fortunately,
KECCAK has received quite a large amount of cryptanalysis since its publication; in fact,
KECCAK has seen more scientific publications on cryptanalysis than any other unbroken
hash function to this date. In the light of these publications, we feel we can confidently
propose to halve the number of rounds without compromising security.

It seems clear that a round-reduced version of the KECCAK sponge function can be
useful in many cases. We proposed a few years ago an extendable output function (XOF),
called KANGAROOTWELVE (or K12 for short), with the explicit goal of being able to
build upon existing cryptanalysis, instead of creating a new design that would require
fresh one [10]. More recently, for post-quantum cryptography, the NIST selected a num-
ber of public-key schemes that they will standardize and that use instances of KECCAK
internally [62]. In some cases, the time spent by these schemes is dominated by the eval-
uation of the sponge function, and so logically we brought up the idea of reducing the
number of rounds for this use-case [11]. Despite NIST’s decision to stick to the nominal
number of rounds, we believe the interest remains in general.

We observe that there are already quite a large number of named instances of KEC-
CAK—besides the four SHA-3 hash functions and the two SHAKE XOFs in FIPS 202, the
NIST SP 800-185 standard defines a few more [60, 61]. We therefore wish to keep the
number of new definitions to a minimum. In fact, we are not defining anything really new:
We are making the primitive inside K12 available and more broadly usable.

1 Specifications of TurboSHAKE

TurboSHAKE is a family of eXtendable Output Functions (XOF) parameterized by their
capacity ¢, where the capacity directly relates to the claimed security level as detailed in
Section 2. We restrict the capacity ¢ to multiples of 8 not greater than 512.



A given instance, denoted TurboSHAKE[c], takes as input:
e a message M, a byte string of variable length, and

o a domain separation parameter D, a byte with a value in the range [0x01, ..., 0x7F]
in hexadecimal.

As a XOF, the output of TurboSHAKE][c] is unlimited, and the user can request as
many output bits as desired. It can be used for traditional hashing simply by generating
outputs of the desired digest size.

TurboSHAKE produces unrelated outputs on different tuples (¢, M, D). For a given
capacity, the value D is meant to provide domain separation, that is, for two different val-
ues Dy # Do, TurboSHAKE][(](-, D1) and TurboSHAKE(¢]|(-, D2) act as two independent
functions of M. We believe the range of D to be sufficient to cover all use cases.

Users that do not require multiple instances can take as default D = 0x1F.

Named instances In addition, we define:
o TurboSHAKE128 as TurboSHAKE[c = 256], and

o TurboSHAKE256 as TurboSHAKE[c = 512].

Procedure To compute TurboSHAKE[c|(M, D), proceed as follows. Let R = 200 — ¢/8
be the rate in bytes and f the KECCAK-p[1600, n, = 12] permutation [60].

1. Input preparation

(a) Append to M the byte D, followed by the minimum number of bytes 0x00
(possibly none) until M’ = M||D||0x00* has a length that is multiple of R

bytes.
itwise a the byte 0x80 into the last byte o .
(b) B dd (XOR) the by he last byte of M’
(¢) Cut M’ into m blocks of R bytes each, i.e., M' = M||...||Mpm.

2. Absorbing phase
(a) Let S = 0x002%,
(b) For each block M; for i =1 to m:
i. Let S+ f(S & (M;]|0x00290~H)).
3. Squeezing phase

(a) Repeat as long as necessary:
i. Output the first R bytes of S.
ii. Let S« f(9).
(b) Truncate the output if longer than needed.

2 Security claim
We make a flat sponge claim [6] with ¢ bits of claimed capacity in Claim 1. Informally,

it means that TurboSHAKE shall offer the same security strength as a random oracle
whenever that offers a strength below ¢/2 bits and a strength of ¢/2 bits in all other cases.



Claim 1 (Flat sponge claim [6]). The success probability of any attack on TurboSHAKE/c]
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shall not be higher than the sum of that for a random oracle and 1 — e_z']cvﬁ, with N the
attack complezity in calls to KECCAK-p[1600, n, = 12] or its inverse. We exclude from the
claim weaknesses due to the mere fact that the function can be described compactly and can
be efficiently executed, e.g., the so-called random oracle implementation impossibility [52],
as well as properties that cannot be modeled as a single-stage game [67].

The flat sponge claim covers all attacks against TurboSHAKE[c] up to a given security
strength of ¢/2 bits. Informally, saying that a cryptographic function has a security
strength of s bits means that no attacks exist with complexity N and success probability
p such that N/p < 2¢ [54]. For more details on the interpretation of the claim, we refer
to [10, Section 4.1].

3 Rationale

In this section, we exhibit the equivalence with KECCAK reduced to 12 rounds, motivate
our security claim and clarify its use in KANGAROOTWELVE.

Equivalence Consider the sponge function on top of the KECCAK-p[1600, n, = 12] per-
mutation, with multi-rate padding pad10*1, capacity ¢ and rate r = 1600 — ¢, as defined
in the FIPS 202 standard [60], and let us call it 7S, for short, i.e.,

TS, = SPONGE[KECCAK-p[1600, n, = 12], pad10*1,7 = 1600 — ¢] .

In comparison, note that the standard KECCAK is defined the same way, except for the
number of rounds, i.e.,

KECcCAK[c] = SPONGE[KECCAK-p[1600, n, = 24], pad10*1,r = 1600 — ¢] .
Then, TurboSHAKEc|(M, D) is equivalent to 7S (M ||lunpad(D)), where

e D and each byte of M is interpreted as a string of 8 bits, from the least to the most
significant bit of the byte;

o unpad(D) removes the trailing bits ‘0’ of D, if any, then the last bit ‘1’ (e.g.,
unpad(0x01) is the empty string, unpad(0x0B) = ‘110’).

Note that unpad(D) is not defined for strings of only zeroes, but that does not pose a
problem for D as it has at least one ‘1’. We can view D as a string of bits that is padded
with the pad10* padding rule. Here, 7S uses the multi-rate padding rule pad10*1 instead.
Multi-rate padding appends an initial ‘1’-bit, then zeroes and then a final ‘1’-bit. In the
pseudocode in Section 1, the initial ‘1’-bit is contained in the encoding of D, and the final
one is materialized by XORing 0x80 into the last byte of M’. Thanks to the fact that
the last bit of parameter D is ‘0’, setting the final bit of M’ to ‘1’-bit corresponds with
XORing 0x80 into the last byte of M.

The default value for D, namely 0x1F, is such that unpad(D) = ‘1111’ and so
TurboSHAKE128 and TurboSHAKE256 coincide with round-reduced SHAKE128 and
SHAKE256, respectively.

Security Changing the number of rounds in the underlying permutation from 24 in the
SHA-3 standard functions to 12 in TurboSHAKE implies a drastic reduction in safety
margin. Still, TurboSHAKE is a reduced-round version of KECCAK and thereby directly
benefits from all the cryptanalysis on the latter. There is ample evidence from third-party
cryptanalysis that 12 rounds provides a comfortable security margin [2, 3, 41, 4, 15, 14,



59, 25, 16, 20, 26, 57, 40, 21, 56, 58, 19, 22, 37, 24, 55, 23, 36, 1, 30, 44, 71, 64, 68, 45, 34,
42, 69, 17, 38, 39, 78, 70, 77, 35, 51, 66, 49, 46, 43, 27, 12, 72, 50, 28, 13, 47, 31, 76, 74,
33, 32, 63, 29, 75, 65, 48], as well as from our own investigations [8, 7, 18, 9, 53].

We maintain a list of cryptanalysis results on our ciphers [5]. At the time of this
writing, the best collision attack applicable to TurboSHAKE or to any SHA-3 instance
works only when the permutation is reduced to 6 rounds [71, 29], and preimage attacks
reach only 4 rounds [31, 74, 65]. Hence our proposal has a safety margin of 6 out of 12
rounds for collision and (second) preimage resistance.

Currently, the structural distinguisher that reaches the highest number of rounds is
called SymSum and works on KECCAK reduced to 9 rounds [72]. This distinguisher
consider self-symmetric strings of bits, that is, strings of the form X||X||Y||Y]|...||Z]||Z,
where X, Y and Z are 32-bit strings. The SymSum distinguisher produces a set of self-
symmetric strings such that the set of corresponding outputs through 9-round KECcCcAkK
sums to a self-symmetric string.

Finally, we limit the supported capacity to at most 512 bits, as we do not think that
it makes much sense to claim more than 256 bits of security.

KangarooTwelve vs TurboSHAKE128 K12 is a XOF that is defined on top of the
KECCAK-p[1600, n, = 12] permutation [10, 73]. In its specifications, K12 uses a tree hash
mode on top of a function called “F”, which is exactly T Sa56, and hence K12 can be
equivalently recast as a mode on top of TurboSHAKFE128 instead.

K12 uses TurboSHAKE128 with three values for D, namely, D € {0x06, 0x07,0x0B}.
For a protocol that uses both K12 and TurboSHAKE128, it is therefore recommended to
avoid using these three values for D.
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