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ABSTRACT
The rising issues of harassment, exploitation, corruption, and other

forms of abuse have led victims to seek comfort by acting in unison

against common perpetrators (e.g., #MeToo movement). One way

to curb these issues is to install allegation escrow systems that

allow victims to report such incidents. The escrows are responsible

for identifying victims of a common perpetrator and taking the

necessary action to bring justice to them. However, users hesitate

to participate in these systems due to the fear of such sensitive

reports being leaked to perpetrators, who may further misuse them.

Thus, to increase trust in the system, cryptographic solutions are

being designed to realize secure allegation escrow (SAE) systems.

In the work of Arun et al. (NDSS’20), which presents the state-

of-the-art solution, we identify attacks that can leak sensitive in-

formation and compromise victim privacy. We also report issues

present in prior works that were left unidentified. To arrest all these

breaches, we put forth an SAE system that prevents the identified

attacks and retains the salient features from all prior works. The

cryptographic technique of secure multi-party computation (MPC)

serves as the primary underlying tool in designing our system. At

the heart of our system lies a new duplicity check protocol and an

improved matching protocol. We also provide additional features

such as allegation modification and deletion, which were absent

in the state of the art. To demonstrate feasibility, we benchmark

the proposed system with state-of-the-art MPC protocols and re-

port the cost of processing an allegation. Different settings that

affect system performance are analyzed, and the reported values

showcase the practicality of our solution.
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1 INTRODUCTION
Mechanisms such as stringent policies, improved norms and stan-

dards, installation of allegation escrows, etc., are being put in place

to deter crimes such as abuse, corruption, exploitation, and ha-

rassment. For instance, institutions are mandated to appoint an

organizational ombudsperson or a Chief Vigilance Officer (CVO)

responsible for the prevention, detection, and punishment for mal-

practices. The victims are expected to report the inflicted crime to

the CVO. Since the report contains identities of the accused and

victim, details of the inflicted crime, etc., it is regarded to be highly

sensitive. The profound harm that can be inflicted on victims if the

CVO leaks this sensitive data to the perpetrator, which is likely

when the latter is a person of influence, instills great fear in victims

and prevents many from coming forward. Thus, such a system

requires the victims to place enormous trust in the integrity of

the CVO. Instead, a secure platform for reporting crimes is a more

reliable solution. Further, the victims are comfortable reporting the

crime to a digital platform rather than to a human counterpart [24].

Additionally, such a platform is more accessible and scalable. Thus,

our work aims to design a secure allegation escrow system that

empowers victims to securely report allegations and seek justice.

Desirable properties of secure allegation escrow. Having
a system that merely records allegations and reveals them to the

concerned authorities (for further action) may not suffice. Instead,

the system should reveal allegations to the concerned authorities

only when a sufficient number of allegations are recorded against a

common perpetrator. This is because victims often find it effective

and comforting to come out as a group. Further, acting against a

common perpetrator in unison reduces the fear of retribution dis-

cussed previously. Some noteworthy examples of acting in unison

are the #MeToo movement [1], and Project Callisto [37] which was

deployed to help report sexual assaults on university campuses.

To facilitate the reporting and processing of collective allegations,
an allegation escrow system should have the following properties–

(i) each victim must be able to independently file an allegation

against a perpetrator, (ii) the system must be capable of matching

allegations filed against a common perpetrator, (iii) these matched

allegations should be revealed to the concerned authorities only

once a predetermined condition for disclosure is met (e.g., Project

Callisto requires at least two allegations against the same perpetra-

tor before these can be revealed), (iv) the identity of the accuser,

accused, and the details of the allegation must remain hidden until

the allegation is revealed as a part of a collection. Additionally, a

centralized solution (i.e., one escrow) for the same is a misfit since

it forms a single point of failure. Hence, similar to the CVO-based

solution, one may compromise the escrow and learn the sensitive

allegation data. Thus, it is desirable to have several independent

escrows which collectively effectuate a secure allegation escrow

(SAE) system with the above-mentioned properties and guarantee

that none of the escrows can individually learn allegations on clear.

The condition for disclosure is one of the most crucial features

of an SAE. It defines the system’s sensitivity towards handling an

alleger’s discomfort. This condition is calibrated using a parameter

called reveal threshold. The parameter captures the minimum size of

the unison the alleger wishes to be a part of (excluding the alleger)

when its allegation is revealed in clear to the concerned authorities.

In the literature, the reveal threshold has evolved from being a pa-

rameter that is globally fixed (i.e., common to all allegers) and public

(i.e., known on clear to all the escrows) to an alleger-defined (vari-

able) public parameter. Project Callisto [37] uses a globally-fixed

public reveal threshold of one. The work of [28] extends support
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for a reveal threshold of more than one, yet it is globally fixed and

public as before. However, not every alleger may be comfortable

in coming out against a common perpetrator with just one other

alleger (or even a system-defined threshold number of allegers).

That is, setting a low (high) system-defined threshold will not allow

participation of victims who prefer more (few) supporters, making

the sytem non-inclusive. The work of [6] that forms state of the

art recognizes this pressing requirement and allows an alleger the

flexibility of deciding its reveal threshold. Elaborately, each alleger

can decide a reveal threshold, t, for its allegation, which indicates

that the allegation can be revealed if there exist at least t other
matching allegations (i.e., those that allege the same perpetrator)

which can be revealed. Thus, a subset S of matching allegations

can be revealed if and only if the threshold of each allegation in

S is < |S| (size of S). This is referred to as the reveal criteria of

the set S. For example, if there exists a set of matching allegations

with reveal thresholds 2, 3, 3, 4, then no allegation is revealed be-

cause there does not exist any subset S of allegations that satisfies

the reveal criteria. However, if another matching allegation with

a reveal threshold 3 is filed in the system, all the allegations with

thresholds 2, 3, 3, 3, 4 can be revealed. The system must thus allow

secure identification of such a set of revealable matching allega-

tions. We note that allowing a variable threshold is not the end of

the road. Although [6] provides this key feature, it fails to do so

while guaranteeing complete privacy to the victims. We explain

our concern with one example below. Consider the scenario de-

scribed above when a system has matching allegations with reveal

thresholds 2, 3, 3, 4, none of which can be revealed. Observe that

if an alleger among these files another copy of its allegation, [6]

treats the copy as a new allegation. Thus, these set of 5 allegations

will satisfy the reveal criteria despite having an insufficient number

of distinct allegers. Note that this results in prematurely reveal-

ing the genuine (unique) allegations and compromises the privacy

of the allegers. Similarly, there arise other privacy issues owing

to the reveal threshold being public, which are detailed later (§3).

Since the user-defined reveal threshold captures the vulnerability

of an alleger, it must be regarded as highly sensitive information.

Thus, in this work, we develop the first SAE system that offers not

only a flexible user-defined threshold, but also guarantees to keep

thresholds private, and thereby arrests all concerns raised above.

Additionally, we consider the possibility of allegation modification

and deletion.

Privacy-preserving tool for realizing SAE. To ensure the

desired level of privacy for an SAE system, we rely on the technique

of secure multi-party computation (MPC). At a high level, MPC

allows 𝑛 mutually distrusting parties to carry out computations on

private inputs such that an adversary controlling up to 𝑡 parties

does not learn anything other than the output of the computation.

Many interesting applications have proposed the use of MPC to

enable privacy which include tax fraud detection by the Estonian

Tax and Customs Board [8], secure sugar beet auctions for Danish

farmers [10], secure aggregation tool for Boston wage inequity [7],

financial data analysis [9], privacy-preserving machine learning [15,

18, 26, 31, 33, 36], to name a few. Concretely, the current work entails

designing an MPC-based SAE system, which is realized via a set of

(untrusted) escrows (acting as parties inside the MPC) who carry

out the necessary computations of SAE via an MPC protocol on the

submitted allegations. MPC guarantees privacy of computation so

that nothing beyond allowed outcomes of SAE system (a bunch of

matched allegations when reveal criteria is met) is leaked.

1.1 Our contributions
We identify shortcomings in the prior systems. This also includes

identifying attacks on the state-of-the-art system of [6], that can

compromise a victim’s privacy. To address these privacy breaches,

we design a secure allegation escrow system called Shield, while re-
taining the salient features from prior works. The features provided

by Shield, in comparison to the prior works, appear in Table 1. As

evident from the table, [6] focuses on providing an O(1) complexity

solution which comes at the expense of privacy. On the contrary,

we prioritize user privacy over system efficiency since privacy is

essential for an SAE system. Hence, our protocol aims at achieving

as efficient a solution as possible while guaranteeing no privacy
breach. A new replacement to the secure matching protocol that

identifies a revealable set of matching allegations and the inclusion

of a new duplicity check protocol that prevents users from filing

duplicates lies at the heart of Shield. The challenge in designing

the matching protocol lies in handling a user-defined and private

reveal threshold. The subtlety in designing the duplicity check is

in ensuring that a genuine alleger is allowed to complain against

multiple perpetrators if required. This should be done while si-

multaneously guaranteeing that a corrupt alleger cannot forge the

identity of another honest alleger to file duplicates (unless these

two allegers collude). For completeness, we additionally provide

features such as allegation modification and deletion, which were

absent in the state of the art. Note that these can optionally be

included in the system, depending on the deployment scenario. We

resort to a modular approach to design the protocols, as shown in

Fig. 1, by identifying the MPC building blocks that would be re-

quired and their interdependence. These building blocks have been

extensively used in realizing privacy-preserving machine learning

(PPML) [15, 17, 18, 26, 31, 33, 36]. Importantly, we allow Shield to

make black-box use of the MPC building blocks. This not only al-

lows Shield to inherit the latter’s security guarantees and efficiency,

but also opens up the possibility of utilizing the future advance-

ments of MPC in a seamless way. We focus on benchmarking the

complexity of allegation processing in our system and report the

overhead involved in the enhancement. We instantiate the MPC

using state-of-the-art 3-party computation (3PC) and 4-party com-

putation (4PC) frameworks of SWIFT [26] and Tetrad [27], respec-

tively, from which we obtain layer 0 and layer 1 primitives. Finally,

we elaborately discuss on the design choices that such a system

should incorporate when attempting to achieve an ideal solution.

Layer 1:

Layer 2:

Oblivious Selection

Duplicity CheckMatching

ComparisonBit to
Arithmetic Equality Check Dot Product

Primitives categorized into layers where higher layer primitives build over lower layer ones. These
implicitly build over Layer 0 - input sharing, reconstruction, addition, multiplication - provided by
underlying MPC.

Figure 1: Hierarchy of primitives
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Protocol Flexible reveal threshold Private reveal
threshold

Duplicity

complexity

Matching complexity

[37] ✘ ✘ NA
∗ O(N)†

[28] ✘ ✘ O(N) O (N · 𝑞)
[6] ✔ ✘ ✘ O(1)

Ours ✔ ✔ O(N) O (N · maxths)

𝑞: fixed reveal threshold, maxths: upper bound on flexible reveal threshold, N: number of

allegations in the system.

∗
Duplicity check is not applicable here. Filing a duplicate allegation, to prematurely reveal a

genuine one, requires a threshold of at least 2 as opposed to 1 in Callisto.

†
Due to missing details in Callisto, the complexity reported assumes requirement of a linear scan

to identify matching allegations.

Table 1: Comparison of SAE protocols

Organization. Prior systems, their shortcomings and specific

attacks on [6] appear in §3. The threat model, design of Shield,
followed by the duplicity check and matching protocols appear

in §4. Additional features and discussions appear in §5 and §6,

respectively. Our benchmarks appear in §7.

2 PRELIMINARIES
Threat model. We design Shield to comprise 𝑛 escrows (e.g., com-

putationally powerful hired servers) P = {𝑃1, 𝑃2, . . . , 𝑃𝑛} that are
connected via pairwise private and authentic channels in a syn-

chronous network. These escrows enact the role of parties in the

underlying MPC protocol. We assume a static, malicious probabilis-

tic polynomial time (PPT) adversary that can corrupt up to 𝑡 < 𝑛

escrows and arbitrarily deviate from protocol specification. Note

that 𝑛 is a tunable parameter, and a larger 𝑛 allows tolerating a

higher number of corruptions, thereby increasing the trust in the

system. We assume that an arbitrary number of system users may

collude with the maliciously corrupt escrows. Security of protocols

is guaranteed in the real-world/ideal-world paradigm [22, 30] (see

§B).

Secret sharing. To ensure privacy, MPC relies on secret shar-
ing [25, 38] to distribute the input among the computing parties.

LetG denote a finite algebraic structure such as ring or field
1
. Secret

sharing enables distributing a secret v ∈ G among a set of parties P,

such that 𝑃𝑖 ∈ P holds a share JvK𝑖 ∈ G of v where JvK𝑖 reveals no
information about v. However, if more than 𝑡 parties combine their

shares, they can retrieve (reconstruct) the secret. MPC allows the

parties to evaluate the required function on secret-shared inputs

such that the intermediate values and the output remain secret-

shared. Since Shield operates over arithmetic as well as Boolean

values, we use the following notations. JvK denotes arithmetic secret
sharing of v ∈ G, and JvKB denotes its Boolean secret sharing where
each bit of v is shared over the Boolean ring Z2 .

3 PRIOR SYSTEMS AND THEIR DRAWBACKS
Callisto provides a first-step solution to guarantee user privacy

when filing allegations. However, it can be greatly improved to bet-

ter cater to user privacy. Callisto does not provide a formal threat

model and selectively accounts for misbehaviour from malicious

1
While MPC in the past has been performed over fields, the recent literature focuses on

operating over rings Z
2
ℓ , due to the efficiency improvements arising from leveraging

the computer architecture and avoiding the operator overloading, etc. In fact, all recent

works in PPML [15, 26, 31, 33, 35, 36, 39] including SWIFT [26] and Tetrad [27] work

over rings.

user. It also requires placing trust on the various entities involved.

For instance, the DB server in Callisto which stores perpetrator-id

(pid) and the encrypted allegation text is not modeled as a trusted

entity, even when compromising the same allows an adversary

to learn the number of allegations against a specific pid (probing
attack). Additionally, during allegation modification, the DB server

can learn whether pid is modified or if the allegation text was mod-

ified. Thus, the DB server cannot be modeled as an untrusted entity.

Moreover, Callisto only has an invitation based registration of users

and policy based solution to ensure explicit tracking of users (via

mapping the real-world identity to the unique-ID provided during

registration) is not done. Further, unlike stated in Callisto, trivially

extending support to the mentioned features results in privacy is-

sues: (i) support for higher reveal thresholds leads to premature

allegation revealing due to duplicates and (ii) support for allegation

matching when users are given the flexibility to file using different

identifying attributes (name, email-id, phone number, etc.) of a

perpetrator leads to unidentified matching allegations due to mis-

match in perpetrator attributes. We elaborate the issues in each

case next. Since Callisto has a reveal threshold of 1, it does not have

to explicitly check for duplicate allegations being filed. However,

the check for duplicity is indispensable for higher thresholds. Since

Callisto does not hold its users accountable for the filed allegations,

the current framework is not equipped to check for duplicates. Sim-

ilarly, we see possible issues in matching allegations using multiple

identifiers for a given perpetrator. Callisto suggests viewing the

−−→
pid as a vector issued by the key server, with each component of

the vector corresponding to an identifier of the perpetrator, as sub-

mitted by the victim. The DB server would then identify a match if

the vectors have a common component. However, we would like

to note that such a solution can in fact hinder the correctness of

the system. The flexibility of having victims query on different

identifiers for the same victim could result in two allegations being

filed with non-overlapping identifiers. This would result in the DB

server failing to match the allegations, despite both being against

the same perpetrator.

In an attempt to overcome the issues present in Callisto, the work

in [28] relies on the cryptographic technique of MPC. It provides

a distributed escrow system referred to as WhoToo for reporting

sexual misconduct. This distributed variant of the system ensures

that the entities in the system are no longer required to be treated

as a single point of trust. The authors in [28] identify the following

issues with Callisto–(i) Callisto fails to bind the alleger identity

to the allegation (i.e., alleger is not accountable for its allegation),
which facilitates attacks that prematurely reveal allegations to the

LOC, (ii) Callisto is susceptible to probing attack as stated earlier,

and (iii) Callisto leaks the user’s identity to the key server, each

time the former authenticates itself to the latter, in the process

of querying for a pid. The authors in [28] propose a solution that

specifically addresses these three attacks.

The recent work in [6] not only addresses the issues pointed

in [28] but also enhancesWhoToo by identifying and addressing the

limitations present therein. First, the authors in [6] make a strong

argument in favor of empowering the users with the flexibility of

having user-defined reveal threshold instead of enforcing a globally

predetermined reveal threshold, as in WhoToo. Second, they focus
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on providing a computationally more efficient and hence a scalable

solution. Unlike the solution in WhoToo that requires O(𝑞N) com-

putations to process a newly filed allegation, the solution presented

in [6] requires O(1) computations. Here, 𝑞 is the globally-fixed

public threshold and N denotes the total number of allegations in

the system. Additionally, the authors in [6] showcase how the sys-

tem can be generalized to handle allegations against different types

of crimes, rather than limit to sexual misconduct alone. Thus, [6]

presents the state-of-the-art solution to realizing a secure allegation

escrow system. Similar to WhoToo, [6] distributes the trust among

multiple parties via MPC. However, in an attempt to achieve O(1)
computational efficiency, it loses out on guaranteeing user privacy.

Attacks that breach user privacy are given in §3.1.

Finally, to reduce the trust placed on escrows, the work of [23]

uses secure enclaves (built on Intel SGX) as an additional defence

mechanism. However, due to the backlash faced by SGX-based

solutions, we do not delve into it [14, 29, 40].

3.1 Attacks on [6]
Attack by filing fake allegations. To determine matching allega-

tions, the protocol in [6] only compares allegations that are waiting

for the same number of additional allegations required to satisfy

their public reveal threshold. Whenever a comparison results in

a match, such allegations are grouped (known as collections) and
processed as a single unit from then on. Although the allegation

remains hidden, each escrow learns the lifecycle of an allegation,

that includes the time of allegation filing, whether a comparison

results in a match, grouping of matched allegations, and the number

of additional allegations that each filed allegation awaits. We refer

an interested reader to §A for the details of the matching and buck-

eting protocol of [6]. Consider now a scenario where a perpetrator

colludes with an escrow and has access to the view of the escrow.

Based on the information of when the perpetrator launched the

assault and the timing of a filed allegation, it may be suspicious

that this allegation is indeed against it. To confirm the suspicion,

the perpetrator can file a fake allegation against itself by setting

the same (publicly known) threshold as that of the suspected one.

The colluding escrow can thus learn if the suspected allegation and

the fake allegation are a match. [6] argues that such adversarial

behavior would result in leaving a non-repudiable paper trail (i.e.

each alleger is held accountable for its allegation), and hence an ad-

versary would not take such risks. However, the counterargument

is that the adversary will be at risk only when its fake allegation

is revealed, which may not always be the case. Given access to

information such as the number of users victimized, the timing of

the assault, etc., and the view of the escrow, an adversary (perpe-

trator) can take a well-educated risk and file such fake allegations

with the confidence that it will not be revealed. For instance, let an

allegation be filed with threshold t > 2 after a perpetrator launched

an assault. A suspicious perpetrator can launch the above attack

with the confidence that it will not be revealed if it had harmed only

a single victim, implying absence of other matching allegations.

This makes it disadvantageous for a user to set high thresholds,

and thus, the whole purpose of having a system with flexible reveal

threshold is lost. To avoid such attacks, we design protocols that

keep the reveal threshold private and leak no intermediate informa-

tion to the escrows. We also bound the highest threshold that can

be set, to increase the probability of an allegation being matched

and revealed. This also tackles the issue of an adversary trying

to overload the system by flooding it with fake allegations with

very high threshold that will remain unrevealed if the threshold is

unbounded.

Attack by filing duplicate allegations. Recall that a duplicate al-
legation is one that is filed by the same alleger against the same

perpetrator more than once. Since the system allows each user to

file multiple allegations, a corrupt user can file duplicate allegations

against a targeted perpetrator. Thus, duplicate allegations together

with the genuine allegations may form a revealable set, leading to

the possibility of prematurely revealing genuine allegations against

the same perpetrator (see example in introduction). Clearly, the

privacy of an honest user is breached since its allegation may be re-

vealed even when its threshold criteria is not met by other genuine

allegations. One may argue that the above attack may be deterred

because the system maintains a non-repudiable paper trail, and

the filer of duplicates will eventually be penalized. The counterar-

gument, however, is that despite the corrupt user being punished,

the damage to a genuine victim is irrevocable. Presence of such

an attack lowers trust of genuine victims in the system and may

discourage them from using it. Hence, we design duplicity check

protocol to prevent these.

4 DESIGN OF Shield
4.1 Shield functionality
In this section, we design an ideal functionality FShield for our

Shield system (Fig. 2) that follows on similar lines to [6]. For the

ease of readability, we describe the functionality for a robust system
here. At a high-level, FShield aims to achieve alleger’s anonymity
and allegation secrecy. That is, an alleger’s identity and its allega-

tion should remain hidden from the escrows until the allegation is

revealed as a part of a revealable collection. FShield consists of six

phases–(i) initialization, (ii) user registration, (iii) allegation filing,

(iv) duplicity check, (v) allegation matching and (vi) allegation re-

vealing. Throughout the phases, it maintains a few data structures–

R: the registered users of the system; A: all the allegations filed in

the system, S: collection of revealable allegations; and P: details
of the revealed perpetrators. The 𝑖th entry in A is denoted as ai,
which mainly has three attributes pid (perpetrator’s id), t (reveal
threshold) and Text (crime details). Similarly, the 𝑖th entry of P is

denoted as p𝑖 and it has two attributes pid (perpetrator’s id) and ac
(count of allegations revealed against this perpetrator).

In the initialization phase, FShield initializes these data structures
to empty lists. During the registration phase, a user sends a request

to get registered and the functionality adds the entry to R and no-

tifies the escrows. Here, FShield must ensure that every allegation

should be associated with an authentic, real-world identity, which

ensures accountability. To tie up with a real-world identity, a user

must submit a certificate c, obtained earlier from a certification

authority (CA), along with its request, which FShield verifies before

registering the user. This helps in tracing back an allegation to its al-

leger in the case of misbehavior, which discourages fake allegations.
4
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Additionally, it can be used to discourage duplicate allegations. For
every registered user, FShield sets the maximum number of allowed

allegations to maxalg. This count is decreased every time the user

files an allegation in the allegation filling phase.

FShield interacts with escrows (P), user, ideal world adversary SA and

works as follows:

Initialization Initialize empty lists R, A, S and P.

Registration On receiving a message ("Register", c, ID) from a user

with identifier ID, send message ("Registered", c, ID) to all escrows if the

certificate c verifies. Include ID in list R and set ID.count = maxalg.

Allegation Filing On receiving a message ("Allege", ID, anew) from a

user ID and allegation anew, send message ("Failed attempt") to escrows

if ID ∉ R or if ID.count = 0. Else send message ("Allege"), reduce ID.count
by 1, and enter next phase.

Duplicity Check Check if (anew .pid, ID) is part of some ai in A. If
found, ignore and send message ("Duplicate") to escrows. Else, include

(anew,ID) in A, send message ("File allegation") to all escrows, and enter

the matching phase.

Matching If anew .pid = p𝑖 .pid, then set anew .t = anew .t − p𝑖 .ac.
Determine if there exists a revealable subset S in A. If found, do as

follows and continue to the next phase

◦ Delete each ai ∈ S from A and send ("Found", I) to escrows where I
denotes indices of allegations in S with respect to A.

◦ If ai .pid = anew .pid and ai ∉ S, set ai .t = ai .t − |S | .
◦ If p𝑖 .pid = anew .pid, set p𝑖 .ac = p𝑖 .ac+ |S | . Else include a new entry

(anew .pid, |S | ) in P and send message ("New P entry") to the escrows.

Allegation Revealing Reveal allegations S to the escrows. Reset list

S to be empty.

Functionality FShield

Figure 2: Ideal functionality for Shield

Next, during allegation filing phase, a user submits a new al-

legation anew. If the user is not registered or the user’s quota of

maximum allowed allegation count is 0, FShield ignores this allega-

tion. Else, it decreases the corresponding user’s allowed allegation

count by 1. It notifies the escrows of a failed/successful incoming

allegation (but nothing beyond) and moves on to the next phase

where duplicity of anew is checked with respect to the allegations in

A. If found to be a non-duplicate, anew is added inA (and accordingly,

a message is sent to the escrows indicating duplicate/non-duplicate).

Next, the matching phase is started. Here, FShield first checks if pid
of anew matches with any entry p𝑖 of P. If this is true, then anew’s
reveal threshold is reduced by the number of allegations against p𝑖 .
This ensures that the alleger of anew only has to find this reduced

number of supporters from the unrevealed ones in A. Next, FShield
finds if there is a revealable subset S in A. If so, it performs a series

of adjustments in the maintained lists before publishing S in the

next phase– (a) the allegations in S to be revealed is erased from A,
(b) it reduces the threshold of each matched, yet not to be revealed,

allegation ai (pid of ai equals to that of anew) by |S|, (c) it increases
the allegation count of the perpetrator of anew in list P or includes

an entry for anew’s pid in P if it was not present earlier in the list.

In the reveal phase, FShield reveals S.

4.2 Shield Overview
4.2.1 Primitives used to realize Shield. Here, we elaborate on the

primitives relied upon by Shield.

Verifiable pseudorandom function (VRF) [20]. Informally, a VRF

is a pseudorandom function 𝐹skv (·) along with a proof genera-

tion function 𝜋skv (·) such that a PPT adversary cannot distinguish

𝐹skv (𝑥) from an output of a random function without the access

to the VRF secret key skv or 𝜋skv (𝑥). The correct computation of

𝐹skv (𝑥) can be verified given a matching public key pkv and proof

𝜋skv (𝑥). LetΠvrf be a protocol that inputs JskvK and JxK, and outputs
J𝐹skv (𝑥)K and J𝜋skv (𝑥)K.

Message authentication code (MAC). Informally, a MAC is a func-

tion which takes as input a secret key skm and a message x. The
output, denoted bymac, can be used to authenticate x, and confirm
its origin from the entity holding skm. Let Πmac be the protocol

that inputs JskmK, JxK, and outputs JmacK.
Following [6], we instantiate Πvrf , Πmac using the PRF construc-

tion of [20]. For the VRF, we restrict the output to only 𝜋skv (𝑥)
since 𝐹skv (𝑥) can be generated using 𝜋skv (𝑥) and public key pkv,
in our instantiation.

MPC building blocks. The designed protocols rely on MPC build-

ing blocks described in Fig. 1. Their description and semantics of

the inputs and outputs are provided in Table 2.

Building block Notation Description

Comparison JbKB = Πcomp (JxK, JyK) Outputs b = 1 if x < y, else outputs b = 0

Equality JbKB = Πeq (JxK, JyK) Outputs b = 1 if x = y, else outputs b = 0

Oblivious Select JxbK = Πsel (Jx0K, Jx1K, JbKB ) Obliviously selects xb among x0, x1

Bit2A JbK = Πbit2A (JbKB ) Converts bit to its arithmetic equivalent

Dot product JzKB = Πdotp (J®xKB, J®yKB ) Computes z =
⊕n

𝑖=1 𝑥𝑖 ∧ 𝑦𝑖
†

† 𝑥𝑖 : 𝑖th element of vector ®x; n: vector size;
⊕

: XOR; ∧: AND.
Table 2: Description of building blocks

4.2.2 The Shield system. Shield is designed to realize the FShield
ideal functionality described above. The designed system continues

to have six phases, and the details of the cryptographic tools used to

realize each of these phases is described next. These follow similar

to [6] and set the stage for our new duplicity check and matching

protocol described next.

Escrow initialization. This allows the escrows to establish the

necessary setup required for the underlying MPC and for securely

processing a filed allegation. Escrows establish authenticated com-

munication links between themselves. They generate J·K-shares of
the secret keys required for a VRF (JskvK) and a MAC (JskmK) prim-

itive. The public key (pkv) of the VRF is, however, known on clear

to all the escrows. Use of these primitives during the later phases

(registration, filing, and duplicity check) is discussed in place.

User registration. This involves escrows performing initialization

with respect to users in preparation for them to securely participate

in the system. High-level overview is discussed next.

(i) Escrows must be able to verify and register only valid users

of the system. For this, a user contacts the CA, who verifies its
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Figure 3: Schematic Diagram of Shield

real-world identity and supplies a certificate, c. Escrows register

the user in the system after verifying c.

(ii) To empower only registered users to file an allegation, the

system relies on digital signature schemes. To file an allegation

later (with accountability), a user U needs to authenticate its allega-

tion using a digital signature (DS) secret key skU and the escrows

verify an allegation’s authenticity using the corresponding pub-

lic verification key pkU. Additionally, the escrows must be able to

validate that the used pkU belongs to a registered user. Hence, it

is required that each registered user records its verification key

with the escrows during registration itself. However, the knowl-

edge of the verification key on clear allows the escrows to link an

allegation to a user. To validate a user’s allegation without link-

ing to its identity, the escrows issue to the user a VRF proof on

its verification key, without learning the latter. This is enabled by

having the user secret-share its key, and the escrows (jointly) com-

pute J𝜋skvK = Πvrf

(
JskvK, JpkUK

)
and reconstruct 𝜋skv towards the

user. During registration, since the escrows hold pkU and 𝜋skv
in

shared-format, they cannot associate these to the user, even though

they know the user identity via CA certificate in the current phase.

Hence, when user presents pkU and 𝜋skv
on clear during allegation

filing, user identity remains hidden while the escrows can validate

the user. This mechanism also prevents an outsider from faking its

registration as it cannot generate valid proof even while colluding

with at most 𝑡 escrows since no subset of them knows skv.
Next, we must allow a user to file multiple allegations

2
, if re-

quired, without the escrows learning that the two allegations have

2
Multiple allegations should be against different perpetrators. If user allegation is

yet to be revealed, it must be disallowed to allege the same perpetrator (duplicate).

originated from the same user. To tackle this, user U generates

maxalg pairs of keys (pkU
𝑖
, skU

𝑖
) corresponding to a DS scheme,

where a unique pair is to be consumed for each allegation, and J·K-
shares these towards the escrows. The escrows compute VRF proof

J𝜋𝑖skvK = Πvrf

(
JskvK, JpkU𝑖 K

)
for 𝑖 ∈ {1, . . . ,maxalg}, which is re-

constructed towards the user. Here, maxalg denotes the maximum

number of allegations that a user is allowed to file.

(iii) The escrows must be able to identify if the same user is

filing a duplicate allegation against the same perpetrator ID, pid.
For this, the user and the escrows rely on a MAC to generate a

unique unforgeable user identity, uid to be given in shares along

with each allegation. This is achieved by the user J·K-sharing a

random r ∈ G among the escrows. The escrows compute JuidK =
Πmac (JskmK, JrK), and reconstruct it towards the user. Since the

escrows hold skm, r in shared format, they learn nothing. Further,

a user is unable to generate a valid uid for itself or forge another

user’s uid due to (i) r being unique and secret to each user, and

(ii) lack of knowledge about skm. Details of how uid facilitates

detection of duplicates appears in §4.3. We note that this step is a

new addition and is required to detect duplicates.

(iv) The escrows must also be able to learn the user’s iden-

tity when its submitted allegation needs to be revealed. For this,

the escrows rely on the MAC. The escrows compute JmacU
𝑖
K =

Πmac (JskmK, JpkU
𝑖
K) and reconstruct it. This allows the escrows

to store the association between a user and mac(s) generated on

all its DS verification keys in a local map. Looking ahead, during

However, a revealed alleger victimized by the same perpetrator at a later time must be

allowed to file the allegation (non-duplicate).
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allegation revealing, the escrows recompute the MAC on the DS

verification key used in an allegation. The recomputed MAC is

matched against entries in the local map to trace the user of the

allegation. Observe the duality in the need for anonymization in

(ii) and traceability in (iv).

Allegation filing. UserU connects to all the escrows via an anony-

mous communication channel. It files 𝑖th new allegation by sub-

mitting pkU
𝑖
, 𝜋skV (pkU𝑖 ) on clear, and shares of allegation denoted

JanewK = (JuidK, JrK, JpidK, JtK, JTextK), all signed using skU
𝑖
. That

is, 𝑗 th escrow receives pkU
𝑖
, 𝜋skV (pkU𝑖 ) and signed 𝑗 th share of anew.

Escrows check that the submitted pkU
𝑖
was not used previously,

followed by verifying the proof 𝜋skv (pkU𝑖 ). Upon success, they pro-

ceed to verify signature on anew components using pkU
𝑖
. If any

verification fails, escrows ignore anew. Else, escrows proceed to

next phase.

Duplicity check. The duplicity check protocol (§4.3) is run by the

escrows to discard a new allegation if it is a duplicate.

Allegation matching. This involves running our new matching

protocol (§4.4) to identify a revealable set S of matching allegations.

Allegation revealing. If a revealable set S is found during match-

ing, this phase reveals S (together with identity of the allegers)

to the escrows
3
. Since the pkU (submitted during allegation filing)

associated with allegations in S is known to the escrows, they re-

compute JmacUK = Πmac (JskmK, JpkUK), and reconstruct it. Using

the local map of valid mac(s) generated during registration, they

can de-anonymize the user.

A schematic representation of Shield appears in Fig. 3, and the

security proof of our protocol is deferred to §B.

Theorem 4.1. Let VRF be a secure VRF protocol, let MAC be a
secure MAC, and let the employed signature scheme be strongly exis-
tentially unforgeable. Then our Shield protocol realizes FShield (Fig.
2) with computational security in the threat model of the underlying
MPC.

For ease of reading the upcoming sections, we request readers

to refer to Table 3 which enlists commonly-used notations.

Notation Description

N Number of allegations in the system

maxalg Maximum number of allegations that can be filed by a user

maxths Upper bound on the reveal threshold

a Allegation with attributes (uid, r, pid, t, Text)∗

a .x Refers to attribute x of a
A List of non-duplicate allegations filed in the system: {a1, . . . , aN }
P = {p1, p2, ..} List of revealed perpetrators, p𝑖 = (pid, ac)†
S Set of revealable allegations

skm Secret key for MAC

pkv, skv Public key and secret key for VRF

(pkU𝑖 , skU𝑖 ) 𝑖th public key and secret key of user U for digital signature

∗ uid, r: unique id, pid: perpetrator id; t: reveal threshold, Text: crime description

† pid: perpetrator id; ac: count of allegations revealed against the perpetrator

Table 3: Table of notations

3
Note that Shield supports an alternative model where the shared S is directly recon-

structed to an external authority (designated to deliver justice) and thus hiding this

crucial information from escrows, which may be simply hired for compute-service.

4.3 Duplicity check protocol
To prevent filing of duplicate allegations, two measures are taken.

First, every user U is associated with a unique unforgeable user

identity (uid) during the registration, which is verified when an

allegation is filed. Second, the unique identity and the perpetrator

identity of the new allegation is matched with that of the existing

allegations. While the latter is the obvious test for duplicity, the

former test ensures that a user cannot submit an allegation without

registering and impersonate another user
4
due to the unforgeability

of the unique identity. The protocol overview is given below.

– Juid′K = Πmac (JskmK, Janew .rK) and JchkKB = Πeq (Juid′K, Janew .uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai ∈ A,

• Jchk𝑖
1
KB = Πeq (Jai .pidK, Janew .pidK)

• Jchk𝑖
2
KB = Πeq (Jai .uidK, Janew .uidK)

– Reconstruct chk3 = Πdotp ({Jchk𝑖1KB, Jchk𝑖2KB}N𝑖=1 ) .
– If chk3 = 1, ignore the processing of anew and discard it.

Protocol ΠDup ({a1, . . . , aN}, anew, skm )

Figure 4: Duplicity check

To check if a valid uid has been submitted, escrows recompute

Juid′K = Πmac (JskmK, Janew .rK) using the secret-shared r submitted

as part of the new allegation, anew, and check equality of uid′

and anew .uid. If the submitted uid is valid, escrows proceed to

verify if there exists an allegation in the system ai ∈ A such that

ai .uid = anew .uid and ai .pid = anew .pid. To determine this, for each

allegation in the system, escrows invoke Πeq (Table 2) protocol to

check for equality of pids and equality of uids. To determine if ai is
a duplicate, escrows check if both equalities hold. Formal details

appear in Fig. 4.

Finally, observe that escrows essentially perform a linear scan

over the list of all allegations in the system. Hence duplicity check

has the complexity of O(N).

4.4 Matching protocol
Let anew be a newly filed allegation. The objective of matching

protocol is to determine the largest set S, if any, of matching alle-

gations against anew .pid, whose reveal criteria is met, i.e., reveal

threshold of each allegation in S must be less than |S|.
A cleartext algorithm for identifying S is as follows: (a) sort the

matching allegations in A (associated with anew .pid) in decreasing

order of threshold; let A′ = {a1′, a2′, . . . , ah′} be the sorted list of

matched allegations, (b) let S𝑖 = {ai′, ai+1′, . . . , ah′}, and check if

ai′ .t < |S𝑖 |, starting from 𝑖 = 1 to ℎ, (c) the lowest value of 𝑖 (i.e.,

largest S𝑖 ) for which (b) is satisfied determines largest revealable

subset S𝑖 .
To preserve privacy, it is not enough to do the above computa-

tion on secret-shared data (that include anew and A). The sequence
of operations carried out during the computation must also not

leak private information. In particular, in the cleartext algorithm

described above, the length of the list |A′ | = h leaks information on

the number of matching allegations against anew .pid in the system.

Further, during the construction of S𝑖 , the inclusion or exclusion

4
User U cannot impersonate user U′

unless it obtains U′ .uid by colluding with U′
.

Due to accountability property, such collusions are deterred.
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of an allegation in S𝑖 reveals information about the relative or-

dering of the allegations with respect to the threshold. Thus, the

sequence of operations (selection, comparison, equality, etc.) on

secret-shared data also needs to be carried out obliviously. A pro-

tocol is data-oblivious if the sequence of operations and memory

accesses made during the protocol run are independent of the input.

Thus, our objective is to design a data-oblivious matching protocol

that operates on secret shared data. As an example, we note that

this would mean we must operate on A rather than identifying

A′
during matching. Our matching protocol thus consists of the

following four steps.

Step 1: Updating anew’s threshold based on perpetrators revealed so
far. When a new allegation, anew, is filed in the system, its threshold

should be reduced by the number of allegations that have already

been revealed against anew .pid. This ensures that the alleger of

anew only has to find this reduced number of supporters from the

unrevealed ones in A. The first step checks if there exists an entry

for perpetrator anew .pid in P. If true, then the threshold anew .t is
reduced by p𝑖 .ac, where anew .pid = p𝑖 .pid. Note that these steps
should be performed obliviously. For this, we first compute a secret-

shared bit viaΠeq that determines if anew .pid = p𝑖 .pid, for each p𝑖 ∈
P. Then, the oblivious select protocol Πsel (Table 2) is invoked to

obliviously determine if the threshold remains unchanged (anew .t)
or is updated (anew .t − p𝑖 .ac).

Step 2: Searching for largest S. Determining the largest set of
revealable matching allegations, translates to finding the highest

threshold tmax (among the filed allegations) such that the number

of matching allegations aj with aj .t ≤ tmax is greater than tmax. Let

maxths denote the maximum reveal threshold allowed in Shield.
To determine such a tmax, we examine each possible threshold from

maxths down to 1 iteratively. The order ensures we stop with the

largest set S. Starting with 𝑖 = maxths iteration, we scan through

the list of all allegations to determine the count (= |S|) of matching

allegations having threshold less than 𝑖 + 1 (=tmax + 1). The 𝑖th loop

terminates if and when the determined count value is greater than

𝑖 and a flag is set. In each iteration, to avoid repeated comparison

between allegations ai and anew to determine if there is a match, we

store this information, generated during the first scan, in a Boolean

arrayM of lengthN+1 (including anew). The array entries are secret
shared bits where the 𝑖th entry, JM𝑖KB is a 1 if ai .pid = anew .pid,
and 0 otherwise. To prevent leaking information about whether an

allegation satisfies the above threshold conditions or not, steps of

updating count are performed obliviously via Πsel.

Step 3: Update A. This step is executed only when flag is set

in some iteration 𝑖 in step 2, indicating existence of S, with count
number of matching allegations and with highest threshold equal to

𝑖 . The goal here is to identify the allegations in this set, delete these

from A, and update the threshold of non-revealable yet matching

allegations to reflect the newly revealed number of allegations—all

of these without leaking any additional information. To determine if

an allegation belongs toS, we scan through the list of all allegations
aj ∈ A, and identify if a matching aj is revealable, i.e., aj .t ≤ 𝑖 <

count. This is done by reducing the thresholds of all matching

allegations in A by count, followed by checking if the updated

threshold is < 0 (whichwill be the case if it is a revealable allegation).

This operation implicitly updates the threshold of non-revealable

yet matching allegations. The operation of whether aj is a match

and consequently whether the threshold is updated or not, is made

oblivious, as in step 1. That is, we compute a secret-shared bit that

implies if aj .pid = anew .pid, and use it to update the threshold

(aj .t − count or aj .t) via Πsel. Next, delete S from A.

Step 4: Updating P when S is found. If anew .pid does not exist

in P, then a new entry in P is added with its allegation count ac =
count. Else, the corresponding entry, say, p𝑖 is updated to reflect

the number of newly revealed allegations, i.e., p𝑖 .ac = p𝑖 .ac +
count. This step is performed via Πsel, as described earlier. The

formal matching protocol appears in Fig. 5. The matching protocol

entails performing multiple scans over the list of all allegations.

The number of times the scan is performed may vary. However,

note that the protocol terminates after at most maxths iterations,
where maxths is the upper bound on the reveal threshold. Hence,

matching has a complexity of O(N ·maxths).

STEP 1:
– for each p𝑖 in P do:
• Jchk1KB = Πeq

(
Janew .pidK, Jp𝑖 .pidK

)
• Janew .tK = Πsel (Janew .tK, Janew .t − p𝑖 .acK, Jchk1KB )

– Add anew as the N + 1
th
allegation in the system

STEP 2:
– for 𝑖 = 1 to N do: JM𝑖KB = Πeq

(
Janew .pidK, Jai .pidK

)
– Set JMN+1KB = J1KB

– for each possible threshold 𝑖 = maxths to 1 do:
• JcountK = J0K
• for each allegation aj for 𝑗 = 1 to N + 1 do

- Jchk2KB = Πcomp
(
Jaj .tK, 𝑖 + 1

)
- JcountK = JcountK + Πbit2A

(
JM𝑗 KB · Jchk2KB

)
• Reconstruct flag = Πcomp (J𝑖K, JcountK) . If flag is set to 1, break
from the loop

STEP 3:
– If the flag is set to 0, Terminate the protocol. Else, for each allegation
aj for 𝑗 = 1 to N + 1 do:
• Jaj .tK = Πsel

(
Jaj .tK, Jaj .t − countK, JM𝑗 KB

)
• Reconstruct chk3 = Πcomp

(
Jaj .tK, J0K

)
• If chk3 = 1, include aj in S and delete from A Else, continue.

STEP 4:
– Initialize JflagKB = 0

– for each record p𝑖 in P do:
• Jchk1KB = Πeq

(
Janew .pidK, Jp𝑖 .pidK

)
• JflagKB = Πsel

(
JflagKB, J1KB, Jchk1KB

)
• Jp𝑖 .acK = Πsel

(
Jp𝑖 .acK, Jp𝑖 .acK + JcountK, Jchk1KB

)
– Reconstruct flag. If not set, then create a new record p𝑖+1 in list defined
as Jp𝑖+1 .pidK = Janew .pidK and Jp𝑖+1 .acK = JcountK.

Protocol ΠMat ({a1, . . . , aN}, anew, P)

Figure 5: Allegation matching
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5 ADDITIONAL FEATURES
Our system can easily be extended to support modification and

deletion of filed allegations. The protocols for the same follow on

similar lines as that of the duplicity check protocol, and entail

performing a linear scan of the allegations in the system. The exact

details are as described next.

5.1 Allegation Modification
Unlike in Callisto, where any aspect of the allegation can be mod-

ified, we only allow U to modify the reveal threshold t and/or
allegation text Text. Allowing modifications to other components

such as the user-ID uid, randomness r and perpetrator-ID pid of an

allegation a is absurd and hampers the functionality of the system.

This is because modifying uid, r is equivalent to a user claiming to

be someone else. Similarly, modifying the pid is equivalent to the

user alleging a different perpetrator when it has already alleged

someone else. Hence, there are several checks that the escrows must

perform before modifying an allegation to restrict modification to

the above components.

First, the escrows must verify that a registered user of the system

is submitting the request. Second, the escrows must verify that the

user, submitting the (updated) allegation, is not impersonating an-

other user. The first check is addressed by the escrows and the user

carrying out the same steps as in allegation filing phase, where the

user is now expected to instead submit the updated allegation by

consuming a new DS key pair (pkU, skU). For the second check, to

ensure the user is attempting to modify its own allegation, the es-

crows verify the validity of the submitted uid by recomputing it as

done in duplicity check protocol. Once validated, the escrows obliv-

iously identify and update the allegation a ∈ A in question. Note

that knowing which allegation was updated may leak sensitive data

based on auxiliary information such as time of the filed allegation

and time of the modification. Hence, similar to the duplicity check

protocol, escrows scan through each allegation ai in the system and

check for equality of uid and pid of ai and submitted a′. Whenever

these components are a match, the escrows obliviously update the

components t and Text via Πsel. The escrows additionally main-

tain a flag to detect if an allegation was modified successfully or

not. This is done to ensure that a valid yet malicious user does not

burden the system with fake requests to modify an allegation. If

all the checks pass and yet the flag is not set, it indicates that no

allegation was modified. Hence, the submitted pkU can be used

to trace back the user, as done in allegation revealing phase, and

penalize it accordingly. That is, the escrows compute the MAC on

the submitted pkU and de-anonymize the user through the local

map of mac(s). The formal protocol for the same is provided in 6.

Note that each successful request of allegation modification must

be followed by allegation matching phase since updating the thresh-

old can trigger the possibility of having a revealable subset.

5.2 Allegation Deletion
Not only must a user U be allowed to modify an allegation, but

the system must also facilitate U to delete the same. The designed

system facilitates deletion and works on similar lines of allegation

modification. U places the request for deletion by resubmitting the

allegation to be deleted, albeit under a new pair of DS key pair

– Initiate allegation filing phase with a′ as the submitted allegation. If

any verification fails, ignore processing of a′, discard it and halt. Else

set JflagK = 0 and continue.

– Juid′K = Πmac (JskmK, Ja′ .rK) and JchkKB = Πeq (Juid′K, Ja′ .uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai ∈ A,

• Jchk𝑖
1
KB = Πeq (Jai .uidK, Ja′ .uidK)

• Jchk𝑖
2
KB = Πeq (Jai .pidK, Ja′ .pidK)

• Jchk𝑖
3
KB = Jchk𝑖

1
· chk𝑖

2
KB

• Jai .tK = Πsel (Jai .tK, Ja′ .tK, Jchk𝑖3KB )
• Jai .TextK = Πsel (Jai .TextK, Ja′ .TextK, Jchk𝑖3KB )

– Reconstruct flag = Πdotp ({Jchk𝑖1KB, Jchk𝑖2KB}N𝑖=1 ) . If flag = 1, report

success. Else trace malicious user via map of mac(s) on verification keys.

Protocol ΠMod ({a1, . . . , aN}, a′, skm )

Figure 6: Allegation modification

(pkU, skU). The escrows perform the same verification as done in

allegation filing phase. If all the verification succeeds, the escrows

recompute the uid′ using r and match it against the submitted uid,
as done in allegation modification. If the check passes, the escrows

identify the allegation to be deleted. Unlike in the case of allegation

modification protocol where it was necessary to hide the allegation

being modified, we note that for deleting an allegation, the escrows

must learn which allegation it is. Hence, the identification of the

allegation in question need not be performed obliviously. This

also avoids explicitly maintaining a flag variable. Thus, escrows

perform a linear scan over the list of all allegations to determine

the ai that has uid (using chk𝑖
1
) and pid (using chk𝑖

2
) equal to that

of the submitted allegation a′. The escrows determine if both the

equalities hold (using chk𝑖
3
) and delete their shares of ai if this is the

case. If no such allegation ai is found, then the escrows determine

the malicious user by tracing the identity of the user using the

submitted pkU. The formal protocol for the same is given in 7.

– Initiate allegation filing phase with a′ as the submitted allegation. If

any verification fails, ignore processing of a′, discard it and halt. Else

continue.

– Juid′K = Πmac (JskmK, Ja′ .rK) and JchkKB = Πeq (Juid′K, Ja′ .uidK)
– Reconstruct chk. If chk = 1, then for each allegation ai ∈ A,

• Jchk𝑖
1
KB = Πeq (Jai .uidK, Ja′ .uidK)

• Jchk𝑖
2
KB = Πeq (Jai .pidK, Ja′ .pidK)

• Jchk𝑖
3
KB = Jchk𝑖

1
· chk𝑖

2
KB

• Reconstruct chk𝑖
3
. If chk𝑖

3
= 1 delete ai, report success, halt.

– If no ai was deleted, then trace the malicious user using the local map

of mac(s) on verification keys.

Protocol ΠDel ({a1, . . . , aN}, a′, skm )

Figure 7: Allegation deletion

A possible optimization is to associate a public token with every

allegation and enforce the user to also submit the corresponding

token when requesting deletion. This allows the escrows to identify

the requested allegation to be deleted without relying on MPC.

However, the escrows are required to use MPC to verify that the

requested allegation is, in fact, filed by the user. Hence, all checks

performed previously remain the same, except they are performed

9
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specific to the identified allegation directly. This avoids the linear

scan across A.
We finally would like to note that our system can be extended

to handle different types of crimes. Towards this, the allegation

can include an additional field indicating the type. Note that this

would affect the duplicity check andmatching protocols and require

careful re-definitions of the same.

6 DISCUSSIONS
Here we address some concerns that may arise with respect to the

design of Shield.

Privacy vs. efficiency. The inception of SAE systems was to pro-

tect user privacy and thereby encourage user participation. Hence,

for a user-centric system such as SAE, privacy should be given

utmost importance and must not be compromised at any cost. Fur-

ther, a user who filed an allegation is inherently bound to wait until

matching allegations are found and can be revealed. Given that this

waiting period can vary from days to months [6, 37], improving

the efficiency of the system (complexity of processing a filed allega-

tion) has an insignificant effect on the wait time of the user. Thus,

choosing efficiency over privacy is ill-advised for an SAE system.

Pessimistic view of the world. Our design decisions are made

considering the worst-case scenario. Specifically, we assume ma-

licious capabilities of users and escrows and their collusion. The

protocols in Shield allow the escrows to detect misbehaviour by a

malicious user. Relying on the accountability property offered by

Shield, the escrows (or higher authorities) can trace back the user’s

real-world identity and punish the same. Thus, the accountability

property plays an important role in deterring malicious users. Fur-

ther, the choice of variable threshold instead of a globally fixed

one is made to cater to the victims’ varying levels of vulnerability,

thereby making the system more inclusive. Presence of flexible

reveal threshold further demands empowering a victim to change

the reveal threshold of its allegation, which may be necessary to

ensure the allegation is revealed sooner. This is facilitated by the

allegation modification protocol. Note that our design choices in no

way make us loose-out on any feature provided by prior systems,

rather only improve upon them.

Choice of MPC . Note that an allegation escrow system has highly

sensitive information and is required to run perpetually. Realization

of the system cannot afford to cease providing the service due to

malicious activities. Thus, employing any MPC protocol that en-

ables the adversary to abort would be a misfit. However, previous

works rely on MPC with identifiable abort (i.e., the protocol aborts

and reveals the identity of the corrupt party upon misbehaviour)

but restart the computation with one less party when a corrupt

party is identified. Although this is a possibility, it comes at the cost

of re-sharing the state of the corrupt party (escrow) that is thrown

out of the computation, which is expensive. Recent protocols in

the literature [12, 13, 26, 27] achieve the strongest security of guar-
anteed output delivery (i.e., protocol guarantees delivery of output

irrespective of any misbehaviour) at the cost of weakest notion of

abort security (i.e., the protocol may allow the adversary alone to

obtain the output and abort the computation). Hence, aiming for

guaranteed output delivery (GOD) does not come at any additional

cost. Moreover, GOD prevents an adversary from wasting honest

escrow’s valuable compute resources by preventing repeated fail-

ures, which is otherwise possible in the weaker security notions

that allow an adversary to abort. Thus, presence of GOD uplifts

the trust in the system and encourages user participation. It is well

known that an honest majority among the computing parties is

necessary to achieve GOD [19]. Moreover, due to the challenges

in identifying a large number of compute parties for real world

deployments and efficiency reasons, MPC for small number of par-

ties is gaining huge interest [4, 5, 11, 12, 15–18, 21, 32, 34, 36, 36].

Hence, to realize an SAE system, we focus on benchmarking honest

majority MPC protocols with a small number of parties providing

strongest security of GOD.

Other challenges. Several details such as requirement of anony-

mous communication channels for alleger anonymity, trust in the

user’s client-side software, and other deployment considerations,

which apply to our solution, are not emphasized. These follow from

prior works, as described in the deployment considerations of [6].

Our goal was to identify privacy breaches in the existing works and

formalize the security desirable in such a system. Thus, we only

provide an algorithmic solution that achieves the desired security.

Addressing the system-level challenges that may arise in the actual

deployment of the solution and designing user-friendly interface is

the necessary next step and is left as future work.

7 BENCHMARKS
Shield, can be realized using any MPC protocol that provides the

identified primitives in Table 2. Although we prioritize privacy over

efficiency, we strive to achieve as efficient a solution as possible.

Hence, we instantiate the MPC of Shield using state-of-the-art ro-

bust 3PC (with 𝑛 = 3, 𝑡 = 1) and 4PC (with 𝑛 = 4, 𝑡 = 1) frameworks

of SWIFT [26] and Tetrad [27], respectively. Elaborately, the follow-

ing are the reasons for our choice of MPC–(i) SWIFT and Tetrad

are honest majority MPC (𝑡 = 1) protocols with a small popula-

tion (3PC, 4PC) which have been shown to be more efficient than

the dishonest majority counterpart, (ii) these allow operating over

ring algebraic structure, which is more efficient than operating over

fields [2], (iii) both these frameworks are designed in the preprocess-

ing model, where input-independent computation is offloaded to a

preprocessing phase, paving way for a fast online phase once the

input is available. Since escrows are required to actively carry out

computations only if an allegation is filed (which occurs sparsely);

else, they can carry out the preprocessing computations leisurely,

the preprocessing model becomes an apt fit for our application,

(iv) SWIFT and Tetrad support all primitives (Table 2) except for

equality protocol (Πeq) which can be derived from the one in [35].

We implement all the protocols in python, including that of [27]

and [26]. Our code accounts for multithreading. We instantiate the

communication layer between the parties using PyTorch library.

We use Crypto library for AES and hashlib for generating SHA256

hash. Our code, developed for benchmarking and not optimized

for industry-grade use. We note that a C++ based implementation

can give better performance. Our protocols are benchmarked over

LAN, instantiated using n1-standard-64 instances of Google Cloud

with 2.3 GHz Intel Xeon E5 v3 (Haswell) processors, and 240 GB of

RAM. The machines have a bandwidth of 16Gbps. We use latency
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Figure 8: Variation in latency and communication for varying number of allegations for duplicity and matching protocol for 4PC. For
matching, 𝑆1 indicates the setting where #perpetrators revealed are sublinear in #allegations, while 𝑆2 indicates setting where #perpetrators
revealed is 10% of #allegations. Plots are log-log plots with x-axis logarithmic in base 10 and y-axis logarithmic in base 2.

(time taken for protocol to complete) and communication between

escrows as the two parameters for benchmarks. We report values

separately for online phase and total (= preprocessing + online).

Our protocols are benchmarked over the ring Z
2
ℓ (ℓ = 64), except

for computing MAC and VRF, security of which demands operating

on a 1024-bit prime-order field.

Recall the six phases that comprise the Shield system. Observe

that initialization is one-time process, and hence does not con-

tribute to the cost of keeping the system running. However, the

escrowsmay be challenged to register multiple users at once. Hence,

we report the following–(i) cost for registering a single user, (ii)

throughput which accounts for the number of users that can be

handled in parallel per minute by the escrows. In this regard, Table 4

reports (i), where we fix on the number of digital signature keys

being registered by the user as 50 following [6]. Further, for both

3PC and 4PC we observe a throughput of 128 registrations/min.

#Escrows

Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

3 3.79 39.44 8.51 157.73

4 3.41 39.32 5.28 78.64

Table 4: Communication and latency for registering a user in 3PC, 4PC.

Allegation filing involves escrows locally performing operations

(without any interaction). Hence, we do not explicitly report the

cost of this phase. Duplicity check and allegation matching make

up the compute-intensive phases for running the system. Unlike

registration, these phases can only process one allegation at a time.

Hence, we report costs for processing one filed allegation in these

phases. These costs were not reported in [6] since it had a constant-

time matching (and duplicity check was missing). Hence, the costs

reported here capture the overhead in comparison to [6], which is

the price paid for obtaining full privacy.

Complexity of our duplicity check is dependent on the number

of allegations in the system and hence is benchmarked for varying

number of allegations. For this, we consider a system where the

number of filed allegations ranges from 100-100,000, which is suffi-

cient to account for deployment in any institution (e.g., universities,

private or government workplaces, etc.). We note that 10
5
filed (un-

revealed) allegations account for a pessimistic view, so real-world

deployment may be faster. The variations in latency and communi-

cation for online and preprocessing phases appears in Table 5. The

reported online latency is within 12 minutes even in the presence

of 10
5
allegations, which showcases its practicality. As expected,

communication scales linearly with number of allegations.

#Escrows |A|
Online Total

Latency (s) Com (MB) Latency (s) Com (GB)

3

10
2

1.37 0.62 3.09 0.01

10
3

5.56 2.69 10.02 0.10

10
4

115.37 23.41 127.73 1.07

10
5

731.48 230.57 1113.68 10.70

4

10
2

1.36 0.254 1.83 0.01

10
3

4.96 2.32 6.30 0.05

10
4

72.97 23.04 110.54 0.54

10
5

709.96 230.199 831.66 5.42

Table 5: Communication and latency for duplicity check for 3PC, 4PC.

#Escrows |A| |P|
Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

3

10
2

10 0.88 0.09 2.87 0.83

10
3

30 12.24 0.87 27.03 7.81

10
2

19.78 0.89 39.89 8.34

10
4

10
2

95.76 8.71 234.12 83.42

10
3

144.87 8.95 285.42 83.82

10
5

300 867.26 87.18 2053.87 834.29

10
4

1012.55 89.58 2477.32 838.26

4

10
2

10 0.50 0.073 0.55 0.31

10
3

30 2.25 0.72 5.20 3.09

10
2

6.38 0.73 6.89 3.12

10
4

10
2

30.24 7.28 42.38 30.91

10
3

43.75 7.32 59.09 31.23

10
5

300 273.80 72.72 486.98 308.90

10
4

342.81 73.27 513.26 312.39

Table 6: Overhead of matching for varying number of allegations and num-
ber of revealed perpetrators in 3PC, 4PC.

The above analysis also holds for matching since it too depends

on the number of allegations in the system. Additionally, the match-

ing protocol depends on the size of the revealed perpetrator list

P, and the upper bound on the reveal threshold. To analyze the

effect of this, we benchmark cases where |P| may be linear (1/10) or
sub-linear (

√·) in the number of allegations and bound the reveal

threshold by 10. These results are reported in Table 6. |P| is chosen
to be linear and sub-linear in the number of allegations to account

for a large band of variation in the possible number of revealed

perpetrators. As evident from Table 6, in the presence of 10
5
alle-

gations in the system, processing a new allegation requires < 6

minutes in 4PC and < 17minutes in 3PC, in the online phase. Thus,
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Figure 9: Comparison of matching and duplicity check protocol for varying number of allegations with |P | = 1/10 · |A | and maximum threshold
set to 10 for 3PC, 4PC. Note that all plots are log-log plots with x-axis logarithmic in base 10 and y-axis logarithmic in base 2. We do not report
values < 1 as their log is negative.

the online run time of matching protocol showcases its practicality

despite having dependence on the number of allegations in the

system. This can be attributed to the use of preprocessing model.

Moreover, for 10
5
allegations, changing |P| from 300 to 10

4
has

an overhead of not more than 3 minutes in online runtime, and

less than 3 MB overhead in online communication. This shows

the minimal effect |P| has on complexity of matching. Further, to

showcase the effect of threshold bound on complexity of matching,

we vary the bound from 10 to 50 with fixed |A| = 10
5
, |P| = 10

4
and

report results in Table 7. An increase in bound from 10 to 50 results

in an overhead of 2.41×, 2.61× in online latency and 4.96×, 4.66×
in online communication for 3PC and 4PC, respectively.

#Escrows Max. threshold

Online Total

Latency (s) Com (MB) Latency (s) Com (MB)

3

10 1012.55 89.58 2477.32 838.26

20 1487.66 184.11 3003.68 842.75

30 1932.45 271.01 3582.49 1236.51

40 1981.40 357.92 3889.09 1630.26

50 2442.85 444.82 4715.39 2024.01

4

10 342.81 73.27 513.26 312.39

20 470.78 140.20 663.88 379.51

30 635.99 207.52 741.78 446.64

40 610.09 274.64 922.12 513.76

50 894.77 341.77 976.97 580.89

Table 7: Communication and latency for matching with varying upper
bounds on threshold in 3PC, 4PC for |A | = 10

5, |P | = 10
4.

As expected, from the values reported in Table 5, Table 6, 4PC

fares better than 3PC. This effect can also be visualized from Fig. 9.

Having established this, we compare the matching and duplicity

check protocol in Fig. 8 under 4PC setting. As expected, matching

fares better than duplicity since it works over a ring as opposed to

duplicity, which works over a field.

Since the operations in allegation modification are similar to

those in duplicity check, its cost is the same as that reported for

duplicity check. The same holds true for deletion.

8 CONCLUSION
We identify the privacy issues and drawbacks in prior systems, and

design a secure allegation escrow system that addresses these. This

required incorporating a new duplicity check protocol to prevent

prematurely revealing allegations due to filing of duplicates. We

also incorporate a more secure matching protocol that addresses

the privacy issues present in the prior systems. We also provide

protocols for modifying and deleting filed allegations, that were

missing in [6], making our systemmore comprehensive. In this way,

our system retains the salient features of prior works and guaran-

tees better privacy. Moreover, the proposed system is generic–can

handle more than one type of crime and makes black-box use of

the underlying MPC. To showcase the practicality of the designed

system, we benchmark the same with state-of-the-art robust MPC

protocols with 3 and 4 parties. We believe that the recent model of

Friends-and-Foes (FaF) secure MPC [3] would be apt for designing

SAE systems as opposed to traditional MPC protocols. We leave

realising this as future work.
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A BUCKETING ALGORITHM OF [6]
The bucketing algorithm is used to identify a set of revealable al-

legations, if any, in the system when a new allegation is filed. For

this, the allegations present in the system are grouped together

as collections and are stored in a data-structure that consists of

numbered buckets. The invariant maintained by the data structure

is such that an allegation a, waiting for 𝑗 more matching allega-

tions before it can be revealed, is present in bucket 𝑗 . Thus, when a

new allegation a with threshold t is filed, it is included in bucket

t5. Additionally, the SAE protocol ensures that the escrows can

compare and match allegations only within the same bucket. This

is achieved by the escrows associating a unique private key skJ
with respect to each bucket 𝑗 where the key is known to them in

J·K-shared form. The escrows jointly compute the verifiable pseudo-

random function (PRF) value for each allegation in bucket 𝑗 (using

a distributed protocol). Specifically, the escrows invoke a PRF with

shares of the bucket key JskJK on the shares of the input JH(pid)K
for each allegation. The PRF output is revealed on clear to all es-

crows. This allows the escrows to locally determine the matching

allegations within the bucket (two allegations match if they have

the same PRF value implying that they have the same meta-data).

Such matching allegations are grouped together as a collection. As

a collection grows in size, it is copied onto lower buckets to ensure

the above mentioned invariant is maintained. During this process,

if two different (non-intersecting) collections 𝐶1,𝐶2 with match-

ing meta-data happen to overlap (i.e., they span across a common

bucket), then the collections are coalesced into a single collection

𝐶 . The collection𝐶 consists of the union of all the allegations in𝐶1,

𝐶2 and is said to span the union of the buckets spanned by 𝐶1 and

𝐶2. Thus, a collection may span across many (consecutive) buckets.

It is interesting to note that all the allegations in a collection have

matching meta-data, but all allegations with matching meta-data

need not belong to the same collection (as they may belong to dif-

ferent collections spanning non-overlapping buckets)! In the life

cycle of an allegation (i.e. from its filing to its revelation)- it starts

off as a singleton collection; a collection grows in size when more

matching allegations are found within the same bucket; the collec-

tion is propagated to lower buckets when its size increases (i.e. to

maintain the invariant); the collection is revealed when it reaches

bucket-0, indicative of the fact that the allegations in the collection

are waiting for no (0) more allegations before it can be revealed.

The exact bucketing rules are given below.

Bucketing Rules: Apply the following rules repeatedly (in any

order) till no further rules apply. Rules 2,3 and 4 only apply to

collections that haven’t been revealed.

1. When an allegation with threshold t is filed, it forms a singleton

collection and is added to bucket 𝑡 .

2. If𝑀𝑖𝑛(𝐴) is the smallest bucket occupied by a collection 𝐴 and

every allegation in𝐴 has a threshold <𝑀𝑖𝑛(𝐴) + |𝐴| −1,𝐴 is copied

to bucket𝑀𝑖𝑛(𝐴) − 1. Note that 𝐴 still occupies the buckets it used

to occupy. Copying merely adds the collection to a new bucket.

3. When two collections overlap and occupy the same bucket, and

their allegations are found to match, they coalesce into one collec-

tion.

4. When a collection reaches bucket-0, all of its allegations are

revealed.

5. If a collection 𝐴 is revealed, we make sure it occupies buckets-

1, . . . , |𝐴|, even as𝐴 grows. This enables future matching allegations

to be revealed.

5
Note that the interpretation of threshold in [6] is slightly different and hence we

modify the SAE protocol description to keep the interpretation of t consistent with
ours.
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B SECURITY OF OUR PROTOCOLS
We prove security using the real-world/ ideal-word simulation

paradigm [22, 30]. Informally, a protocol is secure if whatever an

adversary can do in the real world protocol can be done in an ideal

world, where the latter is secure by definition. In the ideal world,

each party sends its input to an incorruptible trusted party over a

perfectly secure channel, where the latter computes the function

based on these inputs and sends each party its respective output.

The computations carried out in the ideal world are captured using

an ideal functionality (F𝑓 ), which the designed MPC protocol Π𝑓

must securely emulate in the real world.

LetA denote the probabilistic polynomial time (PPT) real-world

adversary corrupting at most 𝑡 parties in P and SA denote the

corresponding ideal world adversary. Let idealF𝑓 ,SA denote the

joint output of the honest parties and SA in the ideal execution.

Similarly, let realΠ𝑓 ,A denote the joint output of the honest parties

and A in the real world execution. We say that the protocol Π𝑓

securely realizes F𝑓 if for every PPT adversary A there exists an

ideal world adversary SA corrupting the same parties such that

idealF𝑓 ,SA and realΠ𝑓 ,A are computationally indistinguishable.

The ideal functionality for computing a function 𝑓 with robustness

appears in Fig. 10. The security of the designed protocols are also

proved assuming a robust MPC.

F𝑓 interacts with the parties in P and the adversary SA . Let 𝑓 denote

the function to be computed. Every honest party 𝑃𝑖 ∈ P sends its input

x𝑖 to F𝑓 . Corrupted parties may send arbitrary inputs as instructed by

the adversary.

Step 1: On message (Input, x𝑖 ) from 𝑃𝑖 , do the following: if (Input, ∗)
already received from 𝑃𝑖 , then ignore the current message. Otherwise,

record x′
𝑖
= x𝑖 internally. If x𝑖 is outside 𝑃𝑖 ’s domain, consider x′

𝑖
to be

some predetermined default value.

Step 2: F𝑓 computes ({y𝑖 }𝑛𝑖=1 ) = 𝑓 ({x′
𝑖
}𝑛
𝑖=1

) and sends (Output, y𝑖 )
to 𝑃𝑖 ∈ P.

Functionality F𝑓

Figure 10: Ideal functionality for function 𝑓

B.1 Simulations for layer 2 protocols
We give the ideal functionality for duplicity check and matching in

Fig. 11 and Fig. 12, respectively.

Owing to the modular architecture (see Fig. 1), it is easy to

observe that the duplicity and matching protocols in layer 2 build

on top of protocols in layer 1 and layer 0. Hence, their simulation

follows from simulation of underlying protocols.

Lemma B.1 (Security). Protocol ΠDup (Fig. 4) securely realizes
FDup (Fig. 11) in the computational setting.

Proof. Simulation proceeds via the simulation steps of the un-

derlying protocols. Thus, indistinguishability of the simulated and

real-world view of the adversary follows from the indistinguisha-

bility of the simulation steps of the underlying MPC protocols.

Note that since the simulator receives from the ideal functionality

the values that are reconstructed during the protocol execution,

the simulator can also successfully reconstruct this towards the

adversary. □

FDup interacts with the escrows in P, the ideal worldmalicious adversary

SA .

– It receives as input the shares of the following from the parties: the

newly filed allegation anew, allegations in the system {a1, . . . , aN}, and
the MAC key skm.

– Reconstruct anew, {a1, . . . , aN} and skm using the shares of honest

parties.

– Recompute the user ID uid′ = MAC(skm, anew .r) and check if uid′ =
anew .uid.

– If it is not equal, send ignore message to escrows and terminate.

– Else check if there exists ai ∈ {a1, . . . , aN} such that ai .uid = anew .uid
and ai .pid = anew .pid.

– If ai as described above exists, output 1 to all the escrows. Else, it

outputs 0.

Functionality FDup

Figure 11: Ideal functionality for duplicity check

Lemma B.2 (Security). Protocol ΠMat (Fig. 5) securely realizes
FMat (Fig. 12) in the computational setting.

Proof. Simulation proceeds via the simulation steps of the un-

derlying protocols. Thus, indistinguishability of the simulated and

real-world view of the adversary follows from the indistinguishabil-

ity of the simulation steps of the underlying MPC protocols. Further,

regarding the simulation of break, note that the simulator receives

from the ideal functionality the values that are reconstructed during

the protocol execution. This allows the simulator to reconstruct the

values towards the adversary, thereby enabling the simulation of the

break statements too. Further, note that the point at which protocol

breaks discloses the number of allegations that can be revealed if

any. Else, the loop breaks after a public number of iterations(equals

maxths). In either case, escrows always learn this information de-

pending on if they reveal/not reveal a set of allegations. Hence, it

is not a breach of privacy. □

FMat interacts with the escrows in P and the ideal world malicious

adversary SA .

– Receive as input the shares of the following from the parties: anew,
{a1, . . . , aN}, and all the entries p𝑖 in P.

– Reconstruct anew, {a1, . . . , aN} and P using received shares of honest

parties.

– (Step 1) Check if there exists entry p𝑖 in P such that p𝑖 .pid matches

anew .pid. If found, reduce anew .t by p𝑖 .ac.

– Include anew as the N + 1
𝑡ℎ

allegation.

– (Step 2) Consider all subsets of matching allegations to anew and check

if any of them satisfy their reveal criteria. Let S denote such a set, if

found.

– If no such set is found send ignore message to escrows and terminate.

– Else (Step 3) consider all those matching allegations in {a1, . . . , aN}
but not in S. For each such allegation ai, update its threshold to ai .t− |S | .
– (Step 4) Check if there exists a record p𝑖 such that p𝑖 .pid = anew .pid.
If such a entry is found, update p𝑖 .ac by adding |S | to it. Else, create a

new entry in P as (pid, ac) = (anew .pid, |S | ) and send message ("New

P entry") to all escrows.

Functionality FMat
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– Send the index 𝑖 for all allegations ai in {a1, . . . , aN} that are now

included in S to the escrows. Delete these entries from the list of all

allegations.

Figure 12: Ideal functionality for matching

B.2 Simulation for Shield protocol
We now prove the security of the Shield protocol.

Theorem B.3. Let VRF be a secure VRF protocol, let MAC be
a secure MAC, and let the employed signature scheme be strongly
existentially unforgeable. Then our Shield protocol securely realizes
FShield (Fig. 2) in the computational setting.

Proof. We provide the description of a simulator SA designed

to simulate the view of the malicious adversaryA in the real-world.

We assume A can corrupt at most 𝑡 escrows out of 𝑛 and any

number of users. We begin with steps followed by SA .

The initialization phase involves interaction only among the

escrows. SA emulates the distributed key generation
6
to generate

the public key pkv and secret key skv required to evaluate VRF.
It also generates the secret key skm required to evaluate MAC. It
sends the corrupt escrow’s shares of skv, skm to A while public

key is sent in clear. Note that SA is aware of all the keys generated

so far. The simulator also emulates the CA.

Since the registration and allegation filing phases require inter-

action between escrows and users, we consider the following two

cases:

Case 1: Honest user and corrupt escrow
Upon receiving the message ("Register", c, ID) from FShield, SA

generatesmaxalg new public keys pkU
1
, . . . , pkUmaxalg for a user U, a

random r and provides the secret-shares of these, corresponding to

the corrupt escrow, to A. SA then participates in the distributed

computation of the VRF on the received public keys and the com-

putation ofMAC on r to generate secret-shares of the VRF on the

supplied public keys and shares of uid, respectively . This computa-

tion is simulated by running simulation steps with respect to Πvrf
and Πmac, which outputs random shares of VRF on the public keys

and random shares of uid. SA simulates generation and reconstruc-

tion of macU
𝑖

= MAC(skm, pkU𝑖 ) for 𝑖 ∈ {1, . . . ,maxalg} towards
A (SA can simulate this since it has the key skm and pkU

𝑖
). So far

the view generated by SA is indistinguishable fromA’s real world

view.

Upon receiving message ("Allege") from FShield regarding the

attempt to file a new allegation, SA chooses a pkU which has been

authenticated in the registration steps and chooses random shares

for each component in the allegation, signs these under pkU and

sends it toA. On receiving the message about duplicity check from

FShield, SA emulates FDup (the ideal functionality for ΠDup) ac-

cordingly and proceeds to the matching phase. Similarly, depending

on the message received from FShield for the matching phase, SA
emulates FMat (ideal functionality for ΠMat). Finally, to simulate

revealing of an allegation depending on the user identifier ID re-

ceived from FShield, SA picks a pk that was filed with respect to ID.

6
A distributed key generation functionality outputs J·K-shares of a secret key skv , and
the public key pkv , on clear, to the escrows. A secure protocol for this can be realized

in the underlying MPC setting.

Since SA knows the key skm, it simulates steps of MAC computa-

tion such that it leads to reconstructing MAC(skm, pk) towards A.

The allegation components received from FShield are reconstructed

towards A. Observe that in all the above steps, since SA follows

simulation steps of the underlying protocols, the indistinguishabil-

ity of the simulation follows from the indistinguishability of the

underlying simulations.

Case 2: Corrupt user and corrupt escrow
During registration, A sends the proof of ID, c obtained from

the CA for a corrupt user U to SA . It also sends the honest escrows’

shares of the maxalg public keys pkU
1
, . . . , pkUmaxalg and a random r

to SA . If the proof of ID is invalid or the shares are inconsistent,

SA sends ⊥ to A. Else, it sends ("Register", c, ID) to FShield from
the corrupted alleger’s ID. Since SA knows the shares with respect

to all honest escrows, it can reconstruct the underlying values

(pkU
𝑖
and r). SA then participates in the distributed computation

of the VRF and MAC on the keys and on r, submitted by A, to

generate shares of the VRF on the public keys and shares of uid.
This computation is simulated by running simulation steps with

respect to Πvrf and Πmac. Further, SA simulates generation and

reconstruction ofmacU
𝑖
= MAC(skm, pkU𝑖 ), for 𝑖 ∈ {1, . . . ,maxalg}

towards A.

While filing an allegation, A sends honest escrow’s shares of

the allegation components to SA , who checks if the submitted

pkU is valid and if had not been used earlier. If the check fails,

SA sends ⊥ to A. Else, SA determines the ID with which pkU is

registered (recall that SA is able to do it since it can reconstruct

all pkU’s submitted during registration) and connects to FShield on

ID’s channel.

Following this, on receiving the message about duplicity check

from FShield, SA emulates FDup accordingly and proceeds to the

matching phase. Similarly, depending on the message received from

FShield for the matching phase, SA emulates FMat. On receiving a

message from FShield to reveal an allegation filed by a corrupt user

Uwith identity ID,SA does the following. SinceSA knows the key

skm, it simulates steps of Πmac such that it leads to reconstructing

MAC(skm, pkU) towards A, where pkU is the key used by the

corrupt user for filing the allegation. The allegation components

received from FShield are reconstructed towards A. Observe that

in all the above steps, since SA follows simulation steps of the

underlying protocols, the indistinguishability of the simulation

follows from the indistinguishability of the underlying simulations.

□
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