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Abstract

In 1979, Shamir and Blakley introduced secret sharing schemes to
provide both security and reliability. In this study, we construct two
secret sharing schemes with perfect concealment. The first is an (n, n)-
threshold scheme by a group. Although the scheme itself is already known,
we prove that its concealment is perfect. We propose the second as a new
(2, n)-threshold scheme by a quasigroup.
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1 Introduction

In this study, we construct two secret sharing schemes with perfect concealment.
As discussed in prior works [1, 7], secret sharing schemes provide both secu-

rity and reliability. In a (t, n)-threshold scheme, which is one of the most typical
secret sharing schemes, the secret is divided into n shadows and delivered to n
participants, where t of participants together can recover the secret, but fewer
than t cannot. IN terms of security, even if t − 1 of the shadows are leaked,
the secret remains concealed. As for reliability, even if n− t of the shadows are
destroyed, the secret can still be recovered.

In this study, we provide two main results on secret sharing schemes with
perfect concealment.

Our first main result is the proof of the perfect concealment provided by
an (n, n)-threshold scheme constructed by a group. Although this scheme itself
is already known. the proof of its perfect concealment is a contribution of the
present work. This result appears as Proposition 2 in Subsection 4.2.
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We also present a novel (2, n)-threshold scheme constructed by a quasigroup
with perfect concealment as our second main result, which appears as Theorem
5 in Subsection 6.2.

A quasigroup is equivalent to a Latin square; that is, there exists a bijection
between the set of all quasigroups of order q and the set of all Latin squares with
a size of q× q as described in the Theorem 1.1.1 in the book [5]. Researches on
secret sharing schemes by Latin squares has been undertaken for some time, and
some methods have been reported in a prior work [2, 11]. The scheme provided
in [2] does not provide perfect concealment. In this study, we propose secret
sharing schemes with perfect concealment, and prove that an existing scheme
has the same property. The precise definition of perfect concealment is given
in Subsection 2.2. The authors of [11] propose an (n, n)-threshold scheme with
perfect concealment, which is an application of the (n, n)-threshold scheme in
Subsection 4.2 of the present work. The precise commentaries of these studies
[2, 11] appear in Section 7.

The concept of perfect concealment is sometimes referred to as perfect se-
curity [10]. Security refers to a property of a phenomena, and the word ‘con-
cealment’ describes an action which makes a phenomena. In this work, we refer
to ”perfect concealment” to focus on an action rather than a property. Note
that the concept of perfect concealment has also been discusses as ‘information-
theoretical concealment’ [12, 13].

The remainder of this study article is organised constructed as follows. Sec-
tion 2 briefly reviews some preliminaries to probability theory and the defini-
tion of perfect concealment. In Section 3, we give the definition of secret sharing
schemes. Section 4 describes secret sharing schemes by groups. The proof of the
perfect concealment provided by the scheme in Subsection 4.2 is the first main
result of this study. Section 5 provides definitions and some known results on
quasigroups and mutual orthogonality. Section 6 gives secret sharing schemes by
quasigroups. Subsection 6.2 provides the other main result of this study, which
is a (2, n)-threshold scheme by quasigroups with perfect concealment. Section
7 discusses related works.

2 Concealment

The concept of concealment includes concepts from probability theory. There-
fore, this section consists of preliminaries on probability theory and gives defi-
nitions of concealment.

2.1 Preliminaries to Probability Theory

This subsection gives preliminaries of probability theory including the definitions
of uniformity, independency, prior distribution and posterior distribution.

The probability space consists of a triple (Ω,B, µ), where Ω is the set of
elementary events, B is the set of measurable sets overΩ, and µ is the probability
measure. In this study, the set Ω is always finite, and B is always the power set
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of Ω. The lettersX, Y , Z, and so forth are used for random variables. A random
variable X represents a function fX of Ω into VX which is the set within which
the value of X ranges. The notation Pr[X = x] denotes µ({ω ∈ Ω|fX(ω) = x}).
The notation |S| for a finite set S denotes the number of the elements of S,
while |r| for a real number r is the absolute value of r.

Definition 1 (Uniformity and Independency) The distribution of X is
uniform when, for each x ∈ VX , Pr[X = x] = 1/|VX |. Random variables X and
Y are independent or X is independent of Y when, for each x ∈ VX and each
y ∈ VY , Pr[X = x, Y = y] = Pr[X = x] · Pr[Y = y].

The joint probability distribution of X and Y is the distribution
(x, y) 7→ Pr[X = x, Y = y] : VX × VY → [0, 1].

Definition 2 (Prior and Posterior Distributions) Here, we define the joint
probability distribution of X and Y .

The prior distribution of X is the distribution
x 7→ Pr[X = x] =

∑
y Pr[X = x, Y = y] : VX → [0, 1].

The posterior distribution of X after observing Y = y is the distribution

x 7→ Pr[X = x, Y = y]
Pr[Y = y]

: VX → [0, 1].

If the random variablesX and Y are independent, then the posterior distribution
of X after observing Y is equal to its prior distribution before observing Y .

2.2 Perfect Concealment

There are several concepts of concealment. Some works have provided lists with
up to six different concepts of concealment [12, 13]. In this study, we consider
four concepts of concealment are discussed.

The concepts of possibilistic concealment and probabilistic concealment are
defined as follows.
Possibilistic concealment There exist plural possibilities for the value of the
secret, and the intruder cannot tell which is the value of the secret.
Probabilistic concealment After the intruder observes the observable vari-
ables, the posterior distribution of the secret remains equal to or very close to
the prior distribution of the secret.

The concept of ‘very close’ is to be defined formally as in the definition of
asymptotic concealment below.

Two concepts of possibilistic and probabilistic concealment have been con-
siders in several works [4, 12, 13, 14]. The concept of possibilistic concealment is
called ‘concealment under a non-probabilistic argument’ in the work [14]. Some
authors [4, 14] have considered possibilistic concealment as weaker than prob-
abilistic concealment, and probabilistic concealment is thus preferred in terms
of the security of cryptographic protocols.
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In this study, we also discuss two other concepts of concealment which are
refinements of the concept of probabilistic concealment.
Asymptotic concealment Suppose that the secret X is either x1 or x0 with
a probability of 1/2. For an arbitrary polynomial p, there exists a large number
N such that for any security parameter n > N as large as the length of the
encryption key, the distance |Pr[X = X ′] − 1/2| is smaller than 1/p(n) in
computation time p(n), for the computation result X ′.
Perfect concealment After an intruder observes the observable variables, the
posterior distribution of the secret is equal to the prior distribution of the secret.

The concept of asymptotic concealment appears in the context of public-key
cryptography [3]. Perfect concealment is sometimes referred to as perfect secu-
rity [10], or information-theoretic concealment [12, 13].

Based on the discussion in the previous subsection, the following remark
holds.

Remark 1 A protocol provides perfect concealment if the secret X and the ob-
servable variable Y are independent.

3 Secret Sharing Schemes

In this study, we consider only secret sharing schemes as secret sharing schemes.
We refer to the explanation of threshold secret sharing schemes given in [9] as
follows.

A (t, w)-threshold scheme is a method of sharing a secret key K
among a finite set P of w participants, in such a way that any
t participants can compute the value of K, but no group of t −
1 participants can do so. The value of K is chosen by a special
participant called the dealer. The dealer is denoted by D and we
assume D 6∈ P . When D wants to share the key K among the
participants in P , he gives each participant some partial information
called a share. The shares should be distributed secretly, so no
participant knows the share given to another participant.

At a later time, a subset of participants B ⊂ P will pool their shares
in an attempt to compute the secret key K. If |B| ≥ t, then they
should be able to compute the value of K as a function o f the shares
they collectively hold; if |B| < t, then they should not be able to
compute K.

Shamir’s scheme [7] is a well-known example of a threshold scheme. He
showed only the possibilistic concealment of the scheme. Although he did not
mention perfect concealment, the scheme does provide perfect concealment [14].

We consider the following the mathematical definitions of threshold schemes
and of their perfect concealment as followings.
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Definition 3 (Randomised Algorithm) Let X, Y and Z be random vari-
ables. Let VX be the set in which the value of X ranges. Take the sets VY and
VZ similarly. Let f be a function of VX × VY into VZ .

Then, a scheme Z = f(X,Y ) is called to be a randomised algorithm with
input X, random oracle Y , and output Z if the following conditions hold.
(1) The distribution of Y is uniform.
(2) The random variables X and Y are independent.
(3) Z = f(X,Y ) at each elementary event ω ∈ Ω.

We refer to the random oracles explicitly in this article, although they are often
omitted in the literature.

Definition 4 (Threshold Scheme) Take a randomised algorithm (Z1, Z2, ...,
Zn) = f(X,Y ) with input X, random oracle Y , and output (Z1, Z2, ..., Zn).

Suppose that, for each sequence S = (i1, i2, ..., it) ∈ {1, 2, ..., n}t where all
of ij ’s are distinct, there is a function f̃S such that, if (z1, z2, ..., zn) = f(x, y),

then it holds that x = f̃S(zi1 , zi2 , ..., zit) for each x ∈ VX , y ∈ VY , z1 ∈ VZ1 , z2 ∈
VZ2

, ..., zn ∈ VZn
.

Then, this randomised algorithm (Z1, Z2, ..., Zn) = f(X,Y ) is regarded as a
(t, n)-threshold scheme which proceeds as follows.

The function f is public. There is a secret X ∈ VX . The dealer chooses
a random oracle Y ∈ VY such that the distribution of Y is uniform and Y is
independent of X. The dealer calculates Z1, Z2, ..., Zn such as (Z1, Z2, ..., Zn) =
f(X,Y ), and delivers the shadow Zi to the participant Pi.

The party of t participants Pi1 , Pi2 , ..., Pit together can recover the secret X
because X = f̃S(Zi1 , Zi2 , ..., Zit) where S = (i1, i2, ..., it).

Definition 5 (Perfect Concealment) A (t, n)-threshold scheme (Z1, Z2, ...,
Zn) = f(X,Y ) provides perfect concealment if, for any subset {i1, i2, ..., it−1} ⊂
{1, 2, ..., n}, the random variable X is independent of (Zi1 , Zi2 , ..., Zit−1

).

4 Threshold Schemes by Groups

In this section, we constructs two threshold schemes. That in Subsection 4.1
is a simple example of a (2, 2)-threshold scheme. Subsection 4.2 gives a (n, n)-
threshold scheme. This scheme itself is already known and has been considers
in prior works [11]. More precise commentary is given in Subsection 7.2. We
proves the perfect concealment of this scheme as the first main result of this
study.

4.1 Simple Threshold Scheme by a Group

We constructs a (2,2)-threshold scheme by a finite group G. This is quite a sim-
ple example of a threshold scheme. The authors of the prior study [15] construct
a (2,2)-threshold scheme by the group ({0, 1},⊕); we provide a generalisation
of their approach.
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Definition 6 (Threshold Scheme I) Let G be a finite group. Threshold
Scheme I is a scheme defined by the randomised algorithm.

(Z1, Z2) = fI(X,Y ) = (Y,XY )
with input X ∈ G, random oracle Y ∈ G, and output (Z1, Z2) ∈ G2.

This Threshold Scheme I proceeds as follows.
Consider a dealer and two participants P1 and P2. All the data of a finite

group G are public. There exists a secret X ∈ G. The dealer chooses Y ∈ G
such that the distribution of Y is uniform and Y is independent ofX. The dealer
gives Z1 = Y to the participant P1 and Z2 = XY to the other participant P2.

Then, the next theorem holds.

Theorem 1 Threshold Scheme I is a (2,2)-threshold scheme providing perfect
concealment.

Proof. We prove the following. (1) X is recovered from Z1 = Y and Z2 = XY .
(2) X is independent both of Z1 = Y and of Z2 = XY .

(1) is simple because X = Z2Z
−1
1 . (2) is shown as follows. First, X is

independent of Z1 = Y by the assumption. Next, X is independent of Z2 by
the next proposition.

Proposition 1 Let G be a finite group, and X and Y be random variables over
G. Suppose that the distribution of Y is uniform, X and Y are independent,
and Z = XY . Then, (1) the distribution of Z is uniform, and (2) X and Z are
independent.

Proof. (1) For any z ∈ G,
Pr[Z = z] = Pr[XY = z] =

∑
x∈G Pr[X = x, xY = z]

=
∑

x∈G Pr[X = x, Y = x−1z] =
∑

x∈G Pr[X = x] · Pr[Y = x−1z]
=

∑
x∈G(Pr[X = x]/|G|) = (

∑
x∈G Pr[X = x])/|G| = 1/|G|.

(2) For any x, z ∈ G,
Pr[X = x,Z = z] = Pr[X = x,XY = z] = Pr[X = x, Y = x−1z]
= Pr[X = x] · Pr[Y = x−1z] = Pr[X = x]/|G|.

By the discussion of (1), we have Pr[Z = z] = 1/|G|; therefore
Pr[X = x,Z = z] = Pr[X = x] · Pr[Z = z].

4.2 (n, n)-Threshold Scheme by a Group

The (2,2)-threshold scheme in Subsection 4.1 can be generalised into an (n, n)-
threshold scheme.

Definition 7 (Threshold Scheme II) Let G be a finite group. Threshold
Scheme II is a scheme defined by the randomised algorithm:

(Z1, Z2, ..., Zn) = fII(X,Y1, Y2, ..., Yn−1)
= (Y1, Y2, ..., Yn−1, Y

−1
n−1Y

−1
n−2...Y

−1
1 X)

with input X ∈ G, random oracles Y1, Y2, ..., Yn−1 ∈ G and output (Z1, Z2, ...,
Zn) ∈ Gn.
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This Threshold Scheme II proceeds as follows.
Consider a dealer and n participants P1, P2, ..., Pn. All the data of a fi-

nite group G are public. There exists a secret X ∈ G. The dealer chooses
Y1, Y2, ..., Yn−1 ∈ G such that each distribution of Yi is uniform, andX,Y1, Y2, ...,
Yn−2 and Yn−1 are independent. The dealer gives Zi = Yi to the participant Pi

for i = 1, 2, ..., n− 1, and gives Zn = Y −1
n−1Y

−1
n−2...Y

−1
1 X to the participant Pn.

Then, the next theorem holds.

Theorem 2 Threshold Scheme II is an (n,n)-threshold scheme providing per-
fect concealment.

Proof. We will prove the following: (1) X is recovered from Z1, Z2, ..., Zn. (2)
X is independent of (Z1, ..., Zi−1, Zi+1, ..., Zn) for each i ∈ {1, 2, ..., n}.

(1) is simple because X = Z1Z2...Zn. (2) is shown as follows. First, X is
independent of (Z1, Z2, ..., Zn−1) = (Y1, Y2, ..., Yn−1) by the assumption. Next,
X is independent of (Z1, ..., Zi−1, Zi+1, ..., Zn) for each i ∈ {1, 2, ..., n − 1} by
the next proposition.

Proposition 2 Let G be a finite group and X,Y1, Y2, ..., Yn−1 be random vari-
ables over G. Suppose that the distribution of Yi is uniform for each i, the dis-
tributions of X,Y1, Y2, ..., Yn−2 and Yn−1 are independent, and Z = Y −1

n−1Y
−1
n−2...

Y −1
1 X. Then, (1) the distribution of Z is uniform, and (2) the random variables

X,Y1, Y2, ..., Yi−1, Yi+1, ..., Yn−1 and Z are independent for each i.

Proof. (1) For any z ∈ G,
Pr[Z = z] = Pr[Y −1

n−1Y
−1
n−2...Y

−1
1 X = z] = Pr[X = Y1Y2...Yn−1z]

= Pr[Y1 = Xz−1Y −1
n−1Y

−1
n−2...Y

−1
2 ]

=
∑

x,y2,y3,...,yn−1∈G Pr[X = x, Y2 = y2, Y3 = y3, ..., Yn−1 = yn−1,

Y1 = xz−1y−1
n−1y

−1
n−2...y

−1
2 ]

=
∑

x,y2,y3,...,yn−1∈G Pr[X = x, Y2 = y2, Y3 = y3, ..., Yn−1 = yn−1]

Pr[Y1 = xz−1y−1
n−1y

−1
n−2...y

−1
2 ]

=
∑

x,y2,y3,...,yn−1∈G Pr[X = x, Y2 = y2, Y3 = y3, ..., Yn−1 = yn−1]/|G|
= (

∑
x,y2,y3,...,yn−1∈G Pr[X = x, Y2 = y2, Y3 = y3, ..., Yn−1 = yn−1])/|G|

= 1/|G|.
(2) Note that x = y1y2...yn−1z iff yi = y−1

i−1y
−1
i−2...y

−1
1 xz−1y−1

n−1y
−1
n−2...y

−1
i+1.

For any x, y1, y2, ...yi−1, yi+1, ..., yn−1, z ∈ G,
Pr[X = x, Y1 = y1, Y2 = y2, ..., Yi−1 = yi−1,

Yi+1 = yi+1, ..., Yn−1 = yn−1, Z = z]
= Pr[X = x, Y1 = y1, Y2 = y2, ..., Yi−1 = yi−1,

Yi = y−1
i−1y

−1
i−2...y

−1
1 xz−1y−1

n−1y
−1
n−2...y

−1
i+1, Yi+1 = yi+1, ..., Yn−1 = yn−1]

= Pr[X = x] Pr[Y1 = y1] Pr[Y2 = y2]...Pr[Yi−1 = yi−1]
Pr[Yi = y−1

i−1y
−1
i−2...y

−1
1 xz−1y−1

n−1y
−1
n−2...y

−1
i+1]

Pr[Yi+1 = yi+1]...Pr[Yn−1 = yn−1]
= Pr[X = x]/|G|n−1.

By the discussion of (1), we have Pr[Z = z] = 1/|G|; therefore,
Pr[X = x, Y1 = y1, Y2 = y2, ..., Yi−1 = yi−1,
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Yi+1 = yi+1, ..., Yn−1 = yn−1, Z = z]
= Pr[X = x]/|G|n−1

= Pr[X = x] Pr[Y1 = y1] Pr[Y2 = y2]...Pr[Yi−1 = yi−1]
Pr[Yi+1 = yi+1]...Pr[Yn−1 = yn−1] Pr[Z = z].

This proposition is the first main result of this study.
The secret sharing scheme in [11] essentially uses this (n, n)-threshold

scheme.

5 Quasigroup

The definition of groupoids appears on Page 8 [8] as follows.

Definition 8 (Binary Groupoid) A binary groupoid (G,A) is a non-empty
set G together with a binary operation A.

The definition of quasigroup appears in Definition 1.21 in [8] as follows.

Definition 9 (Quasigroup) A binary groupoid (Q, ◦) is called a quasigroup
if for any ordered pair (a, b) ∈ Q2 there exist unique solutions x, y ∈ Q to the
equations x ◦ a = b and a ◦ y = b.

Many quasigroups over the same underlying set considered in this study can be
constructed. Therefore, we denotes ∗ a quasigroup over Q such that (Q, ∗) is a
quasigroup.

In this work, we consider only quasigroups over finite underlying sets in this
study. Hereafter, we denote by the word “quasigroup” denotes a quasigroup
over a finite underlying set.

Notation 1 For a quasigroup ∗ over Q, the solution x to a ∗ x = b is denoted
as (a ∗ )−1b, and the solution x to x ∗ a = b is denoted as b( ∗ a)−1.

Thus, x ∗ ((x ∗ )−1y) = y and (y ∗ ( ∗ x)−1) ∗ x = y.
For a quasigroup ∗ over Q and x ∈ Q, the functions y 7→ x ∗ y : Q → Q and

y 7→ y ∗ x : Q → Q are bijections, and the function (x ∗ )−1, or ( ∗ x)−1, is the
inverse of y 7→ x ∗ y : Q → Q, or y 7→ y ∗ x : Q → Q, respectively. Therefore,
the followings hold: (x ∗ )−1(x ∗ y) = y and (y ∗ x)( ∗ x)−1 = y.

Orthogonality of quasigroups is defined according to the definition of orthog-
onality of groupoids given in Definition 1.329 in [8] as follows.

Definition 10 (Orthogonality) Binary groupoids (Q,A) and (Q,B) are
called orthogonal if the system of equations{

A(x, y) = a
B(x, y) = b

has a unique solution (x0, y0) for any fixed pair of elements a, b ∈ Q.

Two quasigroups ∗ and ∗′ over Q are orthogonal when (Q, ∗) and (Q, ∗′) are
orthogonal as two binary groupoids.
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Definition 11 (Mutual Orthogonality) A set of quasigroups {∗1, ∗2, ..., ∗N}
over Q is amutually orthogonal quasigroup system when ∗i and ∗j are orthogonal
for any i, j where i 6= j.

A mutually orthogonal quasigroup system as defined above is equivalent to the
mutually orthogonal Latin squares (MOLS) described in [6].

Notation 2 We denote by N(q) the largest number N such that there exists a
mutually orthogonal quasigroup system {∗1, ∗2, ..., ∗N} over Q where q = |Q|.

Here, N(q) is defined for mutually orthogonal quasigroup system. N(q) has
been defined for mutually orthogonal Latin squares on Page 80 in [8] as follows.

Denote by N(q) the number of mutually (in pairs) orthogonal Latin
squares of order q.

Both the definitions of N(q) in Notation 2 and that in [8] are equivalent to each
other.

A theorem on the magnitude of N(q) is given as Theorem 1.335 in [8] as
follows.

Theorem 3 – N(q) ≤ (q − 1);
– If q is prime, then N(q) = (q − 1);
– N(q1q2) ≥ min{N(q1), N(q2)}, in particular, if q = q1 · · · qt is the canonical
decomposition of q, then N(q) ≥ min{q1 − 1, · · · , qt − 1};
– N(q) ≥ q10/143 − 2;
– N(q) ≥ 3, if q /∈ {2, 3, 6, 10};
– N(q) ≥ 6 whenever q > 90;
– N(q) ≥ q10/148 for sufficiently large q.

6 Threshold Schemes by Quasigroups

In this section, we constructs two threshold schemes. That in Subsection 4.1 is a
simple example of (2, 2)-threshold scheme by a quasigroup. It is a generalisation
of Threshold scheme I in Subsection 4.1 by relaxing groups into quasigroups
Subsection 4.2 gives a (2, n)-threshold scheme, which is the second main result
of this study.

6.1 Simple Threshold Scheme by a Quasigroup

The (2,2)-threshold scheme by a group in Subsection 4.1 can be generalised into
a (2,2)-threshold scheme by a quasigroup. In this subsection, we constructs a
(2,2)-threshold scheme by a quasigroup ∗ as given below.

Definition 12 (Threshold Scheme III) Let ∗ be a quasigroup over Q.
Threshold Scheme III is a scheme defined by the randomised algorithm:

(Z1, Z2) = fIII(X,Y ) = (Y,X ∗ Y )
with input X ∈ Q, random oracle Y ∈ Q and output (Z1, Z2) ∈ Q2.
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This Threshold Scheme III proceeds as follows.
Consider a dealer and two participants P1 and P2. All the data of the

quasigroup ∗ over Q are public. There exists a secret X ∈ Q. The dealer
chooses Y ∈ Q such that the distribution of Y is uniform and Y is independent
of X. The dealer gives Z1 = Y to the participant P1 and Z2 = X ∗ Y to the
other participant P2.

Then, the next theorem holds.

Theorem 4 Threshold Scheme III is a (2,2)-threshold scheme providing perfect
concealment.

Proof. We prove the followings. (1) X is recovered from Z1 = Y and
Z2 = X ∗ Y . (2) X is independent both of Z1 = Y and of Z2 = X ∗ Y .

(1) is simple because X = Z2( ∗ Z1)
−1. (2) is shown as follows. First, X is

independent of Z1 = Y by the assumption. Next, X is independent of Z2 by
the next proposition.

Proposition 3 Let ∗ be a quasigroup over Q, and X and Y be random variables
over Q. Suppose that the distribution of Y is uniform, X and Y are independent,
and Z = X ∗ Y . Then, (1) the distribution of Z is uniform, and (2) X and Z
are independent.

Proof. The proof is similar to that of Proposition 1. The proof of this
proposition is obtained by replacing x−1z in the proof of Proposition 1 with
(x ∗ )−1z.
(1) For any z ∈ Q,

Pr[Z = z] = Pr[X ∗ Y = z] =
∑

x∈Q Pr[X = x, x ∗ Y = z] =
∑

x∈Q Pr[X =

x, Y = (x ∗ )−1z]
=

∑
x∈Q Pr[X = x] · Pr[Y = (x ∗ )−1z] =

∑
x∈Q(Pr[X = x]/|Q|)

= (
∑

x∈Q Pr[X = x])/|Q| = 1/|Q|.
(2) For any x, z ∈ Q,

Pr[X = x,Z = z] = Pr[X = x,X ∗ Y = z] = Pr[X = x, Y = (x ∗ )−1z]
= Pr[X = x] · Pr[Y = (x ∗ )−1z] = Pr[X = x]/|Q|.

By the discussion of (1), we have Pr[Z = z] = 1/|Q|, therefore
Pr[X = x,Z = z] = Pr[X = x] · Pr[Z = z].

6.2 Threshold Scheme by a Mutually Orthogonal Quasi-
group System

As the second main result of this study, this subsection constructs a (2, n)-
threshold scheme by a quasigroup. By using (∗1, ∗2, ..., ∗n−1) a mutually orthog-
onal quasigroup system, the (2, n)-threshold system is constructed as follows.

Definition 13 (Threshold Scheme IV) Let (∗1, ∗2, ..., ∗n−1) be a mutually
orthogonal quasigroup system over Q. Threshold Scheme IV is a scheme defined
by the randomised algorithm:

(Z1, Z2, ..., Zn) = fIV(X,Y ) = (X ∗1 Y,X ∗2 Y, ...,X ∗n−1 Y, Y )
with input X ∈ Q, random oracle Y ∈ Q, and output (Z1, Z2, ..., Zn) ∈ Qn.
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This Threshold Scheme IV proceeds as follows.
Consider There are a dealer and n participants P1, P2, ..., Pn. All the data

of the orthogonal quasigroup system (∗1, ∗2, ..., ∗n−1) over Q are public. There
is a secret X ∈ Q. The dealer chooses Y ∈ Q such that the distribution of Y is
uniform, and Zn = Y is independent of X. The dealer gives Y to the participant
Pn and gives Zi = X ∗i Y to the participant Pi for each i = 1, 2, ..., n− 1.

Then, the next theorem holds.

Theorem 5 Threshold Scheme IV is a (2,n)-threshold scheme providing perfect
concealment.

Proof. We prove the followings. (1) X is recovered from any two of Z1, Z2, ...,
Zn. (2) X is independent of each of Z1, Z2, ..., Zn.

(1) is shown as follows. For i 6= n, X is recovered from Zi = X ∗i Y
and Zn = Y by calculating X = Zh(∗hY )−1. For i and j where h 6= h′ and
h, h′ ∈ {1, 2, ..., n − 1}, X is recovered from Zi and Zj by solving the equation
system {X ∗i Y = Zi, X ∗j Y = Zj}.

(2) is shown as follows. First, X is independent of Zn = Y by the as-
sumption. Next, X is independent of Zi = X ∗i Y for i ∈ {1, 2, ..., n − 1} by
Proposition 3.

7 Related Works

Section 7.2 gives two related works which construct secret sharing schemes by
Latin squares. As a preliminary, Subsection 7.1 explains the identification of
Latin squares to subsets.

7.1 Latin Squares as Sets

A Latin square of order q is a q×q array such that each of its entries is an element
of {1, 2, ..., q} and the entries in each row and in each column are distinct. Let
Zq be {1, 2, ..., q}.

A Latin square L is identified as the set L = {(i, j; kij)|i, j ∈ Zq} ⊂ Z3
q

where kij is the entry of the i-th row and j-th column. Not all subsets s ⊂ Z3
q

are Latin squares. Some s1 ⊂ Z3
q is a Latin square, as the following example:

s1 = {(1, 1; 1), (1, 2; 2), (2, 1; 2), (2, 2; 1)} =

[
1 2
2 1

]
.

Some s2 ⊂ Z3
q is an array but not a Latin square, as in the following example.

s2 = {(1, 1; 1), (1, 2; 2), (2, 1; 1), (2, 2; 2)} =

[
1 2
1 2

]
.

Some s3 ⊂ Z3
q is a subset of a Latin square, as in the following example.

s3 = {(1, 1; 1), (1, 2; 2)} =

[
1 2
· ·

]
.

Some s4 ⊂ Z3
q is a subset of an array but not a subset of a Latin square, as in

the following example.
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s4 = {(1, 1; 1), (1, 2; 1)} =

[
1 1
· ·

]
.

Some s5 ⊂ Z3
q is not a subset of an array, as in the following example.

s5 = {(1, 1; 1), (1, 1; 2)}.
Let L(q) be the sets of all the Latin squares of order q. There exists a

bijection L( ) of the quasigroups over Zq into the Latin squares of order q such
that, for a quasigroup ∗, the Latin square L(∗) is L(∗) = {(i, j; i ∗ j)|i, j ∈ Zq}.

7.2 Secret Sharing Schemes by Latin Squares

Several studies has considered secret sharing schemes using Latin squares [2, 11].
The secret sharing scheme in the literature [2] is constructed as follows.
A critical set s of a Lain square L ∈ L(q) is a subset of L = {(i, j; kij)|i, j ∈

Zq} such that, for each proper subset s′ ⊊ s, there exists another L′ ∈ L(q) such
that s′ ⊂ L′ 6= L. That is, a critical set determines a Latin square uniquely, but
no proper subset of it does so.

In this secret sharing scheme, a secret is a Latin square L which ranges over
L(q). The dealer delivers an element of the set L to each participant. A party C
of the participants can recover the secret L if the set of all the elements delivered
to the participants in C includes a critical set of L.

If a participant P receives a triple (i, j; k) ∈ L, then P alone knows that the
secret data is not L′ where (i, j; k) 6∈ L′. The probability that the secret is L′

is zero after P received (i, j; k), although the probability was positive before P
received it. Because the posterior probability differs from the prior probability,
this scheme does not provide perfect concealment.

The secret sharing scheme in the literature [11] is an application of Threshold
Scheme II in Subsection 4.2. It is constructed as follows.

Let Sq be the symmetric group over Zq. An element θ = (σ1, σ2, σ3) ∈ S3q
acts on (i, j; k) ∈ Z3

q as θ(i, j; k) = (σ1i, σ2j;σ3k), and acts on s ⊂ Z3
q as

θs = {(σ1i, σ2j;σ3k)|(i, j; k) ∈ s}. It is known that if L ∈ L(q) then θL ∈ L(q).
If θL = L, then θ is called an autotopism of L.

For θ ∈ S3q, the notation order(θ) denotes the order of θ, that is, order(θ)

is the minimum positive integer h such that θh is the identity element. The
notation P(Z3

q) denotes the power set of Z3
q. The function g of P(Z3

q) × S3q
into P(Z3

q) is defined as g(s, θ) =
∪order(θ)−1

h=0 θhs. The subset D ⊂ P(Z3
q)× S3q

is defined as D = {(s, θ)|g(s, θ) ∈ L(q)}. Clearly, if (s, θ) ∈ D, then θ is an
autotopism of g(s, θ).

The secret sharing scheme in [11] proceeds as follows. The subset s ⊂ Z3
q is

public. The secret is L ∈ {g(s, θ)|(s, θ) ∈ D}. The dealer chooses X ∈ S3q such
that L = g(s,X). The dealer chooses elements Y1, Y2, ..., Yn−1 ∈ S3q such that
each distribution of Yi is uniform, and the variables X,Y1, Y2, ..., Yn−2 and Yn−1

are independent. The dealer gives Yi to a participant Pi for i = 1, 2, ..., n −
1 and gives Z = Y −1

n−1Y
−1
n−2...Y

−1
1 X to the participant Pn. From the dis-

cussion in Proposition 2, the random variables X,Y1, Y2, ..., Yi−1, Yi+1, ..., Yn−1

and Z are also independent. Because X determines L, the random variables
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L, Y1, Y2, ..., Yi−1, Yi+1, ..., Yn−1 and Z are also independent. None of n− 1 par-
ticipants can solve the value of L, because L is independent both of (Y1, Y2, ...,
Yn−1), and of (Y1, Y2, ..., Yi−1, Yi+1, ..., Yn−1, Z) for i = 1, 2, ..., n−1. In contrast,
all of P1, P2, ..., Pn in collaboration can recover the value of L as L = g(s,X) =
g(s, Y1Y2...Yn−1Z). Therefore, this is an (n, n)-threshold secret sharing scheme
with perfect concealment, which is not asserted explicitly in [11].

The security of this scheme essentially depends on the security of the scheme
in Subsection 4.2. Although the range of X in the scheme in Subsection 4.2 is
G, that of X in this scheme is {X ∈ S3q|(s,X) ∈ D}. This fact enables a type
of error detection.
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