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Abstract
In symmetric cryptography, block ciphers, stream ciphers and permutations often make use
of a round function and many round functions consist of a linear and a non-linear layer. One
that is often used is based on the cellular automaton that is denoted by χ as a Boolean map on
bi-infinite sequences,FZ

2 . It is defined by σ �→ ν where each νi = σi +(σi+1+1)σi+2. Amap
χn is a map that operates on n-bit arrays with periodic boundary conditions. This corresponds
with χ restricted to periodic infinite sequences with period that divides n. This map χn is
used in various permutations, e.g.,Keccak-f (the permutation in SHA-3), ASCON (theNIST
standard for lightweight cryptography), Xoodoo, Rasta and Subterranean (2.0). In this paper,
we characterize the graph of χ on periodic sequences. It turns out that χ is surjective on the
set of all periodic sequences. We will show what sequences will give collisions after one
application of χ . We prove that, for odd n, the order of χn (in the group of bijective maps

on F
n
2) is 2

�lg( n+1
2 )�. A given periodic sequence lies on a cycle in the graph of χ , or it can

be represented as a polynomial. By regarding the divisors of such a polynomial one can see
whether it lies in a cycle, or after how many iterations of χ it will. Furthermore, we can see,
for a given σ , the length of the cycle in its component in the state diagram. Finally, we extend
the surjectivity of χ to F

Z

2 , thus to include non-periodic sequences.

Keywords Boolean maps · Cellular automata · Chi · Cryptography · State diagram ·
Symmetric cryptography

Mathematics Subject Classification 94D10

1 Introduction

Block ciphers or permutations are usually iterative, often they are SPNs. Those repeat a
simple round function, that usually consists of a linear (affine) layer and a non-linear layer.
This non-linear layer is often based on one of the Boolean maps χn . For each n, the map
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χn : F
n
2 → F

n
2, x �→ y are defined by yi = xi + (xi+1 + 1)xi+2, where the indices are taken

modulo n. It is used as χ5 in Keccak-f [2], the permutation in SHA-3 [14], and also χ5 in
ASCON [9], the NIST standard for lightweight cryptography [15]. In Xoodoo [6], the value
of n is 3, i.e., χ3, while in Rasta [8], it is equal to the block length (always odd). The width
of permutation in each of these permutations is larger than the circle length of χn , so the bits
of the sequence are partitioned in n-bit circles and χn is applied to each of these circles in
parallel. In Subterranean [4] and Subterranean 2.0 [7], χ257 is applied on the entire state as
one circle. We study these maps by considering the map on bi-infinite sequences, as the map
χ : F

Z

2 → F
Z

2 , σ �→ ν that is defined by νi = σi + (σi+1 + 1)σi+2. This map is actually the
state updating transformation of a cellular automaton as in [20].

It is known from [5], that χn is bijective if and only if n is odd. In [11], the explicit formula
for χ−1

n is given. We revisit a proof of this in Sect. 4. The examples above use χn for odd
n, as iterating an invertible round function gives a permutation, but using a non-invertible
round function will result in collisions. Having collisions might result in finding concrete
distinguishers to attack ciphers.

However, it may just be interesting to have χn where, e.g., n = 512, to have χ operate
on states of lengths a power of 2. In this case, however, it is necessary to know how many
collisions we have, or, equivalently, how many states have more than one preimages. If we
characterize the state diagram of χ , we can observe this for each n. In particular χn is the
restriction of χ to sequences with period dividing n. For instance, the sequence that follows
the pattern ’01’ infinitely in both directions is a sequence of period 2.

By randomizing the input, like in the Even-Mansour construction [10], we can use that
χn is a “near-permutation” on, e.g., n = 512 bits. By a “near-permutation”, we mean that
out of the 2512, only a negligible number of 2257 − 1 states do not have a unique preimage.
Since the inputs are randomized, there is only a very small probability (2−257) of collisions.

Our contributions We show that the order of χn (in the group of bijections on F
n
2) is

2�lg( n+1
2 )�, when n is odd. An application is then that the inverse of χn is just a composition

of χn with itself 2�lg( n+1
2 )� − 1 times.

We furthermore prove thatχ is surjective onF
Z

2 . This is donewith a linearization technique
in Sect. 4 and extended to nonperiodic states with a topological argument in Sect. 7.

For each state whereupon χ has exactly one preimage, we can immediately observe by
the degrees of associated polynomials what the length of its cycle (orbit) is.

Furthermore, using linearization techniques similar to those in Sect. 4, we are able to
deduce that the non-invertible component of the state diagram for states of period 2k for any
k is a binary tree, where the root is mapped to itself.

Lastly,we combine these techniques, tofind the remaining components of the state diagram
with the states of even period 2k · m with m > 1. The states in the cycle of a component all
have the same period. The further one goes away from the cycle (by taking preimages), the
larger the period grows by factors 2.

We can determine whether a state lies in the cycle, by checking whether it is divisble by a
certain polynomial or after how many applications of χ it will become part of the cycle. For
the length of the cycle when n = 2m with m odd, we see that it always is a divisor of 2o − 1,
where o is the multiplicative order of 2 modulo n/2. The length of a cycle when n = 2k · m
is just 2k−1 times the length of the cycle for n = 2m.

Methodology In the paper we use several methods to analyse the map χ . For the results in
Sect. 4, the defintion of dynamic bits varies for various maps, but we see no reason that with
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a different choice on which bits are dynamic/static, there similar results can be obtained for
other maps.

Then, in Sect. 5, we use a linearization technique to determine where the map χ is two-
to-one. While not all maps will admit to such a linearization technique, it is worthwhile to
investigate it when studying the state diagrams of other maps.

In Sect. 6, we complete the state diagram, by using some elementary ring theory that gives
another characterization of the map χ . We then use the intertwining technique to deduce
results about the cycle lengths in the non-cyclic components. This intertwining technique
can be applied to other classes of boolean functions as well.

Then, in Sect. 7, we use a topological argument to show that the map χ is surjective on the
entire F

Z

2 . This argument can clearly be used on any other continuous map from a compact
space to itself whose image contains a dense subset.

2 Notations and conventions

For a map F : X → Y and a subset A ⊂ X we write F|A : A → F(A) for the map F
restricted to A. Given two maps F : X → Y and G : Y → Z , we write G ◦ F : X → Z for
the composition of the maps.

With Z we denote the ring of integers, and by N the set of natural numbers. We write
N

∗ for the set of positive integers. We denote an arbitrary field by F and the finite field of
two elements by F2. Additionally, we have the notation F

n
2 for the standard n-dimensional

F2-vector space, obtained as the Cartesian product of n copies of F2. For the vector space of
infinitely long binary sequences, we write F

Z

2 , since we see infinitely long binary sequences
as infinite in both directions.

The elements of F2 are called bits. The elements of F
Z

2 , or (for any positive integer n), Fn
2

we call states. For those in F
n
2, we use Latin lowercase symbols as x, y. For infinitely long

states, we use Greek lowercase symbols as σ, ν, ρ.
We write 0n ∈ F

n
2 for a state of n bits 0, and 1n for a state of n bits 1.

A state σ ∈ F
Z

2 that has a repeating part σ0, σ1, . . . , σn−1, for a certain n, we write
σ = (σ0σ1 · · · σn−1)

∗. Most often we take the shortest possible n. For example, for the bi-
infinite state of all zeroes we write 0∗. In the same fashion we can write (01)∗ for a bi-infinite
state of repeating pattern ‘01’ and not (0101)∗. If we write (∗1)n , we mean a state of length
2n where each second bit is 1 and each other bit can be either 0 or 1. A ∗ denotes that it can
be either 0 or 1.

The number of ones in a finite state x ∈ F
n
2 is called the Hamming weight and is denoted

as hw(x).
When V is a vector space over F, then we use �v1, . . . , vn� as notation for the set spanned

by the vectors v1, . . . , vn ∈ V , i.e.,

�v1, . . . , vn� =
{∑

i

λivi | λi ∈ F

}
.

Furthermore, we write F2[X ] for the ring of polynomials in the indeterminate X with
coefficients in F2. If we write F2[X ]/( f (X)), we mean the quotient ring of F2[X ] by the
ideal generated by the polynomial f (X). For any commutative ring R, we write R∗ for its
group of units.

Lastly, we write lg for the binary logarithm, i.e., the logarithm with base 2, gcd for the
greatest common divisor in a Euclidean ring and lcm for the least common multiple.
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3 Shift maps, periodicity and state diagrams

Here, we discuss shift maps, and from those definewhich states are periodic. Next, we discuss
shift-invariant maps and their state diagrams. We start with giving the definition of χ , the
subject of this paper.

Definition 1 (χ) The map χ : F
Z

2 → F
Z

2 , σ �→ ν is, for all i ∈ Z, given by νi = σi +
(σi+1 + 1)σi+2.

We see that χ is a map of degree two, in particular nonlinear.

3.1 Shift maps and periodic states

To study the state diagram of χ , we will use shift maps, as they partition the vector space
F
Z

2 . The state diagram then consists of many isomorphic components, as per this partition.

Definition 2 (Shift maps) For any field F2 we define a shift map τ on F
Z

2 as:

τ : F
Z

2 → F
Z

2 , σ �→ ν, where νi = σi+1.

For any integer k > 0 we can define τ k by iteration τ . For k < 0, we define τ k on F
Z

2 by
iterating τ−1(σ ) = ν where νi = σi−1.

These shift maps are linear. The group {τ k | k ∈ Z} under composition is isomorphic to
(Z,+). Some of the infinite states in F

Z

2 are invariant under a subgroup of shifts.

Definition 3 (Periodic states) A state σ ∈ F
Z

2 is called periodic when there exists an integer
n > 0 such that τ n(σ ) = σ . The minimal such integer n for which σ is periodic, is called
the period of σ . We then write per(σ ) = n. We furthermore writePn for the set of all states
of period n. We lastly denote the set of all periodic states by

⋃
n Pn = F̂2.

We extend the definition of Hamming weight for finite length binary strings to periodic
infinite strings by setting hw((σ1, . . . , σn)∗) = hw(σ1, . . . , σn) for σ of period n.

For example, P1 = {0∗, 1∗} and P2 = {(01)∗, (10)∗}.
We define Sn = ⋃

d|n Pd for the set of all states that have a period that divides n.
AsSn is the set of all vectors invariant under the linear map τ n , we find thatSn is a linear

subspace of F
Z

2 . Since Sn has cardinality 2n we find that it is isomorphic to F
n
2.

We can specify the isomorphism as

φ : Sn → F
n
2, (σ0 · · · σn−1)

∗ �→ (σ0, . . . , σn−1). (1)

We now see that F̂2 = ⋃∞
n=1Pn = ⋃∞

n=1 Sn ∼= ⋃∞
n=1 F

n
2. In particular the setsPn form

a partition of F̂2.
We can now define an equivalent of χ on F

n
2:

Definition 4 (χn) We define χn : F
n
2 → F

n
2 as χn := φ−1 ◦ χ∣∣Sn

◦ φ. That is, χn(x) = y

where yi = xi + (xi+1 + 1)xi+2 with indices taken modulo n.

The cryptographic functions mentioned in the introduction all use one of the maps χn on
some Sn for some odd n.

The shift maps make for a further partition of the setsSn .

Definition 5 (Shift equivalent) Two states σ, ρ ∈ F
Z

2 are shift equivalent if and only if
σ = τ k(ρ) for some k ∈ Z.
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Fig. 1 Canonical states in P5 and their propagation under χ

Shift equivalence can be used it to partition eachPn into equivalence classes of cardinality
n. We call these necklaces.

Example 1 Consider P5. Then (00101)∗ and (01010)∗ are shift equivalent. Since all states
σ ∈ P5 have period 5, their necklaces have 5 elements. The number of states in P5 is
25 − 21 = 30 and thereforeP5 has six shift classes. A system of representatives is given by
the states in Fig. 1, that also contains their propagation under χ .

Let n be any positive integer, then the number of states in Pn can be computed from the
number of states in Sd with d | n by the principle of inclusion–exclusion:

#Pn =
∑
d|n

μ(n/d)#Sd =
∑
d|n

μ(n/d)2d .

The μ in this formula is the Möbius-function [12].

3.2 Shift-invariant maps and state diagrams

We will now discuss maps that are invariant under shift maps. Such a map has a simplified
state diagram, where several components are isomorphic and can be translated into each other
by a shift map.

Definition 6 (Shift-invariant maps) A map G : F
Z

2 → F
Z

2 is called shift invariant if we have
G ◦ τ = τ ◦ G.

A shift-invariant map always maps elements in a certain necklace to elements in the same
necklace. Any shift-invariant map can therefore be studied by studying the induced quotient
map on these necklaces.

One finds that χ and χn are shift invariant.
One can recognize a shift-invariant map by seeing that for each yi we have the same

formula with respect to i with y is the image under the function. Note that a shift-invariant
map does not necessarily has to be given in this form, thus it cannot always be recognized as
such.

The image of a state of period n under a shift-invariant map will have a period that is a
divisor of n:

Lemma 1 Let a state σ ∈ F̂2 have per(σ ) = n. Let ψ : F
Z

2 → F
Z

2 be a shift-invariant map.
Then the period of ψ(σ) divides n.

Proof We have τ n(ψ(σ )) = ψ(τ n(σ )) = ψ(σ). �
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Fig. 2 A component in the form
of a cycle with trees on vertices

Definition 7 (State diagram) Let S be a set. The state diagram for a map F : S → S is a
directed graph (V , A) containing all elements in S as vertices, i.e., V = S. Arrows exist from
a vertex a to a vertex b if and only if F(a) = b. Thus A = {(a, F(a)) | a ∈ S}.

The state diagram of other Boolean maps has been studied, see e.g., [1], [3], [13] and [16].
When a map F is shift invariant, the state diagram can be depicted by giving the state

diagram of the induced quotient map on necklaces. In that sense, Fig. 1 represents the state
diagram of χ5. When a necklace has k elements, then each (connected) component of the
state diagram of the induced quotient map occurs k times in the state diagram of F . For
instance, the 4-cycle and 2-cycle in Fig. 1 each appear 5 times.

Orbits of elements are clearly visible in the state diagram of a map.

Definition 8 (Orbit) Let S be a set. Given a map F : S → S and an element a ∈ S, the orbit
of a under F is the set OF (a) = {Fk(a) | k ≥ 0}.

Note that for any F : S → S, any orbit has cardinality at most #S. When F is a bijective
map on a finite set, it is a standard result that the state diagram of F consists of disjoint cycles.
In this case, all orbits are cycles. Hence, for bijective F , we can determine the order of F by
looking at the state diagram and the lengths of the cycles:

ord(F) = lcm
x∈Fn

2

(#OF (x)).

Any finite component of a graph, is either a cycle or of the form a cycle with trees on its
vertices (See Fig. 2).

We can therefore talk about the number k of applications of F needed on an element a ∈ S
such that Fk(a) is on the cycle.

Definition 9 (Layer numbers) Let S be a set and F : S → S be a map. Let C be a component
of the state diagram of F . We define the layers of the component as follows:

L0(C) := {a ∈ C | ∃k : Fk(a) = a}
Li (C) := {a ∈ C | F(a) ∈ Li−1(C)}

In Fig. 2, the vertices indicated by a 
 are in L1(C) and the vertices indicated by · are in
L0(C).

Thus, for a bijective map F : S → S on a finite set, all components C have only one layer,
L0(C). When it is clear about which component we speak, we may leave out the C , and just
write Lk .

We furthermore say that a component C is of period n if the elements in L0(C) all have
period n. Note that all elements in L0(C) necessarily have the same period.
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4 Invertibility and cycles in the state diagram of �

In this section we are going to investigate the state diagram of χ on a certain large class
of periodic states. Namely, those that have a unique preimage (or, where χ acts bijectively)
occur in a cyclic component. As a corollary, we obtain a direct formula for the order of χn

for odd n.
Daemen showed that χ is invertible on states that have period dividing n when n is odd

[5]. We give a new proof here, because this new proof gives a direct formula for the order of
χn .

4.1 Dynamic bits

For two bit positions i and j , we set d = j − i to be the distance from bit i to bit j .
Furthermore the next 1-bit from a bit position i , is the smallest bit position j > i such that
σ j = 1. Note that any bit position in a periodic state σ has a next 1-bit, as long as σ has
period n > 1.

Definition 10 (Dynamic and static bits) A bit is called dynamic if the distance to the next
1-bit is even. When the distance to the next 1-bit is odd, we call the bit static. A static bit that
has the value 1 is called an anchor.

To explain the terminology for dynamic and static, we have the following lemma.

Lemma 2 Static bits are invariant under χ .

Proof A bit changes under χ if and only if the distance to the next 1-bit is 2. A static bit has
odd distance to the next 1-bit, hence remains unchanged. �


Since we can distinguish between static and dynamic bits, we can highlight the dynamic
bits in a state. We call the result of this highlighting the dynamicity pattern.

Definition 11 (Dynamicity pattern) Given a state σ of period n, then its dynamicity pattern
is a string x ∈ {0, 1, ∗}n , where xi = σi if σi is static, and xi = ∗ otherwise.

We show that the dynamicity pattern is invariant under applications of χ . For that we note
that χ is a simpler map on dynamic bits.

Assume that σi is a dynamic bit, then σi+1 = 0. Therefore

χ(σ)i = σi + (σi+1 + 1)σi+2) = σi + σi+2. (2)

Proposition 1 The dynamicity pattern of a state is invariant under χ .

Proof Let σ ∈ F̂2 be arbitrary non-zero and ν = χ(σ). Pick some σi arbitrary. We make a
case distinction on the basis of the distance to the next 1-bit.

1. First, assume that the distance is larger than 2. That means that σi is followed by 0n1 for
some n ≥ 2. Then νi is followed by 0n−210∗, where ∗ is an undetermined value. Since n
and n − 2 have the same parity, the dynamicity of σi is the same as νi .

2. Assume that the distance to the next 1-bit is equal to 2. That means that σi is followed by
01, i.e., σi is dynamic. Assume that νi is static, thus νi is followed by (00)n1 for some
n ≥ 0. By Eq. (2), we have two options for σi , it is either followed by (00)n+11, or by
(10)n1. In both cases, σi would be static, a contradiction.
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3. Lastly, assume that the distance to the next 1-bit is 1. Now, σi is static. Assume that νi

is dynamic, hence followed by 0(00)n1 for some n ≥ 0. By Eq. (2), we now have two
options for σi , it is either followed by 0(00)n+11, or by 0(10)n1. In both cases, σi is not
followed by 1, a contradiction.

�

Example 2 (Dynamicity pattern) Take for example the state (001011110001)∗, thenwe locate
the dynamic bits and replace them by ∗:

σ = (001011110001)∗ � ∗0 ∗ 0111 ∗ 0 ∗ 01

ν = (100011110101)∗ � ∗0 ∗ 0111 ∗ 0 ∗ 01

Here ν = χ(σ), and we see that the dynamicity pattern remains the same.

We now express two results about the distance between an anchor and its preceding
dynamic bit, and between two successive anchors. These will prove handy in proving the
main theorem about the cycle lenghts that appear in the state diagram of χ .

Lemma 3 (Distance to anchors - No. 1) Let σ ∈ F̂2 be a periodic state with at least one
anchor. Then the distance from a dynamic bit to the next anchor is even.

Proof Let σi be an arbitrary dynamic bit. Then the next 1-bit has even distance from σi by
definition. If this bit is static, it is an anchor. If it is not an anchor, then the distance to the next
1-bit is even again. Iterate this process until one arrives at an anchor, all the while keeping
an even distance. Since we have at least one anchor by hypothesis, this process will stop. �


Using the preceding lemma, we can prove a similar statement about the distance between
two anchors.

Lemma 4 (Distance to anchors - No. 2) Let σ ∈ F̂2 be a periodic state with at least one
anchor. Then the distance from an anchor to the next anchor is odd.

Proof Let σi be an arbitrary anchor. Then by definition, the next 1-bit has odd distance from
σi by definition. Then either, this 1-bit is an anchor, in which case we are done. In the other
case, this 1-bit is not an anchor, hence it is a dynamic bit and the result follows from applying
Lemma 3. �


4.2 Anchor polynomials and the uniqueness of preimages under �

Since the dynamicity pattern is invariant under application of χ , and anchors are static bits,
we can uniquely split up a state at its anchors. We will see later that by splitting a state up at
its anchors, we can immediately determine the cycle structure of χn for odd n.

For example, if we take (11011)∗, we can split it up like 101-1-1. On the other hand, the
state (11010)∗ can only be split up as 10101. It is a single substring, as it has precisely one
anchor.

For each anchor, we can create a corresponding polynomial:

Definition 12 (Anchor polynomial) Let σ ∈ F̂2 be a periodic state with at least one anchor.
Let σi be an anchor and let σi−(2di +1) be the previous anchor. (Lemma 4.) Then a(i)(X) :=∑di −1

j=0 σi−2 j X j is the anchor polynomial of σi and di is the anchor degree of σi .
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Note that a periodic state with at least one anchor can now be completely represented by
the positions of its anchors and their corresponding anchor polynomials. Furthermore, using
these anchor polynomials, we can describe the operation of χ in an elegant way:

Proposition 2 (χ is multiplication by X +1) Let σ ∈ F̂2 be a periodic state with at least one
anchor and ν = χ(σ). Let a(i)(X) be the anchor polynomial with anchor degree di of the
anchor σi . Then b(i)(X) := (1 + X)a(i)(X) mod Xdi is the anchor polynomial of νi .

Proof We need to show that the constant coefficients of a(i) and b(i) are equal: b(i)
0 = a(i)

0 ,
as the anchor is static. This is immediate. Furthermore, we need to show that for the other
coefficients of b(i), we have b(i)

j = νi−2 j . For that, by Eq.2, we have b(i)
j = a(i)

j + a(i)
j−1 =

σi−2 j + σi−(2 j+2) = νi−2 j . �

The polynomial 1+ X is invertible in the ring F2[X ]/(Xd) for any d ≥ 1. The inverse of

1 + X in such a ring is 1 + X + X2 + · · · + Xd−1.

Theorem 1 (States with an anchor have a unique preimage) Let ν ∈ F̂2 be a periodic state
with at least one anchor. Then ν has precisely one preimage.

Proof We need to show that there is a unique way to obtain the anchor polynomials of σ

such that χ(σ) = ν. To do this, let b(i)(X) be an anchor polynomial of ν. Then a(i)(X) =
(1+ X + X2 +· · ·+ Xk−1)b(i)(X) mod Xdi is the anchor polynomial for σ . The uniqueness
follows from uniqueness of inverses in a ring. �


We have reduced the question of finding states with unique preimages to finding states
with at least one anchor. A first result is that all non-zero states of odd period have an anchor:

Proposition 3 Let σ ∈ F̂2 be non-zero and have odd period. Then it has at least one anchor.

Proof The sum of the distances between all 1-bits in σ together sum to the period. Since the
period is odd, there has to be at least one of those distances that is odd, hence at least one
anchor. �


Secondly, we can concretely define the non-zero states of even period that have an anchor.
We partition F̂2 into subsets {0}, (Sn,0\{0})n∈N∗ , (Sn,1\{0})n∈N∗ , (Tn)n∈N∗ as follows

Sn,0 := {σ = (σ0, σ1, . . . , σn−1)
∗ ∈ Pn | σi = 0 when i ≡ 0 (mod 2)};

Sn,1 := {σ = (σ0, σ1, . . . , σn−1)
∗ ∈ Pn | σi = 0 when i ≡ 1 (mod 2)};

Tn := Pn \ (Sn,0 ∪ Sn,1).

In addition, we define S0 := ⋃∞
n=2 Sn,0, S1 := ⋃∞

n=2 Sn,1, and T := ⋃∞
n=1 Tn .

Then we have

Lemma 5 Let σ be a nonzero state of even period n.

1. If σ ∈ T , then σ has an anchor.
2. If σ ∈ S0, then σ has no anchors.
3. If σ ∈ S1, then σ has no anchors.

Proof 1. Let σi = 1 and σ j = 1 be 1-bits, where i is even and j is odd or vice versa and
i < j . In both cases, the distance d = d(σi , σ j ) = j − i is odd. If d = 1, then σi is
an anchor. So suppose that d > 1. If there exists a σk = 1 with i < k < j and i ≡ k
(mod 2), thenwe can instead take σk instead of σi . If there exists a σk = 1with i < k < j
and k ≡ j (mod 2), then we can instead take σk instead of σ j . Hence all bits between σi

and σ j can be assumed to be 0. There is an even number of them, hence σi is an anchor.
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2. Let σi = 1 be an arbitrary 1-bit in σ . By definition of Sn,0, it is followed by a repeating
pattern of 0∗. Therefore, it cannot be followed by an even number of zeroes, and hence
not an anchor.

3. Similar to the case for S0.
�


4.3 Cycle lengths in the state diagram

In this subsection we investigate the lengths of the cyclic components in the state diagram of
χ . We will prove

Theorem 2 Periodic states that have an anchor lie in cycles in the state diagram of χ . These
cycles have a length that is a power of two and this length ranges from 1 to the largest power
of two not larger than n.

Recall thatχ operates asmultiplication of all anchor polynomials a(i)(X) by 1+X modulo
Xdi . Since the dynamicity pattern is invariant under χ , the length of the cycle that contains
σ is therefore the least common multiple of the order of 1 + X in the rings F2[X ]/(Xdi ).

Lemma 6 Let R := F2[X ]/(Xd). Then #R∗ = 2d−1.

Proof Since F2[X ] is a Euclidean ring, we have that f ∈ R is invertible if and only if
gcd( f , Xd) = 1. If f0 = 0 (the constant term of f ), then gcd( f , Xd) �= 1, since X is a
divisor of both f and Xd . Since only positive powers of X are divisors of Xd and all these
are not divisors of f with f0 = 1, we find that when f0 = 1, that gcd( f , Xd) = 1. Thus,
since f ∈ R∗ iff f0 = 1, we find that #R∗ = 2d−1. �


By Lagrange’s Theorem, we now know that the order of X + 1 is a power of 2. Since
(X + 1)2

k = X2k + 1, we find that the order of X + 1 is the smallest power of 2 larger than
or equal to d . This is then 2�lg(d)�.

We can now prove Theorem 2.

Proof of Theorem 2 Let σ be a nonzero state in F̂2 with an anchor. Let 2di +1 be the distance
from the (i − 1)th anchor to the i th anchor and consider {d0, . . . , dk}. By the above, we have

#Oχ (σ ) = lcm
i∈{1,...,k}(2

�lg(di −1)�)

= max
i∈{1,...,k}(2

�lg(di −1)�)

= 2�lg(di0−1)�

where i0 is chosen such that di0 ≥ di for all i ∈ {0, . . . , k}. We now find that indeed a cycle
of length any power of two exists. �


5 Preimages for states without anchors

In this subsection, we study states with even period. Therefore, n is assumed to be a positive
even integer. We are going to investigate χ on Pn to see whether χ is surjective. This is a
next step into understanding the full state diagram of χ .

We know from Theorem 1 that a state σ has a unique preimage if there is at least one
anchor: σ ∈ Tn .
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Therefore, the states where zero or multiple preimages may exists are exactly those in⋃
n(Sn,1 ∪ Sn,0) They fall into three categories:

1. The state has two preimages of the same period;
2. The state has two preimages of double period;
3. The state has one preimage of the same period and two preimages of double period.

The third case is only applicable to 0∗, as we shall see.

5.1 Linearization of �

When n is fixed, we can omit it as an index, to obtain T := Tn and Si := Sn,i for i ∈ {0, 1}.
Lemma 7 For χ : F

Z

2 → F
Z

2 we have χ(S1) ⊂ S1 and χ(S0) ⊂ S0.

Proof Let σ ∈ S0 be arbitrary with σ = (σ0, σ1, . . . , σn−1)
∗. Then each even position σi is

0. Since these zeroes are followed by ∗0, they cannot be followed by 01. Hence these bits
remain 0 under χ . The statement for S1 is similar. �


Since χ is invertible on T , we are mostly interested in χ∣∣S0
and χ∣∣S1

. Both of these are

linear maps:

χ∣∣S0
: S0 → S0, (σ00σ20 · · · σn−20)

∗ �→ ((σ0 + σ2)0(σ2 + σ4)0 · · · 0(σn−2 + σ0))
∗

χ∣∣S1
: S1 → S1, (0σ10σ3 · · · 0σn−1)

∗ �→ (0(σ1 + σ3)0(σ3 + σ5) · · · (σn−1 + σ1)0)
∗

By projecting S0 (respectively S1) on the subspace we find two maps of a similar form:

Definition 13 Let k ≥ 1. We write χ L
k : F

k
2 → F

k
2, x �→ y for the linearized even period χ .

Here yi = xi + xi+1 mod k . We write Lk := Im χ L
k for its image.

Since χ L
k is a linear map, we can investigate it using linear algebra. For instance, we can

represent it by a k × k matrix:⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 . . . 0 0 0
0 1 1 0 . . . 0 0 0
...

. . .
...

0 0 0 0 . . . 0 1 1
1 0 0 0 . . . 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

We can also easily determine its kernel, which we denote by Ker:

Lemma 8 Ker χ L
k = {0k, 1k}.

Proof For χ L
k (x) = 0 to hold, we must have x0 = x1 = x2 = . . . = xk−1. �


To return from a result about χ L
k to results about χ∣∣S0

, we can use:

π0 : F
2k
2 → F

k
2, (x0, x1, . . . , x2k−1) �→ (x0, x2, . . . , x2k−2)

π1 : F
2k
2 → F

k
2, (x0, x1, . . . , x2k−1) �→ (x1, x3, . . . , x2k−1)

that are bijective when restricted to S1 and S0 respectively.
Since we know Ker χ L

k , we find that the dimension of Lk is given by dim Lk = k − 1
using the isomorphism theorem.

We have the following proposition to help us in achieving our goal.
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Proposition 4 Let k ≥ 1. Then Lk is the k − 1-dimensional subspace of all vectors in F
k
2 of

even Hamming weight.

Proof We know that Lk is spanned by the columns of χ L
k . Therefore, we know that Lk is

spanned by vectors of Hamming weight 2. Since the sum of two vectors of even Hamming
weight is again a vector of evenHammingweight, it follows that all elements in Lk are vectors
of even Hamming weight. Furthermore, since dim Lk = k − 1 we see that Lk contains half
of the vectors of F

k
2, so all vectors of even Hamming weight. �


From Proposition 4 it follows that χ(Sn) � Sn for even n.

5.2 Finding preimages for states of even period

We in this section explore some theoretical results that yield an efficient method to find all
preimages to a give periodic state.

By Proposition 4, the elements not reached by χ L
k are exactly the elements with odd

Hamming weight.
We then immediately obtain:

Theorem 3 Let n > 1 be even. Then Sn \χ(Sn) consists of states with odd Hamming weight
such that either:

– all odd positions are 0; or,
– all even positions are 0.

We know that χ is not injective. Furthermore, since χ is bijective on
⋃

n∈N∗ Tn , we know
that χ is not injective on (S0 ∪ S1)n∈N∗ .

For the linearized χ , we have that if χ L
k (u) = χ L

k (v) then u = v or u = v+1k , by Lemma
8. We also know that χ(S0) ⊂ S0 and χ(S1) ⊂ S1 by Lemma 7.

Hence we know, if χ(σ) = χ(ρ) with σ �= ρ, then σ, ρ ∈ S0 or σ, ρ ∈ S1, with the
exception of (01)∗ and (10)∗ that both map to 0∗. We have shown

Lemma 9 If σ �= ρ ∈ F
Z

2 have period n and are such that χ(σ) = χ(ρ) �= 0, then either

– σ, ρ ∈ S0 and σ + ρ = (01)∗; or
– σ, ρ ∈ S1 and σ + ρ = (10)∗.

From this lemma, we conclude that every nonzero element in χ(F̂2) has at most two
preimages.

Corollary 1 Let k be an odd integer and let ν ∈ F
Z

2 have period 2k. Assume that ν has two
preimages σ, ρ under χ . Then hw(σ ) �= hw(ρ) (mod 2).

Proof If hw(σ ) is odd, then ρ = σ + (01)∗ is the sum of two states of odd Hamming weight.
Therefore hw(ρ) is even. If hw(σ ) is even, then ρ = σ + (01)∗ is the sum a state of odd and
a state of even Hamming weight. Therefore hw(ρ) is odd. �


To explicitly find the preimages of a state σ ∈ χ(F̂2), we use amethod based on Daemen’s
seed-and-leap method [5].

Lemma 10 Let χ(σ) = ν. Then we have

1. If νi = 1, then σi−1 = νi−1;
2. σi−2 = νi−2 + (νi−1 + 1)σi ,

123



The state diagram of χ

Fig. 3 Finding the preimages for (100010)∗ under χ

where, in both cases, indices are modulo per(σ ).

Whenever an element in this preimage has all bits with odd (or all even) indices zero, one
finds both preimages.

To do this, basically loop twice: once over the odd indices and once over the even indices.
It makes a choice whenever there are no ones on an even (or odd) position and continues the
cycle from that choice.

Example 3 Consider that we want to determine the preimages of (100010)∗. We start by
filling in blanks and look for a 1. We apply Lemma 10.1 to obtain (?????0)∗. By applying
Lemma 10.2 repeatedly we obtain (?0?0?0)∗. Next we have to make a choice, because there
are no ones in the even positions. We get (00?0?0)∗ and (10?0?0)∗. By applying Lemma 10.2
repeatedly to both, we get (001010)∗, (100000)∗ �→ (100010)∗. (See also Fig. 3.)

Remark that by Lemma 9, it does not matter which choice is made, as the second preimage
can be determined from the first.

Lemma 11 Let ν be a state of period n that has no preimages of period n. Let σ, ρ be the
preimages of period 2n of ν. Then ρ = τ−n(σ ).

Proof Since χ2n is shift invariant and ν has period dividing n, we have

χ(τ−n(σ )) = τ−n(χ(σ ))

= χ(σ)

The result then follows from Lemma 9. �

We can now divide the preimage σ = (x)∗ into two parts σ = (x0|x1)∗ and we have

ρ = (x1|x0)∗.
Corollary 2 Let ν be a state of period n that has no preimages of period n. Let (x0|x1)∗
and (x1|x0)∗ be the preimages of ν under χ . Then x0 = x1 + (01)n/2 when z ∈ S0 or
x0 = x1 + (10)n/2 when z ∈ S1.

Only one preimage needs to be determined by Lemma 11 and by Corollary 2 only half of
the state needs to be constructed.

Remark that when using the method on length n, a preimage of double length can be found
by just writing the wrong preimage of length n as a0 and applying Corollary 2. To make this
more clear, we present an example.

Example 4 Let us try to find the preimages of the state σ = (010000)∗. Since the Hamming
weight is odd, we expect double-length preimages. By Lemma 7, we know that the preimage
should look like (0?0?0?)∗.Wenowset the last position to be 0: (0?0?00)∗ and applyLemma
10.2 two times again. We then obtain (010000)∗. By Corollary 2 we now can conclude that
the preimages of σ under χ are (010000000101)∗ and (000101010000)∗.
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5.3 Surjectivity of �

Here, we prove that χ is surjective on F̂2, while we know that χ(Sn) � Sn .

Theorem 4 (χ is surjective on periodic states) The map χ : F̂2 → F̂2 is surjective.

Proof Let ν ∈ F̂2 be arbitrary. Let n = per(ν). By Theorem 3, either ν ∈ χ(Sn) or
ν /∈ χ(Sn). In the latter case, note that ν has odd Hamming weight and zeroes on all even
(or odd) positions. If we view ν = (ν0, . . . , νn−1, ν0, . . . , νn−1)

∗, then its Hamming weight
is even. Thus ν ∈ χ(S2n). Hence in both cases, ν is in the image of χ . �

Corollary 3 Let σ ∈ F̂2, then per(χ(σ )) = per(σ ) or 2 per(χ(σ )) = per(σ ).

Proof From Corollary 1, we know that a non-zero state has at most two preimages. From
Theorem 4, the result then follows. �


In particular, a state of period 30, say, cannot be mapped onto a state of period 3 or 5, no
matter how often χ is (re-)applied.

Furthermore, we know that for an arbitrary state of period n = 2k ·m in Sn,0, after enough
iterations of χ , will end up in a cycle. This is due to Corollary 3, where the period will
decrease until it is 2m, with m > 0 odd:

Lemma 12 Let m > 1 be an odd integer and let σ be a state of period 2m. Then χ(σ) is also
a state of period 2m.

Proof We know that χ(σ) has period dividing 2m, since χ is shift invariant. By Corollary 3,
what remains to show is that χ(σ) does not have period m. Suppose that χ(σ) has period m.
We know, by Theorem 1, that since m is odd, χ operates bijectively onSm . That means that
χ(σ) has a unique preimage that has period m, a contradiction. �


6 Full characterization of the state diagram of �

Before we have dealt will all cyclic components of the state diagram of χ . In this section,
we will deal with the other components, that all have the shape of a cycle with (binary) trees
on those cycles. The arrows point inwards to the cycle.

We startwith choosing a suitable linearization in Sect. 6.1, then follow thatwith a treatment
of the states of period 2k in Sect. 6.2. In Sect. 6.3 we will take on the components with states
of period 2k · m with m > 1.

6.1 Polynomial linearization of � on states of even period

Since χ operates cyclically on states in Tn , we only need to understand how χ operates on
states in Sn,0 (as Sn,1 is just Sn,0 shifted and χ is shift invariant).

In Fig. 4 we depict what χ L
3 looks like on S6,0. (Note that we leave out the part that has

period 1 or 2.)
Before we give an explicit description of these, we consider a new representation of the

vector space F
n
2 as a quotient of a polynomial ring.

We consider the vector space isomorphism ϕ : F
n
2 → F2[X ]/(Xn + 1) defined by

(a0, . . . , an−1) �→
n−1∑
i=0

ai Xn−(i+1).
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Fig. 4 Layers L0,L1,L2 of a component of the diagram for χ L
3 on S6,0. Dotted lines indicate preimages of

double period

Under this isomorphism, a left shift τ 1n corresponds to a multiplication by X modulo Xn +1.
Similarly, χ L

k = Id+τ 1n , where Id is the identity map. We find that the corresponding
χ L

k : F2[X ]/(Xn + 1) → F2[X ]/(Xn + 1) is just a multiplication by 1+ X modulo Xn + 1

Definition 14 (Polynomial representation of states)Letn > 0be an even integer. Letσ ∈ Sn,0

and write σ ′ ∈ F
n
2 under the isomorphism ϕ from Eq. (1) and π1 the projection map on odd-

indexed coordinates. Then we write fσ (X) := ϕ(π1(σ
′)).

Remark 1 In particular, if σ = (x)∗ is given, we then remove the zeroes in odd positions of x
by appling ϕ, to obtain a state of length n

2 . That, we then make into a univariate polynomial.

From Theorem 3, we can conclude the following corollary:

Corollary 4 Let n > 0 be an even integer and σ ∈ Sn,0. Then σ has two preimages of the
same period if and only if X + 1 | fσ (X).

Proof

σ has two preimages of the same period iff hw(σ ′) ≡ 0 (mod 2)

iff fσ (X) has an even number of terms

iff fσ (1) = 0

iff X + 1 | fσ (X).

�

For a given state that has period dividing n, we can now express that the state has period

dividing n
2 as well:

Proposition 5 Let n = 2k · m for positive integers k > 1 and m odd. Let σ ∈ Sn,0 and let
fσ (X) be the polynomial representation of σ . Then σ has period dividing n

2 if and only if

(X
n
4 + 1) | fσ (X).
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Fig. 5 The component for S2k ,0 and S2k ,1 for k ≥ 3. At 0∗, there is a cycle. The notation with parentheses
and asterisks has been ommitted to make the figure fit better

Proof ⇐:) Since (X
n
4 +1) | fσ (X), we can determine a polynomial c(X) such that fσ (X) =

c(X) · (X
n
4 +1). Then the coefficients of the righthandside correspond to a vector of the form(

c0 + c n
4
, c1 + c1+ n

4
, . . . , c n

4 −1 + c n
2 −1, c n

4
+ c0, . . . , c n

2 −1 + c n
4 −1

)
which is a state of period dividing n

2 .⇒:) Consider that the state σ can be written as σ ′ = (σ0, σ1, . . . , σn−1). Then since
σ has period dividing n

2 , we know that σ n
4 +i = σi for i ∈ {0, . . . , n

4 − 1}. We can write
σi = ci + ci+ n

4
and solve the gained system for the ci . This will give two possible solutions

that are each other’s complement. Then fσ (X) = c(X) · (X
n
4 + 1) for any of the c(X). �


Example 5 Let σ ∈ S12,0. Consider σ = (0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1)∗ ∈ P12. Then
removing the even zeroes, we get σ ′ = (1, 0, 1, 1, 0, 1) and therefore the polynomial
fσ (X) = X5 + X3 + X2 + 1. We want to show that (X3 + 1) | fσ (X), as it is obvious that
σ ∈ P6.

We know that we can write σ ′ = (c0 + c3, c1 + c4, c2 + c5, c0 + c3, c1 + c4, c2 + c5).
Upon choosing c0, the system gives the following solutions:

�c = (1, 1, 1, 0, 1, 0) and �d = (0, 0, 0, 1, 0, 1).

They correspond to X5 + X4 + X3 + X and X2 + 1. Both f�c(X) · (X3 + 1) = fσ (X) and
f �d(X) · (X3 + 1) = fσ (X) modulo X6 + 1.

6.2 States of period 2k

Another component of the state diagram looks like a binary tree on a 1-cycle, that we will
find in the states that have period a power of 2. Therefore, assume in this section that σ is a
state of period n = 2k for some k ≥ 0. We split upSn into Tn, Sn,0 and Sn,1, where we recall
that we already discussed the components of states in Tn . For the states in Sn,0 and Sn,1, we
have seen that χ behaves like a (linear) multiplication of fσ (X) by X +1. In Corollary 4, we
found that a state in Sn,0 or Sn,1 has two preimages of the same period, exactly when X + 1
is a divisor of fσ (X). The states in S23,0 and S23,1 are depicted in Fig. 5.

One can see from the polynomial representation fσ (X) in what layer σ is in this tree.
Therefore, one also knows how often χ has to be applied to σ for χk(σ ) = 0∗. To do this,
we define the following:
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Definition 15 (Rooted sets) Let d ≥ 0 be an integer and define the set of polynomials of
degree less than d as Pd := { f ∈ F2[X ] | deg f < d}. Let i ≥ 1. We define the i -th rooted
subset in 0 as N (i)

d for the subset of Pd that consists of those polynomials that have at least
i roots at 0 ∈ F2.

Example 6 For d = 3, we have eight polynomials

P3 = {0, 1, X , X + 1, X2, X2 + 1, X2 + X , X2 + X + 1}.
Only the polynomials 0, X , X2, X2 + X have a root at 0, hence we find that N (1)

3 =
{0, X , X2, X2 + X}. Of those, only 0 and X2 have a double root at 0, hence we have
N (2)

3 = {0, X2}. For all i ≥ 3 we have N (i)
2,3 = {0}.

In fact Pd is a set of representatives of the elements of F2[X ]/(Xd). We have #Pd = 2d ,
hence an immediate upper bound for N (i)

d is found as 2d . We compute the cardinalities of

N (i)
d .

Proposition 6 (Cardinalities of rooted sets) We have

#N (i)
d =

{
2d−i if d ≥ i − 1;
1 else.

Proof Let i ≥ 1 and d ≥ 0 be arbitrary. For any i , the zero polynomial has i roots in 0. When
d < i −1, then it is impossible to have i roots, because of the degree of the polynomial being
< d . So assume d ≥ i − 1. In order for f (X) to have a root at 0 with multiplicity i , we need
to have Xi | f (X). This implies that the coefficients for Xi−1, . . . , X , 1 must be equal to 0.
The remaining d − i coefficients can be arbitrary elements from F2. �

Lemma 13 (Point invariance of rooted set cardinalities) Consider the rooted set N (i)

d and the

set of all polynomials that have i roots at 1 (denoted as N1
(i)
d ). They have equal cardinality

for any i, d.

Proof The automorphism ϕ : F2[X ] → F2[X ], f (X) �→ f (X + 1) maps N (i)
d bijectively

to N1
(i)
d for all i, d . Hence # N1

(i)
d = #N (i)

d and the result follows. �

Remark 2 Definition 15 up to (and including) Lemma 13 can be generalized for Fp instead
of F2.

We saw in Corollary 4 that the states σ whose corresponding polynomial fσ (X) has no
root at 1 have two preimages of double period.

We see that there are four rows in the tree that contain states of period 16, two rows that
contain states of period 8, and one row (each) of states of period 4, 2 and 1. This observation
is formalized in the following corollary, where we define Sn = ⋃n

k=1 S2k ,0 ∪ S2k ,1 and
S := ⋃∞

n=1 Sn .

Corollary 5 We have #Lk = 2k for k ≥ 0. The states in Sn occupy the first n
2 + 1 layers of

the component. This coincides with the
∑ n

2
i=0 2

i = 2
n
2 − 1 states in Sn.

For a stateσ inSn it is nowpossible inwhat layer it lies, by computing gcd( fσ (X), X
n
2 +1)

with the Euclidean algorithm.
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Fig. 6 Layers in a snowflake component in the state diagram for χ . The states without any incoming arrow
have preimages of double period. The states given have period 12

Proposition 7 Let k > 1 and let q = 2k . Let σ ∈ Sq,0 and fσ (X) its polynomial representa-

tion. Let gcd( fσ (X), X
q
2 + 1) = (X + 1)d . Then σ ∈ L q

2 + q
4 +1−d .

Proof Proposition 5 gives a criterion to see whether χ(σ) has a shorter period than σ . Let
σ ∈ Sq,0 with gcd( fσ (X), X

q
2 + 1) = (X + 1)d . Set s := q

2 − d . Then χ s(σ ) ∈ S q
2 ,0.

Therefore χ s−1(σ ) ∈ L q
4 +1 and σ ∈ L q

4 + q
2 +1−d . �


6.3 Snowflakes in the state diagram of �

All the remaining components of the state diagram of χ look like snowflakes. A snowflake in
this sense is a short cycle where on each state in the cycle grows a (binary) tree of preimages.

Here, let n be an even integer of the form 2km, where m > 1 is odd. We investigate the
state diagram of χ over Sn,0. For the states in Sn,0 (or Sn,1), we find that their components
have a shape as in Figs. 4 and 6.

By the previous discussion, from the cycle there is first one preimage fanning out (the
other one is in the cycle itself), and after that always two preimages.

In this subsection, for a component C , we give formulas for the lengths of the cycle (#L0),
as well for a state σ , for which k ≥ 0 we have σ ∈ Lk .

Remark 3 The diagram for Sn,0 is equivalent to Sn,1 since τ(Sn,0) = Sn,1. If we have states
σ and τ(σ ), then the component that contains τ(σ ) has the same shape and size as the
component of σ .

6.3.1 The size ofL0 in snowflake components

In this section we will reuse the polynomial representation fσ (X) for a state σ as in Sect. 6.
Let σ be an anchorless state of period n. Under this representation, we find that an application
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of χ to σ corresponds to multiplying fσ (X) by X + 1 modulo X
n
2 + 1. We can apply χ

multiple times at once, by looking at substrings of σ .

Example 7 Consider Fig. 6 and take for each of the 6-tuples the even or odd bits. Furthermore,
take the composition of two arrows every time. This coincides with χ2. It yields three times
the left diagram and once the right diagram:

010 110

101 110 011 001

101

100 011

111 111

000

000 000 000 000

111 111

The latter diagram can be simplified to 111 000 . The former diagram will be
simplified to the diagram of χ L

3 on S6,0 in Fig. 4. We thus see, that for n = 12, we have a
component of the diagram of period 2, and a component of period 6, if we apply χ twice.

To go back from the smaller diagrams to the big one, we define an intertwiningmap I. The
intertwining map combines several polynomials into one bigger polynomial in the following
way.

Definition 16 (Intertwining map) Let p be a positive integer. The intertwining map
I : (F2[X ]/(X p + 1))2 → F2[X ]/(X2p + 1) is defined by

I( f0(X), f1(X)) = f0(X)2 + X f1(X)2.

Proposition 8 (Intertwining is bijective) The map I is bijective.

Proof Writing f0(X)2 + X f1(X)2 = ∑
ai Xi , the coefficients ai with odd index specify

the coefficients of f1(X) and the coefficients ai with even index specify the coefficients of
f2(X). Therefore, I is bijective. �


Since intertwining is bijective, we will give the name detwining to the inverse operation.
This detwining operation behaves exactly like in Example 7.

Proposition 9 Let p be an integer and σ be a state of period n with n
2 = 2 · p in Sn,0.

Write σ = (σ0, σ1, . . . , σn−1). Let τ = π0(σ ) = (τ0, τ1, . . . , τ n
2 −1). For j = 0, 1 let

τ ( j) = (τi )i≡ j (mod 2). Then the following are equivalent:

1. multiplication of fτ (X) by (X2 + 1) modulo X
n
2 + 1;

2. multiplication of fτ (0) (X) and fτ (1) (X) by X + 1 modulo X p + 1 simultaneously.

Proof 1. If we multiply fσ (X) by X2 + 1, then we get

n
2 −1∑
i=0

τi X i · (X2 + 1) ≡
n
2 −1∑
i=0

(τi + τi−2)Xi (mod X
n
2 + 1).
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2. On the other hand, we have, for both j = 0, 1:

p−1∑
i=0

τ
( j)
i X i (X + 1) ≡

p−1∑
i=0

(τ
( j)
i + τ

( j)
i−1)Xi (mod X p + 1).

This last expression, for j = 0, is equal to
∑p−1

i=0 (τ2i + τ2i − 2)Xi , and for j = 1,∑p−1
i=0 (τ2i+1 + τ2i − 1)Xi . Then we see by intertwining these expressions that we get the

same result as in 1. �

To illustrate this proposition, we have the following example.

Example 8 Let n = 12 = 22 · 3. Then n
2 = 21 · 3. Consider a state σ of the form

σ = (σ0, 0, σ2, 0, σ4, 0, σ6, 0, σ8, 0, σ10, 0).

We then have τ = (σ0, σ2, σ4, σ6, σ8, σ10), and respectively τ (0) = (σ0, σ4, σ8), and τ (1) =
(σ2, σ6, σ10). Multiplying fτ (X) by X2 + 1 modulo X6 + 1 will yield

(X2 + 1) · fτ (X) = (X2 + 1)(σ0X5 + σ2X4 + σ4X3 + σ6X2 + σ8X + σ10)

≡ (σ4 + σ0)X5 + (σ6 + σ2)X4 + (σ8 + σ4)X3 + (σ10 + σ6)X2

+ (σ0 + σ8)X + (σ2 + σ10) (mod X6 + 1)

The other part will go like this:

(X + 1) · fτ (0) = (X + 1)(σ0X2 + σ4X + σ8)

≡ (σ4 + σ0)X2 + (σ4 + σ8)X + (σ0 + σ8) (mod X3 + 1)

and

(X + 1) · fτ (1) = (X + 1)(σ2X2 + σ6X + σ10)

≡ (σ6 + σ2)X2 + (σ10 + σ6)X + (σ2 + σ10) (mod X3 + 1)

and then we intertwine them again into

I((X + 1) · fτ (1) , (X + 1) · fτ(0)) = (σ4 + σ0)X5 + (σ6 + σ2)X4 + (σ4 + σ8)X3

+ (σ10 + σ6)X2 + (σ0 + σ8)X + (σ2 + σ10).

We see that the result from the above proposition holds.

We can use Proposition 9 to understand the cycle lengths in snowflakes.

Corollary 6 The length of the cycle in snowflakes of period n with n
2 = 2k · m with k, m > 1

odd, is 2 times the length of the cycle in the snowflakes of period n with n
2 = 2k−1 · m.

Proof Suppose that σ = (σ0, σ1, . . . , σn−1)
∗ appears in a cycle. Write τ = π0(σ ) =(

τ0, τ1, . . . , τ n
2 −1

)
. Then set 
 = 2 · p, where p is the cycle length in the component of

period n with n
2 = 2k−1 · m. Then (X + 1)
 = (X + 1)2p = (X2 + 1)p . By Proposition 9,

we then find

fσ (X) = I
(

fτ (0) , fτ (1)

) = I
(
(X + 1)p fτ (0) , (X + 1)p fτ (1)

) = (X + 1)2p fσ (X).

Thus the cycle length of the cycle that contains σ divides 2p. Furthermore, since we replace
each two arrows by one arrow, whenwe detwine, wewill obtain cycles of length p again. This
detwining thus halves the cycle length. Therefore, the cycle length of the cycle containing σ

is equal to 2p. �
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Now, we show a bound for the cycle length for n = 2m with m odd.

Proposition 10 Let n = 2m with m > 1 an odd integer. Then the length of the cycle in a
snowflake is a divisor of 2o − 1, where o = ordZ/mZ(2).

Proof Let σ = (σ0, σ1, . . . , σn)∗ ∈ S0 be in a cycle. By removing all the odd/even zeroes,
we have τ = π0(σ ) = (τ0, . . . , τm−1). Since application of χ is equal to multiplication by
X + 1 modulo Xm + 1, we find that

χk(σ ) = π−1
0 (ψ−1(((X + 1)k · fσ (X)))).

Thus when χk(σ ) = σ for some k, we have (X + 1)k fσ (X) ≡ fσ (X) (mod X)m + 1. We
may assume that fσ (X) is invertible, since χ is shift invariant. So we find (X + 1)k ≡ 1
(mod Xm + 1). When k = 2o − 1, we find:

(X + 1)k ≡ 1 (mod Xm + 1) ⇐⇒ (X + 1)2
ordZ/mZ(2) ≡ X + 1 (mod Xm + 1)

⇐⇒ X2ordZ/mZ(2) ≡ X (mod Xm + 1)

⇐⇒ 2ordZ/mZ(2) ≡ 1 (mod m).

Thus we may conclude that the length of the cycle is a divisor of 2o − 1. �

There are many values for m where this length is exactly 2o − 1, but also many values of

m where it is a proper divisor of 2o − 1. In Tables 2 and 3 in Appendix 9.1 we list several of
these values.

We now give the number of states in the cyclic parts:

Proposition 11 Let n = 2m with m odd. Then from the states in Sn,0 that have period n,
exactly half lie in L0(C) for each component C.

Proof We know that the states σ such that (X + 1) | fσ (X) have two preimages. One of
those preimages ρ is such that (X + 1) | fρ(X), while the other, ρ′ has (X + 1) � fρ′(X).
(See Corollary 1.) If we restrict χ to {σ ∈ C : (X + 1) | fσ (X)}, then this restriction is
bijective, as every element has a unique preimage. Therefore these elements lie on disjoint
cycles, hence inL0(C). Thus at least half of the states in Sn,0 lie inL0(C). If (X +1) � fσ (X),
then σ has no preimage of the same period (see Corollary 4). Therefore, σ /∈ L0(C). Hence
at most half of the states in Sn,0 lie in L0(C). �


We can use Proposition 9 to figure out the same for larger periods.

Corollary 7 Let n = 2km with m odd. Then from the states in Sn,0 that have period n, exactly

one in every 22
k−1 lies in a cycle.

Proof For k = 1, we have Proposition 11. Using Proposition 9, we find that if we replace in
S2m,0 every application of χ by 2k−1 applications of χ , we get the snowflake in Sn,0. This
means that only the inner part is in a cycle, but there are 2k−1 layers of states outside the
cycle. Furthermore, since all but the last layer has states with two preimages inside Sn,0,
these layers get twice as big each layer. The outer layer has half of Sn,0 in it. Then each new
layer decreases the number by another half. There are 2k−1 layers. �


We can also express when a state appears in a cycle in a diagram like in Fig. 4.

Proposition 12 Let n = 2k · m where m is an odd integer and k ≥ 0. Let σ be a state of
period n in Sn,0, and fσ (X) its polynomial representation. If we have X2k−1 + 1 | fσ (X),
then σ appears in a cycle.
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Proof For k = 1, this follows from Proposition 11. When k > 1, we find from Corollary 7,
that one in every 22

k−1 lies in a cycle. By counting, the higher power of X +1, the polynomial
fσ (X) is divisible by, the closer it is to a cycle. By Proposition 6, we then find that the one
in every 22

k−1 occurs exactly at X2k−1 + 1 | fσ (X). �

Lastly, we show that components are isomorphic (as graphs).

Proposition 13 Let n be an arbitrary even integer and let C0, C1 be components of the state
diagram of χ restricted to Sn,0 ∪ Sn,1. Then #L0(C0) = #L0(C1).

Proof Since Sn,0 = τ(Sn,1), we know that the components in Sn,0 also appear once in Sn,1.
Therefore, we may assume C0 and C1 be components in the state diagram of χ restricted
to Sn,0. Let σ ∈ L0(C0) and τ ∈ L0(C1) be arbitrary. Write fσ (X) and fτ (X) as the
univariate polynomial representation for σ and τ . Applying χ to σ is just multiplying fσ (X)

by X + 1 modulo Xn + 1. We know that fσ (X) is divisible by X + 1. Therefore, we can also
regard f ′

σ (X) as fσ (X)/(X + 1). Then applying χ is multiplying f ′
σ (X) by X + 1 modulo

Xn−1 + Xn−2 + · · · + X + 1. Now in this ring F2[X ]/(Xn−1 + Xn−2 + · · · + X + 1), we
have that X + 1 is invertible. Furthermore, f ′

σ (X) and f ′
τ (X) differ by unit factor. I.e., there

exists some u(X) ∈ F2[X ]/(Xn−1 + Xn−2 + · · · + X + 1) such that f ′
σ (X) = u(X) f ′

τ (X).
Multiplication with a unit u(X) is an automorphism. Hence the behaviour of f ′

σ (X) under
(repeated) multiplication by X + 1 is the same as the behaviour of f ′

τ (X) under (repeated)
multiplication by X + 1. Hence the behaviours of σ and τ under repeated application of χ

are the same. �


6.3.2 Towards the cycle

Next, it is interesting to know for a state that is not on a cycle in which layer it is.

Proposition 14 Let σ = (σ0, . . . , σn−1)
∗ be a state in Sn,0 (or Sn,1) where n = 2k · m with

m > 1 odd. We have that χ
(σ ) is in the cycle (L0) if and only if fσ (X) has exactly 2k−1 − 


divisors X + 1. Furthermore, #Lk = #L0 · 2k .

Proof The first statement follows from Proposition 12 as an application of χ to σ is the same
as a multiplication of fσ (X) by X +1. Since every state has exactly two preimages, the latter
statement follows from this immediately. �

Corollary 8 Let n be an arbitrary even integer and let C0 and C1 be components of the state
diagram of χ restricted to Sn,0 ∪ Sn,1. Then #Lk(C0) = #Lk(C1) for all k ≥ 0.

Proof By Proposition 13 we know the statement for k = 0. For other k, this follows from
Proposition 14. �


6.3.3 Decreasing period under application of �

We have seen that sometimes a state propagates to a state of smaller period under χ . If this
happens, this decrease in period is only by a factor 2 (Corollary 3) per application of χ . In
this subsection, we give a criterion to recognize whether this will happen.

For any integer d , we can associate the integer ζ(d) to d , by setting all bits after the first
zero bit in its binary expansion to 0. For example, if we have d = 53, then ζ(d) = 48, as
53 =2 11010 in binary will be translated to 11000 =2 48.
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Proposition 15 Let n = 2k · m with m > 1 odd. Let σ be a state of period n in S0. Let η

and c be maximal such that gm(X)η | fσ (X) and (X + 1)c | fσ (X), where gm(X) = Xm+1
X+1 .

Write s := ζ(η) − c. Then

1. per(χ s(σ )) = n
2hw(ζ(η)) . In particular, per(χ
(σ )) = n

2hw(ζ(η)) when 
 → ∞;
2. σ ∈ Ls .

Proof In Proposition 5, we have seen that a state in Sn,0 has period dividing n/2 when
(Xn/4+1) | fσ (X). This extends by induction toσ has period dividing n/2i when (Xm+1)μ |
fσ (X), where

μ =
k−2∑

j=k−i−1

2 j = 2k−1 − 2k−i−1.

This shows the first statement.
Since application of χ to σ corresponds to multiplication of fσ (X) by X + 1, we deduct

c from η∗ to obtain the number of iterations s of χ needed ere χ s(σ ) ∈ L0. This proves the
second statement. �


Remark further, that (as in the binary tree), the number of layers for a given period doubles
over time. Take the cycle in the snowflake of period 6. There is the inner cycle, and one layer
of preimages outside of that, both of which have period 6. The next layer has period 12. After
that, the next two layers have period 24, while the next four layers have period 48, and so on.

Example 9 (A state of period 48) Consider the state σ of period 48 given by

σ = (000000101000000010001000101010000010101000100010)∗.

Note that σ has a zero in each odd position. We can thus write it as

(0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1)

by eliminating those zeroes. Its corresponding polynomial in F2[X ]/(X24 + 1) is

fσ (X) = 1 + X2 + X4 + X5 + X6 + X9 + X10 + X11 + X13 + X15 + X19 + X20.

We have fσ (X) = (X + 1)3 · (X2 + X + 1)7 · (X3 + X2 + 1). Thus, since 7 = 8 − 1, but
also 7 = 4+ 2+ 1, we see that after one application of χ , we have χ(σ) of period 24, since
then (X + 1)4 · (X2 + X + 1)4 = (X3 + 1)4 divides fχ(σ)(X). We have

fχ(σ)(X) = (X3 + 1)4 · X9 + X7 + X4 + X3 + X2 + X + 1

�→ X9 + X7 + X4 + X3 + X2 + X + 1

in F2[X ]/(X12 + 1). The factorisation of this polynomial is then easily found as: (X2 + X +
1)3 · (X3 + X2 + 1). Hence after two more applications of χ , we will have a state of period
12 in a similar fashion. Then after a final last application of χ , we end up in the inner cycle
of a snowflake of period 6. To work with the notation in Proposition 15, we have 48 = 24 · 3,
hence k = 4. We have c = 3. We see that 
1,4 = 24−1 − 24−1−1 = 4, hence χ(σ) has period
48/2 = 24. Similarly, 
3,4 = 24−1 − 24−3−1 = 7, hence χ4(σ ) has period 48/8 = 6.
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7 Non-periodic states

By working only with periodic states, we have left out the largest part of the set F
Z

2 , namely
the non-periodic states. Since #Sn = 2n , F̂2 = ⋃

n∈N∗ Sn , we find that F̂2 is countable.
Therefore, the set of non-periodic states is uncountable.

As a result, if one would to pick one arbitrary element of F
Z

2 uniformly random, then it
is almost certainly an element in F

Z

2 \F̂2. For practical reasons, we never need them, as the
uses in cryptography always work with something that can be constructed. We do give an
example of a state that has no finite period and see how χ operates on a state like this.

Example 10 We create a one-ended infinite string, recursively, by creating a sequence of finite
states:

Δ(0) = 1; Δ(n+1) = Δ(n)‖0n1.

The endresult, Δ := limn→∞ Δ(n) is then a string in F
N

2 that has no finite period. To make a
string that is actually in F

Z

2 , we just set Δn = Δ−n for n < 0.
For clarity, we print some bits of Δ, namely Δ0 until Δ56.

Δ = · · · 110100100010000100000100000010000000100000000100000000010 · · ·
When we apply χ to Δ, we obtain the following, where - upon repeating - one observes

where the anchors for χ are.

χ(Δ) = · · · 100110101010010100010100001010000010100000010100000001010 · · ·
χ2(Δ) = · · · 110100000011000101000100100010001000100001000100000100010 · · ·
χ3(Δ) = · · · 100100001011010001010110101010101010100101010100010101010 · · ·
χ4(Δ) = · · · 110100100010010100000100000000000000110000000101000000010 · · ·
Weproved in Theorem 4 thatχ is surjective on F̂2. In fact, we can prove thatχ is surjective

on F
Z

2 .
This requires some topological discussion:

Theorem 5 Let (X , T ) be a compact Hausdorff space and let A ⊂ X be dense. Let f : X →
X be a continuous map such that f|A : A → A is surjective. Then f is surjective.

Proof Since the image under a continuous map of a compact set has to be compact again, the
image of f needs to be compact (see [19], Theorem 17.7). Since (X , T ) is Hausdorff, this
means that the image of f needs to be closed (see [19], Theorem 17.5(b)). As the image of
f contains A by hypothesis, we find that the image of f is the entire space X , and hence f
is surjective. �

Theorem 6 The map χ : F

Z

2 → F
Z

2 is continuous and surjective.

Proof We bestow the discrete topology on F2 and create from that the product topology on
F
Z

2 . Then by Tychonoff’s Theorem (first proved in [17], [18], in more modern terminology
[19], Theorem 17.8), we find that F

Z

2 is compact. Next, F
Z

2 is Hausdorff, as any product of
Hausdorff spaces is again Hausdorff (see [19], Theorem 13.8(b)). We still have to show that
F̂2 is dense in F

Z

2 w.r.t. the product topology and that χ is continuous, then the result follows
from Theorem 5. Since F

Z

2 has the product topology, to show that χ is continuous, we only
need to show that for every i ∈ Z the map

πi ◦ χ = χ(i) : F
Z

2 → F2, (xn)∞n=−∞ �→ xi + (xi+1 + 1)xi+2
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is continuous (see [19], Theorem 8.8). (Here πi is the projection on the i th coordinate.) Let
i be arbitrary. We need to show that for each of the four open sets in F2, that the preimage
of that set is again open in the product space. For ∅ and F2 it is clear, as χ−1

(i) (∅) = ∅ and

χ−1
(i) (F2) = F

Z

2 . Consider {0} as an open set in F2. Since the output of χ(i) depends only on
three bits, the preimages are found as:

-----101-----

-----000-----

-----010-----

-----011-----

The indicated bits are those at positions i ,i + 1 and i + 2. The places where there is a dash,
can be freely chosen. We construct U = ∏

j∈Z U j where U j = F2 when j �= i, i + 1, i + 2,
U j = {1} when j = i, i + 2, and U j = {0} when j = i + 1. Then this set U contains
all preimages of the first form -----101----- while it is an open set. For the three forms of
remaining preimages we can choose a similar open set that contains all of them, and is open.
The union of these four sets is then again an open set in F

Z

2 and it is the entire preimage of
{0}.

The case of {1} as an open set inF2 is dealt with similarly, and then indeed,χ is continuous.
Then to show that F̂2 is dense in F

Z

2 , we use the criterion that a subset is dense if and only
if it intersects each base element of the topology.

The base sets of F
Z

2 are of the form B = ∏
i∈Z Ui with each Ui open and Ui �= F2 for at

most finitely many i . Take one such base set arbitrarily.
Without loss of generality, we may assume that Ui �= ∅ for all i . Fix all (finitely many)

i such that Ui �= F2. This gives us a finite set I = {i0, . . . , in−1} ⊂ Z. We may assume
i0 < · · · < in−1. Write 
 = in − i0.

We construct (zk)
in
k=i0

by setting zk ∈ Ui when k ∈ {i0, . . . , in}. Thenwe have constructed
a finite element (zk)

in
k=i0

∈ F


2 that we can extend to a periodic element by repeated this

(zk)
in
k=i0

on both sides. Write (z̃k)
∞
k=−∞ for this periodic element. Then (z̃k)

∞
k=−∞ ∈ F̂2.

Since zk ∈ Uk for each i0 < k < in and outside of these bounds Uk = F2, we find that
(zk)

∞
k=−∞ ∈ B. Hence B ∩ F̂2 �= ∅, and F̂2 is dense in F

Z

2 . �


8 Applications

In this section we describe two applications of the results obtained before. One is the formula
for the order of χn where n is odd. The other is to use χn as non-linear layer in ciphers for
even n.

8.1 Order of �n for odd n

Sinceχ maps states of odd period bijectively onto states of the same period, the corresponding
map χn is an element of the finite group of bijective maps on F

n
2. Therefore χn has a finite

order.

Corollary 9 (Order of χn) Let n > 0 be odd. Then

ord(χn) = 2�lg( n+1
2 )�.
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Table 1 Some values of ord(χn)

n 1 3 5 7 9 11 13 15 17 31 33 63 65 127 129

ord(χn) 1 2 4 4 8 8 8 8 16 16 32 32 64 64 128

Proof With notations as in the proof of Theorem 2:

ord(χn) = lcm
σ∈Sn

(#Oχ (σ ))

= max
σ∈Sn

(2�lg(di −1)�)

= 2�lg( n+1
2 )�

as required. The last step follows from the fact that the distance between two anchors is
maximal if the entire state contains just one anchor. �


Now that we have this formula ord(χn) = 2�lg( n+1
2 )�, we see that this is just the smallest

power of 2 that is greater than or equal to n+1
2 , or in other words, the largest power of 2 that

is smaller than n.
We conclude this subsection by referring to Table 1 for some values of the order of χn .

8.2 Using �n for even n as non-linear layer in ciphers

In this section, we give a start to the security analysis of constructions that do not require
a permutation. Those constructions usually use a permutation, but we think there should
be more research on cryptographic attacks on these constructions, to see whether it is not
possible to use, e.g., χn where n is even.

We start this of, by investigating collisions in an Even-Mansour [10] construction.
Therefore, we count the number of states in Sn := ⋃

d|n(Sd,0 ∪ Sd,1) for any n.
We know that #Sn = 2n and furthermore that

⋃
d|n Sd,0 contains precisely all elements

that have period dividing n with zeroes on each even position. Therefore, there are 2
n
2 such

elements. The same holds for
⋃

d|n Sn,1, hence #Sn = 2
n
2 +1 − 1.

If we draw an element uniformly random out ofSn has a probability of 2
n
2 +1−1
2n ≤ 21− n

2 to
be inside Sn . For instance, when n = 256, we have a probability of 2−127 to draw an element
in S256. We remark that when n goes to infinity, this expression converges exponentially to
0.

One way to randomize the inputs is by applying the Even-Mansour construction to build
a block cipher from a iterated permutation that has as its non-linear layer χn .

The Even-Mansour construction is built on a permutation F . On input P , one round in
the Even-Mansour construction outputs C := F(P ⊕ K1) ⊕ K2. The additions of K1 to P
randomizes the input bits to F .

When Even-Mansour is a block cipher, the function F often needs to be a permutation.
However, certain block cipher modes do not use the invertibility property of the function
F . In these cases, one could use (a function built on) a single circle χn where n is an even
number of bits, possibly 2k for some k ≥ 1. The probability of obtaining a collision after a

single round—when taking two inputs uniformly random—is ≈ 2n/2

22n , which for n = 128 is

2−192. However, an attacker can choose their queries specifically to obtain a probability of
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a collision as large as possible. For instance, with the Even-Mansour construction where the
internal function is χn with n = 256 bits, the attacker can choose two inputs with an input
difference equal to (01)

n
2 .

Thus one takes some inputs P and P ⊕ (01)
n
2 . From Lemma 9, we know that if P ⊕ K1 ∈

Sn,0, then χn(P ⊕ K1) = χn(P ⊕ (01)
n
2 ⊕ K1), hence we find a collision. For a fixed key

K1, this happens in precisely 2
n
2 choices for P . Therefore, one just needs to take n = 256

when striving for 128 bits of security.
We suggest that doing a full security analysis on related primitives/constructions, while

also taking into account other attack vectors, is an interesting topic for future research.
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9 Appendix

9.1 Tables for cycle lengths in snowflakes

In this section we give tables with values of odd m > 1 that have a certain cycle length with
respect to 2o − 1, where o = ordm(2). The first table lists those values of m, where the cycle
length is not equal to 2o − 1 (Tables 2, 3).

Table 2 Some values of m for
which the cycle does not attain
the length 2o − 1

11 13 19 25 27 29 37 41 43 53

57 59 61 67 81 83 95 97 99 101

107 109 111 113 121 125 131 137 139 145

149 157 163 169 171 173 177 179 181 185

193 197 199 201 203 205 209 211 227 229

241 243 249 251 265 269 277 281 283 289

293 297 305 307 313 317 321 325 331 347

349 353 361 363 371 373 377 379 387 389
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Table 3 For 1 < m < 39 odd,
some cycle lengths in the
snowflakes in S2m,0, in relation
to 2o − 1, where o is the order of
2 modulo m

m Cycle length 2o − 1 Quotient

3 3 3 –

5 15 15 –

7 7 7 –

9 63 63 –

11 341 1023 3

13 819 4095 5

15 15 15 –

17 255 255 –

19 9709 262,143 27

21 63 63 –

23 2047 2047 –

25 25,575 1,048,575 41

27 13,797 262,143 19

29 475,107 268,435,455 565

31 31 31 –

33 1023 1023 –

35 4095 4095 –

37 3,233,097 68,719,476,735 21,255
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