
BIP32-Compatible Threshold Wallets
Poulami Das 1 Andreas Erwig 2 Sebastian Faust 3

Philipp-Florens Lehwalder 3 Julian Loss 4 Ziyan Qu 3 Siavash Riahi 3

1 Least Authority , Germany
poulamidas22@gmail.com

2 TU Darmstadt, Germany
aerwig@posteo.de

3 TU Darmstadt, Germany
firstname.lastname@tu-darmstadt.de

4 CISPA Helmholtz Center of Information Security, Germany
lossjulian@gmail.com

Abstract
Cryptographic wallets are an essential tool to securely store and maintain users’ secret keys and

consequently their funds in Blockchain networks. A compelling approach to construct such wallets is
to share the user’s secret key among several devices, such that an adversary must corrupt multiple
machines to extract the entire secret key. Indeed, many leading cryptocurrency companies such as
Coinbase, Binance, or ZenGo have started offering such distributed wallets to their customers. An
important feature of a cryptographic wallet is its compatibility with the so-called BIP32 specification,
the most widely adopted standard for cryptographic wallets. Essentially, BIP32 specifies the notion
of a hierarchical deterministic wallet, which allows to create a key hierarchy in a deterministic fashion.
Unfortunately, despite significant interest, no practically efficiently solution for a fully distributed
wallet scheme, that also follows the BIP32 standard, exists.

In this work, we show the first concretely efficient construction of a fully distributed wallet that is
compliant with the BIP32 standard. To this end, we first provide a game-based notion of threshold
signatures with rerandomizable keys and show an instantiation via the Gennaro and Goldfeder
threshold ECDSA scheme (CCS’18). We then observe that one of BIP32’s key derivation mechanisms,
the so-called hardened derivation, cannot efficiently be translated to the threshold setting. Instead,
we devise a novel and efficient hardened derivation mechanism for the threshold setting that satisfies
the same properties as the original mechanism as specified by BIP32. As a final contribution, we
evaluate our solution with respect to its running time and communication cost.

1 Introduction
Blockchain technologies have gained huge popularity in the past few years, providing a new decentralized
mechanism to process payments without relying on a centralized authority. The main cryptographic
building block in virtually all Blockchains is a digital signature scheme, allowing Blockchain network
parties to authenticate transactions. As an example, if Alice wishes to make a payment to Bob via the
Blockchain, she can sign a transaction specifying her address, which is derived from her signing public
key pkA, Bob’s address, derived from his public key pkB and the amount being spent. Alice can then
sign the transaction tx := (pkA pays c coins to pkB) using her secret key skA and sends “(tx, σ)” to the
blockchain, where σ is Alice’s signature on tx under her secret key skA. Observe that knowledge of Alice’s
secret key allows to spend all of her funds, which makes it crucial for users in a Blockchain network to
protect their secret keys from attackers. To this end, users employ a so-called cryptographic wallet, which
is typically a piece of software or special-purpose hardware that securely stores and maintains the user’s
signing keys. Unfortunately, designing and implementing such cryptographic wallets securely has proven
inherently difficult, as demonstrated by countless devastating attacks resulting in the theft of several
billions worth of USD [Ske18, Blo18, Bit18].

Motivated by these attacks many leading cryptocurrency companies such as Coinbase1, Binance2, or
ZenGo3 develop distributed wallets, where the user’s signing key is split among several devices. That is,
each device only stores a share of the user’s signing key, such that an attacker would have to corrupt
several devices to steal the user’s funds. To sign a transaction, the devices that store the shares of
the signing key run a cryptographic protocol – a so-called threshold signature scheme. While threshold
cryptography was invented more than 30 years ago [DF90], its application in cryptocurrency wallets has
spurred new interest both by industry and academia in designing novel schemes that offer better efficiency
and advanced features (see e.g., [DMZ+21, CCL+20, CCL+21] and many more).

An important feature of cryptocurrency wallets is their compatibility with a standard for hierarchical
deterministic wallets called Bitcoin Improvement Proposal 32 (BIP32) [Wik18]. Initially put forth
by the cryptocurrency community in 2012, it is nowadays widely deployed by major wallets such as
Electrum [Ele13], Ledger [Led14], or Trezor [Tre14]. While the BIP32 standard has recently formally
been analyzed [DEF+21], an extension to the setting of distributed wallets is missing. This is unfortunate
as BIP32 offers important features that provide additional privacy and security (see below for background
on BIP32 and its features). While in principle the BIP32 standard can be distributed using techniques
from generic multiparty computation (MPC) [GMW87, CCD88, EGPS22, HHPV21, BDST20], this will
likely lead to significant overheads in terms of communication and computation; thus, it is unlikely that
such techniques are going to be used at massive scale in practice. Two recent works [Yeh23, CHL23]
study the use of BIP32 in the two-party setting, i.e., where the secret key is shared between two parties;
however, to date, no fully distributed solution for many parties exists. Therefore, in this work, we study
the following question:

Can we construct a concretely efficient, fully distributed wallet scheme that is compatible with the BIP32
standard?

1.1 Background on the BIP32 Standard
A hierarchical deterministic wallet scheme, as specified by the BIP32 standard, is organized in a tree-like
structure. The root wallet deterministically derives child wallets which in turn deterministically derive
further child wallets. We illustrate the high-level structure of a BIP32 wallet in Figure 1. As an illustrative
example, one may think of the key tree structure representing an organization, where in addition to
managing its own funds, a parent wallet can create wallets for members of the organization at a lower
level in the hierarchy (e.g., a group leader creating wallets for its group members).

Each wallet in the tree is identified by an ID and consists of a signing secret and public key pair
(skID, pkID) as well as a so-called chaincode chID. These keys can then be used to send and receive funds
and together with the chaincode derive child wallets. BIP32 considers two types of child wallet key
derivation: hardened and non-hardened. In the non-hardened mode, a parent wallet identified by ID
derives the key pair of a non-hardened child wallet with identifier ID′ as skID′ ← skID + H(pkID, chID, ID′)
and pkID′ ← pkID · gH(pkID,chID,ID′) where H is a cryptographic hash function. In the hardened mode, keys
are derived in exactly the same way, except that the hash function takes as input the parent’s secret key
skID instead of its public key pkID. The main difference between the hardened and non-hardened mode is
the level of security that they can offer, which we will discuss in a moment.

Das et al. [DEF+21] were the first to formally model and analyze hierarchical deterministic wallets
according to BIP32. Hierarchical deterministic wallets have to satisfy two security guarantees. Unlinkability
guarantees that signatures created by wallets derived from the same root are unlinkable as long as the
chaincode remains hidden. Unforgeability ensures that even if all public keys and the chaincodes leak, it
is hard to forge signatures. While unlinkability is typically easy to show, proving unforgeability is more
challenging since by revealing the chaincode the adversary gets to know a relation between all secret keys.
In addition, the hardened key derivation allows us to further strengthen the basic unforgeability notion.
To illustrate this, consider first the non-hardened key derivation. Here, if the non-hardened secret key
skID′ is leaked to an adversary that knows the parent chaincode chID, the adversary can compute the
parent secret key as skID ← skID′ −H(pkID, chID, ID′).4 This attack does not work on hardened secret keys

1https://www.coinbase.com
2https://www.binance.com
3https://zengo.com
4This vulnerability of BIP32 is also known as the privilege escalation attack.

2

https://www.coinbase.com
https://www.binance.com
https://zengo.com

Root

NH

NH H

H NH

NH NH

Figure 1: A hierarchical deterministic wallet scheme according to the BIP32 standard [Wik18]. H and
NH identifies hardened and non-hardened nodes respectively.

as it requires knowledge of the parent secret key. One may ask why in practice a user does not derive all
keys using the hardened derivation. The reason is usability, as a non-hardened public key can be derived
by any party knowing pkID and chID, i.e., without knowledge of the parent secret key, which is not the
case for the hardened derivation. A key derivation where the secret key is not required for deriving the
child public key is particularly useful in a setting where the secret key is stored in an offline device and
therefore not accessible.

To formally analyze the security of hierarchical deterministic wallets, Das et al. [DEF+21] assume
in their security model that non-hardened wallets are implemented in the hot/cold wallet setting. In
this setting, a non-hardened wallet consists of one online device (the hot wallet), which stores the public
key and the chaincode, and one offline device (the cold wallet), which stores the secret key and the
chaincode. It is then assumed that no adversary can corrupt the cold wallet (and therefore does not learn
the secret key) since it is mostly offline. With this assumption, the authors can avoid the above attack on
non-hardened secret keys. Unfortunately, this assumption is rather idealized and often does not hold
in practice. For instance, an adversary with physical access to the cold wallet device might be able to
extract the secret key from it. Even worse, in many practical use cases cold wallets simply cannot be
deployed. Consider for example a wallet holding funds of a node in the Lightning network or a wallet
controlling stake in a Proof of Stake protocol. All these use cases inherently require that secret keys are
permanently kept in hot storage, thus making them susceptible to attacks.

Conveniently, a distributed BIP32-compatible wallet can help to overcome the requirement of storing
secret keys of non-hardened nodes in a cold wallet. More precisely, if we distribute the secret key of a
non-hardened node among several (online) devices rather than implementing the node in the hot/cold
setting, an adversary can only learn the node’s secret key if it successfully corrupts several devices at
once. Assuming that an adversary cannot hack into several devices, which are potentially maintained and
protected by different wallet provider companies, seems to be a significantly more realistic assumption
than to assume that a single user-maintained offline device is incorruptible. Moreover, if the distributed
wallet is sufficiently efficient, the use-cases mentioned above can benefit from our solution.

Unfortunately, constructing efficient distributed BIP32-compatible wallet is challenging, in partic-
ular due to the hardened key derivation. Recall that to derive a hardened key, we need to compute
H(skID, chID, ID′), i.e., a hash function evaluation that receives the parent secret key as input. However, in
the distributed setting, the secret key is shared among several devices, i.e., the hash function must be
computed in a distributed manner. While this can be done via generic MPC techniques, such techniques
are inefficient, in particular when the number of devices holding key shares grows.

1.2 Our Contribution
In this work, we provide the first efficient fully distributed and BIP32-compatible wallet solution. To
this end, we design a novel hardened key derivation mechanism that relies on a threshold verifiable
random function (TVRF) [Dod03], which offers orders of magnitude better efficiency (both in terms of
computation as well as communication) than a naïve solution using generic MPC techniques. We combine
the distributed key derivation with a threshold ECDSA signature scheme. Our choice for ECDSA as
compared to other signature schemes is based on the following two reasons: 1) ECDSA is used by many
popular cryptocurrencies such as Bitcoin or Ethereum and 2) the BIP32 standard is defined w.r.t. ECDSA
and since our aim is to build a solution that is compatible with BIP32, ECDSA is a natural choice. We
summarize our contribution below:

3

1. We introduce threshold signature schemes with rerandomizable keys, a novel cryptographic primitive
that is essential for the construction of distributed BIP32 wallets. In a nutshell, this primitive is a
threshold signature scheme, which allows the parties to non-interactively rerandomize their signing
secret key shares such that the resulting shares again form a valid sharing of the scheme’s full secret
key. This primitive may be of independent interest.

2. We show how we can translate the (non-)hardened derivation mechanism as specified by BIP32 to
the threshold setting. Since the hardened derivation requires the distributed computation of a hash
function (which is highly inefficient), we devise a tailored protocol for distributing the hardened key
derivation which is efficient even for a large set of devices.

3. To substantiate our claims about the efficiency of our hardened derivation mechanism, we provide
an implementation and evaluation of our mechanism and compare it to a solution using generic
MPC techniques. Indeed, our evaluation shows that our distributed key derivation is more than
3.000 times more efficient than the generic MPC technique.

1.3 Related Work
Cryptographic Wallets. There has been a plethora of works on cryptographic wallets such as [MPs19,
AGKK19, KMOS21]. We focus on hierarchical deterministic wallets, which have been extensively re-
searched in the past. Gutoski and Stebila [GS15] introduced a hierarchical deterministic wallet scheme
that, however, deviates from the BIP32 standard. Later, Das et al. [DFL19] gave the first formal analysis
of deterministic wallets in the hot/cold setting and provided a construction based on multiplicatively
rerandomizable ECDSA. The model of deterministic wallets by Das et al. [DFL19] has been extended
to the post-quantum setting by Alkadri et al. [ADE+20]. Luzio et al. [LFA20] presented a hierarchical
deterministic wallet scheme, which is however not compatible with Bitcoin. The most relevant work for our
results is the paper by Das et al. [DEF+21] which analyzes the security of hierarchical deterministic wallets
that comply with the BIP32 standard. As mentioned previously, Das et al. show that such wallets can be
constructed generically from signature schemes with rerandomizable keys. Recently, Yin et al. [YLY+22]
proposed a model for hierarchical deterministic wallets supporting stealth addresses. However, their
construction is incompatible with Bitcoin as it relies on bilinear maps. Erwig and Riahi [ER] recently
proposed deterministic wallets with support for adaptor signatures and finally, in a very recent work,
Chuang et al. [CHL23] investigated how the BIP32 specification can be translated to the two-party setting.
That is, Chuang et al. presented two-party protocols for the key generation and hardened key derivation
as specified by BIP32, implemented these protocols and evaluated their efficiency. However, the work
of Chuang et al. is restricted to the two-party setting, whereas we investigate the more general (t, n) setting.

Threshold ECDSA. In recent years, there has been huge interest on threshold ECDSA (e.g., [LN18,
CGG+20, DMZ+21, CCL+20, CCL+21, BMP22]), especially due to the application for securing cryp-
tocurrency wallets. For a more in-depth comparison of different threshold ECDSA schemes, we refer
to the survey of Aumasson et al. [AHS20]. As mentioned above, our work is based on the threshold
ECDSA scheme of Gennaro and Goldfeder [GG18]. Groth and Shoup [GS22] introduced a threshold
ECDSA scheme with additive key rerandomization according to the BIP32 specification. However, the
authors do not consider the derivation of hardened nodes in the threshold setting, which is the main
focus of our paper. Groth and Shoup analyze their scheme in the ideal/real world setting w.r.t. an
ECDSA-specifc functionality, whereas we give a general game-based definition for threshold signature
schemes with rerandomizable keys and show that the construction of Gennaro and Goldfeder [GG18] can
be extended to satisfy our definition. Finally, their scheme is rather complex, whereas we are aiming for
a simple threshold ECDSA scheme.

2 Overview of our Solution
In our work, we consider thresholdizing non-hardened nodes within a BIP32 tree structure, s.t. each
node consists of several devices where each of them stores a share of the signing secret key. This design
choice allows to guarantee security even if a subset of the devices are corrupted. Our idea is to instantiate
non-hardened wallets with a (t, n)-threshold signature scheme such that each non-hardened wallet is

4

“split” into n different devices, each of which stores only a share of the signing secret key. As we are using
a (t, n)-threshold signature scheme, at least t + 1 devices are required to sign a message. Simultaneously,
the secret key of the non-hardened wallet remains secure as long as at most t devices are corrupted.
All n devices store the public key and chaincode, s.t. only a single device can derive a non-hardened
child public key without having to interact with the remaining n− 1 devices. In the following, we will
summarize our contribution in more detail.

Threshold Signature Schemes with Rerandomizable Keys. Das et al. [DEF+21] showed that one
can generically construct hierarchical deterministic wallets from signature schemes with rerandomizable
keys. Such signature schemes allow to deterministically rerandomize the secret/public key pair of a
signature scheme such that the rerandomized key pair constitutes again a valid signing key pair. In
our threshold setting, we therefore require a threshold signature scheme with rerandomizable keys. To
this end, we first provide a game-based definition of such a primitive, and show an instantiation based
on the threshold ECDSA scheme of Gennaro and Goldfeder [GG18], denoted as GG18. Importantly,
we devise public and secret key rerandomization algorithms which allow to rerandomize the respective
keys non-interactively, i.e., parties do not have to communicate to rerandomize the scheme’s public key
and their respective secret key shares. This is an important property for wallet schemes as we generally
aim to minimize communication between wallet devices. We intentionally choose the threshold ECDSA
scheme of GG18 for our instantiation for the following reasons: (1) the scheme is used in practice for
threshold wallet solutions, e.g., by BitGo 5; (2) it is relatively simple, i.e., it does not include advanced
features like offline signing or proactive/adaptive security which significantly increase the complexity of
other threshold ECDSA schemes; (3) several threshold ECDSA schemes directly build upon the protocol
of GG18 [CGG+20, DMZ+21, CCL+20, CCL+21], improving either efficiency, functionality, or security.
Since their general idea is similar to the original scheme of GG18, we believe that our results can be
extended to these schemes. We leave exploring such extensions as an interesting direction for future work.
(Non-)Hardened Node Derivation. As a second step, we translate the (non-)hardened derivation
mechanisms as specified by BIP32 to the threshold setting. To this end, we first observe that using the
public and secret key rerandomization algorithms of our rerandomizable threshold ECDSA scheme we
can derive non-hardened nodes according to BIP32. However, in order to securely send the rerandomized
secret key shares from the parent to the child node devices, we inherently require a communication heavy
protocol that re-shares the key shares from the parent to the child. We then show that the hardened node
derivation cannot easily be translated to the threshold setting due to the following issue: As mentioned
above, the hardened node derivation in BIP32 requires to compute a hash function evaluation on input
the secret key of the parent node (and some additional inputs). In the threshold setting, however, the
secret key is shared among n devices and hence, adhering to the hardened node derivation of BIP32 would
require all n devices to run an MPC protocol which securely computes this hash function evaluation.
However, the following two issues arise when considering the use of MPC: First, MPC protocols like
MOTION [BDST20] or TurboPack [EGPS22] focus on the semi-honest setting, while the hardened node
derivation should be secure against malicious adversaries. Second, even for highly optimized protocols
with malicious security [Kel20, HHPV21, GS20, AHKP24] the communication overhead is still significant.
In particular the computation of the SHA-512 hash function, which is used by the BIP32 standard, is
inherently expensive to compute via MPC [BST21, MPC20]. Hence, instead of using MPC protocols, we
provide an alternative, but concretely efficient and non-interactive hardened node derivation mechanism
that still satisfies all properties of the hardened node derivation as specified by BIP32.

Our mechanism uses a (non-interactive) threshold verifiable random function (TVRF) [Dod03], which
allows the n non-hardened node devices to deterministically and efficiently compute a pseudorandom value.
This value can be used by the hardened node as input to the key generation algorithm of a (non-threshold)
signature scheme to deterministically generate its keys. However, for this approach each non-hardened
wallet instance in the tree must maintain two secret/public key pairs: one for the threshold signing scheme
and one for the TVRF scheme. Similarly to the signing key pair, the TVRF keys must be deterministically
derived throughout the entire tree. That is, when deriving a non-hardened node, the parent must re-share
its signing and its TVRF keys, which introduces a significant communication overhead, considering that
we essentially double the amount of required communication for each non-hardened node derivation. We
note that the TVRF keys are only required for the derivation of hardened nodes. Yet, in practice most

5https://www.bitgo.de/

5

https://www.bitgo.de/

non-hardened wallets never derive a hardened child node and therefore would never make use of the
TVRF keys, essentially wasting the communication required to derive the keys.

Due to this reason, our idea to overcome the drawback of maintaining and deriving a second key pair is
to re-use the signing key pair of non-hardened nodes for the TVRF. While it is usually not recommended
to re-use the same secret key over multiple cryptographic primitives, we prove that in our concrete
case, re-using the same secret key does not compromise security. This constitutes the main technical
contribution of our work. To this end, we first formally define security properties for the joint threshold
signature/TVRF scheme, and we then prove that the combined scheme satisfies our properties. The
main challenge in our proof is that we must reduce the security of the joint scheme to the security of the
underlying TVRF scheme. The difficulty here is that an adversary against the joint scheme is allowed
to receive signatures under the schemes’ secret key, while the reduction to the TVRF security does not
obtain access to a signing oracle. The reduction therefore must simulate the signing protocol to the
adversary in the joint scheme without having access to a signing oracle itself.

3 Preliminaries
Notation. We use s $← H to denote the uniform random sampling of a value s from a set H. By [l] for
an integer l, we denote the set of integers {1, · · · , l} and for an algorithm A, we denote by y ← A(x) the
execution of A on input x that outputs y. We write y ∈ A(x) to denote that y is an element in the set
of possible outputs of an execution of A on input x. Throughout our paper, we often avoid explicitly
specifying public parameters par. Given two strings a and b, we write a = (b, ·) if b is a prefix of a. For a
set of n parties {P1, · · · , Pn} and an interactive algorithm Π, we denote by ⟨Π(x1), · · · , Π(xn)⟩ the joint
execution of Π by all parties Pi for i ∈ [n] with respective inputs xi.

3.1 Interactive Threshold Signatures
In the following, we recall the definition of interactive threshold signature schemes.

Definition 3.1 (Interactive Threshold Signature Scheme). An interactive (t, n)-threshold signature
scheme TSig is executed among a set of n parties {P1, · · · , Pn} and consists of a tuple of procedures
TSig = (Gen, TSign, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm takes as input a security parameter κ and two
integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares {sk1, · · · skn}
such that each party Pi obtains pk and ski.

• ⟨TSign(sk1, m), · · · , TSign(skn, m)⟩: The joint execution of the probabilistic signing algorithms, where
each of which takes as input a secret key share ski for i ∈ [n] and a message m, outputs either a
signature σ or ⊥.

• Verify(pk, m, σ): The deterministic verification algorithm takes as input a public key pk, a message m
and a signature σ and outputs a bit 0/1.

Correctness. An interactive (t, n)-threshold signature scheme TSig is correct if for all κ ∈ N, all
t, n ∈ N with t < n, all ({sk1, · · · , skn}, pk)← Gen(1κ, t, n), and all m ∈ {0, 1}∗, it holds that Pr[Verify(
pk, m, σ) = 1], where σ ← ⟨TSign(sk1, m), · · · , TSign(skn, m)⟩ = 1.

Definition 3.2 (Unforgeability of interactive threshold signature schemes). An interactive (t, n)-threshold
signature scheme TSig is unforgeable if no PPT adversary A wins game th-ufcma as described below
with more than negligible advantage. We define A’s advantage in game th-ufcmaTSig as:
AdvA

th-ufcmaTSig
:= Pr[th-ufcmaA

TSig = 1].

Game th-ufcmaTSig:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes a list SigList← {ϵ} and executes ({sk1, · · · , skn}, pk)← TSig.Gen(1κ, t, n). Then
A is run on pk and {ski}i∈C.

6

• The adversary obtains access to the following Sign oracle: On input message m, the oracle and the
adversary jointly execute the procedure TSig.TSign, where the oracle runs all honest parties Pi on
input (ski, m). The message m is then stored in SigList.

• Eventually, the adversary outputs a forgery σ∗ and a message m∗. The adversary wins the game, if
the following conditions hold: (1) TSig.Verify(pk∗, m∗, σ∗) = 1 and (2) m∗ /∈ SigList.

3.2 Signature Scheme with Honestly Rerandomizable Keys
The notion of signature schemes with rerandomizable keys has first been introduced by Fleischhacker et
al. [FKM+16].

Definition 3.3 (Signature Scheme with Perfectly Rerandomizable Keys). Let the public parameters
par define a randomness space R := R(par). A signature scheme with perfectly rerandomizable keys
is a tuple of algorithms RSig = (Gen, Sign, Verify, RandSK, RandPK) where (Gen, Sign, Verify) are the
standard algorithms of a signature scheme. The algorithms RandSK and RandPK are defined as follows:

• RandSK(sk, ρ): The deterministic secret key rerandomization RandSK takes as input a secret key sk
and randomness ρ ∈ R and outputs a rerandomized secret key sk′.

• RandPK(pk, ρ): The deterministic public key rerandomization RandPK takes as input a public key pk
and randomness ρ ∈ R and outputs a rerandomized public key pk′.

We recall the correctness definition and the security notion of one-per message existential unforge-
ability under honestly rerandomizable keys (uf -cma-hrk1) for signature schemes with rerandomizable
keys [DEF+21] in Appendix A.1.

3.3 Non-Interactive Threshold Verifiable Random Function
We recall the definition of a non-interactive threshold verifiable random function from Galindo et
al. [GLOW21].6

Definition 3.4 A non-interactive (t, n)-threshold verifiable random function (TVRF) is defined w.r.t.
to a randomness space Rand and is executed among n parties {P1, · · · , Pn}. It consists of a tuple of
algorithms TVRF = (Gen, PEval, Combine, Verify) which are defined as follows:

• Gen(1κ, t, n): The probabilistic key generation algorithm Gen takes as input a security parameter κ
and two integers t, n ∈ N such that t < n. It outputs a public key pk and a set of secret key shares
{sk1, · · · skn} such that each party Pi obtains pk and ski.

• PEval(m, ski, pk): The partial evaluation algorithm PEval takes as input a message m, a secret key
share ski, and a public key pk, and it outputs an evaluation share ϕi and a proof πi.

• Combine(pk, m,S, {ϕi, πi}i∈S): The combination algorithm
Combine takes as input a public key pk, a message m, a set of indices S with |S| > t, and a set of
partial evaluation shares {ϕi, πi}i∈S . It outputs either a function evaluation ϕ ∈ Rand and a proof π,
or ⊥.

• Verify(pk, m, ϕ, π): The verification algorithm Verify takes as input a public key pk, a message m, a
function evaluation ϕ ∈ Rand, and a proof π, and outputs 0 or 1.

Definition 3.5 (Uniqueness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is th-unique-secure if no PPT adversary A wins game th-unique as described below with
more than negligible advantage. We define A’s advantage in game th-uniqueTVRF as AdvA

th-uniqueTVRF
:=

Pr[th-uniqueA
TVRF = 1].

Game th-uniqueTVRF:
6We note that Galindo et al. refer to the primitive in their work as non-interactive fully distributed verifiable random

function.

7

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game runs (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Eval: On input message m and index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and returns (ϕi, πi).

– KeyLeak: On input i ∈ [n], the oracle outputs ski.

• Eventually, the adversary outputs a message m∗ and two function evaluations {(ϕi∗ , πi∗)}i∈{0,1}. The
game outputs 1 if ϕ0∗ ̸= ϕ1∗ and TVRF.Verify(pk, m∗, ϕ0∗ , π0∗) = TVRF.Verify(pk, m∗, ϕ1∗ , π1∗) = 1.
Else it outputs 0.

Definition 3.6 (Pseudorandomness of TVRF). A non-interactive (t, n)-threshold verifiable random
function scheme TVRF is th-prand-secure if no PPT adversary A wins game th-prand as described
below with more than negligible advantage. We define A’s advantage in game th-prandTVRF as
AdvA

th-prandTVRF
:= Pr[th-prandA

TVRF = 1]− 1
2 .

Game th-prandTVRF:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF.Gen(1κ, t, n). A receives
as input pk and {ski}i∈C.

• The adversary obtains access to the following oracle:

– Eval: On input message m and an index i ∈ [n]\C, the oracle executes (ϕi, πi)← TVRF.PEval(m, ski, pk)
and if (i, m) /∈ EvalList, stores the tuple (i, m) in EvalList. The oracle returns (ϕi, πi).

• Eventually, the adversary outputs a message m∗, a set of indices S with S > t, evaluation shares
{ϕi, πi}i∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the form (·, m∗) in
EvalList and if so, the game computes for j ∈ S \ C the tuple (ϕj , πj)← TVRF.PEval(m∗, skj , pk) and
(ϕ, π) ← TVRF.Combine(pk,S, {(ϕi, πi)}i∈S). If ϕ = ⊥, the game returns ϕ. Otherwise the game
chooses a bit b $← {0, 1} and does the following:

– If b = 0: Return ϕ.
– If b = 1: Sample ϕ′ $← Rand and output ϕ′.

The adversary then outputs a bit b′ and wins if b = b′.

Definition 3.7 (Robustness of TVRF). A non-interactive (t, n)-threshold verifiable random function
scheme TVRF is th-robust-secure if no PPT adversary A wins game th-robust as described below
with more than negligible advantage. We define A’s advantage in th-robustTVRF as AdvA

th-robustTVRF
:=

Pr[th-robustA
TVRF = 1].

Game th-robustTVRF:

• The game differs from game th-prandTVRF only by the winning condition, which we will describe
below.

• The adversary outputs a message m∗, a set S with |S| > t and a set of evaluation shares {ϕi, πi}i∈S∩C.
The game computes (ϕi, πi) ← TVRF.PEval(m∗, ski, pk) for all i ∈ S \ C. The game finally sets
(ϕ∗, π∗) ← TVRF.Combine(pk,S, {ϕi, πi}i∈S). If ϕ∗ ̸= ⊥ and TVRF.Verify(pk, m∗, ϕ∗, π∗) = 0, the
game outputs 1 and 0 otherwise.

We additionally recall the TVRF Construction of Galindo et al. [GLOW21] in Appendix A.2.

8

4 Rerandomizable Interactive Threshold Signing
4.1 Model
In the following, we introduce the notion of interactive threshold signature schemes with rerandomizable
keys. Specifically, we extend the standard notion of a threshold signature scheme by two algorithms
RandSK and RandPK, which allow to derive rerandomized secret key shares and a rerandomized public
key, respectively, such that the derived secret key shares form a valid (t, n)-sharing of the secret key
corresponding to the derived public key.

Definition 4.1 (Interactive Threshold Signature Scheme With Rerandomizable Keys). An interac-
tive (t, n)-threshold signature scheme with rerandomizable keys is a tuple of procedures RTSig =
(Gen, RandSK, RandPK, TSign, Verify) where (Gen, TSign, Verify) are defined as for interactive (t, n)-threshold
signatures. We assume that the public parameters par define a randomness space R := R(par). The
algorithms RandSK and RandPK are defined as:

• RandSK(i, ski, ρ): The deterministic secret key share rerandomization takes as input an index i ∈ [n],
a secret key share ski and a randomness ρ ∈ R and it outputs a rerandomized secret key share sk′

i.

• RandPK(pk, ρ): The deterministic public key rerandomization takes as input a public key pk and a
randomness ρ ∈ R and it outputs a rerandomized public key pk′.

We require the following properties of a threshold signature scheme with rerandomizable keys:

• Rerandomizability of public keys: For all κ ∈ N, all t, n ∈ N with t < n, all (·, pk) ← Gen(1κ, t, n)
and all ρ $← R, the distributions of pk′ and pk′′ are computationally indistinguishable, where pk′ ←
RandPK(pk, ρ) and (·, pk′′)← Gen(1κ, t, n).

• Correctness under rerandomized keys: For all κ ∈ N, all t, n ∈ N with t < n, all ({sk1, · · · , skn}, pk)←
Gen(1κ, t, n), all ρ $← R, and all messages m ∈ {0, 1}∗, for the rerandomized keys {sk′

i}i∈[n] ←
{RandSK(i, ski, ρ)}i∈[n] and pk′ ← RandPK(pk, ρ) it holds that: Pr[Verify(pk′, m, σ)] = 1, with the
signature σ as σ ←

〈
TSign(sk′

1, m), · · · , TSign(sk′
n, m)

〉
.

We note that the property of rerandomizability of public keys is a slightly weaker notion than the
perfect rerandomizability of keys of rerandomizable signature schemes (cf. Def. 3.3) which requires
rerandomized public and secret keys to be identically distributed to a freshly generated key pair. However,
as previously pointed out by Alkadri et al. [ADE+20], this weaker rerandomizability property is sufficient
for the wallet setting. At a high level, that is because this notion is required for the wallet unlinkability
property, which guarantees unlinkability of wallet public keys, i.e., it guarantees that a derived public key
is computationally indistinguishable from freshly generated public keys.

We define the security notion of one-per message existential unforgeability under honestly rerandom-
izable keys for interactive threshold signature schemes with rerandomizable keys. That is, we define a
security game th-ufcma-hrk1 which differs from the unforgeability game th-ufcma (cf. Def. 3.2) of
interactive threshold signatures in the following ways: (1) the adversary receives access to a Rand oracle,
which outputs uniformly random elements from R; (2) the signing oracle RSign can generate signatures
under the initial key set ({sk1, · · · , skn}, pk), as well as under key sets rerandomized with an element
output by the Rand oracle; (3) the signing oracle returns at most one signature for each key set/message
pair; and (4) the adversary can win the game with a valid forgery under any key set rerandomized with
an output of the Rand oracle. We note that the notion of one-per message unforgeability is weaker than
standard unforgeability, however, as remarked by Das et al. [DEF+21] this weaker notion is sufficient for
the wallet setting.

Definition 4.2 (One-per message unforgeability of interactive threshold signature schemes with honestly
rerandomizable keys). An interactive (t, n)-threshold signature scheme with rerandomizable keys RTSig =
(Gen, RandSK, RandPK, TSign, Verify) is secure under th-ufcma-hrk1 if no PPT adversary A wins game
th-ufcma-hrk1 as described below with more than negligible probability in the security parameter κ.

Game th-ufcma-hrk1RTSig:

9

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes two lists RList ← {ϵ} and SigList ← {ϵ} and executes ({sk1, · · · , skn}, pk) ←
RTSig.Gen(1κ, t, n). Then, A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following two oracles:

– Rand: This oracle, upon a query, samples ρ $← R, stores ρ in RList and outputs ρ to A.
– RSign: On input message m and a randomness ρ, the oracle checks whether ρ /∈ RList and if so

outputs ⊥. Otherwise, it derives a public key and secret key shares for honest parties with the
randomness ρ, i.e., it computes pk′ ← RTSig.RandPK(pk, ρ) and sk′

i ← RTSig.RandSK(i, ski, ρ) for
all i ∈ {1, · · · , n} \ C. If (pk′, m) ∈ SigList then the oracle returns ⊥. Otherwise, the oracle and the
adversary jointly execute the procedure RTSig.TSign, where the oracle runs all honest parties Pi on
input (sk′

i, m). The oracle then stores the tuple (pk′, m) in SigList.

• Eventually, the adversary outputs a forgery σ∗, a message m∗ and a public key pk∗ ← RTSig.RandPK(pk, ρ∗).
The adversary wins the game, if the following conditions hold: (1) ρ∗ ∈ RList, (2) (pk∗, m∗) /∈ SigList,
and (3) RTSig.Verify(pk∗, m∗, σ∗) = 1.

4.2 Construction
We show how to extend the interactive threshold ECDSA scheme as proposed by GG18 [GG18] (which
we denote by GG[H0] and recall in detail in Appendix B) to an interactive threshold ECDSA scheme with
rerandomizable keys (which we denote by rGG[H0]). In Figure 2, we describe our rGG[H0] scheme w.r.t.
the GG[H0] scheme. Recall that the ECDSA signature scheme is defined w.r.t. a cyclic group G = ⟨g⟩ of
prime order q and that an ECDSA key pair (pk, sk) is simply computed as sk $← Zq and pk← gsk. In the
GG[H0] scheme, the secret key is shared such that each party Pi holds a secret key share ski and a public
key share gski . In our rGG[H0] scheme, we extend the GG[H0] scheme by providing algorithms RandSK
and RandPK which deterministically rerandomize the secret key shares and the public key respectively
w.r.t. a randomness ρ. At a high level, in order to rerandomize the secret key share ski of party Pi with
randomness ρ, the RandSK algorithm deterministically generates a degree-t polynomial F with coefficients
in Zq and evaluates the polynomial at point i. This essentially yields a randomness share ρi, which is
then added to the existing secret key share to compute the rerandomized secret key share sk′

i ← ski + ρi

mod q. That is, sk′
i is essentially a share of the secret key sk + ρ mod q. The RandPK algorithm works

correspondingly for the public key and public key shares.
The security of our rGG[H0] scheme can be proven via a reduction to the (one-per message) unforge-

ability of the ECDSA scheme with rerandomizable keys by Das et al. [DEF+21] (see Appendix A.3). Note
that the scheme of Das et al. is public key prefixed, i.e., whenever a message m is signed using secret key
sk, the message is first prefixed with the corresponding public key pk, s.t. the signature is generated for
(pk, m). Since we reduce the security of our rGG[H0] scheme to the (one-per message) unforgeability of
the scheme of Das et al., we require public key prefixing in our scheme as well.

It is easy to see that the rGG[H0] scheme satisfies the correctness under rerandomized keys property.

Lemma 4.3 Let H0 : {0, 1}∗ → Zq be a hash function modeled as a random oracle and let the discrete
logarithm problem be hard in G. Then the interactive (t, n)-threshold ECDSA scheme with rerandomizable
keys rGG[H0] satisfies the rerandomizability of public keys property.

Proof Sketch. We can prove the above lemma via reduction to the discrete logarithm problem. At a high
level, assume there exists a PPT adversary A that can distinguish the following distributions

{pk, pk′ | (·, pk)← Gen(1κ, t, n), ρ $← R, pk′ ← RandPK(pk, ρ)}
{pk, pk′′ | (·, pk)← Gen(1κ, t, n), (·, pk′′)← Gen(1κ, t, n)}

with more than negligible probability, then we can construct a PPT adversary B that breaks the discrete
logarithm problem with a related probability. In the following, we sketch how this reduction proceeds:
adversary B receives a discrete logarithm challenge gρ as input. B then samples (·, pk)← Gen(1κ, t, n)
and computes pk′ by executing algorithm RandPK(pk, ρ), however with the following differences: (1) it

10

Algorithm Gen(1κ, t, n)
00 Return GG.Gen(1κ, t, n)
Algorithm RandSK(i, ski, ρ)
00 For k ∈ [t] : ak ← H0(ρ, k)
01 Let F (x) := atx

t + · · ·+ a1x + ρ
02 ρi ← F (i) mod q
03 sk′

i ← ski + ρi mod q
04 Return sk′

i

Protocol TSign(ski, m)
00 m′ ← (pk, m)
01 Return GG.TSign(ski, m′)

Algorithm RandPK(pk, ρ)
00 Parse pk := (X, (X1, · · · , Xn))
01 For k ∈ [t] : ak ← H0(ρ, k)
02 Let F (x) := atx

t + · · ·+ a1x + ρ
03 ρi ← F (i) mod q
04 For i ∈ [n] : X ′

i ← Xi · gρi

05 Return pk′ := (X · gρ, (X ′
1, · · · , X ′

n))

Algorithm Verify(pk, m, σ)
00 m′ ← (pk, m)
01 Return GG.Verify(pk, m′, σ)

Figure 2: Public key prefixed interactive threshold ECDSA scheme rGG[H0] with honestly rerandomizable
keys based on the GG[H0] scheme for a hash function H0 : {0, 1}∗ → Zq. For brevity, we denote scheme
GG[H0] by GG.

samples the coefficients ak for k ∈ [t] of polynomial F uniformly at random from Zq instead of computing
them as H0(ρ, k); and (2) it evaluates polynomial F only in the exponent, i.e., it computes gρi ← gF (i)

for i ∈ [n].7 Note that A can only detect these changes if it queries the random oracle H0 on input (ρ, k).
However, if A makes a query of this form, adversary B learns ρ, which is the discrete logarithm of its
discrete logarithm challenge gρ. Otherwise, public key pk′ is identically distributed to a freshly generated
public key pk′′.

Theorem 4.4 Let PKE be a semantically secure linearly homomorphic encryption scheme, ZK be a
non-interactive zero-knowledge proof system and CT a non-malleable and equivocable commitment scheme.
Further, let the DDH assumption hold in G and let rECDSA[H0] be the uf -cma-hrk1-secure ECDSA
scheme with rerandomizable keys as described in Appendix A.3. Then the interactive (t, n)-threshold
ECDSA scheme with rerandomizable keys rGG[H0] as described above is th-ufcma-hrk1-secure.

Proof Sketch. Gennaro and Goldfeder prove the GG[H0] scheme unforgeable via reduction to the unforge-
ability of the single party ECDSA signature scheme. That is, they provide a reduction that simulates game
th-ufcmaGG[H0] (cf. Definition 3.2) while having access to a signing oracle that outputs ECDSA signatures
for adaptively chosen messages. Gennaro and Goldfeder prove that this simulation is computationally
indistinguishable from the real game to a PPT adversary. We recall the simulation in Appendix B. We can
prove the above theorem in the same way, with the difference that we reduce the th-ufcma-hrk1rGG[H0]
security to the uf -cma-hrk1rECDSA[H0] security. That is, we have to provide a reduction that simulates
game th-ufcma-hrk1rGG[H0] to a PPT adversary while having access to the RSign and Rand oracles of
game uf -cma-hrk1rECDSA[H0]. In fact, we can use the same simulation as the one from GG18 with the
following differences: (1) Upon the adversary querying the Rand oracle in game th-ufcma-hrk1rGG[H0],
the reduction relays the query to its own Rand oracle in game uf -cma-hrk1rECDSA[H0]; (2) Upon the
adversary querying oracle RSign in game th-ufcma-hrk1rGG[H0] on input a message m and random-
ness ρ, the reduction first rerandomizes the secret key shares ski of the corrupted parties Pi ∈ C as
sk′

i ← RandSK(i, ski, ρ) as well as the public key pk′ ← RandPK(pk, ρ). The reduction then queries its
own signing oracle on input m and ρ and uses the resulting signature and the rerandomized keys for the
simulation of the RSign oracle of game th-ufcma-hrk1rGG[H0]. These changes do not have any impact on
the indistinguishability arguments and reduction from GG18. Note that, since we essentially repeat the
proof of GG18, we must also repeat the assumptions their proof relies on in our theorem statement.

5 BIP32-Compatible Threshold Wallets
In order to construct threshold BIP32 wallets, we require two ingredients, namely (1) a threshold signature
scheme with rerandomizable keys, and (2) mechanisms for the derivation of non-hardened and hardened
wallets in the threshold setting. With requirement (1) in place, we will discuss in this section how
the respective wallet derivations of a BIP32 wallet can be implemented in the threshold setting. In

7This step is necessary because B only knows gρ but not ρ. Therefore, B can only compute F in the exponent.

11

particular, we consider the following setting for our threshold BIP32 wallet: All non-hardened wallets
are thresholdized, i.e., each non-hardened wallet consists of n devices which execute a (t, n)-threshold
signature scheme with rerandomizable keys. We assume throughout the paper that t ≤ n−1

2 for all
non-hardened nodes. That is, the security of a non-hardened wallet relies on the assumption that at most
t devices of this wallet instance are corrupted. If an adversary can corrupt t + 1 or more devices of a
non-hardened instance, it can execute a privilege escalation attack, where the adversary can compute
the secret keys of all parent wallet instances. Hardened wallets, on the other hand, are single devices
(i.e. not thresholdized), since the corruption of a hardened wallet does not affect the security of the
remaining wallets in the tree. Similar to the modeling of BIP32 wallets by Das et al. [DEF+21], we do not
allow hardened wallets to derive child wallets, i.e., hardened wallets always represent leaves in the wallet
tree. Therefore, we assume that in both cases, i.e., the non-hardened and hardened wallet derivation,
the parent wallet is non-hardened and thresholdized. Recall that BIP32 specifies the (non-threshold)
derivation mechanisms as follows: A non-hardened node with identifier ID′ is derived from a parent node
with identifier ID, key pair (skID, pkID) and chaincode chID by computing (ρ, chID′) ← H(pkID, chID, ID′),
skID′ ← skID + ρ and pkID′ ← pkID · gρ. The derivation of a hardened node works in the same way only
that the tuple (ρ, chID′) is computed as H(skID, chID, ID′). We now analyze these derivation mechanisms
for the threshold setting w.r.t. to our threshold signature scheme with rerandomizable keys rGG[H0] in
more detail.

5.1 Non-Hardened Node Derivation
The derivation of non-hardened nodes in the threshold setting is fairly straightforward and follows the
ideas of the BIP32 standard. Essentially, a non-hardened parent node identified by ID and consisting
of n devices s.t. each device stores a secret key share ski,ID and the chaincode chID can derive a
thresholdized non-hardened child wallet as follows: First, each device of the parent node computes locally
(ρ, chID′) ← H(pkID, chID, ID′) and ski,ID′ ← rGG[H0].RandSK(i, ski,ID, ρ). Then the devices of the parent
node must forward the rerandomized secret key shares ski,ID′ and the chaincode chID′ to the n devices
of the child node. The forwarding of the chaincode chID′ is straightforward, since we assume an honest
majority among the parent devices and since each parent device knows chID′ . That is, all parent devices
can simply send chID′ to all child devices. Each child device then receives at least t + 1 times the value
chID′ which it uses as the node’s chaincode. The forwarding of the secret key shares ski,ID′ is more
involved and requires a protocol involving 2n devices (n child and n parent wallet devices) of which a
total of 2t devices can be corrupted. Note that a simple forwarding of secret key share ski,ID′ to the i-th
device of the child wallet is insecure as it allows an adversary to learn a total of 2t secret key shares.
Instead, the 2n devices must engage in the execution of a dynamic proactive secret sharing (DPSS)
scheme (e.g., [BDLO15, MZW+19, SLL]), which allows to securely handover the rerandomized key shares
to the devices of the child node even in the presence of 2t corrupted devices. Note that DPSS schemes
typically incur a significant communication overhead since all 2n parties must interact with each other.

5.2 Hardened Node Derivation
The main challenge when considering BIP32 wallets in the threshold setting is designing a derivation
mechanism for hardened nodes. Recall that the derivation of a hardened node according to BIP32 requires
the computation of (ρ, chID′) ← H(skID, chID, ID′), i.e., the evaluation of a hash function on input the
parent secret key. In the threshold setting, however, the secret key skID is shared among n devices such
that no single device knows the full key. It is therefore not at all clear how H(skID, chID, ID′) can be
computed efficiently without naively reconstructing skID (which would trivially break the security of
the wallet). Furthermore, in the hardened derivation, each parent device can only learn a randomness
share ρi instead of the entire randomness ρ. To see why that is, consider the setting where an adversary
corrupts the hardened node, thereby learning its secret key skID + ρ, as well as a parent node device,
thereby learning ρ. The adversary could then trivially learn the parent node’s secret key.

One obvious (and to the best of our knowledge the only) way to resolve the above issues is using
generic multi-party computation (MPC) techniques [GMW87, Gol04, CCD88], which allow to securely
compute any function in a distributed setting without revealing the function inputs. However, generic
MPC is inherently inefficient, in particular since the BIP32 standard uses the well-known hash function
SHA-512, which is known to be only inefficiently computable via MPC [BST21].

12

An Improved Derivation Mechanism Due to the above limitation, we consider a more efficient
hardened node derivation mechanism, which achieves the same properties as the one originally specified
in BIP32. We circumvent the inefficient distributed SHA-512 execution by letting the devices of the
non-hardened parent wallet jointly and deterministically generate a random seed in such a way that
only the hardened node but no parent device learns the seed. The hardened node can then use this seed
as input to the key generation algorithm of a (non-threshold) signature scheme (ECDSA in our case)
to deterministically generate its key pair. Said differently, instead of having the parent wallet devices
rerandomize their secret key shares and forward them to the hardened wallet, we simply let the parent
devices generate a random value from which the hardened node can deterministically derive its own keys.
For the computation of the random seed, we employ the threshold verifiable random function (TVRF)
from [GLOW21]. A (t, n)-TVRF is a cryptographic primitive that is executed by n parties, where each
party Pi knows a secret key share ski, which it can use to deterministically compute an evaluation share ϕi

and proof πi on a message m. Given at least t + 1 evaluation shares for m, any party can deterministically
compute a pseudorandom value ϕ and a proof π and given the public key pk, ϕ and π, any party can
verify that ϕ was computed correctly. We recall the formal definition of a TVRF in Section 3.3.

We use the TVRF for the hardened wallet derivation in the following way: Each device of the non-
hardened parent node maintains a secret key share for the TVRF and, upon the derivation of a hardened
node with identifier ID, it uses this share to compute an evaluation share ϕi and the corresponding proof
πi on ID. It then sends (ϕi, πi) to the hardened node, which combines t + 1 shares to a pseudorandom
seed ϕ. The hardened node then verifies the correctness of ϕ using the public key of the TVRF. Note
that any set of t + 1 correct evaluation shares will yield the same seed, but including only a single invalid
evaluation share will lead to a different (incorrect) seed. Therefore, the verifiability of the seed is crucial
to our solution. We use the TVRF from [GLOW21] which is not only deterministic and one-way but also
non-interactively computable, therefore exhibiting the same properties as the original BIP32 derivation
mechanism. We present our improved hardened node derivation mechanism pictorially in Figure 3.

(ϕ1, π1) ← TVRF.PEval(ID, sk1, pk)

NH1(sk1, pk)

(ϕ2, π2) ← TVRF.PEval(ID, sk2, pk)

NH2(sk2, pk)

(ϕ3, π3) ← TVRF.PEval(ID, sk3, pk)

NH3(sk3, pk)

(ϕ, π) ← TVRF.Combine(pk, ID,S, {ϕi, πi}i∈S)
If TVRF.Verify(pk, ID, ϕ, π) = 1

Then compute (pkID, skID) ← ECDSA.Gen(1κ; ϕ)

HN ID(pk)

(ϕ1, π1)
(ϕ2, π2)

(ϕ3, π3)

Figure 3: The improved hardened node derivation mechanism in the threshold setting. Each of the three
devices NH1, NH2, NH3 of the non-hardened parent node stores a TVRF public key pk and secret
key share ski for i ∈ [3]. To derive a hardened node HN with identity ID, each non-hardened device
locally evaluates the TVRF on input ID and sends the resulting evaluation share to HN. The hardened
node then chooses a subset S of [3], combines the corresponding evaluation shares to a full random value
ϕ, verifies that the non-hardened devices in S behaved honestly, and then uses ϕ as input to the key
generation algorithm of the ECDSA signature scheme. Note that this key generation is deterministic, as
we explicitly give the randomness ϕ as input.

The Final Derivation Mechanism While the above solution is compatible with BIP32, it has the
significant drawback that each non-hardened device must maintain two secret key shares, one for the
signature scheme and one for the TVRF. As a consequence, each device requires double the storage
space which is an issue for space restricted devices. There is however another, more severe issue with
the above solution. Similar to the signing keys, the TVRF keys must be deterministically derived
throughout the wallet tree via executions of a communication heavy DPSS scheme. This incurs a
significant communication overhead, especially since all non-hardened nodes must derive TVRF keys
irrespectively of whether they want to derive a hardened node or not.

We observe that both, the DDH-based TVRF scheme of [GLOW21] (which we denote by TVRF and
recall in Appendix A.2) and the ECDSA signature scheme, operate over a cyclic group G = ⟨g⟩ of prime
order q and use secret/public key pairs sk $← Zq and pk ← gsk. The security of TVRF relies on the
assumption that DDH is hard in G. Bitcoin, Ethereum and several other cryptocurrencies use the group

13

G identified by the elliptic curve secp256k1, for which dlog and DDH are assumed to be hard. Therefore,
our idea to mitigate the above issues is to use only a single key pair for both schemes. This allows
non-hardened wallets to re-use their signing secret key shares for the TVRF during the hardened node
derivation, thereby avoiding the overhead of maintaining a second key pair per wallet.

In the remainder of this section, we define a cryptographic scheme that consists of the joint procedures
of the rGG scheme from Section 4 and of the DDH-based TVRF scheme, but that uses the same key pair
for all procedures. We then define security properties and prove the scheme secure w.r.t. these properties.

5.3 Joint Threshold Signature/TVRF Scheme
We define a scheme (t, n)-TVRF-rGG[H0, H1], which consists of all procedures of the interactive (t, n)-
threshold ECDSA scheme with rerandomizable keys rGG[H0] and the non-interactive (t, n)-threshold veri-
fiable random function scheme TVRF[H1], except that it uses only one of rGG[H0].Gen and TVRF[H1].Gen.
Concretely, TVRF-rGG[H0, H1] consists of the procedures

TVRF-rGG[H0, H1] =(rGG[H0].Gen, rGG[H0].RandSK, rGG[H0].RandPK, rGG[H0].TSign,

rGG[H0].Verify, TVRF[H1].PEval, TVRF[H1].Combine, TVRF[H1].Verify).

For simplicity, we sometimes abbreviate the schemes TVRF-rGG[H0, H1], rGG[H0] and TVRF[H1] by
TVRF-rGG, rGG and TVRF respectively. The TVRF-rGG scheme must satisfy the security properties
pseudorandomness, uniqueness, and robustness. These security notions essentially combine the respective
security properties of the TVRF scheme with the one-more unforgeability notion of our rGG scheme. That
is, for each of the above security notions, we define a game, where an adversary (1) can corrupt t parties,
(2) receives oracle access to all oracles of the one-more unforgeability game (i.e., th-ufcma-hrk1) and all
oracles of the respective TVRF property (e.g., pseudorandomness), and (3) can win the game by either
breaking the one-more unforgeability of rGG (Case 1) or the TVRF property (Case 2).

5.3.1 Pseudorandomness of TVRF-rGG

In the following we define the pseudorandomness property of TVRF-rGG via a game unf -prand and prove
that TVRF-rGG satisfies this property. Later in Section 5.3.2, we provide the uniqueness and robustness
definitions and argue that the TVRF-rGG scheme satisfies them.

Definition 5.1 (Pseudorandomness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is unf -prand-secure
if no PPT adversary A wins game unf -prand as described below with more than negligible advantage.
We define A’s advantage in game unf -prand as

AdvA := Pr[unf -prandA
TVRF-rGG = 1|Case 1] · Pr[Case 1]

+
(

Pr[unf -prandA
TVRF-rGG = 1|Case 2]− 1

2

)
· Pr[Case 2],

where Pr[Case 1] and Pr[Case 2] denote the probabilities that A tries to win game unf -prand via
Case 1 or Case 2 respectively.

Game unf -prandTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ}, RList← {ϵ} and EvalList← {ϵ} and executes (pk, {sk1, · · · , skn})←
TVRF-rGG.Gen(1κ, t, n). A receives as input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game th-ufcma-hrk1rGG.
– RSign: Same as in game th-ufcma-hrk1rGG.

14

– REval: On input message m, index i ∈ [n] \ C and randomness ρ, check if ρ ∈ RList and abort
otherwise. The oracle executes

(pk′, sk′
i)←(TVRF-rGG.RandPK(pk, ρ), TVRF-rGG.RandSK(i, ski, ρ)),

(ϕi, πi)←TVRF-rGG.PEval(m, sk′
i, pk′)

and if (i, m, ρ) /∈ EvalList, stores the tuple (i, m, ρ) in EvalList. The oracle returns (ϕi, πi).

• The adversary wins the game if it wins either of the following cases:

– Case 1: Same as in game th-ufcma-hrk1rGG.
– Case 2: The adversary outputs a message m∗, a randomness ρ∗, a set of indices S with |S| > t and

evaluation shares {ϕk, πk}k∈S∩C. The game checks if there are less than t − |S ∩ C| tuples of the
form (·, m∗, ρ∗) in EvalList and if ρ∗ ∈ RList. If so, for i ∈ S \ C the game computes

(pk′, sk′
i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),

(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′
i, pk′)

(ϕ, π)←TVRF-rGG.Combine(pk′,S, {(ϕj , πj)}j∈S).

If ϕ = ⊥, the game returns ϕ. Otherwise the game chooses a bit b $← {0, 1} and does the following:
∗ If b = 0: Return ϕ.
∗ If b = 1: Sample ϕ′ $← G and output ϕ′.
The adversary then outputs a bit b′ and wins if b = b′.

Theorem 5.2 Let H0 : {0, 1}∗ → Zq, H1 : {0, 1}∗ → G be hash functions modeled as a random oracle.
Let rGG[H0] be the th-ufcma-hrk1-secure interactive (t, n)-threshold ECDSA scheme with rerandomizable
keys from Section 4.2 and let TVRF[H1] be the th-prand-secure (t, n)-threshold verifiable random function
as described in Appendix A.2. Further, let PKE be a semantically secure linearly homomorphic encryption
scheme, ZK and DLEq as described in Appendix A.2 be non-interactive zero-knowledge proof systems,
CT a non-malleable and equivocable commitment scheme and the DDH assumption hold in G. Then the
(t, n)-TVRF-rGG[H0, H1] scheme as described above is unf -prand-secure.

Proof. In order to prove this theorem we provide a reduction either to the one-more unforgeability of
the rGG scheme, i.e., to the th-ufcma-hrk1 security of rGG or to the pseudorandomness property of the
TVRF scheme, i.e., to the th-prand security of TVRF. In other words, we show that if a PPT adversary
A is able to win the unf -prandTVRF-rGG game with more than negligible advantage, then we can construct
a PPT adversary B which can either win the th-ufcma-hrk1rGG or the th-prandTVRF game with more
than negligible advantage. To this end, B first guesses if A is going to win game unf -prandTVRF-rGG
through Case 1 or Case 2. Depending on the guess, B decides to either play in game th-ufcma-hrk1rGG
or th-prandTVRF, while simulating A’s oracle queries. Note that B receives only access to the oracles of
either game th-ufcma-hrk1rGG or th-prandTVRF which significantly complicates the simulation of A’s
oracle queries. In particular, when playing in game th-prandTVRF, B does not get access to a signing
oracle, yet has to simulate oracle RSign of game unf -prandTVRF-rGG to A.

Let B := (B0,B1) be composed of two subprocedures. At the beginning of game unf -prandTVRF-rGG, B
chooses a bit b $← {0, 1}. If b = 0, B executes subprocedure B0 that plays in game th-ufcma-hrk1rGG and
otherwise B executes B1 that plays in game th-prandTVRF. In the following, we show for both cases (i.e.,
b = 0 and b = 1) that the respective subprocedure Bb can simulate game unf -prandTVRF-rGG to A and
use A’s output to win their respective security games (i.e., either th-ufcma-hrk1rGG or th-prandTVRF).
Finally, after analyzing both cases separately, we determine the advantage of B := (B0,B1) to win either
game th-ufcma-hrk1rGG or game th-prandTVRF. We additionally provide an intuitive proof sketch for
both cases in Appendix B.4.

Case b = 0 In this case we show via a series of computationally indistinguishable games that there
exists an adversary B0 which can use adversary A in Case 1 to win its own game th-ufcma-hrk1B0

rGG.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t

15

parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandA
TVRF-rGG =

1|Case 1] = Pr[GGGA
0 = 1].

Game GGG1: This game is similar to the previous game with two differences. First, in the beginning
the game initializes a set HList := ϵ. Second, upon A sending a query to H1 on input m, if H1(m) = ⊥
the game samples uniformly at random r $← Zq, sets HList[m] := r and H1(m) := gr. The game outputs
H1(m).

It is easy to see that the random oracle H1 returns uniformly random group elements since r is chosen
uniformly at random from Zq. Therefore, we have that Pr[GGGA

1 = 1] = Pr[GGGA
0 = 1].

Game GGG2: This game is similar to the previous game with a difference in the REval oracle. On input
a message m, an index i and a randomness ρ, the game executes

pk′ ← TVRF-rGG.RandPK(pk, ρ),
sk′

i ← TVRF-rGG.RandSK(i, ski, ρ),
(ϕi, πi)← TVRF-rGG.PEval(m, sk′

i, pk′).

However, instead of outputting (ϕi, πi), the game simulates a zero-knowledge proof π′
i that proves

correctness of ϕi and outputs (ϕi, π′
i).

Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game
is indistinguishable from the previous one except with negligible probability. That is, we have that
Pr[GGGA

1 = 1] ≤ Pr[GGGA
2 = 1] + negl(κ) where negl is a negligible function in the security parameter κ.

Game GGG3: This game is similar to the previous game with a difference in the REval oracle. On
input a message m, an index i, and a randomness ρ, the game checks if HList[m] = ⊥. If so, it queries
H1(m). It then executes pk′ ← TVRF-rGG.RandPK(pk, ρ), parses pk′ := (X ′, {X ′

1, · · · , X ′
n}) and computes

ϕi ← (X ′
i)

r for r ← HList[m].
This game is equivalent to the previous game since (X ′

i)
r = gsk′i·r = H1(m)sk′i . Therefore, we have

that Pr[GGGA
2 = 1] = Pr[GGGA

3 = 1].

Reduction to th-ufcma-hrk1rGG: Having shown that the transition from game GGG0 to game GGG3 is
indistinguishable, it remains to show that an adversary A winning in game GGG3 can be used to construct
an adversary B0 that wins game th-ufcma-hrk1rGG. To do so, we must show that B0 playing in
th-ufcma-hrk1rGG can simulate game GGG3 to A. The simulation differs from game GGG3 in the following
ways:

1. B0 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-ufcma-hrk1rGG as A does in GGG3. B0 then forwards the public key pk and the secret
key shares {ski}i∈C from game th-ufcma-hrk1rGG to A.

2. Upon A querying oracle RSign on input a message m and a randomness ρ, B0 queries its own
oracle RSign on input m and ρ and relays the messages between A and the RSign oracle in game
th-ufcma-hrk1rGG.

3. Upon A querying oracle H0 on input a message m, B0 forwards the query to its own random oracle
and relays the output.

It is easy to see that B0’s simulation is indistinguishable from game GGG3 to A. It remains to show
that B0 can use A’s forgery in game unf -prandTVRF-rGG to win its own game th-ufcma-hrk1rGG. Since
B0 forwards all queries to RSign in game unf -prandTVRF-rGG to the corresponding oracle in game
th-ufcma-hrk1rGG, B0 and A query their respective oracles on the same messages. Therefore, if A
outputs a valid forgery in unf -prandTVRF-rGG, then the forgery is also valid in th-ufcma-hrk1rGG. We
finally have

Pr[unf -prandA
TVRF-rGG = 1|Case 1] = Pr[GGGA

0 = 1] ≤ Pr[GGGA
3 = 1] + negl(κ)

= Pr[th-ufcma-hrk1B0
rGG[H0] = 1] + negl(κ)

= AdvB0
th-ufcma-hrk1rGG[H0]

+ negl(κ).

16

Case b = 1 We now show via a series of computationally indistinguishable games that there exists an
adversary B1 which can use adversary A in Case 2 to win its own game th-prandB1

TVRF.
Game GGG0: This game is the original unf -prandTVRF-rGG game, in which adversary A can corrupt t

parties and receives access to oracles H0, H1, RSign, Rand and REval. We have Pr[unf -prandA
TVRF-rGG =

1|Case 2] = Pr[GGGA
0 = 1].

Game GGG1: This game is similar to the previous game with two differences. First, in the beginning the
game initializes a set HSigs := ϵ. Second, upon a query to H0 on input a public key prefixed message
m := (pk′, m′), i.e., where (pk′, ·) ∈ TVRF-rGG.Gen(1κ, t, n), the game checks if H0(m) = ⊥. If so, it
executes SECDSA as described in Figure 4 on input (X ′, m) where pk′ := (X ′, {X ′

1, · · · , X ′
n}). Finally, the

game sets HSigs[m] := (r, s).

SECDSA(X, m) :
a, b $← Zq, R = Xa · gb, r = f(R), s = r

a , H0(m) := r·b
a

Figure 4: Simulation of ECDSA signatures via programming of the random oracle H0 as first presented
by Fersch et al. [FKP17]. The function f : G→ Zq is defined as the projection of a group element to its
x-coordinate.

It is easy to see that SECDSA programs the random oracle H0 in such a way that H0 returns uniformly
random values. Therefore, this game is equivalent to the previous game, i.e., Pr[GGGA

0 = 1] = Pr[GGGA
1 = 1].

Game GGG2: This game is similar to the previous game with a difference in the RSign oracle. On input
a message m and a randomness ρ, the game first computes the rerandomized (full) secret key sk′ and
then generates a full ECDSA signature σ′ under sk′ for message m. The game then executes the signing
procedure in the same way as presented in the proof sketch of Theorem 4.4 using signature σ′.

The indistinguishability of this game to the previous one follows in the same way as in Theorem 4.4.
Note that the simulation of the signing procedure as described in the proof sketch of Theorem 4.4
does not program H0 and therefore does not conflict with the execution of SECDSA. We have that
Pr[GGGA

1 = 1] ≤ Pr[GGGA
2 = 1] + negl1(κ) where negl1 is a negligible function in the security parameter κ.

Game GGG3: This game is similar to the previous game again with a modification in the RSign oracle.
On input a message m and a randomness ρ, the game does not generate a full ECDSA signature using sk′,
but it fetches (r, s) ← HSigs[m′] for m′ ← (pk′, m) where pk′ ← TVRF-rGG.RandPK(pk, ρ).8 The game
then uses the tuple (r, s) as the full ECDSA signature under sk′.

As shown in [FKP17], the tuple (r, s) as generated by the SECDSA algorithm (see Figure 4) is computa-
tionally indistinguishable from an honestly generated ECDSA signature for message m′ under public key
X ′ (where pk′ := (X ′, {X ′

1, · · · , X ′
n})) to a PPT adversary A with access to random oracle H0. Since the

simulation of the signing procedure as described in the proof sketch of Theorem 4.4 forces the execution
of the RSign oracle to output (r, s), adversary A can distinguish this game from the previous one only
with negligible probability. Therefore, we have that Pr[GGGA

2 = 1] ≤ Pr[GGGA
3 = 1] + negl2(κ) where negl2 is a

negligible function in the security parameter κ.

Game GGG4: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i and a randomness ρ, the game computes sk′

i ← TVRF-rGG.RandSK(i, ski, ρ)
and pk′ ← TVRF-rGG.RandPK(pk, ρ) and executes (ϕi, πi) ← TVRF-rGG.PEval(m, sk′

i, pk′). Instead of
outputting (ϕi, πi), however, the game simulates a zero-knowledge proof π′

i that proves correctness of ϕi.
The game then outputs (ϕi, π′

i).
Due to the zero-knowledge property of the proof system DLEq (cf. Appendix A.2), this game is

indistinguishable from the previous one except with negligible probability. Therefore, we have that
Pr[GGGA

3 = 1] ≤ Pr[GGGA
4 = 1] + negl3(κ) where negl3 is a negligible function in the security parameter κ.

Game GGG5: This game is similar to the previous game with a modification in the REval oracle. On
input a message m, an index i, and a randomness ρ, instead of rerandomizing the secret key share ski to

8We assume that H0 has been queried on m′ before the signing query.

17

sk′
i and executing TVRF-rGG.PEval(m, sk′

i, pk′), the game computes

TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi ,

where ρi denotes the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK (cf. Figure 2)
algorithm.

This game is equivalent to the previous game since for sk′
i ← TVRF-rGG.RandSK(i, ski, ρ) and pk′ ←

TVRF-rGG.RandPK(pk, ρ) it holds that:

TVRF-rGG.PEval(m, sk′
i, pk′) = TVRF-rGG.PEval(m, ski, pk) · H1(m)ρi = H1(m)ski+ρi .

Therefore, we have that Pr[GGGA
4 = 1] = Pr[GGGA

5 = 1].

Game GGG6: This game is similar to the previous game with a modification in the challenge phase. Upon
A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares {(ϕ∗

k, π∗
k)}k∈S∩C,

the game verifies the proofs π∗
k and returns ⊥ if any proof does not verify. Otherwise the game checks if

ϕ∗
k = H1(m∗)skk+ρ∗k and aborts if any of these checks does not hold.

Note that the only way that the game aborts is if the adversary manages to submit a verifying
zero-knowledge proof π∗

k for a false statement. Due to the soundness property of the DLEq proof system,
this event happens only with negligible probability. Therefore, we have that Pr[GGGA

5 = 1] ≤ Pr[GGGA
6 =

1] + negl4(κ) where negl4 is a negligible function in the security parameter κ.

Game GGG7: This game is similar to the previous game with a modification in the challenge phase.
Namely, upon A outputting a message m∗, randomness ρ∗, a set of indices S, and evaluation shares
{(ϕ∗

k, π∗
k)}k∈S∩C the game computes ϕk = ϕ∗

k ·H1(m∗)−ρ∗k = H1(m∗)skk and generates a new zero-knowledge
proof πk using skk and ϕk. The game then computes (ϕi, πi)← TVRF-rGG.PEval(m∗, ski, pk) for i ∈ S \C
and (ϕ, π)← TVRF-rGG.Combine(pk,S, {(ϕj , πj)}j∈S). The game chooses uniformly at random b $← {0, 1}
and if b = 0 sets ϕ′ := ϕ and otherwise sets ϕ′ $← G. Finally, the game computes ϕ∗ = ϕ′ · H1(m∗)ρ∗ and
returns it to A.

Note that if ϕ′ was chosen randomly from G by the game then ϕ∗ is also a uniformly random ele-
ment, and if ϕ′ is a valid TVRF output, then so is ϕ∗ under the key randomized with ρ∗. This is since
ϕ∗ = ϕ′ · H1(m∗)ρ∗ = H1(m∗)sk · H1(m∗)ρ∗ = H1(m∗)sk+ρ∗ . We have that Pr[GGGA

6 = 1] = Pr[GGGA
7 = 1].

Reduction to th-prandTVRF: Having shown that the transition from game GGG0 to game GGG7 is indis-
tinguishable, it remains to show that an adversary A winning in game GGG7 can be used to construct an
adversary B1 that wins game th-prandTVRF. To do so, we must show that B1 playing in th-prandTVRF
can simulate game GGG7 to A. The simulation differs from game GGG7 in the following points:

1. B1 does not generate the secret key shares and public key, but instead corrupts the same set of
parties C in th-prandTVRF as A does in GGG7. B1 then forwards the public key pk and the secret key
shares {ski}i∈C from game th-prandTVRF to A.

2. Upon A querying oracle REval on input a message m, an index i and a randomness ρ, B1 queries
its own oracle Eval on input m and i and uses the oracle output to compute the output of REval
as in GGG7.

3. Upon A querying oracle H1 on input a message m, B1 forwards the query to its own random oracle
and relays the output.

4. During the challenge phase, B1 sends the shares ϕk = ϕ∗
k · H1(m∗)−ρ∗k together with the zero-

knowledge proofs πk to its own game and receives an element ϕ∗. B1 forwards to A the element
ϕ∗ · H1(m∗)ρ∗ .

It is easy to see that B1’s simulation is indistinguishable from game GGG7 to A and that if A wins game
GGG7 with more than negligible probability, then B1 wins game th-prandTVRF with the same probability.
The latter is because B1 makes the same queries to oracle Eval as A does to oracle REval. We finally
have that

Pr[unf -prandA
TVRF-rGG = 1|Case 2] = Pr[GGGA

0 = 1] ≤ Pr[GGGA
7 = 1] + negl′(κ)

= Pr[th-prandB1
TVRF[H1] = 1] + negl′(κ),

18

where negl′(κ) :=
∑4

i=1 negli(κ).

Finally, we determine the advantage of adversary B := (B0,B1) to win either in game th-ufcma-hrk1rGG
or th-prandTVRF. Note that B’s advantage is:

AdvB := 1
2AdvB0

uf -cma-hrk1rECDSA[H0]
· Pr[Case 1] + 1

2AdvB1
th-prandTVRF[H1]

· Pr[Case 2].

Therefore we can conclude that:

AdvA := Pr[unf -prandA
TVRF-rGG = 1|Case 1] · Pr[Case 1]

+ (Pr[unf -prandA
TVRF-rGG = 1|Case 2]− 1

2) · Pr[Case 2]

≤ (Pr[th-ufcma-hrk1B0
rGG[H0] = 1] + negl(κ)) · Pr[Case 1]

+ (Pr[th-prandB1
TVRF[H1] = 1] + negl′(κ)− 1

2) · Pr[Case 2]

≤ (AdvB0
uf -cma-hrk1rECDSA[H0]

+ negl(κ)) · Pr[Case 1]

+ (AdvB1
th-prandTVRF[H1]

+ negl′(κ)) · Pr[Case 2]

= 2 · AdvB + negl′′(κ)

where negl′′(κ) := negl(κ) · Pr[Case 1] + negl′(κ) · Pr[Case 2] is a negligible function in κ.

5.3.2 Uniqueness and Robustness of TVRF-rGG

Besides pseudorandomness, the TVRF-rGG scheme must additionally satisfy the properties of uniqueness
and robustness, which are defined in a similar manner as the pseudorandomness property in the sense
that they combine the respective property of the TVRF scheme with the one-more unforgeability of our
rGG scheme. In the following we provide the formal definitions of these two properties.

Definition 5.3 (Uniqueness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is unique if no PPT adversary
A wins game unf -unique as described below with more than negligible advantage. We define A’s
advantage in game unf -uniqueTVRF-rGG as AdvA

unf -unique := Pr[unf -uniqueA
TVRF-rGG = 1].

Game unf -uniqueTVRF-rGG:

• The adversary A outputs a list of corrupted parties C, such that |C| ≤ t and for all i ∈ C it holds that
i ∈ [n].

• The game initializes SigList← {ϵ} and RList← {ϵ} and executes (pk, {sk1, · · · , skn})← TVRF-rGG.Gen(1κ, t, n).
Then A is run on input pk and {ski}i∈C.

• The adversary obtains access to the following oracles:

– Rand: Same as in game unf -prandTVRF-rGG.
– RSign: Same as in game unf -prandTVRF-rGG.
– REval: Same as in game unf -prandTVRF-rGG.
– KeyLeak: On input i ∈ [n], the oracle outputs ski.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Output 0 if there has been any query to oracle KeyLeak. Otherwise this case is the same as
Case 1 in game unf -prandTVRF-rGG.

– Case 2: The adversary outputs a message m∗, a randomness ρ∗ and evaluations {(ϕi∗ , πi∗)}i∈{0,1}.
If ρ∗ ∈ RList, the game computes pk′ ← TVRF-rGG.RandPK(pk, ρ∗). The game outputs 1 if ϕ0∗ ̸= ϕ1∗

and

TVRF-rGG.Verify(pk′, m∗, ϕ0∗ , π0∗) = TVRF-rGG.Verify(pk′, m∗, ϕ1∗ , π1∗) = 1.

Otherwise it outputs 0.

19

Definition 5.4 (Robustness of TVRF-rGG). The (t, n)-TVRF-rGG scheme is robust if no PPT adversary A
wins game unf -robust as described below with more than negligible advantage. We define A’s advantage
in game unf -robustTVRF-rGG as AdvA

unf -robust := Pr[unf -robustA
TVRF-rGG = 1].

Game unf -robustTVRF-rGG:

• The game is exactly the same as game unf -prandTVRF-rGG, except for the winning conditions, which
we will describe below.

• The adversary wins the game if it wins either of the following cases:

– Case 1: Same as Case 1 in game unf -prandTVRF-rGG.
– Case 2: The adversary outputs a message m∗, a set S with |S| > t, a list of evaluation shares
{ϕi, πi}i∈S∩C and a randomness ρ∗. The game checks if ρ∗ ∈ RList and if so computes for all
i ∈ S \ C:

(pk′, sk′
i)←(TVRF-rGG.RandPK(pk, ρ∗), TVRF-rGG.RandSK(i, ski, ρ∗)),

(ϕi, πi)←TVRF-rGG.PEval(m∗, sk′
i, pk′)

The game finally sets

(ϕ∗, π∗)← TVRF-rGG.Combine(pk′, m∗,S, {ϕi, πi}i∈S).

If ϕ∗ ̸= ⊥ and TVRF-rGG.VerifyTVRF(pk′, m∗, ϕ∗, π∗) = 0, the game outputs 1 and 0 otherwise.

The proof of the uniqueness and robustness property of the TVRF-rGG scheme is similar to the proof
of the pseudorandomness property in the sense that the reduction guesses whether the adversary is going
to win in Case 1 or Case 2. In Case 1, we reduce to the one-more unforgeability of rGG. The simulation
of the respective security game works in the same way as in the proof of Theorem 5.2. In Case 2, we can
show a contradiction to the soundness property of the NIZK proof system DLEq (cf. Appendix A.2) in
the same way as was previously shown by Galindo et al. [GLOW21]). The simulation of the RSign oracle
is then straightforward since the reduction can choose the initial key set itself.

5.4 Constructing BIP32-Compatible Threshold Wallets from TVRF-rGG
Now, we describe at a high level how our joint primitive TVRF-rGG can be used to construct BIP32-
compatible threshold wallets. We illustrate the design of such wallets in Figure 5. Initially, to set
up the wallet, a user generates the master secret and public key shares by executing TVRF-rGG.Gen,
and also samples a uniformly random string serving as the wallet’s initial chaincode. The root node
can then deterministically derive either non-hardened or hardened nodes. That is, in order to derive
a non-hardened node each root device first locally executes TVRF-rGG.RandSK and TVRF-rGG.RandPK
to rerandomize its secret key share and the root node’s public key using randomness derived from the
chaincode. All root and child node devices then engage in a DPSS protocol to securely send a re-sharing
of the rerandomized secret key to the child node. To derive a hardened node, the root node devices
execute TVRF-rGG.PEval to locally compute randomness shares from which the hardened node computes
a random value (via TVRF-rGG.Combine and TVRF-rGG.VerifyTVRF). The hardened node device then uses
this random value as input to the ECDSA key generation to generate its signing key pair. Naturally,
the root node and all non-hardened child nodes can execute the procedure TVRF-rGG.TSign to compute
signatures.

Choosing the Parameters t and n. The choice of the parameters t and n depends on the specific
use case and the corresponding security requirements. For instance, for a multi-device personal wallet, it
might be sufficient to use t = 2 and n = 5, whereas for enterprise-grade wallets it might be necessary
to use a larger number of devices, e.g., t = 31 and n = 64. We show in the following section that our
solution remains concretely efficient even for such larger parameters.

20

msk1 · · · mskn

Root

sk1,ID · · · skn,ID

NH-ID

skID′

H-ID’
sk1,ID′′ · · · skn,ID′′

NH-ID”

sk1,ĨD · · · sk
n,ĨD

NH-ĨD
skĨD’

H-ĨD’
skĨD”

H-ĨD”

Figure 5: Illustration of our BIP32-compatible threshold wallet. Non-hardened nodes (NH) and the
root node are thresholdized, whereas hardened nodes (H) are single devices. For simplicity, this figure
abstracts away the chain code and public key that each node additionally stores.

6 Evaluation
In this section, we evaluate the hardened node derivation in the threshold setting as outlined previously.
Concretely, we compare our TVRF-based derivation mechanism to the standard BIP32 hardened node
derivation, which requires the distributed computation of the SHA-512 hash function. We evaluate both
approaches w.r.t. running time and communication cost for different parameters n and t, and we always
assume the worst-case corruption of t = n

2 − 1. In the following, we refer to the original BIP32 hardened
derivation mechanism in the threshold setting as MPC-based, since it requires computing SHA-512 via a
generic MPC protocol.

We note that we do not evaluate the non-hardened derivation mechanism in the threshold setting
since (1) our non-hardened derivation mechanism follows the exact specification of the BIP32 standard,
and (2) the reuse of the TVRF and ECDSA key pair ensures that our TVRF-based solution does not
introduce any communication or storage overhead for the non-hardened derivation as compared to the
MPC-based solution.

The evaluation was done on a single machine with an Apple M3 Max CPU (14 cores), 36 GB of
memory, and macOS 14.4.1. In order to account for network latency, we included a delay of 10 ms per
communication round, which corresponds approximately to the speed of a fast LAN connection. The
source code of our implementation is publicly available.9 We implemented the TVRF-based hardened
derivation in Go 1.21.0 and we parallelized the local computation of each device. For the MPC-based
solution, we employed MP-SPDZ 10 [Kel20]. We choose MP-SPDZ since it is one of the most advanced,
well documented and actively maintained open source frameworks for MPC, and is the de-facto standard
for benchmarking MPC protocols [BDST20]. More concretely, we used mal− shamir, an MPC protocol
based on Shamir’s secret sharing with malicious security in the t ≤ n

2 − 1 setting.

(t,n) TVRF MPC MPC No Delay
(2, 5) 22.12 68694.51 1404.51
(4, 10) 33.04 73998.3 6268.3
(7, 16) 47.76 81961 14571
(15, 32) 91.71 133070.1 65780.1
(31, 64) 202.23 413021 346731

Table 1: Running times in milliseconds of the TVRF-based and MPC-based hardened derivation. The
columns TVRF and MPC contain a 10 ms network delay per communication round. For reference, the
table also contains a column for the MPC-based solution without any network delay.

The results of the evaluation are shown in Table 1 and Table 2, respectively. Table 1 demonstrates
the running time for the hardened derivation using either the TVRF-based or the MPC-based approach.
In both approaches, we assumed a network delay of 10 ms, but since the MPC-based approach requires a

9https://github.com/AppliedCryptoGroup/BIP32_Threshold_Wallets
10https://github.com/data61/MP-SPDZ

21

https://github.com/AppliedCryptoGroup/BIP32_Threshold_Wallets
https://github.com/data61/MP-SPDZ

significant number of communication rounds, we also include its runtime without any network delay for
reference. While our TVRF-based solution takes 22.12 ms for a 2-out-of-5 setting with network delay, the
MPC-based solution requires already 68.69 seconds. As the number of parties increases, the TVRF-based
derivation scales mostly linearly, while the MPC-based solution scales roughly quadratically. Table 1
clearly demonstrates that the running time of our TVRF-based solution is faster by several orders of
magnitude. Since the generic MPC-based derivation requires more than 6000 rounds of communication,
the network delay has a significant impact on the runtime. We note that the technique presented by
Beaver-Micali-Rogaway (BMR) [BMR90] can be used to reduce the number of communication rounds
for the MPC-based approach, however, we found that using this technique within MP-SPDZ neither
improves the runtime nor the communication costs of the MPC-based solution.

The communication costs are shown in Table 2, i.e., the total amount of data sent by all parties of
the TVRF-based and MPC-based approaches, respectively. Clearly, our TVRF-based solution requires
significantly less data to be exchanged.

(t,n) TVRF (KB) MPC (MB)
(2, 5) 0.64 104.59
(4, 10) 1.28 413.56
(7, 16) 2.05 1120.22
(15, 32) 4.09 4676.96
(31, 64) 8.19 19086.20

Table 2: Comparison of communication costs for the TVRF-based solution (in KB) and the MPC-based
solution (in MB).

Acknowledgments
This result is part of a project that received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 and Horizon Europe research and innovation programs
(grant CRYPTOLAYER-101044770). Additionally, this work is supported by the German Research
Foundation DFG - SFB 1119 - 236615297 (CROSSING Project S7), by the German Federal Min-
istry of Education and Research and the Hessen State Ministry for Higher Education, Research
and the Arts within their joint support of the National Research Center for Applied Cybersecurity
ATHENE.

References
[ADE+20] Nabil Alkeilani Alkadri, Poulami Das, Andreas Erwig, Sebastian Faust, Juliane Krämer,

Siavash Riahi, and Patrick Struck. Deterministic wallets in a quantum world. pages 1017–1031,
2020. (Cited on page 4, 9.)

[AGKK19] Myrto Arapinis, Andriana Gkaniatsou, Dimitris Karakostas, and Aggelos Kiayias. A formal
treatment of hardware wallets. pages 426–445, 2019. (Cited on page 4.)

[AHKP24] Anasuya Acharya, Carmit Hazay, Vladimir Kolesnikov, and Manoj Prabhakaran. Malicious
security for SCALES: Outsourced computation with ephemeral servers. Cryptology ePrint
Archive, Paper 2024/383, 2024. (Cited on page 5.)

[AHS20] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A survey of ecdsa threshold
signing. Cryptology ePrint Archive, Paper 2020/1390, 2020. (Cited on page 4.)

[BDLO15] Joshua Baron, Karim El Defrawy, Joshua Lampkins, and Rafail Ostrovsky. Communication-
optimal proactive secret sharing for dynamic groups. In Tal Malkin, Vladimir Kolesnikov,
Allison Bishop Lewko, and Michalis Polychronakis, editors, Applied Cryptography and Network
Security, Cham, 2015. (Cited on page 12.)

22

[BDST20] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko. MOTION -
A framework for mixed-protocol multi-party computation. Cryptology ePrint Archive, Report
2020/1137, 2020. https://eprint.iacr.org/2020/1137. (Cited on page 2, 5, 21.)

[Bit18] BitcoinExchangeGuide. CipherTrace Releases Report Exposing Close to $1
Billion Stolen in Crypto Hacks During 2018. https://coinexchangeguide.
com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_
-crypto-hacks-during-2018/, 2018. (Cited on page 1.)

[Blo18] Bloomberg. How to Steal $500 Million in Cryptocurrency. http://fortune.com/2018/01/
31/coincheck-hack-how/, 2018. (Cited on page 1.)

[BMP22] Constantin Blokh, Nikolaos Makriyannis, and Udi Peled. Efficient asymmetric threshold
ecdsa for mpc-based cold storage. Cryptology ePrint Archive, Paper 2022/1296, 2022.
https://eprint.iacr.org/2022/1296. (Cited on page 4.)

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols
(extended abstract). pages 503–513, 1990. (Cited on page 22.)

[BST21] Charlotte Bonte, Nigel Smart, and Titouan Tanguy. Thresholdizing hasheddsa: Mpc to the
rescue. International Journal of Information Security, 20, 12 2021. (Cited on page 5, 12.)

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure
protocols (extended abstract). pages 11–19, 1988. (Cited on page 2, 12.)

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. pages 266–296, 2020. (Cited on page 2, 4, 5.)

[CCL+21] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold ec-dsa revisited: Online/offline extensions, identifiable aborts,
proactivity and adaptive security. Cryptology ePrint Archive, Paper 2021/291, 2021. https:
//eprint.iacr.org/2021/291. (Cited on page 2, 4, 5.)

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. Uc
non-interactive, proactive, threshold ecdsa with identifiable aborts. In Proceedings of the
2020 ACM SIGSAC Conference on Computer and Communications Security, CCS ’20, 2020.
(Cited on page 4, 5, 30.)

[CHL23] ChihYun Chuang, IHung Hsu, and TingFang Lee. A two-party hierarchical deterministic
wallets in practice. In Proceedings of the 20th International Conference on Security and
Cryptography, SECRYPT 2023. SCITEPRESS, 2023. (Cited on page 2, 4.)

[CP93] David Chaum and Torben P. Pedersen. Wallet databases with observers. pages 89–105, 1993.
(Cited on page 26.)

[DEF+21] Poulami Das, Andreas Erwig, Sebastian Faust, Julian Loss, and Siavash Riahi. The exact
security of bip32 wallets. In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, 2021. (Cited on page 2, 3, 4, 5, 7, 9, 10, 12, 27.)

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. pages 307–315, 1990. (Cited on
page 2.)

[DFL19] Poulami Das, Sebastian Faust, and Julian Loss. A formal treatment of deterministic wallets.
pages 651–668, 2019. (Cited on page 4.)

[DMZ+21] Yi Deng, Shunli Ma, Xinxuan Zhang, Hailong Wang, Xuyang Song, and Xiang Xie. Promise
σ-protocol: How to construct efficient threshold ecdsa from encryptions based on class groups.
Springer-Verlag, 2021. (Cited on page 2, 4, 5.)

[Dod03] Yevgeniy Dodis. Efficient construction of (distributed) verifiable random functions. pages
1–17, 2003. (Cited on page 3, 5.)

23

https://eprint.iacr.org/2020/1137
https://coinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
https://coinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
https://coinexchangeguide.com/ciphertrace-releases-report-exposing-close-to-1-billion-stolen-in_-crypto-hacks-during-2018/
http://fortune.com/2018/01/31/coincheck-hack-how/
http://fortune.com/2018/01/31/coincheck-hack-how/
https://eprint.iacr.org/2022/1296
https://eprint.iacr.org/2021/291
https://eprint.iacr.org/2021/291

[EGPS22] Daniel Escudero, Vipul Goyal, Antigoni Polychroniadou, and Yifan Song. Turbopack: honest
majority mpc with constant online communication. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, pages 951–964, 2022. (Cited on
page 2, 5.)

[Ele13] Version bytes for BIP32 extended public and private keys. https://electrum.readthedocs.
io/en/latest/xpub_version_bytes.html, 2013. (Cited on page 2.)

[ER] Andreas Erwig and Siavash Riahi. Deterministic wallets for adaptor signatures. In Computer
Security – ESORICS 2022. (Cited on page 4.)

[FKM+16] Nils Fleischhacker, Johannes Krupp, Giulio Malavolta, Jonas Schneider, Dominique Schröder,
and Mark Simkin. Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. pages 301–330, 2016. (Cited on page 7.)

[FKP17] Manuel Fersch, Eike Kiltz, and Bertram Poettering. On the one-per-message unforgeability
of (EC)DSA and its variants. pages 519–534, 2017. (Cited on page 17, 33.)

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast trustless
setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’18, 2018. (Cited on page 4, 5, 10, 28, 30, 31.)

[GLOW21] David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. Fully distributed verifiable
random functions and their application to decentralised random beacons. In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), 2021. (Cited on page 7, 8, 13, 20,
26, 27.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. pages 218–229, 1987. (Cited on
page 2, 12.)

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications, volume 2. Cambridge
University Press, Cambridge, UK, 2004. (Cited on page 12.)

[GS15] Gus Gutoski and Douglas Stebila. Hierarchical deterministic bitcoin wallets that tolerate key
leakage. pages 497–504, 2015. (Cited on page 4.)

[GS20] Vipul Goyal and Yifan Song. Malicious security comes free in honest-majority MPC. Cryp-
tology ePrint Archive, Paper 2020/134, 2020. (Cited on page 5.)

[GS22] Jens Groth and Victor Shoup. Design and analysis of a distributed ecdsa signing service.
Cryptology ePrint Archive, Paper 2022/506, 2022. https://eprint.iacr.org/2022/506.
(Cited on page 4.)

[HHPV21] Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubra-
maniam. Round-optimal secure multi-party computation. Journal of Cryptology, 34(3):19,
2021. (Cited on page 2, 5.)

[Kel20] Marcel Keller. Mp-spdz: A versatile framework for multi-party computation. In Proceedings
of the 2020 ACM SIGSAC conference on computer and communications security, pages
1575–1590, 2020. (Cited on page 5, 21.)

[KMOS21] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. Refresh when
you wake up: Proactive threshold wallets with offline devices. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 608–625, 2021. (Cited on page 4.)

[Led14] Ledger Support,Ledger Nano OS. https://support.ledger.com/hc/en-us/articles/
115005297709-Export-your-accounts, 2014. (Cited on page 2.)

[LFA20] Adriano Di Luzio, Danilo Francati, and Giuseppe Ateniese. Arcula: A secure hierarchical
deterministic wallet for multi-asset blockchains. pages 323–343, 2020. (Cited on page 4.)

24

https://electrum.readthedocs.io/en/latest/xpub_version_bytes.html
https://electrum.readthedocs.io/en/latest/xpub_version_bytes.html
https://eprint.iacr.org/2022/506
https://support.ledger.com/hc/en-us/articles/115005297709-Export-your-accounts
https://support.ledger.com/hc/en-us/articles/115005297709-Export-your-accounts

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody. CCS ’18, 2018. (Cited on page 4.)

[MPC20] ’bristol fashion’ mpc circuits. 2020. (Cited on page 5.)

[MPs19] Antonio Marcedone, Rafael Pass, and abhi shelat. Minimizing trust in hardware wallets with
two factor signatures. pages 407–425, 2019. (Cited on page 4.)

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yupeng Zhang, Ari Juels,
and Dawn Song. Churp: Dynamic-committee proactive secret sharing. In Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security, CCS ’19, page
2369–2386, 2019. (Cited on page 12.)

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. pages
223–238, 1999. (Cited on page 30.)

[Ske18] Rhys Skellern. Cryptocurrency Hacks: More Than $2b
USD lost between 2011-2018. https://medium.com/ecomi/
cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219,
2018. (Cited on page 1.)

[SLL] David Schultz, Barbara Liskov, and Moses Liskov. Mpss: Mobile proactive secret sharing.
ACM Trans. Inf. Syst. Secur., 13(4). (Cited on page 12.)

[Tre14] Trezor Wiki,Cryptocurrency standards,Hierachical deterministic wallets. https://wiki.
trezor.io/Cryptocurrency_standards, 2014. (Cited on page 2.)

[Wik18] Bitcoin Wiki. BIP32 proposal. https://en.bitcoin.it/wiki/BIP_0032, 2018. (Cited on
page 2.)

[Yeh23] Yehuda Lindell. Cryptography and MPC in Coinbase Wallet as a Service (WaaS). https:
//coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf, 2023.
(Cited on page 2.)

[YLY+22] Xin Yin, Zhen Liu, Guomin Yang, Guoxing Chen, and Haojin Zhu. Secure hierarchical
deterministic wallet supporting stealth address. Cryptology ePrint Archive, Paper 2022/627,
2022. (Cited on page 4.)

A Additional Preliminaries
A.1 Correctness and one-per message unforgeability under honestly reran-

domizable keys of signature schemes with rerandomizable keys
For the empty string ϵ, we have RandPK(pk, ϵ) = pk and RandSK(sk, ϵ) = sk.

We further require:

1. (Perfect) rerandomizability of keys: For all κ ∈ N , all (sk, pk) ∈ Gen (1κ) and ρ $← R, the distributions
of (sk′, pk′) and (sk′′, pk′′) are identical, where:

(sk′, pk′)← (RandSK(sk, ρ), RandPK(pk, ρ))
and

(sk′′, pk′′) $← Gen (1κ) .

2. Correctness under rerandomized keys: For all κ ∈ N, all (sk, pk) ∈ Gen (1κ), all ρ ∈ R, and all
m ∈ {0, 1}∗, the rerandomized keys sk′ ← RandSK(sk, ρ) and pk′ ← RandPK(pk, ρ) satisfy:

Pr[Verify
(
pk′, σ, m

)
= 1 | σ ← Sign(sk′, m)] = 1.

25

https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219
https://medium.com/ecomi/cryptocurrency-hacks-more-than-2b-usd-lost-between-2011-2018_-67054b342219
https://wiki.trezor.io/Cryptocurrency_standards
https://wiki.trezor.io/Cryptocurrency_standards
https://en.bitcoin.it/wiki/BIP_0032
https://coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf
https://coinbase.bynder.com/m/687ea39fd77aa80e/original/CB-MPC-Whitepaper.pdf

The security notion of one-per message existential unforgeability under honestly rerandomizable keys
(uf -cma-hrk1) differs from the unforgeability notion of standard signature scheme in the following
ways: (1) the signing oracle cannot only return signatures under sk, but it can also return signatures
that were produced with keys that represent honest rerandomizations of sk; (2) the randomness for the
rerandomization is chosen uniformly at random from R by the game; (3) the signing oracle returns at most
one signature for each randomness/message pair (ρ, m). The notion of uf -cma-hrk1 for a rerandomizable
signature scheme RSig is formally modeled in the form of a game uf -cma-hrk1RSig which we recall in
the following definition.

Definition A.1 (One-per message unforgeability under honestly rerandomizable keys of signature schemes
with rerandomizable keys). A signature scheme with honestly rerandomizable keys RSig is uf -cma-hrk1-
secure if no PPT adversary A wins game uf -cma-hrk1 as described below with more than advantage.
We define A’s advantage in game uf -cma-hrk1RSig as AdvA

uf -cma-hrk1RSig
:= Pr[uf -cma-hrk1A

RSig = 1].

Game uf -cma-hrk1RSig:

• The challenger initializes two lists as SigList ← {ϵ} and RList ← {ϵ} and samples a pair of keys
(pk, sk) $← RSig.Gen(1κ). Then A is run on input pk.

• A is given access to the following oracles:

– Rand: Upon a query, this oracle samples a fresh random value from R as ρ $← R, stores ρ in RList,
and returns ρ.

– RSign: On input a message m and a randomness ρ, if ρ was not obtained via a prior Rand query
(i.e., ρ /∈ RList), then this oracle returns ⊥. Otherwise, it derives a pair of keys rerandomized with
the randomness ρ, as sk′ ← RSig.RandSK(sk, ρ) and pk′ ← RSig.RandPK(pk, ρ). If (pk′, m) ∈ SigList
then the oracle returns ⊥. Otherwise, it derives a signature on message m under the secret key sk′

as σ ← RSig.Sign(sk′, m). The oracle stores the tuple (pk′, m) in SigList and returns σ.

• A wins if it returns a forgery σ∗ together with a message m∗ and a public key pk∗ ← RSig.RandPK(pk, ρ∗),
s.t. the following holds: (1) the randomness ρ∗ has been derived via a Rand query, i.e., ρ∗ ∈ RList, (2)
(pk∗, m∗) /∈ SigList, and (3) σ∗ is a valid forgery, i.e., RSig.Verify(pk∗, σ∗, m∗) = 1.

A.2 TVRF Construction from Galindo et al. [GLOW21]
We briefly recall the TVRF construction from Galindo et al. that is based on the DDH assumption.
The construction relies on a non-interactive zero-knowledge proof system (NIZK) for the relation R :=
{(g, h, X, Y), x | X = gx, Y = hx} where g and h are two generators of a cyclic group G of prime order
q and x ∈ Zq. At a high level, the NIZK proves that two group elements X and Y have the same
discrete logarithm w.r.t. generators g and h. This proof system was first introduced by Chaum and
Pedersen [CP93] and we denote it by DLEq. We recall the proof system in Figure 6 and the TVRF
construction, which we denote by TVRF, in Figure 7. The corruption threshold for the (t, n)-TVRF
scheme is set to t ≤ n−1

2 .

DLEq.Prove(gx, hx, x)
00 Sample r $← Zq.
01 Compute c← H(gx, hx, gr, hr)
02 Compute s = r + c · x.
03 Return π := (c, s).

DLEq.Verify(gx, hx, π)
00 Parse π := (c, s).
01 R← gs/(gx)c.
02 R′ ← hs/(hx)c.
03 If c ̸= H1(gx, hx, R, R′): Return 0.
04 Return 1

Figure 6: NIZK proof of equality of discrete logarithms with H : {0, 1}∗ → Zq.

26

TVRF.Gen(1κ, t, n)
00 Sample ai

$← Zq for i ∈ [t] ∪ {0}
01 Let F (x) := atx

t + · · ·+ a1x + a0
02 sk := x← a0 mod q, X ← gx

03 ski := xi ← F (i) mod q, Xi ← gxi

04 pk := (X, {X1, · · · , Xn})
05 Return (pk, {sk1, · · · , skn})

TVRF.Combine(pk,S, {(ϕi, πi)}i∈S)
00 If |S| ≤ t: Return ⊥.
01 Let S ′ := ∅.
02 Parse pk := (X, {X1, · · · , Xn}).
03 For i ∈ S, if DLEq.Verify(ϕi, Xi, πi) = 1:
04 Then S ′ ← S ′ ∪ i.
05 If |S ′| ≤ t: Return ⊥.
06 ϕ←

∏
i∈S′ ϕ

λi
i and π := {ϕi, (πi}i∈S′ .

07 Return (ϕ, π).

TVRF.PEval(m, ski, pk)
00 Parse pk := (X, {X1, · · · , Xn})
01 ϕi ← H1(m)ski .
02 πi ← DLEq.Prove(ϕi, Xi, ski).
03 Return (ϕi, πi).

TVRF.Verify(pk, m, ϕ, π)
00 Parse pk := (X, {X1, · · · , Xn}).
01 Parse π := {ϕi, (πi}i∈S′ .
02 Let S ′ := ∅.
03 For i ∈ S ′:
04 if DLEq.Verify(ϕi, Xi, πi) ̸= 1
05 return ⊥.
06 If ϕ =

∏
i∈S′ ϕ

λi
i : Return 1.

07 Else return 0.

Figure 7: Threshold verifiable random function from [GLOW21] for a cyclic group G = ⟨g⟩ of prime order
q and for a cryptographic hash function H1 : {0, 1}∗ → G.

A.3 ECDSA with Rerandomizable Keys
We briefly recall the standard ECDSA signature scheme in Figure 8 and then describe how it can be
extended to achieve the ECDSA-based signature scheme with additively rerandomizable keys as shown
in [DEF+21].

The ECDSA signature scheme is defined for a cyclic group G = ⟨g⟩ of prime order q where the discrete
logarithm problem in G is hard. We briefly recall the scheme here, which we denote by ECDSA[H], where
H : {0, 1}∗ → Zq is a cryptographic hash function.

Gen(1κ)
00 x $← Zq

01 X ← gx

02 (sk, pk) := (x, X)
03 Return (sk, pk)

Sign(sk, m)
00 Parse sk := x
01 k $← Zq, R← gk

02 If R = 1: Return ⊥
03 r ← f(R)
04 If r = 0: Return ⊥
05 h← H(m)
06 s = k−1(h + r · x)
07 If s = 0: Return ⊥
08 Return σ := (r, s)

Verify(pk, m, σ)
00 Parse pk := X and σ :=
(r, s)
01 If s = 0 ∨ t = 0: Return ⊥
02 h← H0(m)
03 u1 ← h · s−1

04 u2 ← r · s−1

05 R← gu1 + Xu2

06 If f(R) = r: Return 1
07 Return 0

Figure 8: ECDSA signature scheme ECDSA[H] instantiated with a cryptographic hash function H :
{0, 1}∗ → Zq.

In Figure 9, we recall the ECDSA-based signature scheme with rerandomizable keys rECDSA[H] as
introduced in [DEF+21].

27

Sign (sk, m)
00 m′ ← (pk, m)
01 σ ← ECDSA[H].Sign (sk, m′)
02 Return σ

Verify (pk, σ, m)
03 m′ ← (pk, m)
04 Return
ECDSA[H].Verify (pk, m′, σ)

RandSK (sk, ρ)
00 sk′ ← (sk + ρ) mod q
01 Return sk′

RandPK (pk, ρ)
02 pk′ ← (pk + gρ)
03 Return pk′

Figure 9: Public key prefixed version of the ECDSA signature scheme with perfectly rerandomizable
keys rECDSA[H] based on the ECDSA signature scheme ECDSA[H]. Above H : {0, 1}∗ → Zq denotes a
cryptographic hash function.

B The GG scheme by Gennaro and Goldfeder [GG18]
B.1 Underlying Assumptions and Building Blocks
Decisional Diffie-Hellman Problem (DDH) Let G be a cyclic group of prime order q and let g be
a generator of G. Let a, b, c be elements chosen uniformly at random from Zq. Then the distributions
(g, ga, gb, gab) and (g, ga, gb, gc) are computationally indistinguishable.

Non-interactive zero knowledge proof (NIZK) A NIZK proof of knowledge with respect to a
polynomial-time recognizable binary relation R is given by the following tuple of PPT algorithms ZK :=
(Setup, Prove, Verify), where (i) Setup(1κ) outputs a common reference string crs; (ii) Prove(crs, (Y, y))
outputs a proof π for (Y, y) ∈ R; (iii) Verify(crs, Y, π) outputs a bit b ∈ {0, 1}. Further, the NIZK proof of
knowledge w.r.t. R should satisfy the following properties:

1. Completeness: For all (Y, y) ∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
1 except with negligible probability;

2. Soundness: For any (Y, y) ̸∈ R, all κ ∈ N and crs← Setup(1κ), it holds that Verify(crs, Y, Prove(crs, (Y, y))) =
0 except with negligible probability;

3. Zero knowledge: For any PPT adversary A, there exist a PPT algorithm πS ← S(crs, Y) such that
for all κ ∈ N, all crs← Setup(1κ) and all (Y, y) ∈ R, the distributions {(π, Y) : π ← Prove(crs, Y, y)}
and {(πS , Y) : πS ← S(crs, Y)} are indistinguishable to A except with negligible probability.

Non-Malleable and Equivocable Commitments A non-malleable and equivocable commitment
scheme with message space {0, 1}∗, commitment space C and opening space O consists of a tuple of three
PPT algorithms CT := (Gen, Com, Open, Equivocate) where Gen gets as input the security parameter
κ ∈ N and outputs public parameters par and a trapdoor τ ; Com takes as input par and a message
m ∈ {0, 1}∗ and outputs a tuple (c, d); Open takes as input par and a tuple (c, d) ∈ (C × O) and either
outputs a message m or ⊥; Equivocate takes as input a trapdoor τ , a commitment c ∈ C and a message
m ∈ {0, 1}∗ and outputs an opening d. A non-malleable and equivocable commitment scheme must satisfy
the following properties:

1. Computationally Hiding: For all κ ∈ N, all (par, τ)← Gen(1κ), any two messages m, m′ ∈ {0, 1}∗

and (c, d)← Com(par, m) and (c′, d′)← Com(par, m′), there exists no PPT adversary A which can
distinguish the tuples (m, m′, c) and (m, m′, c′) except with negligible probability.

2. Computationally Binding: For all κ ∈ N and all (par, τ)← Gen(1κ), there exists no PPT adversary
A which can output (c, d, d′) such that Open(par, c, d) ̸= Open(par, c, d′) and Open(par, c, d) ̸= ⊥
and Open(par, c, d′) ̸= ⊥ except with negligible probability.

28

3. Equivocable: For all κ ∈ N, all (par, τ)← Gen(1κ) and any message m ∈ {0, 1}∗ the distributions
{(c, d) : (c, d)← Com(par, m)} and {(c′, d′) : c′ $← C, d′ ← Equivocate(τ, c′, m)} are computationally
indistinguishable.

Finally, a commitment scheme is non-malleable if for all κ ∈ N, all (par, τ) ← Gen(1κ), any message
m ∈ {0, 1}∗ and (c, d)← Com(par, m), there exists no PPT adversary A which on input c can output a
commitment c′ such that after receiving the opening d the adversary A can output an opening d′ such
that for m′ ← Open(par, c′, d′) the messages m and m′ are related.

Public Key Encryption A public key encryption scheme consists of three algorithms PKE :=
(Gen, Enc, Dec), where (i) Gen(1κ) outputs a public key pk and a secret key sk; (ii) Enc(pk, m) outputs a
ciphertext ct; and (iii) Dec(sk, ct) outputs either ⊥ or a message m.

A public key encryption scheme pk := (Gen, Enc, Dec) is linearly homomorphic if (1) there exists an
efficiently computable operation ⊕ s.t. for two ciphertexts ct1 ← Enc(pk, m1) and ct2 ← Enc(pk, m2) it
holds that ct1 ⊕ ct2 = Enc(pk, m1 + m2); and (2) there exists an efficiently computable operation ⊙ s.t.
for a ciphertext ct1 ← Enc(pk, m1) and a constant k it holds that ct1 ⊕ k = Enc(pk, m1 · k).

A public key encryption scheme is semantically secure if for every PPT adversaries A := (A1,A2)
there exists a negligible function ν in the security parameter κ ∈ N s.t.:

Pr

 b′ = b

∣∣∣∣∣∣∣∣
(pk, sk)← Gen(1κ),
(m1, m2, s)← A1(pk),
b $← {0, 1}, ct← Enc(pk, mb),
b′ ← A2(s, ct)

 ≤1/2 + ν(κ).

B.2 Construction
The GG[H0] scheme relies on a multiplicative to additive share conversion protocol, which allows two
parties Pi and Pj with shares ai ∈ Zq and bj ∈ Zq respectively s.t. x = ai · bj mod q to transform ai and
bj into additive shares of x, i.e., into shares αi and βj s.t. x = αi + βj . We briefly recall this protocol here.
We denote by PKE a linearly homomorphic encryption scheme (with operations ⊙ for multiplication with
a constant and ⊕ for homomorphic addition) over an integer N and we denote by (pki,PKE, ski,PKE) the
public/secret key pair of scheme PKE of Pi.

Pi(pkj,PKE, ski,PKE, ai) Pj(pki,PKE, bj)

ci← PKE.Enc(pki,PKE, ai)
ci,πi−−−→

Compute a ZK proof πi that a < q3

If πi is not valid, abort.
y $← Zq5, cj ← (ci ⊙ bj)⊕ PKE.Enc(pki,PKE, y)
Compute a ZK proof πj that Pj knows
bj < q3, y < q7 s.t. cj ← (ci ⊙ bi)⊕ PKE.Enc(pki,PKE, y)

cj,πj←−−−
If πj is not valid, abort.
α← PKE.Dec(ski,PKE, cj) mod q β ← −y mod q

Figure 10: Multiplicative to additive share conversion protocol MtA.

Gennaro and Goldfeder also consider a slight adjustment of the above protocol which they call MtAwc,
which differs only from the above protocol in the following way: If Bj = gbj is a public value (where g is
the generator of a cyclic group of prime order q), then party Pj additionally proves in zero-knowledge
that bj is the discrete log of Bj . We now recall the key generation and signing procedures of the GG[H0]
scheme. For simplicity, we slightly deviate from the original GG[H0] scheme in two ways, which however
has no impact on the scheme’s security: Gennaro and Goldfeder consider a distributed key generation,
whereas we assume that the key generation is initially executed by a trusted party. In addition, we do

29

Algorithm Gen(1κ, t, n)
00 For k ∈ [t] ∪ {0}, sample ak

$← Zq.
01 Let F (x) := atx

t + · · ·+ a1x + a0.
02 sk := x← a0 mod q.
03 Set X ← gx and ski := xi ← F (i) mod q.
04 Set Xi ← gxi .
05 Set pk := (X, {Xi}i∈[n]).
06 Return (pk, {ski}i∈[n]).

Figure 11: Key generation algorithm. Note that Gennaro and Goldfeder consider a distributed key
generation, whereas we assume that the key generation is initially executed by a trusted party.

not generate the keys for the linearly homomorphic encryption scheme during the initial key generation
but we let parties generate fresh keys in the beginning of an execution of the signing procedure.

In Figure 12 we recall the signing procedure of the GG[H0] scheme. The procedure makes use of
a non-malleable and equivocable commitment scheme CT := (Com, Open) as well as a hash function
H0 : {0, 1}∗ → Zq, a linearly homomorphic encryption scheme PKE := (Gen, Enc, Dec) and a non-
interactive zero-knowledge proof system ZK. We slightly adjust the signing procedure as follows: Instead
of letting parties generate their key pair for PKE during the initial key generation, we let parties generate
a fresh key pair (pki,PKE, ski,PKE) for the PKE scheme before Phase 1 of the signing procedure. Each party
then broadcasts pki,PKE together with a zero-knowledge proof that the key was generated honestly.11 The
parties then engage in the signing procedure as specified in Figure 12.

B.3 Security Proof
Gennaro and Goldfeder [GG18] prove that their scheme is unforgeable as per Definition 3.2 under the
assumptions from Appendix B.1. In Figure 13 we recall the simulation of the signing procedure that
was used as part of the unforgeability proof in [GG18] (with some minor modifications). The forger F
provides a computationally indistinguishable view of the signing procedure of the GG scheme to a PPT
adversary on input the secret key shares of corrupted parties and with access to a signing oracle.

B.4 Proof Sketch of Theorem 5.2
B.4.1 Case b = 0

In this case, B executes B0 which plays in game th-ufcma-hrk1rGG. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B0 corrupts the same parties in th-ufcma-hrk1rGG
and forwards the resulting secret key shares and the public key to A.

The simulation of the oracles Rand, RSign and the random oracle H0 happens in a straightforward
way, i.e., B0 simply forwards queries from A in game unf -prandTVRF-rGG to the corresponding oracle in
game th-ufcma-hrk1rGG.

The simulation of the random oracle H1 and the REval oracle is a bit more challenging as B0
does not have access to any such oracle in game th-ufcma-hrk1rGG. Upon a query from A to the
random oracle H1 on input a message m, B0 first checks if H1(m) has been set already. If so, it simply
returns H1(m). Otherwise it samples a uniformly random value r $← Zq and sets H1(m) := gr and
returns gr. The simulation of the REval oracle then works as follows: On input a message m, an
index i ∈ [n] and a randomness ρ ∈ RList, B0 first executes pk′ ← TVRF-rGG.RandPK(pk, ρ) and parses
pk′ := (X ′, {X ′

1, · · · , X ′
n}). B0 then retrieves r ← H1(m), sets ϕi := (X ′

i)r = H1(m)sk′i , simulates the
corresponding zero-knowledge proof πi and returns (ϕi, πi).

11We note that if PKE is instantiated with the Paillier encryption scheme [Pai99], then this zero-knowledge proof can be
instantiated with the Paillier-Blum Modulus zero-knowledge proof system [CGG+20].

30

Pi(wi, m) Phase 1 Pj(wj , m){j ̸= i}

ki
$←− Zq, γi

$←− Zq

(Ci, Di)← CT.Com(gγi)
Ci−−−−−−−−−→

Define the following:
k =

∑
i∈S ki, γ =

∑
i∈S γi

kγ =
∑

i,j∈S kiγj mod q

kx =
∑

i,j∈S kiwj mod q

Phase 2

ki−→
MtA

γj←−
αi,j←−− βi,j−−→
ki−→

MtAwc
wj←−−

µi,j←−− νi,j−−→
(s.t. ki · γj = αi,j + βj,i)
(s.t. ki · wj = µi,j + νj,i)

δi = kiγi +
∑

j ̸=i(αi,j + βj,i)
σi = kiwi +

∑
j ̸=i(µi,j + νj,i)

Phase 3

δi−−−−−−−−→ δ =
∑

i∈S δi = kγ
Phase 4

πγi = ZKΓi{(γi) : Γi = gγi}
Di,πγi−−−−−−−−−−−→ Γi = CT.Open(Ci, Di)

Abort if πγi
does not verify

R =
(∏

i∈S Γi

)δ−1

= gk−1
,

where R = (rx, ry).
Set r = rx mod q

Phase 5
m′ = H0(m), si = m′ki + rσi

li
$← Zq, ρi

$← Zq

Vi = Rsi · gli , Ai = gρi

(Ĉi, D̂i) = CT.Com(Vi, Ai)
Ĉi−−−−−−−−−→

π̂i = ZK(Vi,Ai){(si, li, ρi) : D̂i,π̂i−−−−−−−−−−−→
(Vi = Rsi · gli) ∧ (Ai = gρi)} Abort if a proof fails

V = g−m′ ·Q−r ·
∏

i∈S Vi = gl

A =
∏

i∈S Ai

Ui = V ρi , Ti = Ali

(C̃i, D̃i) = CT.Com(Ui, Ti)
C̃i−−−−−−−−−→
D̃i−−−−−−−−−→ Abort if

∑
i∈S Ti ̸=

∑
i∈S Ui

si−−−−−−−−→ s =
∑

i∈S si

Figure 12: Interactive (t, n)-threshold ECDSA scheme by Gennaro and Goldfeder [GG18], where |S| ⊆
[n], |S| = t + 1. For all parties {Pi}{i∈[n]}, xi denotes secret share of the secret x. For all parties Pi{i∈S},
wi represents the secret share of x due to (t, t + 1)-secret sharing of x, such that x =

∑
i∈S wi.

31

Simulation of the Signing Procedure: Before Phase 1 of the signing procedure, F samples uniformly at
random a public key pk1,PKE s.t. (pk1,PKE, ·) ∈ PKE.Gen(1κ) and simulates the zero-knowledge proof π1,PKE.

Phase 1: F executes Phase 1 honestly for party P1, i.e., it samples k1, γ1
$←− Zq and commits to gγ1 . It then

broadcasts the commitment C1.

Phase 2: F executes the first MtA protocol correctly for P1 using the values k1 and γ1 and extracts the
following values from the zero-knowledge proofs that are exchanged during the MtA protocol: ki, γi, y1 for
i > 1. It then computes α1,j = k1γi + y1 mod q and k̃ =

∑
i∈S

ki mod q.
For the execution of the MtAwc protocol, F does not know w1 when P1 is the reacting party. Therefore,
it simply chooses a random γj,1 and simulates the corresponding zero-knowledge proofs. When P1 is the
initiating party, F can execute the protocol honestly with input k1 and extract the share ν1,j from the
zero-knowledge proofs.

Phase 3: F executes this phase correctly for P1.

Phase 4: All players decommit to Γi. F extracts γj for all j1 from the zero-knowledge proofs πγj and
computes k = δ ·

(∑
i>0 γi

)−1 mod q.

If k̃ = k, then F proceeds as follows:

(a) F queries its own signing oracle on message m to receive a signature (r, s) and computes R =
gH(m)s−1

·Xrs−1
.

(b) F rewinds the adversary to the beginning of Phase 4 and equivocates the decommitment of P1 to
Γ̂1 = Rδ

∏
i>1 Γ−1

i .

(c) F computes s1 = s−
∑

i>1 si.

Phase 5: F executes this phase correctly for P1 using s1.

Else if k̃ ̸= k, then F proceeds as follows:
Phase 4: F runs this phase correctly for P1.

Phase 5: F chooses s̃1
$← Zq and runs this phase using this value.

Figure 13: Simulation of the signing procedure of the GG scheme. The forger F receives as input the
secret key shares of all corrupted parties and obtains access to a signing oracle.

32

Eventually, the adversary outputs a forgery which B0 also forwards to the th-ufcma-hrk1rGG game.
It is easy to see that B0 wins the th-ufcma-hrk1rGG game if A is able to win the unf -prandTVRF-rGG
game by satisfying the winning condition in Case 1.

B.4.2 Case b = 1

In this case, B executes B1 which plays in game th-prandTVRF. That is, upon A sending the list C
of parties to corrupt in game unf -prandTVRF-rGG, B1 corrupts the same parties in th-prandTVRF and
forwards the resulting secret key shares and the public key to A. The simulation of oracles Rand, RSign,
H0, H1 and REval then works as follows:

• Oracle Rand: On a query to Rand from A, B1 samples uniformly at random ρ $← Zq, stores ρ in RList
and returns ρ.

• Oracle H0: Upon A querying H0 on input a message m, B1 first checks whether m is public key
prefixed, i.e., whether m can be parsed as m := (pk′, m′) where (pk′, ·) ∈ TVRF-rGG.Gen(1κ, t, n). If so,
B1 executes SECDSA as described in Figure 4 on input (X ′, m) with pk′ := (X ′, {X ′

1, · · · , X ′
n}).

If m is not public key prefixed, B1 simply samples a uniformly random value r $← Zq, sets H0(m) := r
and returns H0(m). Note that in order for B1 to abort in this simulation, A would have to guess a
randomness ρ ∈ Zq before it has been output by the Rand oracle. This happens only with negligible
probability. Further, note that SECDSA programs the random oracle H0 in such a way that (1) H0(m) is
set to uniform random value in Zq, and (2) the values (r, s) look like a valid ECDSA signature for m
and X ′ to A except with negligible probability (this has been shown in [FKP17]).

• Oracle RSign: Upon A querying this oracle on input a message m and randomness ρ ∈ RList, B1
simulates the signing procedure in the same way as described in Theorem 4.4. Note that this simulation
relies on the availability of a signing oracle, which returns full valid ECDSA signatures on arbitrary
messages and rerandomized public keys. Since B1 does not have access to such an oracle, it uses the
simulated signatures (r, s) that are generated during the programming of H0. Note that the simulator
code from Theorem 4.4 does not program H0 such that there is no conflict between the execution of
the simulator code from Theorem 4.4 and SECDSA.

• Oracle H1: Upon A querying H1 on some message m, B1 simply queries its own random oracle on m
and relays the output.

• Oracle REval: Upon a query from A on input (m, i, ρ), B1 queries its own oracle on input m and receives
an evaluation share (ϕi, πi) where ϕi = H1(m)ski . B1 then computes ϕ′

i = ϕi ·H1(m)ρi = H1(m)ski+ρi

(where ρi is the randomness share of ρ for party Pi according to the TVRF-rGG.RandSK algorithm),
simulates a NIZK proof π′

i of the DLEq proof system (cf. Appendix A.2) and sends (ϕ′
i, π′

i) to A.

Reduction to th-prandTVRF: During the challenge phase of th-prandTVRF-rGG (in Case 2), A outputs
a message m∗, randomness ρ∗, a set of indices S and evaluation shares {(ϕ∗

i , π∗
i)}i∈S∩C. Upon receiving

these values, the adversary B1 computes ϕi = ϕ∗
i · H1(m∗)−ρ∗i = H1(m∗)ski and generates a new zero-

knowledge proof πi using ski and ϕi. B1 then returns the set of indices S, the message m∗ and evaluation
shares {(ϕi, πi}i∈S∩C to game th-prandTVRF. Upon receiving the challenge value ϕ from the underlying
game, B1 computes ϕ∗ = ϕ · H1(m∗)ρ∗ and returns it to A. Note that if ϕ was chosen randomly by the
th-prandTVRF game then ϕ∗ is also random, and if ϕ is a valid TVRF output, then so is ϕ∗ under the
key randomized with ρ∗. B1 then simply relays the output of A to its own game.

It is easy to see that if A can distinguish between a random value and the output of the rerandomized
TVRF, B1 can distinguish between a random value and the output of the TVRF.

33

	Introduction
	Background on the BIP32 Standard
	Our Contribution
	Related Work

	Overview of our Solution
	Preliminaries
	Interactive Threshold Signatures
	Signature Scheme with Honestly Rerandomizable Keys
	Non-Interactive Threshold Verifiable Random Function

	Rerandomizable Interactive Threshold Signing
	Model
	Construction

	BIP32-Compatible Threshold Wallets
	Non-Hardened Node Derivation
	Hardened Node Derivation
	Joint Threshold Signature/TVRF Scheme
	Pseudorandomness of TVRF-rGG
	Uniqueness and Robustness of TVRF-rGG

	Constructing BIP32-Compatible Threshold Wallets from TVRF-rGG

	Evaluation
	Additional Preliminaries
	Correctness and one-per message unforgeability under honestly rerandomizable keys of signature schemes with rerandomizable keys
	TVRF Construction from Galindo et al. 9581233
	ECDSA with Rerandomizable Keys

	The GG scheme by Gennaro and Goldfeder 3243859
	Underlying Assumptions and Building Blocks
	Construction
	Security Proof
	Proof Sketch of Theorem ??
	Case b = 0
	Case b = 1

