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Abstract. We describe a new related nonce attack able to extract the
original signing key from a small collection of ECDSA signatures gener-
ated with weak PRNGs. Under suitable conditions on the modulo order
of the PRNG, we are able to attack linear, quadratic, cubic as well as
arbitrary degree recurrence relations (with unknown coefficients) with
few signatures and in negligible time. We also show that for any collec-
tion of randomly generated ECDSA nonces, there is one more nonce that
can be added following the implicit recurrence relation, and that would
allow retrieval of the private key; we exploit this fact to present a novel
rogue nonce attack against ECDSA. Up to our knowledge, this is the
first known attack exploiting generic and unknown high-degree algebraic
relations between nonces that do not require assumptions on the value
of single bits or bit sequences (e.g. prefixes and suffixes).

Keywords: ECDSA · PRNG · nonce attack.

1 Introduction

Digital signatures are nowadays ubiquitous and find application in secure com-
munication protocols, code authentication, public key infrastructures and block-
chain technologies. Control of funds deposited in any digital wallet is eventually
based on the capability of its owner to prove ownership and sign transactions
using an associated private key in a digital signature scheme. One of the most
widely adopted digital signature standards, based on elliptic curve cryptography
(ECC), is ECDSA [6]. Due to the high performance and small signature and key
size, ECDSA has been adopted in many applications, from TLS to Bitcoin. A
study [29] conducted in early 2021 on the top market-cap 100 blockchains showed
that 74 coins use ECDSA as digital signature scheme (over the secp256k1 curve
[14]).

The security of ECC is based on the difficulty of solving the discrete loga-
rithm problem over the group of points of a suitable elliptic curve (ECDLP) and
its related decisional variants [28]; however in practice, the theoretical security
level can be degraded by the possibility to collect side channel information dur-
ing the process of cryptographic operations as it has been first demonstrated on
symmetric key algorithms [16] and then extended to public key algorithms [7].
Indeed, physical leakage of secret data processed by embedded devices during
sensitive operations, cache and memory accesses on mobiles [9], servers and desk-
tops [26], combined with mathematical techniques [10][17] allows to get around



the hard ECDLP problem and to break security. In the case of ECDSA, this
often translates to a compromise of the private key.

The critical operation in ECC is the point-scalar multiplication, i.e. the op-
eration that benefits from DLP-hardness. This can be viewed as the equivalent
of modular exponentiation in RSA schemes. The scalar k which multiplies the
curve points can play different roles depending on the high level scheme which is
instantiating the point multiplication operation, but almost often its confiden-
tiality is a primary concern. In Diffie-Hellman protocols, it represents a party’s
private key (being ephemeral or static). In signature schemes such as ECDSA
and Schnorr signatures [23], it is assumed to be a cryptographically strong ran-
dom number (the nonce), and its confidentiality, integrity and non-repeatability
must always be assured.

It is well known that if the value of even a single nonce used to generate
an ECDSA signature is leaked, then anyone can retrieve the private key used
to generate the signatures. Therefore, all nonces must be kept secret. It is also
known that even if all nonces are kept secret, but a nonce value is reused for
more than one signature, the private key can also be immediately retrieved.
Such nonce collisions are very easy to detect, as the first half of each ECDSA
signature depends only on the nonce value (it can in fact be viewed as the public
ephemeral key, or a public commitment to the nonce value used to generate the
second half of the signature). Researches have also shown how biased generation
of nonces can lead to unveiling of the private key, provided a sufficient number
of signatures is available (more details are given below).

1.1 Our Contributions

We advance the state of the art by proposing a novel attack that exploits high-
degree relationships among the random values (nonces) used to generate sev-
eral signatures, allowing to retrieve the signer’s private key. Our method is not
exploiting any side channel information coming from the signature generation
process, but is rather a cryptanalytic attack that can be run, under certain as-
sumptions, on a relatively small set of signatures generated by a given private
key.

In our investigations, we make the assumption that nonces used to generate
several ECDSA signatures are subject to an unknown polynomial relationship
modulo n, where n is the order of the curve’s generator point; more precisely, we
suppose that they satisfy a recurrence polynomial equation of arbitrary degree
and unknown coefficients modulo n. In this case it is very easy to recover the
private key using only few signatures, without the need of lattice reduction.

The first step we need to perform is to find a way to get rid of the unknown
coefficients involved in the recurrence equation; to this purpose, we devise a re-
cursive algorithm that is able to rewrite the unknown recurrence relation as a
polynomial involving only differences of nonces. Then, we can use the relation-
ships between the nonces and the private key given by the second half of each
signature to rewrite the polynomial only in terms of the private key. Finally, we
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show that we can use known algorithms to find the roots of the polynomial; the
private key will always be obtained as a root of the polynomial.

The attack works on all prime curves currently standardized and in use for
ECDSA (including Bitcoin curve secp256k1) and up to our knowledge, it is the
first to exploit relationships of degrees higher than linear.

Cases where nonces are generated with Linear Congruential Generators (LCG),
quadratic or cubic generators with unknown coefficients modulo n, are special
cases of this general category of relationships. After showing how to attack nonces
generated with an arbitrary recurrence relation, we then prove that even sets of
fully random nonces allow the attacker to retrieve the private key when the set
is completed by one additional nonce that follows the (unknown) recurrence re-
lation given by the random nonces taken in a given order (we refer to this as
the rogue nonce example). When a sufficient number of signatures are gener-
ated with a given private key, there will always be a reordering of the signatures
that make the recurrence attack work, leading to compromise of the private key.
However, we are not able to find this ordering faster than brute-force.

1.2 Related Work

The generation of an ECDSA signature is arguably a fragile process, requiring the
creation and use of cryptographically strong random values; it is understandable
that its security has been widely scrutinized and that attacks exploiting bad
implementations have been extensively published [22], [17], [24], [8].

In the ANSI X9.62 document [31], the group where the DLP-hard operation
takes place is the group on the curve defined by the generator point G, which
has order n. Therefore it seems then natural to assign the requirement that
k ∈ [1, n−1], where n is the order of the generator point of the elliptic curve. This
constraint is coherent with the fact that private keys in elliptic curve key pairs
must be chosen uniformly randomly over the same interval (in the document the
per-message secret k is indeed referred-to as an ephemeral key).

When k is chosen, a scalar-point multiplication is performed to obtain the
corresponding public key R = [k]G and the signature r part is determined as
the x-coordinate of R. To mitigate the usefulness of partial information obtained
from the process of computing R = [k]G, the value of k can be blinded by
preliminary addition of a random multiple of n, where the multiplication factor
must have at least log2 n

2 bits [33]. The partial information could be an MSB
prefix of the scalar k, that can be used to retrieve the private key by solving
instances of the hidden number problem [12] by means of lattice reduction [27].

Even if the ECDSA signature generation is performed securely, if the nonce
values k are not properly generated in a random way, attacks become possible.
An example would be if the k values are biased, that is if their distribution over
the interval [1, n− 1] is not uniform. for example if they contain known prefixes,
suffixes or common bit sequences [18], or if they are generated using non crypto-
graphic PRNGs [13],[21],[8]. This latter case is particularly interesting; if nonces
are generated using Linear Congruential generators (LCGs), the signatures can
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be likely used to mount an attack by means of Lattice Reduction algorithms
[19], and the signer’s key can be obtained.

The biases used in [19], [13] and exploited so far in the literature can be seen
as simple relations between the nonce bits, or linear relations between the full
nonce values. Up to our knowledge, there are no published studies on cases where
the nonce values are related in a more complicated way, for instance by means of
quadratic, cubic or higher-degree algebraic relationships. This will be our goal,
and is motivated by the fact that examples of non-cryptographic PRNGs include
quadratic and cubic congruential generators [32].

The rest of this paper is organized as follows: Section 2 covers preliminaries
useful to understand the rest of the paper; Section 3 presents the attack; Section
4 discusses an implementation and give some results, Section 5 concludes the
paper.

2 Preliminaries

In this section we give the required preliminaries that are going to be used in
the rest of this work. In the following, we use “iff” as “if and only if”, DLP as
“discrete logarithm problem” and ECDLP as “elliptic curve discrete logarithm
problem”. By algorithm or procedure we mean a uniform family of circuits of
depth and width polynomial in the index of the family. Namely: F = {Fn}n∈N
is an algorithm iff there exists an integer n̄, polynomials τ, w, d and a Turing
machine MF which, given n as input, outputs a description of Fn in time at
most τ(n) for any n > n̄, where Fn is a Boolean circuit of width at most w(n)
and depth at most d(n). If an algorithm A is deterministic, we denote its output
y on input x as y := A(x), while if it is randomized we use y ← A(x). We will

also use x D←−−X to denote that an element x is sampled from a distribution D
over a set X (or simply x← D when the image set is implied); or we will write
x $←−X if x is sampled uniformly at random from a set X. We will call negligible
(and denote by negl(n)) a function that grows more slowly than any inverse
polynomial in n, and overwhelming a function which is 1 minus a negligible
function. Finally, a∥b denotes concatenation of strings.

2.1 Cryptographic Primitives

A Weierstrass elliptic curve E defined over a finite field Fq is a set of points
P = (x, y) where x and y belongs to Fq and satisfy a certain equation curve E,
together with the point at infinity denoted by O :

– If q = p, p > 3 a prime number, every point P = (x, y), P ̸= O, must satisfy
the following equation in Fp:

E : y2 = x3 + ax+ b (1)

where the parameters a, b ∈ Fp are such that the discriminant∆ = 4a3+27b2

is not equal to zero in Fp.
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– If q = 2m with m a prime number, every point P = (x, y), P ̸= O, must
satisfy the following equation in F2m :

E : y2 + xy = x3 + ax2 + b (2)

where the parameter b ̸= 0 in F2m .

The group law of elliptic curves is defined by the addition of two points on the
curve (shown for prime curves, see [20]):

x3 =
y2 − y1
x2 − x1

2

− x1 − x2 and y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1 (3)

Doubling of a point is similarly obtained as:

x3 =
3x2

1 + a

2y1

2

− 2x1 and y3 =
3x2

1 + a

2y1
(x1 − x3)− y1 (4)

To construct cryptographic schemes using elliptic curves, domain parameters
D = {q, a, b,G, n, h} must be defined consisting of following elements:

– A field order q
– An elliptic curve defined over Fq by two coefficients a, b ∈ Fq × Fq

– A base point G, defined by its affine coordinates (xG, yG) ∈ Fq × Fq which
is a point of E(Fq). G has prime order.

– The order n of G
– The co-factor h =

#E(Fq)
n

The operation called scalar point multiplication is constructed upon the el-
liptic curve group operation of point addition:

R = [k]P (5)

where k is an integer and P a point of E(Fq).
This operation is directly linked to the ECDLP and provides security in

all cryptographic schemes based on ECC. Its execution time and its sensitivity
regarding physical attacks are major concerns when ECC is implemented in
HW and/or SW. Several regular algorithms are available to execute securely the
scalar point multiplication, for details we refer to [15] and [20].

2.2 ECDSA

Let us represent the ECDSA domain parameters as DECDSA = (q, a, b,G, n, h),
the key pair be (d,Q) with Q = [d]G and the required hash function being h(.).
The process of generating an ECDSA signature is given in Algorithm 1.

To produce digital signatures, a random or pseudo-random per-signature
secret k must be generated, consumed and discarded. It can also be determinis-
tically generated [30] , but in any case its secrecy must be guaranteed because
its leakage enables to retrieve the signer’s private key.
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Algorithm 1 ECDSA signature generation

Require: DECDSA, private key d, message m
returns signature := (r, s)
Step 1: k $←− [1, n− 1]
Step 2: R = [k]G = (xR, yR)
Step 3: r = xR mod n , if r = 0 go to Step 1.
Step 4: e = h(m)
Step 5: s = k−1 (e+ d× r) mod n, if s = 0 go to Step 1
Return (r, s)

One quickly realizes that the sensitivity of k is equivalent to the sensitiv-
ity of the signer’s private key, and therefore special care must be taken versus
implementation attacks, including physical attacks, when k is manipulated.

During signature generation, k is used three times. The first time is to com-
pute r via scalar point multiplication, the second time to obtain its modular
inverse k−1 mod n and the last time in its inverse form during s computation.
None of these operations should leak any information on the bits of k.

3 The New Attack

3.1 A Generic Observation

Suppose that N signatures are generated using the ECDSA algorithm using
the same private key d; let us denote the parameters of the i-th signature as
(ki, hi, ri, si) where k denotes the nonce, h the message hash, r the first half of
the signature and s the second half of the signature. All equations in the rest of
this paper are intended modulo n, where n is the order of the curve’s generator
point G. For each generated signature we can write:

ki =
hi

si
+

ri
si
d (6)

In other words, the second half of every signature gives us a linear relation
between the used nonce and the private key, as the message hash value and the
two halves of each signature are public and known. We believe this is, by itself,
an interesting observation. As the first half of every signature is the x coordinate
of the point Ri = [ki]G, it is straightforward to use the curve equation to obtain
the point Ri (up to a sign of its y coordinate, here we can make the assumption
of taking the smallest value of y). Obtaining ki from Ri would mean solving the
discrete logarithm problem over the curve; but indeed using the second halves
of the signatures, we can write a relationship between the nonce values. Taking
the example case of two signatures, it is easy to verify that we can re-write (6)
as:

k1 =
r1s0
r0s1

k0 +
h1r0 − h0r1

r0s1
(7)
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and, multiplying times the generator point G, we obtain (regrouping known
values in a, b):

R1 = [a]R0 + [b]G (8)

which is a non-trivial relationship that one is not supposed to write knowing
only the nonce commitments (i.e. the points Ri).

This shows that given the set of N points Ri, we are not confronted with N
instances of the discrete logarithm problem, but with only one instance, as we
know how all these nonce values are related, through the private key d by means
of the values of si. This is, after all, the reason behind the well known fact that
knowledge of one ECDSA nonce value is equivalent to knowledge of the private
key, and also to knowledge of all nonce values ever used to generate signatures
with that particular private key.

When the nonces used for N signatures obey a multivariate polynomial equa-
tion, we can rewrite the equation as a univariate polynomial involving only the
private key and public values by substituting the relations above. For example,
if we know coefficients ai and exponents ei such that

a0k
e0
0 + a1k

e1
1 + a2k

e2
2 + · · ·+ aN = 0 (9)

then we can re-write it as:

a0(
h0

s0
+

r0
s0

d)e0 + a1(
h1

s1
+

r1
s1

d)e1 + a2(
h2

s2
+

r2
s2

d)e2 + · · ·+ aN = 0 (10)

Now, this is a polynomial of degree maxi(ei) in the unknown d. Algorithms
exist to quickly expand and find roots of such polynomials over finite fields
(for instance, Berlekamp’s algorithm[11]) and are often implemented in freely
available computer algebra packages, such as SageMath [5] for instance; the
private key d will always appear among the roots of the polynomial. Note that
more complex relations where the nonces are multiplied together will also work,
as for example

a0k
e00
0 ke011 · · · ke0N−1

N−1 + a1k
e10
0 ke111 · · · ke1N−1

N−1 + · · ·+ aN = 0 (11)

can also be re-written as above and will also lead to a univariate polynomial in
d (with potentially higher degree). The natural question that arises is how to
find such relation between the nonces; if they are chosen in a properly random
way, this is generally not possible. However, in some cases it may be possible to
write such relation, as we will see in the next sections.

3.2 Nonces generated with an (unknown) recurrence equation

Let us consider the case where the signer generates N ECDSA signatures choos-
ing the first nonce k0 at random and all the following N − 1 nonces using a
(N − 3)-degree recurrence relation with N − 2 unknown coefficients. We can
think about this as the most general case of a polynomial random number gen-
erator with secret coefficients ai, seeded by the initial state k0.
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That is, we can write:

k1 = aN−3k
N−3
0 + aN−4k

N−4
0 + · · ·+ a1k0 + a0

k2 = aN−3k
N−3
1 + aN−4k

N−4
1 + · · ·+ a1k1 + a0

k3 = aN−3k
N−3
2 + aN−4k

N−4
2 + · · ·+ a1k2 + a0 (12)

. . .

kN−1 = aN−3k
N−3
N−2 + aN−4k

N−4
N−2 + · · ·+ a1kN−2 + a0

What we want is to write a polynomial involving only the nonces, and to
get rid of the unknown recurrence relation coefficients ai , so that we can then
rewrite the equation with only the private key. Let us tackle the general case by
analyzing the simplest cases first, and then proceed with a recursive algorithm.
When N = 4, we are essentially looking at the simple case of an LCG with
unknown multiplier a1, increment a0 and initial state k0, that is:

k1 = a1k0 + a0

k2 = a1k1 + a0 (13)

k3 = a1k2 + a0

To get rid of coefficient a0 we subtract the second equation from the first, and
the third from the second:

k1 − k2 = a1(k0 − k1)

k2 − k3 = a1(k1 − k2) (14)

Now, let us denote the difference of two nonces ki − kj as ki,j :

k1,2 = a1k0,1

k2,3 = a1k1,2 (15)

or, leaving a1 on both right sides:

k1,2
k0,1

= a1

k2,3
k1,2

= a1 (16)

and again subtracting the second from the first equation finally gives:

k1,2
k0,1
− k2,3

k1,2
= 0 (17)

8



or
k21,2 − k2,3k0,1 = 0 (18)

This can be easily re-written as a second degree polynomial in d with known
coefficients by substituting all occurrences of ki,j with:

ki,j = (
ri
si
− rj

sj
)d+

hi

si
− hj

sj
(19)

The private key can then be easily recovered as one of the roots of this polyno-
mial.

This means that despite the fact that the signer is using a Linear Congruential
Generator (LCG) modulo n with secret coefficients and initial state, we are able
to retrieve his private key by only observing four signatures, in negligible time.
Lattice reduction algorithms are also able to obtain the private key in the linear
case so let us now take a look at higher degrees recurrences.

For N = 5, the recurrence equations are:

k1 = a2k
2
0 + a1k0 + a0

k2 = a2k
2
1 + a1k1 + a0

k3 = a2k
2
2 + a1k2 + a0 (20)

k4 = a2k
2
3 + a1k3 + a0

and what we obtain in the end after a similar elimination of coefficients is:

(k21,2 − k2,3k0,1)k1,3k2,3 − (k22,3 − k3,4k1,2)k0,1k0,2 = 0 (21)

which leads to a 4-degree polynomial in d after the usual substitution; again, d
is found as a root of the polynomial. This is representing the case of a Quadratic
Congruential Generator (QCG) modulo n with secret coefficients and unknown
initial state.

Similarly, for a Cubic Congruential Generator (CCG) we set N = 6 and we
obtain a 7-degree equation:

((k21,2 − k2,3k0,1)k1,3k2,3 − (k22,3 − k3,4k1,2)k0,1k0,2)k1,4k2,4k3,4

−((k22,3 − k3,4k1,2)k2,4k3,4 − (k23,4 − k4,5k2,3)k1,2k1,3)k0,1k0,2k0,3 = 0 (22)

Indeed, we can show that the polynomials involving the nonces generated by
(12) can be obtained using a recursive algorithm that constructs polynomials
using the nonces differences ki,j ; then, substituting the values with (19) leads to
a polynomial in d that can be solved to obtain the private key.

The recursive algorithm has been constructed by inspection and generaliza-
tion of the hand-constructed polynomials shown above for N = 4, 5, 6 and has
been tested to work for N up to 16. The degree in d of the polynomial for N
signatures is equal to 1+

∑N−3
i=1 i. The polynomial in terms of the ki,j for N sig-

natures can be obtained by calling the recursive function dpoly(N − 4, N − 4, 0)
where the function dpoly is described in Algorithm 2.
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Algorithm 2 dpoly(n, i, j)

if i == 0 then
return k2

j+1,j+2 − kj+2,j+3kj,j+1

else
left = dpoly(n, i− 1, j)
for m = 1 to i+ 2 do

left = left·kj+m,j+i+2

end for
right = dpoly(n, i− 1, j + 1)
for m = 1 to i+ 2 do

right = right·kj,j+m

end for
return (left - right)

end if

3.3 Adding a carefully crafted signature to an existing set

Let us now consider the case where the signer has correctly generated N − 1
nonces in a random way, and has so produced a set of N − 1 signatures. The
considerations of the previous section are not valid for this set, but if we take a
look at (12) we can see that they describe a rather generic recurrence equation.
The fact that the coefficients are unknown and we do not make assumptions
on them, lead to the following consideration: let us take all equations from (12)
but the last one. We have a set of N − 2 equations binding the N − 1 nonces
via the N − 2 coefficients ai. Therefore, for a given set of such N − 1 randomly
generated nonces, one can always obtain one solution, i.e. one set of coefficients
ai that binds them with a recurrence relation of degree N − 3.

In other words, even for a set of random nonces, there always exists an
implicit unknown recurrence equation of the form (12) that binds them. Now,
if we complete the set of signature with an additional one, where the nonce is
chosen to satisfy the recurrence equation, we are back in the case analyzed in
the previous section, and we can simply obtain the signer’s private key using the
technique explained above.

We can refer to this additional nonce as the rogue nonce. Note that by chang-
ing the order of the first N − 1 signatures, one obtains different values for the
implicit recurrence relation coefficients, and therefore a different value of the
rogue nonce. When the value of N has the order of magnitude of the number
of bits of the curve, it is easy to see that given a set of properly generated N
signatures, it is always possible to re-order the first N − 1 ones to make the last
signature fit the underlying implicit recurrence relation.This follows from the
fact that the number of permutations grows with the factorial or approximately
NN , which is greater than 2N . Therefore given a big enough set of signatures,
there will always be a given re-ordering that allows the retrieval of the private
key by means of the attack proposed above. All of this is only of theoretical
interest, as we are not able here to devise a way of finding this re-ordering easier
than with brute-force.
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More formally, given a set of N − 1 nonces, the coefficients ai that relate
them can be obtained by writing the recurrence relations (12) from 1 to N − 2
in matrix form, and by inverting the (N − 2)× (N − 2) matrix to obtain:

aN−3

...
a0

 =

k
N−3
0 . . . k00
...

. . .
...

kN−3
N−3 . . . k0N−3


−1  k1

...
kN−2

 (23)

As we can see,knowledge of the nonces is necessary to derive them, meaning
the value of the rogue nonce is uniquely determined by the set of the previous
N − 1 nonces and by their ordering.

4 Implementation And Benchmarks

The techniques presented in this paper have been implemented in Python lan-
guage, using the SageMath Python extensions. SageMath [5] is a powerful tool
that is able to execute Python programs in a native way and gives to the pro-
grammer a powerful set of algebraic manipulation routines; these can be used to
construct polynomials, manipulate them and find roots.

The code for the related nonces and the rogue nonce cases can be found
in this GitHub repository [1], under the original_attack folder. To execute
them, it is necessary to invoke Sage and to install the Python ecdsa, hashlib and
random libs. Retrieval of the private key from a set of signatures takes roughly
70 ms on average a common laptop for the sec256k1 curve, about 340 ms on
average for the NIST secp384r1 curve, and about 490 ms on average for the
secp521r1 curve; these numbers do not vary significantly for linear, quadratic or
cubic recurrence equations. When N = 16, the algorithm takes about 6.5 s to
retrieve the private key.

We used this code as a basis to conduct a scan of the Bitcoin and Ethereum
blockchains, to spot possible usages of such weak PRNGs for ECDSA signature
generation. We were not able to obtain results, but we re-discovered cases of
usage of repeated nonces. Indeed, a repeated nonce is a trivial case of the re-
currence relation studied in this paper, where the only non-zero coefficient is a0,
which is equal to the repeated nonce; details on our experiments can be found
here.

Complete source code can be found in the GitHub repositories [1], [2] for
Bitcoin ECDSA signatures dumping code, [3] for Ethereum ECDSA signatures
dumping code. We also tried the attack without results on dumps of TLS con-
nection establishments, see the GitHub repository [4] for more details.

5 Conclusions and Future Directions

In this paper we presented an attack that exploits the existence of generic nonlin-
ear (high-degree) algebraic relations between ECDSA nonces in order to retrieve
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the signer’s private key. We studied the case of a generic recurrence relation of
degree N − 3 with unknown coefficients, showing that N such signatures allow
the attacker to obtain the private key in negligible time. We have also shown
that given a sufficiently large collection of signatures generated with uniformly
random nonces, there is an ordering of the signatures which would allow easy
retrieval of the private key by means of the attack proposed here.

We see several lines of extension of our work. First, we would like to remark
that the considerations presented here certainly apply also to other signature
schemes that require the generation of a random nonce (or ephemeral secret), for
instance Schnorr signatures. Deterministic variants (e.g. deterministic ECDSA
and EdDSA [25]) make use of cryptographic hash functions to generate the
nonces and are thus inherently resistant to the attacks described here.

It would be interesting to devise techniques that would allow retrieval of
the private key in the case where the modulo used by the recurrence relation
is different from the order of the curve, as this seems an interesting case for
known LCG, QCG and CCG such as the ones referenced in [32]. Even if it
would probably be necessary to make further assumptions, for instance that the
moduli should be co-prime, we consider this as the most interesting evolution of
the work presented here.

It would be nice to devise a way to find signature reordering faster than with
brute-force, for the case where a rogue nonce is considered. For experimental
trials, we were rather limited by the latency of the process, especially because
the proposed attack works only if the generated signatures are taken in the
same order with which they have been chronologically generated (or the exact
opposite one); it would be interesting to try to extend the search scope, possibly
targeting other blockchains and/or protocols. It could also be possible to avoid
the use of SageMath, and to code the attack natively with low-level languages,
allowing compilation and optimization; this would probably boost the speed for
a widespread search for weaknesses.

A negative check for the success of the attack could be integrated for instance
in existing libraries [19]; the goal would be to exclude such conditions that would
allow compromising the signer’s private key.
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