
Fusion One-Time Non-Interactively-Aggregatable Digital
Signatures From Lattices

Brandon Goodell1 and Aaron Feickert2

1 Geometry Labs
brandon@geometrylabs.io

2 Cypher Stack
aaron@cypherstack.com

Abstract. We present Fusion, a post-quantum one-time digital signature scheme with non-
interactive aggregation with security resting on the short integer solution problem over ideal
lattices. Fusion is structurally similar to CRYSTALS-Dilithium, but Fusion is based upon the
aggregatable one-time lattice-based scheme by Boneh and Kim. Fusion parameters conserva-
tively target at least 128 bits of security against forgery, taking tightness gaps into account,
and with tighter bounds than the BK scheme. Aggregate Fusion signatures are logarithmi-
cally sized in the number of keys, so aggregating enough signatures can be more efficient than
stacking Dilithium or Falcon signatures.

Acknowledgements. Funding for this work was provided by the Quantum Resistant
Ledger Foundation.

1 Advantages and Limitations

Fusion signatures enjoy the following advantages.

– Unlike predecessors, Fusion signatures are aggregatable. Aggregate Fusion signatures are
logarithmically sized in the number of keys, and capacities can exceed 32000. Aggregating
enough signatures can be more efficient than stacking Dilithium or Falcon signatures.

– Fusion is conservatively parameterized, taking tightness gaps into account, enjoys tighter
bounds than [1], and has smaller parameters, keys, and signatures than the estimates of
[1]. Fusion parameterization is modular so only a few parameters need to be changed in
order to change security.

– Fusion enjoys structural similarity to CRYSTALS-Dilithium, a heavily vetted scheme
selected by NIST, and so benefits from a large community of informed well-equipped
reviewers.

– Fusion implementation is simple: one-time signatures ξ are weighted and bounded linear
combinations ξ = f

0
c+f

1
of secret vectors of polynomials f

0
, f

1
, and aggregate one-time

signatures ξag are weighted and bounded linear combinations
∑
i αiξi of signatures.

– Fusion arithmetic is fast thanks to the number theoretic transform (NTT).

– Fusion signatures are one-time, sidestepping many side-channel attacks and the problems
of statefulness, randomization, and aborts.

– Fusion avoids trapdoor sampling, Gaussian sampling, and the additional structure im-
posed by the NTRU equations used in Falcon.

Fusion signatures have the following limitations.

2 B. Goodell and A. Feickert

– Aggregating Fusion one-time signatures can be more efficient than stacking CRYSTALS-
Dilithium and Falcon signatures naively, but there is a critical number of one-time sig-
natures needed for that performance. Users only interested in verifying a small number
of signatures at a time can do better by using CRYSTALS-Dilithium or Falcon.

– Un-aggregated Fusion one-time signatures must be passed around to an aggregator, in-
troducing a communication overhead.

– Signing, aggregation, and verification are much faster thanks to the NTT. However, the
NTT introduces a tradeoff between timing and space efficiency which may be unsuitable
for some use-cases.

– As a lattice-based scheme similar to CRYSTALS-Dilithium, Fusion benefits from an ex-
perience community of reviewers, but does not contribute to diversity of hardness as-
sumptions underlying NIST algorithms.

1.1 Performance and Parameterization

We present three parameterizations of Fusion signatures named by key sizes: Light, Mid, and
Heavy. Fusion Light is tuned to have 128 bits of security against forgery. For Fusion Mid and
Fusion Heavy, we have two sub-parameterizations with 128 and 256 bits of security.
Comparing the space complexity of Fusion with CRYSTALS-Dilithium or Falcon requires
taking into account that Fusion keys are one-time keys, whereas Dilithium and Falcon keys
are many-time keys. Indeed, a single Dilithium or Falcon key may be posted and many
signatures on many messages generated from that one key. The average space complexity per
message of using Dilithium or Falcon asymptotically approaches the cost of signatures alone.
On the other hand, the space complexity of Fusion one-time aggregate signatures includes all
keys and the aggregate signature. In this way, it is only fair to compare both keys and the
aggregate signature of Fusion against the signatures alone in Dilithium or Falcon. Moreover,
in this way, it is easy to compute how many signatures must be aggregated for performance
to beat Dilithium or Falcon.

– Fusion Light has 128 bits of security. Keys are 496 bytes, signatures are 21.84 kilobytes,
and we can combine up to 1796 signatures into an aggregate signature with 46.8 kilobytes
at 128 bits of security. Aggregating at least 25 signatures is more space-efficient than
CRYSTALS-Dilithium, and aggregating at least 276 signatures is more space-efficient
than Falcon, but otherwise naively stacking Dilithium or Falcon signatures is more space
efficient.

– Fusion Mid has 128 or 256 bits of security. Keys are 992 bytes in both cases. Signatures
are 17.072 and 42.496 kilobytes, respectively. We can combine 20813 or 236 signatures,
respectively, into an aggregate signature with 46.56 or 79.68 kilobytes, respectively. Aggre-
gating at least 33 or 56 signatures, respectively, is more space-efficient than CRYSTALS-
Dilithium, but this parameterization is not more efficient than Falcon.

– Fusion Heavy has 128 or 256 bits of security. Keys are 1984 bytes in both cases. Sig-
natures are 16.896 or 34.528 kilobytes, respectively. We can combine 32417 or 2818
signatures, respectively, into an aggregate signature with 46.08 or 79.68 kilobytes, re-
spectively. Aggregating at least 106 or 183 signatures, respectively, is more space-efficient
than CRYSTALS-Dilithium, but this parameterization is not more efficient than Falcon.

1.2 Bird’s Eye View

The following is a high level summary of Fusion signatures. We include brief descriptions of
notation and operators here, but we elaborate on these in section 2. Let d be a power of two,
p a prime, R = Z[X]/(Xd + 1), p the ideal in R principally generated by p, Rp = R/pR

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 3

the quotient ring, ℓ a natural number, µ the Hamming weight on Rp, ∥·∥∞ the usual infinity
norm on Rp, and let K,βsk, ωsk, βch, ωch, βag, ωag, βv, ωv ∈ N.
1. During a setup phase, a public a←$Rℓp is sampled uniformly.
2. A secret one-time signing key is sk = (f

0
, f

1
) ∈ Rℓp×Rℓp sampled from a distribution that

is statistically close to uniform such that
∥∥∥f

i

∥∥∥
∞
≤ βsk and µ(f

i
) = ωsk for each i = 0, 1.

The corresponding one-time public verification key is vk = (g0, g1) = (⟨a, f
0
⟩, ⟨a, f

1
⟩).

3. The one-time signature for m ∈ {0, 1}∗ is ξ = f
0
c + f

1
where the one-time signature

challenge is c = Hch(vk,m) for a hash function Hch such that ∥c∥∞ ≤ βch and µ(c) = ωch.

4. An aggregate one-time signature is ξ
ag

=
∑N−1
i=0 αiξ

i
for some 1 ≤ N ≤ K where each

ξ
i
is a one-time signature corresponding to a message mi, public verification key vki,

and signature challenge ci, and where the aggregation coefficients are (α0, . . . , αN−1) =
Hag((vki,mi, ci)

N−1
i=0) for a hash function Hag such that ∥αi∥∞ ≤ βag and µ(αi) = ωag

for each i ∈ [K].
5. A aggregate one-time signature ξ

ag
for messages m0,m1, . . . ,mN−1, sorted public ver-

ification keys vk0, vk1, . . . , vkN−1, signature challenges c0, c1, . . . , cN−1, and aggregation
coefficients (α0, α1, . . . , αN−1) is valid if all of the following hold.
(i) each ci = Hch(vki,mi),
(ii) (α0, . . . , αN−1) = Hag((vki,mi, ci)

N−1
i=0),

(iii)
∥∥∥ξ
ag

∥∥∥
∞
≤ βv,

(iv) µ(ξ
ag
) ≤ ωv, and

(v) ⟨a, ξ
ag
⟩ =

∑
i∈[N] αi(gi,0ci + gi,1) for α = Hag((vki,mi, ci)i∈[N]).

Revealing two distinct signatures on the same keys provides enough information to extract
the keys, so this scheme is one-time only. Sorting before verification guarantees that the order
of the input keys does not impact the aggregate signature.
In practice, a can be expanded using an XOF from a public seed, say σ, which can be posted
with keys and aggregate signatures, and which can serve as a domain-separating salt for hash
functions Hch and Hag. Also, sk can be expanded using an XOF from a secret seed, say η,
perhaps a hash of some public document, or the output from some KEM. These choices can
help to ensure that an adversary would have to control the output of the XOF in order to
manipulate a or sample keys maliciously.
The number-theoretic transform (NTT) speeds up arithmetic at no security cost, but gen-
erally increases space complexity. Thus, in practice, it also may be beneficial to post the
transforms (ĝ0, ĝ1) = (NTT(g0),NTT(g1)), ξ̂ = NTT(ξ), and ξ̂

ag
= NTT(ξag) instead of

(g0, g1), ξ, or ξag, respectively. Note, however, that some transforms are unavoidable. Indeed,

verifiers need to know both ξ̂ag and ξag to compute the norm and the inner product transforms
during verification.

1.3 Improvements over [1]

A version of this scheme was first described in [1] by Boneh and Kim, and it is based on
the scheme described in [2] by Lyubashevsky and Micciancio. The differences between Fusion
signatures and the scheme presented by [1] are small but have important impacts on our
work. Our proof of Theorem 6 in particular improves that of [1] with a smaller extracted
witness and without a reduction to a selective forger.

– We include signature challenges in the computation of the aggregation coefficients: we
compute α = Hag((vki,mi, ci)i∈[N]) instead of α = Hag((vki,mi)i∈[N]). We suspect that
we could even use α = Hag((vki, ci)i∈[N]) instead and retain security. By including signa-
ture challenges in the computation of aggregation coefficients, we can remove the selective

4 B. Goodell and A. Feickert

forgery approach and present a moderately tighter unforgeability proof than the approach
in [1].

– We specify Hamming weight bounds for keys, signature challenges, and aggregation coef-
ficients, ωsk, ωch, ωag and carefully apply the properties of ∥·∥ and µ(·) to derive bounds
in all proofs. By restricting the Hamming weights of keys, signature challenges, and aggre-
gation coefficients, we also obtain a yet-tighter proof than the one in [1]. As we shall see,
we end up with sparse signature challenges and aggregation coefficients with ωch < d and
ωag < d, but we also end up with dense keys with ωsk = d. We include ωsk throughout
our analysis for clarity and completeness.

2 Preliminary Information

2.1 General Preliminaries

All logarithms in the sequel are base 2. We denote the integers with Z, we denote the natural
numbers with N, and the non-negative integers with N0 = N ∪ {0}. For k ∈ N, denote the
subset {0, 1, . . . , k − 1} ⊆ N0 with [k]. We generally use underlines for lists/vectors/module
elements, which we index with N0. For example, if R is a ring, ℓ ∈ N, and V = Rℓ denotes
the rank-ℓ free R-module, we denote an element of V with f = (f0, . . . , fℓ−1).
For parameter sets Λ0, Λ1, . . . , ΛT−1, P = Λ0×Λ1×· · ·ΛT−1, and for λ = (λ0, λ1, . . . , λT−1) ∈
P, we use poly(λ) to denote the class of all functions f : P → N such that there exists some
polynomial p(λ) such that f ∈ O(p). We call all such f polynomially bounded. For a parameter
set Λ, we use negl(λ) to denote the class of functions f : Λ → N such that f = O(1/p) for
every p ∈ poly(λ). We call all such f negligible in λ.
For an event E, we denote the probability of E by P [E]. For any set X, we write x ←$ X
to indicate that we have sampled x ∈ X uniformly at random, and independent of all other
random variables. For a randomized algorithm A, we write a ← A to indicate that a is a
random output from A.

2.2 One-Time Aggregatable Signatures and Security Properties

We now define one-time aggregatable signature schemes, their correctness, and their one-time
unforgeability against chosen message attacks.

Definition 1. An aggregatable signature scheme is a tuple of the following algorithms.
1. Pgen(λ)→ ρ. Input a security parameter λ ∈ N, and output some public parameters ρ.
2. KGen(ρ)→ (sk, vk). Input ρ and output a new secret-public keypair (sk, vk).
3. Sign(ρ, sk,m)→ ξ. Input ρ, a secret key sk, and a message m. Output a signature ξ.
4. Agg(ρ, (vki,mi, ξi)i∈[N]) → ξag. Input ρ and a list of public verification key-message-

signature triples (vki,mi, ξi)i∈[N]. Output an aggregated signature ξag.
5. AggVf(ρ, (vki,mi)i∈[N], ξag)→ b ∈ {0, 1}. Input ρ, a list of public verification key-message

pairs (vki,mi)i∈[N], and an aggregate signature ξag. Output a bit.

In the sequel, we let Π = (Pgen,KGen, Sign,Agg,AggVf) denote an aggregatable signature
scheme, and for some λ ∈ N, we let E(Π,λ) denote the event in which ξag is a semi-
honestly computed aggregate signature in the sense that ρ ← Pgen(λ), K ∈ ρ, 1 ≤ N ≤ K,
(ski, vki) ← KGen(ρ) for each i ∈ [N], ξi ← Sign(ρ, (ski, vki),mi) for each i ∈ [N], and
ξag ← Agg(ρ, (vki,mi, ξi)i∈[N]).

Definition 2. If 1 = P
[
AggVf(ρ, (vki,mi)i∈[N], ξag) = 1 | E(Π,λ)

]
then we say Π is a cor-

rect aggregatable signature scheme.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 5

Definition 3. If Π is correct and 1 = P [|ξag| ∈ poly(λ, log(K)) | E(Π,λ)] where |ξag| de-
notes the space complexity of ξag, then we say Π is compact.

Definition 4. Let A be any PPT algorithm and assume Π is correct. Let E′(Π,λ) be the
event in which (i) 1 ≤ N ≤ K, (ii) there exists some i∗ ∈ [N] such that vki∗ = vk∗,
mi∗ = mO, and ξi∗ = ξO, (iii) (ski, vki)← KGen(ρ) for each i∗ ̸= i ∈ [N − 1], (iv) each mi is
a bit message, (v) ξi ← Sign(ρ, (ski, vki),mi) for each i∗ ̸= i ∈ [N], and (vi) the list of tuples
(vki,mi, ξi)i∈[N] have been sorted by the keys vki, and (vii) ξag ← Agg(ρ, (vki,mi, ξi)i∈[N]).
The following game defines one-time existential unforgeability against chosen message attack.

1. The challenger and the player agree upon λ. The challenger computes ρ ← Pgen(λ) and
then samples (sk∗, vk∗)← KGen. The challenger sends (ρ, vk∗) to A.

2. The challenger grants A one-time signing oracle access to get one signature ξO on an
oracle query message mO at any time. The oracle query response ξO is such that

P[AggVf(ρ, (vki,mi)i∈[N], ξag) = 1 | E′(Π,λ)] = 1.

3. The player A eventually outputs a forgery forg = ((vki,mi)i∈[N], ξag) where each vki
is a public verification key, each mi is a bit message, and ξag is a purported aggregate
signature.

The oracle response satisfies P[AggVf(ρ, (vki,mi)i∈[N], ξag) = 1 | E′(Π,λ)] = 1, guaranteeing
that ξO is aggregatable with up to K − 1 semi-honestly computed signatures on any messages
using semi-honestly generated verification keys (i.e. in event E′(Π,λ)). The player A succeeds
if and only if there exists an index i∗ ∈ [N] such that vki∗ = vk∗, the oracle was not queried
with the corresponding message mi∗ ̸= mO, and AggVf(ρ, (vki,mi)i∈[N], ξag) = 1. If A runs
in time t and succeeds at this game with probability at least ϵ, we say A is a (t, ϵ)-forger. If
every PPT algorithm that is a (t, ϵ)-forger for some t ∈ poly(λ) also has ϵ ∈ negl(λ), then we
say Π is one-time existentially unforgeable.

2.3 Rings, norms, and weights

Let X be indeterminate over Z, and let Z[X] be the set of polynomials with coefficients from
Z. Let e, p, ℓ ∈ poly(λ) such that e(λ), p(λ), ℓ(λ) ∈ N for every λ and each p(λ) is prime. Set
d(λ) = 2e(λ), R(λ) = Z [X] /(Xd(λ)+1), and V(λ) = R(λ)ℓ(λ). Here, e is for exponent, p is for
prime, ℓ is for length, d is for degree, R is for ring, and V is for vectors (abusing terminology
since V is an R-module). Let p(λ) denote the principal ideal in Z generated by p(λ). An
element f ∈ R(λ) is a coset of polynomials from Z[X] all equivalent modulo Xd(λ) + 1. Due
to the polynomial modulus, without loss of generality, we represent f with a polynomial from
Z[X] with degree bound d(λ), say f(X) =

∑
i∈[d(λ)] fiX

i. An element f ∈ V(λ) is an ℓ(λ)-

tuple of polynomials from R(λ). Since everything depends on λ, we drop λ from our notation
in the sequel for clarity, and we caution readers to keep the dependence on λ in mind.
Note p is a principal ideal inR(λ) via the canonical inclusion mapping Z ↪→ R. Let Zp = Z/pZ,
Rp = R/pR, and Vp = Rℓp. An element of Zp is a coset of integers modulo p. An element of
Rp is a coset of polynomials from R modulo p. For any f ∈ Rp, we assume without loss of
generality that the coefficients have representatives in

{
0,±1,±2, . . . ,± p−1

2

}
. Since Vp = Rℓp

for some ℓ, an element of Vp is an ℓ-tuple of elements from Rp. V is an R-module and Vp is an
Rp-module, but Vp is also a vector space over Zp, which justifies our use of V for vectors. The
ring R admits the Hamming weight function µ : R→ N by counting the non-zero coefficients
of f ∈ R, i.e. f 7→

∑
i∈[d] 1(fi ̸= 0) ∈ N0. The Hamming weight function µ extends naturally

to Rp and, by defining µ(f) = maxj∈[ℓ] µ(f j) on V and Vp, the Hamming weight extends to

V and Vp, also. The function µ enjoys the following properties.

6 B. Goodell and A. Feickert

Property 1. For any (f, g, h, h′) ∈ R×R× V × V or in Rp ×Rp × Vp × Vp, we have
(a) µ(f + g) ≤ min(d, µ(f) + µ(g)),
(b) µ(fg) ≤ min(d, µ(f)µ(g)),
(c) µ(h+ h′) ≤ min(d, µ(h) + µ(h′)), and
(d) µ(fh) ≤ min(d, µ(f)µ(h)).

Proof. For (a), note µ(f + g) is the number of non-zero coefficients of f + g, and the ith

coefficient of f + g is exactly fi + gi where fi is the ith coefficient of f and gi is the ith

coefficient of g. At most µ(f) + µ(g) of these can be non-zero, and any element of R has
at most d coefficients. For (b), µ(fg) is the number of non-zero coefficients of fg. Write
f as a sum of µ(f) terms, namely f =

∑
i∈[µ(f)] fϕ(i)X

ϕ(i) for an injective function ϕ :

[µ(f)] → [d], and write g =
∑
i∈[µ(g)] gψ(i)X

ψ(i) for an injective ψ : [µ(g)] → [d]. Using

these, fg =
∑
i∈[µ(f)]

∑
i′∈[µ(g)] fϕ(i)gψ(i′)X

ϕ(i)+ψ(i′). Thus, we have at most µ(f)µ(g) non-

zero monomials in this sum (and generally fewer). Any sum of monomials inR is a polynomial
with at most d non-zero coefficients. For (d), apply (b) to each coordinate of fh, and for (c),
apply (a) to each coordinate of h+ h′.

The ring R admits the functions ∥·∥∞, ∥·∥2 : R → N by mapping f 7→ maxi∈[d]|fi| and f 7→(∑
i f

2
i

)1/2
, respectively. These both extend to V in the usual way:

∥∥f∥∥
∞

= maxj∈[ℓ],i∈[d]|f j,i|

and
∥∥f∥∥2

2
=
∑
j∈[ℓ]

∥∥∥f
j

∥∥∥2
2
. These functions are not norms, but they enjoy the following prop-

erties.

Property 2. For any (f, g, h, h′) ∈ R×R× V × V, we have
(a) ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞ (triangle inequality),
(b) ∥h+ h′∥∞ ≤ ∥h∥∞ + ∥h′∥∞ (triangle inequality),
(c) ∥fg∥∞ ≤ min(d, µ(f), µ(g))∥f∥∞∥g∥∞,
(d) ∥fh∥∞ ≤ min(d, µ(f), µ(h))∥f∥∞∥h∥∞,

(e) ∥f∥∞ ≤ ∥f∥2 ≤
√
µ(f)∥f∥∞, and

(f) ∥h∥∞ ≤ ∥h∥2 ≤
√
ℓµ(h)∥h∥∞.

Proof. Note that (a) is due to the fact that maxi|fi + gi| ≤ maxi|f |i + maxi|g|i. To ob-
tain (b), apply (a) to each coordinate. For (c), write f =

∑
i∈[µ(f)] fϕ(i)X

ϕ(i) and g =∑
i∈[µ(g)] gψ(i)X

ψ(i) for some injective functions ϕ, ψ as we did above.

∥fg∥∞ =

∥∥∥∥∥∥
∑

i∈[µ(f)]

fϕ(i)X
ϕ(i)g

∥∥∥∥∥∥
∞

≤
∑

i∈[µ(f)]

∥∥∥fϕ(i)Xϕ(i)g
∥∥∥
∞

=
∑

i∈[µ(f)]

∥∥fϕ(i)g∥∥∞ =
∑

i∈[µ(f)]

max
i′∈[µ(g)]

|fϕ(i)gψ(i′)|

=
∑

i∈[µ(f)]

|fϕ(i)| max
i′∈[µ(g)]

|gψ(i′)| =
∑

i∈[µ(f)]

|fϕ(i)|∥g∥∞

=∥g∥∞
∑

i∈[µ(f)]

|fϕ(i)| ≤ ∥g∥∞
∑

i∈[µ(f)]

∥f∥∞

=µ(f)∥f∥∞∥g∥∞

But fg = gf , so the conclusion is symmetric in f and g. Moreover, µ(f), µ(g) ≤ d, so
∥fg∥∞ ≤ min(d, µ(f), µ(g))∥f∥∞∥g∥∞. To obtain (d), apply (c) to each coordinate.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 7

Now consider (e). Note that maxi f
2
i = maxi|fi|2 = (maxi|fi|)2 = ∥f∥2∞, and this f2

i is
included in the terms among the sum of positive terms ∥f∥22 =

∑
i f

2
i . Hence, ∥f∥2∞ ≤ ∥f∥

2
2.

On the other hand, ∥f∥22 =
∑
i f

2
i . Recalling f =

∑
i∈[µ(f)] fϕ(i)X

ϕ(i), this sum has at most

µ(f) non-zero terms. For each of these non-zero terms, f2
i ≤ ∥f∥2∞. Hence, ∥f∥22 ≤ µ(f)∥f∥

2
∞.

To obtain (f), we just use (e). Consider the lower bound. Note that ∥h∥2∞ = (maxi∈[ℓ]∥hi∥∞)2 =

maxi∈[ℓ]∥hi∥2∞. By (e), each ∥hi∥2∞ ≤ ∥hi∥
2
2. So maxi∈[ℓ]∥hi∥2∞ ≤ maxi∈[ℓ]∥hi∥22 and ∥h∥2∞ ≤

maxi∈[ℓ]∥hi∥22. Note that this term maxi∈[ℓ]∥hi∥22 is one of the positive terms in the sum∑
i∥hi∥

2
2 = ∥h∥22, so maxi∈[ℓ]∥hi∥22 ≤ ∥h∥

2
2. Therefore, ∥h∥

2
∞ ≤ ∥h∥

2
2.

Next consider the upper bound and look at ∥h∥22 =
∑
i∈[ℓ]∥hi∥

2
2. By (e), ∥hi∥22 ≤ µ(hi)∥hi∥

2
∞.

Hence, ∥h∥22 ≤
∑
i∈[ℓ] µ(hi)∥hi∥

2
∞. But µ(h) = maxi µ(hi), so µ(h ≥ µ(hi) for each i. More-

over, ∥hi∥2∞ ≤ maxi∥hi∥2∞ = ∥h∥2∞. Thus, ∥h∥22 ≤ ℓµ(h)∥h∥∞2 .

These properties extend to Rp and Vp mostly as expected, with a caveat for comparing ∥·∥2
and ∥·∥∞ to prevent wrap-around due to the prime modulus.

Property 3. For any f, g ∈ Rp, for any h ∈ Vp, we have all of the following.

(a) ∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞ (triangle inequality),
(b) ∥h+ h′∥∞ ≤ ∥h∥∞ + ∥h′∥∞ (triangle inequality),
(c) ∥fg∥∞ ≤ min(d, µ(f), µ(g))∥f∥∞∥g∥∞,
(d) ∥fh∥∞ ≤ min(d, µ(f), µ(h))∥f∥∞∥h∥∞,

(e) if ∥f∥2 <
p−1
2

, then ∥f∥∞ ≤ ∥f∥2 ≤
√
µ(f)∥f∥∞, and

(f) if ∥h∥2 <
p−1
2

, then ∥h∥∞ ≤ ∥h∥2 ≤
√
ℓµ(h)∥h∥∞.

The ring R is an integral domain, so if any f, g ∈ R satisfy fg = 0, then f = 0 or g = 0. On
the other hand, Rp is not an integral domain. In fact, we have many elements of f ∈ R such
that f ≡ 0(mod p) but such that f ̸= 0 (e.g. one such element is f(X) = pX). However, Rp

does satisfy the following property: elements of Rp with sufficiently small norm behave like
elements of an integral domain with respect to each other. We formalize this notion with the
following.

Lemma 1. If h ∈ R has coset h ∈ Rp such that
∥∥h∥∥∞ < p−1

2
and h ≡ 0(mod p), then h = 0.

Proof. Write h =
∑
i∈[d] hiX

i with each hi ∈ Z. Since ∥h∥∞ < p−1
2

, each hi ∈ Z∩[− p−1
2
, p−1

2
].

Then h(mod p) =
∑
i∈[d] hiX

i where each hi is a coset with a representative equivalent to hi

modulo p and taken from the set Z ∩ [− p−1
2
, p−1

2
]. This representative is unique in this set,

and hi already represents this set, so the representative of each hi is exactly hi. Thus, each
hi = 0.

Corollary 1. For any f, g ∈ Rp such that min(d, µ(f), µ(g))∥f∥∞∥g∥∞ < p−1
2

, if fg = 0
then f = 0 or g = 0.

Weighted and bounded subsets of Rp are close enough to integral domains to play a distin-
guished role in our analysis. We use the following notation (where W is for weighted-and-
bounded subset).

W(Rp, β, ω) =
{
f ∈ Rp | ∥f∥∞ ≤ β, µ(f) ≤ ω

}
W(Vp, β, ω) =

{
f ∈ Vp |

∥∥f∥∥
∞
≤ β, µ(f) ≤ ω

}

8 B. Goodell and A. Feickert

Partition these by Hamming weights into disjoint subsets W(Rp, β, ω) = ∪ωi=0W̃(Rp, β, i) and

W(Vp, β, ω) = ∪ωi=0W̃(Vp, β, i) where we define W̃(−, β, ω) as follows.

W̃(Rp, β, ω) =
{
f ∈ Rp | ∥f∥∞ ≤ β, µ(f) = ω

}
W̃(Vp, β, ω) =

{
f ∈ Vp |

∥∥f∥∥
∞
≤ β, µ(f) = ω

}
Then each |W̃(Rp, β, ω)| =

(
d
ω

)
(2β)ω and |W̃(Vp, β, ω)| = |W̃(Rp, β, ω)|ℓ. Also, since these

unions are disjoint, we have |W(Rp, β, ω)| =
∑
i=0

(
d
i

)
(2β)i.

2.4 Hard Games and Hardness Estimation

The Ring Short Integer Solution problem with respect to a norm ∥·∥ over R is as follows [3].

Definition 5 ((e, p, ℓ, ∥·∥, β)-RSIS game w.r.t. ∥·∥). Let λ ∈ N, let e, p, ℓ, β ∈ poly(λ), and
let A be any PPT algorithm. The following defines the (e, p, ℓ, ∥·∥, β)-RSIS game with respect
to ∥·∥.
1. The challenger and the player agree upon λ. The challenger computes e(λ), p(λ), ℓ(λ),

and β(λ), samples a ← Vp, and sets ρRSIS = (e, p, ℓ, β, a). The challenger sends ρRSIS to
A.

2. The player A eventually outputs some f ∈ Vp.
The player A succeeds if and only if f ̸= 0,

∥∥f∥∥ ≤ β, and ⟨a, f⟩ = 0. If A runs in time at
most t and succeeds at this game with probability at least ϵ, we say A is a (t, ϵ)-solver of the
(e, p, ℓ, ∥·∥, β)-RSIS game w.r.t. ∥·∥.

The (e, p, ℓ, ∥·∥, β)-RSIS hardness assumption is that every (t, ϵ)-solver of the (e, p, ℓ, ∥·∥, β)-
RSIS game with some t ∈ poly(λ) also has ϵ ∈ negl(λ), which we state more formally in the
next section. This assumption is not valid for all parameters (e, p, ℓ, β), because if β ≥ p−1

2
,

then Gaussian elimination can solve the problem in polynomial time.
Note that if

∥∥f∥∥
∞
≤ β < p−1

2
and µ(f) ≤ ω, then

∥∥f∥∥
2
≤
√
ℓωβ ≤

√
ℓdβ thanks to

Property (f). A solution to the (e, p, ℓ, ∥·∥∞, β)-RSIS game with Hamming weight ω is therefore

also a solution to the (e, p, ℓ, ∥·∥2,
√
ℓωβ)-RSIS game (which is, in turn, a solution to the

(e, p, ℓ, ∥·∥2,
√
ℓdβ)-RSIS game). Hence, bounding the difficulty of the (e, p, ℓ, ∥·∥2,

√
ℓdβ)-RSIS

game is sufficient to also bound the difficulty of the (e, p, ℓ, ∥·∥∞, β)-RSIS game.

To estimate hardness of the (e, p, ℓ, ∥·∥2,
√
dβ)-RSIS game, we follow [4]. We estimate hardness

by using bit-hardness, i.e. if A is a PPT (tA, ϵA)-solver of a problem P, we say the bits of
hardness of P is infA log2(

tA
ϵA

), where this infimum is taken over all such PPT algorithms
A. We are aware that bit-hardness is not the best objective measure of a system’s security,
given different attack models and costs, but we use bit-hardness as a stand-in until more
cryptanalysts can contribute. We assume the attacker uses a BKZ-like algorithm to look for
a basis for the challenge lattice that has a sufficiently small root Hermite factor δ, solving the
(e, p, ℓ, ∥·∥2,

√
ℓdβ)-RSIS game. This δ is as follows except with negligible probability.

δ =

(√
ℓdβ

p1/ℓ

)1/(ℓd−1)

We assume the attacker uses an algorithm similar to, but not identical to, the best known
(quantum sieve method) implementation of the lattice reduction algorithm known as BKZ to
find that basis.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 9

The BKZ algorithm is parameterized by a block size 26 ≤ b and is run by computing some k
tours of the lattice. Each tour of the lattice takes time 20.265b+16.4 operations in the conser-
vative case where the attacker is the best known quantum SVP solver and enjoys Grover-like
speed-ups (see [5], [4] for justifications for these numbers). After each tour, the BKZ algo-
rithm can output a lattice basis with non-decreasing quality. The quality of this basis, say δ̂,
asymptotically approaches the following as the number of tours increases.

lim
k→∞

δ̂ →

(
b (πb)

1
b

2πe

) 1
2(b−1)

Usually, the output basis converges quickly in quality, so the BKZ algorithm is often ter-
minated early, usually after some k ≥ 8ℓd tours, and the resulting lattice is often close to
optimal in terms of its root Hermite factor.
We still assume that the attacker’s algorithm is still parameterized by a block size 26 ≤ b.
However, we conservatively assume that the attacker takes exactly one tour of the lattice,
and does so in as few as 20.265b operations. We also conservatively assume that the result-

ing basis always has optimal quality exactly

(
b(πb)

1
b

2πe

) 1
2(b−1)

. This way, if β < p−1
2

and(√
ℓdβ

p1/ℓ

)1/(ℓd−1)

<

(
b(πb)

1
b

2πe

) 1
2(b−1)

then the attacker fails to output a lattice basis of sufficient

quality to solve the (e, p, ℓ, ∥·∥2,
√
ℓdβ)-RSIS game (and therefore the (e, p, ℓ, ∥·∥∞, β)-RSIS

game).

Assumption 1. Let λ ∈ N. If β < p−1
2

and

(√
ℓdβ

p1/ℓ

)1/(ℓd−1)

<

λ (π · λ
0.265

) 0.265
λ

2πe(0.265)

 1

2(λ
0.265

−1)

(2.1)

then solving the (e, p, ℓ, ∥·∥∞, β)-RSIS game has at least λ bits of hardness.

2.5 The Forking Lemma

As in [1] we use the following variant of the Forking Lemma.

Lemma 2 (Rewinding Lemma). Let S,R, T be finite, non-empty sets, consider any func-
tion f : S×R×T → {0, 1}. Let X,Y, Y ′, Z, Z′ be mutually independent random variables where
Supp(X) = S, Y and Y ′ are uniformly distributed over R, and Supp(Z) = Supp(Z′) = T .
Let ϵ = P [f(X,Y, Z) = 1]. Then P [f(X,Y, Z) = 1 ∧ f(X,Y ′, Z′) = 1 ∧ Y ̸= Y ′] ≥ ϵ2 − ϵ

|R| .

As in [1], we define simulation algorithms as follows.

Definition 6 (Simulation Algorithm). Let Q ∈ N, and let X ,H be sets such that |H| > 1.
We say a randomized algorithm S is a simulation algorithm if S inputs x ∈ X and h ∈ HQ
and outputs out = (i, aux) ∈ ({⊥}∪[Q])×{0, 1}∗. For any distribution F over X , we define the
advantage of S as P

[
(i, aux)← S(x, h) ∧ i ̸= ⊥ | x← F, h← HQ

]
. We denote the advantage

with AdvS .

Given a simulation algorithm S, we fork S by running the following algorithm.

10 B. Goodell and A. Feickert

Definition 7 (Forking Algorithm). Let Q ∈ N, let X ,H be sets such that |H| > 1, and
let S be a simulation algorithm as defined above. The forking algorithm for S, denoted ForkS ,
inputs x ∈ X , and works as follows.
1. Sample random coins τ for S.
2. Sample h = (h0, h1, h2, h3, . . . , hQ−1)←$HQ.
3. Compute (i, aux)← S(x, h).
4. If i = ⊥, output (⊥,⊥,⊥) and terminate.
5. Otherwise, sample h′ = (h′

0, h
′
1, h

′
2, h

′
3, . . . , h

′
Q−1)←$HQ. For each j ∈ [i], set h∗

j = hj if
j < i, and for each j ∈ [Q] \ [i], set h∗

j = h′
j.

6. Compute (i′, aux′)← S(x, h∗).
7. If i = i′ and hi ̸= h′

i, output (1, aux, aux
′) and terminate.

8. Otherwise, output (⊥,⊥,⊥) and terminate.
Moreover, for a distribution F over X , we say the advantage of ForkS is the probability that
the output leads with a 1, i.e. P [(b, aux, aux′)← ForkS(x) ∧ b = 1 | x←$ F].

The rewinding lemma implies the following.

Lemma 3 (General Forking Lemma). Let Q ∈ N, and let X ,H be sets such that |H| > 1,
let F be a distribution over X , and let S be a simulation algorithm with advantage AdvS . Then

AdvForkS ≥ AdvS

(
AdvS
Q
− 1

|H|

)
.

Later, we assume an attacker is as powerful as possible and therefore only needs one query
(Q = 1) to do its job.

2.6 Tightness Gap

The forking lemma provides a tightness gap as described in [4] and [6]. If there exists a
reduction from problem Q to problem P, given an algorithm A which is a (tA, ϵA)-solver for
P, we can build an algorithm B which is a (tB, ϵB)-solver for Q which works by running A as
a subroutine. If Q is thought to be hard, then P will likewise be hard. Since B runs A as a
subroutine, tB ≥ tA. Since the success of B requires the success of A, ϵB ≤ ϵA.

Definition 8. A reduction taking algorithm A to algorithm B has tightness gap γ = tBϵA
tAϵB

.

To ensure that the problem P has λ bits of security, we target Q to have λ+ log2(γ) bits of
security.

3 Fusion Signatures

In subsection 3.1, we define a modified version of the signature scheme from [1]. In subsec-
tion 3.2, we present the associated security theorem statements, proofs for which can be found
in the appendix.

3.1 Construction

We call the following scheme ΠF in the sequel.

Definition 9. The Fusion aggregatable signature scheme is a tuple of the following algo-
rithms.

1. Pgen(λ)→ ρ inputs λ ∈ N and outputs public parameters ρ containing the following data.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 11

(i) an exponent e ∈ N, a prime p, and a module rank ℓ ∈ N,
(ii) an aggregation capacity K ∈ N with K ≥ 2,
(iii) bounds βsk, βch, βag, βv ∈ N,
(iv) weights ωsk, ωch, ωag, ωv ∈ N,
(v) collision-resistant hash function Hch : {0, 1}∗ → W̃(Rp,∞, βch, ωch),
(vi) collision-resistant hash function Hag : {0, 1}∗ → W̃K(Rp,∞, βag, ωag), and
(vii) a new random module element a←$ Vp.

2. KGen(ρ) → (sk, vk) inputs parameters ρ and outputs a keypair (sk, vk) computed as fol-
lows.
(a) Sample f

0
, f

1
←$ W̃(Vp,∞, βsk, ωsk).

(b) Compute gi = ⟨a, f
i
⟩ for i = 0, 1.

(c) Set the secret signing key sk = (f
0
, f

1
) and the public verification key vk = (g0, g1).

(d) Output (sk, vk).
3. Sign(ρ, sk,m)→ ξ inputs parameters ρ, a keypair (sk, vk), and a message m, and outputs

a signature ξ as follows.
(a) Compute the signature challenge c = Hch(vk,m).
(b) Set ξ = f

0
c+ f

1
.

(c) Output ξ.
4. Agg(ρ, (vki,mi, ξi)i∈[N]) → ξag inputs parameters ρ and a list of public verification key-

message-signature triples (vki,mi, ξi)i∈[N] and outputs an aggregate signature ξag as fol-
lows.
(a) Sort the list of triples (vki,mi, ξi)i∈[N] by the public verification keys vki.
(b) For each i ∈ [N], compute the signature challenge ci = Hch(vki,mi).
(c) Compute the aggregation coefficients (αi)i∈[N] = α← Hag((vki,mi, ci)i∈[N]).
(d) Compute ξag =

∑
i∈[N] αiξi.

(e) Output ξag.
5. AggVf(ρ, (vki,mi)i∈[N], ξag)→ {0, 1} inputs parameters ρ, a list of public verification key-

message pairs (vki,mi)i∈[N], and an aggregate signature ξag, and outputs a bit b ∈ {0, 1}
as follows.
(a) If any vki /∈ R2

p or any vki appears more than once or ∥ξag∥∞ > βv or µ(ξag) > ωv,
output 0 and terminate.

(b) Otherwise, sort the input list of pairs (vki,mi)i∈[N] by the public verification keys
vki.

(c) For each i ∈ [N], compute the signature challenge ci = Hch(vki,mi).
(d) Compute the aggregation coefficients (αi)i∈[N] = α← Hag((vki,mi, ci)i∈[N]).
(e) Compute targ =

∑
i∈[N] αi(gi,0ci + gi,1) where each vki = (gi,0, gi,1).

(f) If ⟨a, ξag⟩ = targ, output 1 and terminate.
(g) Otherwise, output 0 and terminate.

3.2 Properties of Fusion Signatures

The output ξ from Sign has ∥ξ∥∞ ≤ βsk(1 + min(d, ωsk, ωch)βch) and µ(ξ) ≤ min(d, ωsk(1 +
ωch)). For clarity in the sequel, define the following.

ω′
v =min(d, ωsk(1 + ωch)) (3.1)

β′
v =βsk(1 + min(d, ωsk, ωch)βch) (3.2)

Note that both Agg and AggVf sort their inputs. This is important to ensure that aggregation
and verification are not sensitive to key order. As in many one-time signature schemes, re-
vealing two or more signatures for any keypair (sk, vk) reveals enough information to compute
sk, and should be avoided at all costs. We use the following security theorems, proven in the
appendices.

12 B. Goodell and A. Feickert

Theorem 2. If min(d,Kωagω
′
v) ≤ ωv and Kmin(d, ωag, ω

′
v)βagβ

′
v ≤ βv, then ΠF is correct.

Theorem 3. If ΠF is correct, then it is compact.

Theorem 4. Let a ∈ V, β′
v <

p−1
2

, and c ∈ W̃(Rp,∞, βch, ωch). If (f
0
, f

1
)←$ W̃(Vp,∞, βsk, ωsk)2

and 2λp2d(2β′
v + 1)ℓd ≤

(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk , then

P
[
∃(f ′

0
, f ′

1
) ̸= (f

0
, f

1
) : ⟨a, f

0
⟩ = ⟨a, f ′

0
⟩, ⟨a, f

1
⟩ = ⟨a, f ′

1
⟩, f

0
c+ f

1
= f ′

0
c+ f ′

1

]
≥ 1− 2−λ.

Theorem 5. Let a ∈ Vp, (c, c′) ∈ W̃(Rp,∞, βch, ωch)2 such that c ̸= c′, (ξ, ξ′) ∈W(Vp,∞, β′
v, ω

′
v)

2,

and α ∈ W̃(Rp,∞, 2βag, 2ωag). If 8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk <
p−1
2

then there is at most a single pair (f
0
, f

1
) ∈W(Vp,∞, βsk, ωsk)2 such that ξ = f

0
c+ f

1
and

ξ′ = α(f
0
c′ + f

1
).

Theorem 6. Let ϵag, ϵch, ϵA, ϵ
′ ∈ (0, 1), t, t0, t1, t2, t

′ ≥ 0, and ω, β ∈ N such that all the
following hold.

ϵag =

(
d

ωag

)−1

(2βag)
−ωag

ϵch =

(
d

ωch

)−1

(2βch)
−ωch

t′ =2(t+ t0) + t1 + t2

ϵ′ =
1

2
(1− ϵch)2 (1− ϵag)2

(
1− ϵag

(1− ϵch)(1− ϵag)ϵA

)
ϵ2A

ω ≥min(d, 2ωv + 2ωagω
′
v)

β ≥2βv + 2min(d, 2ωag, ω
′
v)βagβ

′
v

If (i) ΠF is correct and (ii) the hypotheses of Theorems 4 and 5 hold and (iii) there exists
some PPT algorithm A is a (t, ϵA)-forger of Definition 4 for ΠF which makes at most 1 query
to Hag and at most K queries to Hch, then there exists an algorithm B that is a (t′, ϵ′)-solver
of the (e, p, ℓ, ∥·∥∞, β)-RSIS game of Definition 5 whose solution to that game has Hamming
weight at most ω.

Next consider the tightness gap in Lemma 4.

Lemma 4. Let λ ∈ N, κ ∈ N0 and assume forging a signature from ΠF has λ bits of hardness.
If all of the following conditions hold then the proof of Theorem 6 implies a tightness gap
log2(γ) ≤ 9 + λ.
– t0 < t,
– t1 + t2 < 2(t+ t0),
– ϵch < 2−λ,
– ϵag <

1
2
,

–
ϵag

(1−ϵch)(1−ϵag)
≤ 2−(λ+1).

Note that the first two assumptions in Lemma 4 are reasonable, because t0, t1, and t2 are
all simple computations, even for classical computers. The remaining assumptions boil down
to assuming that, if we have cryptographic hardness against forgery, then we have a crypto-
graphic number of aggregation coefficients and challenges.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 13

4 Parameter Selection

In Table 4, we provide some recommended parameter sets. To see how we obtained these
parameter sets, we consider a list of the constraints required to satisfy Assumption 1, Theo-
rem 2, Theorem 3, Theorem 4, Theorem 5, Theorem 6, and Lemma 4. Recall our definition
of ω′

v and β′
v in Equations (3.1) and (3.2), and set the following.

ωv =min(d,Kωagω
′
v) (4.1)

βv =Kmin(d, ωag, ω
′
v)βagβ

′
v (4.2)

ω =min(d, 2ωv + 2ωagω
′
v) (4.3)

β =2βv + 2min(d, 2ωag, ω
′
v)βagβ

′
v (4.4)

We force the ring Rp to be friendly to the number-theoretic transform for faster signing,
aggregation, and verification. For our unforgeability proof to go through, we need to satisfy
the hypotheses of Lemma 4 by picking parameters allowing for the existence of some ℓ such

that 2λp2d(2β′
v+1)ℓd <

(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk . Note that 2λp2d > 1. Hence, if
(d
ωsk

)
2
(2βsk)

2ωsk

(2β′
v+1)d

≤
1, then no ℓ will allow us to satisfy the hypotheses of Lemma 4. On the other hand, if
(d
ωsk

)
2
(2βsk)

2ωsk

(2β′
v+1)d

> 1, then there always exists an ℓ that allows us to satisfy the hypotheses of

Lemma 4. Bringing all our parameter requirements together, we seek parameters such that
all the following hold.

1. d is a power of two, p is a prime, and p− 1 ≡ 0(mod 2d) (NTT-friendliness),
2. β < p−1

2
(from Assumption 1),

3. 8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk <
p−1
2

(from Lemma 5),

4.
(√

ℓdβ

p1/ℓ

)1/(ℓd−1)

<

(
(2λ+9)(π· 2λ+9

0.265)
0.265
2λ+9

2πe(0.265)

)(2(2λ+9
0.265

−1))
−1

(from Assumption 1 and Theo-

rem 4),

5. (2β′
v + 1)d <

(
d
ωsk

)2
(2βsk)

2ωsk (see above),

6. 2λp2d(2β′
v + 1)ℓd ≤

(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk (from Lemma 4),

7. ϵch =
(
d
ωch

)−1
(2βch)

−ωch < 2−λ (from Theorem 4),

8. ϵag =
(
d
ωag

)−1
(2βag)

−ωag < 1
2

(from Theorem 4),

9.
ϵag

(1−ϵch)(1−ϵag)
< 2−(λ+1) (from Theorem 4).

We describe in section B the heuristic search method we employed to find parameters good
efficiency with respect to per-signer space complexity. With a tightness gap is about log(γ) ≈
λ+9, we want the underlying RSIS game to have about λ+log(γ) ≈ 2λ+9 bits of difficulty. In
subsection C.1, subsection C.2, and subsection C.3, we show they satisfy all the requirements
(1) through (9).

A Security Theorems and Proofs

Theorem 2. If min(d,Kωagω
′
v) ≤ ωv and Kmin(d, ωag, ω

′
v)βagβ

′
v ≤ βv, then ΠF is correct.

Proof. In the event E(ΠF , λ) we can parse each vki = (gi,0, gi,1), parse each ski = (f
i,0
, f
i,1

),

and compute ci = Hch(vki,mi) for each i ∈ [N]. Using these values, each ξi = f
i,0
ci+ f

i,1
by

specification of Sign. Moreover, the list (vki,mi, ci)i∈[N] is sorted by the keys vki in E(ΠF , λ).
Let α = (αi∈[N]) = Hag((vki,mi, ci)i∈[N]) and ξag =

∑
i∈[N] αi(f i,0ci + f

i,1
) by specification

14 B. Goodell and A. Feickert

Fusion Light Fusion Mid Fusion Heavy

Parameter Value

λ 128 128 256 128 256

p 2147465729

d 64 128 256

K 1796 20813 236 32417 2818

ℓ 195 97 166 48 83

ωch 27 31 53 23 60

βch 3 1 3 1 1

ωag 35 31 67 23 60

βag 2 1 2 1 1

ωsk 64 128 256

βsk 52 26 105 30 52

βv 536070080 536808896 531283200 536825520 536321760

Statistic Value

|vk| (KB) 0.496 0.992 0.992 1.984 1.984

|ξ| (KB) 21.84 17.072 42.496 16.896 34.528

|ξ|ag (KB) 46.8 46.56 79.68 46.08 79.68

|vk|+ |ξag|/K (KB) 0.523 0.995 1.330 1.986 2.013

N to beat CRYSTALS 25 33 56 106 183

N to beat Falcon 276 No No No No
Table 1. Parameters generated by the heuristic presented in section B. Scheme names are selected based
on per-signer space complexity, not security.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 15

of Agg. Moreover, gi,0 = ⟨a, f
i,0
⟩ and gi,1 = ⟨a, f

i,1
⟩ for each i ∈ [N] by specification of KGen.

Inner products are linear, so ⟨a, ξag⟩ =
∑
i∈[N] αi(gi,0ci + gi,1) exactly.

Hence, it is sufficient to check that ξag has ∥ξag∥∞ ≤ βv and µ(ξag) ≤ ωv. First, consider the
Hamming weight. To compute µ(ξag), consider µ(ξi) for an honestly computed ξi.

µ(f
i,0
ci + f

i,1
) ≤min(d, µ(f

i,0
ci) + µ(f

i,1
))

≤min(d,min(d, µ(f
i,0

)µ(ci)) + ωsk)

≤min(d,min(d, ωskωch) + ωsk)

=min(d, ωsk(1 + ωch))

≤ω′
v

µ(ξag) =µ

∑
i∈[N]

αi(f
i,0
ci + f

i,1
)


≤min

d, ∑
i∈[N]

µ
(
αi(f

i,0
ci + f

i,1
)
)

≤min

d, ∑
i∈[N]

min
(
d, µ(αi)µ

(
f
i,0
ci + f

i,1

))
≤min

d, ∑
i∈[N]

min
(
d, ωagω

′
v

)
≤min

(
d,N min

(
d, ωagω

′
v

))
=min(d,Nωagω

′
v)

≤min(d,Kωagω
′
v)

≤ωv

Next consider the norm. Since β′
v = min(d, ωsk, ωch)βsk(1+βch) andKmin(d, ωag, ω

′
v)βagβ

′
v ≤

βv, we have the following.

∥ξi∥∞ =
∥∥∥f

i,0
ci + f

i,1

∥∥∥
∞

≤
∥∥∥f

i,0
ci

∥∥∥
∞

+
∥∥∥f

i,1

∥∥∥
∞

≤min(d, µ(f
i,0

), µ(ci))
∥∥∥f

i,0

∥∥∥
∞
∥ci∥∞ + βsk

≤min(d, ωsk, ωch)βskβch + βsk

=βsk(1 + min(d, ωsk, ωch)βch)

=β′
v

16 B. Goodell and A. Feickert

∥ξag∥∞ =

∥∥∥∥∥∥
∑
i∈[N]

αi(f
i,0
ci + f

i,1
)

∥∥∥∥∥∥
∞

≤
∑
i∈[N]

∥∥∥αi(f
i,0
ci + f

i,1
)
∥∥∥
∞

≤
∑
i∈[N]

min
(
d, µ(αi), µ(f

i,0
ci + f

i,1
)
)
∥αi∥∞

∥∥∥f
i,0
ci + f

i,1

∥∥∥
∞

≤
∑
i∈[N]

min(d, ωag, ω
′
v)βagβ

′
v

=N min(d, ωag, ω
′
v)βagβ

′
v

=Kmin(d, ωag, ω
′
v)βagβ

′
v

≤βv

Theorem 3. If ΠF is correct, then it is compact.

Proof. It is sufficient to show that the information-theoretic minimum bits required to de-
scribe any ξag ∈ Ξag is logarithmic in K. Since ξag ∈ Vp, ξag is an ℓ-vector of polynomials,
each with degree-bound d, where ℓ and d are not functions of K. Hence, if it takes M bits to
describe a coefficient of one of these polynomials, then it takes ℓdM bits to describe ξag. So it
is sufficient to show that M is logarithmic in K. Of course, ∥ξag∥∞ is the absolute maximum
of any such coefficient, so each coefficient is drawn from a set with 2∥ξag∥∞ +1 elements. As
in Theorem 2, we have that ∥ξag∥∞ ≤ Kmin(d, ωag)βagβ

′
v. All other variables are polynomial

in λ and are not functions of K. This norm is linear in K and M is logarithmic in the norm,
so M is logarithmic in K.

To prove unforgeability, we make use of Corollary 1 and the following lemmata.

Theorem 7. Let r ∈ (0, 1) and let ϕ : X → Y be any function between finite sets such that
|Y |/|X| ≤ r. Then P [∃x′ ∈ X : x′ ̸= x ∧ ϕ(x′) = ϕ(x) | x←$ X] ≥ 1− r.

Theorem 4. Let a ∈ V, β′
v <

p−1
2

, and c ∈ W̃(Rp,∞, βch, ωch). If (f
0
, f

1
)←$ W̃(Vp,∞, βsk, ωsk)2

and 2λp2d(2β′
v + 1)ℓd ≤

(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk , then

P
[
∃(f ′

0
, f ′

1
) ̸= (f

0
, f

1
) : ⟨a, f

0
⟩ = ⟨a, f ′

0
⟩, ⟨a, f

1
⟩ = ⟨a, f ′

1
⟩, f

0
c+ f

1
= f ′

0
c+ f ′

1

]
≥ 1− 2−λ.

Proof. We apply Theorem 7. For each c ∈ W̃(Rp,∞, βch, ωch), define θc : W̃(Vp,∞, βsk, ωsk)2 →
R2

p ×W(Vp,∞, β′
v, d) by mapping (f

0
, f

1
) 7→ (⟨a, f

0
⟩, ⟨a, f

1
⟩, f

0
c + f

1
). Certainly by defini-

tion |dom(θc)| =
(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk and |cod(θc)| = p2d(2β′
v+1)ℓd. The result follows directly

from Theorem 7.

We can tighten the constraint from Lemma 4 to 2λp2d
∑ω′

v
i=0

(
d
i

)ℓ
(2β′

v)
ℓi <

(
d
ωsk

)2ℓ
(2βsk)

2ℓωsk

in the special case that ω′
v < d. However, in practice, we only found parameters with ωsk =

ω′
v = ωv = ω = d. It is possible that tightening the bounds like this can lead to better

parameters than the ones we present here.

Theorem 5. Let a ∈ Vp, (c, c′) ∈ W̃(Rp,∞, βch, ωch)2 such that c ̸= c′, (ξ, ξ′) ∈W(Vp,∞, β′
v, ω

′
v)

2,

and α ∈ W̃(Rp,∞, 2βag, 2ωag). If 8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk <
p−1
2

then there is at most a single pair (f
0
, f

1
) ∈W(Vp,∞, βsk, ωsk)2 such that ξ = f

0
c+ f

1
and

ξ′ = α(f
0
c′ + f

1
).

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 17

Proof. If there exists pairs (f
0
, f

1
), (f ′

0
, f ′

1
) ∈ W(Vp,∞, βsk, ωsk)2 such that ξ = f

0
c+ f

1
=

f ′
0
c+ f ′

1
and ξ′ = α(f

0
c′ + f

1
) = α(f ′

0
c′ + f ′

1
), then we have the following.

(f
0
− f ′

0
)c+ (f

1
− f ′

1
) =0

α((f
0
− f ′

0
)c′ + (f

1
− f ′

1
)) =0

Therefore, α(c− c′)(f
0
− f ′

0
) = 0. Moreover, we have that ξ− f

0
c = f

1
and ξ− f ′

0
c = f ′

1
. So,

it is sufficient to show that f
0
= f ′

0
in order to conclude that f

1
= f ′

1
. We apply Corollary 1

twice. If α(c− c′)(f
0
− f ′

0
) = 0, α ̸= 0, c ̸= c′, and both of the following hold, then f

0
= f ′

0
.

1. min(d, µ(α), µ((c− c′)(f
0
− f ′

0
)))∥α∥∞

∥∥∥(c− c′)(f
0
− f ′

0
)
∥∥∥
∞
< p−1

2
, and

2. min(d, µ(c− c′), µ(f
0
− f ′

0
))∥c− c′∥∞

∥∥∥f
0
− f ′

0

∥∥∥
∞
< p−1

2

Consider this first condition. We have that µ(α) ≤ 2ωag and ∥α∥∞ ≤ 2βag. Also, µ((c −
c′)(f

0
− f ′

0
)) ≤ min(d, µ(c − c′)µ(f

0
− f ′

0
)). Of course, µ(c − c′) ≤ 2ωch and µ(f

0
− f ′

0
) ≤

2ωsk. Also, min(d, 2ωag,min(d, 4ωchωsk)) = min(d, 2ωag, 4ωchωsk). Hence, this first condition
becomes

min(d, 2ωag, 4ωchωsk)(2βag)
∥∥∥(c− c′)(f

0
− f ′

0
)
∥∥∥
∞
<
p− 1

2

Moreover, we have the following.∥∥∥(c− c′)(f
0
− f ′

0
)
∥∥∥
∞
≤min(d, µ(c− c′), µ(f

0
− f ′

0
))
∥∥c− c′∥∥∞∥∥∥f0

− f ′
0

∥∥∥
∞

≤min(d, 2ωch, 2ωsk)4βchβsk

Hence, the first condition reduces to 8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk <
p−1
2

. Now consider the second condition. We have that µ(c − c′) ≤ 2ωch, but we also have

µ(f
0
− f ′

0
) ≤ 2ωsk, ∥c− c′∥∞ ≤ 2βch, and

∥∥∥f
0
− f ′

0

∥∥∥
∞
≤ 2βch. Hence, this second condition

reduces to min(d, 2ωch, 2ωsk)4βchβsk <
p−1
2

. However, 1 ≤ 2min(2ωag, 4ωchωskβag, so the
first condition implies the second condition.

Since W̃(Vp, β, ω) ⊆W(Vp, β, ω), note that Theorem 5 is sufficient to show there can be only
one key that can explain the signature.

Theorem 6. Let ϵag, ϵch, ϵA, ϵ
′ ∈ (0, 1), t, t0, t1, t2, t

′ ≥ 0, and ω, β ∈ N such that all the
following hold.

ϵag =

(
d

ωag

)−1

(2βag)
−ωag

ϵch =

(
d

ωch

)−1

(2βch)
−ωch

t′ =2(t+ t0) + t1 + t2

ϵ′ =
1

2
(1− ϵch)2 (1− ϵag)2

(
1− ϵag

(1− ϵch)(1− ϵag)ϵA

)
ϵ2A

ω ≥min(d, 2ωv + 2ωagω
′
v)

β ≥2βv + 2min(d, 2ωag, ω
′
v)βagβ

′
v

If (i) ΠF is correct and (ii) the hypotheses of Theorems 4 and 5 hold and (iii) there exists
some PPT algorithm A is a (t, ϵA)-forger of Definition 4 for ΠF which makes at most 1 query

18 B. Goodell and A. Feickert

to Hag and at most K queries to Hch, then there exists an algorithm B that is a (t′, ϵ′)-solver
of the (e, p, ℓ, ∥·∥∞, β)-RSIS game of Definition 5 whose solution to that game has Hamming
weight at most ω.

Proof. In the following, we say that query inp made to Hag is well-formed if there exists some
1 ≤ N ≤ K such that (i) inp = (keys,msgs, challs), (ii) keys = (vki)i∈[N] is a sorted tuple of
distinct verification keys with vki ∈ R2

p for each i ∈ [N], (iii) msgs = (mi)i∈[N] is a tuple of
messages with mi ∈ {0, 1}∗ for each i ∈ [N], and (iv) challs = (ci)i∈[N] is a tuple of signature
challenges such that ci = Hc(vki,mi) for each i ∈ [N]. Otherwise, we say it is malformed.
Moreover, we say the query contains the challenge key if it is well-formed and there exists
some index i∗ such that vki∗ = vk∗.
To prove the theorem, we make the following assumptions on A.
– A outputs an unsuccessful forgery with probability 0, a successful forgery with probability
ϵ, and the failure symbol ⊥ with probability 1−ϵ;A never outputs an unsuccessful forgery,
outputting ⊥ instead.

– In every transcript producing a successful forgery, say forg = ((vki,mi)i∈[N], ξag) for some
1 ≤ N ≤ K, A queries Hch with each (vki,mi) except perhaps with probability ϵch,

– In every transcript producing a successful forgery, A queries Hag with a well-formed query
containing the challenge key at some index i∗ except perhaps with probability ϵag.

Construction of the RSIS Solver. We construct B as follows. We wrap A in a simulation
algorithm S which has the same oracle access to Hch and OSign as A, and simulates the oracle
response for the query made to Hag, and is suitable for use in the forking lemma. Next, we
construct the forking algorithm ForkS to have the same oracle access to Hch and OSign as S,
and which provides to S the responses for the query made to Hag by A. We wrap ForkS in
B, which simulates the oracle responses for the queries made to Hch and OSign by ForkS , and
which plays the game of Definition 5. This way, B, ForkS , and S together play the challenger
in the game of 4 against A to obtain two forgeries.
We now specify these algorithms. We then demonstrate the correctness of B and compute its
run-time and probability of success.

Forger A(τA, λ, ρ, vk∗) → {⊥, forg} inputs (τA, λ, ρ, vk
∗) for a random tape τA, security

parameter λ, public parameters ρ for ΠF , and the challenger’s public verification key
vk∗. Then, A is granted access to Hag and Hch, and one-time access to OSign. In the
sequel, denote the query made to OSign with mO, and the response with ξO. The forger A
makes oracle queries adaptively in any order and eventually outputs a purported forgery
forg, or the failure symbol ⊥. We make no further specifications about how A works.

Simulation S(τS , λ, ρ, vk∗, α) → {⊥0,⊥1,⊥2, forg} inputs (τS , λ, ρ, vk
∗, αi) for a random

tape τS , security parameter λ, public parameters ρ for ΠF , the challenger’s public ver-
ification key vk∗, and aggregation coefficients α = (αi)i∈[K] ∈ WK(R,∞, βag, ωag) for
simulating a response for a query made to Hag. Then, S is granted access to Hch and
one-time access to OSign. The simulation S runs A as a sub-routine, using its own oracle
access and α to play the challenger in the game of Definition 4 as described below. Even-
tually, S outputs auxiliary data forg or the failure symbol ⊥. The simulation S works as
follows.
1. The simulation S samples τA.
2. S computes outA ← A(τA, λ, ρ, vk∗), handling oracle queries made by A as follows.

– When A queries Hch or OSign, S answers by using its own oracle access, sending
the responses to A without alteration.

– When A makes the query inp to Hag, S responds with α in a way that is depen-
dent on whether inp is well-formed and contains the challenge key.
• If inp is malformed or if the query is well-formed but the query does not contain

the challenge key, respond with α.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 19

• Otherwise, the query is well-formed and the query contains the challenge key.
Since it is a well-formed query, let i∗ be the index such that vki∗ = vk∗.
In this case, S responds by swapping the i∗-th coordinate of α with the final
coordinate, responding with α∗ = (α∗

i)i∈[K] where α
∗
i∗ = αK−1, where α

∗
K−1 =

αi∗ , and every other α∗
i = αi.

3. If outA = ⊥, S outputs a distinguished failure symbol ⊥0 and terminates.
4. Otherwise, A outputs some outA = forg = ((vki,mi)i∈[N], ξag). In this case, S looks

at its transcript with Hch to find each ci = Hch(vki,mi). If not all of these queries
were made, S outputs ⊥1 and terminates.

5. Otherwise, all these queries were made to Hch. In this case, S looks at its transcript
with A to see if (vki,mi, ci)i∈[N] was queried to Hag. If not, then then S outputs ⊥2

and terminates.
6. Otherwise, S outputs forg.

Forking Algorithm ForkS(τForkS , λ, ρ, vk
∗)→ {⊥0,⊥1, (aux0, aux1)} inputs (τForkS , λ, ρ, vk

∗)
for a random tape τForkS , security parameter λ, public parameters ρ for ΠF , and the chal-
lenger’s public verification key vk∗. Then ForkS is granted access to Hch and one-time
access to OSign. The forking algorithm ForkS runs two instances of S as sub-routines, as
described below, making oracle queries only when S makes oracle queries, and eventually
outputs some data (aux0, aux1) or one of the distinguished failure symbols ⊥k for some
k = 0, 1. The forking algorithm works as follows.

1. The forking algorithm ForkS samples a random tape τS and samples aggregation
coefficients α(0) ∈WK(R,∞, βag, ωag).

2. The forking algorithm ForkS computes out0 ← S(τS , λ, ρ, vk∗, α(0)), handling oracle
queries made by S by using its own oracle access, sending the responses to S without
alteration.

3. If out0 = ⊥k for any k, ForkS outputs ⊥0 and terminates.

4. Otherwise, out0 = forg0 for some forg0 = ((vk
(0)
i ,m

(0)
i)i∈[N0], ξ

(0)
ag). In this case, ForkS

sets aux0 = (forg0, α
(0)
K−1).

5. Next, ForkS samples α(1) ∈W(Rp,∞, βag, ωag), re-sampling until α(1) ̸= α
(0)
K−1.

6. Set α(1) = (α
(0)
0 , α

(0)
1 , . . . , α

(0)
K−2, α

(1)) and compute out1 ← S(τS , λ, ρ, vk∗, α(1)), han-
dling oracle queries as follows.

– When S queries Hch, ForkS uses its own oracle access, sending the response to
S unaltered.

– When S queries OSign with some mO, ForkS first checks to see if this query
matches the query from the first execution of S. If not, ForkS outputs ⊥1 and
terminates. Otherwise, ForkS responds with the same signing oracle response ξO
as in the first execution.

7. If out1 = ⊥k for any k, ForkS outputs ⊥1 and terminates.

8. Otherwise, out1 = forg1 for some forg1 = ((vk
(1)
i ,m

(1)
i)i∈[N1], ξ

(1)
ag). In this case, ForkS

sets aux1 = (forg1, α
(1)) and outputs (aux0, aux1).

RSIS Solver B(τB, λ, ρRSIS , a) →
{
⊥0,⊥1, ξ

∗} inputs (τB, λ, a) for a random tape τB, se-
curity parameter λ, game parameters ρRSIS , and the (e, p, ℓ, ∥·∥∞, β)-RSIS challenge. B
simulates responses to Hch by keeping an internal table Tch and providing a simulated re-
sponse to OSign for use in the game of Definition 4, and offloading the simulated responses
for Hag queries to S. Eventually, B outputs a solution ξ∗ to the game from Definition 5
or a distinguished failure symbol ⊥0 or ⊥1. B works as follows.

1. Sample τForkS and instantiate a new empty table Tch to keep consistency in simulated
responses to Hch oracle queries.

20 B. Goodell and A. Feickert

2. Compute the Fusion parameters ρ← Pgen(λ), swapping out the public vector for the
RSIS challenge a. Then, using the swapped parameters, sample an honest keypair
(sk∗, vk∗)← KGen(ρ∗) and parse the secret signing key (f∗

0
, f∗

1
)← sk∗.

3. Compute outFork ← ForkS(τForkS , λ, ρ
∗, vk∗), handling oracle queries as follows.

– When ForkS makes a query to Hch, say inp, first check if inp ∈ Tch. If so, respond
with Tch[inp]. Otherwise, sample c ←$ W(Rp,∞, βch, ωch), set Tch[inp] = c, and
respond with Tch[inp].

– When ForkS makes its only query to OSign, say mO, first check if (vk∗,mO) ∈
Tch. If not, simulate cO ← Hch(vk

∗,mO) as described above. Then compute
ξO = f∗

0
cO + f∗

1
and respond to the query with ξO.

4. If outFork = ⊥k for any ⊥k, output ⊥0 and terminate.

5. Otherwise, out = (aux0, aux1). Parse the auxiliary data (forgk, α
(k))← auxk for each

k = 0, 1 and parses the forgeries ((vk
(k)
i ,m

(k)
i)i∈[N0], ξ

(k)
ag) ← forgk for each k = 0, 1.

Since S did not output ⊥3 to get to this point, there exists a pair of indices i∗0, i
∗
1

such that vk
(0)
i∗0

= vk
(1)
i∗1

= vk∗. Since S did not output ⊥2 to get to this point,

(vk∗,m
(0)
i∗) ∈ Tch. Set c∗ = Tch[(vk

∗,m
(0)
i∗0

)], set ξ′ = ξ
(0)
ag − ξ(1)ag , and compute

ξ∗ = ξ′ − (α(0) − α(1))(f∗
0
c∗ + f∗

1
).

6. If ξ∗ = 0, output ⊥1 and terminate. Otherwise, output ξ∗.

Run-time. Assessing the run-time is simplest, so we begin there. The simulation algorithm
S runs A, which takes time at most t, and runs some additional computations which take
additional time, at most some t0. So the run-time of S is at most t+t0. The forking algorithm
ForkS runs two executions of S, each taking time at most t + t0, and runs some additional
computations which take at most some time t1. So ForkS takes time at most 2(t + t0) + t1.
Lastly, B runs ForkS , which takes time at most 2(t+t0)+t1, and some additional computations,
which take some time at most t2. So B takes time at most 2(t+ t0) + t1 + t2.

Correctness. Demonstrating that B is correct is the next simplest, so we move onto that.
For correctness, we first show that B correctly plays the game of Definition 5 and correctly
simulates the challenger in the unforgeability game of Definition 4 in both executions of A.
Note that B plays the game of Definition 5 by construction. In particular, B inputs ρRSIS
and a, and outputs either a failure symbol or a potential solution ξ∗.

Next note that B correctly simulates the unforgeability game for A. Certainly, begins by
sampling keys exactly as in KGen and sending ρ and vk∗ to A as in step (1) of the game
from Definition 4. In the course of the execution of A, B correctly simulates Hag and Hch
responses indistinguishably for A. To see why, note that all simulated responses to Hch are
independent uniformly random variables with support W(Rp,∞, βch, ωch) and the simulated
response to the Hag query consists of independent uniformly distributed random variables
with support W(Rp,∞, βag, ωag). Hence, Hch and Hag are simulated correctly under the
random oracle model. Also, in the event E′(ΠF , λ) from step (2) in the game of Definition
4, B responds to OSign queries by using the sampled challenge key sk∗ according to Sign. So,
from the correctness of ΠF , the oracle-generated signature ξO satisfies the requisite property
for oracle-generated signature from step (2).

Note that Lemma 4 provides that at least two challenge keys could explain the challenge key
vk∗ and the oracle response ξO in the view of A, and that sk∗ was sampled uniformly according
to KGen. Hence revealing only the sampled public verification key and the oracle-generated
signature keeps the challenge key sk∗ information-theoretically hidden from A. Moreover, the
key sk∗ was sampled uniformly and independently, so the view of A is indistinguishable from
the game of Definition 4.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 21

Success probability. Next we show that if B does not output any ⊥k, then B succeeds at the
(e, p, ℓ, ∥·∥∞, β

∗)-RSIS game. To see why ξ∗ is a valid solution for the (e, p, ℓ, ∥·∥∞, β
∗)-RSIS

game, we first show that ξ∗ is in the nullspace of ⟨a,−⟩, and then we show that ∥ξ∗∥∞ ≤ β
and µ(ξ∗) ≤ ω. Let Eξ∗ be the event that B does not output any ⊥k.
First, consider the nullspace of ⟨a,−⟩. The event that either ξ

(0)
ag or ξ

(1)
ag fails verification is a

sub-event of the event in which B outputs ⊥0, which is disjoint from Eξ∗ . Thus, ξ
(0)
ag and ξ

(1)
ag

both pass verification. By construction, each αi except the ones corresponding to the challenge
key are equal in both transcripts with probability 1. Also by construction, the coefficients
corresponding to the challenge keys, say α(0) and α(1), are not equal in both transcripts with
probability 1. The messages mi, the signature challenges ci, and the keys vki are all included
in the query made to Hag, and so were decided upon before the forking point. Thus, they are
also all equal in both transcripts with probability 1. We have the following.

⟨a, ξ(0)ag ⟩ =
∑
i∈[N]

α
(0)
i (vk

(0)
i,0 c

(0)
i + vk

(0)
i,1) and

⟨a, ξ(1)ag ⟩ =
∑
i∈[N]

α
(1)
i (vk

(1)
i,0 c

(1)
i + vk

(1)
i,1) so

⟨a, ξ(0)ag ⟩ − ⟨a, ξ(1)ag ⟩ =
∑
i∈[N]

α
(0)
i (vk

(0)
i,0 c

(0)
i + vk

(0)
i,1)−

∑
i∈[N]

α
(1)
i (vk

(1)
i,0 c

(1)
i + vk

(1)
i,1)

⟨a, ξ′⟩ =(α(0) − α(1))(vk∗0c
∗ + vk∗1)

Since ξ∗ = ξ′−(α(0)−α(1))(f∗
0
c∗+f∗

1
), this shows ξ∗ is in the nullspace of ⟨a,−⟩. Next, consider

the Hamming weight of ξ∗. By correctness, µ(ξag) ≤ ωv. Hence µ(ξ′) ≤ min(d, 2ωv). But also,
µ((α(0)−α(1))(f∗

0
c∗+f∗

1
) ≤ min(d, µ(α(0)−α(1))µ(f∗

0
c∗+f∗

1
)). By correctness, µ(f∗

0
c∗+f∗

1
) ≤

ω′
v, and by construction, µ(α(0) − α(1)) ≤ 2ωag. Hence, min(d, µ(α(0) − α(1))µ(f∗

0
c∗ + f∗

1
)) ≤

min(d, 2ωagω
′
v). Hence, µ(ξ∗) ≤ min(d,min(d, 2ωv)+min(d, 2ωagω

′
v)) = min(d, 2ωv+2ωagω

′
v).

In particular, if min(d, 2ωv +2ωagω
′
v) ≤ min(d, ω), then ξ∗ has Hamming weight bounded by

ω.
Next, consider the norm of ξ∗. By correctness, ∥ξag∥∞ ≤ βv. Hence, if

2βv + 2min(d, 2ωag, ω
′
v)βagβ

′
v ≤ β

then we have the following.

∥ξ∗∥∞ =
∥∥∥ξ(0)ag − ξ(1)ag − (α

(0)
i∗ − α

(1)
i∗)(f∗

0
c∗ + f∗

1
)
∥∥∥
∞

≤
∥∥∥ξ(0)ag

∥∥∥
∞

+
∥∥∥ξ(1)ag

∥∥∥
∞

+
∥∥∥(α(0)

i∗ − α
(1)
i∗)(f∗

0
c∗ + f∗

1
)
∥∥∥
∞

≤2βv +
∥∥∥(α(0)

i∗ − α
(1)
i∗)(f∗

0
c∗ + f∗

1
)
∥∥∥
∞

≤2βv +min
(
d, µ

(
α
(0)
i∗ − α

(1)
i∗

)
, µ
(
f∗
0
c∗ + f∗

1

))∥∥∥α(0)
i∗ − α

(1)
i∗

∥∥∥
∞

∥∥∥f∗
0
c∗ + f∗

1

∥∥∥
∞

≤2βv + 2min(d, 2ωag, ω
′
v)βagβ

′
v

≤β

Thus, conditioned upon the event Eξ∗ , B succeeds at the (e, p, ℓ, ∥·∥∞, β)-RSIS game from
Definition 5. In particular, P [B succeeds] = P [Eξ∗].
To compute P [Eξ∗], consider the advantage of each of our specified algorithms in turn, recall-
ing that A has advantage ϵA by assumption. Note that S fails if it outputs any ⊥k, and each of

22 B. Goodell and A. Feickert

these outcomes is a disjoint event. Thus, P
[
∨k∈[3]⊥k ← S

]
=
∑
k∈[3] P [⊥k ← S]. Moreover,

the event in which ⊥1 ← S is a sub-event of the event in which ⊥0 ̸← S. Also, the event in
which ⊥2 ← S is a sub-event of the intersection of the events ⊥0 ̸← S and ⊥1 ̸← S.
Note that S outputs ⊥1 if and only if outA = ⊥. By assumption, A has success probability
ϵA. In the event that ⊥0 ̸← S, S outputs ⊥1 if and only if A did not query Hch for some ci. By
assumption on A, this occurs with probability ϵch. Lastly, in the event that S does not output
⊥0 or ⊥1, S outputs ⊥2 if and only if A did not query Hag with the data corresponding to the
forgery. In this case, A must guess an aggregation coefficient, so this occurs with probability
ϵag. Hence, we have that the probability that S outputs any ⊥k is at most

ϵag + (1− ϵag) ((1− ϵA) + ϵA (ϵch + (1− ϵch)ϵag)) .

Then S has the following advantage.

ϵS =1− (1− ϵA)− ϵA (ϵch + (1− ϵch)ϵag)
=ϵA (1− ϵch − (1− ϵch)ϵag)
=ϵA (1− ϵch) (1− ϵag)

Next consider the advantage of ForkS , say ϵFork. The General Forking Lemma claims that the
advantage of ForkS satisfies ϵFork ≥ ϵS (ϵS − ϵag). Lastly, consider the advantage of B, say
ϵB, which is the probability that B does not output any ⊥0 or ⊥1. Note that, again, each
of these is a disjoint event. Thus, P

[
∨1
k=0⊥k ← B

]
=
∑1
k=0 P [⊥k ← B]. Similarly to before,

we have that the event in which ⊥1 ← B is a sub-event of the event in which ⊥0 ̸← B.
Note that B outputs ⊥0 if and only if ForkS fails, which occurs with probability 1 − ϵFork.
Also, in the event that ⊥0 ̸← B, B outputs ⊥1 if and only if ξ∗ = 0. This is the case that
ξ′ = (α(0) − α(1))(f∗

0
c∗ + f∗

1
).

In this case, by Lemma 4, there exists at least two keypairs that can explain the adver-
sary’s view before they output a forgery. The challenge key was sampled uniformly and
independently at the start of the experiment, so the keypair responsible for the view is kept
information-theoretically hidden from the adversary. According to Lemma 5, only one keypair
can explain the adversary’s view once ξ′ is computed. Hence, ξ′ = (α(0) − α(1))(f∗

0
c∗ + f∗

1
)

occurs with probability at most 1/2.
Hence, we have that the probability that B outputs any ⊥k is at most 1−ϵFork+

ϵFork
2

= 1− ϵFork
2

.
The success probability of B is then

ϵFork
2

. Combining these results, we have the following as
claimed.

ϵB ≥
ϵFork
2

≥ ϵS
2

(ϵS − ϵag)

≥1

2
(1− ϵch)2(1− ϵag)2

(
1− ϵag

(1− ϵch)(1− ϵag)ϵA

)
ϵ2A

Lemma 4. Let λ ∈ N, κ ∈ N0 and assume forging a signature from ΠF has λ bits of hardness.
If all of the following conditions hold then the proof of Theorem 6 implies a tightness gap
log2(γ) ≤ 9 + λ.
– t0 < t,
– t1 + t2 < 2(t+ t0),
– ϵch < 2−λ,
– ϵag <

1
2
,

–
ϵag

(1−ϵch)(1−ϵag)
≤ 2−(λ+1).

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 23

Proof. We have the following.

log2 γ = log2

2(t+ t0) + t1 + t2
t

2ϵA

(1− ϵch)2 (1− ϵag)2 ϵA
(
ϵA − ϵag

(1−ϵch)(1−ϵag)

)


=1 + log2

(
2(1 +

t0
t
) +

t1 + t2
t

)
− log2

(
(1− ϵag)2 (1− ϵch)2

(
ϵA −

ϵag
(1− ϵch)(1− ϵag)

))
Consider the second term. We have that log2(1 + t0

t
) < 1 and log2(1 + t1+t2

2(t+t0)
) < 1 by

assumption. Thus, we have the following.

log2(2(1 +
t0
t
) +

t1 + t2
t

) = log2

(
2(1 +

t0
t
)

(
1 +

t1 + t2
2(t+ t0)

))
=1 + log2(1 +

t0
t
) + log2

(
1 +

t1 + t2
2(t+ t0)

)
≤ 3

Substituting this result into the bound on log2(γ), we have the following.

log2(γ) ≤4− log2

(
(1− ϵag)2 (1− ϵch)2

(
ϵA −

ϵag
(1− ϵch)(1− ϵag)

))
=4− 2 log2(1− ϵag)− 2 log2(1− ϵch)− log2

(
ϵA −

ϵag
(1− ϵch)(1− ϵag)

)
By assumption, we have the following. First, ϵag < 1

2
, so −2 log2(1 − ϵag) < 2. Second,

ϵch < 2−λ, so −2 log2(1 − ϵch) < −2 log2(1 − 2−λ) ≤ 2 since λ ≥ 1. Also,
ϵag

(1−ϵch)(1−ϵag)
≤

2−(λ+1), so ϵA − 2−(λ+1) ≤ ϵA − ϵag

(1−ϵch)(1−ϵag)
and therefore − log(ϵA − ϵag

(1−ϵch)(1−ϵag)
) ≤

− log(ϵA − 2−(λ+1)).

log2(γ) ≤4− 2 log2(1− ϵag)− 2 log2(1− ϵch)− log2

(
ϵA −

ϵag
(1− ϵch)(1− ϵag)

)
≤8− log(ϵA − 2−(λ+1))

In particular, if ϵA ≥ 2−λ, then ϵA−2−(λ+1) ≥ 2−λ−2−(λ+1) = 2−(λ+1) so log(ϵA−2−(λ+1)) ≥
−(λ+ 1). In this case, log(γ) ≤ 9 + λ.

B Parameter Selection Search Heuristic

Consider the existence of solutions to the system of inequalities (1) through (9) from section B.
Recall that the Fusion per-signer space complexity is 2d log(p) + Kℓ

d
log(2βv + 1).

For any fixed (λ, d), and for any choice of 1 ≤ ωch ≤ d, the value ϵch as a function of βch is
strictly positive, strictly decreasing, and has limβch→∞ ϵch = 0. Hence, there exists a critical
function of ωch which depends on the fixed λ and d, say β∗

ch(ωch), such that (7) is satisfied by
(λ, d, ωch, β

∗
ch(ωch)). This still leaves us freedom of choice in selecting ωch, and we can select

ωch by minimizing per-signer space complexity. The highest order term in the per-signer space
complexity that depends on βch and ωch is O(2 log(ωch) + log(βch)), so we set βch = β∗

ch and
select ωch to reduce log(2ωch) + log(β∗

ch).

24 B. Goodell and A. Feickert

Next, for these fixed λ, d, ωch, and βch, and for any 1 ≤ ωag ≤ d, the values ϵag and
ϵag

(1−ϵch)(1−ϵag)
as functions of βag are strictly positive, strictly decreasing, and limβag→∞ ϵag =

limβag→∞
ϵag

(1−ϵch)(1−ϵag)
= 0. Hence, there exists a critical function of ωag which depends

on the fixed λ, d, ωch, βch, say β∗
ag(ωag) such that (8) and (9) are both satisfied for any

βag ≥ β∗
ag(ωag). Again, this leaves us freedom of choice in selecting ωag, and again we can

select ωag by minimizing per-signer space complexity. The highest order term in the per-
signer space complexity that depends on ωag and βag is O(log(ωag) + log(βag)). We set
βag = β∗

ag(λ, d, ωch, βch, ωag) and select ωag to reduce log(ωag) + log(βag) as before.
Next, for these fixed parameters λ, d, ωch, βch, ωag, βag, and for some K, there is a subset
of parameter space for choices of (ωsk, βsk) satisfying (5). Pairs in this subset can be found
via brute-force search. From each of these, a bound p∗(ωsk, βsk) exists such that (2) and
(3) are satisfied for every p ≥ p∗. Now, since (5) is satisfied, there always exists a minimal
ℓ∗(ωsk, βsk, p) such that (6) are both satisfied for every ℓ ≥ ℓ∗. Moreover, there always exists
a critical ℓ∗∗(ωsk, βsk, p) such that (4) is satisfied for all ℓ ≥ ℓ∗∗(ωsk, βsk, p). Thus, for any ℓ ≥
max(ℓ∗, ℓ∗∗), selecting (ωsk, βsk, p

∗, ℓ) will provide valid parameters if (4) is satisfied. We can
set ℓ = max(ℓ∗, ℓ∗∗), but we still have freedom of choice of (ωsk, βsk). As before, we can select
(ωsk, βsk) to minimize per-signer space complextiy. The highest order term in per-signer space
complexity that depends on (ωsk, βsk, p, ℓ) isO

(
2 log(p) + ℓ

K
(log(ωsk) + log(βsk) + log(1 + ωskβch))

)
,

so we minimize this over our sampled choices.
These facts lend themselves to a heuristic search which works loosely as follows.
– Input λ, d, K.
– Set 1 ≤ ωch ≤ d to minimize 2 log(ωch) + log(β∗

ch).
– Set 1 ≤ ωag ≤ d to minimize log(ωag) + log(β∗

ag).
– Find a set S of pairs (ωsk, βsk) that satisfy (5).
– For each pair (ωsk, βsk) ∈ S, compute p∗ and max(ℓ∗, ℓ∗∗).

– Minimize 2 log(p∗)+max(ℓ∗,ℓ∗∗)
K

(log(ωsk) + log(βsk) + log(1 + ωskβch)) to pick (ωsk, βsk).
This still provides us a free choice of λ, d,K. We restricted our attention to λ ∈ {128, 256, 512}
as usual. We restricted our attention to d ∈ {64, 128, 256} because larger d led to key sizes that
could not beat CRYSTALS-Dilithium or Falcon. For each choice of λ, d, we then treated K as
an input variable to the above heuristic algorithm, whose output was (ωch, βch, ωag, βag, ωsk, βsk, p, ℓ).
From this output, we could easily compute the per-signer space complexity of the resulting
scheme and the critical number of signatures required to beat CRYSTALS-Dilithium or Fal-
con.
We first sought the smallest K such that beating CRYSTALS-Dilithium or Falcon with aggre-
gation was possible. We next sought the largest K such that the heuristic algorithm output
valid parameters. We then were able to look between this minimum and maximum to seek
the choice of K that led to parameters (ωch, βch, ωag, βag, ωsk, βsk, p, ℓ) that led to optimal
space-efficiency both with respect to per-signer space complexity and the critical number of
signatures required to beat CRYSTALS-Dilithium or Falcon.

C Validity of Parameterization

C.1 Parameterizing Fusion Light

We found that, for λ = 128, d = 64 appears to offer enough security to parameterize the
scheme with better space efficiency than Falcon, but not for d < 64 or d > 64. For these
parameters, we have β = 1073231744 and p = 2147465729. So we have β = 1073231744 <
1073732864 = p−1

2
, resolving (1). Also, we have

8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk = 8626176 < 1073732864 =
p− 1

2

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 25

resolving (2). For security in the underlying RSIS game, we have both

(ℓd− 1)−1

(
log(ℓ)

2
+

log(d)

2
+ log(β)− log(p)

ℓ

)
≈0.0029364536698398697 and(

log (2λ+ 9) + 0.265
2λ+9

log
(
π · 2λ+9

0.265

)
− log (2πe(0.265))

)
(
2
(
2λ+9
0.265

− 1
)) ≈0.0029445497471045747

resolving (4). Since

λ+ 2d log(p) + ℓd log(2β′
v + 1) ≈167061.84629641057 and

2ℓ

(
log

(
d

ωsk

)
+ ωsk log(2βsk)

)
≈167242.97536480168

we satisfy (6) (and an ℓ satisfying (6) like this implies (5) is also satisfied). Since log
(
d
ωch

)
+

ωch log(2βch) ≈ −129.3485086350302 > −128, we satisfy (7). Since− log
(
d
ωag

)
−ωag log(2βag) ≈

−130.26856356544508 < −1, we satisfy (8). Lastly, since − log
(
d
ωag

)
−ωag log(2βag)− log(1−

ϵch)− log(1− ϵag) ≈ − log
(
d
ωag

)
−ωag log(2βag) ≈ −130.26856356544508 < −129 = −(λ+1),

we satisfy (9).
For these parameters, we have β′

v = 4264, βv = 536070080, verification keys of 0.496 KB.
Signatures take up 21.84 KB, butK = 1796 of these combine into a single aggregate signature,
which takes up 46.8 KB. This averages to a weight of 0.523 KB per signer. This is more space-
efficient than CRYSTALS-Dilithium as long as at least 25 signatures are being aggregated
together before verification. This is more space-efficient than Falcon as long as at least 276
signatures are being aggregated together before verification.

C.2 Parameterizing Fusion Mid

We present two parameterizations in Table 4 for Fusion Mid at two different security levels.
Users can aggregate a sufficient number of signatures to beat the efficiency of CRYSTALS-
Dilithium, but the signatures are not efficient enough to beat Falcon. Fusion Mid users of all
security levels use the same ring, gaining security by varying only a few parameters: increase
ℓ, ωch, ωag, and βsk and decrease aggregation capacity K to increase security. We now show
that the Fusion Mid parameter sets satisfy all the requisite conditions.

For λ = 128 When λ = 128 with Fusion Mid parameters, we have β = 1073720960 and
p = 2147465729. So we have β = 1073720960 < 1073732864 = p−1

2
, resolving (1). Also, we

have

8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk = 799552 < 1073732864 =
p− 1

2

resolving (2). For security in the underlying RSIS game, we have both

(ℓd− 1)−1

(
log(ℓ)

2
+

log(d)

2
+ log(β)− log(p)

ℓ

)
≈0.0029384084480779636(

log (2λ+ 9) + 0.265
2λ+9

log
(
π · 2λ+9

0.265

)
− log (2πe(0.265))

)
(
2
(
2λ+9
0.265

− 1
)) ≈0.0029445497471045747

26 B. Goodell and A. Feickert

which resolves (4). Since

λ+ 2d log(p) + ℓd log(2β′
v + 1) ≈140931.41794990833 and

2ℓ

(
log

(
d

ωsk

)
+ ωsk log(2βsk)

)
≈141553.31908087962

we satisfy (6) (and an ℓ satisfying (6) like this implies (5) is also satisfied). Since log
(
d
ωch

)
+

ωch log(2βch) ≈ −129.62138779517142 > −128, we satisfy (7). Since− log
(
d
ωag

)
−ωag log(2βag) ≈

−129.62138779517142 < −1, we satisfy (8). Since − log
(
d
ωag

)
−ωag log(2βag)− log(1− ϵch)−

log(1 − ϵag) ≈ − log
(
d
ωag

)
− ωag log(2βag) ≈ −129.62138779517142 < −129 = −(λ + 1), we

satisfy (9).
For these parameters, we have β′

v = 832, βv = 536808896, verification keys of 0.992 KB.
Signatures take up 17.072 KB, but K = 20813 of these combine into a single aggregate
signature, which takes up 46.56 KB. This averages to a weight of 0.995 KB per signer. This
is more space-efficient than CRYSTALS-Dilithium as long as at least 33 signatures are being
aggregated together before verification.

For λ = 256 When λ = 256 with Fusion Mid, we have β = 1071168000 and p =
2147465729. So we have β = 1071168000 < 1073732864 = p−1

2
, resolving (1). Also, we

have

8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk = 68382720 < 1073732864 =
p− 1

2

resolving (2). For security in the underlying RSIS game, we have both

(ℓd− 1)−1

(
log(ℓ)

2
+

log(d)

2
+ log(β)− log(p)

ℓ

)
≈0.0017412957321820508(

log (2λ+ 9) + 0.265
2λ+9

log
(
π · 2λ+9

0.265

)
− log (2πe(0.265))

)
(
2
(
2λ+9
0.265

− 1
)) ≈0.0017438059974185121

which resolves (4). Since

λ+ 2d log(p) + ℓd log(2β′
v + 1) ≈327681.52615705435 and

2ℓ

(
log

(
d

ωsk

)
+ ωsk log(2βsk)

)
≈327824.57751873956

we satisfy (6) (and an ℓ satisfying (6) like this implies (5) is also satisfied). Since log
(
d
ωch

)
+

ωch log(2βch) ≈ −258.4547769280831 > −256, we satisfy (7). Since− log
(
d
ωag

)
−ωag log(2βag) ≈

−257.9700593112159 < −1, we satisfy (8). Lastly, since − log
(
d
ωag

)
− ωag log(2βag)− log(1−

ϵch)− log(1− ϵag) ≈ − log
(
d
ωag

)
− ωag log(2βag) ≈ −257.9700593112159 < −257 = −(λ+ 1),

we satisfy (9).
For these parameters, we have β′

v = 16800, βv = 531283200, verification keys of 0.992 KB.
Signatures take up 42.496 KB, butK = 236 of these combine into a single aggregate signature,
which takes up 79.68 KB. This averages to a weight of 1.33 KB per signer. This is more space-
efficient than CRYSTALS-Dilithium as long as at least 56 signatures are being aggregated
together before verification.

Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices 27

C.3 Parameterizing Fusion Heavy

As with Fusion Mid, we present two parameterizations in Table 4 for Fusion Heavy at two
different security levels. As before, users can aggregate a sufficient number of signatures to
beat the efficiency of CRYSTALS-Dilithium, but the signatures are not efficient enough to
beat Falcon. As with Fusion Mid, Fusion Heavy users of all security levels use the same ring,
gaining security by varying only a few parameters: increase ℓ, ωch, ωag, and βsk and decrease
aggregation capacity K to increase security.
We next show that the Fusion Heavy parameter sets satisfy all the requisite conditions.

For λ = 128 When λ = 128, Fusion Heavy has β = 1073717280 and p = 2147465729. So
we have β = 1073717280 < 1073732864 = p−1

2
, resolving (1). Also, we have

8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk = 507840 < 1073732864 =
p− 1

2

resolving (2). For security in the underlying RSIS game, we have both

(ℓd− 1)−1

(
log(ℓ)

2
+

log(d)

2
+ log(β)− log(p)

ℓ

)
≈0.0029418584837447794(

log (2λ+ 9) + 0.265
2λ+9

log
(
π · 2λ+9

0.265

)
− log (2πe(0.265))

)
(
2
(
2λ+9
0.265

− 1
)) ≈0.0029445497471045747

which resolves (4). Since

λ+ 2d log(p) + ℓd log(2β′
v + 1) ≈144936.19140916737 and

2ℓ

(
log

(
d

ωsk

)
+ ωsk log(2βsk)

)
≈145167.74327767495

we satisfy (6) (and an ℓ satisfying (6) like this implies (5) is also satisfied). Since log
(
d
ωch

)
+

ωch log(2βch) ≈ −131.07780800641922 > −128, we satisfy (7). Since− log
(
d
ωag

)
−ωag log(2βag) ≈

−131.07780800641922 < −1, we satisfy (8). Since − log
(
d
ωag

)
−ωag log(2βag)− log(1− ϵch)−

log(1 − ϵag) ≈ − log
(
d
ωag

)
− ωag log(2βag) ≈ −131.07780800641922 < −129 = −(λ + 1), we

satisfy (9).
For these parameters, we have β′

v = 720, βv = 536825520, verification keys of 1.984 KB.
Signatures take up 16.896 KB, but K = 32417 of these combine into a single aggregate
signature, which takes up only 46.08 KB. This averages to a weight of 1.986 KB per signer.
This is more space-efficient than CRYSTALS-Dilithium as long as at least 106 signatures are
aggregated together before verification.

For λ = 256 On the other hand, when λ = 256, we have β = 1073404800 and p =
2147465729. So we have β = 1073404800 < 1073732864 = p−1

2
, resolving (1). Also, we have

8min(d, 2ωag, 4ωchωsk)min(d, 2ωch, 2ωsk)βagβchβsk = 5990400 < 1073732864 =
p− 1

2

resolving (2). For security in the underlying RSIS game, we have both

(ℓd− 1)−1

(
log(ℓ)

2
+

log(d)

2
+ log(β)− log(p)

ℓ

)
≈0.0017326480436488268(

log (2λ+ 9) + 0.265
2λ+9

log
(
π · 2λ+9

0.265

)
− log (2πe(0.265))

)
(
2
(
2λ+9
0.265

− 1
)) ≈0.0017438059974185121

28 B. Goodell and A. Feickert

This resolves (4). Since

λ+ 2d log(p) + ℓd log(2β′
v + 1) ≈284520.07556304254 and

2ℓ

(
log

(
d

ωsk

)
+ ωsk log(2βsk)

)
≈284741.8862621239

we satisfy (6) (and an ℓ satisfying (6) like this implies (5) is also satisfied). Since log
(
d
ωch

)
+

ωch log(2βch) ≈ −257.0147390445861 > −256, we satisfy (7). Since− log
(
d
ωag

)
−ωag log(2βag) ≈

−257.0147390445861 < −1, we satisfy (8). Since − log
(
d
ωag

)
− ωag log(2βag)− log(1− ϵch)−

log(1 − ϵag) ≈ − log
(
d
ωag

)
− ωag log(2βag) ≈ −257.0147390445861 < −257 = −(λ + 1), we

satisfy (9).
For these parameters, we have β′

v = 3172, βv = 536321760, verification keys of 1.984 KB.
Signatures take up 34.528 KB, but K = 2818 of these combine into a single aggregate sig-
nature, which takes up 79.68 KB. This averages to a weight of 2.013 KB per signer. This is
more space-efficient than CRYSTALS-Dilithium as long as at least 183 signatures are being
aggregated together before verification.

References

1. Dan Boneh and Sam Kim. One-time and interactive aggregate signatures from lattices.
preprint, 2020.

2. Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In Theory of Cryptography Conference, pages 37–54. Springer, 2008.

3. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

4. Nabil Alkeilani Alkadri, Johannes A Buchmann, Rachid El Bansarkhani, and Juliane
Krämer. A framework to select parameters for lattice-based cryptography. IACR Cryptol.
ePrint Arch., 2017:615, 2017.

5. Rachel Player. Parameter selection in lattice-based cryptography. PhD thesis, Royal Hol-
loway, University of London, 2018.

6. Muhammed Fethullah Esgin. Practice-Oriented Techniques in Lattice-Based Cryptography.
PhD thesis, Monash University, 2020.

	Fusion One-Time Non-Interactively-Aggregatable Digital Signatures From Lattices

