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Abstract. Homomorphic encryption for approximate arithmetic allows
one to encrypt discretized real/complex numbers and evaluate arithmetic
circuits over them. The first scheme, called CKKS, was introduced by
Cheon et al. (Asiacrypt 2017) and gained tremendous attention. The
enthusiasm for CKKS-type encryption stems from its potential to be
used in inference or multiparty computation tasks that do not require
an exact output.
A desirable property for homomorphic encryption is circuit privacy, which
requires that a ciphertext leaks no information on the computation per-
formed to obtain it. Despite numerous improvements directed toward
improving efficiency, the question of circuit privacy for approximate ho-
momorphic encryption remains open.
In this paper, we give the first formal study of circuit privacy for homo-
morphic encryption over approximate arithmetic. We introduce formal
models that allow us to reason about circuit privacy. Then, we show that
approximate homomorphic encryption can be made circuit private using
tools from differential privacy with appropriately chosen parameters. In
particular, we show that by applying an exponential (in the security pa-
rameter) Gaussian noise on the evaluated ciphertext, we remove useful
information on the circuit from the ciphertext. Crucially, we show that
the noise parameter is tight, and taking a lower one leads to an efficient
adversary against such a system.
We expand our definitions and analysis to the case of multikey and
threshold homomorphic encryption for approximate arithmetic. Such
schemes allow users to evaluate a function on their combined inputs and
learn the output without leaking anything on the inputs. A special case
of multikey and threshold encryption schemes defines a so-called partial
decryption algorithm where each user publishes a “masked” version of its
secret key, allowing all users to decrypt a ciphertext. Similarly, in this
case, we show that applying a proper differentially private mechanism
gives us IND-CPA-style security where the adversary additionally gets as
input the partial decryptions. This is the first security analysis of approx-
imate homomorphic encryption schemes that consider the knowledge of
partial decryptions.
As part of our study, we scrutinize recent proposals for the definition and
constructions of threshold homomorphic encryption schemes and show
new random oracle uninstantiability results that may be of independent
interest.
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1 Introduction

Fully Homomorphic Encryption (FHE) allows for computations to be performed
on encrypted data. A client encrypts a message m and sends the ciphertext to a
server, which, given a function F , returns a ciphertext that decrypts to F (m).
The concept of FHE was first introduced by Rivest and Dertouzos [RAD78] and
later realized by Gentry [Gen09b].

FHE has numerous applications in cryptography. Among others, it is used to
build private information retrieval [ABFK16, ALP+21, ACLS18, GH19, CHK22,
MW22, HHC+22], secure function delegation [QWW18] and obfuscation schemes
[BDGM20, GP21]. Note, however, that the security of fully homomorphic en-
cryption protects only the encrypted message and, in particular, does not offer
any protection for the server’s computation. In other words, the ciphertexts that
a server returns may completely leak the function F .

Circuit privacy, sometimes called function privacy, is a critical property in
FHE, where the ciphertext produced by the server, computing a function F on
encrypted data, should not reveal any information about F , except for the fact
that the ciphertext decrypts to F (m). Circuit private FHE enables semi-honest
two-party computation with optimal communication, requiring only one round
of communication, and its communication complexity is independent of the size
of the computation. Furthermore, the ciphertexts produced by the evaluation
process can be reused, making FHE suitable for applications such as private
set intersection [HFH99, Mea86, CLR17], neural network inference [DGBL+16,
CdWM+17, LJLA17, JKLS18, JVC18, BGGJ18, ABSdV19, CDKS19, RSC+19,
BGPG20, KS22], analysis of genomic data [KSK+18, KSK+20, BGPG20], and
many more.

Multikey and Threshold Homomorphic Encryption. Extensions of homomor-
phic encryption like multikey [LTV12, CM15, BP16, MW16, CZW17, CCS19,
CDKS19, AJJM20] or threshold homomorphic [BGG+18] encryption allow com-
puting on ciphertexts that come from different parties, but require a subset of
secret keys of the different parties to decrypt the outcome of the computation. In
particular, many variants of these schemes introduce a so-called partial decryp-
tion algorithm, in which each party publishes a secret key capable to “remove
an encryption layer” from the evaluated ciphertext. Multikey or threshold ho-
momorphic encryption schemes seem to be related to circuit private encryption
schemes, as both give us the means to build two-round multiparty computa-
tion if the homomorphic encryption satisfies the right security notion. Namely,
whether IND-CPA holds against an adversary that is given partial decryptions
of non-corrupted parties. In fact, there is a folklore construction of a circuit pri-
vate scheme from a multikey homomorphic encryption scheme for at least two
keys.

Homomorphic Encryption for Approximate Arithmetic. While we have seen sig-
nificant advancements in the practical efficiency of fully homomorphic encryption
(FHE) schemes and their circuit private versions, realizing practical instances
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of neural network inference, data analysis problems, or collaborative learning is
still relatively slow. In their seminal paper [CKKS17] Cheon et al. noticed that
many of these problems do not require the computation on the encrypted data
to be exact. In particular, in many applications, it is sufficient for the homomor-
phic computation to return an approximation of F (m). As a result, they design
a homomorphic encryption scheme with a plaintext space of approximations of
real or complex numbers.

Due to its native support of real or complex numbers, CKKS-style schemes
are believed to be the most competitive solutions for private machine learning
inference problems, data analytics, and even training of machine learning models.
The focus of researchers is to make CKKS more efficient and increase its plaintext
precision. For example, [CDKS19] introduces an efficient multikey version of
[CKKS17]. However, it is not clear whether the application is secure and with
respect to which security notion. In particular, [CDKS19] states the standard
IND-CPA definition, but in applications of multikey homomorphic encryption,
we need to make sure that IND-CPA holds even when given partial decryptions.

On the other hand, we may argue that, running an MPC protocol computing
the decryption function by inputting the secret keys of all users, can solve the
problem. After all, the solution solves the decryption problem in the case of
“exact” homomorphic encryption, since the MPC protocol reveals nothing aside
from the result of the homomorphic computation. But, unfortunately, in the
approximate setting, the decryption gives only an approximation of the exact
result, where the approximation error may carry information on the plaintexts
of other parties. This means that we need to be careful when trying to apply
techniques from the “exact” setting in the approximate setting.

1.1 Our Contributions

In this work, we are the first to formally address the issue of circuit privacy and ci-
phertext sanitization for homomorphic encryption over approximate arithmetic.
Our contributions are as follows.

Formal Definitions. We introduce formal definitions that allow us to reason
about circuit privacy for approximate homomorphic encryption. In particular,
we expand on some formalism introduced by Li et al. [LMSS22] with regard to
the approximate correctness of the computation on ciphertexts. After that, we
introduce a indistinguishability-based definition. We note that this is the first
indistinguishability-based definition for circuit/function privacy; previously, all
definitions were simulation-based, and this also applies in the case of “exact”
homomorphic encryption. In particular, the simulation-based definitions imply
our, but our is more convenient when dealing with approximate homomorphic
computation and showing lower bounds.

Circuit Privacy and Lower Bounds. We give an analysis based on Kullback-
Leibler divergence, showing that applying a differentially private mechanism
with appropriate parameters gives us circuit privacy. In particular, we can use



4 Kamil Kluczniak and Giacomo Santato

the Gaussian mechanism to “flood” the approximation errors in a ciphertext.
Noise flooding is a known technique, and in particular, [LMSS22] analyzed it in
the context of IND-CPAD-security [LM21]. Our analysis is inspired by [LMSS22],
but we stress that our setting is different in many ways and comes with its
own technical challenges which we discuss in the main body of the paper when
having the right context. Importantly, we show that the applied noise must be
exponential in the security parameter. In particular, we show that, if we apply
only a subexponential noise, then there exists an efficient adversary that breaks
circuit privacy with non-negligible probability.

Multikey and Threshold Approximate Homomorphic Encryption. We give the
first formal study of multikey and threshold homomorphic encryption for ap-
proximate arithmetic. There are constructions of such schemes based on CKKS
[CDKS19, KKL+22]. However, none of them addresses the relevant security
properties. We introduce definitions for indistinguishability security, where an
adversary obtains partial decryptions. First, we show that our definitions are
meaningful, and multikey and threshold homomorphic encryption satisfying our
security notion imply homomorphic encryption satisfying our notion of circuit
privacy. Then, we give a Kullback-Leibler-divergence-based proof that applying
the Gaussian differential-privacy mechanism in partial decryptions with expo-
nential Gaussian noise is sufficient to satisfy our security notion. On the down-
side, we show that the applied noise parameters are tight, and using smaller
parameters leads to the break of the relevant security property. We note that
we can easily adapt our lower bounds to the “exact” setting. Our result in this
manner is especially relevant due to the following.

– There is a folklore belief that circuit privacy can be accomplished via multi-
key (F)HE. The idea is that the server encrypts the circuit with its key, and
a client encrypts the query with its key. Then the server computes a uni-
versal circuit over both ciphertexts and returns a partial decryption of the
evaluated ciphertext back to the client. If the multikey/threshold encryption
with partial decryptions gives us a secure MPC protocol, then this approach
seems to be correct. Our analysis and lower bounds for the approximate
arithmetic setting show that we can indeed use the folklore solution. How-
ever, encrypting the circuit does not seem helpful in reducing the flooding
noise significantly in comparison to just sanitizing single-key homomorphic
encryption.

– There are several recent proposals [DWF22, CSS+22, BS23] to use a noise
bounded by a polynomial in the security parameter to implement partial
decryption. The idea is to make an analysis based on Rényi divergence. In-
deed, in some situations, analysis using the Rényi divergence may result in
better parameters [BLR+18]. In this work, we also emphasize certain risks
that emerge when considering new security definitions for Threshold (F)HE.
We give a new random oracle uninstantiability result against the OW-CPA
to IND-CPA Transform [BS23] (to appear at Asiacrypt 2023). In particular,
we show that when instantiating the random oracle with any hash func-
tion, the resulting threshold HE scheme is not IND-CPA-secure if the base
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threshold HE is not already IND-CPA-secure. We note that our uninstantia-
bility result works also against the transform from Hofheinz, H ovelmanns,
Kiltz [HHK17] on which [BS23] is based. Our counterexample is of the same
type as [GKW17] regarding Fujisaki-Okamoto transform [FO99], and [WZ17]
regarding Black, Rogaway, Shrimpton transform [BRS03] in that exploits
the fact that we can homomorphically evaluate the circuit of a hash func-
tion, whereas a random oracle doesn’t have a circuit representation. While
[FO99] isn’t typically used with an FHE scheme, and the counterexamples
[GKW17, WZ17] are mainly of theoretical interest, our result shows that
the application of the OW-CPA to IND-CPA transform does not upgrade the
FHE scheme in question.
Finally, we scrutinize the security definitions from [DWF22] and a previous
version of [CSS+22]. Specifically, we demonstrate how these definitions are
ineffective in accurately describing the security of Threshold HE schemes
because they fail to consider the impact of partial decryptions on the secrecy
of messages encrypted by the parties.

– Our results lead to tight estimates of the precision when applying the dif-
ferential privacy mechanism to CKKS and its multikey/threshold versions.
Additionally, we provide revisited parameters for these schemes to achieve
the desired security definitions.

1.2 Related Work on Circuit Privacy and Multikey Homomorphic
Encryption

Circuit privacy, or sometimes called function or server privacy, was studied
before the first secure fully homomorphic encryption schemes were proposed
[IP07, Gen09a]. There are two ways to build a circuit private homomorphic
encryption scheme. The first is to use a multiparty computation protocol to
compute the decryption function on the ciphertext [IP07, GHV10, CO17]. An-
other way is to sanitize a ciphertext from any information on the circuit. In
other words, we apply a random process to the ciphertext in order to make
its distribution independent of the circuit. Current approaches to sanitize a ci-
phertext include noise flooding [Gen09a], repeated bootstrapping [DS16], and
re-randomizing computation [BDPMW16, Klu22]. Note that all of these mech-
anisms apply to “exact” homomorphic encryption. In particular, there is no
formal treatment on circuit privacy for approximate homomorphic encryption
[CKKS17].

Multikey fully homomorphic encryption was first introduced in [LTV12], and
the related concept of threshold homomorphic encryption was introduced in
[BGG+18]. For the case of approximate arithmetic, [CDKS19] gave an efficient
construction for the multikey setting based on [CKKS17]. They propose to use
noise flooding for partially decrypting ciphertexts. However, there is no security
proof or even formal definition of what it means for such encryption scheme
to be secure aside of IND-CPA security that does not consider adversaries with
knowledge of partial decryptions. Mukherjee and Wichs [MW16] define a simula-
tor for partial decryptions in the setting of “exact” GSW [GSW13] encryption to
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capture the security properties needed to build multiparty computation proto-
cols. Note that such a definition often requires that the homomorphic encryption
scheme evaluates the exact circuit, as opposed to approximate. Unfortunately, it
is not clear whether we can use such definitions for approximate homomorphic
encryption.

2 Preliminaries

We denote an n dimensional column vector as [f(., i)]ni=1, where f(., i) defines
the i-th coordinate. For brevity, we will also denote as [n] the vector [i]ni=1.For
a random variable x ∈ Z we denote as Var(x) the variance of x, as stddev(x)
its standard deviation and as E(x) its expectation. By Ham(⃗a) we denote the
hamming weight of the vector a⃗, i.e., the number of non-zero coordinates of a⃗.

We say that an algorithm is PPT if it is a probabilistic polynomial-time
algorithm. We denote any polynomial as poly(.). We denote as negl(λ) a neg-
ligible function in λ ∈ N. That is, for any positive polynomial poly(.) there
exists c ∈ N such that for all λ ≥ c we have negl(λ) ≤ 1

poly(λ) . Given two dis-
tributions X, Y over a finite domain D, their statistical distance is defined as
∆(X,Y ) = 1

2

∑
v∈D |X(v)−Y (v)|. We say that two distributions are statistically

close if their statistical distance is negligible.
Usually, we assume that a probabilistic algorithm Alg(x) chooses its ran-

dom coins internally. However, sometimes we write Alg(x; r) to denote that the
random coins r $← U are used as a seed for Alg, and Alg(x; r) is deterministic.

2.1 Homomorphic Encryption

We review the definition of Homomorphic Encryption in the public key setting
with a particular focus on classical and (static) approximate correctness.

Definition 1 (Homomorphic Encryption). We define a homomorphic en-
cryption scheme HE for a class of circuits L as a tuple of four algorithms HE =
(KeyGen, Enc, Eval, Dec) with the following syntax.

KeyGen(λ)→ (pk, sk): Given a security parameter λ, returns a public key pk and
a secret key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext
ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: Given a public key pk, a circuit C ∈ L and ci-
phertexts ct1, . . . , ctk, returns a ciphertext ct.

Dec(sk, ct)→ m: Given a secret key sk and a ciphertext ct, returns a message
m.

We denote as M the message space, C the ciphertext space and L the class of
circuits.
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In this paper, we consider different notions of correctness. In particular, we
consider the classical correctness definition and approximate correctness that
was recently introduced in [LMSS22] to reason about approximate homomorphic
encryption schemes.

Definition 2 (Correctness). We say that a homomorphic encryption scheme
HE = (KeyGen, Enc, Eval, Dec) is correct if for all C ∈ L, all m1, . . . ,mk ∈M,
all (pk, sk) ← KeyGen(λ) and for all ct1, . . . , ctk such that mi = Dec(sk, cti) for
i ∈ [k], we have that

Pr[Dec(sk, Eval(pk, C, ct1, . . . , ctk)) 6= C(m1, . . . ,mk)] ≤ negl(λ).

Below we recall the definition of approximate correctness from [LMSS22].
First, however, we need to formally define the notion of a ciphertext error.

Definition 3 (Ciphertext Error). Let HE = (KeyGen, Enc, Eval, Dec) be an
homomorphic encryption scheme with message space M. Furthermore, let M
be a normed space with norm || · || :M 7→ R≥0. For all public/secret key pairs
(pk, sk)← KeyGen(λ), any ciphertext ct ∈ C and message m ∈M the ciphertext
error is defined as

Error(sk, ct,m) = ||Dec(sk, ct)−m||.

We can now introduce the approximate correctness notion for approximate
HE schemes.

Definition 4 (Approximate Correctness [LMSS22]). Let HE = (KeyGen,
Enc, Eval, Dec) be a homomorphic encryption scheme with message space M⊆
M̃ that is a normed space with norm || · || : M̃ 7→ R≥0. Let L be the class of
circuits, Lk ⊆ L be the subset of circuits with k input wires, and let Estimate :⊔

k∈N Lk × Rk
≥0 7→ R≥0 be an efficiently computable function. We call HE an

approximate homomorphic encryption scheme (w.r.t. Estimate) if for all k ∈ N,
for all C ∈ Lk, for all (pk, sk) ← KeyGen(λ), if ct1, . . . , ctk and m1, . . . ,mk are
such that Error(sk, cti,mi) ≤ ti, for some t1, . . . , tk ∈ R≥0, then

Error(sk, Eval(pk, C, ct1, . . . , ctk), C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

To compute Estimate, we only need the circuit C and upper bounds ti on
the ciphertext errors. This means that the function is publicly and efficiently
computable without needing a secret key.

To keep track of the errors when computing on encrypted data, we associate
a tag with every ciphertexts. In particular, we define a tagged ciphertext ct =
(. . . , t) where t ∈ R≥0 is an extension of an ordinary ciphertext that also stores
t, a provable upper bound estimate of the ciphertext error. The noise bound is
set to tfresh by Enc when a ciphertext ct is created. After that, the value of ct.t is
updated using Estimate every time that a circuit is homomorphically evaluated
on ct.

We also recall the definition of IND-CPA security for HE schemes.
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Definition 5 (IND-CPA security game). Let HE = (KeyGen, Enc, Eval, Dec)
be a homomorphic encryption scheme. We define the IND-CPA game as the
experiment ExpIND-CPA

b , where b ∈ {0, 1} is a bit and A is an adversary. The
experiment is defined as follow:

ExpIND-CPA
b [A](λ) : (pk, sk)← KeyGen(λ),

b′ ← AEb(pk,·,·)(pk),

return b′,

where the adversary has access to an encryption oracle Eb(pk, ·, ·) that takes as
input m0,m1 ∈M and returns Enc(pk,mb).

2.2 The CKKS Approximate HE Scheme

We recall the definition of the CKKS approximate HE scheme following the no-
tation used in [LMSS22]. A more detailed description of CKKS can be found in
[CKKS17].

Given N , a positive integer, let ΦN (X) =
∏

j∈Z∗
N
(X − ωj) be the N -th cy-

clotomic polynomial, where ω ∈ C is one of the principal N -th root of unity
and Z∗

N is the group of invertible integers modulo N and has order φ(N).
We denote by RQ the ring ZQ[X]/(ΦN (X)), where ZQ is the ring of inte-
gers modulo Q. We will omit Q when it is clear form the context. The CKKS
scheme is able to encrypt complex ciphertext by using the canonical embedding
τ : Q[X]/(ΦN (X)) → Cφ(N); this embedding is defined by sending the polyno-
mial a(X) in the tuple of its evaluations in the principal N -th complex roots of
unity, so in the tuple (a(ωj))j∈Z∗

N
. Moreover, the n = φ(N) complex values in

each image come in conjugate pairs (a(ωj), a(ωN−j)), so it is possible to obtain
a projection π to Cn/2 by considering only one of the two elements for every
complex pair. Using this function, vectors z ∈ Cn/2 are considered as messages
in CKKS. Complex messages are transformed to polynomials in R using the
inverses of π and φ on a scaled vector δ · z, for some scaling factor δ ∈ R such
that ‖δ · z‖ � Q and then by rounding the result to a polynomial in R. More in
detail, the functions that link vectors in Cn/2 to plaintext polynomials in R are

CKKS.Encode(z ∈ Cn/2, δ) = bδ · φ−1(π−1(z))e;
CKKS.Decode(a(X) ∈ R, δ) = π(φ(δ−1 · a(X))).

These two functions do not require the knowledge of any secret key nor public
key. In the main implementations of CKKS they are, respectively, included in
encryption and decryption but for theoretical analysis we will consider them
separately. This allow us to study express more clearly the error that arise from
the message encoding and to differentiate it from the other errors in this scheme.

Another useful tool to track the ciphertext error in CKKS is the norm induced
on R by the canonical embedding π ◦ φ. This norm is defined as ‖a‖can =
‖π ◦ φ(a)‖∞.
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We now give a broad description of the main algorithms in the CKKS scheme
that we still have not introduced. The parameters of the scheme are: the plaintext
polynomial ring R with ring dimension N typically chosen as a power of two, a
ciphertext modulo Q and a discrete Gaussian error χ with standard deviation
σ.
CKKS.KeyGen(λ): Given the security parameter λ choose p ∈ N and Q ∈ N,

the ring R and the noise distribution χ. Sample s ∈ RpQ by sampling each
coefficient uniformly from {−1, 0, 1} and set sk = s. Sample pk.a

$← RQ,
e

$← χ and compute pk.b = −as+ e. Then sample pk.a′
$← RQ, e′ $← χ and

compute pk.b′ = −a′s+ e+ s2.
CKKS.Enc(pk,m ∈ RQ): Choose r ∈ R such that every coefficient (chosen inde-

pendently) has probability 1/4 to be 1 and -1, and probability 1/2 to be 0.
Sample e0, e1 ← χ. Set ct.a = rpk.a + e1, ct.b = rpk.b + e2 +m and return
ct.

CKKS.Eval(pk, C, ct1, . . . , ctk) : The algorithm evaluates the arithmetic circuit
C by means of addition and multiplication:
CKKS.Add(pk, ct0, ct1 ∈ RQ): Set ct.a = ct0.a + ct1.a , ct.b = ct0.b + ct1.b

and return ct.
CKKS.Mul(pk, ct0, ct1 ∈ RQ): Set ct.b = ct0.b ·ct1.b+b(ct0.a ·ct1.a ·pk.b′)/pe,

and ct.a = ct0.a · ct1.b+ ct1.a · ct0.b+ b(ct0.a · ct1.a ·pk.a′)/pe. Return ct.
CKKS.Dec(sk, ct): Return ct.b+ ct.a · sk.

We also recall the basic expressions of noise growth during addition and
multiplication in CKKS.
Lemma 1 (Lemma 3 of [CKKS17]). Let cti = CKKS.Enc(pk,mi) for i ∈
{0, 1} and their ciphertext error be, respectively, Error(sk, cti,mi) = ei. The
ciphertext error of the sum of both ciphertexts is equal to e0+e1 and the ciphertext
error their product is equal to m0e1 +m1e0 + e0e1 + emult, where the term emult

depends on the parameters of the scheme and on the two ciphertexts ct0, ct1.
We now give a brief explanation on how the tagged ciphertext and the

Estimate function are handled by the algorithms of the CKKS scheme. CKKS.Enc
assigns to the returned ciphertext an upper bound of the ciphertext error for fresh
encryptions. CKKS.Add and CKKS.Mul follow the noise growth rules of Lemma 1
to assign to the returned ciphertext a noise estimate. More in general, when ho-
momorphic evaluating a circuit C in CKKS by computing Eval(pk, C, ct1, . . . ,
ctk), it is always possible to publicly compute the resulting noise estimate by
combining the two noise growth rules for sum and product using as an input
only the description of C and the noise estimates on the input ciphertexts.

2.3 Probability
A probability ensemble (Pθ)θ is a family of probability distributions parameter-
ized by a variable θ. The KL Divergence is a useful tool to handle probability
distributions. In particular, it gives us a way to understand how close (or far)
are two distributions from each other.
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Definition 6 (KL divergence). Let P and Q be two probability distributions
with common support X. The Kullback-Leibler Divergence between P and Q is
D(P||Q) :=

∑
x∈X Pr[P = x] ln

(
Pr[P=x]
Pr[Q=x]

)
.

Lemma 2 (Subadditivity of KL divergence for Joint Distributions,
Theorem 2.2 of [PW14]). If (X0,X1) and (Y0,Y1) are pairs of (possibly
dependent) random variables, then

D((X0,X1)||(Y0,Y1)) ≤ max
x

D((X1|x)||(Y1||x)) +D(X0,Y1)

Computing the advantages of adversaries from Subsection 4.3 and from Sub-
section 5.5 will require the following inequality about the total variation distance
between two Gaussian distributions.

Theorem 1 (Theorem 1.3 of [DMR18]). Let σ0, σ1 > 0. Then

∆(N (µ0, σ
2
0),N (µ1, σ

2
1)) ≥

1

200
min{1, 40|µ0 − µ1|

σ0
}.

2.4 KL Differential Privacy

In [LMSS22], Li et al. introduce the new notion of Norm Rényi Differential
Privacy by generalizing the notion of Rényi differential privacy [Mir17] to dif-
ferent norms. This innovative technique aims to address the primary technical
challenges encountered when applying differential privacy in environments with
arbitrary norms. Specifically, within the context of Differential Privacy, the
concept of ”adjacent” values is commonly assessed using the Hamming norm,
whereas Approximate HE revolves around Euclidean and Infinity norms. In this
paper, we will focus exclusively on the specific instance of this definition that
uses KL divergence.

Definition 7 (Norm KL Diff. Privacy, Definition 14 of [LMSS22]). For
t ∈ R≥0, let Mt : B → C be a family of randomized algorithms, where B is a
normed space with norm || · || : B → R≥0. Let ρ ∈ R be a privacy bound. We say
that the family Mt is ρ-KL differentially private (ρ-KLDP) if, for all x, x′ ∈ B
with ||x− x′|| ≤ t,

D(Mt(x)||Mt(x
′)) ≤ ρ.

Definition 8. Let ρ > 0 and n ∈ N. Define the (discrete) Gaussian Mechanism
Mt : Zn → Zn be the mechanism that, on input x ∈ Zn, outputs a sample from
NZn(x, t2

2ρIn).

Theorem 2. For any ρ > 0, n ∈ N, the Gaussian mechanism is ρ-KLDP.
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2.5 Bit security

One of the original motivations of this work was to extend the security analy-
sis beyond the use of statistical distance in the hope of providing tighter noise
bounds and improving the parameters. Using Rényi divergence when studying
decisional problems is an important technique introduced in [BLR+18], and that
has been proved useful in lattice-based cryptography to obtain a tighter secu-
rity analysis and to improve the parameters. Finally, we choose to analyze bit
security due to the technical synergies with KL divergence (Theorem 3) and KL
Differential Privacy (Theorem 4).

We briefly recall the notion of bit security from [MW18].

Definition 9 (Indistinguishability Game). Let {D0
θ} and {D1

θ} be two dis-
tributions ensembles. The indistinguishability game is defined as follows: the
challenger C chooses b← U({0, 1}). At any time after that, the adversary A may
send (adaptively chosen) query strings θi to C and obtain samples ci ← Db

θi
. The

goal of the adversary is to output b′ = b.

Definition 10 (Bit Security). For any adversary A playing an indistinguisha-
bility game G, we define its

output probability as αA = Pr[A 6=⊥] and its
conditional success probability as βA = Pr[b′ = b|A 6=⊥].

where the probabilities are taken over the randomness of the entire indistin-
guishability game (including the internal randomness of A). We also define A’s

conditional distinguishing advantage as δA = 2βA − 1 and
the advantage of A as advA = αA(δA)2.

The bit security of the indistinguishability game is minA log2
T (A)

advA
, where T (A)

is the running time of A.

We can use bit security on the indistinguishability game from Definition 5.

Definition 11 (IND-CPA-security). A homomorphic encryption scheme HE is
said to be λ-bit IND-CPA-secure if, for any adversary A in the IND-CPA security
game, we have that λ ≤ log2

T (A)

advA
, where advA is defined as in Definition 10.

Theorem 3. [Theorem 1 of [LMSS22]] Let GP be an indistinguishability game
with black-box access to a probability ensemble Pθ. If GPθ is k-bit secure, and
also maxθD(Pθ||Qθ) ≤ 2−k+1, then GQθ is (k − 8)-bit secure.

Theorem 4. [Lemma 5 of [LMSS22]] Let G be the indistinguishability game
instantiated with distribution ensembles {Xθ}θ and {Yθ}θ, where θ ∈ Θ. Let
q ∈ N. Then, for any (potentially computationally unbounded) adversary A
making at most q queries to its oracle, we have that

advA ≤ q

2
max
θ∈Θ

D(Xθ||Yθ).
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3 Defining Circuit Privacy for Approximate HE

In this section, we recall the (classic) simulation-based definition of circuit pri-
vacy introduced by Gentry [Gen09a]. Then we give our relaxed indistinguisha-
bility definition.

We start by stating Gentry’s [Gen09a] simulation-based definition below.

Definition 12 (Circuit Privacy). A homomorphic encryption scheme HE for
a class of circuits L is said to be circuit private if there exists a PPT simulator
Sim such that, for any ct1, . . . , ctk valid ciphertexts,

∆(Sim(pk,mout), Eval(pk, ct1, . . . , ctk, C)) ≤ negl(λ),

where C ∈ L, [mi ← Dec(sk, cti)]
k
i=1, mout ← C(m1, . . . ,mk) and (pk, sk) ←

KeyGen(λ).

Definition 12 gives us a very strong privacy guarantee. In particular, the sim-
ulator should produce a ciphertext that is statistically indistinguishable from the
homomorphic computation while obtaining only the outcome of an evaluation.
This means that the evaluation process reveals no information on the circuit aside
from the output of the circuit evaluation. On the other hand, as we discussed in
Section 2, homomorphic encryption for approximate arithmetic introduces errors
to the outcome of the evaluation. Consequently, the output of the computation
may depend somehow on the evaluated circuit. For instance, already the magni-
tude of the error reveals the size of the circuit or its topology. Finally, note that
the simulation definition implicitly induces a requirement that the homomorphic
computation is exact. In particular, using mout ← C(m1, . . . ,mk) to simulate a
ciphertext completely ignores the fact that the homomorphic evaluation is ap-
proximate, and that the resulting ciphertext ctres ← Eval(pk, ct1, . . . , ctk) is now
encrypting the message Dec(sk, ctres), that is different from mout. Unfortunately,
due to this correctness requirement, we cannot use such a definition to reason
about circuit privacy for approximate homomorphic encryption. This state of
affairs motivates us to state a relaxed definition of circuit privacy which is suffi-
cient for many applications and gives us a framework to analyze circuit privacy
in the case of approximate homomorphic encryption.

We give our definition below.

Definition 13 (Indistinguishability Circuit Privacy). Let HE = (KeyGen,
Enc, Eval, Dec) be a homomorphic encryption scheme for circuits in L. We define
the experiment ExpIND-CP

b [A], where b ∈ {0, 1} is a bit and A is an adversary.
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The experiment is defined as follow:

ExpIND-CP
b [A](λ) : r, r1, . . . , rn

$← U ,
m1, . . . ,mn, C0, C1, st← A(λ, r, r1, . . . , rn),
(sk, pk)← KeyGen(λ; r),

[cti ← Enc(pk,mi; ri)]
n
i=1,

ct← Eval(pk, Cb, ct1, . . . , ctn),

b′ ← A(st, ct),
return b′.

where C0, C1 ∈ L and C0(m1, . . . ,mn) = C1(m1, . . . ,mn). The scheme HE is said
to be λ-bit IND-CP-secure if, for any adversary A, we have that λ ≤ log2

T (A)

advA
,

where advA is defined as in Definition 10.

In this definition, the adversary receives the random coins used by the KeyGen
and the Enc algorithms. Therefore, sk,pk and the cti are honestly generated, and
the adversary can compute sk and pk.

4 Circuit Privacy in CKKS

In Subsection 4.1 we present a modification of the CKKS approximate homomor-
phic encryption scheme that satisfies indistinguishability circuit privacy as given
by Definition 13. In particular, we show that re-randomized CKKS ciphertexts
are circuit private when we apply an appropriate differential privacy mecha-
nism that floods the ciphertexts noise with an exponential Gaussian sample. In
Subsection 4.2 we show how to choose parameters for the differential privacy
mechanism for the class of circuits that consists of multivariate polynomials of
bounded degree. Finally, in Subsection 4.3, we show that the parameters are
tight. Namely, the Gaussian noise must be exponential in the security param-
eter, and a significantly lower noise parameter leads to an efficient adversary
against IND-CP-security.

4.1 IND-CP-secure CKKS

To get circuit privacy we modify the CKKS.Eval algorithm, which we describe
at Algorithm 1. The main idea is to post-process the ciphertext after evaluation.
Namely, we re-randomize the ciphertext with a freshly sampled encryption of
zero, and we apply a proper differential privacy mechanism.

Note that to run the discrete Gaussian mechanism we need to redefine the
Estimate algorithm such that it outputs an upper bound which depends on
a class of circuits instead of just the noise upper bound for a given circuit.
Concretely we estimate the noise tag as maxC∈L{Estimate(C, tfresh, . . . , tfresh)}
for a class of circuits L; we refer to this noise estimate as Tmax.
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Algorithm 1: The modified CKKS evaluation EvalL
Data: A public key pk, circuit C ∈ L, a vector of ciphertexts ct1, . . . , ctk.
begin

ct← Eval(pk, C, ct1, . . . , ctk) ;
ct.t← maxD∈L{Estimate(D, ct1.t, . . . , ctk.t)} ;
ct← ct+ Enc(pk, 0) ;
ct.b←Mct.t(ct.b) ;
return ct ;

Theorem 5. Let CKKS = (KeyGen, Enc, Eval, Dec) be the CKKS approximate
encryption scheme, with the normed plaintext space R and estimate function
Estimate. Let Mt be a ρ-KLDP mechanism on R where ρ ≤ 2−λ−7. Then, CKKS
with the modified EvalL given by Algorithm 1 is λ-bit secure in the IND-CP game
for the circuit space L.

Proof. We give a brief overview of the structure of the proof. First, we construct
a new (λ + 8)-bit secure indistinguishability game. After that, we consider the
output to any adversary’s query in this game and in the IND-CP game, and we
study the KL-divergence between them. In order to bound the KL-divergence, we
compute the difference of some entries in the outputs, upper-bound their norm,
and then use subadditivity (Lemma 2) and differential privacy (Definition 7).
Finally, once we have obtained a bound on the KL-divergence, we can link the
bit security of the two games and conclude the proof.

The full version of the proof is deferred to Appendix B.

Analysis of the post-processing noise. We give an analysis of the precision lost
when modifying the CKKS scheme as in Theorem 5. We instantiate the differen-
tial privacy mechanism from Definition 8 with ρ = 2−λ−7. Considering that the
static estimate ct.t is expressed in the infinity canonical norm and not in the eu-
clidean norm, we obtain that a Gaussian noise of standard deviation 8

√
n2λTmax

is added to each coordinate, where n is the dimension of the ring. We obtain
that the bits of precision lost are λ/2 + 3 + log2(Tmax) + log2(

√
n).

Parameters for Machine Learning Inference. Tables 1 gives parameters for one
of the most common applications of FHE which benefits from circuit privacy:
privacy-preserving machine learning inference on a model with depth d and width
w. For the base CKKS scheme, we consider parameters such as ring dimension
and ciphertext modulus from [MA18]. In particular, we set the ring dimension
to be smaller or equal to 215 and the standard deviation for fresh encryption
σfresh to be 3.2.

4.2 Managing and obtaining Tmax

In this section, we will show how to set the noise bound Tmax for the differential
privacy mechanism. Remind that the usual noise estimation algorithm estimates
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width
w = 1 w = 23 w = 25 w = 28

depth
d = 1 85.50 87.67 89.54 92.50

d = 2 97.08 100.99 104.63 110.51

d = 3 108.08 113.45 118.76 127.53

Table 1. Bits of additional Gaussian noise added in the modified CKKS of Theorem 5
to achieve 128-bits IND-CP-security. We use the estimates on Tmax from subsection 4.2
with message bound B = 210.

the noise based on the circuit, which is enough for IND-CPAD-security when
post-processing decryption as in [LMSS22]. To obtain circuit privacy, instead,
we estimate the noise as the maximum noise over all circuits in a given class of
circuits. In particular, we run Tmax := maxD∈L{Estimate(D, tfresh, . . . , tfresh)}.
Note that the estimation algorithm depends on the class of circuits; hence the
evaluation process may still leak some information on the computation, like the
multiplicative depth of the circuit. Below we show how to estimate the noise tag
for the class of multivariate polynomials of degree bounded by some d ∈ N.

Theorem 6. Let k, d ∈ N. Let C(x1, . . . , xk) be a multivariate polynomial of
degree smaller or equal to d. Let B ∈ N such that ‖mi‖can ≤ B for i ∈ [k], then

Estimate(sk,CKKS.Eval(pk, C, [cti]i∈[k]), C([mi]i∈[k])) = d

(
k + d

d

)
O(Bdtfresh)

where cti ← Enc(pk,mi) for i ∈ [k].

Proof. Deferred to Appendix C.

4.3 Tightness of the Differential Privacy Parameters

As shown by Theorem 5, the proposed modified version of CKKS achieves λ-
bit IND-CP-security by applying a differentially private mechanism on the out-
come of the evaluation algorithm. In practice, we instantiate the differential
privacy mechanism by the Gaussian mechanism with Gaussian noise of variance
σmax ← T 2

max

2ρ . Remind that ρ ≤ 2−λ−7 is the privacy bound for ρ-KL differential
privacy (Definition 7), and Tmax is the noise upper bound for the class of circuits.
We show that trying to use an appreciably smaller variance σs � σmax leads to
the existence of an adversary that wins the IND-CP game with a non-negligible
advantage. In other words, we show that the noise parameters are tight when us-
ing the Gaussian mechanism, and the added Gaussian noise must be exponential
in the security parameter.

Theorem 7. Let σs > 0. Let Evalσs

Ld
be the modified CKKS evaluation given

by Algorithm 1 but where the post-processing noise is sampled from the discrete
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Algorithm 2: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs

Ld
.

begin
r, r1

$← U ;
(sk, pk)← KeyGen(λ; r);
m,C0, C1 ← B, xd, xd +Bxd−1 −Bd;
ct← Enc(pk,m; r1);
ctres ← O

Eval
σs
Ld

(pk,·,·,ct)
(C0, C1);

e0 ← Dec(sk, Eval(C0, ct))−Bd;
e1 ← Dec(sk, Eval(C1, ct))−Bd;
eres ← Dec(sk, ctres)−Bd;
Choose i ∈ {0, . . . , n− 1} such that |e0,i − e1,i| is maximal;
If |eres,i − e0,i| ≤ |eres,i − e1,i| then return 0. Otherwise output 1;

Gaussian NZn(0, σ2
s T

2
maxIn). Then there exists an adversary A (Algorithm 2)

against CKKSσs

Ld
in the IND-CP-game such that advA = Ω( 1

σ2
s B

2t2fresh
), where B

is an upper bound on the messages norm modulus and tfresh is the noise tag
associated to freshly encrypted messages.

To prove Theorem 7 we need the following inequality that we can derive, for
this case, from Theorem 1.

Lemma 3 (Theorem 1.3 of [DMR18]). Let σ > 0. Then

∆(N (µ0, σ
2),N (µ1, σ

2)) ≥ 1

50

|µ0 − µ1|
σ

.

Again, to prove Theorem 7 we need the following lemma.

Lemma 4. Let d ∈ N. Let B be the plaintext modulus and ct ← Enc(pk, B),
then

Dec(sk, Eval(xd, ct))−Bd = dBd−1ct.e+ f

where ‖f‖can = O(Bd−1).

Proof. Deferred to Appendix D.

Proof (of Theorem 7). Deferred to Appendix E.

Theorem 8. If the CKKS scheme with the modified evaluation Evalσs

Ld
is λ-bit

IND-CP-secure, then σs = Ω(2λ/2/(B2t2fresh)). This implies that one must add at
least λ/2− log2 Ω̃(B2t2fresh) bits of additional Gaussian noise.

Proof. By using the definition of bit security, we know that λ ≤ log2O(T (A)

advA
) ≤

log2O(σ2
sB

2t2fresh); this immediately implies that σs ≥ 2λ/2/(B2t2fresh) and λ/2−
log2Ω(B2t2fresh) ≤ log2 σs.
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5 Threshold FHE and MPC

In Subsection 5.1, we give definitions for threshold homomorphic encryption
over approximate arithmetic. In Subsection 5.2, we analyze recent alternative
definitions for threshold homomorphic encryption in the exact setting and high-
light the risks that arise when considering new security definitions for these
schemes. In Subsection 5.3, we give definitions for multikey homomorphic en-
cryption over approximate arithmetic. In Subsection 5.4 we present a modifica-
tion of the MK-CKKS multikey homomorphic encryption scheme that satisfies the
indistinguishability security definition as given by Definition 21. In particular,
we show that re-randomized MK-CKKS ciphertexts and decryption shares does
not reveal information about messages and secret keys of non-corrupted parties
when we apply an appropriate differential privacy mechanism that floods them
with an exponential Gaussian sample. Finally, in Subsection 5.5, we show that
the parameters are tight. Namely, the Gaussian noise must be exponential in
the security parameter, and a significantly lower noise parameter leads to an
efficient adversary against IND-MKHE-security.

5.1 Threshold Homomorphic Encryption

We base our definition for threshold approximate homomorphic encryption on
the definition introduced by [BGG+18]. We have the same syntax and we have
the same indistinguishability definition as [BGG+18], but we redefine the cor-
rectness definition for the case of approximate arithmetic. Regarding the indistin-
guishability, we discuss in Remark 2 a slight strengthening of the definition that
lets us construct a meaningful circuit private homomorphic encryption scheme.

Recall that a monotone access structure A on [n] is a collection A ⊆ P([n]),
where P([n]) contains all subsets of [n], such that whenever we have sets B, C
satisfying B ∈ A and B ⊆ C ⊆ [n] then C ∈ A. The sets in A are called the
valid sets and the sets in P([n]) \ A are called invalid sets.A class of monotone
access structures is a collection S = (A1, . . . ,At) ⊆ P(P([n])) of monotone access
structures on [n]. A set S ⊆ [n] is a maximal invalid share set if S 6∈ A and for
every i ∈ [n] \ S we have that S ∪ {i} ∈ A.

Definition 14 (Threshold Homomorphic Encryption). Let d ∈ N and let
Ld be a class of circuits of multiplicative depth smaller or equal to d. A threshold
homomorphic encryption scheme THE on Ld is a tuple of five algorithms THE
= (KeyGen, Enc, Eval, PDec, Combine) with the following syntax.

KeyGen(λ, d, n,A)→ (pk, sk1, . . . , skn): Given a security parameter λ, the max-
imal multiplicative depth of evaluatable circuits d, the number of parties n,
and access structure A, returns a public key pk and n secret keys sk1, . . . , skn.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext
ct.

Eval(pk, C, ct1, . . . , ctk)→ ct: Given a public key pk, a circuit C ∈ Ld and ci-
phertexts ct1, . . . , ctk, returns a ciphertext ct.
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PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial
decryption µ.

Combine({µi}i∈S , ct)→ m: Given a set of partial decryptions {µi}i∈S where S ∈
A, and a ciphertext ct, returns a message m.

Definition 15 (Ind-secure THE). Let d, n ∈ N and let Ld be a class of circuits
of multiplicative depth smaller or equal to d. Let THE = (KeyGen, Enc, Eval,
PDec, Combine) be a threshold fully homomorphic encryption scheme for a class
of access structures S and circuits in Ld. We define the experiment ExpIND-THE

b [A],
where b ∈ {0, 1} is a bit and A is an adversary. The experiment is defined as
follows:

ExpIND-THE
b [A](λ) : A← A(λ, d, n, S),

(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,

(m
(0)
1 , . . . ,m

(0)
k ,m

(1)
1 , . . . ,m

(1)
k ), st← A([ski]i∈S),

[cti ← THE.Enc(pk,m
(b)
i )]ki=1,

b′ ← AEval(pk,·,ct1,...,ctk)(st, ct1, . . . , ctn),

return b′.

The Eval(pk, ·, ct1, . . . , ctk) oracle takes as input circuit in Ci ∈ Ld is such
that Ci(m

(0)
1 , . . . ,m

(0)
k ) = Ci(m

(1)
1 , . . . ,m

(1)
k ). The oracle computes and outputs

ctres ← Eval(pk, Ci, ct1, . . . , ctk) and µj ← PDec(skj , ctres) for all j ∈ [n].
The scheme THE is said to be λ-bit IND-THE-secure if, for any adversary A,

we have that λ ≤ log2
T (A)

advA
, where advA is defined as in Definition 10.

Remark 1 (Impact of our results on Exact Threshold HE). Our study originates
from the desire to analyze and formalize Threshold HE in the approximate set-
ting. However, it is noteworthy that our results also have implications for schemes
in the exact setting. The resemblance between these two scenarios becomes ev-
ident when considering the partial decryption phase. Due to the propagation
of noise within the scheme, partial decryption shares encapsulate information
about secret keys, messages encrypted by the parties, and the circuits that have
been evaluated. Even in the exact setting, these shares are frequently derived us-
ing a partial decryption algorithm that avoids rounding or other non-linear post
processing, resembling the behavior of decryption in the approximate setting,
preserving the error magnitude. Traditionally, the prevailing approach to miti-
gate information leakage from partial decryption shares involves the addition of
a substantial amount of noise. Hence, for Threshold Exact HE schemes where
the growth of evaluation noise follows a pattern similar to the CKKS scheme (as
observed in the majority of those based on BGV or BFV), our results can be
directly applicable. Our established bounds on the minimal and optimal amount
of noise to be added remain valid.
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5.2 Recent Threshold HE definitions and Rényi divergence

Several recent papers in the literature ([DWF22],[CSS+22],[BS23]) have em-
ployed Rényi divergence as a means to achieve Threshold FHE in the exact
setting. In these schemes the noise growth during evaluation follows a pattern
similar to the TFHE1/FHEW schemes. Consequently, our results are not directly
applicable. However, we emphasize some of the risks that arise when considering
new security definitions for Threshold HE.

Uninstantiability of the OW-CPA to IND-CPA Transform [HHK17, BS23].
In [BS23], the authors give a construction of an exact TFHE scheme based on
Rényi divergence, achieving One-Way-CPA (OW-CPA) security. Subsequently,
they apply a transform, adapted from [HHK17], to achieve a IND-CPA-like se-
curity definition in the random oracle model (ROM). We provide a simplify
overview of this transform.

Definition 16 (OW-CPA-security). Let HE = (KeyGen, Enc, Eval, Dec) be a
homomorphic encryption scheme with message space M. We define the experi-
ment ExpOW-CPA[A], where A is a PPT adversary, as follow:

ExpOW-CPA[A](λ) : (sk, pk)← KeyGen(λ),

m
$←M,

ct← Enc(pk,m),

m′ ← A(λ, ct),
return m′.

The scheme HE is said to be OW-CPA-secure if the advantage of every PPT
adversary A is negligible in λ.

Definition 17 (Transform 1 from [BS23], simplified). Let HE = (KeyGen, Enc,
Eval, Dec) be a homomorphic encryption scheme with message spaceM. We de-
fine the encryption scheme HE′ = (KeyGen, Enc′, Dec′). Let F : M → M be a
random oracle, then:

Enc′(pk,m ∈M) : Choose randomly x
$← M. Compute ct0 ← m + F(x) and

ct1 ← Enc(pk, x). Return (ct0, ct1).
Dec′(sk, (ct0, ct1)) : Compute x← Dec(sk, ct1) and m← ct0 + F(x). Return m.

In [HHK17] (Theorem 3.7) there is a proof in the ROM model demonstrating
that any public encryption scheme achieving OW-CPA security can be shown to
be IND-CPA-secure after applying the transform from Definition 17. However, we
argue that this theorem, while seemingly valid in the ROM model, does not hold
in the plain model, especially when applied to FHE schemes. In fact, whenever
we replace the random oracle F with any hash function H, we can prove that the
1 Here, ”T” stands for ”Torus”, not ”Threshold”.
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resulting scheme is not IND-CPA-secure if the original scheme was not already
IND-CPA-secure.

The high-level idea behind this argument is that, since H has a circuit rep-
resentation (unlike F), we can derive an encryption of a message m under the
original FHE scheme from an encryption of m under the modified scheme. In par-
ticular, given Enc′(m) = (ct0, ct1), we can compute Eval(pk, ct0 + H(·), ct1) =
Enc(pk, ct0 + H(x)) = Enc(pk,m). This implies that an IND-CPA adversary
against the old FHE scheme is also effective against the new one, since we can use
the distinguisher on the FHE ciphertext of m. Note that we abuse notation here
for simplicity, denoting a ciphertext output by Eval as “equal” to a ciphertext
output by Enc.

Similar conflicts between ROM and FHE can be found in the uninstantiability
result ([GKW17], Theorem 7.1) regarding Fujisaki-Okamoto transform [FO99],
as well as in the uninstantiability [WZ17] of Black, Rogaway, Shrimpton trans-
form [BRS03].

For a more extensive and formal treatment on the transform used in [BS23],
refer to Appendix F.

Alternative Security Definition for Threshold HE. Now, let us shift
our focus to alternative security definitions recently proposed for Threshold HE
schemes in the exact setting. The substitution of statistical distance with Rényi
divergence has led to a reduction in the amount of noise utilized in newly pro-
posed Threshold HE schemes, resulting in improved parameters. Unfortunately,
the most commonly used security definitions for Threshold schemes require sta-
tistical simulations that cannot be accomplished using these techniques. Both
[CSS+22] and [DWF22] introduce new security definitions tailored to their re-
spective schemes. Nevertheless, we raise questions about the effectiveness of these
definitions in accurately characterizing the security of a Threshold HE scheme.

The security definition proposed in [CSS+22] focuses solely on the security of
the secret keys of the parties and does not account for the messages encrypted by
the non-corrupted parties. In fact, during the so-called ”Challenge phase”, there
is only a test of the IND-CPA security of the underlying HE scheme (THE.Enc)
after multiple iterations of the THE scheme in the partial decryption query phase.
To highlight the unsuitability of this definition for applications in Threshold HE,
the paper [BS23] provides, as a counterexample, an obviously insecure scheme
that satisfies this security definition. After the first version of our work, the
paper [CSS+22] was updated with a different security definition that resembles
the one we use in our paper (Definition 15).

Similarly, the security definition proposed in [DWF22] focuses on the indis-
tinguishability of initial ciphertexts after a single iteration of the THE scheme.
However, this alone is not enough to guarantee the safety of the underlying en-
crypted message. Instead, it only indirectly ensures the protection of the secret
keys of non-corrupted parties.

We defer a more extensive and formal discussion on recently proposed Thresh-
old HE definitions to Appendix G.
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5.3 Multikey Homomorphic Encryption

There are many flavors of multikey homomorphic encryption in the literature.
Most of the definitions differ in syntax, but the overall concept is same. The main
differences between a multikey homomorphic encryption scheme and threshold
homomorphic encryption schemes are (1) in MKHE the secret keys are generated
by each user separately instead of by a single setup, (2) messages are encrypted
with public keys of each user instead of a master public key. Consequently, the
evaluation algorithm in MKHE “combines” ciphertexts with respect to different
public keys into one ciphertext, whereas in threshold HE the ciphertext is already
combined. Finally, (3) the decryption process in MKHE is a special case of
threshold HE where all secret keys are needed to decrypt the message.

Both primitives however, share the same interface for decryption. In particu-
lar, both primitives define a partial decryption algorithm PDec. Furthermore, to
the best of our knowledge, all current realizations of these primitives use a flavor
of noise flooding to realize PDec. Hence it makes sense in our paper to inves-
tigate multikey homomorphic encryption together with threshold homomorphic
encryption.

Below we give the syntax for multikey homomorphic encryption.

Definition 18 (Multikey Homomorphic Encryption). Let d ∈ N and let
Ld be a class of circuits of multiplicative depth smaller or equal to d. A multikey
homomorphic encryption scheme MKHE on Ld is a tuple of five algorithms MKHE
= (KeyGen, Enc, Eval, PDec, Combine) with the following syntax.

KeyGen(λ, d)→ (pk, sk): Given a security parameter λ, the maximal multiplica-
tive depth of evaluatable circuits d, the algorithm returns a public key pk and
s secret key sk.

Enc(pk,m)→ ct: Given a public key pk and a message m, the algorithm returns
a ciphertext ct.

Eval(pk1, . . . , pkn, C, ct1, . . . , ctn)→ ct: Given a list of public keys pk1, . . . , pkn,
a circuit C ∈ Ld and ciphertexts ct1, . . . , ctn, returns a ciphertext ct.

PDec(ski, ct)→ µ: Given a secret key ski and a ciphertext ct, returns a partial
decryption µ.

Combine({µi}i∈[n], ct)→ m: Given a set of partial decryptions {µi}i∈[n] and a
ciphertext ct, returns a message m.

Definition 19 (Multikey Ciphertext Error). Let MKHE = (KeyGen, Enc,
Eval, PDec, Combine) be a multikey homomorphic encryption scheme with mes-
sage spaceM. Furthermore, letM be a normed space with norm ||·|| :M 7→ R≥0.
For all public/secret key pairs (pki, ski)← KeyGen(λ) where i ∈ [n], any cipher-
text ct in the image of Eval and message m ∈M the ciphertext error is defined
as

Error(sk1, . . . , skn, ct,m) = ||Combine([PDec(ski, ct)]i∈[n])−m||.

Below we give our definition of approximate correctness for multikey homo-
morphic encryption. Definition 21 gives our definition for indistinguishability
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security of multikey homomorphic encryption. Remind that this is the first se-
curity definition for multikey approximate homomorphic encryption that gives
the adversary access to partial decryptions. Previously [CDKS19], only stan-
dard semantic security was considered, and security in the presence of partial
decryptions were omitted.

Definition 20 (Approximate Correctness). Let us define MKHE = (KeyGen,
Enc, Eval, PDec, Combine) to be a multikey homomorphic encryption scheme
with message spaceM⊆ M̃ that is a normed space with norm || · || : M̃ 7→ R≥0.
Let L be the class of circuits, Lk ⊆ L be the subset of circuits with k input wires,
and let Estimate :

⊔
k∈N Lk×Rk

≥0 7→ R≥0 be an efficiently computable function.
We call HE an approximate homomorphic encryption scheme if for all k ∈ N,
for all C ∈ Lk, for all (pk, sk) ← KeyGen(λ), if ct1, . . . , ctk and m1, . . . ,mk are
such that Error(ski, cti,mi) ≤ ti, for some t1, . . . , tk ∈ R≥0, and ct← Eval(pk1,
. . . , pkk, C, ct1, . . . , ctk), then

Error(sk1, . . . , skk, ct, C(m1, . . . ,mk)) ≤ Estimate(C, t1, . . . , tk).

Definition 21 (Ind-secure MKHE). Let d ∈ N and let Ld be a class of
circuits of multiplicative depth smaller or equal to d. Let MKHE = (KeyGen,
Enc, Eval, PDec, Combine) be a multikey homomorphic encryption scheme for a
class circuits in Ld. We define the experiment ExpIND-MKHE

b [A], where b ∈ {0, 1}
is a bit and A is an adversary. The experiment is defined as follows:

ExpIND-MKHE
b [A](λ) :

[r′i
$← U ]i∈[n],

[(ski, pki)← KeyGen(λ, d, r′i)]i∈[n],

i∗, st1 ← A(pk1, . . . , pkn),

[ri
$← U ]i∈[n],

(m
(0)
1 , . . . ,m(0)

n ,m
(1)
1 , . . . ,m(1)

n ), st2 ← A(st1, [ri, r′i]i∈[n]\{i∗}),

[cti ← MKHE.Enc(pki,m
(b)
i , ri)]i∈[n],

b′ ← AEval({pki}i∈[n],·,ct1,...,ctn)(st2, cti∗),

return b′.

The Eval({pki}i∈[n], ·, ct1, . . . , ctn) oracle takes as input a circuit Ci ∈ Ld

such that Ci(m
(0)
1 , . . . ,m

(0)
n ) = Ci(m

(1)
1 , . . . ,m

(1)
n ). The oracle computes and

outputs ctres ← Eval({pki}i∈[n], Ci, ct1, . . . , ctn) and µj ← PDec(skj , ctres) for all
j ∈ [n].

The scheme MKHE is said to be λ-bit IND-MKHE-secure if, for any adversary
A, we have that λ ≤ log2

T (A)

advA
, where advA is defined as in Definition 10.

An important question when stating a new security definition is whether the
definition is meaningful in any way. Intuitively it seems that our definition cap-
tures what we would expect from the multikey HE. In particular, the adversary
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should not be able to distinguish encryptions even when given all secret keys
except one, and given partial decryptions on evaluated ciphertexts. To give a
more formal argument we show a multikey homomorphic encryption scheme for
two keys gives us a homomorphic encryption scheme with circuit privacy.

Theorem 9. Let MKHE be a IND-MKHE-secure multikey homomorphic encryp-
tion scheme for n = 2 parties. We can build a homomorphic encryption scheme
HE that is IND-CP-secure.

Proof. Let MKHE be a multikey homomorphic encryption for n = 2 keys. We
build the HE encryption as follows. The KeyGen and Enc algorithms are the same
as in MKHE. We denote the keys output by the KeyGen algorithm as (sk1, pk1).
The evaluation algorithm HE.Eval on input ct1 ← MKHE.Enc(pk1,m) first sam-
ples (pk2, sk2)← KeyGen(λ, d), encrypts the circuit C as ct2 ← Enc(pk2, C), and
evaluates ct← MKHE.Eval((pk1, pk2), U, ct1, ct2), where U is a circuit that takes
as input a message x and another circuit F and outputs F (x). Finally, the eval
algorithm outputs ct and µ2 ← PDec(sk2, ct).

The decryption algorithm HE.Dec runs ct ← MKHE.Eval((pk1, pk2), U , ct1,
ct2), µ1 ← PDec(sk1, ct), and m′ ← Combine({µi}i∈[n], ct). Note that from ap-
proximate correctness of MKHE we have that m′ is close to C(m), what implies
that the HE is approximately correct.

Now we proceed to show circuit privacy. We construct a solver S that uses
an adversary A against IND-CP of HE to break IND-MKHE. The solver S obtains
pk1, pk2 from the IND-MKHE challenger, and sends i∗ = 2 back. The solver S ob-
tains r1 and r′1 and passes both to the adversary. A responds with (m1, . . . ,mk)
and C0 and C1, and sends (m1, . . . ,mk, C0) and (m1, . . . ,mk, C1) to the MKHE
challenger. Consequently, S obtains ct1 and ct2, and queries the Eval oracle on
the U circuit and both ciphertexts. Denote the response of the oracle as µ2. The
solver returns µ2 and ct← Eval(pk1, pk2, U, ct1, . . . , ctn) to A. If A returns a bit
b′ the solver outputs it as its solution to the IND-MKHE experiment.

Note that S perfectly follows the IND-MKHE experiment. In particular, we
set (m

(b)
1 ,m

(b)
2 ) = (m1, . . . ,mk, Cb). Note that we set m

(b)
1 = (m1, . . . ,mk)

and m
(b)
2 = Cb. From the requirement on C0 and C1 imposed by the IND-CP

definition we have that C0(m1, . . . ,mk) = C1(m1, . . . ,mk), and what follows
U(C0,m1, . . . ,mk) = U(C1,m1, . . . ,mk) as required by the IND-MKHE experi-
ment. To summarize, we have that the simulator S has advantage advIND-CP[A](λ)
in returning the b′ such that b′ = b and also has a running time that is similar
to the running time of A.

Remark 2 (On threshold homomorphic encryption and circuit privacy). Remind
that we proved that multikey homomorphic encryption for two keys already
gives us homomorphic encryption with indistinguishability circuit privacy. Note
that the definition of threshold homomorphic encryption doesn’t let itself use
to build circuit privacy so easily. The reasons for this are that the common key
generation algorithm in Definition 14 returns just one public key and all secret
keys, and we cannot give the random seed to the adversary to generate its own
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keys honestly. Similarly, we would need to redefine the IND-THE experiment
and encrypt part of the messages using honestly sampled seeds that are then
passed to the adversary. Note that this modification strengthens the security
notion. However, we are still unable to provide a seed for the key generation
algorithm since IND-THE would be trivially broken. In this case, we would need
to introduce a relaxation of our indistinguishability circuit privacy definition
such that the adversary is given a secret key instead of a seed.

5.4 Achieving IND-MKHE-security for MK-CKKS

In this subsection we analyze the scheme MK-CKKS from [CDKS19] and show
how to modify it to achieve IND-MKHE-security. We stress that this construc-
tion can also be adapted to other MKHE schemes that share similarities with
MK-CKKS. In particular, the relevant properties we use are: the linearity of the
Combine algorithm and the structure of extended ciphertext in Rk, where all
elements except one are uniform random in fresh encryptions. We present the
algorithms of MK-CKKS, but we refer the reader to the original paper [CDKS19]
for a complete description.

MK-CKKS.Setup(λ): Given the security parameter λ, set n ∈ N and Q ∈ N, the
ring R := Rn

Q, the key distribution χ and the noise distribution ψ. Sample
a

$←Rn
Q uniformly. Return pp = (n,Q, χ, ψ, a).

MK-CKKS.KeyGen(pp): Sample s ← χ. Sample an error e ← ψ and compute
b = −sa+ e. Return ((b, a), s) as (pk, sk).

MK-CKKS.Enc(pk,m ∈ RQ): Sample v ← χ and e0, e1 ← ψ. Denoting pk =
(b, a), then compute c0 = vb0+m+e0 and c1 = va0+e1. Return (c0, c1) ∈ R2.

MK-CKKS.Eval({pki}i∈[k], C, ct1, . . . , ctk) : For given ciphertexts cti ∈ Rki+1,
we denote k ≥ maxi∈[k]{ki} the number of parties involved in at least one
of the cti. Rearrange the entries of each cti and pad zeroes in empty en-
tries to generate some ciphertexts ct

∗
i sharing the same secret key sk =

(1, sk1, . . . , skk). Then, the algorithm evaluates the arithmetic circuit C by
means of addition and multiplication:
CKKS.Add(ct0, ct1 ∈ Rk+1): Return the entry-by-entry addition ct0 + ct1.
CKKS.Mul({pki}i∈[k], ct0, ct1 ∈ Rk+1): Compute ct = ct1 ⊗ ct2 and return

the ciphertext ct
′ ← Relin(ct, {pki}i∈[k]). The Relin algorithm returns

a ciphertext ct ∈ Rk+1 encrypting m0m1 with an error that follows the
noise growth law of Lemma 5.

MK-CKKS.PDec(sk, ct ∈ Rk+1): Call ct.ai the component of ct associated to the
secret key sk. Return µ = sk · ct.ai. 2

MK-CKKS.Combine({µi}i∈[k], ct ∈ Rk+1): Return m = ct.b+
∑k

i=1 µi.

2 In the original scheme, the partial decryption algorithm already added a smudging
noise esm ← ϕ. Since ϕ is not described in detail, we decided not to include it here
so as to simplify the exposition of PDec in Algorithm 4.
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The estimate function of MK-CKKS is handled similarly to CKKS but with the
noise growth rule of Lemma 5.

To simplify the notation, from now on, we are going to refer to the entries
of a ciphertext ct ∈ Rk+1 as (ct.b, ct.a1, . . . , ct.ak). Also, when writing ct.a, we
will be referring to (ct.a1, . . . , ct.ak). We now show how to modify the Eval and
the PDec algorithm in MK-CKKS to achieve IND-MKHE-security. The main idea
behind Eval′ is to re-randomize the ciphertext by adding a fresh encryption
of zero for each public key pk associated to ct and then to post-process the
component ct.b using an appropriate differential privacy mechanism MT .

Algorithm 3: The modified evaluation MK-CKKS.Eval′
Data: A set of public keys {pki}i∈[k], circuit C ∈ L, a vector of ciphertexts

ct1 ∈ Rk+1, . . . , ctN ∈ Rk+1.
begin

ctres ← Eval({pki}i∈[k], C, ct1, . . . , ctk) ;
For i = 1 to k: ctres ← ctres + Enc(pki, 0) ;
T ← ctres.t+ tfresh ;
ctres.b←MT (ctres.b);
return ctres ;

Algorithm 4: The modified partial decryption MK-CKKS.PDec′

Data: A secret key sk, a ciphertext ct ∈ Rk+1.
begin

µ←Mct.t(PDec(sk, ct)) ;
return µ ;

Theorem 10. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be
the MK-CKKS multikey homomorphic encryption scheme, with plaintext space
R and estimate function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism
on R where ρ ≤ 2−λ−8/q. If MK-CKKS.Enc is (λ+8)-bit secure in the IND-CPA
game, then MK-CKKS with the modified MK-CKKS.Eval′ given by Algorithm 3
and with the modified MK-CKKS.PDec′ given by Algorithm 4 is λ-bit secure in
the IND-MKHE game where q is the maximum amount of oracle queries by the
adversary.

Proof. The high-level idea is as in Theorem 5. The main difference between the
two proofs is the structure of the game G1 that has not only to protect the
message choice b but also to guarantee the protection of ski∗ . Also, the output of
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the adversary’s queries is not a rLWE ciphertext anymore but it is a couple made
by an extended rLWE ciphertext and a partial decryption share. This makes the
tasks of upper-bounding the KL-divergence somewhat harder.

The full version of the proof is deferred to Appendix H

Analysis of the post-processing noise. We give an analysis of the lost precision
when modifying the MK-CKKS scheme as in Theorem 10. We instantiate the
differential privacy mechanism from Definition 8 and ρ = 2−λ−8/q. Considering
the output of the Combine algorithm and that ct.t is expressed in the canonical
infinity norm and not in the euclidean norm, we obtain that a Gaussian noise
of standard deviation 27/2

√
qn2λ(ct.t + ktfresh) and (k − 1) Gaussian noises of

standard deviation 27/2
√
qn2λct.t are added to each coordinate. The additional

bits of precision lost are approximately λ/2+ log2
√
q+ log2

√
n+7/2+ log2 k+

log2 tfresh.

Parameters for MK-CKKS. Table 2 gives parameters for instantiating MK-CKKS
with k parties and with a bound on the maximum number of queries of q. For
the base CKKS scheme, we consider parameters such as ring dimension and
ciphertext modulus from [MA18]. In particular, we set the ring dimension to be
smaller or equal to 215 and the standard deviation for fresh encryption σfresh to
be 3.2.

Number of Parties
k = 2 k = 22 k = 23 k = 25

Max Queries
q = 1 81.13 82.13 83.13 85.13

q = 25 83.64 84.64 85.64 87.64

q = 210 86.14 87.14 88.14 90.14

Table 2. Bits of additional Gaussian noise added in the modified MK-CKKS of Theo-
rem 10 to achieve 128-bits of IND-MKHE-security.

5.5 Tightness of the Differential Privacy Parameters

By Theorem 10, it is possible to achieve λ bits of IND-MKHE-security by post-
processing the outputs from Eval and PDec with a differentially private algo-
rithm. Concretely we choose the Gaussian mechanism with Gaussian noise of
variance σmax ← ct.t2

2ρ , where ρ ≤ 2−λ−8/q is the privacy bound for ρ-KL differ-
ential privacy (Definition 7). We show that, using an appreciably smaller vari-
ance σs � σmax, leads to the existence of an adversary that wins the IND-MKHE
schemes with a non-negligible probability. In other words, we show that the
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noise parameters are tight when using the Gaussian mechanism, and the added
Gaussian noise must be exponential in the security parameter.

The adversary that we construct exploits the noise growth in the Eval algo-
rithm. This noise growth follows the rules of the following lemma.
Lemma 5 (Appendix C.3 of [CDKS19]). Let cti = MK-CKKS.Enc(pk,mi)
for i ∈ {0, 1} and their ciphertext error be, respectively, Error(sk, cti,mi) = ei.
The ciphertext error of the sum of both ciphertexts is equal to e0 + e1 and the
ciphertext error of their product is equal to m0e1 + m1e0 + e0e1 + emult + elin,
where the term emult depends on the parameters of the scheme and on the two
ciphertexts.

Algorithm 5: Adversary A(λ).
Data: A security parameter λ. The adversary has oracle access to Evalσs .
begin

pp← Setup(λ, d);
[r′i

$← U ] ;
[(ski, pki)← KeyGen(pp, r′i)]i∈[2];
i∗ ← 1;
[ri

$← U ]i∈[2];
(m

(0)
1 ,m

(0)
2 ), (m

(1)
1 ,m

(1)
2 )← (0, B), (B,B) ;

C ← x1 · x2 −B · x1 ;
ct← Enc(pk1,m

(b)
1 , r1);

c̃t← Enc(pk2,m
(b)
2 , r2);

ẽ← Dec(sk2, ct2)−B ;
ctres, µ1, µ2 ← OEvalσs ({pki}i∈[2], C, ct, c̃t) ;
eres ← Combine(µ1, PDec(sk2, ctres), ctres) ;
Choose I ∈ {0, . . . , n− 1} such that |ẽI | is maximal ;
If |eres,I −BẽI | ≥ |eres,I | then return 0. Otherwise output 1 ;

Theorem 11. Let σs > 0. Let Evalσs and PDecσs be the modified MK-CKKS
algorithms we presented as Algorithm 3 and as Algorithm 4 but where the
post-processing noise are sampled from NZn(0, σ2

s ct.t
2In). Let σ be the stan-

dard deviation of the underlying rLWE error. Then there exists an adversary
A (Algorithm 5)against MK-CKKSσs in the IND-MKHE-security game such that
advA = Ω

(
1

σ2
s σ

2n3

)
.

Proof. Deferred to Appendix I.

Theorem 12. If the scheme MK-CKKS with the modified evaluation Evalσs

and the modified partial decryption PDecσs is λ-bit IND-MKHE-secure, then σs =
Ω(2λ/2/σn3/2), i.e. one must add at least λ/2 − Ω̃(σn3/2) bits of additional
Gaussian noise.
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Proof. By using the definition of bit security, we know that λ ≤ log2O(T (A)

advA
) ≤

log2O(σ2
sσ

2n3). This means that σs ≥ 2λ/2/(σn3/2) and λ/2− log2Ω(σn3/2) ≤
log2 σs.

6 Conclusion and Open Problems

In this paper, we introduced formal models for the study of circuit privacy in the
FHE approximate setting. We included the first security analysis for approximate
multikey homomorphic encryption and approximate threshold homomorphic en-
cryption that considers the knowledge of partial decryptions.

We presented a modified version of the CKKS scheme (Theorem 5) that is
able to achieve λ-bit IND-CP-security by post-processing the ciphertext with
λ/2+ Õ(1) bits of noise. Additionally, we modified the MK-CKKS scheme (The-
orem 10) to achieve λ-bit IND-MKHE-security. We did this by post-processing
the ciphertext and the decryption shares with λ/2+Õ(1) bits of noise. We proved
that these bounds are essentially tight by providing adversaries for when only
λ/2− Ω̃(1) bits of noise are added.
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man Ministry for Education and Research through funding for the project CISPA-
Stanford Center for Cybersecurity (Funding number: 16KIS0927).
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A Improving parameters with Relaxed Bit Security

In [LMSS22], Li et al. introduced a relaxation of the bit security definition and
showed how relaxed IND-CPAD can be achieved in approximate HE schemes with
less demanding amounts of noise.

Informally, a primitive is (c, s)-bit secure if, for any adversary A, either A
has less than 2−s statistical advantage, or the running time of the attack is at
least 2c times greater than the advantage achieved.

We recall the formal definition of Relaxed Bit Security.

Definition 22 (Relaxed Bit Security, Definition 19 of [LMSS22]). Let
G be an indistinguishability game. Let advA be the advantage of an adversary A
against G, as in Definition 10. We say that the indistinguishability game G is
(c, s)-bit secure if, for any adversary A, either

log2
T (A)
advA

≥ c or log2
1

advA
≥ s.

This definition expresses two different security parameters: a computational
one (c) and a statistical one (s). When choosing s < c, the notion of security
becomes more permissive than standard bit security (Definition 10); however,
this relaxation and the additional allowed statistical attacks can be accurately
described and analyzed.

When using statistical techniques on a computational primitive, this finer
grained definition allows to tailor the desired achieved security depending on
the application. In our case, to achieve (c, s)-bits of IND-MKHE-security, the
amount of added noise depends on the statistical parameter s and not on the
computational parameter c. This allows us to decrease the cost of our post-
processing phase in Algorithm 3 and 4, saving around (c− s)/2 bits of Gaussian
noise.

Theorem 13. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be
the MK-CKKS multikey homomorphic encryption scheme, with plaintext space
R and estimate function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism
on R. If MK-CKKS.Enc is λ-bit secure in the IND-CPA game, then MK-CKKS
with the modified MK-CKKS.Eval′ given by Algorithm 3 and with the modified
MK-CKKS.PDec′ given by Algorithm 4 is (λ−log2 24, log2(1/ρ)−log2 q−log2 24)-
bit secure in the IND-MKHE game where q is the maximum amount of oracle
queries by the adversary.

Proof. The proof in ([LMSS22], Appendix F) can be easily adapted to this the-
orem just by considering, as games G0 and G1, the games that we used in the
proof of Theorem 10.

Parameters for MK-CKKS with relaxed bit security. We provide concrete pa-
rameters for instantiating MK-CKKS with k parties and a statistical security
parameter λs. For the base CKKS scheme, we consider parameters such as ring
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dimension and ciphertext modulus from [MA18]. In particular, we set the ring
dimension to be smaller or equal to 215 and the standard deviation for fresh
encryption σfresh to be 3.2.

@
@@λs

k
2 22 23 25

128 86.14 87.14 88.14 90.14

112 78.14 79.14 80.14 82.14

96 70.14 71.14 72.14 74.14

80 62.14 63.14 64.14 66.14

Table 3. Bits of additional Gaussian noise added in the modified MK-CKKS of Theo-
rem 10 to achieve (128,λs)-bits of IND-MKHE-security, with a bound on the maximum
number of queries of 210.

The choice of the appropriate statistical security parameter strongly depends
from the desired application and we refer to ([LMSS22], Subsections 4.4 and 4.5)
for a more in-depth discussion on parameters choice and on Definition 22.

B Proof of Theorem 5

Theorem 5. Let CKKS = (KeyGen, Enc, Eval, Dec) be the CKKS approximate
encryption scheme, with the normed plaintext space R and estimate function
Estimate. Let Mt be a ρ-KLDP mechanism on R where ρ ≤ 2−λ−7. Then, CKKS
with the modified EvalL given by Algorithm 1 is λ-bit secure in the IND-CP game
for the circuit space L.

Proof. We start by describing the two indistinguishability games.

1. G0: the CKKS scheme with the evaluation algorithm given by Algorithm 1
in the IND-CP game with circuit space L.

2. G1: the original CKKS scheme in a variant of the IND-CP game where the
challenger returns a fresh noiseless encryption (that we denote as Encn) of
the result mres = C0(m1, . . . ,mk) = C1(m1, . . . ,mk). Furthermore, ct.b is
post-processed with a differential privacy mechanism that uses the same
noise tag obtained in the game G0. More formally, we consider the following
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experiment:

ExpG1

b [A](λ) : r $← U ,
(sk, pk)← KeyGen(λ; r),

m1, . . . ,mk, C0, C1, st← A(λ; r),
mres ← C0(m1, . . . ,mn),

ct← Encn(pk,mres),

ct.t← max
D∈L
{Estimate(D, tfresh, . . . , tfresh)}+ tfresh,

ct← (ct.a,Mct.t(ct.b)),

b′ ← A(st, ct),
return b′.

We want to compare these two games and, in particular, analyze the cipher-
text the adversary receives from the challenger in each game. In G0, the cipher-
text is obtained by actually homomorphically evaluating the chosen circuit and
then by post-processing it with the re-randomization and with a differential pri-
vacy mechanism on the second component. In G1, the ciphertext is simulated
by encrypting the plaintext result of the evaluation, without performing any ho-
momorphic evaluation. We will refer to the ciphertexts returned by G0 and G1,
respectively, as ct0 and ct1.

While assuming that ct0.a = ct1.a = a, we compute the norm of the difference
between ct0.b and ct1.b, which are the first components of the ciphertexts before
applying the differential privacy mechanism.

‖ct0.b− ct1.b‖ = ‖(ct0.b+ a · sk)− (ct1.b+ a · sk)‖
= ‖(m+ e0)− (m)‖ = ‖e0‖,

where e0 is the real error of the ciphertext ct0. By definition of approximate
correctness of CKKS we know that the error e0 is smaller than the ciphertext
noise tag ct0.t. Therefore,

‖ct0.b− ct1.b‖ = ‖e0‖ ≤ ct.t

Since we were able to bound ‖ct0.b−ct1.b‖ with ct.t we can now use Definition 7
to bound their KL divergence after post-processing

D ((Mct.t(ct0.b)|ct0.a = a) || (Mct.t(ct1.b)|ct1.a = a)) ≤ ρ.

We now use Lemma 2 to obtain the following inequality.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a)

≤ max
a

D(Mct.t(ct0.b)|ct0.a = a||Mct.t(ct1.b)|ct1.a = a) +D(ct0.a||ct1.a).

It is easy to show that ct0.a is uniform random in R because we re-randomized
it by adding Enc(pk, 0) to ct. Also ct1.a is uniform random in R because it is ob-
tained as a fresh encryption. This implies that the KL divergenceD(ct0.a||ct1.a) =
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0. We have already shown that ρ is an upper bound for the remaining term, for
every a. This means that the upper bound can be rewritten as follows.

D(Mct.t(ct0.b), ct0.a||Mct.t(ct1.b), ct1.a) ≤ ρ.

Then, since the KL-divergence between these two indistinguishability games
is smaller than a fixed value ρ and provided that ρ/2 ≤ 2−λ−8, we can use
Theorem 4 to relate the bit security of G0 with the bit security of G1 and we
obtain that G0 is λ-bit IND-CP-secure.

C Proof of Theorem 6

Theorem 6. Let k, d ∈ N. Let C(x1, . . . , xk) be a multivariate polynomial of
degree smaller or equal to d. Let B ∈ N such that ‖mi‖can ≤ B for i ∈ [k], then

Estimate(sk,CKKS.Eval(pk, C, [cti]i∈[k]), C([mi]i∈[k])) = d

(
k + d

d

)
O(Bdtfresh)

where cti ← Enc(pk,mi) for i ∈ [k].

To prove Theorem 6 we need to recall an heuristic on emult. More accurate
noise analysis on CKKS.Eval (like [CCH+22], Heuristic 8) can be found in the
literature; although, for the scope of this paper, using the following result will
be enough.

Heuristic 1 (Appendix A.5 of [GHS12]) Let w be the hamming weight of
the secret key sk (i.e., the number of non-zero coordinates of sk) and n be the
plaintext ring dimension. Then emult behaves like a random variable with mean
zero and variance O(wn).

Proof (of Theorem 6). In this proof we denote Estimate(f(x), tfresh) as Est(f(x)).
Also we omit the subscript can when using the canonical norm since it is the
only norm used in this proof.

First, we want to prove that Est(xd) = O(dBd−1tfresh) by strong induction.
This is trivially true for d = 1. We now study the statement for d > 1. Est(xd) =
Estimate(xa·xb) = ‖maeb+m

bea+eaeb+emult‖ where ea and eb are, respectively,
the resulting errors from the evaluation of the polynomials xa and xb, with
a + b = d. We can bound this quantity from above by using the triangular
inequality Est(xd) ≤ Ba‖eb‖+Bb‖ea‖+‖eaeb+emult‖. Using the strong inductive
hypothesis ‖ea‖ = O(aBa−1tfresh) and ‖eb‖ = O(bBb−1tfresh), we can rewrite this
quantity as Est(xd) = O(BabBb−1tfresh + BbaBa−1tfresh) + ‖eaeb + emult‖. Since
‖eaeb + emult‖ � Bd−1 we can just conclude that Est(xd) = O(dBd−1tfresh).

We can now extend our study to monomials xi11 . . . x
ik
k . We prove by induc-

tion on k that Est(xi11 . . . x
ik
k ) = O(dBd−1tfresh), where d = i1 + · · · + ik. We

already showed that it is true for k = 1. We now study the statement for k > 1.
Est(xi11 . . . x

ik−1

k−1 · x
ik
k ) = ‖(mi1

1 . . .m
ik−1

k−1 )ek +mik
k ek−1 + ek−1ek + emult‖, where
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ek−1 and ek are, respectively, the resulting error from the evaluations of the
monomials xi11 . . . x

ik−1

k−1 and xikk . We can bound this quantity from above by us-
ing the triangular inequality Est(xi11 . . . x

ik
k ) ≤ Bi1+···+ik−1‖ek‖ + Bik‖ek−1‖ +

‖ek−1ek + emult‖. Using the inductive hypothesis on ek−1 and ek, we can rewrite
this quantity as Est(xi11 . . . x

ik
k ) = O(Bi1+···+ik−1ikB

ik−1tfresh + Bik(i1 + · · · +
ik−1)B

i1+···+ik−1−1tfresh)+‖ek−1ek+emult‖. Since ‖ek−1ek+emult‖ � Bd we can
just conclude that Est(xi11 . . . x

ik
k ) = O(dBd−1tfresh) where d = i1 + · · ·+ ik. Fi-

nally, we analyze a generic multivariate polynomial with k variables and degree
smaller or equal to d.

Est(
∑

0≤i1+···+ik≤d
0<i1,...,ik≤d

ai1,...,ikx
i1
1 · . . . · x

ik
k ) ≤ B

(
k + d

d

)
Est(xi11 · . . . · x

ik
k )

= B

(
k + d

d

)
O(dBd−1tfresh)

= d

(
k + d

d

)
O(Bdtfresh).

D Proof of Lemma 4

Lemma 4. Let d ∈ N. Let B be the plaintext modulus and ct ← Enc(pk, B),
then

Dec(sk, Eval(xd, ct))−Bd = dBd−1ct.e+ f

where ‖f‖can = O(Bd−1).

Remark 3 (On the order of operations when evaluating a polynomial). When
homomorphically evaluating a polynomial, the associated noise growth does not
only depend from the noise of the starting ciphertexts and the polynomial itself.
In particular, in CKKS, another relevant factor is how we write the polynomial as
a sequence of CKKS.Add and CKKS.Mul. For example, computing a polynomial
with the double-and-add technique or computing it directly as x ·x · · · · ·x results
in two different error growths. In this theorem, we analyze the direct method.
Our focus on this method simplifies the derivation of the lower bound on the
noise growth. We specifically consider this case because the primary objective
of this theorem in our paper is to estimate the advantage of Adversary 2 who
can freely choose the order of operations for the homomorphic evaluation of the
polynomial.

Proof. We define ed as the left-hand term of the equation, therefore as

ed := Dec(sk, Eval(xd, ct))−Bd.

In the special case of d = 1 we have that e1 = ct.e
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We now prove the result by performing an induction on the degree d. This is
trivially true for d = 2, since

Dec(sk, Eval(x2, Enc(pk, B)))−B2 = 2Bct.e+ ct.e2 + emult,

and f := ct.e2 + emult is such that ‖f‖can = O(B).
We now study the statement for d > 2. By computing xd as xd−1 · x, and by

using CKKS noise growth rule (Lemma 1), we obtain that

ed = ed−1B + e1B
d−1 + ed−1e1 + emult.

Using inductive hypothesis we obtain that

ed =
(
(d− 1)Bd−2ct.e+ fd−1

)
·B + ct.eBd−1 +

(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+ emult

= (d− 1)Bd−1ct.e+Bd−1ct.e+ fd−1B +
(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+ emult

= dBd−1ct.e+ fd,

where fd := fd−1B+
(
(d− 1)Bd−1ct.e+ fd−1

)
ct.e+emult and ‖fd‖can = O(Bd−1).

E Proof of Theorem 7

Theorem 7. Let σs > 0. Let Evalσs

Ld
be the modified CKKS evaluation given

by Algorithm 1 but where the post-processing noise is sampled from the discrete
Gaussian NZn(0, σ2

s T
2
maxIn). Then there exists an adversary A (Algorithm 2)

against CKKSσs

Ld
in the IND-CP-game such that advA = Ω( 1

σ2
s B

2t2fresh
), where B

is an upper bound on the messages norm modulus and tfresh is the noise tag
associated to freshly encrypted messages.

Proof. We give a brief description of the high-level idea of this proof. First, the
adversary computes the ciphertext errors after the homomorphic evaluation of
each circuit but before the post-processing phase of the challenger. Then, we
rewrite each ciphertext error after the post-processing as a sample of a Gaussian
distribution, where mean and variance only depend from the chosen circuit and
variables known by the challenger. Finally, we compute the statistical distance
between the two Gaussian distributions linked to the two possible circuits and
use this distance to obtain a lower bound on the adversary’s advantage.

The adversary knows e := ct.e, receives the resulting error eres after de-
crypting the oracle output and can compute the errors e0 and e1 obtained after
the standard CKKS evaluation of C0 and C1 on ct. The oracle computes ctres
as CKKS.Eval(Cb, ct) + esm, where esm is sampled from NZn(0, σ2

s T
2
maxIn). This

means that the adversary sees eres that is a sample of NZn(eb, σ
2
s T

2
maxIn). Then,

the adversary analyzes the polynomial e0 − e1 and chooses i as the compo-
nent where the difference of the i-th coefficients of the polynomials e0 and e1 is
maximal in absolute value. After this, the adversary focuses on the i-th coeffi-
cient of eres. This is a sample of NZ(eb,i, σ

2
s T

2
max). Obtaining that |eres,i − e0,i| <

|eres,i − e1,i| is more likely when b = 0 while if |eres,i − e0,i| ≥ |eres,i − e1,i| it is
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at least more likely that b = 1 rather then b = 0. To analyze the adversary’s
advantage in distinguishing these distributions, we first study the total variation
distance between them. Computing this quantity for discrete Gaussians is not
an easy task, therefore we will approximate it by considering their counterparts
on the real numbers. By Lemma 3 and Lemma 4 we have that

∆(N (e0,i, σ
2
s T

2
max),N (e1,i, σ

2
s T

2
max)) ≥

1

50

|e0,i − e1,i|
σsTmax

= Θ

(
Bd−1|ei|
σsTmax

)
.

Theorem 6 gives us that Tmax = d(d − 1)O(Bdtfresh) and |ei| ≥ 1 with high
probability. We can now rewrite the right hand term of the past equation as
Ω( 1

σsBtfresh
). The adversary’s advantage in the IND-CP game for this scheme is the

square of the total variation distance we just estimated, therefore Ω( 1
σ2
s B

2t2fresh
).

F Extended analysis of the transform from [BS23]

We recall the full transform from [BS23].

Definition 23 (Transform 1 from [BS23]). The transform is parameterized
by δ ∈ N. Let THE=(KeyGen,Enc, Eval,PDec,Combine) be a threshold homo-
morphic encryption scheme with message space M. We define the threshold en-
cryption scheme THE′ = (KeyGen, Enc′, PDec′, Combine′), with the abelian group
(M′,+) as message space. Let F : Mδ → M′ and G : Mδ → {0, 1}2λ be two
random oracles, then

Enc′(pk,m ∈M) : Choose randomly x := (x1, . . . , xδ)
$← Mδ. Compute ct0 ←

m+F(x) and ctj ← Enc(pk, xj) for j ∈ [δ]\{0}. Then compute ctδ+1 ← G(x).
Return (ct0, . . . , ctδ+1).

PDec′(sk, (ct0, . . . , ctδ+1)) : Compute µ := (µj) for j ∈ [δ] \ {0} where µj ←
PDec(sk, ctj). Return µ.

Combine′((µi)i∈A, (ct)0≤j≤δ+1) : Compute x′j ← Combine((µij)i∈A, ctj) for j ∈
[δ] \ {0}. Set x′ ← (x′1, . . . , x

′
δ). If x′δ+1 = G(x′) return ct0 − F(x′).

As we already mentioned in Subsection 5.2, the paper ([BS23], Theorem 2)
proves in the random oracle model that, given a THE scheme that is (l, δ) −
OW-CPA-secure, then THE′ achieves l − IND-CPA security.3 We argue that this
theorem, while seems valid in the ROM oracle, does not hold in the plain model
when applied to FHE schemes. In fact, whenever we replace the random oracle
F and G with generic hash functions H and H′ we can show that the resulting
scheme THE′ is not IND-CPA-secure if the original THE was not. We can use the
circuit representation of H and H′ to obtain ciphertexts of the encrypted message
m under the original THE scheme.

In particular, given Enc′(pk,m) = (ct0, . . . , ctδ+1), we can compute Eval(ct0−
H, ct1 . . . , ctδ) = Enc(pk,m). This means that any adversary A against IND-CPA-
security of THE can just be efficiently adapted to an adversary against THE′ with
the same advantage.
3 The formal definition of (l, δ)− OW-CPA security can be found in Appendix G.
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In [BS23] there is also another transform (Transform 2) that is applied to
the OW-CPA-secure starting scheme. This second transform does not improve
the security of the scheme against IND-CPA adversaries: any adversary A can
still recover an encryption of the message m under the original scheme THE.
Similarly to our previous construction, A can just homomorphically reverse all
the steps of this second transform.

G Extended analysis of recently proposed Threshold HE
definitions

As we have previously discussed in Subsection 5.2, numerous security definitions
for Threshold HE have been proposed in the literature. One of the primary
driving forces behind this trend is the substitution of statistical distance with
Rényi divergence in the security analysis of many schemes. This transition has
resulted in improved parameter choices and reduced noise levels in these schemes.
Unfortunately, the most commonly used security definitions for Threshold HE
schemes rely on statistical simulation and, consequently, cannot be satisfied by
these new constructions.

Creating new security definitions that can be achieved with Rényi divergence
and that are able to properly describe the security of a Threshold HE scheme is
a delicate task. Dependencies in error propagation can be subtle, and security
definitions may not comprehensively account the influence of partial decryptions
on the confidentiality of the messages encrypted by the parties. As an example
of this we scrutinize the security definitions provided in a previous version of
[CSS+22] and in [DWF22].

The security definition used in [CSS+22] is the following. In the definition
we highlight the phases defined in the original paper.

Definition 24 (Security definition for THE schemes from [CSS+22]).
Let d, n ∈ N and let Ld be a class of circuits of multiplicative depth smaller or
equal to d. Let THE = (KeyGen, Enc, Eval, PDec, Combine) be a threshold fully
homomorphic encryption scheme for a class of access structures S and circuits
in Ld. We define the experiment Exp′b[A], where b ∈ {0, 1} is a bit and A is an
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adversary. The experiment is defined as follows:

Exp′b[A](λ) :
# Initialization phase
A← A(λ, d, n, S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,
# Honest Encryption query phase
(m0, . . . ,mk), st← A([ski]i∈S),

[cti ← THE.Enc(pk,mi)]
k
i=1,

# Partial Decryption query phase
(ct(i)res , {µ

(i)
j }j∈[n])i∈[q] ← AO(pk,·,ct1,...,ctk)(st, ct1, . . . , ctn),

# Challenge Phase
m0,m1 ← A(st, {ct(i)res , µ

(i)
j }j∈[n],i∈[q]),

ct← THE.Enc(pk,mb),

b′ ← A(st, ct),
return b′.

The O(pk, ·, ct1, . . . , ctk) oracle takes as input circuits in Ci ∈ Ld . The oracle
computes and outputs ctres ← Eval(pk, Ci, ct1, . . . , ctk) and µj ← PDec(skj , ctres)
for all j ∈ [n]. The scheme is secure under this definition if the advantage of all
PPT adversary is negligible in λ.

This security definition exclusively focuses on the safety of the secret keys
of non-corrupted parties and does not address the confidentiality of the message
encrypted by them. This limitation becomes evident during the challenge phase,
where the game assesses only the IND-CPA security of the underlying HE scheme
(THE.Enc) after multiple iterations of the THE scheme in the partial decryption
query phase. To illustrate the inadequacy of this definition for applications in
Threshold HE, the paper [BS23] provides an example of an obviously insecure
scheme that satisfies this security definition. In this counterexample, the Eval

algorithm is modified to also output an encryption of the first message, i.e.
Eval′(C, ct1, . . . , ctk) := (Eval(C, ct1, . . . , ctn), ct1). As a result, after executing
the Combine algorithm, all the parties learn m1, the message originally encrypted
from the first party.

We now analyze the security definition utilized in [DWF22]. The paper fo-
cuses mainly on achieving ”indistinguishability on the initial ciphertexts”. Al-
though the security definition is originally designed for Multikey HE schemes, it
can be easily adapted to Threshold HE schemes.

Definition 25 (Security definition for THE schemes from [DWF22],
adapted). Let d, n ∈ N and let Ld be a class of circuits of multiplicative depth
smaller or equal to d. Let THE = (KeyGen, Enc, Eval, PDec, Combine) be a
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threshold fully homomorphic encryption scheme for a class of access structures
S, with ciphertext space C and circuits in Ld. We define the indistinguishability
game Exp′b[A], where b ∈ {0, 1} is a bit and A is an adversary. The experiment
is defined as follows:

Exp′b[A](λ) : A← A(λ, d, n, S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,
(m, st)← A([ski]i∈S , pk),

if b=0 then: ct← Enc(pk,m),

if b=1 then: ct $← C,
b′ ← A(ct, st),
return b′.

This scheme is secure under this definition if the advantage of all PPT adver-
saries is negligible in λ.

This definition does not consider the security of the encrypted message m within
the scheme. An analogous counterexample to the one we mentioned earlier for
the scheme in [CSS+22] shows how obviously insecure schemes can still satisfy
this security definition.

In the latter part of this appendix, we aim to describe other recently proposed
security definitions and compare them with the ones employed in this paper.
Firstly, we describe the security definition from the updated version of [CSS+22].

Definition 26 (Updated security definition from [CSS+22]). Let d, n ∈ N
and let Ld be a class of circuits of multiplicative depth smaller or equal to d. Let
THE = (KeyGen, Enc, Eval, PDec, Combine) be a threshold fully homomorphic
encryption scheme for a class of access structures S and circuits in Ld. We define
the experiment Exp′b[A], where b ∈ {0, 1} is a bit and A is an adversary. The
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experiment is defined as follows:

Exp′b[A](λ) :
# Initialization phase
A← A(λ, d, n, S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,
# Honest Encryption query phase
(m

(0)
1 , . . . ,m

(0)
k ,m

(1)
1 , . . . ,m

(1)
k ), st← A([ski]i∈S),

[cti ← THE.Enc(pk,m
(b)
i )]ki=1,

# Partial Decryption query phase
{Ci}i∈[Q] ← A(st, ct1, . . . , ctk),
[ctres,i ← THE.Eval(pk, Ci, ct1, . . . , ctk)]i∈[Q],

[µi,j ← THE.PDec(skj , ctres,i)]i∈[Q],j /∈S ,

b′ ← A(st, {ctres,i, µi,j}i∈[Q],j /∈S),

return b′.

The adversary can send to the challenger a polynomial number Q = poly(λ) of
circuits such that Ci(m

(0)
1 , . . . ,m

(0)
k ) = Ci(m

(1)
1 , . . . ,m

(1)
k ), for every i ∈ [Q].

The definition used in the updated version of [CSS+22] resembles Defini-
tion 15. The primary distinction is that, in the former, the adversary must select
all the circuits that the challenger evaluates at the same time, prior to gain-
ing any information on the results. In the latter, however, the adversary can
adaptively choose the circuits to submit to the challenger.

We now describe the IND-CPA-style security definition from [BS23].

Definition 27 (l − IND-CPA security for THE schemes from [BS23]). Let
d, n ∈ N and let Ld be a class of circuits of multiplicative depth smaller or
equal to d. Let THE = (KeyGen, Enc, Eval, PDec, Combine) be a threshold fully
homomorphic encryption scheme for a class of access structures S and circuits
in Ld. We define the experiment Exp′b[A], where b ∈ {0, 1} is a bit and A is an
adversary. The experiment is defined as follows:

Exp′b[A](λ) : A← A(λ, d, n, S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,
b′ ← AOEnc,OChallEnc,OPDec(st, pk, [ski]i∈S),

return b′.

In this definition, the oracle OEnc(m) can be used to obtain a fresh encryption of
a message m, the oracle OChallEnc(m0,m1) serves to acquire an encryption of
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mb, and the oracle OPDec(C, ct1, . . . , ctk) can be used to obtain partial decryption
shares from non-corrupted parties in the form of PDec(skj , Eval(pk, C, ct1, . . . , ctk)).
The total calls to the oracles are bounded by l and the last oracle returns an out-
put only if it is queried by using ciphertexts obtained from the other oracles and
if C(m(0)

1 , . . . ,m
(0)
k ) = C(m

(1)
1 , . . . ,m

(1)
k ), where m(0)

i and m
(1)
i are the possible

encrypted messages, depending on the bit, in cti.

The main difference with the previous definitions is that the adversary can query
these oracles in any desired order without necessarily follow the standard sequen-
tial execution of the threshold scheme. Another meaningful difference is that the
OPDec oracle does not return the ciphertext Eval(pk, C, ct1, . . . , ctk).

Finally, another noteworthy definition is the OW-CPA security for THE schemes
from [BS23].

Definition 28 ((l, v)− OW-CPA security for THE schemes from [BS23]).
Let d, n ∈ N and let Ld be a class of circuits of multiplicative depth smaller or
equal to d. Let THE = (KeyGen, Enc, Eval, PDec, Combine) be a threshold fully
homomorphic encryption scheme for a class of access structures S and circuits in
Ld. We define the experiment Exp′[A], where A is an adversary. The experiment
is defined as follows:

Exp′[A](λ) : A← A(λ, d, n, S),
(sk1, . . . , skn, pk)← KeyGen(λ,A),
S ← A(pk) s.t. S 6∈ A and S is a maximal invalid set,
(m′, j)← AOEnc,OChallEnc,OPDec(st, pk, [ski]i∈S),

return mj = m′.

In this definition, the oracle OEnc(m) can be used to obtain a fresh encryption of a
message m, the oracle OChallEnc() serves to acquire an encryption of a random
m

$←M, and the oracle OPDec(C, ct1, . . . , ctk) can be used to obtain partial de-
cryption shares from non-corrupted parties as PDec(skj , Eval(pk, C, ct1, . . . , ctk)).
In this definition mj is the message encrypted in the ciphertext obtained from
the j-th call to the OChallEnc oracle. The total calls to the oracles are bounded
by l and the last oracle returns an output only if it is queried by using ciphertexts
obtained from the other oracles and if for all the challenge messages, the con-
ditional min-entropy has always decreased for an amount smaller than v after
having learned the circuit evaluation.

H Proof of Theorem 10

Theorem 10. Let MK-CKKS = (Setup, KeyGen, Enc, Eval, PDec, Combine) be
the MK-CKKS multikey homomorphic encryption scheme, with plaintext space
R and estimate function Estimate. Let q ∈ N. Let Mt be a ρ-KLDP mechanism
on R where ρ ≤ 2−λ−8/q. If MK-CKKS.Enc is (λ+8)-bit secure in the IND-CPA
game, then MK-CKKS with the modified MK-CKKS.Eval′ given by Algorithm 3
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and with the modified MK-CKKS.PDec′ given by Algorithm 4 is λ-bit secure in
the IND-MKHE game where q is the maximum amount of oracle queries by the
adversary.

Proof. We start by describing the two indistinguishability games.

1. G0: the MK-CKKS scheme with the modified algorithms given by Algorithm 3
and Algorithm 4 in the IND-MKHE-security game with a bound of maximum
q queries.

2. G1: the original MK-CKKS scheme in a variant of the IND-MKHE-security
game with a bound of maximum q queries and the modified oracle Eval′. The
oracle Eval′({pki}ni=1, ·, ct1, . . . , ctn) takes as input a circuit Ci ∈ Ld such
that Ci(m

(0)
1 , . . . ,m

(0)
n ) = Ci(m

(1)
1 , . . . ,m

(1)
n ), and behaves in the following

way. When writing Encn(pk,m) we denote a noiseless encryption of m.

Eval′({pki}i∈[n], ·, ct1, . . . , ctn) :

mres ← C(m
(0)
1 , . . . ,m(0)

n ),

ctres ← Enc(pki∗ , 0) +
∑

j∈[n]∖{i∗}

Encn(pkj , 0),

ctres.t← Estimate(C, ct1.t, . . . , ctn.t) + (k + 1)tfresh,

µi∗ ←Mctres.t(ctres.b−
∑
j ̸=i∗

skj · ctres.aj),

[µi ← ski · ctres.ai]i ̸=i∗ ,

ctres.b←Mctres.t(ctres.b+mres),

return(ctres, [µi]i∈[n]).

In G0, the ciphertext ctres and the decryption shares µi are obtained by ho-
momorphically evaluating the circuit C on the input ciphertexts and partially
decrypting the resulting ciphertext. After computing them, we perform some
post-processing with a re-randomization on ctres and with a differential privacy
mechanism on both. In G1, the ciphertext ctres and the decryption shares µi are
simulated, and they do not depend from the input ciphertexts, from b or from
the secret key of the non-corrupted party i∗. ctres is a fresh, random encryption
of mres, and the share µi∗ is obtained without using ski∗ .

To simplify the notation in this proof, we will denote ctG0
res as ct0, ctG1

res as ct1
and ctG0

res.t as t.
While assuming that ct0.a = ct1.a = a, we compute the norm of the difference

between ct0.b and ct1.b, which are the first components of the ciphertexts before
applying the differential privacy mechanism.

‖ct0.b− ct1.b‖ = ‖(ct0.b+ a · (sk1, . . . , skk))− (ct1.b+ a · (sk1, . . . , skk))‖
= ‖(m+ e0)− (m+ e1)‖ = ‖e0 − e1‖ ≤ t+ tfresh,

We will denote t + tfresh as T for the rest of the proof. Since we were able to
bound ‖ct0.b − ct1.b‖ with T , we can now use Definition 7 to bound their KL
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divergence after post-processing.
D(MT (ct0.b)|ct0.a = a||MT (ct1.b)|ct1.a = a) ≤ ρ.

We repeat the same reasoning with decryption shares. To simplify the notation
in this proof, we will denote µGb

j with µj,b. While assuming that ct0.b = ct1.b = b
and ct0.a = ct1.a = a are chosen, we compute the norm of the difference between
µ0,i∗ and µ1,i∗ , which are the decryption shares before applying the differential
privacy mechanism.

‖µ0,i∗ − µ1,i∗‖ = ‖(ai∗ · ski∗)− (b−
∑
j≠i∗

aj · skj)‖ = ‖e0‖ ≤ t.

This implies, thanks to Definition 7, that
D(Mt(µ0,i∗)|(ct0.b = b, ct0.a = a)||Mt(µ1,i∗)|(ct1.b = b, ct1.a = a)) ≤ ρ

From this point forward, we often use the notation Da(X||Y) when referring to
D(X|(ct.a = a)||Y|(ct.a = a)). We now use Lemma 2 to obtain the following
inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)

≤ max
a

Da(Mt(µ0,i∗),MT (ct0.b)||Mt(µ1,i∗),MT (ct1.b)) +D(ct0.a||ct1.a)

It is easy to show that ct0.ai are uniform random in R for each i ∈ [k] because
we re-randomized each entry by adding Enc(pki, 0) to ct0. This is also true for
ct1.ai for each i 6= i∗. We can also say that ct1.ai∗ is uniform random in R
because it is obtained as a fresh encryption of 0. This implies that the KL
divergence D(ct0.a||ct1.a) = 0. We can now apply Lemma 2 and obtain the
following inequality.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a)

≤ max
b,a

Db,a(Mt(µ0,i∗)||Mt(µ1,i∗)) + max
a

Da(MT (ct0.b)||MT (ct1.b))

We have already shown that ρ is an upper bound for each of these two terms,
for every a and b. This means that the upper bound can be rewritten as follows.

D(Mt(µ0,i∗),MT (ct0.b), ct0.a||Mt(µ1,i∗),MT (ct1.b), ct1.a) ≤ 2ρ

Then, we use Theorem 4 with Xθ defined as a query to the oracle Eval of G0
and Yθ as a query to the oracle Eval′.

advA ≤ q

2
max
θ∈[q]

D(Xθ||Yθ) ≤
q

2
(2ρ) = qρ.

We conclude the proof by studying the bit security of G1. In the first phase of
the game the adversary receives a rLWE encryption of m(b)

i∗ under ski∗ and then
receives a fresh encryption of zero under ski∗ for a polynomial number of times
q. This implies that, if MK-CKKS is (λ+8)-bit secure in the IND-CPA game, then
G1 is also (λ + 8)-bit secure. Provided that qρ ≤ 2−(λ+8), we can finally relate
the bit security of G0 with the bit security of G1, using Lemma 3 and obtain
that G0 is λ-bit secure in the IND-MKHE security game with maximum q oracle
queries.
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I Proof of Theorem 11

Theorem 11. Let σs > 0. Let Evalσs and PDecσs be the modified MK-CKKS
algorithms we presented as Algorithm 3 and as Algorithm 4 but where the
post-processing noise are sampled from NZn(0, σ2

s ct.t
2In). Let σ be the stan-

dard deviation of the underlying rLWE error. Then there exists an adversary A
(Algorithm 5) against MK-CKKSσs in the IND-MKHE-security game such that
advA = Ω

(
1

σ2
s σ

2n3

)
.

Proof. The high-level idea is as in the proof of Theorem 7. The main difference
between the two proofs is that the adversary cannot compute the error after the
homomorphic evaluation of the circuit because it depends from the encrypted
message of the non-corrupted party. Nonetheless, using the ring structure of R
and the circuit x1x2 − Bx2, we are still able to rewrite the error as a sample
of a Gaussian distribution where mean and variance only depend from the en-
crypted message and variables known by the challenger. Finally, we compute the
statistical distance between the two Gaussian distributions linked to the two pos-
sible messages and use this distance to obtain a lower bound on the adversary’s
advantage.

The adversary knows the exact error ẽ := c̃t.e and obtains the resulting error
eres after post-processing. We denote as e← NZn(0, σ2In) the exact error of ct.
Recalling the error growth rule of MK-CKKS, we can estimate the two possible
outputs for b ∈ {0, 1}. The resulting error after computing x · y is equal to
eẽ+mbẽ+Be+emult. When subtracting B ·x in the evaluation, we also subtract
Be from the error and we obtain that the error in the output of the oracle ctres is
eẽ+mbẽ+emult+e

(1)
sm where the e(1)sm is the post-processing noise of Evalσs . When

we compute the decryption of ctres using the Combine algorithm, we obtain that
the result is

eres = eẽ+mbẽ+ emult + e(1)sm + e(2)sm ,

where e(2)sm is the post-processing noise of PDecσs . Referring to the i-th coefficient
of e and ẽ as ei and as ẽi, we can rewrite eres as follows.

eres =

n−1∑
i=0

 i∑
j=0

ẽjei−j −
n−1∑
j=i

ẽjen+i−j +mbẽi

xi + emult + e(1)sm + e(2)sm

:=

n−1∑
i=0

Eix
i + emult + e(1)sm + e(2)sm

The adversary analyzes the polynomial ẽ and chooses I as the component where
the absolute value |ẽI | is maximal. We now focus on the I-th coefficient of eres
and, in particular, on EI . The term EI is an affine combination of {ei}n−1

i=0 that
are independently sampled from NZ(0, σ

2) with coefficients that are known to
the adversary. This implies that EI is a sample from the Gaussian NZ(mbẽI ,
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i=0 ẽi

2σ2). To estimate the total variation distance, we assume that emult and
elin are significantly smaller than the other terms (Heuristic 1) and that we can
omit them; this approximation allows us to express eres,I as a sample from the
following Gaussian distribution.

NZ(mbẽI ,

n−1∑
i=0

ẽi
2σ2 + 2σ2

s ct.t
2).

Obtaining that |eres,I − BẽI | < |eres,I | is more likely when b = 1 while, if
|eres,I − BẽI | ≥ |eres,I |, it is at least more likely that b = 0 rather than b = 1.
To compute the advantage of this adversary in distinguishing these distribu-
tions, we need to compute the total variation distance between them. Com-
puting this quantity for discrete Gaussian is not easy; therefore, we will ap-
proximate it by considering their counterparts on the real numbers. We define
V :=

√
‖ẽ‖22σ2 + 2σ2

s ct.t
2 and use Lemma 3 to obtain the following lower bound.

∆(N (0, V ),N (BẽI , V )) ≥ 1

50

B|ẽI |√
V

= Θ

(
B|ẽI |√

‖ẽ‖22 + 2σ2
s ct.t

2

)

The advantage of the adversary in the IND-MKHE game is the square of the
total variation distance we just estimated which is Θ

(
B2|ẽI |2

∥ẽ∥2
2+2σ2

s ct.t
2

)
.

With high probability |ẽI | ≥ 1 and ‖ẽ‖can ≤ σn. This implies that ‖ẽ‖22 ≤
σ2n3 and also that ct.t ≤ O(Bσn3/2) . Putting together all these bounds, we ob-
tain that the advantage of the adversary is Ω

(
B2

σ4n3+2σ2
s B

2σ2n3

)
= Ω

(
1

σ2
s σ

2n3

)
.
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