
Approximate Modeling of Signed Difference and
Digraph based Bit Condition Deduction

New Boomerang Attacks on BLAKE

Yonglin Hao1, Qingju Wang2, Lin Jiao1, and Xinxin Gong1

1 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China,
haoyonglin@yeah.net, jiaolin_jl@126.com, xinxgong@126.com

2 SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg,
qjuwang@gmail.com

Abstract. The signed difference is a powerful tool for analyzing the Ad-
dition, XOR, Rotation (ARX) cryptographic primitives. Currently, solv-
ing the accurate model for the signed difference propagation is infeasible.
We propose an approximate MILP modeling method capturing the prop-
agation rules of signed differences. Unlike the accurate signed difference
model, the approximate model only focuses on active bits and ignores
the possible bit conditions on inactive bits. To overcome the negative ef-
fect of a lower accuracy arising from ignoring bit conditions on inactive
bits, we propose an additional tool for deducing all bit conditions auto-
matically. Such a tool is based on a directed-graph capturing the whole
computation process of ARX primitives by drawing links among interme-
diate words and operations. The digraph is also applicable in the MILP
model construction process: it enables us to identify the parameters up-
per bounding the number of bit conditions so as to define the objective
function; it is further used to connect the boomerang top and bottom
signed differential paths by introducing proper constraints to avoid in-
compatible intersections. Benefiting from the approximate model and
the directed-graph based tool, the solving time of the new MILP model
is significantly reduced, enabling us to deduce signed differential paths
efficiently and accurately.
To show the utility of our method, we propose boomerang attacks on
the keyed permutations of three ARX hash functions of BLAKE. For
the first time we mount an attack on the full 7 rounds of BLAKE3, with
the complexity as low as 2180. Our best attack on BLAKE2s can improve
the previously best result by 0.5 rounds but with lower complexity. The
attacks on BLAKE-256 cover the same 8 rounds with the previous best
result but with complexity 216 times lower. All our results are verified
practically with round-reduced boomerang quartets.

Keywords: Signed Difference, Boomerang Attack, ARX, MILP model-
ing

1 Introduction
The boomerang attack originally proposed by Wagner [1] is an adaptive chosen
plaintext and ciphertext attack derived from differential cryptanalysis. Soon af-
terwards, Kelsey et al. [2] developed the original version into a chosen plaintext



attack called the amplified boomerang attack. Developments were also made by
Biham et al. in [3,4,5] making the boomerang attack an efficient tool for analyz-
ing block ciphers such as AES [6,7], ARIA [8], SHACAL [9] etc (just name some
as [10,9,11,8,12,13,14]). The idea of the boomerang attack is also applied to hash
functions for constructing distinguishers of the underlying keyed permutations
or compression functions [15]. Such boomerang distinguishers are specifically ef-
ficient on ARX hash functions such as BLAKE [16,17,18], SHA-2 [19,20,21,22],
SIMD-512 [23], HAVAL [24], RIPEMD-128/160 [25], HAS-160 [26], Skein [27,28],
SM3[29,30] etc.

The goal of boomerang attacks are to find the state (or state-message) quar-
tets satisfying particular input-output differences within the generic complexity
bounds: there are 3 main types of boomerang input-output differences namely
Type I, II and III with different complexity bounds. The feasibility of a
boomerang attack is based on the 2 differential paths, referred as the top path
and the bottom path hereafter, intersecting at some intermediate state in the
middle and propagating in backward and forward directions. The right quar-
tet should satisfy both top and bottom paths simultaneously in the boomerang
manner. Therefore, the top and bottom paths should not only have high dif-
ferential propagation probabilities but be compatible in the intersecting state
as well, so as to guarantee the existence of right quartets and the complexities
below generic bounds.

For both S-box-oriented and ARX-like cryptographic primitives, deducing
high-probabilistic and compatible top-bottom paths for boomerang attacks has
always been a challenging task. But in recent years, significant progress has
been made in the boomerang attacks on S-box oriented block ciphers. Firstly,
Cid et al. proposed the Boomerang Connective Table (BCT) [31]: a lookup table
capturing the differential propagation rule of quartets through S-box operations.
In this way, for S-box oriented primitives, the top and bottom paths can be
connected with a S-box layer and the compatible intersection of the 2 paths can
be verified by referring to the BCTs of the corresponding S-boxes. Ever since
its proposal, the BCT technique is further improved in all aspects including
efficiency, accuracy etc [32,33,34,35]. There are also works for searching high
probabilistic top-bottom paths and key-guessing strategies automatically based
on MILP and CP models [36,37,38,39,40,41,40,42,43,44]. In fact, most of the
current best boomerang attacks on block ciphers like SKINNY are using top
and bottom paths deduced automatically through MILP/CP models.

On the contrary, many current best boomerang attacks on ARX hash func-
tions are still using differential paths deduced by hand and many results have
not been improved for quite many years. In fact, the cryptanalysis of ARX hash
functions has quite long history because previous cryptographic hash function
standards like SHA-1 and MD-5 are all ARX-like hash functions. The ground
breaking works are the differential attack given by Wang et al. in 2005 resulting
in the 1st theoretically collision attack on full SHA-1 [45] and MD-5 [46]. The
most important concepts in Wang et al. ’s work are the signed difference, the bit
condition and the message modification technique. The signed difference cap-

2



tures the accurate differential propagation rules of modular adds including the
hard-to-predict carry effects. The bit conditions are simply linear equations of
bits but Wang et al. ’s success further proved that a particular differential prop-
agation can only happen when the corresponding bit conditions are satisfied.
The message modification technique is used during the collision search process:
some unsatisfied bit conditions can be directly fixed by manipulating particular
message block bits so that the probability of finding collision pairs can be im-
proved. The probability of Wang et al.’s collision attacks is determined by the
number of unfixed bit conditions. Wang et al.’s technique has long been the dom-
inating tools for analyzing all kinds of ARX-like primitives [47,48,49,50,51]. The
bit condition and message modification technique are also applied to non-ARX
bit-oriented primitives such as Keccak for finding collisions [52,53] or even de-
ducing cube distinguishers [54]. Derived from differential attacks, the boomerang
attacks on ARX hash functions also employ Wang et al.’s technique and its gen-
eral procedure can be summarized as follows.
1. Path Deduction: Deduce top and bottom paths.
2. Bit Condition Deduction: Deduce the bit conditions corresponding to

top and bottom paths.
3. Message Modification Strategy: Determine a strategy for fixing the bit

conditions around the intersecting state so as to lower the complexities.
4. Quartet Search: Starting from intersecting state, compute backward and

forward for quartets satisfying the boomerang differential constraints.
Motivations. Signed differential paths are either deduced by hand [45,46] or
using heuristic (semi-)automatic tools dedicated to specific primitives such as
SHA-1, SHA-2, RIPEMD [47,51,55,56,57,58,59,60,61]: profound experience and
great efforts are required in both cases. There is an urgent need of an automatic
modeling methods for deducing signed differential paths of all ARX primitives
uniformly. Mixed integer linear programming (MILP), which has efficiently ac-
complished arduous tasks such as searching differentials for many symmetric
primitives automatically [62], becomes our first choice. Furthermore, a proper
definition of MILP objective functions maximizing the probability can poten-
tially prove the optimality of signed differential paths.

Currently, many best boomerang attacks on hash functions are using top
and bottom XOR differential paths deduced linearly by regarding the modular
add operations as XORs [17,18]. For treating the intersecting part, a “0-AND
constraint” is utilized: in order to avoid active bits in both paths resulting in
contradictions [27], the bitwise AND of the top and bottom XOR differences
at the intersecting state is set to 0. Apparently, the linear propagation of XOR
differences completely ignores the effect of carries in modular adds, which is
a huge loss of accuracy. However, carries in modular adds are not always bad:
there are even cases where carries are stimulated on purpose so as to enhance the
overall probability of the differential path [63], whether the 0-AND constraint
is sufficient to guarantee compatible top-bottom paths remains as suspicious.
On the other hand, the existing boomerang automatic tools [64,27] are more
suitable for checking the compatibility of existing paths rather than constructing

3



compatible paths directly. Lastly, since signed difference can carry the carry
effects by its nature, the boomerang attack also calls for automatic tools for
deducing compatible signed differential top and bottom paths efficiently.

It is noticeable that the Bit Condition Deduction phase of existing boomerang
attacks are accomplished by hand which can be quite time consuming even
infeasible due to excessively complex constructions. An automatic bit condition
deducing framework for ARX primitives should be useful for future research.

Our Contributions. We propose a MILP modeling method for the signed dif-
ference. The signed difference of each bit is encoded as two binary variables. The
modular 2ω add operation is decomposed into a half-adder at the least significant
bit (LSB) followed by ω−1 full-adder at the remaining bits. The signed difference
propagation rules of half- and full-adders can be described as linear constraints
in MILP models. It is noticeable that the MILP model description of accurate
signed difference propagations is equivalent to finding the right pairs following
the differential paths making the whole MILP model extremely hard to be solved.
So we further propose an approximate signed difference modeling method that
focuses on the accuracy of active bits. We deduce the MILP model capturing
the approximate signed differential propagation rules for modular add and XOR
operations. This modeling technique can be applied to efficiently searching for
signed differential paths of any ARX structures, which is of independent interest.

As aforementioned, the approximate signed differential models focus on the
active bits for high efficiency which obviously results in a loss of accuracy.
According to an approximate signed differential path given by our model, we
further propose a general framework for deducing bit conditions automatically
based on a given signed differential path. The framework is based on a directed
graph. The digraph vertices can be divided into two categories namely the “word
nodes” corresponding to all state/message words and the “operator nodes” cor-
responding all operations. The directed edges of the digraph simply reflect the
computational process from the starting state to the ending state. In this way,
the digraph captures the whole computation process of ARX primitives and the
approximate signed differential path given by the MILP model can be repre-
sented as a lookup table mapping all the word nodes to their signed differences.
Based on the digraph and the lookup table, all bit conditions can be deduced
automatically by traversing all operator nodes.

The digraph not only works for predefined signed differential paths, but also
is useful in MILP model constructing process for deducing new paths. In this
case, the lookup table maps word nodes to MILP model variable vectors repre-
senting their signed differences. For each operator nodes representing modular
add operations, we introduce into the MILP model additional parameters trac-
ing the newly generated bit conditions. With such parameters, a proper MILP
objective function can be defined to find optimal signed differential paths. The
digraph can also be used to introduce particular boomerang constraints in the
intersection of top and bottom signed differential paths so as to guarantee a
compatible connection.

4



With the approximate modeling and the digraph based techniques, we pro-
pose new boomerang attacks on BLAKE3, BLAKE2s and BLAKE-256 which
are all members of BLAKE [65]: an ARX hash function family that enters the
finalist of the SHA-3 competition [66], acts as the building block of the Password
Hashing Competition winner Argon2 [67], and is widely implemented in stan-
dard software libraries such as OpenSSL3, GNU Coreutils4 etc. For BLAKE3, we
find the 1st third-party boomerang attacks mounting to full 7-round BLAKE3
with complexities as low as 2180. For BLAKE-256 and BLAKE2s, we are able
to find new top and bottom paths with higher probabilities resulting in new
boomerang results mounting to 8-round BLAKE2s and BLAKE-256 with the
same complexity of 2182. As can be seen from Table 1, we improve the previous
best BLAKE2s boomerang result by 0.5 rounds and lower the complexities of
BLAKE-256 results. All such results are Type I boomerang distinguishers (we
will explain in Section 2.2) targeting at the underlying keyed permutations and
we guarantee the compatibility of our top-bottom paths by providing practically
found quartets. They do not threat the security of the hash functions in practice.

Table 1: Summary of boomerang results on BLAKE-256, BLAKE2s and
BLAKE3.

Hash Function #Full Rounds Target #Rounds Time Source

BLAKE-256 14

CF 6 2102 [16]
CF 6.5∗ 2184 [16]
CF 7∗ 2232 [16]
KP 6 211.75 [16]
KP 7∗ 2122 [16]
KP 8∗ 2242 [16]
KP 7 237

⋆ [17]
KP 8 2200 [17]
KP 8 2198 [18]
KP 8 2182 Section 5.2

BLAKE2s 10
KP 7.5 2184 [18]
KP 8† 2230 Section 5.2
KP 8 2182 Section 5.2

BLAKE3 7 KP 7 2180 Section 5.1
KP: Keyed Permutation. CF: Compression Function.
∗: There are some incompatible problems in their attacks according to [27]
⋆: The complexity is of Type III boomerang while others are of Type I.
†: Using the same local-collision-construction strategy as [18].

Outline. Section 2 provides all the background knowledge for understanding
this paper. Section 3 describes our approximate MILP modeling technique cap-
turing the propagation rules of signed difference. Section 4 describes the digraph
capturing the whole computation process of ARX primitives along with its appli-
cations in bit condition deductions (Section 4.3), objective function definitions
(Section 4.4) and boomerang constraint introductions (Section 4.5). In Section 5,

3 https://www.openssl.org/
4 https://www.gnu.org/software/coreutils/manual/coreutils.html

5

https://www.openssl.org/
https://www.gnu.org/software/coreutils/manual/coreutils.html


we apply of our techniques to BLAKE3, BLAKE2s and BLAKE-256 for new
boomerang attack results. Section 6 conclude the whole paper.

2 Preliminary
In this part, we provide necessary background knowledge. The following nota-
tions have to be introduced first.
ω the word length of ARX primitives which is usually set to 32 or 64.
← variable assignment.
+ modular 2ω addition (according to the word length).
− modular 2ω subtraction (according to the word length).
⊕ bitwise exclusive or.
≪ n cyclic shift n bits towards the most significant bit.
≫ n cyclic shift n bits towards the least significant bit.
∧ bitwise AND operation for words.

The state blocks of multiple ω-bit words are represented with capital let-
ters and each ω-bit word entry is denoted as the corresponding small letters.
For example, a n-word state can be represented V = (v0, . . . , vn−1) where
v0, . . . , vn−1 are ω-bit words. The i-th bit of word v can further be represented
as v[i] (i = 0, . . . , ω − 1) where v0 is the LSB and vw−1 is the MSB. Since both
the ordinary XOR difference and the signed difference are used in this paper, we
explicitly represent the two with different notations: for a word pair (x, x′), its
XOR difference is denoted as ∆x = x⊕ x′ while the signed difference is denoted
as ∇x and detailed in Section 2.1.

2.1 Signed Differences and Bit Conditions
Given a pair of words (x, x′), the XOR difference ∆x = x⊕x′ can be represented
numerically as a subset of [0, ω − 1] containing the indices of active bits. For
example, when (x, x′) = (0x1, 0x4), the XOR difference is commonly defined as
∆x = x⊕x′ = 0x5 and can be represented as ∆x : {0, 2} numerically. The signed
difference ∇x in Wang et al. ’s work [45,46] is simply adding an additional sign
value “+” or “-” to each active bit of ∆x corresponding to the active bit pair
values (0, 1) and (1, 0) respectively. So the (x, x′) above has signed difference
∇x : {−0, 5}. Wang et al. also propose the concept of bit conditions which
are simply introduced to guarantee particular signed differential propagations
in non-linear operations which is simply modular add in ARX primitives. For
example, for the f : (Fω

2 )
3 → Fω

2 function defined in Eq. (1)

z = f(w1, w2, x2) = (w1 ⊕ w2) + x2 :

{
x1 = w1 ⊕ w2

z = x1 + x2

(1)

the propagation ∇in
f−→ ∇out in Eq. (2)

∇in =


∇w1 : {1}
∇w2 : {1,−3}
∇x2 : {3, 5}

f−→ ∇out = {∇z : {5} (2)

w1[3] = 0, z[5] = x2[5](= 0) (3)

6



can only happen when the two bit conditions in Eq. (3) are satisfied so the
probability of Eq. (2) is evaluated as 2−2. The conditions in Eq. (3) are intro-
duced due to the modular add operations. ∇w1 and ∇w2 guarantee the XOR
difference ∆x1 : {3} but the modular add operation further restrict the signed
difference to ∇x1 : {−3} resulting in the bit condition on w1[3]; the output
signed difference further add restriction to the bit z[5]. One may also find that
x1[1] = x′

1[1] = 0 result from the XOR operation but such a bit condition is
satisfied by its nature. Therefore, when evaluating the signed differential path
probabilities, we only need to focus on the non-MSB5 bit conditions generated
by modular add operations. Wang et al. also propose the modification technique
for further improve the signed differential path probability. When the condition
z[5] = x2[5] does not hold, the message modification technique [45,46] might be
used to flip w1[5] (or w2[5]) so as to get the bit condition z[5] = x2[5] fixed and
increase the propagation probability in Eq. (2) to 2−1.

According to Eq. (3), the bit condition w1[3] = 0 is imposed on an inactive
bit while z[5] = x2[5] is on an active bit. In order to reflect the bit condition and
activity simultaneously, a 1-bit condition symbolic system was introduced [47].
The signed difference entry ∇x[i] is assigned to symbols such as {u, n, 0, 1,=}
in Table 2 according to the (x[i], x′[i]) values. ∇x[i] is also encoded as 2 binary
variables ∇x[i].sign,∇x[i].xdiff by Marc Stevens in his HashClash6: for the bit
pair (x[i], x′[i]), the binary variables of ∇x[i] are defined as:

∇x[i].

{
xdiff = x[i]⊕ x′[i]

sign = x′[i]
i = 0, . . . , ω − 1 (4)

We use both the 1-bit symbolic system and the the binary-variable encoding in
this paper so we list them uniformly in Table 2.

Table 2: The binary-variable encoding and symbolic representation of ∇x[i]
∇x[i] (sign, xdiff) (x[i], x′[i])

n (1, 1) (0, 1)

u (0, 1) (1, 0)

0 (0, 0) (0, 0)

1 (1, 0) (1, 1)

= {(1, 0), (0, 0)} {(1, 1), (0, 0)}

2.2 Boomerang Attacks

The keyed permutation of hash functions can be regarded as E : Fn
2 × Fκ

2 → Fn
2

as C = E(P,M) and is the building block of the compression function (CF)
of MD-structural hash functions as CF (P,M) = E(P,M) + P : P is the initial
internal state and M is the message block. The boomerang attacks on the keyed
permutation of hash functions are often applied in the known-related-key setting
[19] where the adversary can start from arbitrary intermediate state X since X

5 MSB differences ±(ω− 1) are equivalent for modular adds and cannot cause carries
so no MSB bit condition is required for the modular add [45,46].

6 https://marc-stevens.nl/p/hashclash/

7

https://marc-stevens.nl/p/hashclash/


and M can be chosen randomly [19,27]. After decomposing the target function
E into two parts E = E0 ◦ E1, the top and bottom paths are defined as:

∆tP
E−1

0←−−− (∆tX,∆tM)
Compatible←−−−−−−→ (∆bX,∆bM)

E1−−→ ∆bC, (5)

where the top path (∆tX,∆tM)
E−1

0−−−→ ∆tP holds with probability p, and the
bottom path (∆bX,∆bM)

E1−−→ ∆bC with probability q. The 0-AND constraint
for compatible intersection can be represented as ∆tX

∧
∆bX = 0. Finally,

we can launch the known-related-key boomerang attack with these top-bottom
paths as follows:
1. Choose randomly an intermediate state (X1,M1) and compute (Xi,Ki), i =

2, 3, 4 by X3 = X1 ⊕ ∆tX, X2 = X1 ⊕ ∆bX, X4 = X2 ⊕ ∆tX, and M3 =
M1 ⊕∆tM , M2 = M1 ⊕∆bM , M4 = M2 ⊕∆tM .

2. Compute backward from (Xi,Mi) and obtain Pi by Pi = E−1
0 (Xi,Mi) (i =

1, 2, 3, 4).
3. Compute forward from (Xi,Mi) and obtain Ci by Ci = E1(Xi,Mi) (i =

1, 2, 3, 4).
4. Check whether P1 ⊕ P3 = P2 ⊕ P4 = ∆tP and C1 ⊕ C2 = C3 ⊕ C4 = ∆bC.

P3

P1

P4

P2

∆tP ∆tP

E0

E0

E0

E0

X3

X1

X4

X2
∆bX

∆bX

∆tX ∆tX

E1

E1

E1

E1

C3

C1

C4

C2
∆bC

∆bC

Fig. 1: Boomerang distinguisher

It can be deduced that P1 ⊕ P3 = P2 ⊕ P4 = ∆tP and C1 ⊕C2 = C3 ⊕C4 =
∆bC hold with probability at least p2 in the E−1

0 direction and q2 in the E1

direction. Therefore, the attack succeeds with probability p2q2 when assuming
that the differential characteristics are independent. According to [28], for an
n-bit random permutation, three types of boomerang distinguishers are:
Type I: A quartet satisfies P1⊕P3 = P2⊕P4 = ∆tP and C1⊕C2 = C3⊕C4 =

∆bC for fixed differences ∆tP and ∆bC. In this case, the generic complexity
is 2n.

Type II: Only C1 ⊕ C2 = C3 ⊕ C4 is satisfied (This property is also called
zero-sum or second-order differential collision). In this case, the complexity
for obtaining such a quartet is 2n/3 [68].

8



Type III: A quartet satisfies P1 ⊕ P2 = P3 ⊕ P4 and C1 ⊕ C3 = C2 ⊕ C4. In
this case, the best known still takes time 2n/2.

We only study Type I boomerang distinguisher in this paper.

2.3 MILP Modeling Technique

The MILP modeling technique has long been used in the realm of cryptanaly-
sis. It has good performance in fields such as finding differential/linear/integral
characteristics of block ciphers, giving cube attacks on stream ciphers, and con-
structing all kinds of distinguishers on hash functions etc.

The MILP modeling technique constructs an MILP model M consisting of
binary variables M.var, linear constraints M.con and an objective function
M.obj. When deducing differential characteristics, the difference on each bit
x[i] (or the truncated difference on some word) are represented as a binary
variable as M.var← x[i] as binary.

The MILP model of widely used operations has already been defined and
widely used in existing MILP-aided cryptanalysis results. For example, for x, y, z ∈
F2, the relationship z = x⊕y can be captured with the MILP modelM generated
by Algorithm 26 in Supp. Mat. E as (M, y)← xorModel(M, {x1, . . . , xn}). An-
other example is the active symbol: for a set of 0-1 variable vector {x1, . . . , xn},
the 0-1 variable y is of value 0 when x1 = . . . = xn = 0 and 1 otherwise. The
relationship between y and {x, . . . , xn} can be described as y = x1 ∨ . . . ∨ xn

captured with the MILP model (M, y)← orModel(M, {x1, . . . , xn}) defined in
Algorithm 27 in Supp. Mat. E.

2.4 Keyed Permutations of BLAKE3, BLAKE2s and BLAKE-256

BLAKE3, BLAKE2s and BLAKE-256 share many similarities. The word length
are all set to ω = 32. They all process 16-word message blocks M = (m0, . . . ,m15).
The internal states also contains 16 words represented by a 4× 4 matrix as fol-
lows:

V =


v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15

 .

Once the state V is initialized, it is processed by a sequence of a round
function (7, 10, 14 for BLAKE3, BLAKE2s, BLAKE-256 respectively), where
one round of G does the following:

G0(v0, v4, v8, v12), G1(v1, v5, v9, v13), G2(v2, v6, v10, v14), G3(v3, v7, v11, v15)

G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13), G7(v3, v4, v9, v14).

In the r-th round function, Gi(a, b, c, d), i = 0, · · · , 7 differs slightly among
BLAKE3, BLAKE2s and BLAKE-256 as listed in Table 3. BLAKE2s and BLAKE-
256 share the same word permutation σr(·) while BLAKE3 uses a different one.
The word rc’s used in BLAKE-256 are round constants selected from a 16-word

9



Table 3: The Gi Functions of BLAKE-256, BLAKE2s and BLAKE3
Step BLAKE-256 BLAKE3/2s

1 a = a+ b+ (mσr(2i) ⊕ rcσr(2i+1)) a = a+ b+mσr(2i)

2 d = (d⊕ a) ≫ 16 d = (d⊕ a) ≫ 16
3 c = c+ d c = c+ d
4 b = (b⊕ c) ≫ 12 b = (b⊕ c) ≫ 12
5 a = a+ b+ (mσr(2i+1) ⊕ cσr(2i)) a = a+ b+mσr(2i+1)

6 d = (d⊕ a) ≫ 8 d = (d⊕ a) ≫ 8
7 c = c+ d c = c+ d
8 b = (b⊕ c) ≫ 7 b = (b⊕ c) ≫ 7

constant state RC = (rc0, . . . , rc15). Further details can be seen in the specifi-
cations [65].

Since we need detailed analysis of the intermediate states, we further break-
down the round functions. We denote the state after r rounds of iterations by V r

(r = 0, 1, · · · ). Then, TV r is acquired after the first 4 steps of G0,··· ,3 and V r+0.5

is computed after G0,··· ,3 are completed. Similarly, we can compute TV r+0.5

from V r+0.5 by applying steps 1,2,3,4 of G4,··· ,7 and further compute V r+1 by
finishing G4,··· ,7. This representation is illustrated as Eq. (6) and Eq. (7).

G0,··· ,3 : V r Step 1,··· ,4−−−−−−−→ TV r Step 5,··· ,8−−−−−−−→ V r+0.5 (6)

G4,··· ,7 : V r+0.5 Step 1,··· ,4−−−−−−−→ TV r+0.5 Step 5,··· ,8−−−−−−−→ V r+1 (7)

In this way, we can refer to any intermediate state word of any round easily.
To further simplify the interpretation, we further define the following function

hG : (Fω
2 )

5 × (Z+)
2 → (Fω

2 )
4:

(x0, . . . , x3,m, α, β)
hG−−→ (y0, . . . , y3) where


y0 = x0 + x1 +m

y3 = (y0 ⊕ x3) ≫ α

y2 = x2 + y3

y1 = (x1 ⊕ y2) ≫ β

(8)

In this way, each Gi call is equivalent to 2 consecutive calls of hG(⋆, 16, 12) and
hG(⋆, 8, 7); each V r → TV r (TV r → V r+0.5) transformation can be decomposed
to 4 parallel hG(⋆, 16, 12) (hG(⋆, 8, 7)) calls in parallel.

3 MILP Modeling the Signed Difference Propagation in
ARX Primitives

The modelM can be constructed in an accurate or an approximate manner.
In an accurate model, the signed difference is ∇x[i] ∈ {u, n, 0, 1} while in an
approximate model, ∇x[i] ∈ {u, n,=}. As can be seen, the ∇x[i] values in the
accurate model is of 1-1 correspondence to the (x, x′) pairs. Therefore, solving
an accurate model is equivalent to finding the right pair corresponding to the
signed difference which is computationally infeasible in most cases. Therefore, in
this section, we focus on the approximate signed difference propagation rules for

10



modular add (Section 3.1) and XOR operations (Section 3.2) from both theoretic
and MILP modeling aspects. Details of the accurate model are moved to Supp.
Mat. C.

In the approximate model, there is ∇x[i] ∈ {u, n,=}. With the binary-
variable encoding in Table 2, we can let ∇x[i].xdiff,∇x[i].sign ∈ M.var and
represent the bit conditions with MILP model constraints as Eq. (9).

M.con← ∇x[i]← n⇔ ∇x[i].(sign, xdiff) = (1, 1)

M.con← ∇x[i]← u⇔ ∇x[i].(sign, xdiff) = (0, 1)

M.con← ∇x[i]← =⇔ ∇x[i].(sign, xdiff) = (0, 0)

(9)

Algorithm 1: halfAdderApprox
Input : MILP model M,

encoded signed
differences ∇x[0],∇y[0]
whose sign and xdiff’s
are binary variables in
M.var

Output: The updated MILP
model M and the
encoded ∇z[0],∇c[0]
whose sign and xdiff’s
are binary variables in
M.var

// Declare variables
1 M.var← ∇z[0].sign,∇z[0].xdiff,
∇c[0].sign,∇c[0].xdiff as
binaries

// Define the column vector
2 x = (∇x[0].sign,∇x[0].xdiff,
∇y[0].sign,∇y[0].xdiff,
∇z[0].sign,∇z[0].xdiff,
∇c[0].sign,∇c[0].xdiff)T

// Add constraints.
// Matrix Ah is defined as

Eq. (11)
3 M.con← Ahx ≥ 0
4 Return (M,∇z[0],∇c[0])

Algorithm 2: fullAdderApprox
Input : MILP model M, encoded

signed differences
∇x[i],∇y[i],∇c[i− 1]
whose sign and xdiff’s
are binary variables in
M.var

Output: The updated MILP
model M and the
encoded ∇z[i],∇c[i]
whose sign and xdiff’s
are binary variables in
M.var

// Declare variables
1 M.var← ∇z[i].sign,∇z[i].xdiff,
∇c[i].sign,∇c[i].xdiff as binaries

// Define the column vector
2 x = (∇x[i].sign,∇x[i].xdiff,
∇y[i].sign,∇y[i].xdiff,
∇c[i− 1].sign,∇c[i− 1].xdiff,
∇z[i].sign,∇z[i].xdiff,
∇c[i].sign,∇c[i].xdiff)T

// Add constraints.
// Matrix Af and column vector

b are defined as Eq. (13)
3 M.con← Afx+ b ≥ 0
4 Return (M,∇z[i],∇c[i])

3.1 The Modular Add Operation

Consider the modular add operation z = x + y. We analyze the cases at bit
position i = 0, . . . , ω − 1.

For the LSB i = 0, the input bits (x[0], y[0]) generate the LSB of output z[0]
along with a carry bit c[0] where:{

z[0] = x[0]⊕ y[0]

c[0] = x[0] ∧ y[0]
(10)

11



The procedure in Eq. (10) corresponds to functionality of the half-adder which is
a basic hardware circuit. We traverse all possible values of (x[0], x′[0], y[0], y′[0])
and acquire all the available combinations of (∇x[0],∇y[0],∇z[0],∇c[0]) repre-
sented in both accurate and approximate manners in Table 4.

Table 4: The signed differences (∇x[0],∇y[0],∇z[0],∇c[0]) of the half-adder
Model (∇x[0],∇y[0],∇z[0],∇c[0])

Accurate 0000, n0n0, u0u0, 1010, 0nn0, 0uu0, 0110, nn0n, un10, 1nun,
nu10, uu0u, 1unu, n1un, u1nu, 1101

Approximate ====, n=n=, u=u=, =nn=, =uu=, nn=n, un==, =nun, nu==, uu=u,
=unu, n=un, u=nu

With the signed difference encoding technique in Section 2.1, we are able to
describe the approximate signed differential propagation rule of the half-adder in
Eq. (10) with MILP models by calling (M,∇z[0],∇c[0])← halfAdderApprox(M,
∇x[0],∇y[0]) in Algorithm 1. With the help of H-representation method [62], the
matrix Ah is deduced as:

Ah =


2 −1 2 −1 −2 1 −4 2
−2 1 −2 1 2 −1 4 −2
0 1 0 1 −2 1 −2 0
0 0 0 0 −1 1 0 0
0 0 −1 1 0 0 0 0
0 1 2 −1 −2 1 −4 2

 . (11)

For i = 1, . . . , ω−1, the input bits (x[i], y[i], c[i−1]) and the outputs (z[i], c[i]),
corresponding to the full-adder circuit, are computed as:{

z[i] = x[i]⊕ y[i]⊕ c[i− 1]

c[i] = (x[i] ∧ y[i]) ∨ (x[i] ∧ c[i− 1]) ∨ (y[i] ∧ c[i− 1])
(12)

Traversing all possible values of (x[i], x′[i], y[i], y′[i], c[i−1], c′[i−1]), we acquire
all available combinations of (∇x[i],∇y[i],∇c[i− 1],∇z[i],∇c[i]) represented in
both accurate and approximate manners in Table 5.

Table 5: The signed differences (∇x[0],∇y[0],∇z[0],∇c[0]) of the full-adder
Model (∇x[i],∇y[i],∇c[i− 1],∇z[i],∇c[i])

Accurate 00000, n00n0, u00u0, 10010, 0n0n0, nn00n, un010, 1n0un, 0u0u0, nu010,
uu00u, 1u0nu, 01010, n10un, u10nu, 11001, 00nn0, n0n0n, u0n10, 10nun,
0nn0n, nnnnn, unnun, 1nn1n, 0un10, nunun, uunnu, 1un01, 01nun, n1n1n,
u1n01, 11nn1, 00uu0, n0u10, u0u0u, 10unu, 0nu10, nnuun, ununu, 1nu01,
0uu0u, nuunu, uuuuu, 1uu1u, 01unu, n1u01, u1u1u, 11uu1, 00110, n01un,
u01nu, 10101, 0n1un, nn11n, un101, 1n1n1, 0u1nu, nu101, uu11u, 1u1u1,
01101, n11n1, u11u1, 11111

Approximate =====, n==n=, u==u=, =n=n=, nn==n, un===, =n=un, =u=u=, nu===, uu==u,
=u=nu, n==un, u==nu, ==nn=, n=n=n, u=n==, ==nun, =nn=n, nnnnn, unnun,
=un==, nunun, uunnu, ==uu=, n=u==, u=u=u, ==unu, =nu==, nnuun, ununu,
=uu=u, nuunu, uuuuu

12



Similar to the half-adder case, the approximate signed differential propaga-
tion rule of the full-adder in Eq. (12) can also be described with MILP models
by calling (M,∇z[i],∇c[i]) ← fullAdderApprox(M,∇x[i],∇y[i],∇c[i − 1]) in
Algorithm 2, where the matrix Af and the column vector b are defined as

Af =



2 −1 2 −1 2 −1 −2 1 −4 2
−2 1 −2 1 −2 1 2 −1 4 −2
0 1 0 1 0 1 −2 1 −2 0
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 0 0 0
0 0 −1 1 0 0 0 0 0 0
0 1 2 −1 2 −1 −2 1 −4 2
0 −1 0 −1 0 −1 0 −1 0 2


, b =



0
0
0
0
0
0
0
0
2


. (13)

The approximate signed differential propagation rule of modular 2ω add can
be described with MILP models by calling (M,∇z,∇c)← modAddApprox(M,∇x,∇y)
defined as Algorithm 3.

Algorithm 3: modAddApprox
Input : MILP model M, the word signed differences ∇x and ∇y.
Output: The updated MILP model M, the signed differences ∇z,∇c.

1 (M,∇z[0],∇c[0])← halfAdderApprox(M,∇x[0],∇y[0])
2 for i = 1, . . . , ω − 1 do
3 (M,∇z[i],∇c[i])← fullAdderApprox(M,∇x[i],∇y[i],∇c[i− 1])
4 Return (M,∇z,∇c)

3.2 The XOR Operation

We consider the XOR operation as z = x ⊕ y. In the accurate model, it can
constantly be modeled as{

∇z[i].sign = ∇x[i].sign⊕∇y[i].sign
∇z[i].xdiff = ∇x[i].xdiff⊕∇y[i].xdiff

for i = 0, . . . , ω − 1.

In the approximate model, the linear constraint on the xdiff still holds while the
sign only satisfies that sign ≤ xdiff. Therefore, the approximate signed differ-
ence propagation rule can be described as (M,∇z) ← xorApprox(M,∇x,∇y)
defined in Algorithm 4. Here, xorModel is the MILP description of XOR opera-
tion of two words, and is provided as Algorithm 26 in Supp. Mat. E.

For the special case of z = x⊕ c where c is a known constant word, we may
find in approximate model that ∇z[i] = ∇x[i] when c[i] = 0 and{

∇z[i].xdiff = ∇x[i].xdiff
∇z[i].sign = ∇x[i].xdiff⊕∇x[i].sign

13



Algorithm 4: xorApprox
Input : MILP model M, the word signed differences ∇x and ∇y
Output: The updated MILP model M, the signed difference ∇z

1 for i = 0, . . . , ω − 1 do
2 (M,∇z[i].xdiff)← xorModel(M,∇x[i].xdiff,∇y[i].xdiff)
3 Declare variable M.var← z[i].sign
4 Add constraint M.con← z[i].sign ≤ z[i].xdiff.
5 Return (M,∇z)

when c[i] = 1. Therefore, the approximate signed difference propagation rule for
XORing a constant can be described as (M,∇z)← xorConstApprox(M,∇x, c)
defined in Algorithm 5.

Algorithm 5: xorConstApprox
Input : MILP model M, the word signed difference ∇x and constant word c
Output: The updated MILP model M, the signed difference ∇z

1 for i = 0, . . . , ω − 1 do
2 if c[i] = 0 then
3 Assign ∇z[i]← ∇x[i]
4 else
5 (M,∇z[i].sign)← xorModel(M,∇x[i].xdiff,∇x[i].sign)
6 Assign z[i].xdiff← x[i].xdiff

7 Return (M,∇z)

4 Digraph Capturing the ARX Computations and
Representing Bit Conditions

The signed differential path deduced from the approximate model only contains
bit conditions {u, n,=} so the word difference ∇x deduced with such a model can
only have accurate information on active bits. In some cases, the approximate
signed differential paths are actually infeasible because of contradicted bit con-
ditions on inactive bits. Therefore, we should deduce the bit conditions based
on the approximate signed differential path, which, according to Section 2.1,
requires not only the knowledge of signed differences of all intermediate state
words but the operations among words as well.

As our solution, a directed graph G(V, E) is constructed to capture the rela-
tionships of words and operations for the ARX primitive computations, where V
is the vertex set and E is the set of all directed edges. The vertex set V contains
two kind of vertices:
1. word nodes: denoted as Vw, correspond to all intermediate state words;
2. operator nodes: denoted as Vo, correspond to all operations.

14



4.1 Structure of Operator Node Vo

In ARX primitives, there are three kinds operations namely modular add, XOR
and rotations. Among them, rotations merely change the positions of bit rather
than changing any bit conditions or differences, therefore the main focus re-
mains as two operator node types, namely ADD corresponding to modular add
operations, and XOR corresponding to XOR-based operations. The effect of the
rotation is captured with a integer rotBit value capturing the rotation after the
implementation of modular adds or XORs: rotBit > 0 for rotating from MSB
to LSB and rotBit < 0 otherwise. Besides, the operator node also has a ω-bit
word named const setting to the constant parameter involved in the modular
addition or XORs. When no constant is involved, the const word is set to 0 by
default. The in-edges of each operator node is connected to all word nodes rep-
resenting all the intermediate state words involved in the operation. The word
nodes connect with in-edges are stored in a set iWords ⊆ Vw. It has a unique
out-edge connecting to the word node corresponding to the output intermedi-
ate state word of the operation. The word node connected with the out-edge is
therefore defined as oWord ∈ Vw. To sum up, an operator node op ∈ Vo is of the
following data structures:

type ∈ {ADD,XOR}: the type of the operations.
rotBit ∈ Z: the rotation after the implementation.
const ∈ Fω

2 : the constant parameter involved in the operation (default is 0).
iWords ⊆ Vw: the word nodes connected with in-edges corresponding to all the

words involved in the operation.
oWord ∈ Vw: the word node connect with the out-edge corresponding to the

output word of the operation.

For example, the three principal operations in the round function of BLAKE
are

y = (x1 ⊕ x2) ≫ α (α > 0), z = w1 + w2, m′ = m⊕ rc (rc ∈ Fω
2 ).

They can be represented by the defined operator nodes as in Table 6.

Table 6: Operator node representation for the three principal operations in
BLAKE round functions.

Structure
Operation

y = (x1 ⊕ x2) ≫ α z = w1 + w2 m′ = m⊕ rc

type XOR ADD XOR
rotBit α 0 0
const 0 0 rc

iWords {x1,x2} {w1,w2} {m}
oWord y z m′

4.2 Structure of Word Nodes Vw

Each ω-bit word x in the ARX primitive computation corresponds to exactly
one word node x ∈ Vw. The word node x ∈ Vw has (at most) one in-edge

15



connecting to the operator node for computing x and such an operator node
is stored in a set x.parent ⊆ Vo. When x is a word in the initial state, we
naturally set x.parent = ϕ. The out-edges of x connect x to all the operator
nodes corresponding to all the operations x involved. Since x is an ω-bit word, the
word node x also contains ω symbolic variables namely x.bi for i = 0, . . . , ω− 1
corresponding to bit w[i]. Such x.bi is simply referred as the “bit node”. To sum
up, the word node x ∈ Vw are classified in the following categories:
1. parent ⊆ Vo: the operator node for computing the intermediate word x.
2. b0, . . . , bω−1: the bit nodes corresponding to the bits x[0, . . . , ω − 1].

4.3 Bit Condition Deduction

Since bit conditions are simply linear equations of bits and all intermediate
state bits are represented as bit nodes, arbitrary bit equation E can now be
represented as a equation with bit nodes on the left hand side and a 0-1 constant
on the right hand side. So the bit equation E can be represented as the following
data structure:
1. lhs: the set of bit nodes corresponding to the bits involved in the bit condi-

tion.
2. rhs: a 0-1 constant.

As can be seen in Section 2.1, the bit conditions on inactive bits are to be
imposed when active and inactive bits are XORed. This can happen in two
situations in ARX primitives:

1. When multiple words are XORed, all ω bits in all words take part in XOR
operations.

2. When multiple words are modular added, the LSBs take part in XOR oper-
ations.

With the digraph G(V, E), the signed differential path acquired from the ap-
proximate model in Section 3 can be regarded as a lookup table T projecting
all word nodes w ∈ Vw to its approximate signed difference ∇w, which means
T [w] = ∇w for all w ∈ Vw and ∇w[i] ∈ {u, n,=} for i = 0, . . . , ω − 1. For an
operator node op ∈ Vo and the signed differential path T , we are able to deduce
a set of bit conditions ξ by calling Algorithm 6 as ξ ← optBC(G, T ,op). The
ξ set containing all bit conditions can be acquired by calling Algorithm 7 as
ξ ← allBC(G, T ) which is simply calling optBC in Algorithm 6 for all op ∈ Vo.

4.4 Digraph based Objective Function Definition

According to the analysis in Section 2.1, the bit conditions determining the
signed differential probability are all generated by the modular add operations.
With the digraph G and the approximate differential path T , the modular-add-
generated bit conditions can be determined by simply referring to all the modular
add operator nodes denoted as V+ ⊆ Vo. We first prove the following Lemma 1.

16



Algorithm 6: optBC
Input : The digraph G(V, E), the approximate signed differential path T , the

operator node op ∈ Vo
Output: The set ξ containing the bit conditions imposed to the inactive bits

of input-output words
1 Let op.iWords = {x1, . . . ,xn} and op.iWord = y, refer to T for the signed

differences corresponding to the input-output words namely ∇x1, . . . ,∇xn

and ∇y.
2 Initialize the bit condition set ξ = ϕ
3 Set N ← ω if op.type = XOR and N ← 1 otherwise
4 for i = 0, . . . , N − 1 do
5 Compute offset value αi ≡ i+ op.rotBit mod ω.
6 if ∇y[i] = ∇x1[αi] = . . . = ∇xn[αi] ∈ {=} then
7 continue
8 else
9 Initialize a bit equation E with E.lhs = ϕ and E.rhs = op.const[αi]

10 for j = 1, . . . , n do
11 if ∇xj [αi] ∈ {u, n} then
12 E.rhs← E.rhs⊕∇xj [αi].sign
13 else
14 E.lhs← E.lhs

∪
{xj .bαi}

15 if ∇y[i] ∈ {u, n} then
16 E.rhs← E.rhs⊕∇y[i].sign
17 If E.lhs is not empty, update ξ ← ξ

∪
{E}

18 else
19 E.lhs← E.lhs

∪
{y.bi}

20 Update ξ ← ξ
∪
{E}

21 Return ξ

Algorithm 7: allBC
Input : The digraph G(V, E), the approximate signed differential path T .
Output: The set ξ containing all bit conditions imposed to the inactive bits

1 Initialize the bit condition set ξ = ϕ
2 for op ∈ Vo do
3 Call Algorithm 6 as ξ′ ← optBC(G, T ,op).
4 Update ξ ← ξ

∪
ξ′.

5 Return ξ.

17



Lemma 1. For a modular add z = x1 + . . . + xn with input-output signed
differences ∇x1, . . . ,∇xn,∇z, we define the 0-1 variables θ0, . . . , θω−2 as

θi =

(
n∨

j=1

∇xj [i].xdiff

)
∨∇z[i].xdiff (14)

The number of newly generated bit conditions is no higher than β =
∑ω−2

i=0 θi.

Proof. We only need to consider ∇z[i] (i = 0, . . . , ω − 2):

1. The active z[i] is naturally a newly generated bit condition as ∇z[i] = u/n
so the number new condition at the i-th bit equal to θi.

2. If z[i] is inactive and x1[i], . . . , xn[i] are also inactive, no new bit condition
is generated which is equal to θi as well.

3. If z[i] is inactive and some of x1[i], . . . , xn[i] are active, the number of newly
generated bit condition is 0 which is smaller than the θi = 1 in this case
which completes the proof.

Lemma 1 defines a β parameter upper bounding the number of modular-add-
generated bit conditions. For z = f(w1, w2, x2) in Eq. (1), we can further prove
that the number of newly generated bit conditions in f actually equals to β.

Proposition 1. For z = f(w1, w2, x2) in Eq. (1) with signed differences ∇w1,
∇w2, ∇x2 and ∇z, we naturally define 0-1 variables θ0, . . . , θω−2 as Eq. (14).
The number of newly generated bit conditions is equal to the parameter β defined
in Lemma 1.
Proof. The knowledge of ∇w1,∇w2 directly re-
sult in the the XOR difference of x1. Consider
∇z[i] (i = 0, . . . , ω − 2):
1. The active z[i] is naturally a newly gener-

ated bit condition, so the number new con-
dition at the i-th bit equal to θi.

2. If z[i] is inactive and x1[i], x2[i] are also in-
active, no new bit condition is generated
which is equal to θi as well.

3. If z[i] is inactive, x1[i], x2[i] are both
active, this indicates one newly gener-
ated bit condition on the inactive mem-
ber of (∇w1[i],∇w2[i]) so as to make
∇x1[i].sign ̸= ∇x2[i].sign for cancellation
or ∇x1[i].sign = ∇x2[i].sign for carry. So
the number of newly generated bit condi-
tion equals to θi = 1 which completes the
proof.

w1 w2

XOR

x1 x2

ADD

z

Fig. 2: The digraph for f func-
tion in Eq. (1)

Note although Proposition 1 prove that the

18



The Lemma 1 and Proposition 1 inspire us to set the objective function of
the MILP model to minimize the parameter β for all op ∈ V+ as Eq. (15) so as
to find the signed differential paths with the fewest bit conditions.

M.obj← min
∑

op∈V+

β (15)

Remark. Although it is proved in Proposition 1 that the number of newly
generated bit conditions are equal to β, there are special situations where some
bit conditions are satisfied naturally without affecting the overall probability:
since z[0] = w1[0] ⊕ w2[0] ⊕ x2[0], when all ∇w1[0],∇w2[0],∇x2[0] are active,
∇z[0] is satisfied naturally. So even for f function in Eq. (1), β should still be
regarded as the upper bound rather than the exact number of bit conditions.

4.5 Boomerang Intersection Constraints

For the signed differential top and bottom paths ∇tX
E−1

0−−−→ ∇tP and ∇bX
E1−−→

∇bC deduced separately with the approximate model in Section 3, we may con-
struct 2 digraphs Gt and Gb, and deduce the bit conditions independently. After
the bit condition deduction, we may find that at some intersecting x[i] bits, there
are active bit condition in one side and inactive bit condition on the other. For
example, there may be ∇bx[i] = n and ∇tx[i] = 0 which is obviously incompat-
ible: since ∇bx[i] = n should be satisfied in both (X1, X3) and (X2, X4) sides of
the quartets, there are obviously x1[i] = x3[i] = 0 and x2[i] = x4[i] = 1 violating
the ∇tx[i] = 0 bit condition in the top. This is also a proof that the 0-AND con-
straint ∆tX ∧∆bX = 0 is insufficient for compatible top-bottom paths. In order
to avoid such incompatibilities, we must add additional boomerang intersection
constraints to the MILP model.

As can be seen in previous analysis, the bit conditions on inactive bits are to
be generated in XORed bits, including all ω bits related to type-XOR operator
nodes and the LSBs of type-ADD operators. For a word node w ∈ Vw of digraph
G, its related operator nodes, corresponding to the operations taking the word w
as either input or output, can be extracted by calling Rw ← relatedOpt(G,w)
in Algorithm 8. Then, for Gt and Gb describing the computations of E−1

0 and
E1, and for each intersecting state word node x in either Gt or Gb, we can
acquire Rt

x ← relatedOpt(Gt,x) and Rb
x ← relatedOpt(Gb,x) containing all

the x-related operator nodes in top and bottom paths. For an operator in op ∈
Rt

x, we can deduce that some x[i] bit is XORed with other bits denoted as
w1[i1], . . . , wn[in] by the operation corresponding to op in E−1

0 . In order to avoid
incompatibilities, we can add the constraints in Eq. (16) to the MILP modelM
when deducing signed differential paths:{

(M, a)← orModel(M, {∇tx[i].xdiff,∇tw1[i1].xdiff, . . . ,∇twn[in].xdiff})

M.con← a+∇bx[i].xdiff ≤ 1
(16)

In this way, the incompatibility caused by ∇bx[i] ∈ {u, n}
∧
∇tx[i] ∈ {0, 1} can

be eliminated. Similarly, for op ∈ Rb
x, the constraints of similar form as Eq. (16)

19



can be deduced as Eq. (17).{
(M, a)← orModel(M, {∇bx[i].xdiff,∇bw1[i1].xdiff, . . . ,∇bwn[in].xdiff})
M.con← a+∇tx[i].xdiff ≤ 1

(17)

By traversing all XORed bits caused by Rt
x- and Rb

x-operators, we can ac-
quire an updated modelM that can deduce top-bottom paths without the afore
mentioned compatibility issues. The constraints in Eq. (16) and Eq. (17) can
therefore be referred along with the 0-AND constraint as the boomerang inter-
section constraints. All such constraints can be added to the MILP model by
calling Algorithm 29 in Supp. Mat. E.2.

Algorithm 8: relatedOpt
Input : The digraph G(V, E), the word node x
Output: The set Rx containing all operator nodes taking the word x as input

or output words
1 Initialize the operator node set Rx = ϕ
2 for op ∈ Vo do
3 If op.oWord = x, update Rx ←Rx

∪
{op}

4 If x ∈ op.iWord, update Rx ←Rx

∪
{op}

5 Return Rx.

5 Application to BLAKE Hash Functions

We apply our approximate signed differential modeling and digraph techniques
to conduct boomerang attacks on the keyed permutation of BLAKE3, BLAKE2s
and BLAKE-256. The general ideas of BLAKE top-bottom path deduction are
similar: for both top and bottom paths, a local collision at round r caused by
1-bit difference in M and V r is constructed so as to make several consecutive
intermediate states have no active bits at all. We demonstrate the top and bot-
tom path deduction procedure in detail for BLAKE3 and briefly for BLAKE2s
and BLAKE256.

5.1 Boomerang Attack on BLAKE3

Since BLAKE3 has seven rounds, we divide the whole keyed permutation into
E0 and E1 intersecting at state V 3.5 as follows:

V 0 E0−−→ V 3.5 E1−−→ V 7.

In the top path, a local collision can be constructed by setting ∇tv1.50 [i].xdiff =
∇tm1[i].xdiff = 1 (i = 0, . . . , 31): if we further add∇tv1.50 [i].sign⊕∇tm1[i].sign =
1 (i = 0, . . . , 30, unnecessary for MSB i = 31), there should be five consecutive

20



states TV 1.5, V 2, TV 2, V 2.5, TV 2.5 with no active bits at all. Similarly, in the
bottom path, let ∇bv50 [j].xdiff = ∇bm9[j].xdiff = 1 (j = 0, . . . , 31) and fur-
ther add ∇bv50 [j].sign⊕∇bm9[j].sign = 1 (j = 0, . . . , 30 , unnecessary for MSB
j = 31), there should be five consecutive states TV 5, V 5.5, TV 5.5, V 6, TV 6 with
no active bits.

Three different MILP models namely Mt, Mb, Mc are constructed:
– Mt: deduce the top path T t

i : ∇tV 1.5 → ∇tV 0 where i = 0, . . . , 31 corre-
sponds to the active bit selection on v1.50 and m1.

– Mb: deduce the bottom path T b
j : ∇bV 6 → ∇bV 7 where j = 0, . . . , 31

corresponds to the active bit selection on v50 and m9.
– Mc: For each top-bottom path combination T t

i , T b
j (i, j ∈ {0, . . . , 31}, model

Mc is constructed to deduce the top and bottom path around the intersect-
ing part represented as Ti,j : ∇tV 2.5 ← ∇tV 3.5,∇bV 3.5 → ∇bV 5.

Since for BLAKE3, as well as BLAKE2s and BLAKE-256, round functions can be
decomposed into the hG function calls defined in Eq. (8), the MILP model cap-
turing the approximate signed differential propagation rules of hG can be gen-
erated by calling (M,∇y0, . . . ,∇y3)← hGModel(M,∇x0, . . . ,∇x3,∇m,α, β) in
Algorithm 9 acting as the building block for constructing the three models.
Besides modeling hG as Algorithm 9, the objective functions of all 3 models are

Algorithm 9: hGModel
Input : The initial MILP model M, the encoded input signed differences

∇x0, . . . ,∇x3,∇m, α, β ∈ Z+.
Output: The updated MILP model M, the encoded output signed differences

∇y0, . . . ,∇y3
1 Call Algorithm 3 as (M,∇w0)← modAdd(M,∇x0,∇x1)
2 Call Algorithm 3 as (M,∇y0)← modAdd(M,∇w0,∇m)
3 Call Algorithm 4 as (M,∇w1)← xorApprox(M,∇y0,∇x3)
4 Define ∇y3 ← ∇w1 ≫ α
5 Call Algorithm 3 as (M,∇y2)← modAdd(M,∇y3,∇x3)
6 Call Algorithm 4 as (M,∇w2)← xorApprox(M,∇y2,∇x1)
7 Define ∇y1 ← ∇w2 ≫ β
8 Return (M,∇y0, . . . ,∇y3).

set as Eq. (15) and the boomerang constraints in Section 4.5 are added to Mc.
In this way, the solution of each model returns an objective value correspond-
ing to the upper bound of bit conditions. In fact, in BLAKE3 (as well as all
other BLAKE hash function family members), Proposition 1 is applicable for
all modular add operations making the bit condition number bound extremely
tight. Let ηt =Mt.obj, ηb =Mb.obj and ηc =Mc.obj. Since all bit conditions
in T t

i and T b
j are to be satisfied randomly, the probability for finding quartets

satisfying T t
i and T b

j can be evaluated as 2−2(ηt+ηb). As to the Ti,j , the mes-
sage modification can fix one side of the bit conditions in ∇tV 3 → ∇tV 3.5 and
∇bV 3.5 → ∇bV 4. Supposing that there are ηcf bit conditions fixed, according to

21



the existing results [16,17,18], the complexity of finding the boomerang quartets
(V 3.5

s ,Ms) (s = 1, . . . , 4) can therefore be evaluated as

Comp = 2η
c
f + 22(η

t+ηb+ηc−ηc
f ) (18)

The 2η
c
f term corresponds to the process of finding (V 3.5,M) quartets follow-

ing the top-bottom paths ∇tV 3.5 → ∇tV 3 and ∇bV 3.5 → ∇bV 4: the message
modifications applied to (V 3.5

1 ,M1) guarantee that the signed differential prop-
agations in (V 3.5

1 , V 3.5
3 ) and (V 3.5

1 , V 3.5
2 ) follow the paths ∇tV 3.5 → ∇tV 3 and

∇bV 3.5 → ∇bV 4 respectively while all ηcf bit conditions are satisfied randomly
for (V 3.5

2 , V 3.5
4 ) and (V 3.5

2 , V 3.5
3 ) with a theoretic probability of 2−ηc

f . After ac-
quiring a (V 3.5,M) quartet satisfying ∇tV 3.5 → ∇tV 3 and ∇bV 3.5 → ∇bV 4

simultaneously, the remaining (ηt+ηb+ηc−ηcf ) bit conditions are satisfied ran-
domly utilizing the free degrees in message blocks, which dominates the overall
complexities.

We give the ηt, ηb, ηc and ηcf values along with the complexities corresponding
to different i, j combinations in Table 7. Note that the top path T t

24 deduced the
with the approximate model is further detected infeasible due to contradictory
bit conditions on inactive bits indicating that the approximate signed differential
paths should always be checked using digraph based the bit condition deduction
technique in Section 4.3.

Table 7: The ηt, ηb, ηc and ηcf values corresponding to different i, j combinations
for BLAKE3. The (i, j) = (24, 31) setting marked with ∗ is infeasible because
the top path has contradicted bit conditions on inactive bits.

i j ηt ηb ηc ηc
f log2 Comp i j ηt ηb ηc ηc

f log2 Comp

31 2 47 28 101 85 182 0 31 77 25 76 72 212
31 6 47 28 101 85 182 4 31 78 25 76 72 214
31 10 47 28 101 85 182 8 31 76 25 76 72 210
31 14 47 27 101 85 180 12 31 73 25 76 72 204
31 18 47 28 101 85 182 16 31 76 25 76 72 210
31 22 47 28 101 85 182 20 31 76 25 76 72 210
31 26 47 28 101 85 182 24∗ 31 72 25 76 72 202
31 30 47 27 99 83 180 28 31 75 25 76 72 208

By analyzing the parameters in Table 7, we may find that the ηb, ηc and
(ηc − ηcf ) values for i = 31 ∧ j ̸= 31 are all slightly larger than those for i ̸=
31∧ j = 31. On the contrary, the ηt values for i = 31∧ j ̸= 31 are much smaller
than those for i ̸= 31 ∧ j = 31. As a result, the advantage of a much smaller ηt

makes up with the disadvantage of slightly larger ηb, ηc and (ηc − ηcf ) making
i = 31 ∧ j ̸= 31 a better choice for lower attacking complexities: as can be seen
in Table 7, (i, j) = (31, 14) makes the lowest complexity of 2180.

It is noticeable that the overall complexity is usually dominated by the ηt, ηb

parameters: a larger ηc is not the main factor since most of the bit conditions are
to be fixed with the message modification technique. The practical experiments
in [17,18] indicate that such (V 3.5,M) quartets can be found with complexities

22



much lower than 2η
c
f . This phenomenon is can also be seen in BLAKE2s and

BLAKE-256 which makes our (i, j)-selection strategy different from that in pre-
vious works: we prefer to use i = 31 so as to lower ηt, ηb while previous works use
j = 31 so as to acquire a lower ηc. We have to admit that a lower ηc can make it
easier to find practically (V 3.5,M) quartets covering short rounds around V 3.5.
But it is also true that j = 31 is more likely to have a higher overall complexi-
ties for full-round attacks than the i = 31 counterparts. Details for model and
digraph constructions of BLAKE3 can be found in Supp. Mat. E.3 and Supp.
Mat. D.1 respectively.
Practical Verifications. The theoretic complexity for finding (V 3.5,M) quar-
tets satisfying ∇tV 3.5 → ∇tV 3 and ∇bV 3.5 → ∇bV 4 is 2η

c
f which is compu-

tationally infeasible. However, in practice, the complexity is lower enabling us
to construct quartets satisfying round-reduce top-bottom paths practically: as
can be seen, a practical quartets for 7-round BLAKE-256 is given in [17] and
those for 6.5-round BLAKE2s and BLAKE-256 are given in [18] so as to verify
the compatibility of their paths. We also provide practical quartets for 3-round
BLAKE3 using both i = 31∧ j ̸= 31 and i ̸= 31∧ j = 31 settings covering V 1 to
V 4: two quartets following (i, j) = (31, 14) and (i, j) = (12, 31) respectively are
given in Table 9 indicating the compatibility of our paths.

5.2 Boomerang Attacks on BLAKE2s and BLAKE-256

For both BLAKE2s and BLAKE-256, the boomerang attack targets are the
keyed permutation E : V 2.5 → V 10.5 which is decomposed into E0 and E1

intersecting at state V 6.5 as follows:

V 2.5 E0−−→ V 6.5 E1−−→ V 10.5.

For local collisions, the cancelable 1-bit signed differences should be imposed to
(∇tv41 [i],∇m5[i]) in the top path and (∇bv82 [j],∇bm11[j]) in the bottom path.
In this way, both top and bottom paths have seven consecutive zero-difference
intermediate states. We also construct the three models as in Section 5.1 and
deduce the ηt, ηb, ηc and ηcf values along with the complexities corresponding to
different i, j combinations. We find that the best 8-round attack complexities
for both BLAKE-256 and BLAKE2s are all acquired with i = 31 and the good
j selections as well as the corresponding complexity parameters are all listed in
Table 10. In comparison with previous boomerang results, our method improve
the best result on BLAKE2s by 0.5 rounds and lower the complexity of BLAKE-
256 result by 216. As can be seen, Table 10 includes not only our new i = 31
setting attacks but the (i, j) settings of previous best attacks as well: for BLAKE-
256, we evaluate the (i, j) = (28, 31), (20, 31) setting paths used in [17,18] and
acquire the same complexities proving the accuracy of our digraph based bit
condition deduction method. Based on the (i, j) = (28, 31) setting used originally
in [18] for attacking 7.5-round BLAKE2s, we extend the path by 0.5 rounds
acquiring an 8-round attack with complexity 2230. It is also noticeable from
Table 10, the “small ηt for i = 31” phenomenon for BLAKE3 also exists in

23



Table 8: A signed differential path with all bit conditions settled using the
digraph-based method with the (i, j) = (31, 14) setting.
∇tM ================================ u=============================== ================================ ================================

================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 0 ========u===========u===n======= ================u=============== =========u===u===========u===u== uu==u=======u===u===n====u==n===
u=======n===========n===u======= u=============================== u============n======u========n== =n==n===u===nu======u===n===u===
u=======u=======u=======u======= ================u=======n======= n===================n=========== ================================
1=============================== 1=======u=======0=============== u===u====u==========u====u====== u=======0====u==u=======uu======

∇tV 0.5 u===============0=============== u===============u=======1======= ====================u=========== ========0===============0=======
=======1======================== ================================ n======1========n=============== u======0=======1====n==1=======0
u=============================== ================================ u========0===============0====== u=======u====0==u=======u1======
========n===============n======= n=======0===============1======= ============================0=== u===============u===============

∇tV 1 u=============================== ========0===============0======= ================================ ================================
================================ ================================ ================================ =======1========================
u=============================== ================================ ================================ ================================
n===============n=============== ================================ ================================ ========1=======================

∇tV 1.5 n=============================== ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
========0======================= ================================ ================================ ================================

∇tV 2 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 2.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 3 ================================ ================================ ================================ u===============================
===============u===============0 ========0======================= ========================0======= ================0===============
===============================0 ========u======================= ================================ ================================
===============0================ ================================ ========u======================= 0===============================

∇tV 3.5 ===========u===u===========u===0 ====================u=========== ====u===================0======= u===============0===========u===
==u===u===u===u===u=======u===u= ===u===========u===========u==== =======u===u=======u===========u ===u=======u===u=======u=======u
===u===u===0=======u===u===0===u ========u===========0=======u=== u===0=======u===========u======= ====u===u=======u=======u===0===
===u===u===========u===u=======0 ============================u=== u===========u=================== ====u===u===============u=======

∇bM ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ =================u============== ================================ ================================
================================ ================================ ================================ ================================

∇bV 3.5 =====n===n=======n=======n====== =u===n====u==n====n==n=======n== ==========u===n===========u===n= =u==============================
=================u============== =====u===u=======u=======u====== =====u===u===u====u==u===u===uu= =====u========u==u============u=
=====u===========u============== =n=======n====================== =n=======u=======u=======u====== =================u==============
=1=======0u==============0====u= =====u====u======u===u====u===== =0===============0=======u====== =================u==============

∇bV 4 =1===============n============== =========0=======n=======0====== =====u========================== =u=======1=======u==============
================================ ========================1======= 1====n==1=======1u======1======= =n===============n======1=======
==========0======u========0===== ================================ =================u============== =u=======u1======u=======u====0=
=u===============u=======0====== =============1================== =========0=======n=======0====== =========n===============n======

∇bV 4.5 =================n============== ================================ ================================ =========0===============0======
================================ ================================ ========================1======= ================================
================================ ================================ =================u============== ================================
=========================0====== ================================ ================================ =n===============n==============

∇bV 5 =================n============== ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ =========================0======

∇bV 5.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 6 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 6.5 ================================ ================================ =================u============== ================================
=========0====================== =========================0====== u===============0=============== =0==============================
================================ ================================ =========================u====== ================================
0=============================== =================0============== =========================u====== ================================

∇bV 7 =====u========================== u===========u===0===========u=== =0===========u===u============== =========0===========u==========
====u===========u=======u===u=== u===========u=======u=========== ===u=======u===u===u===u===u===u u=======u=======u===u=======u===
=u=======u===0=======u===u====== =========u=======u===0=======u== =====0=======u===========u====== ====u===u===0===u===u===u===0===
====u===u===========u===u======= =========u===========u===u====== =================u===========u== =============u==================

24



Table 9: (V 3.5,M) quartet for BLAKE3 from V 1 to V 4 satisfying the (i, j) =
(31, 14) and (i, j) = (12, 31) settings.

(i, j) = (31, 14)
M1 0xee80884a, 0xc43832f9, 0x3d7d500e, 0x8e624dbe, 0x96c82faf, 0x73936843, 0x23bb25ab, 0xb4cc6d83,

0x31cd7903, 0xa511602f, 0x1cb0e950, 0x591526e2, 0x9b11f9c6, 0xa4ad1fb5, 0xe6da4589, 0x10f8033
M2 0xee80884a, 0xc43832f9, 0x3d7d500e, 0x8e624dbe, 0x96c82faf, 0x73936843, 0x23bb25ab, 0xb4cc6d83,

0x31cd7903, 0xa511202f, 0x1cb0e950, 0x591526e2, 0x9b11f9c6, 0xa4ad1fb5, 0xe6da4589, 0x10f8033
M3 0xee80884a, 0x443832f9, 0x3d7d500e, 0x8e624dbe, 0x96c82faf, 0x73936843, 0x23bb25ab, 0xb4cc6d83,

0x31cd7903, 0xa511602f, 0x1cb0e950, 0x591526e2, 0x9b11f9c6, 0xa4ad1fb5, 0xe6da4589, 0x10f8033
M4 0xee80884a, 0x443832f9, 0x3d7d500e, 0x8e624dbe, 0x96c82faf, 0x73936843, 0x23bb25ab, 0xb4cc6d83,

0x31cd7903, 0xa511202f, 0x1cb0e950, 0x591526e2, 0x9b11f9c6, 0xa4ad1fb5, 0xe6da4589, 0x10f8033
V 3.5
1 0xba33879a, 0xeb695a7a, 0x8cb4b42c, 0xfdbe455d, 0x2337f6e2, 0x164b4ffa, 0x157e3de7, 0xbd77e373,

0xf5ab732d, 0x90bd040a, 0x8559dad7, 0xe9a8e080, 0x57231596, 0x3f2df6b9, 0xb8fc1152, 0xfac5e6d2
V 3.5
2 0xbe73c7da, 0xaf4d7e7e, 0x8c96b40e, 0xbdbe455d, 0x2337b6e2, 0x120b0fba, 0x113a19a1, 0xb975a371,

0xf1ab332d, 0xd0fd040a, 0xc5199a97, 0xe9a8a080, 0x57031594, 0x3b0db299, 0xb8fc1112, 0xfac5a6d2
V 3.5
3 0xba22878a, 0xeb69527a, 0x84b4b42c, 0x7dbe4555, 0x115d6c0, 0x64a4fea, 0x146e2de6, 0xad66e272,

0xe4ab622c, 0x903d0402, 0x551da57, 0xe1286000, 0x46230496, 0x3f2df6b1, 0x38f41152, 0xf245e652
V 3.5
4 0xbe62c7ca, 0xaf4d767e, 0x8496b40e, 0x3dbe4555, 0x11596c0, 0x20a0faa, 0x102a09a0, 0xa964a270,

0xe0ab222c, 0xd07d0402, 0x45119a17, 0xe1282000, 0x46030494, 0x3b0db291, 0x38f41112, 0xf245a652
(i, j) = (31, 14)

M1 0x591dd3bd, 0x90071f7a, 0x72eee34f, 0x7e6116bb, 0xd0527ca1, 0xb40c585a, 0x4e12c108, 0x730e2f3e,
0x133279e9, 0x32a000cf, 0xcf9cca60, 0xf42a63ca, 0x8a660309, 0x9d31a602, 0xe739a151, 0xb443037c

M2 0x591dd3bd, 0x90071f7a, 0x72eee34f, 0x7e6116bb, 0xd0527ca1, 0xb40c585a, 0x4e12c108, 0x730e2f3e,
0x133279e9, 0xb2a000cf, 0xcf9cca60, 0xf42a63ca, 0x8a660309, 0x9d31a602, 0xe739a151, 0xb443037c

M3 0x591dd3bd, 0x90070f7a, 0x72eee34f, 0x7e6116bb, 0xd0527ca1, 0xb40c585a, 0x4e12c108, 0x730e2f3e,
0x133279e9, 0x32a000cf, 0xcf9cca60, 0xf42a63ca, 0x8a660309, 0x9d31a602, 0xe739a151, 0xb443037c

M4 0x591dd3bd, 0x90070f7a, 0x72eee34f, 0x7e6116bb, 0xd0527ca1, 0xb40c585a, 0x4e12c108, 0x730e2f3e,
0x133279e9, 0xb2a000cf, 0xcf9cca60, 0xf42a63ca, 0x8a660309, 0x9d31a602, 0xe739a151, 0xb443037c

V 3.5
1 0xacb69906, 0xef9b9ecb, 0x5ae44d23, 0x8931df34, 0xd7cffcdf, 0x6846678a, 0x97e6e726, 0xe178ba1e,

0x367da271, 0xfe1db232, 0xb3be96af, 0xb414cbf9, 0x6b34b665, 0xc8ed187b, 0x838b3c93, 0x9c773fd1
V 3.5
2 0x2c369186, 0xa7931603, 0x5aa04d67, 0x89315f34, 0x57cffcdf, 0xe8c66f0a, 0xdf6aefae, 0x617cb21a,

0xb67daa71, 0xfe1d32b2, 0x333e162f, 0x3414cbf9, 0x6b30b625, 0x40ad103b, 0x830b3c93, 0x1c773fd1
V 3.5
3 0x8cb49904, 0xee9b9ecb, 0x5ae44c23, 0x8930cf34, 0x93cbb89b, 0x4844658a, 0x95e6c704, 0xc158981c,

0x345d8051, 0xfe1cb222, 0xb3ae86ae, 0xa404cae9, 0x6914b445, 0xc8ec187b, 0x838b2c92, 0x9c673ec1
V 3.5
4 0xc349184, 0xa6931603, 0x5aa04c67, 0x89304f34, 0x13cbb89b, 0xc8c46d0a, 0xdd6acf8c, 0x415c9018,

0xb45d8851, 0xfe1c32a2, 0x332e062e, 0x2404cae9, 0x6910b405, 0x40ac103b, 0x830b2c92, 0x1c673ec1

BLAKE2s and BLAKE-256 while previous results [17,18] commonly apply the
j = 31 setting so as to minimize ηc which, according to our analysis, is not the
optimal choice.
Practical Verification. For (i, j) = (31, 30), we are able to find practical
(V 6.5,M) quartets satisfying the top-bottom paths from V 3.5 to V 7 for both
BLAKE2s and BLAKE-256. The quartets are shown in Table 11.

6 Discussions and Conclusions

In this paper, we propose the approximate MILP modeling technique for au-
tomatic signed differential path deduction along with a digraph based frame-
work for bit condition deduction, objective function definition and compatible
boomerang intersections. The two techniques form a thorough cryptanalysis tool
for ARX primitives enabling us to launch new boomerang attacks on BLAKE3,
BLAKE2s and BLAKE-256 hash functions.

According to our experiments, the approximate signed differential model is
efficient only for short rounds. For longer rounds, the model solving process can
be extremely time consuming which is an obvious direction for further improve-
ments. Besides, the signed difference is by its nature applicable for collision

25



Table 10: The ηt, ηb, ηc and ηcf values correspond to different i, j combinations
for BLAKE-256 and BLAKE2s. Such parameters are almost the same for both
primitives except in setting of (i, j) = {(31, 6), (28, 31)} where the corresponding
values are listed in bold and the ones of BLAKE2s are given in “()”.

i j ηt ηb ηc ηc
f log2 Comp Source

31 2 48 28 99 83 184 This Paper
31 6 48 29(28) 99 83 186(184) This Paper
31 10 48 28 99 83 184 This Paper
31 14 48 27 99 83 182 This Paper
31 18 48 28 99 83 184 This Paper
31 22 48 28 99 83 184 This Paper
31 26 48 28 99 83 184 This Paper
31 30 48 27 97 81 182 This Paper
28 31 70(86) 25 77 73 198(230) [18](This Paper)
20 31 71(-) 25(-) 77(-) 73(-) 200(-) [17]

Table 11: (V 6.5,M) quartet for BLAKE-256 and BLAKE2s from V 3.5 to V 7

satisfying the (i, j) = (31, 30) setting.
BLAKE-256

M1 0x216b4119, 0xcdbee602, 0x31dfd1c9, 0xea32e3c9, 0xaa8dcdad, 0x61c5da01, 0x816d0dd, 0xc31c67e2,
0x59860f6d, 0xe2baaacd, 0xfe012bf2, 0x56c71ddd, 0x4de39df7, 0x8b993c13, 0xdfadcabe, 0xf1ea633c

M2 0x216b4119, 0xcdbee602, 0x31dfd1c9, 0xea32e3c9, 0xaa8dcdad, 0x61c5da01, 0x816d0dd, 0xc31c67e2,
0x59860f6d, 0xe2baaacd, 0xfe012bf2, 0x16c71ddd, 0x4de39df7, 0x8b993c13, 0xdfadcabe, 0xf1ea633c

M3 0x216b4119, 0xcdbee602, 0x31dfd1c9, 0xea32e3c9, 0xaa8dcdad, 0xe1c5da01, 0x816d0dd, 0xc31c67e2,
0x59860f6d, 0xe2baaacd, 0xfe012bf2, 0x56c71ddd, 0x4de39df7, 0x8b993c13, 0xdfadcabe, 0xf1ea633c

M4 0x216b4119, 0xcdbee602, 0x31dfd1c9, 0xea32e3c9, 0xaa8dcdad, 0xe1c5da01, 0x816d0dd, 0xc31c67e2,
0x59860f6d, 0xe2baaacd, 0xfe012bf2, 0x16c71ddd, 0x4de39df7, 0x8b993c13, 0xdfadcabe, 0xf1ea633c

V 6.5
1 0xc9237803, 0xe84246aa, 0xfd7dfc5e, 0x6f68d8fc, 0x51fb7f99, 0x13f10371, 0x7bb37c33, 0x9017231e,

0x81ddd2fe, 0x4cf1ab85, 0x352a9103, 0xeeae25de, 0x92faee1c, 0xf9cedfc4, 0x1307d5f2, 0xeee76f2c
V 6.5
2 0x89017821, 0xa84206aa, 0xbd3df81e, 0x4b689cd8, 0x75b97bdd, 0x53f30773, 0x7bb37c33, 0xd057275e,

0xc19d92be, 0x4cf1ab85, 0x352a9503, 0xaeae65de, 0x92faee1c, 0xb9cedfc4, 0x13059592, 0xeac72b0c
V 6.5
3 0x41237803, 0x684246a2, 0xfd6cfc4e, 0x6f68d0fc, 0x50ea6f98, 0x3e00270, 0x59915c11, 0x8016230e,

0x155d27e, 0x44712b05, 0x242a8002, 0xee2e25d6, 0x1272ee1c, 0xf14edf44, 0x207c4f2, 0xeee76f24
V 6.5
4 0x1017821, 0x284206a2, 0xbd2cf80e, 0x4b6894d8, 0x74a86bdc, 0x43e20672, 0x59915c11, 0xc056274e,

0x4115923e, 0x44712b05, 0x242a8402, 0xae2e65d6, 0x1272ee1c, 0xb14edf44, 0x2058492, 0xeac72b04
BLAKE2s

M1 0xc77266d6, 0x620ce970, 0xb9a5573c, 0xb434a731, 0xa8996f30, 0xa10339da, 0x47cc583a, 0x2a3f20eb,
0x2b93a60f, 0x1b9d6bc4, 0xa43023a1, 0x7d135ea9, 0xa6cc4cdd, 0x9531106e, 0x596823aa, 0x43b8c256

M2 0xc77266d6, 0x620ce970, 0xb9a5573c, 0xb434a731, 0xa8996f30, 0xa10339da, 0x47cc583a, 0x2a3f20eb,
0x2b93a60f, 0x1b9d6bc4, 0xa43023a1, 0x3d135ea9, 0xa6cc4cdd, 0x9531106e, 0x596823aa, 0x43b8c256

M3 0xc77266d6, 0x620ce970, 0xb9a5573c, 0xb434a731, 0xa8996f30, 0x210339da, 0x47cc583a, 0x2a3f20eb,
0x2b93a60f, 0x1b9d6bc4, 0xa43023a1, 0x7d135ea9, 0xa6cc4cdd, 0x9531106e, 0x596823aa, 0x43b8c256

M4 0xc77266d6, 0x620ce970, 0xb9a5573c, 0xb434a731, 0xa8996f30, 0x210339da, 0x47cc583a, 0x2a3f20eb,
0x2b93a60f, 0x1b9d6bc4, 0xa43023a1, 0x3d135ea9, 0xa6cc4cdd, 0x9531106e, 0x596823aa, 0x43b8c256

V 6.5
1 0xe8a29f6f, 0xe51f66d9, 0x7f7f15bc, 0x9c50eb73, 0x317f5417, 0x391d97ed, 0x3b7227bb, 0xbcb98072,

0x93fe42f1, 0x5ffec280, 0x15899b2f, 0xc0b2358d, 0xa59e4022, 0x6ab31bb8, 0xdfa6fd6a, 0x572bddbd
V 6.5
2 0xa8809f4d, 0xa51f26d9, 0x3f3f11fc, 0x3850af57, 0x153d5053, 0x791f93ef, 0x3b7227bb, 0xfcf98432,

0xd3be02b1, 0x5ffec280, 0x15899f2f, 0x80b2758d, 0xa59e4022, 0x2ab31bb8, 0x5fa4bd0a, 0x530b999d
V 6.5
3 0x60a29f6f, 0x651f66d1, 0x7f6e15ac, 0x9c50e373, 0x306e4416, 0x290c96ec, 0x19500799, 0xacb88062,

0x13764271, 0x577e4200, 0x4898a2e, 0xc0323585, 0x25164022, 0x62331b38, 0xcea6ec6a, 0x572bddb5
V 6.5
4 0x20809f4d, 0x251f26d1, 0x3f2e11ec, 0x3850a757, 0x142c4052, 0x690e92ee, 0x19500799, 0xecf88422,

0x53360231, 0x577e4200, 0x4898e2e, 0x80327585, 0x25164022, 0x22331b38, 0x4ea4ac0a, 0x530b9995

attacks so we expect our approximate signed differential model be applied to
collision attacks on ARX hash functions in the future.

26



References

1. Wagner, D.: The boomerang attack. In Knudsen, L.R., ed.: FSE’99. Volume 1636
of LNCS., Springer, Heidelberg (March 1999) 156–170

2. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In Schneier, B., ed.: FSE 2000. Volume 1978 of LNCS.,
Springer, Heidelberg (April 2001) 75–93

3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the Ser-
pent. In Pfitzmann, B., ed.: EUROCRYPT 2001. Volume 2045 of LNCS., Springer,
Heidelberg (May 2001) 340–357

4. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In Daemen, J., Rijmen, V., eds.: FSE 2002. Volume 2365 of LNCS.,
Springer, Heidelberg (February 2002) 1–16

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In Cramer, R., ed.: EUROCRYPT 2005. Volume 3494 of LNCS., Springer,
Heidelberg (May 2005) 507–525

6. Gorski, M., Lucks, S.: New related-key boomerang attacks on AES. In Chowd-
hury, D.R., Rijmen, V., Das, A., eds.: INDOCRYPT 2008. Volume 5365 of LNCS.,
Springer, Heidelberg (December 2008) 266–278

7. Bariant, A., Leurent, G.: Truncated boomerang attacks and application to AES-
based ciphers. Cryptology ePrint Archive, Paper 2022/701 (2022)

8. Fleischmann, E., Forler, C., Gorski, M., Lucks, S.: New boomerang attacks on
ARIA. In Gong, G., Gupta, K.C., eds.: INDOCRYPT 2010. Volume 6498 of LNCS.,
Springer, Heidelberg (December 2010) 163–175

9. Kim, J., Moon, D., Lee, W., Hong, S., Lee, S., Jung, S.: Amplified boomerang
attack against reduced-round SHACAL. In Zheng, Y., ed.: ASIACRYPT 2002.
Volume 2501 of LNCS., Springer, Heidelberg (December 2002) 243–253

10. Sasaki, Y.: Improved related-tweakey boomerang attacks on deoxys-BC. In Joux,
A., Nitaj, A., Rachidi, T., eds.: AFRICACRYPT 18. Volume 10831 of LNCS.,
Springer, Heidelberg (May 2018) 87–106

11. Jeong, K., Lee, C., Sung, J., Hong, S., Lim, J.: Related-key amplified boomerang
attacks on the full-round Eagle-64 and Eagle-128. In Pieprzyk, J., Ghodosi, H.,
Dawson, E., eds.: ACISP 07. Volume 4586 of LNCS., Springer, Heidelberg (July
2007) 143–157

12. Dobraunig, C., List, E.: Impossible-differential and boomerang cryptanalysis of
round-reduced kiasu-BC. In Handschuh, H., ed.: CT-RSA 2017. Volume 10159 of
LNCS., Springer, Heidelberg (February 2017) 207–222

13. Ashur, T., Dunkelman, O.: A practical related-key boomerang attack for the full
MMB block cipher. In Abdalla, M., Nita-Rotaru, C., Dahab, R., eds.: CANS 13.
Volume 8257 of LNCS., Springer, Heidelberg (November 2013) 271–290

14. Isobe, T., Sasaki, Y., Chen, J.: Related-key boomerang attacks on
KATAN32/48/64. In Boyd, C., Simpson, L., eds.: ACISP 13. Volume 7959 of
LNCS., Springer, Heidelberg (July 2013) 268–285

15. Joux, A., Peyrin, T.: Hash functions and the (amplified) boomerang attack. In
Menezes, A., ed.: CRYPTO 2007. Volume 4622 of LNCS., Springer, Heidelberg
(August 2007) 244–263

16. Biryukov, A., Nikolic, I., Roy, A.: Boomerang attacks on BLAKE-32. In Joux,
A., ed.: FSE 2011. Volume 6733 of LNCS., Springer, Heidelberg (February 2011)
218–237

27



17. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on round-
reduced SM3 and BLAKE-256. Cryptology ePrint Archive, Report 2013/852
(2013)

18. Hao, Y.: The boomerang attacks on BLAKE and BLAKE2. In Lin, D., Yung, M.,
Zhou, J., eds.: Inscrypt 2014. Volume 8957 of LNCS., Springer (2014) 286–310

19. Biryukov, A., Lamberger, M., Mendel, F., Nikolic, I.: Second-order differential
collisions for reduced SHA-256. In Lee, D.H., Wang, X., eds.: ASIACRYPT 2011.
Volume 7073 of LNCS., Springer, Heidelberg (December 2011) 270–287

20. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256.
Cryptology ePrint Archive, Report 2011/037 (2011)

21. Yu, H., Bai, D.: Boomerang attack on step-reduced SHA-512. Cryptology ePrint
Archive, Report 2014/945 (2014)

22. Yu, H., Hao, Y., Bai, D.: Evaluate the security margins of SHA-512, SHA-256
and DHA-256 against the boomerang attack. Sci. China Inf. Sci. 59(5) (2016)
052110:1–052110:14

23. Mendel, F., Nad, T.: Boomerang distinguisher for the SIMD-512 compression
function. In Bernstein, D.J., Chatterjee, S., eds.: INDOCRYPT 2011. Volume
7107 of LNCS., Springer, Heidelberg (December 2011) 255–269

24. Sasaki, Y.: Boomerang distinguishers on MD4-family: First practical results on
full 5-pass HAVAL. In Miri, A., Vaudenay, S., eds.: SAC 2011. Volume 7118 of
LNCS., Springer, Heidelberg (August 2012) 1–18

25. Sasaki, Y., Wang, L.: Distinguishers beyond three rounds of the RIPEMD-128/-
160 compression functions. In Bao, F., Samarati, P., Zhou, J., eds.: ACNS 12.
Volume 7341 of LNCS., Springer, Heidelberg (June 2012) 275–292

26. Sasaki, Y., Wang, L., Takasaki, Y., Sakiyama, K., Ohta, K.: Boomerang distin-
guishers for full HAS-160 compression function. In Hanaoka, G., Yamauchi, T.,
eds.: IWSEC 12. Volume 7631 of LNCS., Springer, Heidelberg (November 2012)
156–169

27. Leurent, G., Roy, A.: Boomerang attacks on hash function using auxiliary differ-
entials. In Dunkelman, O., ed.: CT-RSA 2012. Volume 7178 of LNCS., Springer,
Heidelberg (February / March 2012) 215–230

28. Yu, H., Chen, J., Wang, X.: The boomerang attacks on the round-reduced Skein-
512. In Knudsen, L.R., Wu, H., eds.: SAC 2012. Volume 7707 of LNCS., Springer,
Heidelberg (August 2013) 287–303

29. Kircanski, A., Shen, Y., Wang, G., Youssef, A.M.: Boomerang and slide-rotational
analysis of the SM3 hash function. In Knudsen, L.R., Wu, H., eds.: SAC 2012.
Volume 7707 of LNCS., Springer, Heidelberg (August 2013) 304–320

30. Bai, D., Yu, H., Wang, G., Wang, X.: Improved boomerang attacks on SM3. In
Boyd, C., Simpson, L., eds.: ACISP 13. Volume 7959 of LNCS., Springer, Heidel-
berg (July 2013) 251–266

31. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table:
A new cryptanalysis tool. In Nielsen, J.B., Rijmen, V., eds.: EUROCRYPT 2018,
Part II. Volume 10821 of LNCS., Springer, Heidelberg (April / May 2018) 683–714

32. Song, L., Qin, X., Hu, L.: Boomerang connectivity table revisited. IACR Trans.
Symm. Cryptol. 2019(1) (2019) 118–141

33. Dunkelman, O.: Efficient construction of the boomerang connection table. Cryp-
tology ePrint Archive, Report 2018/631 (2018)

34. Boukerrou, H., Huynh, P., Lallemand, V., Mandal, B., Minier, M.: On the Feistel
counterpart of the boomerang connectivity table (long paper). IACR Trans. Symm.
Cryptol. 2020(1) (2020) 331–362

28



35. Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic sboxes.
IACR Trans. Symm. Cryptol. 2018(3) (2018) 290–310

36. Hadipour, H., Nageler, M., Eichlseder, M.: Throwing boomerangs into feistel struc-
tures: Application to CLEFIA, WARP, LBlock, LBlock-s and TWINE. IACR
Transactions on Symmetric Cryptology (2022) 271–302

37. Rahman, M., Saha, D., Paul, G.: Boomeyong: Embedding yoyo within boomerang
and its applications to key recovery attacks on AES and Pholkos. IACR Trans.
Symm. Cryptol. 2021(3) (2021) 137–169

38. Wang, H., Peyrin, T.: Boomerang switch in multiple rounds. IACR Trans. Symm.
Cryptol. 2019(1) (2019) 142–169

39. Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: The retracing boomerang at-
tack. In Canteaut, A., Ishai, Y., eds.: EUROCRYPT 2020, Part I. Volume 12105
of LNCS., Springer, Heidelberg (May 2020) 280–309

40. Delaune, S., Derbez, P., Vavrille, M.: Catching the fastest boomerangs application
to SKINNY. IACR Trans. Symm. Cryptol. 2020(4) (2020) 104–129

41. Frixons, P., Naya-Plasencia, M., Schrottenloher, A.: Quantum boomerang attacks
and some applications. Cryptology ePrint Archive, Report 2022/060 (2022)

42. Qin, L., Dong, X., Wang, X., Jia, K., Liu, Y.: Automated search oriented to key
recovery on ciphers with linear key schedule. IACR Trans. Symm. Cryptol. 2021(2)
(2021) 249–291

43. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks
on deoxys-bc including BDT effect. IACR Trans. Symm. Cryptol. 2019(3) (2019)
121–151

44. Liu, Y., Sasaki, Y.: Related-key boomerang attacks on GIFT with automated trail
search including BCT effect. In Jang-Jaccard, J., Guo, F., eds.: ACISP 19. Volume
11547 of LNCS., Springer, Heidelberg (July 2019) 555–572

45. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In Shoup, V.,
ed.: CRYPTO 2005. Volume 3621 of LNCS., Springer, Heidelberg (August 2005)
17–36

46. Wang, X., Yu, H.: How to break MD5 and other hash functions. In Cramer, R.,
ed.: EUROCRYPT 2005. Volume 3494 of LNCS., Springer, Heidelberg (May 2005)
19–35

47. De Cannière, C., Rechberger, C.: Finding SHA-1 characteristics: General results
and applications. In Lai, X., Chen, K., eds.: ASIACRYPT 2006. Volume 4284 of
LNCS., Springer, Heidelberg (December 2006) 1–20

48. Mendel, F., Nad, T., Schläffer, M.: Finding collisions for round-reduced SM3.
In Dawson, E., ed.: CT-RSA 2013. Volume 7779 of LNCS., Springer, Heidelberg
(February / March 2013) 174–188

49. Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A.,
de Weger, B.: Short chosen-prefix collisions for MD5 and the creation of a rogue
CA certificate. In Halevi, S., ed.: CRYPTO 2009. Volume 5677 of LNCS., Springer,
Heidelberg (August 2009) 55–69

50. Karpman, P., Peyrin, T., Stevens, M.: Practical free-start collision attacks on
76-step SHA-1. In Gennaro, R., Robshaw, M.J.B., eds.: CRYPTO 2015, Part I.
Volume 9215 of LNCS., Springer, Heidelberg (August 2015) 623–642

51. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first
collision for full SHA-1. In Katz, J., Shacham, H., eds.: CRYPTO 2017, Part I.
Volume 10401 of LNCS., Springer, Heidelberg (August 2017) 570–596

52. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced
Keccak. In Coron, J.S., Nielsen, J.B., eds.: EUROCRYPT 2017, Part III. Volume
10212 of LNCS., Springer, Heidelberg (April / May 2017) 216–243

29



53. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: Applications to collision
attacks on round-reduced Keccak. In Katz, J., Shacham, H., eds.: CRYPTO 2017,
Part II. Volume 10402 of LNCS., Springer, Heidelberg (August 2017) 428–451

54. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack on
reduced-round Keccak sponge function. In Coron, J.S., Nielsen, J.B., eds.: EURO-
CRYPT 2017, Part II. Volume 10211 of LNCS., Springer, Heidelberg (April / May
2017) 259–288

55. Liu, F., Mendel, F., Wang, G.: Collisions and semi-free-start collisions for round-
reduced RIPEMD-160. In Takagi, T., Peyrin, T., eds.: ASIACRYPT 2017, Part I.
Volume 10624 of LNCS., Springer, Heidelberg (December 2017) 158–186

56. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In Iwata, T., Cheon, J.H., eds.: ASIACRYPT 2015, Part II. Volume 9453
of LNCS., Springer, Heidelberg (November / December 2015) 612–630

57. Liu, F., Dobraunig, C., Mendel, F., Isobe, T., Wang, G., Cao, Z.: Efficient colli-
sion attack frameworks for RIPEMD-160. In Boldyreva, A., Micciancio, D., eds.:
CRYPTO 2019, Part II. Volume 11693 of LNCS., Springer, Heidelberg (August
2019) 117–149

58. Mendel, F., Peyrin, T., Schläffer, M., Wang, L., Wu, S.: Improved cryptanalysis of
reduced RIPEMD-160. In Sako, K., Sarkar, P., eds.: ASIACRYPT 2013, Part II.
Volume 8270 of LNCS., Springer, Heidelberg (December 2013) 484–503

59. Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 characteristics: Search-
ing through a minefield of contradictions. In Lee, D.H., Wang, X., eds.: ASI-
ACRYPT 2011. Volume 7073 of LNCS., Springer, Heidelberg (December 2011)
288–307

60. Leurent, G.: Analysis of differential attacks in ARX constructions. In Wang, X.,
Sako, K., eds.: ASIACRYPT 2012. Volume 7658 of LNCS., Springer, Heidelberg
(December 2012) 226–243

61. Leurent, G.: Construction of differential characteristics in ARX designs application
to Skein. In Canetti, R., Garay, J.A., eds.: CRYPTO 2013, Part I. Volume 8042
of LNCS., Springer, Heidelberg (August 2013) 241–258

62. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Sarkar, P.,
Iwata, T., eds.: ASIACRYPT 2014, Part I. Volume 8873 of LNCS., Springer, Hei-
delberg (December 2014) 158–178

63. Eichlseder, M., Mendel, F., Schläffer, M.: Branching heuristics in differential col-
lision search with applications to SHA-512. In Cid, C., Rechberger, C., eds.:
FSE 2014. Volume 8540 of LNCS., Springer, Heidelberg (March 2015) 473–488

64. Kircanski, A.: Analysis of boomerang differential trails via a SAT-based constraint
solver URSA. In Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M., eds.:
ACNS 15. Volume 9092 of LNCS., Springer, Heidelberg (June 2015) 331–349

65. Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. Cryptology ePrint Archive, Report 2013/322 (2013)

66. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: Sha-3 proposal blake.
Submission to NIST (2008)

67. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: New generation of memory-hard
functions for password hashing and other applications. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). (2016) 292–302

68. Wagner, D.: A generalized birthday problem. In Yung, M., ed.: CRYPTO 2002.
Volume 2442 of LNCS., Springer, Heidelberg (August 2002) 288–303

30



SUPPLEMENTARY MATERIAL

A Bit Conditions for Boomerang Top-Bottom Paths

We attach the bit conditions used in searching the boomerang distinguishers for
three members of BLAKE.

– For BLAKE3, the bit conditions for two top-bottom paths with active se-
lection combination (i, j) = (12, 31) and (31, 14) are give respectively in:

Blake3Top12Bottom31BitConditions.txt
Blake3Top31Bottom14BitConditions.txt

– For BLAKE2s, the bit conditions for the top-bottom path with active se-
lection combination (i, j) = (31, 30) are give in:

Blake2sTop31Bottom30BitConditions.txt

– For BLAKE-256, the bit conditions for the top-bottom path with active
selection combination (i, j) = (31, 30) are give in:

Blake256Top31Bottom30BitConditions.txt

Moreover, all the source code of our tool will be publicly available when this
paper is accepted.

B Details of the BLAKE3, BLAKE2s and BLAKE-256
Keyed Permutations

BLAKE-256 and BLAKE2s use the same permutation σr’s (r = 0, . . . , 9) de-
fined in Table 12. BLAKE3 use a different σr (r = 0, . . . , 6) defined in Table 13.
The round constants of BLAKE-256 forms a 16-word state RC = (rc0, . . . , rc15)
defined as Table 14.

Table 12: The permutation σr (r = 0, . . . , 9) used by BLAKE2 and BLAKE-256
round functions.

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

31



Table 13: The permutation σr (r = 0, . . . , 6) used by BLAKE3 round functions.
σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 2 6 3 10 7 0 4 13 1 11 12 5 9 14 15 8
σ2 3 4 10 12 13 2 7 14 6 5 9 0 11 15 8 1
σ3 10 7 12 9 14 3 13 15 4 0 11 2 5 8 1 6
σ4 12 13 9 11 15 10 14 8 7 2 5 3 0 1 6 4
σ5 9 14 11 5 8 12 15 1 13 3 0 10 2 6 4 7
σ6 11 15 5 0 1 9 8 6 14 10 2 12 3 4 7 13

Table 14: The round constants RC = (rc0, . . . , rc15) used in the BLAKE-256
round functions.
RC 0x243f6a88, 0x85a308d3, 0x13198a2e, 0x3707344, 0xa4093822, 0x299f31d0,

0x82efa98, 0xec4e6c89, 0x452821e6, 0x38d01377, 0xbe5466cf, 0x34e90c6c,
0xc0ac29b7, 0xc97c50dd, 0x3f84d5b5, 0xb5470917

C Accurate Signed Difference Modeling

In the accurate model, there is ∇x[i] ∈ {u, n, 0, 1}. With the binary-variable en-
coding in Table 2, we are can let ∇x[i].xdiff,∇x[i].sign ∈M.var and represent
the bit conditions with MILP model constraints as Eq. (19).

M.con← ∇x[i]← n⇔ ∇x[i].(sign, xdiff) = (1, 1)

M.con← ∇x[i]← u⇔ ∇x[i].(sign, xdiff) = (0, 1)

M.con← ∇x[i]← 1⇔ ∇x[i].(sign, xdiff) = (1, 0)

M.con← ∇x[i]← 0⇔ ∇x[i].(sign, xdiff) = (0, 0)

(19)

Similar to the approximate model, the accurate signed difference propagation
of modular adds can be decomposed into half-adders and full-adders. The MILP
model capturing the accurate signed difference of modular adds can be described
as Algorithm 10 whose underlying models describing half-adders and full-adders
are described as Algorithm 11 and Algorithm 12 respectively.

In XOR operations, both sign and xdiff are propagate linearly and can be
described as Algorithm 13.

Algorithm 10: modAddAcc
Input : MILP model M, the word signed differences ∇x and ∇y.
Output: The updated MILP model M, the signed difference ∇z,∇c.

1 (M,∇z[0],∇c[0])← halfAdderAcc(M,∇x[0],∇y[0])
2 for i = 1, . . . , ω − 1 do
3 (M,∇z[i],∇c[i])← fullAdderAcc(M,∇x[i],∇y[i],∇c[i− 1])
4 Return (M,∇z,∇c)

32



Algorithm 11: halfAdderAcc
Input : MILP model M,

encoded signed
differences ∇x[0],∇y[0]
whose sign and xdiff’s
are binary variables in
M.var.

Output: The updated MILP
model M and the
encoded ∇z[0],∇c[0]
whose sign and xdiff’s
are binary variables in
M.var.

// Declare variables
1 M.var← ∇z[0].sign,∇z[0].xdiff,
∇c[0].sign,∇c[0].xdiff as
binaries.

// Define the column vector
2 x = (∇x[0].sign,∇x[0].xdiff,
∇y[0].sign,∇y[0].xdiff,
∇z[0].sign,∇z[0].xdiff,
∇c[0].sign,∇c[0].xdiff)T

// Add constraints. Matrix Âh

and column vector b̂h are
defined as Eq. (20)

3 M.con← Âhx+ b̂h ≥ 0
4 Return (M,∇z[0],∇c[0])

Algorithm 12: fullAdderAcc
Input : MILP model M, encoded

signed differences
∇x[i],∇y[i],∇c[i− 1]
whose sign and xdiff’s
are binary variables in
M.var.

Output: The updated MILP
model M and the
encoded ∇z[i],∇c[i]
whose sign and xdiff’s
are binary variables in
M.var.

// Declare variables
1 M.var← ∇z[i].sign,∇z[i].xdiff,
∇c[i].sign,∇c[i].xdiff as
binaries.

// Define the column vector
2 x = (∇x[i].sign,∇x[i].xdiff,
∇y[i].sign,∇y[i].xdiff,
∇c[i− 1].sign,∇c[i− 1].xdiff,
∇z[i].sign,∇z[i].xdiff,
∇c[i].sign,∇c[i].xdiff)T

// Add constraints. Matrix Âf

and column vector b̂f are
defined as Eq. (21)

3 M.con← Âfx+ b̂f ≥ 0
4 Return (M,∇z[i],∇c[i])

Âh =



1 0 1 0 −1 0 −2 0
−1 0 −1 0 1 0 2 0
0 1 0 1 0 1 0 −2
0 −1 0 −1 0 −1 −2 2
2 1 2 1 0 −1 −2 −2
0 1 −2 −1 0 1 2 −2
−2 −1 0 1 0 1 2 −2
0 −1 −2 1 0 −1 0 2
−2 1 0 −1 0 −1 0 2
2 −1 2 −1 0 1 −4 2


b̂h =



0
0
0
2
0
2
2
2
2
0


(20)

33



Âf =



1 0 1 0 1 0 −1 0 −2 0
−1 0 −1 0 −1 0 1 0 2 0
0 1 0 1 0 1 0 1 0 −2
0 −1 0 −1 0 −1 0 −1 0 2
0 1 0 1 0 1 0 −1 0 0
0 1 0 1 0 −1 0 1 0 0
0 1 0 −1 0 1 0 1 0 0
0 −1 0 1 0 1 0 1 0 0
0 1 0 −1 0 −1 0 −1 0 0
0 −1 0 1 0 −1 0 −1 0 0
0 −1 0 −1 0 1 0 −1 0 0
0 −1 0 −1 0 −1 0 1 0 0
0 −1 0 −1 0 −1 2 1 2 2
0 1 2 −1 2 −1 −2 −1 −2 2
0 −1 −2 1 0 −1 0 −1 2 2
0 −1 0 −1 −2 1 0 −1 2 2
0 1 0 1 0 1 2 −1 2 −2
0 −1 2 1 0 −1 0 −1 −2 2
0 −1 −2 1 −2 1 2 1 2 −2
0 1 0 1 −2 −1 0 1 2 −2
0 1 −2 −1 −2 −1 2 −1 2 2
0 1 0 1 2 −1 0 1 −2 −2
0 −1 0 −1 2 1 0 −1 −2 2
0 1 2 −1 0 1 0 1 −2 −2
0 1 −2 −1 0 1 0 1 2 −2
0 −1 2 1 2 1 −2 1 −2 −2
0 1 0 1 0 1 −2 −1 −2 −2
0 −1 0 −1 0 −1 −2 1 −2 2



b̂f =



0
0
0
2
0
0
0
0
2
2
2
2
0
2
2
2
0
2
2
2
2
2
2
2
2
2
4
4



(21)

Algorithm 13: xorAcc
Input : MILP model M, the word signed differences ∇x and ∇y
Output: The updated MILP model M, the signed difference ∇z

1 for i = 0, . . . , ω − 1 do
2 (M,∇z[i].xdiff)← xorModel(M,∇x[i].xdiff,∇y[i].xdiff)
3 (M,∇z[i].sign)← xorModel(M,∇x[i].sign,∇y[i].sign)
4 Return (M,∇z)

D Digraph Construction

The computation process of the hG function in Eq. (8) can be captured with a di-
graph with 5 input word nodes (x0, . . . ,x3,m), 4 output word nodes (y0, . . . ,y3)
and 4 operator nodes (op0, . . . ,op3). The operator nodes can be defined as Ta-

34



ble 15 and the digraph can be computed as (G,y0, . . . ,y3)← hGDigraph(G,x0, . . . ,x3, α, β)
defined in Algorithm 14.

Table 15: The operator nodes for hG in Eq. (8)

Structure
Operation

op0 op3 op2 op1

type ADD XOR ADD XOR
rotBit 0 α 0 β

const 0 0 0 0
iWords {x0,x1,m} {y0,x3} {y3,x2} {y2,x1}
oWord y0 y3 y2 y1

Algorithm 14: hGDigraph
Input : The initial digraph G(V, E), input word nodes x0, . . . ,x3,m ∈ Vw
Output: The updated digraph G(V, E), the output word nodes

y0, . . . ,y3 ∈ Vw
1 Declare new word node y0, . . .y3

2 Declare new operator nodes op0, . . .op3 as in Table 15
3 Set the yi.parent← {opi} for i = 0, . . . , 3
4 Update the word node set of V as Vw ← Vw

∪
{y0, . . . ,y3}

5 Update the operator node set of V as Vo ← Vo
∪
{op0, . . . ,op3}

6 Update the edge set

E ← E
∪


−−−−−−→
(x0,op0),

−−−−−−→
(x1,op0),

−−−−−−→
(m,op0),

−−−−−−→
(op0,y0)

−−−−−−→
(y0,op3),

−−−−−−→
(x3,op3),

−−−−−−→
(op3,y3)

−−−−−−→
(y3,op2),

−−−−−−→
(x2,op2),

−−−−−−→
(op2,y2)

−−−−−−→
(y2,op1),

−−−−−−→
(x1,op1),

−−−−−−→
(op1,y1)


7 Return (G(V, E),y0, . . . ,y3).

D.1 The Digraph Construction for BLAKE3
With the word nodes V r = (vr

0, . . . ,v
r
15) and M = (m0, . . . ,m15) correspond-

ing to the V r and M words, the update digraph G(V, E) capturing the com-
putation V r → TV r can be generated by calling Algorithm 15 as (G,TV r) ←
b3DigUpdateTv(G,V r,M , r). Similarly, the digraph from TV r−0.5 to V r can be
captured with the digraph generated by Algorithm 16 as (G,V r)← b3DigUpdateV(G,TV r−0.5,M , r).
So the whole digraph from V r0 to V r1 can be constructed by calling (G,V r0 ,V r1)←
b3Digraph(r0, r1) in Algorithm 17.

D.2 The Digraph Construction for BLAKE2s
Same with BLAKE3, the digraph from V r0 to V r1 (0 ≤ r0 < r1 ≤ 10) can
be constructed by calling (G,V r0 ,V r1) ← b2sDigraph(r0, r1) in Algorithm 18.

35



Algorithm 15: b3DigUpdateTv
Input : The initial digraph G(V, E), the 16-word-node vectors V r,M ∈ Vw

corresponding to the state words in V r and the message words in M
respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector TV r

corresponding to the state words in TV r

1 if r ∈ Z then
2 (G, tvr

0,4,8,12)← hGDigraph(G,vr
0,4,8,12,mσr(0), 16, 12).

3 (G, tvr
1,5,9,13)← hGDigraph(G,vr

1,5,9,13,mσr(2), 16, 12).
4 (G, tvr

2,6,10,14)← hGDigraph(G,vr
2,6,10,14,mσr(4), 16, 12).

5 (G, tvr
3,7,11,15)← hGDigraph(G,vr

3,7,11,15,mσr(6), 16, 12).
6 else
7 (G, tvr

0,5,10,15)← hGDigraph(G,vr
0,5,10,15,mσ⌊r⌋(8), 16, 12).

8 (G, tvr
1,6,11,12)← hGDigraph(G,vr

1,6,11,12,mσ⌊r⌋(10), 16, 12).
9 (G, tvr

2,7,8,13)← hGDigraph(G,vr
2,7,8,13,mσ⌊r⌋(12), 16, 12).

10 (G, tvr
3,4,9,14)← hGDigraph(G,vr

3,4,9,14,mσ⌊r⌋(14), 16, 12).
11 Assign TV r ← (tvr

0, . . . , tv
r
15)

12 Return (G,TV r).

Algorithm 16: b3DigUpdateV
Input : The initial digraph G(V, E), the 16-word-node vectors

TV r−0.5,M ∈ Vw corresponding to the state words in TV r−0.5 and
the message words in M respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector V r

corresponding to the state words in V r

1 if r ̸∈ Z then
2 (G,vr

0,4,8,12)← hGDigraph(G, tvr−0.5
0,4,8,12,mσ⌊r⌋(1), 8, 7).

3 (G,vr
1,5,9,13)← hGDigraph(G, tvr−0.5

1,5,9,13,mσ⌊r⌋(3), 8, 7).
4 (G,vr

2,6,10,14)← hGDigraph(G, tvr−0.5
2,6,10,14,mσ⌊r⌋(5), 8, 7).

5 (G,vr
3,7,11,15)← hGDigraph(G, tvr−0.5

3,7,11,15,mσ⌊r⌋(7), 8, 7).
6 else
7 (G,vr

0,5,10,15)← hGDigraph(G, tvr−0.5
0,5,10,15,mσr−1(9), 8, 7).

8 (G,vr
1,6,11,12)← hGDigraph(G, tvr−0.5

1,6,11,12,mσr−1(11), 8, 7).
9 (G,vr

2,7,8,13)← hGDigraph(G, tvr−0.5
2,7,8,13,mσr−1(13), 8, 7).

10 (G,vr
3,4,9,14)← hGDigraph(G, tvr−0.5

3,4,9,14,mσr−1(15), 8, 7).
11 Assign V r ← (vr

0, . . . ,v
r
15)

12 Return (G,V r).

36



Algorithm 17: b3Digraph
Input : The starting round r0 and the ending round r1 where

0 ≤ r0 < r1 ≤ 7the round number r
Output: The digraph G(V, E) capturing the computation from V r0 to V r1 ,

the word node vectors V r0 ,V r1 corresponding to the words in
starting and ending states

1 Declare a word node vector V r0 = (vr0
0 , . . . ,vr0

15) with vr0
i .parent = ϕ for

i = 0, . . . , 15
2 Declare a word node vector M = (m0, . . . ,m15) with mi.parent = ϕ for

i = 0, . . . , 15
3 Initialize digraph G(V, E) with the word node set of V defined as
Vw ← {vr0

0 , . . . ,vr0
15,m0, . . . ,m15}

4 for r = r0 + 0.5, r0 + 1, . . . , r1 do
5 Call Algorithm 15 as (G,TV r−0.5)← b3DigUpdateTv(G,V r−0.5, r − 0.5)
6 Call Algorithm 16 as (G,V r)← b3DigUpdateV(G,TV r−0.5, r)

7 Assign V r1 ← (vr1
0 , . . . ,vr1

15)
8 Return (G(V, E),V r0 ,V r1).

Algorithm 18 only differs with Algorithm 17 in the round function definitions:
the b2DigUpdateTv and b2DigUpdateV used in BLAKE2s round functions are
defined in Algorithm 19 and Algorithm 20 respectively.

D.3 The Digraph Construction for BLAKE-256
BLAKE-256 and BLAKE2s round functions share the same σr. The only differ-
ence is that, in BLAKE-256, the message word is XORed with a round constant
word before taking part in the hG computations. The computation V r → TV r

takes 4 constant-XORed message words denoted as MV r = (mvr0, . . . ,mvr3). For
TV r−0.5 → V r, the 4 words are denoted as MT r = (mtr−0.5

0 , . . . ,mtr−0.5
3 ). So we

define (G,MT r)← mtDigraph(G,M , r) and (G,MV r)← mvDigraph(G,M , r)
as Algorithm 25 and Algorithm 24 respectively to capture the digraph changes.
Then, the computations V r → TV r and TV r−0.5 → V r can be captured by
Algorithm 22 and Algorithm 23 respectively so the digraph from V r0 to V r1 can
be acquired by calling Algorithm 21.

E MILP Models Used in the Paper
The commonly used MILP models capturing the XOR operation of two bits and
the OR operation of n bits are already defined and used in almost all existing
MILP-aided cryptanalysis results. We simply present them as Algorithm 26 and
Algorithm 27.

E.1 The Model Capturing Newly Generated Bit Conditions
According to Proposition 1, given the digraph G(V, E) and the corresponding
lookup table T mapping all word nodes to their signed differences, the bit con-

37



Algorithm 18: b2sDigraph
Input : The starting round r0 and the ending round r1 where

0 ≤ r0 < r1 ≤ 7the round number r
Output: The digraph G(V, E) capturing the computation from V r0 to V r1 ,

the word node vectors V r0 ,V r1 corresponding to the words in
starting and ending states

1 Declare a word node vector V r0 = (vr0
0 , . . . ,vr0

15) with vr0
i .parent = ϕ for

i = 0, . . . , 15
2 Declare a word node vector M = (m0, . . . ,m15) with mi.parent = ϕ for

i = 0, . . . , 15
3 Initialize digraph G(V, E) with the word node set of V defined as
Vw ← {vr0

0 , . . . ,vr0
15,m0, . . . ,m15}

4 for r = r0 + 0.5, r0 + 1, . . . , r1 do
5 Call Algorithm 19 as (G,TV r−0.5)← b2sDigUpdateTv(G,V r−0.5, r − 0.5)
6 Call Algorithm 20 as (G,V r)← b2sDigUpdateV(G,TV r−0.5, r)

7 Assign V r1 ← (vr1
0 , . . . ,vr1

15)
8 Return (G(V, E),V r0 ,V r1).

Algorithm 19: b2sDigUpdateTv
Input : The initial digraph G(V, E), the 16-word-node vectors V r,M ∈ Vw

corresponding to the state words in V r and the message words in M
respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector TV r

corresponding to the state words in TV r

1 Define r ← ⌊r⌋ mod 10
2 if r ∈ Z then
3 (G, tvr

0,4,8,12)← hGDigraph(G,vr
0,4,8,12,mσr(0), 16, 12).

4 (G, tvr
1,5,9,13)← hGDigraph(G,vr

1,5,9,13,mσr(2), 16, 12).
5 (G, tvr

2,6,10,14)← hGDigraph(G,vr
2,6,10,14,mσr(4), 16, 12).

6 (G, tvr
3,7,11,15)← hGDigraph(G,vr

3,7,11,15,mσr(6), 16, 12).
7 else
8 (G, tvr

0,5,10,15)← hGDigraph(G,vr
0,5,10,15,mσr(8), 16, 12).

9 (G, tvr
1,6,11,12)← hGDigraph(G,vr

1,6,11,12,mσr(10), 16, 12).
10 (G, tvr

2,7,8,13)← hGDigraph(G,vr
2,7,8,13,mσr(12), 16, 12).

11 (G, tvr
3,4,9,14)← hGDigraph(G,vr

3,4,9,14,mσr(14), 16, 12).
12 Assign TV r ← (tvr

0, . . . , tv
r
15)

13 Return (G,TV r).

38



Algorithm 20: b2sDigUpdateV
Input : The initial digraph G(V, E), the 16-word-node vectors

TV r−0.5,M ∈ Vw corresponding to the state words in TV r−0.5 and
the message words in M respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector V r

corresponding to the state words in V r

1 if r ̸∈ Z then
2 Define r ← ⌊r⌋ mod 10

3 (G,vr
0,4,8,12)← hGDigraph(G, tvr−0.5

0,4,8,12,mσr(1), 8, 7).
4 (G,vr

1,5,9,13)← hGDigraph(G, tvr−0.5
1,5,9,13,mσr(3), 8, 7).

5 (G,vr
2,6,10,14)← hGDigraph(G, tvr−0.5

2,6,10,14,mσr(5), 8, 7).
6 (G,vr

3,7,11,15)← hGDigraph(G, tvr−0.5
3,7,11,15,mσr(7), 8, 7).

7 else
8 Define r ← (r − 1) mod 10

9 (G,vr
0,5,10,15)← hGDigraph(G, tvr−0.5

0,5,10,15,mσr(9), 8, 7).
10 (G,vr

1,6,11,12)← hGDigraph(G, tvr−0.5
1,6,11,12,mσr(11), 8, 7).

11 (G,vr
2,7,8,13)← hGDigraph(G, tvr−0.5

2,7,8,13,mσr(13), 8, 7).
12 (G,vr

3,4,9,14)← hGDigraph(G, tvr−0.5
3,4,9,14,mσr(15), 8, 7).

13 Assign V r ← (vr
0, . . . ,v

r
15)

14 Return (G,V r).

Algorithm 21: b256Digraph
Input : The starting round r0 and the ending round r1 where

0 ≤ r0 < r1 ≤ 7the round number r
Output: The digraph G(V, E) capturing the computation from V r0 to V r1 ,

the word node vectors V r0 ,V r1 corresponding to the words in
starting and ending states

1 Declare a word node vector V r0 = (vr0
0 , . . . ,vr0

15) with vr0
i .parent = ϕ for

i = 0, . . . , 15
2 Declare a word node vector M = (m0, . . . ,m15) with mi.parent = ϕ for

i = 0, . . . , 15
3 Initialize digraph G(V, E) with the word node set of V defined as
Vw ← {vr0

0 , . . . ,vr0
15,m0, . . . ,m15}

4 for r = r0 + 0.5, r0 + 1, . . . , r1 do
5 Call Algorithm 22 as (G,TV r−0.5)← b256DigUpdateTv(G,V r−0.5, r − 0.5)
6 Call Algorithm 23 as (G,V r)← b256DigUpdateV(G,TV r−0.5, r)

7 Assign V r1 ← (vr1
0 , . . . ,vr1

15)
8 Return (G(V, E),V r0 ,V r1).

39



Algorithm 22: b256DigUpdateTv
Input : The initial digraph G(V, E), the 16-word-node vectors V r,M ∈ Vw

corresponding to the state words in V r and the message words in M
respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector TV r

corresponding to the state words in TV r

1 (G,MV r)← mvDigraph(G,M , r) Define r ← ⌊r⌋ mod 10
2 if r ∈ Z then
3 (G, tvr

0,4,8,12)← hGDigraph(G,vr
0,4,8,12,mv0, 16, 12).

4 (G, tvr
1,5,9,13)← hGDigraph(G,vr

1,5,9,13,mv1, 16, 12).
5 (G, tvr

2,6,10,14)← hGDigraph(G,vr
2,6,10,14,mv2, 16, 12).

6 (G, tvr
3,7,11,15)← hGDigraph(G,vr

3,7,11,15,mv3, 16, 12).
7 else
8 (G, tvr

0,5,10,15)← hGDigraph(G,vr
0,5,10,15,mv0, 16, 12).

9 (G, tvr
1,6,11,12)← hGDigraph(G,vr

1,6,11,12,mv1, 16, 12).
10 (G, tvr

2,7,8,13)← hGDigraph(G,vr
2,7,8,13,mv2, 16, 12).

11 (G, tvr
3,4,9,14)← hGDigraph(G,vr

3,4,9,14,mv3, 16, 12).
12 Assign TV r ← (tvr

0, . . . , tv
r
15)

13 Return (G,TV r).

Algorithm 23: b256DigUpdateV
Input : The initial digraph G(V, E), the 16-word-node vectors

TV r−0.5,M ∈ Vw corresponding to the state words in TV r−0.5 and
the message words in M respectively, the round number r

Output: The updated digraph G(V, E), the 16-word-node vector V r

corresponding to the state words in V r

1 (G,MT r−0.5)← mvDigraph(G,M , r − 0.5)
2 if r ̸∈ Z then
3 (G,vr

0,4,8,12)← hGDigraph(G, tvr−0.5
0,4,8,12,mtr−0.5

0 , 8, 7).
4 (G,vr

1,5,9,13)← hGDigraph(G, tvr−0.5
1,5,9,13,mtr−0.5

1 , 8, 7).
5 (G,vr

2,6,10,14)← hGDigraph(G, tvr−0.5
2,6,10,14,mtr−0.5

2 , 8, 7).
6 (G,vr

3,7,11,15)← hGDigraph(G, tvr−0.5
3,7,11,15,mtr−0.5

3 , 8, 7).
7 else
8 (G,vr

0,5,10,15)← hGDigraph(G, tvr−0.5
0,5,10,15,mtr−0.5

0 , 8, 7).
9 (G,vr

1,6,11,12)← hGDigraph(G, tvr−0.5
1,6,11,12,mtr−0.5

1 , 8, 7).
10 (G,vr

2,7,8,13)← hGDigraph(G, tvr−0.5
2,7,8,13,mtr−0.5

2 , 8, 7).
11 (G,vr

3,4,9,14)← hGDigraph(G, tvr−0.5
3,4,9,14,mtr−0.5

3 , 8, 7).
12 Assign V r ← (vr

0, . . . ,v
r
15)

13 Return (G,V r).

40



Algorithm 24: mtDigraph
Input : The initial digraph G(V, E), the 16-word-node vector M ∈ Vw

corresponding to the the message words in M , the round number r
Output: The updated digraph G(V, E), the 4-word-node vector MT r message

words XORed with constants
1 for i = 0, . . . , 3 do
2 Declare a word node mtri
3 if r ∈ Z then
4 Define r ← r mod 10
5 Declare an operator node opi satisfying

opi.

{
type = XOR, rotBit = 0, const = rcσr(2i)

iWords = {mσr(2i+1)}, oWord = mtri

}

6 Assign mtri .parent← {opi}
7 Update the word node set of V as Vw ← Vw

∪
{mtri }

8 Update the operator node set of V as Vo ← Vo
∪
{opi}

9 Update the edges set as

E ← E
∪{−−−−−−−−−−−→

(mσr(2i+1),opi),
−−−−−−−→
(opi,mtri )

}
10 else
11 Define r ← ⌊r⌋ mod 10
12 Declare an operator node opi satisfying:

opi.

{
type = XOR, rotBit = 0, const = rcσr(2i+8),

iWords = {mσr(2i+1+8)}, oWord = mtri

}

13 Assign mtri .parent← {opi}
14 Update the word node set of V as Vw ← Vw

∪
{mtri }

15 Update the operator node set of V as Vo ← Vo
∪
{opi}

16 Update the edges set as

E ← E
∪{−−−−−−−−−−−−−→

(mσr(2i+1+8),opi),
−−−−−−−→
(opi,mtri )

}
17 Define MT r ← (mtr0, . . . ,mtr3)
18 Return (G,MT r).

41



Algorithm 25: mvDigraph
Input : The initial digraph G(V, E), the 16-word-node vector M ∈ Vw

corresponding to the the message words in M , the round number r
Output: The updated digraph G(V, E), the 4-word-node vector MV r

message words XORed with constants
1 for i = 0, . . . , 3 do
2 Declare a word node mvr

i

3 if r ∈ Z then
4 Define r ← r mod 10
5 Declare a operator node opi satisfying

opi.

{
type = XOR, rotBit = 0, const = rcσr(2i+1)

iWords = {mσr(2i)}, oWord = mvr
i

}

6 Assign mvr
i .parent← {opi}

7 Update the word node set of V as Vw ← Vw
∪
{mvr

i }
8 Update the operator node set of V as Vo ← Vo

∪
{opi}

9 Update the edges set as

E ← E
∪{−−−−−−−−−−→

(mσr(2i),opi),
−−−−−−−→
(opi,mvr

i )
}

10 else
11 Define r ← ⌊r⌋ mod 10
12 Declare a operator node opi satisfying:

opi.

{
type = XOR, rotBit = 0, const = rcσr(2i+1+8)

iWords = {mσr(2i+8)}, oWord = mvr
i

}

13 Assign mvr
i .parent← {opi}

14 Update the word node set of V as Vw ← Vw
∪
{mvr

i }
15 Update the operator node set of V as Vo ← Vo

∪
{opi}

16 Update the edges set as

E ← E
∪{−−−−−−−−−−−→

(mσr(2i+8),opi),
−−−−−−−→
(opi,mvr

i )
}

17 Define MV r ← (mvr
0, . . . ,mvr

3)
18 Return (G,MV r).

42



Algorithm 26: xorModel
Input : The initial MILP model M, the binary variables x, y ∈M.var
Output: The updated MILP model M, the binary variable z ∈M.var

satirfying z = x⊕ y
1 Declare the variable M.var← z as binary.
2 Update M by adding the constraints:

M.con←


x+ y − z ≥ 0

x− y + z ≥ 0

− x+ y + z ≥ 0

x+ y + z ≤ 2

Return (M, z).

Algorithm 27: orModel
Input : The initial MILP model M, the binary variables x1, . . . , xn ∈M.var
Output: The updated MILP model M, the binary variable y ∈M.var

1 Declare the variable M.var← y as binary.
2 Update M by adding the constraints:

M.con←


y ≥ xi, i = 1, . . . , n

y ≤
n∑

i=1

xi

Return (M, y).

43



ditions generated by each modular add operation can be captured with the sum-
mations of the binary variables θ0, . . . , θω−2 in Eq. (14). Such θ’s can be stored
in a set S generated by Algorithm 28 as (M,S) ← betaSet(M,G, T ). In this
way, the objective function in Eq. (15) can be equivalently represented as

M.obj← min
∑
θ∈S

θ (22)

Algorithm 28: betaSet
Input : The initial MILP model M, the digraph G and the lookup table T
Output: The updated MILP modelM, the set of binary variables B ⊆M.var

1 Initialize an empty set S = ϕ
2 for op ∈ V+ do
3 Let op.iWords = {x1, . . . ,xn}, op.oWord = y, refer to T and acquire the

corresponding signed differences ∇x1, . . . ,∇xn,∇y
4 for i = 0, . . . , 30 do
5 (M, θi)← orModel(M, {∇y[i].xdiff, x1[i].xdiff, . . . ,∇xn[i].xdiff})
6 Update S ← S

∪
{θi}

7 Return (M,S).

E.2 The MILP Model Constraints for Boomerang Intersection

According to Section 4.5, in order to make compatible boomerang intersections,
additional constraints should be added for all XORed bits related to the inter-
secting state bits in the form of Eq. (16) and Eq. (17) respectively. Adding the
0-AND constraint, the constraints imposed to the boomerang intersecting state
can be added to the MILP model by calling Algorithm 29. As can be seen, the
constraints in line 4 reflects the traditional 0-AND constraint; the constraints in
line 10-13 are the constraints in Eq. (16) and those in line 19-22 are constraints
in Eq. (17).

E.3 MILP Models for BLAKE3

The approximate signed difference propagation ∇V r → ∇TV r can be described
as the MILP model (M,∇TV r) ← b3UpdateTv(M,∇V r, r) in Algorithm 34.
∇TV r−0.5 → ∇V r, the MILP can be constructed in Algorithm 35 as (M,∇V r)←
b3UpdateV(M,∇TV r−0.5, r). For 0 ≤ r0 < r1 ≤ 7, the differential propagation
∇V r0 → ∇V r1 can be captured with the common model generated by Algo-
rithm 33 as M← b3CommonModel(r0, r1).

The Mt model for T t
i can be constructed by calling Algorithm 30. The

Mb model for T b
j can be constructed by calling Algorithm 31. For each (i, j)

setting, after solving the correspondingMt andMb, we have acquired a concrete

44



Algorithm 29: InterSecConstr
Input : The initial MILP model M, the top and bottom digraphs

Gt(Vt, Et),Gb(Vb, Eb), the lookup tables for top and bottom paths
T t, T b, the intersecting word nodes {v1, . . . ,vn} = Vt∩Vb

Output: The updated MILP model M
1 for ℓ = 1, . . . , n do
2 Identify the differences ∇tvℓ and ∇bvℓ by referring to T t and T b

respectively
3 for i = 0, . . . , ω − 1 do
4 Add the constraint M.con← ∇tvℓ[i].xorDiff+∇bvℓ[i].xorDiff ≤ 1
5 Call Algorithm 8 as Rt

vℓ
← relatedOpt(Gt,vℓ)

6 for op ∈ Rt
vℓ

do
7 For op.iWords = {x1, . . . ,xs} and op.oWord = y, identify the signed

differences ∇tx1, . . . ,∇txs,∇ty by referring to T t

8 Define γ = 1 if op.type = ADD; or γ = ω if op.type = XOR
9 for i = 0, . . . , γ − 1 do

10 Compute the offset i← (i+ op.rotBit) mod ω
11 Define the binary variable set

St ← {∇tx1[i].xdiff, . . . ,∇txℓ[i].xdiff,∇ty[i].xdiff}
12 Call Algorithm 27 as (M, at)← orModel(M,St)

13 Add the constraint M.con← at +∇bvℓ[i].xdiff ≤ 1

14 Call Algorithm 8 as Rb
vℓ
← relatedOpt(Gb,vℓ)

15 for op ∈ Rb
vℓ

do
16 For op.iWords = {x1, . . . ,xs} and op.oWord = y, identify the signed

differences ∇bx1, . . . ,∇bxs,∇by by referring to T b

17 Define γ = 1 if op.type = ADD; or γ = ω if op.type = XOR
18 for i = 0, . . . , γ − 1 do
19 Compute the offset i← (i+ op.rotBit) mod ω
20 Define the binary variable set

Sb ← {∇bx1[i].xdiff, . . . ,∇bxℓ[i].xdiff,∇by[i].xdiff}
21 Call Algorithm 27 as (M, ab)← orModel(M,Sb)

22 Add the constraint M.con← ab +∇tvℓ[i].xdiff ≤ 1

23 Return (M,G, T ,B).

45



approximate signed difference of∇tM and∇bM , denoted as Θt, Θb ∈ {u, n,=}32
respectively. The Mc can then be constructed as Algorithm 32. The additional
constraints in Section 4.5 are added by calling Algorithm 29. The objective
functions of all 3 models are defined as Eq. (22) with the aid of Algorithm 34.

Algorithm 30: b3TopModel
Input : The active bit position i
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 33 as (M,G, T )← b3CommonModel(M, 0, 1.5)
3 Update the model by adding constraints:

M.con←



∇v1.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (0, i)

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (1, i)

∇m1[i].xdiff = ∇v1.50 [i].xdiff = 1

∇v1.50 [i].sign+∇m1[i].sign = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

E.4 MILP Models for BLAKE2s

Similar to BLAKE3, we define the common model for BLAKE2s as Algo-
rithm 39 where the underlying b2sUpdateTv and b2sUpdateV are defined as
Algorithm 40 and Algorithm 41 respectively. Mt covering V 2.5 → V 4.5 with
∆tV 4.5 = 0 is constructed as Algorithm 36. Mb covering V 9.5 → V 10.5 with
∆tV 9.5 = 0 is constructed as Algorithm 37. The solution of Mt and Mb gives
∇M t = Θt and∇M b = Θb with which the connect modelMc can be constructed
with Algorithm 38 covering V 5.5 → V 8.5 with (∆tV 5.5,∆bV 8.5) = (0, 0).

E.5 MILP Models for BLAKE-256

Different from BLAKE2s, the intermediate message blocks MT r and MV r are
computed by XORing message words with constants and are used in the com-
putation of V r+0.5 and TV r respectively. Therefore, the ∇MT r and ∇MV r are
captured with the MILP models in Algorithm 48 and Algorithm 49 respectively.
The common model can then be defined as Algorithm 45 where b256UpdateTv

and b256UpdateV are defined as Algorithm 46 and Algorithm 47 respectively.
Mt covering V 2.5 → V 4.5 with ∆tV 4.5 = 0 is constructed as Algorithm 42. Mb

46



Algorithm 31: b3BottomModel
Input : The active bit position j
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 33 as (M,G, T )← b3CommonModel(M, 6, 7)
3 Update the model by adding constraints:

M.con←


∇v6ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (9, j)

∇m9[j].xdiff = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

Algorithm 32: b3ConnectModel
Input : The message block differences Θt, Θb ∈ {u, n,=}32
Output: The MILP model M, the digraph Gt(Vt, Et) and Gb(Vb, Eb), the

lookup table T t and T b, the binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 33 as (M,Gt, T t)← b3CommonModel(M, 2.5, 3.5)

3 Call Algorithm 33 as (M,Gb, T b)← b3CommonModel(M, 3.5, 5)
4 Update the model by adding constraints:

M.con←



∇tv2.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇bv5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (0, j)

∇tM ← Θt

∇bM ← Θb

∇bv50 [j].xdiff = 1

∇bv50 [j].sign+∇m9[j].sign = 1

5 Call Algorithm 29 as M← InterSecConstr(M,Gt,Gb, T t, T b,V 3.5)
6 Call Algorithm 28 as (M,St)← betaSet(M,Gt, T t)

7 Call Algorithm 28 as (M,Sb)← betaSet(M,Gb, T b)

8 Define S ← St∪Sb

9 Set the objective function of M as Eq. (22)
10 Return (M,Gt,Gb, T t, T b,S).

47



Algorithm 33: b3CommonModel
Input : The initial MILP model M, the starting r0 and the ending round r1

with r0 < r1
Output: The updated MILP model M, the digraph G(V, E) capturing the

computation from V r0 to V r1 , the lookup table T mapping word
nodes to the corresponding signed differences

1 Call Algorithm 17 and acquire the digraph G(V, E)← b3Digraph(r0, r1).
2 Initialize an empty lookup table T
3 Initialize V r0 ,M as

M.var←

{
∇vr0i [j].sign,∇vr0i [j].xdiff as binary
∇mi[j].sign,∇mi[j].xdiff as binary

i = 0, . . . , 15; j = 0, . . . , 31

4 Assign T [vr0
i ]← ∇vr0i for i = 0, . . . , 15

5 Assign T [mi]← ∇mi for i = 0, . . . , 15
6 for r = r0 + 0.5, r0 + 1, . . . , r1 do
7 (M,∇TV r−0.5)← b3UpdateTv(M,∇V r−0.5,∇M, r − 0.5)

8 Assign T [tvr−0.5
i ]← ∇tvr−0.5

i for i = 0, . . . , 15
9 (M,∇V r)← b3UpdateV(M,∇TV r−0.5,∇M, r)

10 Assign T [vr
i ]← ∇vri for i = 0, . . . , 15

11 Return (M,G, T ).

Algorithm 34: b3UpdateTv
Input : The initial MILP model M, the signed differences of intermediate

state ∇V r and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

state ∇TV r

1 if r ∈ Z then
2 (M,∇tvr0,4,8,12)← hGModel(M,∇vr0,4,8,12,∇mσr(0), 16, 12).
3 (M,∇tvr1,5,9,13)← hGModel(M,∇vr1,5,9,13,∇mσr(2), 16, 12).
4 (M,∇tvr2,6,10,14)← hGModel(M,∇vr2,6,10,14,∇mσr(4), 16, 12).
5 (M,∇tvr3,7,11,15)← hGModel(M,∇vr3,7,11,15,∇mσr(6), 16, 12).
6 else
7 (M,∇tvr0,5,10,15)← hGModel(M,∇vr0,5,10,15,∇mσ⌊r⌋(8), 16, 12).
8 (M,∇tvr1,6,11,12)← hGModel(M,∇vr1,6,11,12,∇mσ⌊r⌋(10), 16, 12).
9 (M,∇tvr2,7,8,13)← hGModel(M,∇vr2,7,8,13,∇mσ⌊r⌋(12), 16, 12).

10 (M,∇tvr3,4,9,14)← hGModel(M,∇vr3,4,9,14,∇mσ⌊r⌋(14), 16, 12).
11 Assign ∇TV r ← (∇tvr0 , . . . ,∇tvr15)
12 Return (M,∇TV r).

48



Algorithm 35: b3UpdateV
Input : The initial MILP model M, the signed differences of intermediate

state ∇TV r−0.5 and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

state ∇V r

1 if r ̸∈ Z then
2 (M,∇vr0,4,8,12)← hGModel(M,∇tvr−0.5

0,4,8,12,∇mσ⌊r⌋(1), 8, 7).
3 (M,∇vr1,5,9,13)← hGModel(M,∇tvr−0.5

1,5,9,13,∇mσ⌊r⌋(3), 8, 7).
4 (M,∇vr2,6,10,14)← hGModel(M,∇tvr−0.5

2,6,10,14,∇mσ⌊r⌋(5), 8, 7).
5 (M,∇vr3,7,11,15)← hGModel(M,∇tvr−0.5

3,7,11,15,∇mσ⌊r⌋(7), 8, 7).
6 else
7 (M,∇vr0,5,10,15)← hGModel(M,∇tvr−0.5

0,5,10,15,∇mσr−1(9), 8, 7).
8 (M,∇vr1,6,11,12)← hGModel(M,∇tvr−0.5

1,6,11,12,∇mσr−1(11), 8, 7).
9 (M,∇vr2,7,8,13)← hGModel(M,∇tvr−0.5

2,7,8,13,∇mσr−1(13), 8, 7).
10 (M,∇vr3,4,9,14)← hGModel(M,∇tvr−0.5

3,4,9,14,∇mσr−1(15), 8, 7).
11 Assign ∇V r ← (∇vr0 , . . . ,∇vr15)
12 Return (M,∇V r).

Algorithm 36: b2sTopModel
Input : The active bit position i
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 39 as (M,G, T )← b2sCommonModel(M, 2.5, 4.5)
3 Update the model by adding constraints:

M.con←


∇v4.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (5, i)

∇m5[i].xdiff = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

49



Algorithm 37: b2sBottomModel
Input : The active bit position j
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 39 as (M,G, T )← b2sCommonModel(M, 9.5, 10.5)
3 Update the model by adding constraints:

M.con←


∇v9.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (10, j)

∇m10[j].xdiff = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

Algorithm 38: b2sConnectModel
Input : The message block differences Θt, Θb ∈ {u, n,=}32
Output: The MILP model M, the digraph Gt(Vt, Et) and Gb(Vb, Eb), the

lookup table T t and T b, the binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 39 as (M,Gt, T t)← b2sCommonModel(M, 5.5, 6.5)

3 Call Algorithm 39 as (M,Gb, T b)← b2sCommonModel(M, 6.5, 8.5)
4 Update the model by adding constraints:

M.con←


∇tv5.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇bv8.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇tM ← Θt

∇bM ← Θb

5 Call Algorithm 29 as M← InterSecConstr(M,Gt,Gb, T t, T b,V 3.5)
6 Call Algorithm 28 as (M,St)← betaSet(M,Gt, T t)

7 Call Algorithm 28 as (M,Sb)← betaSet(M,Gb, T b)

8 Define S ← St∪Sb

9 Set the objective function of M as Eq. (22)
10 Return (M,Gt,Gb, T t, T b,S).

50



Algorithm 39: b2sCommonModel
Input : The initial MILP model M, the starting r0 and the ending round r1

with r0 < r1
Output: The updated MILP model M, the digraph G(V, E) capturing the

computation from V r0 to V r1 , the lookup table T mapping word
nodes to the corresponding signed differences

1 Call Algorithm 18 and acquire the digraph G(V, E)← b2sDigraph(r0, r1).
2 Initialize an empty lookup table T Initialize V r0 ,M as

M.var←

{
∇vr0i [j].sign,∇vr0i [j].xdiff as binary
∇mi[j].sign,∇mi[j].xdiff as binary

i = 0, . . . , 15; j = 0, . . . , 31

3 Assign T [vr0
i ]← ∇vr0i for i = 0, . . . , 15

4 Assign T [mi]← ∇mi for i = 0, . . . , 15
5 for r = r0 + 0.5, r0 + 1, . . . , r1 do
6 (M,∇TV r−0.5)← b2sUpdateTv(M,∇V r−0.5,∇M, r − 0.5)

7 Assign T [tvr−0.5
i ]← ∇tvr−0.5

i for i = 0, . . . , 15
8 (M,∇V r)← b2sUpdateV(M,∇TV r−0.5,∇M, r)
9 Assign T [vr

i ]← ∇vri for i = 0, . . . , 15

10 Return (M,G, T ).

Algorithm 40: b2sUpdateTv
Input : The initial MILP model M, the signed differences of intermediate

state ∇V r and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

state ∇TV r

1 if r ∈ Z then
2 Define r ← r mod 10
3 (M,∇tvr0,4,8,12)← hGModel(M,∇vr0,4,8,12,∇mσr(0), 16, 12).
4 (M,∇tvr1,5,9,13)← hGModel(M,∇vr1,5,9,13,∇mσr(2), 16, 12).
5 (M,∇tvr2,6,10,14)← hGModel(M,∇vr2,6,10,14,∇mσr(4), 16, 12).
6 (M,∇tvr3,7,11,15)← hGModel(M,∇vr3,7,11,15,∇mσr(6), 16, 12).
7 else
8 Define r ← ⌊r⌋ mod 10
9 (M,∇tvr0,5,10,15)← hGModel(M,∇vr0,5,10,15,∇mσr(8), 16, 12).

10 (M,∇tvr1,6,11,12)← hGModel(M,∇vr1,6,11,12,∇mσr(10), 16, 12).
11 (M,∇tvr2,7,8,13)← hGModel(M,∇vr2,7,8,13,∇mσr(12), 16, 12).
12 (M,∇tvr3,4,9,14)← hGModel(M,∇vr3,4,9,14,∇mσr(14), 16, 12).
13 Assign ∇TV r ← (∇tvr0 , . . . ,∇tvr15)
14 Return (M,∇TV r).

51



Algorithm 41: b2sUpdateV
Input : The initial MILP model M, the signed differences of intermediate

state ∇TV r−0.5 and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

state ∇V r

1 if r ̸∈ Z then
2 Define r ← ⌊r⌋ mod 10

3 (M,∇vr0,4,8,12)← hGModel(M,∇tvr−0.5
0,4,8,12,∇mσr(1), 8, 7).

4 (M,∇vr1,5,9,13)← hGModel(M,∇tvr−0.5
1,5,9,13,∇mσr(3), 8, 7).

5 (M,∇vr2,6,10,14)← hGModel(M,∇tvr−0.5
2,6,10,14,∇mσr(4), 8, 7).

6 (M,∇vr3,7,11,15)← hGModel(M,∇tvr−0.5
3,7,11,15,∇mσr(7), 8, 7).

7 else
8 Define r ← (r − 1) mod 10

9 (M,∇vr0,5,10,15)← hGModel(M,∇tvr−0.5
0,5,10,15,∇mσr(8), 8, 7).

10 (M,∇vr1,6,11,12)← hGModel(M,∇tvr−0.5
1,6,11,12,∇mσr(10), 8, 7).

11 (M,∇vr2,7,8,13)← hGModel(M,∇tvr−0.5
2,7,8,13,∇mσr(12), 8, 7).

12 (M,∇vr3,4,9,14)← hGModel(M,∇tvr−0.5
3,4,9,14,∇mσr(14), 8, 7).

13 Assign ∇V r ← (∇vr0 , . . . ,∇vr15)
14 Return (M,∇V r).

covering V 9.5 → V 10.5 with ∆tV 9.5 = 0 is constructed as Algorithm 43. The so-
lution of Mt and Mb gives ∇M t = Θt and ∇M b = Θb with which the connect
model Mc can be constructed with Algorithm 44 covering V 5.5 → V 8.5 with
(∆tV 5.5,∆bV 8.5) = (0, 0).

F The Signed Differential Paths for BLAKE2s and
BLAKE-256

We give 2 boomerang attacks on 8-round BLAKE2s. using and (i, j) = (31, 30)
settings. The signed differential path for (i, j) = (28, 31) is given in Table 16 and
that for (i, j) = (31, 30) is given in Table 17.

For BLAKE-256, our boomerang attack is based on the 8-round signed dif-
ferential path in Table 18.

52



Algorithm 42: b256TopModel
Input : The active bit position i
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 45 as (M,G, T )← b256CommonModel(M, 2.5, 4.5)
3 Update the model by adding constraints:

M.con←


∇v4.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (5, i)

∇m5[i].xdiff = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

Algorithm 43: b256BottomModel
Input : The active bit position j
Output: The MILP model M, the digraph G(V, E), the lookup table T , the

binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 45 as (M,G, T )← b256CommonModel(M, 9.5, 10.5)
3 Update the model by adding constraints:

M.con←


∇v9.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇mℓ[k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]
∧

(ℓ, k) ̸= (10, j)

∇m10[j].xdiff = 1

4 Call Algorithm 28 as (M,S)← betaSet(M,G, T )
5 Set the objective function of M as Eq. (22)
6 Return (M,G, T ,S).

53



Algorithm 44: b256ConnectModel
Input : The message block differences Θt, Θb ∈ {u, n,=}32
Output: The MILP model M, the digraph Gt(Vt, Et) and Gb(Vb, Eb), the

lookup table T t and T b, the binary variable set S
1 Initialize a MILP model M
2 Call Algorithm 45 as (M,Gt, T t)← b256CommonModel(M, 5.5, 6.5)

3 Call Algorithm 45 as (M,Gb, T b)← b256CommonModel(M, 6.5, 8.5)
4 Update the model by adding constraints:

M.con←


∇tv5.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇bv8.5ℓ [k]← = for (ℓ, k) ∈ [0, 15]× [0, 31]

∇tM ← Θt

∇bM ← Θb

5 Call Algorithm 29 as M← InterSecConstr(M,Gt,Gb, T t, T b,V 3.5)
6 Call Algorithm 28 as (M,St)← betaSet(M,Gt, T t)

7 Call Algorithm 28 as (M,Sb)← betaSet(M,Gb, T b)

8 Define S ← St∪Sb

9 Set the objective function of M as Eq. (22)
10 Return (M,Gt,Gb, T t, T b,S).

Algorithm 45: b256CommonModel
Input : The initial MILP model M, the starting r0 and the ending round r1

with r0 < r1
Output: The updated MILP model M, the digraph G(V, E) capturing the

computation from V r0 to V r1 , the lookup table T mapping word
nodes to the corresponding signed differences

1 Call Algorithm 21 and acquire the digraph G(V, E)← b256Digraph(r0, r1).
2 Initialize an empty lookup table T Initialize V r0 ,M as

M.var←

{
∇vr0i [j].sign,∇vr0i [j].xdiff as binary
∇mi[j].sign,∇mi[j].xdiff as binary

i = 0, . . . , 15; j = 0, . . . , 31

3 Assign T [vr0
i ]← ∇vr0i for i = 0, . . . , 15

4 Assign T [mi]← ∇mi for i = 0, . . . , 15
5 for r = r0 + 0.5, r0 + 1, . . . , r1 do
6 (M,∇TV r−0.5,∇MV r−0.5)← b256UpdateTv(M,∇V r−0.5,∇M, r − 0.5)

7 Assign T [tvr−0.5
i ]← ∇tvr−0.5

i for i = 0, . . . , 15

8 Assign T [mvr−0.5
i ]← ∇mvr−0.5

i for i = 0, . . . , 3
9 (M,∇V r,∇MT r−0.5)← b256UpdateV(M,∇TV r−0.5,∇M, r)

10 Assign T [vr
i ]← ∇vri for i = 0, . . . , 15

11 Assign T [mtr−0.5
i ]← ∇mtr−0.5

i for i = 0, . . . , 3

12 Return (M,G, T ).

54



Algorithm 46: b256UpdateTv
Input : The initial MILP model M, the signed differences of intermediate

state ∇V r and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

state ∇TV r

1 Call Algorithm 49 as (M,∇MV r)← mvModel(M,∇M, r)
2 if r ∈ Z then
3 Define r ← r mod 10
4 (M,∇tvr0,4,8,12)← hGModel(M,∇vr0,4,8,12,∇mvr0 , 16, 12).
5 (M,∇tvr1,5,9,13)← hGModel(M,∇vr1,5,9,13,∇mvr1 , 16, 12).
6 (M,∇tvr2,6,10,14)← hGModel(M,∇vr2,6,10,14,∇mvr2 , 16, 12).
7 (M,∇tvr3,7,11,15)← hGModel(M,∇vr3,7,11,15,∇mvr3 , 16, 12).
8 else
9 Define r ← ⌊r⌋ mod 10

10 (M,∇tvr0,5,10,15)← hGModel(M,∇vr0,5,10,15,∇mvr0 , 16, 12).
11 (M,∇tvr1,6,11,12)← hGModel(M,∇vr1,6,11,12,∇mvr1 , 16, 12).
12 (M,∇tvr2,7,8,13)← hGModel(M,∇vr2,7,8,13,∇mvr2 , 16, 12).
13 (M,∇tvr3,4,9,14)← hGModel(M,∇vr3,4,9,14,∇mvr3 , 16, 12).
14 Assign ∇TV r ← (∇tvr0 , . . . ,∇tvr15)
15 Return (M,∇TV r,∇MV r).

Algorithm 47: b256UpdateV
Input : The initial MILP model M, the signed differences of intermediate

state ∇TV r−0.5 and message block ∇M , the round number r
Output: The updated MILP model M, the signed differences of intermediate

states ∇V r and ∇MT r−0.5

1 Call Algorithm 48 as (M,∇MT r−0.5)← mtModel(M,∇M, r − 0.5)
2 if r ̸∈ Z then
3 Define r ← ⌊r⌋ mod 10

4 (M,∇vr0,4,8,12)← hGModel(M,∇tvr−0.5
0,4,8,12,∇mtr−0.5

0 , 8, 7).
5 (M,∇vr1,5,9,13)← hGModel(M,∇tvr−0.5

1,5,9,13,∇mtr−0.5
1 , 8, 7).

6 (M,∇vr2,6,10,14)← hGModel(M,∇tvr−0.5
2,6,10,14,∇mtr−0.5

2 , 8, 7).
7 (M,∇vr3,7,11,15)← hGModel(M,∇tvr−0.5

3,7,11,15,∇mtr−0.5
3 , 8, 7).

8 else
9 Define r ← (r − 1) mod 10

10 (M,∇vr0,5,10,15)← hGModel(M,∇tvr−0.5
0,5,10,15,∇mtr−0.5

0 , 8, 7).
11 (M,∇vr1,6,11,12)← hGModel(M,∇tvr−0.5

1,6,11,12,∇mtr−0.5
1 , 8, 7).

12 (M,∇vr2,7,8,13)← hGModel(M,∇tvr−0.5
2,7,8,13,∇mtr−0.5

2 , 8, 7).
13 (M,∇vr3,4,9,14)← hGModel(M,∇tvr−0.5

3,4,9,14,∇mtr−0.5
3 , 8, 7).

14 Assign ∇V r ← (∇vr0 , . . . ,∇vr15)
15 Return (M,∇V r,∇MT r−0.5).

55



Algorithm 48: mtModel
Input : The initial model M, the 16-word signed difference ∇M , the round

number r
Output: The updated model M, the 4-word signed difference ∇MT r

1 for i = 0, . . . , 3 do
2 if r ∈ Z then
3 Define r ← r mod 10
4 (M,∇mtri )← xorConstApprox(M,∇mσr(2i+1), rcσr(2i))

5 else
6 Define r ← ⌊r⌋ mod 10
7 (M,∇mtri )← xorConstApprox(M,∇mσr(2i+1+8), rcσr(2i+8))

8 Define ∇MT r ← (∇mtr0, . . . ,∇mtr3)
9 Return (M,∇MT r).

Algorithm 49: mvModel
Input : The initial model M, the 16-word signed difference ∇M , the round

number r
Output: The updated model M, the 4-word signed difference ∇MV r

1 for i = 0, . . . , 3 do
2 if r ∈ Z then
3 Define r ← r mod 10
4 Call Algorithm 5 as

(M,∇mvri )← xorConstApprox(M,∇mσr(2i), rcσr(2i+1))

5 else
6 Define r ← ⌊r⌋ mod 10
7 Call Algorithm 5 as

(M,∇mvri )← xorConstApprox(M,∇mσr(2i+8), rcσr(2i+1+8))

8 Define ∇MV r ← (∇mvr0, . . . ,∇mvr3)
9 Return (M,∇MV r).

56



Table 16: The signed differential path for 8-round BLAKE2s with the (i, j) =
(28, 31) setting.
∇tM ================================ ================================ ================================ ================================

================================ ===u============================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ===============================0

∇tV 2.5 ===================u============ ===========u===========u===n==== ====u==u=======n=======u====u==n u===========u===n=====uu====n===
n=u=============u=====n========= ===u============================ ===n=======n===========n===u==== ===un==n===u===uu==u===n===n===u
===u======uu=======n======nn==== ==u====================n======== ===================n=======n==== ==u========u=======u=======u====
==u1==============uu============ ===u======uu====u==u======u=u=== ==u====u====u==========u====u=== ===0=======u=======0============

∇tV 3 ===u===============u=======1==== ==n1===============0============ ==========1===============1===== =======================u========
===n=====1=========n============ ================================ ==========1===================== ==1u======0=======1====n==1=====
===n=======u====0==u=======n1=== ==u=========0===============1=== ================================ ===u============================
==========0n===============n==== ==n===============u============= ===============================0 ===n=======0===============0====

∇tV 3.5 ===========0===============0==== ==n============================= ================================ ================================
================================ ================================ ================================ ==========1=====================
================================ ================================ ================================ ===u============================
===u===============n============ ==========0===================== ================================ ================================

∇tV 4 ================================ ===n============================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
===========0==================== ================================ ================================ ================================

∇tV 4.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 6 ================================ ===u============================ ================================ ================================
===========================0==== ===================0============ ==0===============u============= ===========0====================
================================ ================================ ================================ ===========u====================
===========u==================== ===0============================ ==================0============= ================================

∇tV 6.5 ===u===u===================0==== ===u===============0===========u ==0===========u===u===========u= =======================u========
==u=======u===u===u===u========= ==u===u=======u===u=======u===== =u===u===u===u===u===u=======u== ======u===========u===========u=
===u===0===u===u===========u==== =======u===u=======u=======u===0 ==u===u===u===0=======u===u===0= ===========u===========0=======u
===u=======u===u================ =======u===u===============u==== ======u===u===========u===u===== ===============================u

∇bM ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ u===============================
================================ ================================ ================================ ================================

∇bV 6.5 u========n===u===========u===n== u===============u=============== n=======u===========u===n======= =u==u=======u===u===u===nu==n===
=n==n===u===nn======n===u===u=== n============n======n========u== ================================ u=======n===========n===u=======
u=======u=======u=======u======= ================================ ====================n=========== u===============n===============
0===============1=============== u=============================== ========0====u==u=======1u====== ====u====u======u===u====u======

∇bV 7 u===================n=========== u===============u=============== u===============0=============== ========1===============0=======
n======0=======0====u==1=======1 n======0========n=============== ================================ =======0========================
u=============================== u=======n====0==u=======u1====== u========1===============0====== ================================
========1===============0======= ========n===============n======= u===============u=============== ========0===================1===

∇bV 7.5 ================================ ========1===============0======= u=============================== ================================
=======0======================== ================================ ================================ ================================
u=============================== ================================ ================================ ================================
================================ n===============n=============== ========1======================= ================================

∇bV 8 ================================ ================================ u=============================== ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ========1======================= ================================ ================================

∇bV 8.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 10 u=============================== ================================ ================================ ================================
================0=============== ===============u===============0 ========0======================= ========================0=======
================================ ===============================0 ========u======================= ================================
0=============================== ===============0================ ================================ ========u=======================

∇bV 10.5 u===============0===========u=== ===========u===u===========u===0 ====================u=========== ====u===================0=======
===u=======u===u=======u=======u ==u===u===u===u===u=======u===u= ===u===========u===========u==== =======u===u=======u===========u
====u===u=======u=======u===0=== ===u===u===0=======u===u===0===u ========u===========0=======u=== u===0=======u===========u=======
====u===u===============u======= ===u===u===========u===u=======0 ============================u=== u===========u===================

57



Table 17: The signed differential path for 8-round BLAKE2s with the (i, j) =
(31, 30) setting.
∇tM ================================ ================================ ================================ ================================

================================ u=============================== ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 2.5 ================n=============== ========u===========u===n======= =u==u=======u=======u====u==u=== =========u===u======u====u===u==
=============n===============n== n=============================== u=======n===========n===u======= nn==n===n===nu==n===n===n===n===
u=======u=======u=======n======= ====================n=========== ================u=======n======= ========u=======u=======u=======
1===============u=============== u=======u====u==u========u====== ====u====u==========u====u====== 1=======u=======1===============

∇tV 3 u===============n=======1======= 1===============0=============== ================================ ====================u===========
n===============u=============== ================================ =======1======================== u======1=======0====n==0=======1
u=======u====0==u=======n1====== =========1===============0====== ================================ u===============================
========n===============n======= ================================ ============================0=== n=======0===============0=======

∇tV 3.5 ========0===============1======= ================================ ================================ ================================
================================ ================================ ================================ =======1========================
================================ ================================ ================================ u===============================
n===============n=============== ================================ ================================ ================================

∇tV 4 ================================ n=============================== ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
========0======================= ================================ ================================ ================================

∇tV 4.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 6 ================================ u=============================== ================================ ================================
========================0======= ================0=============== ===============u===============0 ========0=======================
================================ ================================ ===============================0 ========u=======================
========u======================= 0=============================== ===============0================ ================================

∇tV 6.5 u===u===================0======= u===============0===========u=== ===========u===u===========u===0 ====================u===========
=======u===u===u===u===========u ===u=======u===u=======u=======u ==u===u===u===u===u=======u===u= ===u===========u===========u====
u===0===u===u===========u======= ====u===u=======u=======u===0=== ===u===u===0=======u===u===0===u ========u===========0=======u===
u=======u===u=================== ====u===u===============u======= ===u===u===========u===u=======0 ============================u===

∇bM ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ =u==============================
================================ ================================ ================================ ================================

∇bV 6.5 =u========u===u===========u===u= =u===============u============== =u=======u===========u===n====== u=n==u===========u===n====u==n==
==u==n===u====u======u===n===u== =n============n======u========n= ================================ =n=======n===========n===u======
=n=======u=======u=======u====== ================================ =====================n========== =u===============n==============
=0===============1============== =u============================== u========0====u==u=======uu===== =====u====u======u===u====u=====

∇bV 7 =u===================u========== =u===============u============== =n===============0============== =========0===============0======
nu======0=======1====n==1======= =n======0========n============== ================================ ========0=======================
=n============================== =u=======u====0==u=======u0===== =u========0===============0===== ================================
=========1===============0====== =========n===============n====== =u===============u============== =========0===================0==

∇bV 7.5 ================================ =========0===============0====== =n============================== ================================
========0======================= ================================ ================================ ================================
=n============================== ================================ ================================ ================================
================================ =n===============n============== =========0====================== ================================

∇bV 8 ================================ ================================ =n============================== ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ =========1====================== ================================ ================================

∇bV 8.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 10 =u============================== ================================ ================================ ================================
=================0============== 0===============u=============== =========0====================== =========================0======
================================ ================================ =========u====================== ================================
=0============================== ================0=============== ================================ =========u======================

∇bV 10.5 =u===============0===========u== 0===========u===u===========u=== =====================u========== =====u===================0======
u===u=======u===u=======u======= ===u===u===u===u===u=======u===u ====u===========u===========u=== u=======u===u=======u===========
=====u===u=======u=======u===0== u===u===u===0=======u===u===0=== =========u===========0=======u== =u===0=======u===========u======
=====u===u===============u====== ====u===u===========u===u======= =============================u== =u===========u==================

58



Table 18: The signed differential path for 8-round BLAKE-256 with the (i, j) =
(31, 30) setting.
∇tM ================================ ================================ ================================ ================================

================================ n=============================== ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 2.5 ================n=============== ========u===========u===n======= uu==u===============u====u==u=== =========u===n======n====u===u==
=============u===============n== n=============================== u=======n===========n===u======= uu==n===u===un==u===n===n===n===
u=======n=======n=======n======= ====================n=========== ================u=======n======= ========u=======n=======u=======
0===============u=============== u=======u====u==u=======uu====== ====u====u==========u====u====== 1=======u=======0===============

∇tV 3 u===============n=======1======= 1===============1=============== ================================ ====================n===========
n===============u=============== ================================ =======1======================== u======0=======0====u==0=======1
u=======n====1==n=======n1====== =========1===============0====== ================================ u===============================
========n===============n======= ================================ ============================1=== n=======1===============0=======

∇tV 3.5 ========0===============1======= ================================ ================================ ================================
================================ ================================ ================================ =======1========================
================================ ================================ ================================ u===============================
n===============u=============== ================================ ================================ ================================

∇tV 4 ================================ n=============================== ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
========0======================= ================================ ================================ ================================

∇tV 4.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 5.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇tV 6 ================================ u=============================== ================================ ================================
========================0======= ================0=============== ===============u===============0 ========0=======================
================================ ================================ ===============================0 ========u=======================
========u======================= 0=============================== ===============0================ ================================

∇tV 6.5 u===u===================0======= u===============0===========u=== ===========u===u===========u===0 ====================u===========
=======u===u===u===u===========u ===u=======u===u=======u=======u ==u===u===u===u===u=======u===u= ===u===========u===========u====
u===0===u===u===========u======= ====u===u=======u=======u===0=== ===u===u===0=======u===u===0===u ========u===========0=======u===
u=======u===u=================== ====u===u===============u======= ===u===u===========u===u=======0 ============================u===

∇bM ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ =u==============================
================================ ================================ ================================ ================================

∇bV 6.5 =u========u===u===========n===u= =u===============u============== =u=======u===========u===u====== ==u==u===========u===n====u==u==
==n==n===u====u======u===n===n== =n============n======n========n= ================================ =n=======n===========n===n======
=n=======u=======u=======u====== ================================ =====================n========== =u===============n==============
=0===============1============== =u============================== =========0====u==u=======uu===== =====u====u======u===u====u=====

∇bV 7 =u===================n========== =u===============u============== =n===============0============== =========1===============0======
nu======0=======1====u==0======= =n======0========n============== ================================ ========0=======================
=n============================== =u=======u====1==n=======u0===== =u========0===============1===== ================================
=========1===============0====== =========n===============n====== =u===============n============== =========0===================1==

∇bV 7.5 ================================ =========1===============0====== =n============================== ================================
========1======================= ================================ ================================ ================================
=n============================== ================================ ================================ ================================
================================ =n===============u============== =========0====================== ================================

∇bV 8 ================================ ================================ =n============================== ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ =========1====================== ================================ ================================

∇bV 8.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 9.5 ================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================
================================ ================================ ================================ ================================

∇bV 10 =u============================== ================================ ================================ ================================
=================0============== 0===============u=============== =========0====================== =========================0======
================================ ================================ =========u====================== ================================
=0============================== ================0=============== ================================ =========u======================

∇bV 10.5 =u===============0===========u== 0===========u===u===========u=== =====================u========== =====u===================0======
u===u=======u===u=======u======= ===u===u===u===u===u=======u===u ====u===========u===========u=== u=======u===u=======u===========
=====u===u=======u=======u===0== u===u===u===0=======u===u===0=== =========u===========0=======u== =u===0=======u===========u======
=====u===u===============u====== ====u===u===========u===u======= =============================u== =u===========u==================

59


	Approximate Modeling of Signed Difference and Digraph based Bit Condition Deduction
	Introduction
	Preliminary
	Signed Differences and Bit Conditions
	Boomerang Attacks
	MILP Modeling Technique
	Keyed Permutations of BLAKE3, BLAKE2s and BLAKE-256

	MILP Modeling the Signed Difference Propagation in ARX Primitives
	The Modular Add Operation
	The XOR Operation

	Digraph Capturing the ARX Computations and Representing Bit Conditions
	Structure of Operator Node Vo
	Structure of Word Nodes Vw
	Bit Condition Deduction
	Digraph based Objective Function Definition
	Boomerang Intersection Constraints

	Application to BLAKE Hash Functions
	Boomerang Attack on BLAKE3
	Boomerang Attacks on BLAKE2s and BLAKE-256

	Discussions and Conclusions
	Bit Conditions for Boomerang Top-Bottom Paths
	Details of the BLAKE3, BLAKE2s and BLAKE-256 Keyed Permutations
	Accurate Signed Difference Modeling
	Digraph Construction
	The Digraph Construction for BLAKE3
	The Digraph Construction for BLAKE2s
	The Digraph Construction for BLAKE-256

	MILP Models Used in the Paper
	The Model Capturing Newly Generated Bit Conditions 
	The MILP Model Constraints for Boomerang Intersection
	MILP Models for BLAKE3
	MILP Models for BLAKE2s
	MILP Models for BLAKE-256

	The Signed Differential Paths for BLAKE2s and BLAKE-256


