
OpenPubkey: Augmenting OpenID Connect with User-held Signing Keys

Ethan Heilman Lucie Mugnier Athanasios Filippidis Sharon Goldberg
Sebastien Lipman Yuval Marcus Mike Milano Sidhartha Premkumar John Merfeld

Chad Unrein
BastionZero, Inc.

https://github.com/openpubkey/openpubkey

Abstract
OpenPubkey makes a client-side modification to OpenID

Connect so that ID Tokens commit to a user-held public key,
PKu. This transforms an ID Token into a certificate that cryp-
tographically binds an OpenID Connect identity to a public
key. We call such an ID Token a PK Token. Messages signed
by a user with their signing key, SKu can be authenticated
and attributed to the user’s OpenID Connect identity. This
allows OpenPubkey to upgrade OpenID Connect from Bearer
Authentication to Proof-of-Possession, eliminating trust as-
sumptions in OpenID Connect and defeating entire categories
of attacks present in OpenID Connect. OpenPubkey was de-
signed to satisfy a decade-long need for this functionality.
Prior to OpenPubkey, OpenID Connect did not have a secure
way for users to sign statements under their identity.

It is transparent to users and OpenID Providers. An OpenID
Provider can not even determine that OpenPubkey is being
used. This makes OpenPubkey fully compatible with existing
OpenID Providers. In fact a variant of OpenPubkey is cur-
rently deployed and used to authenticate signed messages and
identities for users with accounts on Google, Microsoft, Okta,
and Onelogin. OpenPubkey does not add new trusted parties
to OpenID Connect and reduces existing trust assumptions.
If used in tandem with our MFA-cosigner, it can maintain
security even against a malicious OpenID Provider (the most
trusted party in OpenID Connect).

1 Introduction

OpenID Connect [40] is the dominant Single Sign On (SSO)
identity authentication protocol on the web. It is supported
by all major identity providers including Google, Microsoft,
Facebook, and Okta. With OpenID Connect, users sign into
their OpenID Provider (OP) e.g., Google. Once signed in, the
user can authenticate with other entities by having their OP
attest to their identity. This Single Sign On (SSO) functional-
ity provides substantial convenience and security benefits to
users, since by using OpenID Connect a user need only man-

age the one set of credentials at their OP, rather than having
to manage a plethora of accounts and passwords.

Bearer Authentication: In OpenID Connect a user authen-
ticates their identity to an audience i.e., a website or other
entity that supports OpenID Connect, the audience requests
that the user’s software, called the Client Instance, supply an
ID Token. This ID Token is a cryptographically verifiable
attestation, from the OpenID Provider (OP) to the audience,
of the user’s identity. The audience checks the OP’s signature
on the ID Token, then grants the user access to the account
corresponding to the identity attested by the ID Token. This
form of authentication is called Bearer Authentication.

Bearer Authentication is when a user authenticates to a
party by “bearing”, that is revealing to that party, the user’s
authentication secret. In OpenID Connect, the secret revealed
is the ID Token. Anyone “bearing” the ID token can authenti-
cate as the identity attested to in the ID token.

The main benefit of Bearer Authentication is in its simplic-
ity: you just reveal a secret in order to authenticate. This sim-
plicity comes at the cost of inherent security vulnerabilities
resulting from the necessity of exposing the authentication
secret (the ID token) to authenticate. Thus, a server at an au-
dience receiving an ID Token, or any party intercepting the
ID Token, can replay that token to other servers at that same
audience and thereby impersonate the user. This is called a
Token Replay Attack. OAuth2 and OpenID Connect tokens are
also vulnerable to Token Export Attacks where a malicious,
compromised or misconfigured Client Instance leaks tokens
to an attacker enabling that attacker to impersonate the user.

The security implications of Token Replay Attacks (Sec-
tion 4.1) and Token Export Attacks (Section 4.2) have mo-
tivated a decade-long standardization effort (Section 5) to
reduce these vulnerabilities. These efforts aim to upgrade
OAuth2 and OpenID Connect to a more secure authentication
archetype: Proof-of-Possession.

Proof-of-Possession: Instead of revealing the authentica-
tion secret, in Proof-of-Possession the user just proves that
they hold the authentication secret. Proof-of-Possession typ-
ically uses digital signatures [12], where the authentication

1

https://github.com/openpubkey/openpubkey

secret is a signing key and the user signs a random challenge
from an audience to prove they “possess” the signing key.
Proof-of-Possession prevents Token Replay Attacks because
the user no longer exposes their authentication secret to au-
thenticate. Proof-of-Possession also addresses Token Export
Attacks as it enables the use of non-extractable keys (see Sec-
tion 4.2), where software is trusted to request signatures but
is not trusted to read or “extract” the signing key.

OpenPubkey makes a client-side modification to OpenID
Connect so that an ID Token issued by an OP commits to a
public key, PKu, held by the user. We call an ID Token gener-
ated in this way, a PK Token. The user can then produce and
sign messages with their signing key, SKu, and these signa-
tures can be authenticated and attributed to the user’s identity
via the PK Token. This enables us to move OpenID Connect
from Bearer Authentication to Proof-of-Possession. Using
our new signing capability we create OpenPubkey Signed
Messages (OSM) which are JSON Web Signatures which can
be publicly verified, authenticated and attributed to the user
identity attested to in the ID Token.

OpenPubkey’s PK Token design is highly extensible and
enables the use of Cosigners i.e., third parties that provide
additional validation of claims in the ID Token. In Section 3.4,
we show how a cosigner that performs an independent MFA
authentication of the user, allows OpenPubkey to maintain
security even against a fully malicious OP. OpenID Connect,
as currently used without a cosigner, suffers a complete loss
of security if an OP becomes fully malicious (Section 4.4).
The use of cosigners does not require any changes at the OP
and is not required for OpenPubkey.

OpenPubkey achieves this without adding trusted parties,
without requiring any modifications to OpenID Providers
(OP) and while reducing trust assumptions currently made by
OpenID Connect. It is fully compatible with current OpenID
Providers. To users, OpenPubkey looks just like OpenID Con-
nect. No additional steps or actions are required. As user
signing keys are ephemeral, we avoid the complexities and
burdens of key management; Users don’t need to transfer
or manage keys. As discussed in Appendix A a variant of
OpenPubkey is actively being used with ID Tokens issued by
Google, Microsoft, Okta, and OneLogin.

Our paper is structured as follows: In Section 2.1, we pro-
vide background on JSON Web Signatures and JSON Web
Key Sets. Section 2.2 introduces the parts of OpenID Connect
needed for OpenPubkey. Section 3 describes OpenPubkey,
which we follow with discussion of the security advantages
of OpenPubkey (Section 4) and Related Work (Section 5).

Our main contribution is achieving the following desiderata
while maintain compatibility with existing OPs, user work-
flows and JSON Web cryptography standards:

• Proof-of-Possession: Users can prove to a verifier they
hold a signing key associated with their OpenID identity.

• Signed Messages: Users can generate signed messages

bound to the their OpenID identity.

• Extensibility: Developers can extend and add function-
ality to OpenPubkey without requiring changes to OPs
or breaking backwards compatibility with OpenPubkey.

• Trust minimization: OpenPubkey must not add trusted
parties to OpenID Connect and should minimize and
eliminate preexisting trust assumptions.

An additional contribution of this work is the design of an
MFA-Cosigner. This enables an entity other than the OP to
provide an MFA authentication of the user such that the OP
is no longer a Single Point of Compromise (SPoC).

A full manifest of the software projects and protocols that
benefit from OpenPubkey is beyond the scope of this paper.
Instead we provide two instructive examples. Zoom’s End-to-
End Encryption proposal [8] assumes functionality in OpenID
Connect which does not exist in the OpenID Connect stan-
dard. This missing functionality is provided by OpenPubkey.
SigStore [31] “Keyless Signatures” protocol requires trusting
a party to map public keys and OpenID Connect identities,
OpenPubkey could remove the trust placed in that party. For
full details see Related Work (Section 5).

2 Background

2.1 JSON Web Signatures (JWS)
JSON Web Signatures (JWS) [21] are a standardized JSON-
based signed message format. A JWS contains, the message
aka, the payload, a set of signatures. All the signatures in a
JWS share the same payload but each has their own protected
header.

{
"payload": payload,
"signatures":[
{

"protected": h1 Protected header ,
"signature": σ1← SIGN(SK1,(payload,h1))

},
{

"protected": h2 Protected header ,
"signature": σ2← SIGN(SK2,(payload,h2))

}]
}

Each signature is over both the payload and that signature’s
protected header.1 As shown above, the signature, σ1, is com-
puted as SIGN(SK1,(payload,h1)), where h1 denotes the pro-
tected header.

Protected headers include JOSE (JSON Object Signing and
Encryption) [30] signature metadata parameters such as kid

1JWS objects can also have headers which unlike protected headers are
not covered by the signature. In this paper we only use protected headers.

2

(Key ID) and alg (algorithm). kid is an identifier which is
used to determine which key in a set of keys should be used
to verify the signature. alg specifies the algorithm that must
be used to verify the signature.

JSON Web Tokens (JWT) [22] are subtype of JSON Web
Signatures (JWS)2 in which the payload of the JWS is a set
of standardized claims encoded in JSON e.g., the claims iss,
sub, and aud, identify the issuer, the subject and intended
audience of the JWT respectively. JWTs is designed to enable
an issuer to make authenticated claims about a subject, where
these claims bound to the identity of the issuer.

JSON Web Key (JWK) [20] is a standardized JSON repre-
sentation of a cryptographic key. In this paper we use public
keys encoded as JWKs to verify digital signatures encoded
as JWS. The JWK standard defines JSON Web Key Sets
(JWKS), pronounced Jay-wicks, as sets of JWK keys.

Important to OAuth2, OpenID Connect and OpenPubkey
is the notion of a JWKS endpoint aka, JWKS URI. A JWKS
endpoint is a web service identified by a HTTPS URI which
hosts a JWKS (JSON Web Key Set) containing the public
keys for a particular entity3. Because HTTPS/TLS is used,
the contents of the endpoint are authenticated. A party who is
configured with the URI of the JWKS endpoint can download
Google’s public keys and use these public keys to verify
digital signatures purporting to be signed by Google.

JWKS endpoints allow signing authorities in protocols like
OpenID Connect to easily disseminate new signing keys, ro-
tate old keys and rapidly recover from a compromise. Rotating
signing keys is done by adding new keys and removing the
old keys from the JWKS endpoint. Relying parties frequently
update their JWKS caches and will remove the rotated out
keys on their next download. A consequence of this design is
that a compromise of a JWKS endpoint lets an attacker add
their public key to the key set and thereby generate signatures
under the identity associated with that JWKS endpoint.

2.2 OpenID Connect
In this section we provide the necessary background on
OpenID Connect. We focus only on the subset of functionality
used in OpenPubkey. This includes how ID Tokens are issued,
used and what information they contain.

OpenID Connect (OIDC) [40] is a ubiquitous web iden-
tity protocol that built on OAuth2 [17]. OAuth2 allows users
to delegate access and authorization to third parties via Ac-
cess Tokens and Refresh Tokens. OpenID Connect extends
OAuth2 by adding a new type of token, an ID Token. This
allows users to prove their identity to entities called audiences.
In this paper we follow the OpenID Connect terminology and
refer to the party that authenticates users and issues ID tokens,
Access Tokens and Refresh Tokens as the OpenID Provider

2JWTs can be JSON Web Encryptions (JWE) but that isn’t relevant here.
3For instance Google’s JWKS endpoint used for OAuth2 and OpenID

Connect is: https://www.googleapis.com/oauth2/v3/certs.

(OP). This paper is specifically concerned with how an OP
grants tokens using the PKCE (Proof Key for Code Exchange)
Authorization Code Flow [9]. We do not consider other autho-
rization flows in this paper. As Access Tokens are not used in
OpenPubkey we exclude them from protocol descriptions.

In OpenID Connect there are five parties: the user, the
audience, the OP, the Client Instance and OIDC-RP.

The user is the party who wants to prove their identity to
an audience by revealing their ID token.

The audience is the party that to whom the user presents
their ID Token.

The Client Instance is an OpenID Connect user-agent
i.e., software that acts on the user’s behalf to enable the user
to participate in the protocol. The Client Instance requests,
receives, stores, sends and refreshes the user’s ID Token.

The OP (OpenID Provider) is an identity provider, such
as Google, Microsoft or Okta, who is trusted to authenticate
the user and then sign and issue an ID Token which attests to
a user’s identity. This ID token is scoped to a particular set of
audiences.

There is one other party that is relevant called the OIDC-RP
(OpenID Connect Relying Party). While the RP stands for
Relying Party, the purpose of this party is not exactly the same
as a traditional relying party used in the context of other sys-
tems (e.g., X.509 certificates). For clarity we recommend that
the reader not think of the OIDC-RP as a traditional relying
party.4 Before explaining the role the OIDC-RP performs, we
must define some other important aspects of OpenID Connect.

The Client ID is the identifier of the OpenID Connect SSO
integration. For instance if the organization example.org
wishes to let users sign into website audience.com using the
Google OP, example.org would perform an SSO integration
with the Google OpenID Provider and be granted a Client ID
e.g., 12345.

The Redirect-URI is the URI that the Client Instance in-
structs the OP to send the Auth-Code after a user successfully
authenticates to an OP. The Auth-Code is a secret generated
by an OP that functions as proof that the user authenticated
to the OP. The Client Instance receives the Auth-Code at the
Redirect-URI, then sends it back to the OP with some other
secrets and in exchange is sent the user’s ID Token and Re-
fresh Token (See Section 2.2.4). What is important to note
here is that we do not want malicious parties to be able to read
what is sent to the Redirect-URI, because the redirect-URI
is used communicate the security sensitive Auth-Code to the
Client Instance.

OpenID Connect must solve two security problems here.
First it must ensure that a malicious Client Instance can’t read
the Auth-Code sent to the user’s Client Instance Redirect-
URI. This is addressed by the enforcement of Same-Origin
Policy [41] in web browsers. Same-Origin Policy prevents
malicious javascript running on the website evil.com from

4In OpenID Connect documentation the OIDC-RP is also sometimes
called the Client and sometimes called the Relying Party.

3

https://www.googleapis.com/oauth2/v3/certs

reading cookies for example.org or in OpenID Connect’s
case preventing javascript at evil.com from reading a URI
with the example.org domain. Second, because a Client
Instance tells the OP what Redirect-URI to use, OpenID
Connect must prevent an OP from using unauthorized, and
potentially malicious, Redirect-URI that was specified by a
malicious Client Instance. This is solved by setting up an
ACL (Access Control List) at the OP that maps Client IDs
to Redirect-URIs. For example, an OP’s Redirect-URI ACL
might contain an entry that says Client ID 12345 can only
use https://example.org/redir/auth. This ensures that
an ID Token issued for Client ID 12345 must use Redirect-
URI https://example.org/redir/auth. As an ID Token
always includes the Client ID that it were issued for, audiences
can check that the ID Token was issued using a Redirect-URI
authorized by Client ID they trust.

The OIDC-RP (OpenID Connect Relying Party) is the
entity that is issued the Client ID and manages the corre-
sponding entry at the Redirect-URI ACL at the OP. When an
audience is trusting an Client ID, that they are really trusting
is the OIDC-RP that controls that Client ID.

2.2.1 ID Tokens

The ID Tokens are JWTs (JSON Web Tokens) [22] and thus
JSON Web Signatures (JWS). They are signed under a sign-
ing key held by an OP. In OpenID Connect, an OP’s public
keys are published on a JWKS endpoint (see Section 2.1),
allowing anyone to download the public keys and verify that
a given ID Token is validly signed by the OP. As a JWT, an
ID Token contains claims that the OP is making about the
user. The following claims are required for an ID Token to be
considered valid:
iss (issuer) the URI of the OpenId Provider (OP) that

issued this token e.g., https://accounts.google.com.
sub (subject) a string that uniquely identifies the user ac-

count at the OP that the token is issued for.
aud, intended audience(s) of this ID Token, must include

the OIDC-RP’s Client ID.
iat (issued at), the time at which the token was issued.
exp (expiration) the time after which the token is expired.
nonce random value specified by the Client Instance in an

Authentication Request. This field is only required if specified
in an Authentication Request.

2.2.2 Using an ID Token

A user whose Client Instance has been granted an ID Token,
can authenticate to an audience by having the Client Instance
send the user’s ID Token to that audience.

The audience validates the ID Token by performing the fol-
lowing checks. First, the audience checks that the OP which
generated the ID Token is an OP which the audience trusts to
authenticate user identities. Second, the audience performs

JWT (JSON Web Token) validation on the ID Token. This
includes downloading the OP’s public keys from the OP’s
JWKS endpoint. Third, the audience checks that the Client
ID specified in the aud claim is one that the audience trusts,
that the aud contains the audience and that the aud does not
contain any other audiences which the audience does not trust.
Finally, the audience ensures that ID Token is not expired
based on the expiration claim in the ID Token.

2.2.3 ID Token Refresh

Refresh Tokens are used to obtain new ID Tokens when they
expire or become invalid. Refresh tokens are expected to
be long-lived and do not have a set expiration but they can
be invalidated by OP. The purpose of Refresh Tokens is to
authenticate Refresh Requests made by the Client Instance to
the OP to request a refreshed/unexpired ID Token. ID Token’s
typically expire in a few hours.

The purpose of ID Token expiration and Token Refresh
in OpenID Connect is two fold. First, it limits the time an
attacker can abuse a stolen ID Token. Once the ID Token
expires audiences will reject them as invalid and they will pro-
vide no benefit to an attacker. This assumes the attacker does
not steal the Refresh Token as well. Secondly, the Refresh
Request provides a convenient place for an OP to revoke an
authentication after tokens have been issued. To do this the
OP internally marks the Refresh Token associated with that
session as invalid so that the Refresh Token can no longer
be used by a Client Instance to get fresh ID Tokens. Once
the current ID Token held by the Client Instance expires, the
Client Instance no longer has valid tokens.

To refresh an ID Token:
1. Refresh Request: The Client Instance makes a Refresh

Request to the OP by sending the user’s current Refresh Token
to OP’s Token Endpoint.

2. Refresh Response: If the Refresh Token sent by the
Client Instance is valid i.e., was issued by the OP and not
revoked by the OP, then the OP replies to the Client Instance
with a new Refresh Token and ID Token.

3. Validation: Returned tokens checked by Client Instance.

2.2.4 Token Grant via PKCE Authorization Code Flow

As shown in Figure 2, the PKCE Authorization Code Flow is
one way that OpenID Connect authenticates users and issues
tokens. At a high level the Authorization Code Flow works
as follows. The user needs an ID Token to prove their identity
to an audience. To do this the user’s Client Instance sends the
user’s web browser to the OP’s Authorization Endpoint. The
user authenticates with their credentials. If the OP accepts
the user’s credentials, the OP redirects the user’s browser to
the Redirect-URI specified to communicate the Auth-Code
to the user’s Client Instance. The Client Instance uses the
Auth-Code to request tokens from the OP and receives an ID

4

Token, an Access Token and a Refresh Token. This ends the
Authorization Code Flow; the Client Instance can now send
the ID Token to the audience and prove the user’s identity.
The main idea here is that the user proves their identity to the
OP with their credentials and then the OP issues a signed ID
Token which functions as an attestation that the user supplied
valid credentials to the OP. Let us now walk through this flow
in greater detail:

1. Setup: The user requests that the Client Instance perform
the Authorization-Code Flow. The Client Instance prepares
to initiate the flow by generating a random nonce, a random
PKCE Code Verifier (CV) and a PKCE Code Challenge (CC)
which is set to the SHA256 hash of the Code Verifier. We use
λ to denote the security parameter used, we assume λ≥ 256.

nonce←r {0,1}λ

CV←r {0,1}λ

CC← SHA256(CV)

2. Authentication Request: The Client Instance initiates
the Authorization-Code Flow by opening the user’s web
browser to the OP’s Authorization Endpoint. This Authenti-
cation Request includes the following parameters set by the
Client Instance nonce, CC, Client ID, and Redirect-URI. The
OP reads the parameters from the web request sent to the
Authorization Endpoint. If the request passes validation, the
OP asks the user to consent and authenticate.

3. User Consents/Authenticates: The OP displays the
consent and authentication page on the user’s web browser.
This page asks the user if they consent to have tokens issued
by the OP to a Client Instance associated with a particular
RP-OIDC. If the user consents they enter their credentials and
other authentication factors into the web page.

4. Authentication Response: If the user successfully au-
thenticates, the OP then verifies that the Redirect-URI spec-
ified in the Authentication Request is on the Redirect-URI
ACL (Access Control List) for the Client ID given. If the
Redirect-URI is on the ACL then the OP performs an Au-
thentication Response. To do this the OP first generates an
Auth-Code and records the user, nonce and CC associated
with that Auth-Code. Then the OP transmits that Auth-Code
to the Client Instance by redirecting the user’s web browser
to the Redirect-URI with the Auth-Code as a parameter.

5. Token Request: The Client Instance receives the Auth-
Code when the user’s web browser is redirected to Redirect-
URI. The Client Instance then sends the Auth-Code along
with the Code Verifier (CV) to the OP’s Token Request End-
point.

6. Token Grant: The OP verifies that the Code Verifier
(CV) sent by the Client Instance is the SHA256 preimage of
the Code Challenge (CC) sent in the Authentication Request,
CC= SHA256(CV), that the Code Challenge (CC) corresponds
to the Auth-Code, and that the Auth-Code is valid. If all of

these checks pass, the OP responds to the Token Request with
an ID Token and Refresh Token.

7. Token Validation: The Client Instance validates the
tokens it received from the OP. The Client Instance checks
that the claims in the ID Token match the claims the Client
Instance expected. Specifically it checks that the nonce the
Client Instance generated matches the value in the ID Token’s
nonce claim, that the OIDC-RP’s Client ID is in the aud
claim and that the iss claim matches the issuer identity for
the expected OP. Note the Client Instance does not check that
the sub claim matches the user’s identity because the Client
Instance does not know the identity of the user except through
the ID Token.

If any of these steps fail, the Client Instance aborts and
deletes all values computed for this session including the
tokens. Otherwise the Client Instance accepts the ID Token.

3 The OpenPubkey Protocol

OpenPubkey is built around a token called a PK Token. A
PK Token, as shown in Figure 1, is an ID Token constructed
in such a way as to bind the user’s identity in the ID Token
to the user’s public key, PKu, under the signature of the OP
which issued the ID Token. Audiences are able to use the PK
Token to authenticate that a particular public key is held by a
particular user identity. In this way a PK Token functions as
a certificate. The PK token being a JWS can have more than
one signature. The PK Token shown in Figure 1 has three
signatures: the signature of the OP, the user’s signature, and
an MFA-cosigner signature.

In a PK Token the ID Token payload, idT.claims, has been
constructed such that the nonce claim is not just a random
value but a SHA-3 hash of a set of claims made by the Client
Instance. We call these claims the cic aka, the Client In-
stance Claims. The cic must include the user’s public key,
PKu, the algorithm used to verify signatures with the user’s
public key, alg, and a random value, rz, chosen by the Client
Instance. We allow the Client Instance to specify additional
claims for extendability purposes, but here we assume a min-
imal cic containing only three claims. Thus, we repurpose
the nonce claim to function as a randomized commitment
that can opened under rz, to the values in cic. The second
signature object, (hu,σu), which is generated by the Client
Instance, provides the values of cic in the protected header,
hu, allowing any party to open and verify that the cic is com-
mitted to in the nonce. A PK Token is only required to have
these two pairs of signatures and protected headers.5

The third signature, protected header pair, (σm,hm), shown
in Figure 1 is not required for a PK Token. It is an optional
feature of OpenPubkey that enables third party cosigners to
add attestations by signing the ID Token. In this case, the

5We were inspired to use protected headers to specify additional signer
claims by Section 5.3 of RFC-7519 [22] which specifies that JWT claims
can be replicated to the JWS header.

5

https://datatracker.ietf.org/doc/html/rfc7519#section-5.3

pkT ← {
"payload":idT.claims←{

"nonce":SHA-3(cic← (PKu,typ,alg,rz)),
"iss":issuer ,
"exp":expires on,
"iat":issued at,
"aud":audience ,
"sub":subject ID,
"email":subject email

},
"signatures":
[{

"signature":σo← SIGN(SKo,(idT.claims,ho)),
"protected":ho←{"alg":"RS256",

"typ": "JWT", "kid":"123"},
},
{

"signature":σu← SIGN(SKu,(idT.claims,hu)),
"protected":hu←{

"typ": "CIC",
"alg":"EC256",
"upk":PKu
"rz":rz

},
},
{

"signature":σm← SIGN(SKm,(idT.claims,hm)),
"protected":hm←{

"typ": "COS",
"alg":"EC256",
"kid":"456",
"csid":"https://mfa.io",
"eid": User Auth event ID,
"auth_time": MFA Auth time ,
"iat":issued at,
"exp":expires on,
"mfa":"Webauthn",
"ruri":"https://acme.co/"

}
}]

}

Figure 1: Anatomy of the PK Token, pkT. The payload is
the payload of the ID Token, idT. (σo,ho) is the signature
and protected header the OP generated to grant and sign the
ID token. (σu,hu), was added to the ID Token by the Client
Instance to store the Client Instance Claims (cic) committed
to in the nonce. (σm,hm), was added by the MFA-cosigner
(Section 3.3) to show the user authenticated via MFA.

cosigner is attesting that they performed an independent au-
thentication of the user’s identity via an MFA device. We
describe the MFA-cosigner in in Section 3.3.

None of the claims in the cic are checked or even seen
by the OP. The cic is merely proof that a particular user
successfully authenticated to the OP under an identity attested
to by the OP in the ID Token and the Client Instance used in
that authentication flow claims that a particular public key is
held by the user. As OpenID Connect trusts the Client Instance
to not impersonate the user or leak a user’s tokens, trusting
the Client Instance to honestly specify the user’s public key
in the cic does not add trust assumptions.

3.1 Creating a PK Token
We will now show how OpenPubkey creates a PK Token
by injecting a commitment to the user’s public key into the
nonce claim of an ID Token during OpenID Connect PKCE
Authorization Code Flow. Our protocol leverages the fact
that the Authorization Code Flow has the Client Instance
generate and send the nonce to the OP and the OP must
include this nonce in the ID Token it issues when the user
completes the flow. Our description will not repeat all steps in
the Authorization Code Flow as our protocol does not change
any of these steps but the first step. In the Appendix F.1-F.2 we
provide a step-by-step description of our protocol for native
application and browser based Client Instances.

To do this we amend how the nonce is generated by the
Client Instance in Step 1 of the Authorization Code Flow
(Section 2.2.4). In OpenPubkey the Client Instance first gen-
erates the user’s key pair, which we denote (PKu,SKu). Then
the Client Instance chooses a random value rz.

(PKu,SKu)← GenKey(1λ)

rz←r {0,1}λ

These values along with user’s signature algorithm, alg,
constitute the Client Instance Claim, cic← (PKu,alg,rz).
Instead of randomly generating the nonce, the Client Instance
turns the nonce into a SHA-3 commitment to the cic.

nonce← SHA-3(cic)

The Client Instance then makes the standard OpenID Connect
Authentication Request using this nonce. Steps 2-6 of the
Authorization Code Flow are unchanged. If the flow com-
pletes successfully the ID Token will contain a nonce which
commits to the user’s public key.

Once the ID Token is granted (Step 6) and validated (Step
7), the Client Instance creates a protected header, hu consisting
of the values in the cic.

hu← cic

and signs the ID Token under the user’s signing key, SKu.

σu← SIGN(SKu,(idT.claims,hu))

6

The Client Instance then completes the creation of the PK
Token by adding (σu,hu) to the ID Token.

As shown in Figure 2 the only difference between Open-
Pubkey and standard OpenID Connect is how the nonce is
computed. As we do not require changes to be made outside
of the Client Instance, PK Token creation is fully compatible
with, and transparent to, OpenID Connect OPs.

There is no danger of OPs modifying the nonce and break-
ing our protocol. As OpenID Connect spec clearly states: “If
present in the Authentication Request, [OP] Authorization
Servers MUST include a nonce Claim in the ID Token with
the Claim Value being the nonce value sent in the Authen-
tication Request. Authorization Servers SHOULD perform
no other processing on nonce values” [40] As our nonce is a
randomized under rz, it still functions as a nonce and the OP
can not distinguish it from a simple random nonce.

Creating this signature, σu, prevents Identity Misbinding
Attacks [7, 23] (sometimes called Unknown Key-Share(UKS)
attacks), in which a malicious party associates their identity
with another party’s public key. In an Identity Misbinding
Attack the malicious party doesn’t control the signing key,
associated with the public key, to which they are attempting to
bind their identity. By requiring that the Client Instance sign
the ID Token, it proves it knows the user’s signing key and
thus can not be performing an Identity Misbinding Attack.

3.2 Verifying a PK Token
The procedure for verifying a PK Token, pkT, is as follows:

(1). The verifier ensures that the PK Token has Client ID,
aud and iss claims it has been configured to expect.

(2). The verifier then extracts the kid from the OP’s pro-
tected header, ho, in the PK Token, uses the kid to find the
matching public key, PKo, in the verifier’s list of OP public
keys. It uses PKo to verify the OP’s signature, σo on the PK
Token: VER(PKo,(pkT.payload,ho),σo) = 1

(3). Having validated the ID Token portion of the PK Token,
the verifier next checks that the nonce claim is equal to the
SHA-3 hash of the cic in user’s protected header, ho. This
ensures that the nonce claim commits to the cic.

(4). Finally the verifier checks that the cic is well
formed and contains the user’s public key PKu, the user’s
algorithm alg, and the random value rz. It uses these
values to verify the user’s signature over the PK Token:
VER(PKu,(pkT.payload,hu),σu) = 1

The verifier accepts the PK Token if and only if all of these
checks pass. PK Token expiration is handled outside this
procedure depending on the needs of the verifier.

3.3 Cosigners
OpenPubkey enables third parties to cosign a PK Token and
make additional claims i.e., cosigner claims. Cosigning is
uncomplicated, a cosigner puts their cosigner claims into a

protected header, signs the PK Token payload and the pro-
tected header, and then adds the protected header and resultant
signature to the PK Token JWS. Because the signatures are
JWS compliant they can be verified by any JWS verifier!

For the convenience of the validating party, cosigners iden-
tify themselves by setting a Issuer claim csid. Figure 1
presents an example PK Token with a cosigner claim "csid"
(cosigner ID) set to "https://mfa.io". We assume that any
party attempting to validate a cosigner’s signature is config-
ured with the JWKS URI of the cosigner.

3.4 MFA-Cosigner

We employ this cosigner mechanism to build a MFA-cosigner
who authenticates a user via an MFA (Multi-Factor Authen-
tication) device. The MFA-cosigner attests to this authenti-
cation by cosigning the user’s PK Token. This provides an
independent authentication of a user, allowing audiences and
users to maintain security against a malicious OP. We de-
fine two protocols for the MFA cosigner: MFA-Auth and
MFA-Refresh. MFA-Auth lets a user perform authentication
with their MFA device and get their PK Token signed by
MFA-cosigner. MFA-Refresh is used by the Client Instance
to refresh the MFA-cosigner signature on the user’s PK Token.

MFA-Auth follows the Authorization-Code Flow pattern
including the use of Redirect-URI to securely communicate
an Auth-Code to the Client Instance. Unlike OpenID Con-
nect the MFA-cosigner records the Redirect-URI used as a
cosigner claim in the PK Token. This is done to empower
audiences and verifiers to choose which Client Instances they
wish to trust by enforcing a Redirect-URI allow lists at the au-
dience/verifier. We omit a full description here as MFA-Auth
and MFA-Refresh are straightforward see Appendix D full
description of these protocols.

Similar to refresh and expiration in ID Tokens as discussed
in Section 2.2.3, the MFA-cosigner includes an expiration
claim to force Client Instances to regularly refresh their MFA
signature via the MFA-Refresh protocol. This allows the
MFA-cosigner to refuse to refresh revoked MFA devices, ses-
sions and signatures. The MFA-Refresh protocol happens in
the background and does not require the user perform an MFA.
It follows the Proof-of-Possession pattern. The MFA-cosigner
sends a random challenge to the Client Instance. The Client
Instance signs this challenge, along with some authentication
metadata, under the user’s public key. In response the MFA-
cosigner issues a new signature for the PK Token with an
updated expiration claim.

3.4.1 Verifying a MFA-Cosigner Signature

We assume the verifier has been preconfigured with an
Redirect-URI allow list and list of MFA-cosigner public
keys. Remember the cosigner claims are stored in the MFA-
cosigner’s protected header, hm. The procedure for verifying

7

, CC←SHA-256(CV)
User Client Instance

1. Setup

2. Authentication Request

Redirect to the redirectURI

Redirect to Consent/Auth page

3. User Consents/Authenticates

4. Authentication Response

5. Token Request

6. Token Grant

Authenticate user
and validate redirectURI
is on allow list for client-id

Validate Auth-Code
and

Sign and send tokens
7. Validate Tokens

Web browser OP (OpenID Provider)

CC, nonce, client-id, redirectURI

User Credentials

Auth-Code

CC=H(CV)
CV, Auth-Code

ID Token, Access Token, Refresh Token

(PK ,SK)←keygen(1)u u

rz←{0,1}r

y

y

unonce←SHA-3(PK ,alg, rz)

OpenPubkey: OpenID

CV←{0,1}

y

r

y

nonce←{0,1}r

Figure 2: Text in black is the standard OpenID Connect PKCE Authorization Code Flow. Text in blue is our change which
commit to a user’s public key in an ID token. Our change is invisible to the OP since it only takes place on the Client Instance.

a MFA-cosigner signature and claims on a PK Token, pkT, is
as follows:

(1). The verifier ensures that the MFA-Cosigner’s Redirect-
URI claim, which attests to the Redirect-URI of the Client
Instance to which this signature was issued, is on the verifiers
allow list of Redirect-URIs.

(2). The verifier uses the MFA-cosigner kid claim to find
the MFA-Cosigner’s public key, PKm, in the verifier’s list
of MFA-Cosigner public keys. It then uses PKm to veri-
fies the MFA-cosigner’s signature, σm on the PK Token:
VER(PKm,(pkT.payload,hm),σm) = 1

The verifier accepts the PK Token if and only if all checks
pass. If signature expiration is desired by the verifier, it is
enforced outside this procedure.

3.5 OpenPubkey Signed Messages
In this section we show how we use PK Tokens to generate
and verify OpenPubkey Signed Messages (OSM). These are
messages signed under the user’s public key and attributable
to the user’s identity in the corresponding PK Token. To
provide concrete examples we define two different scenar-
ios for the verification of OSMs: Archival Verification (Sec-
tion 3.5.3)) and PoP (Proof-of-Possession) Authentication
(Section 3.5.4).

Our OpenPubkey Signed Messages (OSM) are just a sub-
type of JSON Web Signatures (JWS). What distinguishes
them are rules with regards to the parameters set in the pro-
tected header. As shown in Figure 3, these rules are: (a).
The typ must be set to “osm” to identify it as an OSM. (b).
The alg must match the alg in the cic aka, user’s protected
header in the PK Token. This prevents an attacker from switch-
ing the algorithm.6 (c). The kid matches the SHA-3 hash of

6While we could technically infer the algorithm from the PK Token, alg
is a required parameter in the JWS standard (RFC-7515) [21]. By including
the alg we can make use of existing JWS libraries for OSM signature
verification.

the user’s PK Token. This binds the OSM to a particular PK
Token and user identity and also identifies the public key need
to verify the OSM.

As the OSM is a JWS it can support more than one signer.
In Appendix H we define a protocol that makes use of multiple
signatures. In this section we only deal with one signature on
an OSM, the user’s signature.

osm←{
"payload": m,
"signatures ":[{

"signature": SIGN(SKu,(m,h))
"protected": h {

"alg": pkT.cic.alg,
"kid": SHA-3(pkT),
"typ": "osm",

},
}]

}

Figure 3: JWS representation of our OpenPubkey Signed
Messages (OSM). pkT is the user’s PK Token.

3.5.1 Verifying OpenPubkey Signed Messages (OSM)

On receiving an OSM, osm, and a PK Token, pkT, the verifier
runs the following procedure to verify the osm:

The verifier checks that the typ claim is set to “osm”, that
osm.kid commits to the PK Token: osm.h.kid= SHA-3(pkT),
and that the algorithm in the OSM matches the algorithm
given the in cic (Client Instance Claims) in the PK Token:
osm.h.alg= pkT.cic.alg. To ensure that the PK Token, pkT,
is valid, the verifier runs the PK Token verification procedure
given in Section 3.2. If the verifier wishes to enforce MFA-
cosigner signatures, it also runs the MFA-cosigner verification
(Section 3.4.1). The verifier then checks that the signature on

8

osm verifies under the user’s public key attested to in the pkT:
VER(pkT.PKu,(osm.payload,osm.h),σu) = 1

The verifier accepts the OSM as valid and attributable to
the user identity given in the PK Token if, and only if, all of
these checks pass. A verifier may wish to enforce expiration
checks on the PK Token or MFA-cosigner signature and reject
expired PK Tokens. We look at how expiration works next.

3.5.2 Expiration enforcement

In the next two sections (Section 3.5.3 and Section 3.5.4)
we will introduce two scenarios for verifying OSMs. These
scenarios include a choice by the verifier to enforce or not
enforce expiration on a PK Token. To set the stage for this,
we will now specify our expiration enforcement mechanism.

ID Tokens have short expiration times and must to be re-
freshed frequently by making Refresh Requests to the OP e.g.,
Google’s OP sets a one hour expiration on ID Tokens [13].
This presents a problem for us as the nonce claim only ap-
pears in ID Tokens granted via the Authorization Code Flow.
An ID Token granted via Refresh Requests does not have a
nonce claim and can’t be used to construct a PK Token. To
enable verifying parties to enforce expiration if they so wish
while avoiding the bad user experience of forcing the user to
run the Authorization Code Flow every time the ID Token
in their PK Token expires, we use the following alternative
expiration mechanism. We do not expire a PK Token when
the underlying ID Token expires according to its exp claim.
Instead verifiers wishing to enforce expiration inspect the iat
(issued at) claim, which specifies when the OP issued the ID
Token, and reject the PK Token if it is older than two weeks.
That is, if expiration is enforced, a PK Token expires two
weeks after it is issued.7

3.5.3 Archival Verification

In many cases a verifier may only care about verifying OSMs
and PK Tokens which have be recently generated. In fact if a
verifier has chosen to enforce expiration that verifier explicitly
wants to reject OSMs which depends on an older PK Token.
Yet there are many cases, such as signatures on software arti-
facts or verifying signed audit logs, in which a verifier can not
require that the signatures be recent. Archival verification is
designed for these usecases and enables the authentication of
OSMs (OpenPubkey Signed Messages) years or even decades
after the message was signed.

The main challenge facing archival verifiers is that the OP
public key necessary to verify the PK Token may not longer
be available at the OP’s JWKS endpoint. Most OP’s rotate
their signing keys out of JWKS endpoint between every two
weeks to a four times a year [13, 14, 24, 39]. To ensure the
verifier has the OP’s public key for the PK Token sent with the

7If OPs didn’t strip the nonce claim from the ID Token during a Refresh
Request we would just use the ID Token’s native expiration.

OSMs, the verifier must create and maintain an archival log of
OP public keys.8 This archival log must cover the time period
that verifier wishes to verify PK Tokens over. The verifier
builds this archival log by regularly downloading the public
keys from the OP’s JWKS endpoint. The verifier not only
records the public keys but also the time at which the public
keys were downloaded.

An archival verifier seeks to answer the question: “would
this OSM and PK Token verify when they were originally
created?” To answer this question the verifier determines
when the PK Token was created by inspecting the token’s
iat (issued-at) claim. Using this it populates a list of OP
public keys from the archival log that have a download time
immediately before and immediately after the issued-at time.
It then uses this list of OP public keys to verify the PK Token
and then the OSM under the PK Token. If the verifier is con-
figured to require a MFA-cosigner signatures it must use the
same processes as used for OP signatures: maintain a log of
MFA-cosigner public keys and then use that log to perform
MFA-cosigner verification.

3.5.4 OpenPubkey PoP Authentication

Client Instance

2. Challenge Response

1. Challenge

3. Verify Response

Verifier

PK Token, refreshed ID Token, OSMra

"Authenticated"

ra←{0,1}

Create/sign OSMra
containing user's
message m and
challenge ra.

If response is passes validation
authenticate user and
user's message m.

ra

r

y

Figure 4: OpenPubkey PoP Authentication

As shown in Figure 4, PoP (Proof-of-Possession) Authenti-
cation is designed as a drop in upgrade for OpenID Connect
user authentication but with the enhanced security of message
integrity and Proof-of-Possession (PoP). It allows a verifier
who is communicating interactively with another party to au-
thenticate that the other the party is a user with a particular
OpenID Connect identity and also that the messages sent by
this party were signed by that user as part of this interac-
tive communication session. This is contrasted with Archival
Verification in which the verifier is only concerned with au-
thenticating that a message was signed by a user. To illustrate
this difference consider these two examples, in PoP Authenti-
cation the verifier asks “Am I talking live with Alice and is
this what Alice is saying?” vs Archival Authentication which
asks “I found a message in a log file, is it signed by Alice?”.

As it is intended to be used like OpenID Connect, PoP Au-
thentication must maintain all the security features of OpenID

8Note that even if OPs maintained authenticated records of past pub-
lic keys, a verifier can not rely on these records being eternally available.
On a time scale long enough the probability an OP shutdowns or suffers
unrecoverable data loss approaches 1.

9

Connect. To achieve this PoP Authentication performs an
standard OpenID Connect authentication in parallel with a
PK Token authentication.

This parallel OpenID Connect authentication is especially
important to enable OPs to revoke ID Tokens. In OpenID
Connect, ID Token’s have short expiry times which forces
Client Instances to make frequent Refresh Requests to the
OP to get new ID Tokens issued when the current ID To-
ken expires. As discussed in Section 2.2.3, OpenID Connect
uses these frequent Refresh Request to enable OPs to revoke
authentication by revoking the Refresh Token.

The PoP Authentication protocol works as follows:
(1). Challenge The verifier sends the user’s Client Instance

a random challenge value, ra. This value will be used in
Proof-of-Possession.

(2). Response The Client Instance responds to this chal-
lenge by including ra in the protected header of the OSM. The
Client Instance adds the message content it wants to authenti-
cate, and signs the OSM with the user’s signing key, SKu. It
then sends the OSM, the user’s PK Token and a refreshed ID
Token to the verifier. This refreshed ID Token is an unexpired
ID Token the Client Instance was issued from a recent Refresh
Request.

(3). Verify Response The verifier receives the OSM, PK
Token and refreshed ID Token. To check the OP’s signatures
on the refreshed ID Token and the PK Token, the verifier
downloads the OP’s public keys from the OP’s JWKS end-
point. Then it verifies the PK Token and the OSM according
to Section 3.5.1.

In addition to this the verifier checks that the challenge
value ra is set in the protected header of the OSM. This demon-
strates Proof-of-Possession of the user’s signing key to the
verifier. Next the verifier enforces expiration on the PK Token
using the iat claim as detailed in Section 3.5.2. If the veri-
fier enforces a MFA-cosigner, it verifies the MFA-cosigner’s
signature and rejects expired MFA-cosigner signatures.

The verifier, in parallel, performs a standard OpenID Con-
nect authentication on the refreshed ID Token. To prevent
someone using two ID Tokens that don’t match the verifier
checks that the refreshed ID Token is for the same user, audi-
ence, Client ID, and issuer as the ID token in the PK Token
e.g., the verifier must reject an authentication attempt in which
a Client Instance provides a refreshed ID Token for Alice and
a PK Token for Bob.

3.6 Implementation
We have released an implementation of OpenPubkey
as a Linux Foundation open source project. All com-
ponents of our OpenPubkey implementation are avail-
able under the Apache License 2.0 on github at:
https://github.com/openpubkey/openpubkey. This implemen-
tation currently supports: Google, Github and Gitlab.

We have also used OpenPubkey as a security element in

our software to build a SaaS (Software-as-a-Service) prod-
uct. This product, BastionZero, enables secure remote access
to SSH, Kubernetes, and Databases. It has been in continu-
ous use by us and other organizations since early 2021. As
discussed in Appendix A, this BastionZero implementation
differs slightly from the protocol presented here. This im-
plementation currently supports the following OPs: Google,
Microsoft/Azure, Okta, OneLogin and Keycloak.

Parties unaffiliated with the authors wrote a second im-
plementation, github.com/mit-oidc-client. It is based on the
an early pre-print of this paper. It supports the MIT OP and
provides an OpenPubkey authenticated chat room.

4 Security Discussion

In this section we provide a discussion of the security of
OpenID Connect and OpenPubkey. Our approach is to step
through each of the trusted parties in OpenID Connect and
look at the resulting security loss if the trust assumptions
placed in that party is violated by that party being compro-
mised. We then show when and how OpenPubkey and the
MFA-Cosigner can restore security in the presence of mali-
cious OpenID Connect trusted parties. We take this approach
as OpenID Connect has been shown to maintain security [16]
as long as its trust assumptions are not violated.

Other than the user, the four trusted parties in OpenID
Connect are: the audience, the Client Instance, the OIDC-RP
and the OP. In OpenID Connect an individual compromise
of any of these parties results in some loss of security. We
start with a discussion of the audience and Token Replay
Attacks. We follow this we the impact of a compromised
Client Instance such as Token Export Attacks. Then we look at
a compromised OIDC-RP how that enables Counterfeit Client
Instances. Finally we examine the security consequences of
a compromise of the most trusted party in OpenID Connect,
the OP. In Table 1, we summarize this discussion.

4.1 Compromise of Audience
OpenID Connect is built on Bearer Authentication in which a
user authenticates by revealing their authentication secret i.e.,
their ID Token, to the audience. A consequence is that OpenID
Connect is vulnerable to Token Replay Attacks in which an
audience or party that intercepts an ID Token, can replay that
token to impersonate the user. OpenID Connect limits the
parties impacted by such replay attacks by scoping ID Token
to a Client ID and an audience set in the ID Token claims.
This means that an ID Token scoped to a set of audiences
will be rejected by an audience not in that set. As stated
in the OpenID Connect specification [40]: “The ID Token
MUST be rejected if the ID Token does not list the Client
as a valid audience, or if it contains additional audiences not
trusted by the Client.” Client here refers to the OIDC-RP.
In practice most audiences protect themselves from Token

10

https://github.com/openpubkey/openpubkey
https://github.com/mit-oidc-client/mit-oidc-client

Replay
Attacks

Export
Attacks

Counterfeit
Client Instance

Compromise of
OP’s Signing keys

Compromise of
Client Instance

OpenID Connect

OpenPubkey è è . . (

OpenPubkey + MFAcos è è è è (

Table 1: Enumerates the security impact of different trusted parties being compromised in OpenID Connect. We denote security
via symbols as: .- Vulnerable, (- Security increased but attack still possible, è - (Attack prevented).

Replay Attacks from other audiences by running their own
OIDC-RP and only trusting ID Tokens associated with the
client-id of their own OIDC-RP. In this case the OIDC-RP
and the audience would be the same entity.

While having each audience trust and use a different
client-id mitigates replay attacks between audiences, it does
not address replay attacks within an audience aka, intra-
audience replay attacks. In practice most audiences represent
a panoply of servers and services. Bearer’s Authentication
creates an anti-pattern where every system within that audi-
ence which authenticates a user becomes an audience-wide
Single Point of Compromise (SPoC) that defeats the audi-
ence’s entire authentication enforcement system. Consider
a vulnerability in an unimportant web server that leaks the
content of web requests containing ID Tokens. An attacker
can replay the leaked ID Tokens to that entire audience’s set
of services and servers.

OpenPubkey is not vulnerable to replay attacks as it en-
ables Client Instances to perform Proof-of-Possession with
the user’s signing key as shown in Section 3.5.4. The user’s
signing key, aka, their authentication secret, is never sent out-
side the user’s host.

4.2 Compromise of Client Instance

In OpenID Connect the Client Instance is trusted with total
control over a user’s tokens. If compromised or misconfig-
ured it can perform Token Export Attacks. That is, it can read
the user’s tokens and send them aka, “export” them, to an
attacker. These attacks are a serious security issue in OAuth2
and OpenID Connect, and as discussed in Related Work (Sec-
tion 5), have motivated a decade of efforts to mitigate this
risk. As RFC-8471 [36] states about OAuth2 bearer tokens
“any party in possession of bearer security tokens gains access
to certain protected resource(s). Attackers take advantage of
this by exporting bearer tokens from a user’s application con-
nections or machines, presenting them to application servers,
and impersonating authenticated users.”

Non-extractable keys present a very compelling solution
to this problem. Non-extractable keys are a functionality pro-
vided by modern web browsers [38], operating systems [29]
and mobile devices [1, 3] which allows authorized programs
to be trusted to request signatures from a signing key but not
be not trusted to read or export the signing key. Unfortunately

bearer tokens, such as those used by OpenID Connect, can not
take advantage of non-extractable keys as the Client Instance
must read the tokens and transmit them to an audience to
authenticate.

Since OpenPubkey allows the use of signature-based Proof-
of-Possession, it can leverage non-extractable keys to protect
the user’s signing key. For example a Client Instance can
use the “Web Cryptography API” [38] avaliable to modern
web browsers to generate the user’s key pair via a call to
the generateKey method with the extractable attribute
set to false. As extractable is false, the web browser will
not allow the Client Instance to learn the user’s signing key
SKu but will allow the Client Instance, and only the Client
Instance, to request signatures.

OpenPubkey with non-extractable keys provides some pro-
tections against a compromised Client Instance, since unlike
OpenID Connect a compromised OpenPubkey Client Instance
can not exfiltrate the authentication secret. Yet this protection
is not unlimited, a compromised OpenPubkey Client Instance
can still be used by an attacker to request signatures on the
attacker’s behalf and use these signatures to pass Proof-of-
Possession challenges.

Limiting the attacker to only requesting signatures from the
Client Instance greatly restricts an attacker. First, the attacker
must now route communications through the compromised
Client Instance requiring that they modify the Client Instance
to be accept commands from the attacker and return the results
of these commands. Additionally by forcing the attacker to
route communications through the user’s computer, they are
will leave evidence of their means, methods and intentions
on a device more likely to be available to investigators than
the attacker own infrastructure. Finally, if the user closes their
browser window the attacker will no longer be able to request
signatures. This means that even a successful attack could be
defeated by a single click.

An additional limitation is that the protection offered by
non-extractable keys does not apply to keys generated after
a compromised. This is because the Client Instance is the
party that instructs the browser to generate a key as a non-
extractable key. To do this a compromised Client Instance
can wait until the next time a user runs the Authorization
Code Flow then replace the user’s public key in the nonce
with an public key generated by the attacker. This attack can
not be done retroactively and all keys generated prior to the

11

compromise are safe from being exfiltrated/exported. In Ap-
pendix H we show how to use web browser security features
to provide non-extractability even for keys generated after an
attacker has successfully compromised a Client Instance via
XSS (Cross-Site-Scripting) attack.

This type of protection is very similar to the protection
provided by HSMs (Hardware Security Modules) and for
this reason non-extractable keys are sometimes referred to as
SSMs (Software Security Modules). We argue that despite
these limitations non-extractable keys provide a significant
security improvement.

4.3 Compromise of OIDC-RP

As discussed in Section 2.2, the Redirect-URI is specified
by a Client Instance to the OP and then is used by the OP
to send the Auth-Code from the OP to the Client Instance.
Sending the Auth-Code to a particular Redirect-URI ensures
that only Client Instances loaded from javascript origins as-
sociated with the Redirect-URI, receive the Auth-Code from
the OP. This is because the ability of javascript to read from
a particular Redirect-URI implies a same-origin relationship.
Redirect-URIs enable similar enforcement mechanisms for
Client Instance running as mobile or native apps [45].

Despite the importance of the Redirect-URI, OpenID Con-
nect does not include the Redirect-URI to which a ID Token
was issued as a claim in the ID Token. Instead OpenID Con-
nect uses a Redirect-URI ACL (Access Control List) at the OP
to determine which Redirect-URIs have been authorized for
a Client ID. An OIDC-RP (OpenID Connect Relying Party)
is trusted to configure the allowed Redirect-URIs for their
Client ID at the OP’s Redirect-URIs ACL.

A Counterfeit Client Instance Attack is an attack where
a user is tricked into performing an OpenID Connect
Authorization-Code Flow with an attacker controller Client
Instance, such that the user’s tokens are issued to this “Coun-
terfeit” Client Instance. We call such an attacker controlled
Client Instance a Counterfeit Client Instance, because it isn’t
the Client Instance the user or audience trusts but has the same
Client ID as the Client Instance the user and audience trusts.
The Redirect-URI ACL prevents Counterfeit Client Instance
Attack because the OP will see that the Counterfeit Client
Instance Redirect-URI is not authorized for that Client ID.

If the OIDC-RP is compromised, this protection no longer
holds because the attacker can use the OIDC-RP’s access
to add the Redirect-URI of the attacker controlled Client In-
stance to the ACL. Since the OP will see the Counterfeit
Client Instance’s Redirect-URI as authorized for the Client ID,
it will send the Auth-Code to the Counterfeit Client Instance’s
Redirect-URI enabling the Counterfeit Client Instance to learn
the Auth-Code and use it to successfully request the user’s
tokens from the OP.

A Counterfeit Client Instance Attack is different from a
compromised Client Instance as the counterfeit Client In-

stance is not the same Client Instance which the user trusts,
it merely has the same Client ID. As a result the counterfeit
Client Instance can not steal tokens already issued to the user’s
Client Instance. This attack only impacts audiences which
trust the Client ID associated the compromised OIDC-RP. In
Appendix B we provide a detailed example of the counterfeit
Client Attack.

While OpenID Connect and OpenPubkey without an MFA-
Cosigner are both equally vulnerable to Counterfeit Client
Instance Attacks, adding an MFA-cosigner to OpenPubkey
provides a strong defense against this attack. This is because
when the MFA-cosigner signs the PK Token, it includes a
claim to the Redirect-URI the MFA-cosigner used to privately
communicate the MFA-Auth-Code (see Appendix D) to the
Client Instance. Thus, the MFA-cosigned PK Token attests
to the Redirect-URI used by the Client Instance. We enable
audiences and other verifying parties to remove this trust
assumption on OIDC-RP. Instead audiences and verifiers can
maintain their own Redirect-URI ACLs and reject a Client
Instance using a Redirect-URI they do not trust and have not
internally authorized. If a verifier does not want to maintain a
Redirect-URI ACL they can simply ignore the Redirect-URI
specified by the MFA-cosigner and keep OpenID Connect’s
trust assumption on the OIDC-RP.

4.4 Compromise of OP (OpenID Provider)

The OP (OpenID Provider) is trusted to authenticate users
and attest to the identity of users. This creates a Single Point
of Compromise (SPoC) in OpenID Connect since an attacker
who controls the OP’s signing keys can produce ID Tokens
attesting to anything. The MFA-cosigner, if required by a
verifier, removes this single point of compromise by providing
a second and independent authorization and attestation to the
user’s identity. While the attacker can generate a valid PK
Token, the attacker can not get it signed by the MFA-cosigner
without the user’s MFA credentials. Thus an audience that
requires an MFA-cosigner is protected even if the OP is fully
malicious. Additionally since audiences always check that
the PK Token is signed by the OP, if the MFA-cosigner is
compromised but the OP is not compromised the audience
is protected as well. An attacker must compromise both the
MFA-cosigner and OP at the same time to impersonate a
user. This constitutes a substantial trust reduction and security
improvement over OpenID Connect.

4.5 No new trusted parties

OpenPubkey does not use any trusted parties not already exist-
ing in OpenID Connect and reduces trust assumptions placed
in the audience and the Client Instance. While the Client In-
stance in OpenPubkey generates a key pair for the user, this
does not increase the trust placed in the Client Instance as

12

OpenID Connect already fully trusts the Client Instance to
manage and store the user’s authentication secrets.

The MFA-cosigner reduces trust placed in the OP but its
use does not add any additional trust assumptions. This is
because if the MFA-cosigner is compromised the security
returns to the security provided if no MFA-cosigner was used.

Additionally OpenPubkey provides the following trust
reductions in OpenID Connect. By employing Proof-of-
Possession, OpenPubkey completely eliminates the risk of
intra-audience Token Replay Attacks resulting from the com-
promise of an audience. While OpenPubkey does not elimi-
nate the trust assumption on Client Instances, OpenPubkey
is able to provide improved protection against Token Export
Attacks via non-extractable keys. OpenPubkey if used with
a MFA-Cosigner, reduces the trust placed in the OIDC-RP
by enabling audiences to implement Redirect-URI allow lists
and defeat the Counterfeit Client Instance attack. In OpenID
Connect, the OP (OpenID Provider) is the sole authoritative
source of identity and thus the compromise of the OP’s sign-
ing keys is devastating. OpenPubkey with an MFA-cosigner
provides a robust defense against this attack. While the at-
tacker can use the OP’s signing keys to generate a valid PK
Token, the attacker can not get the PK Token signed by the
MFA-cosigner.

5 Related Work

There has been significant standardization work over the last
decade to defend against Token Replay and Token Export
Attacks in OAuth2 (RFC 6749) [17]. Token Binding [35–37]
was a standard which mitigated these attacks by constraining
a token to a particular party. It failed because it was unable
to get chromium/Google Chrome [18] to make the neces-
sary changes to support Token Binding. Certificate Bound
Tokens (RFC-8705) [10] is an alternative approach which
modifies the OAuth2 protocol by introducing TLS Client Cer-
tificates to OAuth2 and thereby adding Proof-of-Possession.
A third proposal is the IETF draft “Demonstration of Proof-
of-Possession (DPoP)” [15] which adds a new token type
to OAuth2 that attests to the token holder’s public key, en-
abling Proof-of-Possession with this signing key. OpenPub-
key’s Proof-of-Possession was inspired by DPoP.

OpenPubkey differs from these approaches in several re-
spects. While they are focused on OAuth2 authorization,
OpenPubkey is focused on OpenID Connect authentication.
Unlike these approaches, OpenPubkey supports the authenti-
cation of message integrity in addition to identity, this unlocks
a new world of protocols built on user held signing keys. User
signed messages are not currently possible in OAuth2 and
OpenID Connect. Critically OpenPubkey does not require
changes to token issuers so it can be used today (and is being
used today).

OpenPubkey PoP’s JWS challenge and sign is very simi-
lar to the JWS challenge and sign pattern used in RFC-8555

(ACME) [5]. We are investigating if we can reformulate Open-
Pubkey PoP as an extension of ACME’s Request Authentica-
tion.

Verifiable Credentials [28, 44] are an ongoing standardiza-
tion project with the aim of allowing users to custody and
control their digital identity documents, called “credentials”,
such as University Diplomas, Passports and Non-Fungable
Tokens (NFTs). Verifiable credentials issued to a user can at-
test to that user’s public key. For instance if Boston University
issues Alice a diploma in the form of a Verifiable Credential,
she can sign a statement which is cryptographically verifiable
as coming from a Boston University graduate. In the language
of Verifiable Credentials, Alice’s signed message would be
called a Verifiable Presentation [46].

[26] is a draft standard which defines a API for OpenID
Connect OPs to issue verifiable credentials. Of the major OPs,
only the Azure (Microsoft) OP supports this and can issue
verifiable credentials at part of OpenID Connect. Enabling
this functionality at Azure requires additional configuration.
OpenPubkey requires no modifications or special configura-
tions by the OP and supports all major OPs.

The User Endpoint for OpenID Verifiable Credentials [2] in-
troduces Signed JWKs. These Signed JWKs attest to the pub-
lic keys of OPs and can be used to determine what public keys
an OP used, even after those public keys have been rotated
off of the JWKS endpoint. If Signed JWKs were widely sup-
ported, OpenPubkey archival verifiers (Section 3.5.3) would
no longer need to maintain a log of past OP public keys.

Alternatively, the Verifiable Credential issuer and OP can
be separate parties. In this setting the Verifiable Credential
issuer issues the verifiable credential when a user authen-
ticates by presenting an ID Token. This approach does not
require changes to OPs but the verifiable credential issuer now
represents an additional highly trusted party. OpenPubkey is
carefully designed to avoid adding trusted parties.

Sigstore [31, 42] is an open source project for signing
and verifying software artifacts. Users can sign under their
OpenID Connect identity by using the sigstore Fulcio Certifi-
cate Authority [43] which uses an immutable log to store a
mapping between an OpenID Connect ID Token and a short
lived public key enabling parties to attribute signatures to
identities. The Fulcio CA (Certificate Authority) is trusted
to create this mapping between an ID Token and a public
key. Using OpenPubkey this trust can be eliminated as Open-
Pubkey does not need a trusted party to map ID Tokens to
public keys. The Fulcio CA could in turn help OpenPubkey
by acting as a public OpenPubkey verifier and OP public key
database.

The Zoom Cryptography Whitepaper [8] proposes adding a
zoom-identity-snapshot claim to OpenID Connect ID Tokens
as a “mechanism for IDPs to issue and for clients to verify—a
signed attestation that binds a user’s email address to their set
of devices and keys”. That is, they want a way to bind one
or more public keys to an identity in an ID Token. As their

13

whitepaper notes, “[to do this] compatible identity providers
will need to support a custom extension of the OpenID Con-
nect (OIDC) protocol”. This custom extension is necessary
because adding new claims to ID Tokens requires modifica-
tions to the OP that issues those ID Tokens. This a natural
fit for OpenPubkey, because the problem that OpenPubkey
solves is binding public keys to email addresses via ID Tokens.
To illustrate the power and generality of OpenPubkey, let’s
look at two ways OpenPubkey can enable the zoom-identity-
snapshot to be used today.

One of the benefits of OpenPubkey’s cic (Client Instance
Claims) design is that, unlike adding new claims to the ID
Token directly, new claims can be attested to in an ID Token
using the cic, and this does not require any changes to the OP.
The only limitation to this approach is that the claims added
to the cic will be opaque to the OP. As the zoom-identity-
snapshot as opaque to the OP, “the identity provider can treat
this attribute as an opaque string and does not need to check its
validity” [8], the zoom-identity-snapshot can easily be added
as an additional claim to OpenPubkey’s cic (Client Instance
Claims) by a Client Instance. Alternatively, a user could attest
to the validity of a zoom-identity-snapshot and bind it to
their email/identity, by signing it as an OSM (OpenPubkey
Signed Message) under their PK Token. Using either of these
two strategies, OpenPubkey enables zoom-identity-snapshots
to be deployed today and does require any changes to OPs
(OpenID Providers).

The FIDO2 standard WebAuthn [4, 19] provides a mecha-
nism for users to perform a Multifactor Authentication (MFA)
via Proof-of-Possession using user held signing keys. WebAu-
thn is not designed to generate publicly verifiable authenti-
cated messages, and is thus complementary to OpenPubkey.
Our MFA-cosigner can reap the security benefits of WebAu-
thn by using it as an MFA authentication protocol.

[16] provides a formal security analysis of OpenID
Connect, showing that it provides the security it promises
within its trust assumptions. [25] looks for vulnerabilities
in OpenID Connect implementations that use the Google
OpenID Provider. Our security analysis of OpenID Connect
differs from these two works in that they focus on security
failures resulting from implementation errors, whereas we
focus on security failures resulting from the violation of trust
assumptions. [45] examines the security of OAuth2 against
implementation failures and malicious trusted parties. [27]
uses the notion of an malicious OP to perform automated
security analysis of OpenID Connect implementations.

6 Conclusion

OpenPubkey extends OpenID Connect with user generated
signatures whose authentication and integrity are protected
by the security of OpenID Connect. OpenPubkey is trans-
parent to users and OpenID Providers, is fully compatible
with all currently deployed OpenID Providers such as Google,

Microsoft, Okta and Onelogin. It is currently in use. This is
achieved without the creation of trusted parties or trust as-
sumptions not already present in OpenID Connect. As Open-
Pubkey upgrades OpenID Connect from Bearer Authenti-
cation to Proof-of-Possession Authentication, it eliminates
existing trust assumptions in OpenID Connect resulting from
OpenID Connect’s inherent vulnerability to Token Replay and
Token Export Attacks. We provide a substantial trust reduc-
tion as our MFA-cosigner enables security to be maintained
even against a fully malicious OpenID Provider.

7 Acknowledgements:

We would like to thank John Merfeld and Mayank Varia for
their feedback and comments.

References

[1] Android. Android developers : android keystore system.
https://developer.android.com/training/articles/keystore,
2022.

[2] M. Ansari, R. Barnes, P. Kasselman, and K. Ya-
suda. OpenID Connect UserInfo Verifiable Cre-
dentials 1.0. Specification, OpenID Foundation,
2022. https://openid.net/specs/openid-connect-userinfo-
vc-1_0.html.

[3] Apple. Certificate, key, and trust services:
storing keys in the keychain (api collection).
https://developer.apple.com/documentation/security
/certificate_key_and_trust_services/.

[4] D. Balfanz, A. Czeskis, J. Hodges, J.C. Jones, M. Jones,
A. Kumar, A. Liao, R. Lindemann, E. Lundberg,
V. Bharadwaj, A. Birgisson, H. Le Van Gong, C. Brand,
A. Langley, G. Mandyam, M. West, and J. Yasskin. Web
Authentication: An API for accessing Public Key Cre-
dentials. W3c recommendation, World Wide Web Con-
sortium, Mar. 2019. https://www.w3.org/TR/webauthn-
1/.

[5] R. Barnes, J. Hoffman-Andrews, D. McCarney, and
J. Kasten. RFC 8555: Automatic certificate manage-
ment environment (ACME. RFC 8555, RFC Editor,
Mar. 2019. https://www.rfc-editor.org/rfc/rfc8555.

[6] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter
Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of cryptographic engineering,
2(2):77–89, 2012. https://ed25519.cr.yp.to/ed25519-
20110926.pdf.

[7] Simon Blake-Wilson and Alfred Menezes. Unknown
key-share attacks on the station-to-station (sts) proto-
col. In Public Key Cryptography: Second International

14

Workshop on Practice and Theory in Public Key Cryp-
tography, PKC’99 Kamakura, Japan, March 1–3, 1999
Proceedings 2, pages 154–170. Springer, 1999.

[8] Josh Blum, Simon Booth, Brian Chen, Oded Gal,
Maxwell Krohn, Julia Len, Karan Lyons, Antonio
Marcedone, Mike Maxim, Merry Ember Mou, Armin
Namavari, Jack O’Connor, Surya Rien, Miles Steele,
Matthew Green, Lea Kissner, and Alex Stamos. Zoom
cryptography whitepaper (version 4.0). Zoom Video
Commun., Inc., San Jose, CA, Tech. Rep. Version, Nov.
2022.

[9] J. Bradley and N. Agarwal. RFC 7636: Proof
Key for Code Exchange by OAuth Public
Clients. RFC 7636, RFC Editor, Sept 2015.
https://datatracker.ietf.org/doc/html/rfc7636.

[10] B. Campbell, J. Bradley, N. Sakimura, and T. Lod-
derstedt. RFC 8705: OAuth 2.0 Mutual-TLS
Client Authentication and Certificate-Bound Access
Tokens. RFC 8705, RFC Editor, Feb. 2020.
https://datatracker.ietf.org/doc/html/rfc8705.

[11] David Cooper, Stefan Santesson, S Farrell, Sharon
Boeyen, Rusell Housley, and W Polk. RFC
5280: Internet X.509 public key infrastructure cer-
tificate and certificate revocation list (CRL) pro-
file. Technical report, RFC Editor, May. 2008.
https://datatracker.ietf.org/doc/html/rfc5280.

[12] W. Diffie and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[13] Google Cloud Authentication Documen-
tation. Authentication token types.
https://cloud.google.com/docs/authentication/token-
types.

[14] Okta Documentation. Okta developer: key rota-
tion. https://developer.okta.com/docs/concepts/key-
rotation/.

[15] D. Fett, B. Campbell, J. Bradley, T. Lodderstedt,
M. Jones, and D. Waite. OAuth 2.0 Demon-
strating Proof-of-Possession at the Application
Layer (DPoP). Draft rfc, IETF, Aug. 2022.
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
dpop.

[16] Daniel Fett, Ralf Küsters, and Guido Schmitz. The
web sso standard openid connect: In-depth formal se-
curity analysis and security guidelines. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF),
pages 189–202. IEEE, 2017.

[17] Ed. D. Hardt. RFC 6749: The OAuth 2.0 Authoriza-
tion Framework. RFC 6749, RFC Editor, Aug. 2012.
https://datatracker.ietf.org/doc/html/rfc6749.

[18] N. Harper. Intent to remove: token
binding (Chromium Google Groups).
https://groups.google.com/a/chromium.org/g/blink-
dev/c/OkdLUyYmY1E, Aug. 2018.

[19] Takanori Isobe and Ryoma Ito. Security anal-
ysis of end-to-end encryption for zoom meet-
ings. IACR Cryptol. ePrint Arch., 2021:486, 2021.
https://eprint.iacr.org/2021/486.pdf.

[20] M Jones. RFC 7517: JSON Web Key
(JWK). RFC 7517, RFC Editor, May 2015.
https://datatracker.ietf.org/doc/html/rfc7517.

[21] M Jones, J Bradley, and N Sakimura. RFC 7515: JSON
Web Signature (JWS). RFC 7515, RFC Editor, May
2015. https://datatracker.ietf.org/doc/html/rfc7515.

[22] M Jones, J Bradley, and N Sakimura. RFC 7519: JSON
Web Token (JWT). RFC 7519, RFC Editor, May 2015.
https://datatracker.ietf.org/doc/html/rfc7519.

[23] Hugo Krawczyk. Sigma: The’sign-and-mac’approach
to authenticated diffie-hellman and its use in the ike-
protocols. In Crypto, volume 2729, pages 400–425.
Springer, 2003.

[24] Microsoft Learn. Signing key rollover in the microsoft
identity platform. https://learn.microsoft.com/en-
us/azure/active-directory/develop/active-directory-
signing-key-rollover.

[25] Wanpeng Li and Chris J Mitchell. Analysing the secu-
rity of google’s implementation of openid connect. In
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 357–376.
Springer, 2016.

[26] T. Lodderstedt, K. Yasuda, and T. Looker. OpenID for
Verifiable Credential Issuance. Standards track, OpenID
Foundation, Oct. 2022. https://openid.net/specs/openid-
4-verifiable-credential-issuance-1_0.html.

[27] Christian Mainka, Vladislav Mladenov, Jörg Schwenk,
and Tobias Wich. Sok: Single sign-on security—an
evaluation of openid connect. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P), pages
251–266. IEEE, 2017.

[28] S. McCarron, J. Andrieu, M. Stone, T. Siegman, G. Kel-
logg, T. Thibodeau, G. Kellogg, N. Otto, S. Lee,
B. Sletten, D. Burnett, M. Sporny, and K. Ebert.
Verifiable Credentials Use Cases. Working group
note, World Wide Web Consortium, Sept. 2019.
https://www.w3.org/TR/vc-use-cases/.

15

[29] Microsoft. Cryptography api: Next gener-
ation (cng). https://learn.microsoft.com/en-
us/windows/win32/seccng/cng-portal, 2010.

[30] M Miller. RFC 7520: JSON Object Signing and En-
cryption (JOSE). RFC 7520, RFC Editor, May 2015.
https://datatracker.ietf.org/doc/html/rfc7520.

[31] Zachary Newman, John Speed Meyers, and Santiago
Torres-Arias. Sigstore: software signing for everybody.
In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 2353–
2367, 2022.

[32] Telecommunication Standardization Sector of the In-
ternational Telecommunication Union. 509 Recom-
mendations: Information technology-Open Systems
Interconnection-The Directory: Public-key and attribute
certificate frameworks, 2005.

[33] OpenBSD OpenSSL. sshd_config -
openssh daemon configuration file (manual).
https://man.openbsd.org/sshd_config, 2020.

[34] OpenVPN. Openvpn - secure ip tunnel daemon (man-
ual). https://community.openvpn.net/openvpn/ wik-
i/Openvpn24ManPage, 2020.

[35] A. Popov, M. Nystroem, and D. Balfanz. RFC 8472:
Transport Layer Security (TLS) Extension for Token
Binding Protocol Negotiation. RFC 8472, RFC Editor,
Oct. 2018. https://www.rfc-editor.org/rfc/rfc8472.html.

[36] A. Popov, M. Nystroem, D. Balfanz, and J. Hodges.
RFC 8471: The Token Binding Protocol Ver-
sion 1.0. RFC 8471, RFC Editor, Oct. 2018.
https://datatracker.ietf.org/doc/html/rfc8471.

[37] A. Popov, M. Nystroem, D. Balfanz, and J. Hodges.
RFC 8473: Token Binding over HTTP. RFC
8473, RFC Editor, Oct. 2018. https://www.rfc-
editor.org/rfc/rfc8473.html.

[38] W3C Recommendation. Web cryptography api.
https://www.w3.org/TR/WebCryptoAPI/, 2017.

[39] OneLogin OpenId Connect API Reference. Rotate
signing key. https://developers.onelogin.com/openid-
connect/api/rotate-key.

[40] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and
C. Mortimore. Openid connect core 1.0 incorporating
errata set 1. specification 7636, OpenID Foundation
(OIDF), Sept. 2015.

[41] Jörg Schwenk, Marcus Niemietz, and Christian Mainka.
Same-origin policy: Evaluation in modern browsers. In
USENIX Security Symposium, pages 713–727, 2017.

[42] Sigstore. A new standard for signing, verifying and
protecting software. https://www.sigstore.dev/.

[43] Sigstore. Fulcio: A free-to-use ca for code signing.
https://github.com/sigstore/fulcio.

[44] M. Sporny, G. Noble, D. Longley, D. Burnett, B. Zun-
del, K. Hartog, D. Longley, and D. Chadwick. Ver-
ifiable Credentials Data Model v1.1. W3c recom-
mendation, World Wide Web Consortium, Sept. 2019.
https://www.w3.org/TR/vc-data-model/.

[45] Ed. T. Lodderstedt, M. McGloin, and P. Hunt. RFC 6819:
OAuth 2.0 Threat Model and Security Considerations.
RFC 6819, RFC Editor, Jan. 2013. https://www.rfc-
editor.org/rfc/rfc6819.

[46] O. Terbu, T. Lodderstedt, K. Yasuda, and A. Lem-
mon. OpenID for Verifiable Presentations. Stan-
dards track, OpenID Foundation, Sept. 2022.
https://openid.net/specs/openid-4-verifiable-
presentations-1_0.html.

A Differences between the protocol Bas-
tionZero uses and OpenPubkey

We have deployed a variant of OpenPubkey. it is currently
used in BastionZero to secure remote access sessions. Bas-
tionZero is actively evolving this deployed protocol to bring
it in fully in line with OpenPubkey as described in this paper.
Currently there are several differences between the deployed
software and the protocol described in this paper:

1. This implementation does not use JSON Web Signatures
(JWS) in signed messages or the PK Token format. In-
stead it uses a custom serialization format.

2. It don’t use a MFA-cosigner. When a user performs an
MFA authentication a session cookie is issued. This
session cookie is checked by an in-path security system
that drops messages that do not have a valid session
cookie. This architecture provides equivalent security
to having a cosigner in terms of MFA authentication.
However as a result of this architecture, It can not take
advantage of the Redirect-URI MFA-Cosigner claim and
enforce Redirect-URI ACLs outside of the OP.

3. The only user-held signing key algorithm supported is
EdDSA [6]. Non-extractable keys in web browsers do
not currently support EdDSA. For this reason it is unable
to support non-extractable keys.

4. It does not go directly from the Client Instance to the
OP when creating a PK Token. Instead it first goes to
a web page which enables the user to select which OP
they wish to sign in with.

16

5. It does not currently support or use archival verification.
It only uses PoP Authentication

6. While we have experimental X.509 Certificate support,
it is not currently deployed.

7. The BastionZero code base does not yet use the termi-
nology introduced in this paper. It refers to “bzcerts” in-
stead of PK Tokens and MRZAP instead of OpenPubkey.
MRZAP refers to a protocol consisting of both Open-
Pubkey and a separate authenticated channel protocol of
our own creation not discussed in this paper.

B Counterfeit Client Instance Attack

In this section we provide a detailed example of the Client
Instance Counterfeit Attack [45]. As discussed in Section 4.3,
Client Instance Counterfeit Attack is possible if an attacker
compromises OIDC-RP and also succeeds, by some deceit,
into tricking the user into initiating and completing an Au-
thentication Request with the OP using the attacker crafted
Counterfeit Client Instance. This attack is different from a
compromised Client Instance as the Counterfeit Client In-
stance is not the same Client Instance which the user expects
and trusts. Since the Counterfeit Client Instance does not have
access to the storage or memory of the user’s Client Instance
it can not steal tokens already issued to the user’s Client In-
stance. However as the name suggests, the Counterfeit Client
Instance is pretending to be the Client Instance that the user
trusts by using the same Client ID. This attack only impacts
users and audiences which trust the Client ID associated the
compromised OIDC-RP.

This attack is enabled by the compromise of the OIDC-RP
because the Redirect-URI ACL configured by the OIDC-RP
and enforced by the OP, defends against the substitution of
Counterfeit Client Instances. However if the OIDC-RP is
compromised, this defense no longer holds as the attacker can
abuse the authority of the OIDC-RP to add any Redirect-URI
they want to the OP’s Redirect-URI ACL associated with the
OIDC-RP’s Client ID. It is important to note that, because of
our use of PKCE, if the honest Client Instance initiates the
Authentication request, the attacker will not be able to learn
the tokens issued to the user as they do not know the PKCE
Code Verifier (CV) secret committed to in the Authentication
request.

Before we step through a concrete example of this attack
we first introduce the players:

A user Alice, who trusts a browser-based Client In-
stance with the Client ID 12345, to authenticate to an
audience https://audience.com/. The Client Instance
is loaded from https://example.org/ and thus has
the javascript origin https://example.org/. The Client
Instance receives the Auth-Code via the Redirect-URI,
https://example.org/redirect/.

An OIDC-RP Bob, who is authorized to configure the
Redirect-URI ACL at the OP for the Client ID 12345. That
is, Bob gets to decide which Redirect-URIs are approved for
Client Instance that Alice uses. At some point in the past
Bob has configured the OP’s ACL with the Redirect-URI
https://example.org/redirect/ as the only authorized
Redirect-URI for the Client ID 12345.

An attacker Eve, who wants to trick Alice into using a Coun-
terfeit Client Instance loaded from https://evil.com/.
The Counterfeit Client Instance copies the same Client
ID as the user’s Client Instance i.e., Client ID 12345.
Because browsers enforce same-origin policy, Eve’s Coun-
terfeit Client Instance with origin https://evil.com/
can not read the Auth-Code sent to the Redirect-URI
https://example.org/redirect/. Instead Eve’s
Counterfeit Client Instance uses the Redirect-URI
https://evil.com/redirect/. Because Eve’s Coun-
terfeit Client Instance uses the Client ID 12345, the
OP will not send the Auth-Code to Redirect-URI
https://evil.com/redirect/ because that URI is
not on the OP’s ACL for Client ID 12345.

We will now show how Eve can trick Alice into using Eve’s
Counterfeit Client Instance if Eve compromises the OIDC-RP
Bob.

1. Eve compromises Bob i.e., the OIDC-RP who is trusted
to configure the OP’s Redirect-URI ACL for the Client-
ID 12345.

2. Eve leverages Bob’s access to add the Redirect-URI
https://evil.com/redirect/ to the OP’s Redirect-
URI ACL for the Client-ID 12345. This means that her
Counterfeit Client Instance can now receive an Auth-
Code for Client-ID 12345.

3. Eve now needs to trick Alice into performing an
Authorization-Code Flow with the Counterfeit Client In-
stance at https://evil.com. To do this Eve sends Al-
ice a phishing email with a link to https://evil.com
asking Alice to sign into her SSO.

4. Alice clicks this link and does not notice that the URI
in the email is not the URI of her Client Instance
(https://example.org/) but rather the URL of the
Counterfeit Client Instance (https://evil.com).

5. Alice’s browser loads https://evil.com, downloads
and runs the Counterfeit Client Instance. The Counter-
feit Client Instance initiates a Authentication Request
to the OP with an attacker chosen nonce, PKCE CC,
Redirect-URI (https://evil.com/redirect/) and
Client ID 12345. This redirects Alice’s browser win-
dow to the OP’s Consent and Authentication page. Al-
ice is unlikely to notice that the URI that first loaded,
https://evil.com, is not what she expects, since her
browser was immediately redirected to OP’s Consent

17

and Authentication page that she expects and trusts. All
of this happens in a fraction of a second from Alice
clicking the link in the email.

6. The OP presents Alice with the Consent and Authenti-
cation page. Alice provides her credentials and the OP
redirects Alice’s browser to the attacker chosen Redirect-
URI (https://evil.com/redirect) with the Auth-
Code.

7. The Counterfeit Client Instance learns the Auth-Code
when the Redirect-URI loads and makes a Token Re-
quest using the Auth-Code and the PKCE CV. The at-
tacker knows the CV because the Counterfeit Client In-
stance initiated the Authentication request and was able
to choose the CV.

8. The OP responds by issuing the Counterfeit Client In-
stance the ID Token, Access Token and the Refresh To-
ken for Alice with the Client ID 12345.

9. The Counterfeit Client Instance can then send Alice’s ID
Token and Refresh Token to Eve. Eve can then use the
ID Token to impersonate Alice to any audience which
trusts ID Tokens with Client ID 12345.

OpenPubkey with the MFA-Cosigner defeats this attack
by having the MFA-Cosigner attest to the Redirect-URI
used to send the MFA-Auth-Code to the Client Instance.
Thus, if OpenPubkey with the MFA-Cosigner was used,
the PK Token would specify that the Redirect-URI was
https://evil.com/redirect. The audience, if it required
an MFA-Cosigner signature, could inspect this value. If
https://evil.com/redirect is not on the audience’s
Redirect-URI ACL, the audience will reject this ID Token
even if the Redirect-URI is on the OP’s Redirect-URI ACL.

C Archival Verification With Certificate Trans-
parency Logs

A verifier can build this archival log itself by regularly down-
loading the OP’s JWKS URI or it can use a certificate trans-
parency log approach. Our append-only log approach follows
the well used pattern of a certificate transparency log we
provide only a high level description.

To use an append-only log we must introduce two new
parties. A registry who verifies, signs and uploads OP public
to the log and a monitor who watches the log and checks that
newly added OP public keys are in fact at the OP’s JWKS
URI. As OP public keys are available on the JWKS URI
for at least one week, the monitor has ample time to detect
and flag a misbehaving registry. Since archival verification
is only used once OP public key is rolled off the JWKS URI,
misbehavior is detected and flagged before it can harm the
security of OpenPubkey. Verifiers wishing to automate the

detection of misbehaving registries can run their own monitors
or configure a set of monitors to rely on.

D MFA-Cosigner Protocols

Our MFA-cosigner uses two protocols: MFA-Auth and MFA-
Refresh. MFA-Auth allows a user to perform authentication
with their registered MFA device and have their PK Token
cosigned. Refresh is used by the Client Instance to refresh the
MFA-cosigner signature on their PK Token. We finish this
section by presenting our MFA-cosigner validation procedure.

We assume that any party attempting to validate the MFA-
cosigners attestation is configured with the JWKS URI of the
MFA-cosigner. Our MFA-cosigner protocol borrows heavily
from the Authorization Code Flow including the notion of a
redirect-URI. Similar to OpenID Connect this Redirect-URI
is used to securely communicate with a Client Instance, un-
like OpenID Connect the Redirect-URI used is also included
as a cosigner claim. This is done to empower validating par-
ties to enforce Redirect-URI ACLs (Access Control Lists).
Our MFA-Auth and MFA-Refresh protocols are intentionally
modeled on OAuth2’s Authentication-Code Flow to lever-
age the familiarity practitioners have with the much loved
Authorization-Code Flow.

D.1 MFA-cosigner claims
There are several required cosigner claims that an MFA-
cosigner must set in the protected header of the cosigner’s
signature in the PK Token. The MFA-cosigner must specify
the following cosigner claims:
csid, the cosigner ID. This is required for all cosigners.
kid, key ID that the MFA-cosigner used to sign and issue

the cosigner claims.
alg, algorithm that should be used to verify the signature.
eid, unique id of the MFA authentication the user per-

formed. This useful for linking a particular user authentication
event across refreshed MFA signatures. Additionally this pro-
vides a useful handle if an authorized party wants to query the
MFA-cosigner for more granular and sensitive details about a
particular authentication session.
auth_time, the date time at which the user performed

the MFA authentication.
iat, the date time at which this particular MFA signa-

ture was signed and issued. This differs from the auth_time
which records the time at which the user MFA authentication
took place because the iat will record the date time the at
which the refreshed MFA signature was issued. This follows
the pattern established by JWT claims.
exp, the date time at which this signature expires.
mfa, MFA protocol and device employed by the user e.g.,

WebAuthn, ToTP.
ruri, the Redirect-URI that was used to communicate the

MFA-Auth-Code to the Client Instance.

18

The MFA-cosigner claims do not include values such as
the client-id or the user. This because these claims as these
are already present in the PK Token and the MFA-cosigner’s
signature covers and thus already commits to these values.

D.2 MFA-Auth
The MFA-Auth protocol allows a user to perform an MFA
authentication to the MFA-Cosigner and get the MFA-
Cosigner’s signature and claims added to the user’s PK To-
ken. This signature functions as an attestation by the MFA-
Cosigner, that the user authenticated successfully to the MFA-
Cosigner.

1. Setup: The Client Instance initiates an OpenPubkey PoP
Authentication with the MFA-Cosigner by requesting and
receiving a ra challenge (See Section 3.5.4). The Client In-
stance creates and signs a OSM, denoted osm, which contains
the ra challenge value and the Redirect-URI that the Client
Instance wishes to use.

2. MFA-Request: The user’s Client Instance opens the
user’s web browser to the MFA-cosigner’s MFA-Request end-
point. In this request the Client Instance sends all the values
needed to complete a PoP Authentication. That is, the osm,
PK Token, and refreshed ID Token idT’. The MFA-Cosigner
performs the PoP Authentication verification.

3. User Consents/Authenticates: If verification completes
successfully, the MFA-cosigner requests the user perform an
authentication with their registered MFA hardware device.

4. MFA-Response: If user successfully authenticates to the
MFA-cosigner. The MFA-cosigner generates an MFA-Auth-
Code and associates it with the PK Token of the user and
the details of the MFA authentication. The MFA-Cosigner
communicates the MFA-Auth-Code to the Client Instance by
redirects the user’s web browser to the Redirect-URI specified
in osm sent in the MFA-Request.

5. Sign-Request: The Client Instance receives the MFA-
Auth-Code via the Redirect-URI, then initiates a second Open-
Pubkey PoP Authentication. This time the Client Instance
uses the MFA-Auth-Code as the random challenge value
ra. The Client Instance then sends the OSM containing the
MFA-Auth-Code, PK Token, and ID Token’ to the Cosigner’s
Sign-Request endpoint.

6. Sign-Grant: The MFA-Cosigner receives and performs
a PoP Authentication verification on these values. In addition
it checks that the PK Token sent is the same PK Token used
in the first PoP sent in the MFA-Request. If these checks pass,
the MFA-cosigner writes its cosigner claims to a protected
header and then signs the ID Token in the PK Token, gener-
ating the signature, σm. This signature covers the ID Token
claims and the protected header, hm. The MFA-cosigner then
responds to the Client Instance Sign-Request by sending the
signature, σm, and the protected header. The Client Instance
updates the ID Token in the PK Token with the addition of
this new signature object consisting of the protected header

and signature pair (hm,σm).
The first PoP Authentication (MFA-Request) is used by the

MFA-Cosigner to ensure that an attacker who steals a user’s
MFA device can not perform any action without also compro-
mising the user’s Client Instance. The second PoP Authenti-
cation (Sign-Request) performs the same role as the PKCE
Code Challenge and Code Verifier in OAuth2 and OpenID
Connect with the user’s signing key taking the place of the
Code Verifier. That is, it ensures the Client Instance which
starts the MFA-Request is the only Client Instance which
can use the MFA-Auth-Code to redeem the MFA-cosigner’s
signature.

D.3 MFA-Refresh
The MFA-Cosigner claims include an expiration time for
the signature to force Client Instances to regularly refresh
their MFA signature. Audiences may reject expired MFA
signatures. The MFA-Cosigner maintains a list of revoked
MFA devices and signatures. It then uses this revocation list
to refuse to refresh revoked sessions or devices. To refresh the
MFA-Cosigner signature a Client Instance performs a PoP
authentication with the MFA-Cosigner.

1. Challenge: MFA-Cosigner sends the user a random
challenge value, ra.

2. Refresh Request: The Client Instance creates a OSM
containing, ("MFA refresh request", csid, authid, PK Token,
ra), and signs it. The Client Instance sends this OSM, the
user’s PK Token, and a refreshed ID Token’ to the MFA-
cosigner’s Refresh endpoint.

The MFA-Cosigner receives and verifies the OSM us-
ing PoP Authentication. It checks that the PK Token in the
message contains the MFA-cosigner’s signature. The MFA-
cosigner checks that the eid in the MFA-Cosigner claims in
the PK Token is not on the cosigner’s revocation list. If the
eid is on the revocation list it refuses to sign and aborts the
protocol. Otherwise the MFA-cosigner produces a new sig-
nature object with the same claims as the previous signature
object but with the iat and exp updated.

3. Refresh Response: The MFA-cosigner responds with
the new signature and protected header containing the updated
claims. The Client Instance updates their PK Token with the
new signature, protected header pair.

D.4 MFA-Cosigner validation
To validate a PK Token signed by the MFA-cosigner the veri-
fier performs the following actions. First, the verifier ensures
that the MFA-cosigner claim ruri which attests to the Client
Instance using a redirect-URI is on the verifier’s Redirect-URI
ACL. This enables the verifier to make a decision about what
Client Instances it is willing to trust. The verifier then checks
that the MFA-cosigner’s signature verifies under the set of
public keys the verifier associates with the MFA-cosigner. We

19

expect the verifier to build this set from the MFA-cosigners
JWKS endpoint.

Like with PK Tokens, expiration is handled outside the
validation procedure as not all of OpenPubkey’s authentica-
tion scenarios reject expired MFA-cosigner signatures e.g.,
Archival Verification. If the verifier wishes to enforce expira-
tion, it rejects any MFA-cosigner signature whose expiration
claim is in the past: exp< datetime.now().

E X.509 Cert Compatibility

We will now describe how PK Tokens can be used as X.509
Client Certificates [11, 32] without breaking backwards com-
patibility.

X.509 Client Certs allow a client holding a client cert issued
by a Certificate Authority (CA) to authenticate to a server
which has been configured to trust that CA. OpenPubkey
follows this pattern, with the addition that the client supplies
a PK Token to the CA when requesting a client cert. The
CA verifies the PK Token and issues a client cert where the
public key of the client cert is set to the public key PKu in the
supplied PK Token and that the full PK Token is stored in the
SubjectKeyId field of the client cert. This PK Token client
cert can be used like any other client cert. Any server who
trusts the issuing CA will accept PK Token client cert, as it
is a valid cert signed and issued by the CA. This maintains
backwards compatibility.

Servers performing client cert authentication can be up-
graded to support OpenPubkey. As the server is already being
sent the PK Token in the client cert, all an authenticator has
to do is extract the PK Token from the SubjkectKeyId, ensure
the PK Token and client cert have matching fields and then
verify the PK Token. In some cases this upgrade is as sim-
ple as supplying a custom cert validator program in a config
file [33, 34].

F OpenPubkey Auth-Code Flows

In this section we provide the exact steps for creating an PK
Token using a native application (aka, desktop app) Client
Instance or a web browser-based Client Instance.

F.1 Full Authorization Code Flow using a
Client Instance running as a native appli-
cation

In this protocol description we assume that the Client Instance
is a local application, aka, a native app, that runs outside of the
user’s web browser. This Client Instance is configured with
four different localhost Redirect URI each with a different
port. These match localhost Redirect URIs that are configured
at the OP’s Redirect URIs ACL by the OIDC-RP.

1. Setup: The user requests that the Client Instance perform
the Authorization-Code Flow to generate a PK Token. The
Client Instance prepares to initiate the flow by generating user
key pair (PKu,SKu), a random value rz:

(PKu,SKu)← GenKey(1λ)

rz←r {0,1}λ

These values along with signature algorithm used by the
user’s public key, PKu, constitute the Client Instance Claim,
cic← (PKu,alg,rz). Rather than randomly generating the
nonce, the Client Instance instead commits to the cic in the
nonce by setting the nonce to the SHA-3 hash of the cic.

nonce← SHA-3(cic)

Then as is in OpenID Connect, the Client Instance cre-
ates a random PKCE Code Verifier (CV) and a PKCE Code
Challenge (CC) which is set to the SHA256 hash of the Code
Verifier.

CV←r {0,1}λ

CC← SHA256(CV)

The Client Instance binds an HTTP server to a port on
localhost. This localhost port is where the redirectURI will
be used to send the Auth-Code and the port must be the same
port as the OIDC-RP configured on the Redirect URI allow
list. If this port is in use it attempts one of the other four ports.
If all four ports are in use it fails. If it successfully binds
sets the redirectURI to the URI which matches the port the
Client Instance successfully bound to.

2. Authentication Request: The Client Instance initi-
ates the Authorization-Code Flow by performing Authen-
tication Request that opens the user’s web browser to the
OP’s Authorization Endpoint. This request includes the fol-
lowing parameters set by the Client Instance nonce, CC,
client-id, and redirectURI. The redirectURI is set to
https://localhost:<port>/callback, where the port is
the localhost port that the client is listening on. If the request
passes validation, the OP asks the user to consent and authen-
ticate.

3. User Consents/Authenticates: The OP displays the
consent and authentication page on the user’s web browser.
This page asks the user if they consent to have tokens issued
by the OP to a Client Instance associated with a particular
RP-OIDC. If the user consents they enter their credentials and
other authentication factors into the web page.

4. Authentication Response: If the user successfully au-
thenticates, the OP then verifies that the redirectURI speci-
fied in the Authentication Request is on the allow list of redi-
rect URLs for the client-id given. If redirectURI is on the
allow list then the OP performs an Authentication Response.
To do this the OP first generates an Auth-Code and records
the user, nonce and CC associated with that Auth-Code. Then

20

the OP transmits that Auth-Code to the Client Instance by
redirecting the user’s web browser to the redirectURI and
specifying the Auth-Code as a parameter in that URI.

5. Token request: The redirectURI is set to the localhost
port that the Client Instance is listening. The Client Instance
receives Auth-Code when the user’s web browser is redirected
to the redirectURI. The Client Instance then sends the Auth-
Code along with the Code Verifier (CV) to the OP’s Token
Request Endpoint. Typically this is done by the Client In-
stance making a behind the scenes HTTPS request directly to
the OP’s Token endpoint.

6. Token Grant: The OP verifies that the Code Verifier
(CV) sent by the Client Instance is the SHA256 preimage of
the Code Challenge (CC) sent in the Authentication Request,
CC= SHA256(CV), that the Code Challenge (CC) corresponds
to the Auth-Code, and that the Auth-Code is valid. If all of
these checks pass, the OP responds to the Token Request with
an ID Token and Refresh Token.

7. Token Validation: The Client Instance validates the
tokens it received from the OP. The Client Instance checks
that the claims in the ID Token match the claims the Client
Instance expected. Specifically it checks that the nonce the
Client Instance generated matches the value in the ID Token’s
nonce claim, that the OIDC-RP’s client-id is in the aud claim
and that the iss claim matches the issuer identity for the
expected OP. Note the Client Instance does not check that
the sub claim matches the user’s identity because the Client
Instance does not know the identity of the user except through
the ID Token.

8. PK Token Creation: The Client Instance creates a pro-
tected header, hu consisting of the values in the cic.

hu← cic

and signs the ID Token under the user’s signing key, SKu.

σu← SIGN(SKu,(idT.claims,hu))

The Client Instance then constructs the PK Token by adding
(σu,hu) to the signature list of the JWS representation of the
ID Token.

If any of these steps fail, the Client Instance aborts and
deletes all values computed for this session including the to-
kens. Otherwise the Client Instance accepts the ID Token uses
it to authenticate the user’s identity to the intended audience.

F.2 Full Authorization Code Flow using a
Client Instance running in a Web Browser

In this protocol description the Client Instance is run-
ning inside a web browser as a javascript application. The
Client Instance is configured with a single Redirect URI,
redirectURI, which is the same as a Redirect URI config-
ured at the OP by the OIDC-RP. This Redirect URI represents
the javascript origin of Client Instance.

1. Setup: The user requests that the Client Instance perform
the Authorization-Code Flow to generate a PK Token. The
Client Instance prepares to initiate the flow by generating user
key pair (PKu,SKu), a random value rz:

(PKu,SKu)← GenKey(1λ)

rz←r {0,1}λ

These values along with signature algorithm used by the
user’s public key, PKu, constitute the Client Instance Claim,
cic← (PKu,alg,rz). Rather than randomly generating the
nonce, the Client Instance instead commits to the cic in the
nonce by setting the nonce to the SHA-3 hash of the cic.

nonce← SHA-3(cic)

Then as is in OpenID Connect, the Client Instance cre-
ates a random PKCE Code Verifier (CV) and a PKCE Code
Challenge (CC) which is set to the SHA256 hash of the Code
Verifier.

CV←r {0,1}λ

CC← SHA256(CV)

2. Authentication Request: The Client Instance initi-
ates the Authorization-Code Flow by performing Authen-
tication Request that opens the user’s web browser to the
OP’s Authorization Endpoint. This request includes the fol-
lowing parameters set by the Client Instance nonce, CC,
client-id, and redirectURI. The redirectURI is set to
https://localhost:<port>/callback, where the port is
the localhost port that the client is listening on. If the request
passes validation, the OP asks the user to consent and authen-
ticate.

3. User Consents/Authenticates: The OP displays the
consent and authentication page on the user’s web browser.
This page asks the user if they consent to have tokens issued
by the OP to a Client Instance associated with a particular
RP-OIDC. If the user consents they enter their credentials and
other authentication factors into the web page.

4. Authentication Response: If the user successfully au-
thenticates, the OP then verifies that the redirectURI speci-
fied in the Authentication Request is on the allow list of redi-
rect URLs for the client-id given. If redirectURI is on the
allow list then the OP performs an Authentication Response.
To do this the OP first generates an Auth-Code and records
the user, nonce and CC associated with that Auth-Code. Then
the OP transmits that Auth-Code to the Client Instance by
redirecting the user’s web browser to the redirectURI and
specifying the Auth-Code as a parameter in that URI.

5. Token request: The Client Instance receives Auth-
Code when the user’s web browser is redirected to the
redirectURI. This is because the redirectURI is within
the origin of the Client Instance and thus triggers a javascript
event which informs the Client Instance of the Auth-Code.

21

The Client Instance then sends the Auth-Code along with the
Code Verifier (CV) to the OP’s Token Request Endpoint. Typi-
cally this is done by the Client Instance making a behind the
scenes HTTPS request directly to the OP’s Token endpoint.

6. Token Grant: The OP verifies that the Code Verifier
(CV) sent by the Client Instance is the SHA256 preimage of
the Code Challenge (CC) sent in the Authentication Request,
CC= SHA256(CV), that the Code Challenge (CC) corresponds
to the Auth-Code, and that the Auth-Code is valid. If all of
these checks pass, the OP responds to the Token Request with
an ID Token and Refresh Token.

7. Token Validation: The Client Instance validates the
tokens it received from the OP. The Client Instance checks
that the claims in the ID Token match the claims the Client
Instance expected. Specifically it checks that the nonce the
Client Instance generated matches the value in the ID Token’s
nonce claim, that the OIDC-RP’s client-id is in the aud claim
and that the iss claim matches the issuer identity for the
expected OP. Note the Client Instance does not check that
the sub claim matches the user’s identity because the Client
Instance does not know the identity of the user except through
the ID Token.

8. PK Token Creation: The Client Instance creates a pro-
tected header, hu consisting of the values in the cic.

hu← cic

and signs the ID Token under the user’s signing key, SKu.

σu← SIGN(SKu,(idT.claims,hu))

The Client Instance then constructs the PK Token by adding
(σu,hu) to the signature list of the JWS representation of the
ID Token.

If any of these steps fail, the Client Instance aborts and
deletes all values computed for this session including the to-
kens. Otherwise the Client Instance accepts the ID Token uses
it to authenticate the user’s identity to the intended audience.

G Load Balancers and OpenPubkey

In this section we specify a design for deploying OpenPub-
key as an authentication mechanism for users of a modern
scalable web application. That is, the user’s Client Instance
instance is a web browser-based and it is using OpenPubkey
to authenticate communication with the web application. We
begin by introducing the setting and our high level design.
Then we take a closer look and discuss where we adapt our
protocols to accommodate the load balancing architecture
used by scalable web applications.

Consider a user Alice who employs a web browser-based
OpenPubkey Client Instance loaded from example.org to se-
curely authenticate and communicate with a web application
also hosted at example.org. OpenPubkey’s web authentica-
tion would work as follows:

1. Alice visits example.org, this loads the Client Instance
which checks if Alice is signed in and has a PK Token.
As Alice is not signed in, Alice and her Client Instance
run the OpenPubkey protocol to create PK Token. More
specifically what happens is:

(a) The Client Instance generates a new non-
extractable user key pair, (PKu,SKu), puts public
key of this key pair in the cic, and initiates the
Authorization Code Flow with the OP.

(b) Alice Consents and Authenticates, the Client In-
stance is granted an ID Token by the OP. This ID
Token becomes the PK Token.

2. As Alice’s Client Instance now has a PK Token, the
Client Instance authenticates to example.org using
OpenPubkey PoP Authentication (Section 3.5.4). To
send the PoP challenge value, ra, example.org creates
a web browser cookie with the name ra-cookie. After
authenticating Alice is now signed into example.org.

3. Each time Alice’s Client Instance wishes to make an
authenticated request to example.org, the Client In-
stance performs a OpenPubkey PoP Authentication in
the request using the value ra-cookie as the challenge
ra. The server receiving the authenticated request at
example.org request, performs the OpenPubkey PoP
authentication verification.

In the next section we are going to look how compute this
ra value in the ra-cookie in a modern web application in
which there are many servers.

G.1 Computing the ra-cookie
Our OpenPubkey PoP Authentication, in Section 3.5.4, as-
sumes that the Client Instance is authenticating to a specific
party acting as the verifier. It is this verification party that
chooses the challenge ra and checks that this challenge ra
is returned in the response. To achieve scale and handle a
large volume of requests, web applications often stochasti-
cally9 load balance requests across a large pool of servers.
This presents a difficulty because the server that sets an ra in
a ra-cookie may not be the same server that is will be veri-
fying the request. How can the verifying server know which
ra in the ra-cookie it should expect, how can it be sure that
this ra hasn’t been used before? In the proceeding paragraphs
we discuss this problem in more detail and show how we
can adopt OpenPubkey PoP authentication to overcome this
difficulty while allowing OpenPubkey to be easily deployed
within scalable architectures currently in use.

9Load Balancing strategies exist in which a user session is bonded to
a particular server. This means the user gets the same server over multiple
requests. Load balancers configured in this way, can do not require this new
approach and can just set many ra in the ra-cookie.

22

To illustrate the problem, let us consider the following
“obvious” approach and the problems it creates: The ra value
in the ra-cookie is changed after each authenticated request
made by the Client Instance.

The first problem is that such an approach creates is that it
prevents the Client Instance from making requests in parallel.
The Client Instance must wait for the server to set a new
ra value in the ra-cookie before making a another request.
This forces the Client Instance to perform only one request
at time, and would introduce unacceptably high latency in
complex web applications where Client Instance is likely to
make a large volume of parallel requests. This is a solvable
problem, for instance by setting more than one ra value in
the ra-cookie or using the ra-cookie as a seed to a hash
function let the Client Instance generate new ra values as it
needs them. We choose not to use such a solution because it
doesn’t address the second problem.

The second problem a much harder to overcome obstacle. If
server in a pool of servers receives a request with a particular
ra value how does it know this ra hasn’t been used before
in a request to another server? That is, how does it prevent a
malicious party from using i.e., replaying, the same ra twice?
A malicious party could make two parallel requests to the
different servers with the same ra at exactly the same moment.
The servers in the pool could solve this by having shared state
across the pool. This state would record ra values that have
already been used. While in theory this solves the problem,
the performance cost of a transactional write per authenticated
user requests would be significant and would necessitate the
web application to deploy a complex distributed system. For
this reason, we do not see this as an effective solution and do
not advocate it.

To overcome these two problems in this setting we relax
our replay protection. Instead of requiring that a ra value
has never been used before as we do elsewhere we instead
allow ra values that can be used more than once, but these
ra are limited in use to short window of time. We see this
compromise as worth making because we want OpenPubkey
to be easy for implementers to deploy in high-scale modern
web applications.

To do this, a server when it sets the ra value in the
ra-cookie computes ra as:

ra← HMAC(keyra,timestamp)||timestamp

where timestamp is the current time in seconds and keyra
is a secret key known to all the servers in the server pool.
Servers then reject any PoP authentication with a ra whose
timestamp is more than 15 different than the current time.
Servers update the ra value in the ra-cookie on every re-
quest. The keyra is used so that servers can authenticate that
an ra was generated by another server in the pool. This allows
servers to reject ra values computed by a malicious user as
the ra value will not be authenticated.

The benefits of this system are that the Client Instance
can make as many PoP authenticated requests as it wants in
parallel. The signatures of these requests can only be replayed
within a 30 second window. The servers that authenticate
these requests do not require any shared state, all they require
is the secret keyra.

If an attacker managed to the learn the secret keyra, it would
not allow the attacker to impersonate users or break authen-
tication. The security impact would only be that an attacker
could compute ra futures values. By itself this does not have
any security impact. If the attacker also compromised a Client
Instance and knew the keyra they could compute a signatures
on an ra values for a timestamp that hasn’t happened yet.
In the attacker managed to exfiltrate those signatures with
future ra values off the Client Instance, then they could use
them later even if the compromised Client Instance was no
longer online. The keyra secret is simple to rotate and could
be rotated daily or hourly by having all the servers in the pool
pull it from a secrets manager.

If an even greater level of security is desired, instead of an
HMAC, a signed random beacon could be used to compute
a new ra every 15 seconds. The signing key used to sign
ra by the random beacon could then be stored in an HSM
(Hardware Security Module) as a non-extractable key. Each
server would know the pubkey of the random beacon and
could verify the validity of ra sent by users. A transparency
log of the random beacon could be maintained of all past
values and their timestamps. If the servers kept a log of ra
received, at the end of the day they compare their logs with
the transparency log and detect if the random beacons signing
key has been compromised. The advantage of this scheme
over HMAC is that servers don’t need to be trusted with the
secret that authenticates new ra values.

H Device Signing Keys and XSS Attacks

In this section we will look at how to constrain an attacker
who has compromised a web browser-based Client Instance
via a XSS (Cross Site Scripting) attack. XSS (Cross Site
Scripting) attacks represent one of the main avenues by which
an attacker might compromise a web browser-based Client
Instance. As such we wish to carefully consider the ways in
which we might counter this threat. To address the threat of a
Client Instance that has been compromised by a XSS attacker,
we present an extension to OpenPubkey aimed at constraining
such an attacker. We do this by introducing a second signing
key, which we call the Device Signing Key.

Threat Model: We assume an attacker who can compro-
mise the Client Instance at will via a XSS vulnerability, but
can not compromise the user’s Operating System, the user’s
web browser. Consequently the attacker can not bypass se-
curity boundaries enforced by the web browser including
same-origin policy. We do not address the topic of how to
prevent XSS vulnerabilities. We also assume that the attacker

23

does not compromise Client Instance the first time it runs on
that user’s browser.

We now ask the question: If an attacker has compromised
a Client Instance with via XSS, how can we constrain the
attacker to limit the security impact of such a compromise?
Our approach is to make it very difficult for compromised
Client Instance instance to read and exfiltrate all the secrets
necessary to sign messages as the user. That is, our approach
here aims to force the attacker to only be able to impersonate
the user via the compromised Client Instance. If the compro-
mised Client Instance goes offline, the attacker can no longer
request signatures. To do this we introduce a second signing
key held used by the Client Instance called the device signing
key and make use of our MFA-Cosigner as an enforcement
mechanism to prevent a compromised Client Instance from
replacing or regenerating the device signing key.

We note that alternative solution would be to have the
Load Balancer perform all the authentication of the OSMs
sent. This is very similar to how Load Balancers are used to
manage and terminate TLS connections. We do not oppose
implementers using OpenPubkey in this fashion but we note
that the Load Balancers are now a Single Point of Compro-
mise (SPoC). We have opted to present a more radical and
higher security approach, where each server performs verifica-
tion, to illustrate the power of OpenPubkey to remove Single
Points of Compromise.

H.1 Device Signing Keys Explained

In this section we explain our device signing key design and
discuss the security benefits of this feature against an XSS
attacker who has compromised a Client Instance. Use of this
optional security feature assumes that verifiers requires an
MFA-Cosigner. OpenPubkey Web Authentication can be used
with a device signing key. Before we explain what the device
signing key is and how we use it, we need to explain the
problem it solves.

In Section 4.2 we show how to use non-extractable keys to
prevent a compromised Client Instance exfiltrating the user’s
signing key SKu. However the protection offered by that ap-
proach is only retroactive, it does not extend to protecting user
signing keys generated after Client Instance is compromised.
This is because the Client Instance is the party that is trusted
to request that the browser generate non-extractable key pair.
This means that a compromised Client Instance can simple
generate a user signing key as extractable the next time the
user signs in and is granted a PK Token. The device signing
key is designed to prevent this attack.

The device key pair, (PKd ,SKd), consists of the device pub-
lic key, PKd , and device signing key, SKd . This device pair key
is generated the first time the Client Instance loads. On cre-
ation, the Client Instance immediately sends the device public
key, PKd , to the MFA-Cosigner to register it. As part of regis-
tration, the MFA-Cosigner sets the dk-cookie to the device

public key PKd sent by the Client Instance. The dk-cookie
is marked by the MFA-Cosigner as an HTTP cookie prevent-
ing the Client Instance or any other JavaScript running in the
web browser from seeing or altering it. As a result, after this
point if a compromised Client Instance attempts to replace the
device signing key, the MFA-Cosigner will detect this change
and refuse to sign the PK Token.

The device key pair generation and registration procedure
is as follows:

1. The Client Instance is loaded by the web browser. On
loading the Client Instance asks the web browser’s
crypto API if it has already generated a device key pair.
If no device key pair exists for the Client Instance it
moves to the next step.

2. The Client Instance asks the web browser to generate a
non-extractable key pair. This key pair will be the device
key pair (PKd ,SKd).

3. Once the Client Instance has generated the device key
pair, it registers the device public key, PKd , with the
MFA-Cosigner. It does this by making a request to an
the Device Registration endpoint at the MFA-Cosigner.
Note 0that this is an new endpoint created for the device
signing key functionality and not part of the regular MFA-
Cosigner protocol.

4. The MFA-Cosigner on receiving the device public
key, PKd , checks if the web request included a web
browser cookie for the MFA-Cosigner’s domain named
dk-cookie. If this cookie already exists, the MFA-
Cosigner aborts and triggers an alarms that an attack may
have been attempted. If this cookie does not exist, the
MFA-Cosigner sets a cookie named, dk-cookie, with
the value of the device public key, PKd . The dk-cookie
is marked as a HTTP cookie so that it is only sent to
servers and JavaScript running in the browser can not
read or alter it. The device signing key has now been
generated and registered.

Unlike the user signing key which is associated with the
user, the device signing key is associated with the web browser.
Multiple users could use the same device signing key if they
share the same computer and web browser. When a user signs
out, the user signing key is deleted and the user must sign in
and authenticate to the OP to be issued a new PK Token with a
fresh user signing key. The device signing key is never deleted.
Once it is generated it exists in that browser forever (or until
the MFA-Cosigner chooses to allow the Client Instance to
rotate the device signing key).

If a Client Instance has a device signing key SKd , it asso-
ciates it with all PK Token it creates by including the device
public key PKd alongside the user public key PKu, in the cic
in the PK Token. A verifier can then see the public key of the
device and the user and require that all OSMs (OpenPubkey

24

Signed Messages) have two signatures; A signature gener-
ated by the user signing key and a signature generated by the
device signing key.

We modify OpenPubkey PK Token creation to accommo-
date the device signing key:

1. During Setup the Client Instance includes the device
public key PKd alongside the user public key PKu in the
cic. When the OP grants the ID Token, the nonce claim
will commit to the both the PKu and the PKd . The Client
Instance then transforms the ID Token into a PK Token
by signing it with the user signing key and the device
signing key, adding two signatures.

2. Use of the device signing key requires a signature from
the MFA-Cosigner. The Client Instance runs MFA-Auth
with the MFA-Cosigner signing the messages with both
the SKu and the SKd . The MFA-Cosigner checks that
dk-cookie matches the device public key in the PK
Token’s cic and also verifies the device signing keys
signature on the signed messages used to authenticate
during the MFA-Auth protocol.

3. If these device signing key used does not match expected
device public key specified in the dk-cookie the MFA-
Cosigner refuses to sign and triggers an alarm that the
Client Instance might be compromised.

The security benefit of the device signing key is that a
compromised Client Instance can not replace the already gen-
erated non-extractable device signing key with a new device
signing key and still successfully get the MFA-Cosigner to
accept and sign the PK Token. Since the compromised Client
Instance can not change the device signing key, the Client
Instance can not exfiltrate the device signing key. The com-
promised Client Instance can exfiltrate the user signing key,
but verifiers requiring a device signing key signature will re-
ject messages signed only by the user signing key. Thus we
achieve our security goal of forcing the attacker to route all
messages they want signed through the Client Instance.

An additional advantage of the use of device signing keys
is that it provides an easy place to added a device approval
process. For instance example.org could require than any
web browser that Alice uses must first be approved by an
administrator. The device public key could be approved by
adding it to an allow list of approved devices. The MFA-
Cosigner could then enforce this approval policy by checking
if a dk-cookie value is on the device allow list.

This security provided by device signing keys has two lim-
itations. Attackers with more powerful capabilities such as
the ability to compromise the user’s Operating System or
Process Memory of the user’s web browser can bypass these
protections and exfiltrate the device signing keys. The security
depends on the fact that an XSS attacker compromises the
Client Instance but the browsers security enforcement mech-
anisms are still intact. Second, if an attacker compromises

the Client Instance before the Client Instance has generated
and registered the device signing key, then the compromised
Client Instance can generate the device signing key as an
extractable key. As the Client Instance generates and registers
the device signing key in the first few seconds of the first time
it is loaded, this presents extremely small window of time for
an attacker to compromise it.

25

	Introduction
	Background
	JSON Web Signatures (JWS)
	OpenID Connect
	ID Tokens
	Using an ID Token
	ID Token Refresh
	Token Grant via PKCE Authorization Code Flow

	The OpenPubkey Protocol
	Creating a PK Token
	Verifying a PK Token
	Cosigners
	MFA-Cosigner
	Verifying a MFA-Cosigner Signature

	OpenPubkey Signed Messages
	Verifying OpenPubkey Signed Messages (OSM)
	Expiration enforcement
	Archival Verification
	OpenPubkey PoP Authentication

	Implementation

	Security Discussion
	Compromise of Audience
	Compromise of Client Instance
	Compromise of OIDC-RP
	Compromise of OP (OpenID Provider)
	No new trusted parties

	Related Work
	Conclusion
	Acknowledgements:
	Differences between the protocol BastionZero uses and OpenPubkey
	Counterfeit Client Instance Attack
	Archival Verification With Certificate Transparency Logs
	MFA-Cosigner Protocols
	MFA-cosigner claims
	MFA-Auth
	MFA-Refresh
	MFA-Cosigner validation

	X.509 Cert Compatibility
	OpenPubkey Auth-Code Flows
	Full Authorization Code Flow using a Client Instance running as a native application
	Full Authorization Code Flow using a Client Instance running in a Web Browser

	Load Balancers and OpenPubkey
	Computing the ra-cookie

	Device Signing Keys and XSS Attacks
	Device Signing Keys Explained

