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Abstract

A secret-sharing scheme enables a dealer, holding a secret string, to distribute shares to
parties such that only pre-defined authorized subsets of parties can reconstruct the secret. The
collection of authorized sets is called an access structure. There is a huge gap between the best
known upper bounds on the share size of a secret-sharing scheme realizing an arbitrary access
structure and the best known lower bounds on the size of these shares. For an arbitrary n-party
access structure, the best known upper bound on the share size is 2O(n). On the other hand, the
best known lower bound on the total share size is much smaller, i.e., Ω(n2/ log(n)) [Csirmaz,
Studia Sci. Math. Hungar.]. This lower bound was proved more than 25 years ago and no
major progress has been made since.

In this paper, we study secret-sharing schemes for k-hypergraphs, i.e., for access structures
where all minimal authorized sets are of size exactly k (however, unauthorized sets can be larger).
We consider the case where k is small, i.e., constant or at most log(n). The trivial upper bound
for these access structures is O(n·

(
n−1
k−1

)
) and this can be slightly improved. If there were efficient

secret-sharing schemes for such k-hypergraphs (e.g., 2-hypergraphs or 3-hypergraphs), then we
would be able to construct secret-sharing schemes for arbitrary access structures that are better
than the best known schemes. Thus, understanding the share size required for k-hypergraphs
is important. Prior to our work, the best known lower bound for these access structures was
Ω(n log(n)), which holds already for graphs (i.e., 2-hypergraphs).

We improve this lower bound, proving a lower bound of Ω(n2−1/(k−1)/k) on the total share
size for some explicit k-hypergraphs, where 3 ≤ k ≤ log(n). For example, for 3-hypergraphs
we prove a lower bound of Ω(n3/2). For log(n)-hypergraphs, we prove a lower bound of
Ω(n2/ log(n)), i.e., we show that the lower bound of Csirmaz holds already when all mini-
mal authorized sets are of size log(n). Our proof is simple and shows that the lower bound of
Csirmaz holds for a simple variant of the access structure considered by Csirmaz. Using our
results, we prove a near quadratic separation between the required share size for realizing an
explicit access structure and the monotone circuit size describing the access structure, i.e., the
share size in Ω(n2/ log(n)) and the monotone circuit size is O(n log(n)) (where the circuit has
depth 3).

keywords. Secret Sharing, Share Size, Lower Bounds, Monotone Circuits.

∗Research supported by ERC grant 742754 (project NTSC) and Israel Science Foundation grant no. 391/21.

1



1 Introduction

Secret-sharing schemes are a tool used in many cryptographic protocols. A secret-sharing scheme
involves a dealer who has a secret, a set of n parties, and an access structure Γ – a collection
of (authorized) subsets of the parties. A secret-sharing scheme for Γ is a method by which the
dealer distributes strings (called shares) to the parties such that: (1) any subset in Γ can recon-
struct the secret from its shares, and (2) any subset not in Γ cannot reveal any partial information
on the secret. The share size of a scheme is the maximum share size in the scheme (i.e., the
maximum length of the strings representing the shares). Originally motivated by the problem
of secure information storage, secret-sharing schemes have found numerous other applications in
cryptography, distributed computing, and complexity, e.g., Byzantine agreement [54], secure mul-
tiparty computations [13, 24, 26], threshold cryptography [36], access control [51], attribute-based
encryption [42, 62], generalized oblivious transfer [56, 61], and proving NP-hardness of the partial
minimum circuit size problem [43].

Secret-sharing schemes were introduced by Blakley [16] and Shamir [55] for the threshold case.
Secret-sharing schemes for general access structures were introduced and constructed by Ito, Saito,
and Nishizeki [44]. More efficient construction for specific families of access structure were given
in [14, 57, 20, 45, 15, 17, 37]. For general n-party access structures, the share size in the schemes
of [44] is 2n; for 30 years no schemes with share size better than 2n−o(n) were known. Liu and
Vaikuntanathan [47], in a breakthrough paper, constructed for every access structure a secret-
sharing scheme with share size 20.994n. This was improved in a sequence of works [3, 5, 7], where
the currently best known scheme has share size (3/2)(1+o(1))n < 20.585n [7]. The best known lower
bound was proved by Csirmaz [28, 29], stating that, for every n, there is an n-party access structure
such that sharing ℓ-bit secrets requires that the the total share size (i.e., the sum of sizes of the
n shares) is Ω((n2/ log(n)) · ℓ). The question if there exist more efficient schemes, or if there exist
access structures that do not have (space) efficient schemes remains open.

In this paper, we consider a natural class of access structure – k-hypergraph access structures,
in which the size of the minimal authorized sets is exactly k. Two-hypergraph access structures are
called graph access structures and they have been studied extensively, e.g., [21, 22, 23, 38, 18, 30,
35, 31, 32, 10, 40, 33]. k-hypergraph access structures for k > 2 have also been studied previously
(although not as much as graph secret sharing), e.g., [58, 60, 52, 27, 34, 10, 9]. The naive way
to construct a secret-sharing scheme for a k-hypergraph is to share the secret independently for
each minimal authorized set; this results in a scheme with total share size k ·

(
n
k

)
. A result of

Erdös and Pyber [39] implies that every n-vertex graph can be realized by a secret-sharing scheme
with ℓ-bit secrets and total share size O((n2/ log(n))ℓ) (for secrets of size ℓ ≥ log(n)). Using this
result and Stinson’s decomposition technique [59], every n-party k-hypergraph can be realized by a
secret-sharing scheme with ℓ-bit secrets and total share size O((

(
n
k

)
/ log(n)) · ℓ) (for secrets of size

ℓ ≥ k4 log(n) and for k ≤ n/2) (see Remark 2.6). In contrast, the best known lower bound on the
total share size in secret-sharing realizing a graph with an ℓ-bit secret is Ω(n log(n)ℓ) [38, 30]. Prior
to our work, this was the best known lower bound for k-hypergraphs. Blundo et al. [18] showed a
lower bound of Ω(n/ log(n) · ℓ) on the max share size for an access structure in which the size of
the minimal authorized sets is at most log n. In Table 1, we summarize the known upper bounds
and lower bounds on the share size in secret-sharing schemes.

One reason for studying secret-sharing schemes for k-hypergraphs is that they can be used
to construct secret-sharing schemes for arbitrary access structures. Every n-party access struc-
ture is a union of k-hypergraph access structures, thus, to construct more efficient secret-sharing
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Upper bound Lower bounds

Arbitrary access structures O(20.585n) [7] Ω(n2/ log(n)) [29]

Graph access structures O(n2/ log(n)) [39] Ω(n log(n)) [38, 30]

k-hypergraph access structures
for k ≤ log(n)

(
n
k

)
k2

log(n) Ω(n2−1/(k−1)/k) [This paper]

Table 1: Summary of known results on upper and lower bounds on the total share size for secret-
sharing schemes.

schemes for arbitrary access structures, it suffices to construct efficient secret-sharing schemes for
k-hypergraphs. Moreover, even if we have efficient secret-sharing schemes for k-hypergraphs for a
small k, then, as described in the next lemma, for every access structure there is a secret-sharing
scheme that is better than the best known secret-sharing schemes (the proof of the lemma for k = 2
appears in [53]; for completeness the proof of this lemma appears in Appendix A).

Lemma 1.1. Assume that there exists constants k, c such that every N -party k-hypergraph access
structure can be realized by a secret-sharing scheme with total share size O(N c). Then every n-party
access structure can be realized by a secret-sharing scheme with total share size Õ(2cn/k).

Another reason for studying secret-sharing schemes for k-hypergraphs is that there were no
improvements in their share size for more than two decades and the share size in the best known
schemes for them is almost as big as the naive scheme for them. This should be compared with the
new secret-sharing schemes for arbitrary access structures [47, 3, 5, 7] and the new CDS protocols
and secret-sharing schemes for uniform access structures [11, 41, 48, 2, 49, 12, 1, 3]. Furthermore, k-
hypergraph access structures resemble k-uniform access structures, in which all sets of size smaller
than k are unauthorized, all sets of size larger than k are authorized, and some sets of size k
are authorized and some are not. The best known share size for k-uniform access structure is
2Õ(
√

k log(n)) [49, 3], i.e., it is much smaller than the best known share size for k-hypergraphs. It is
interesting to understand if the difference in the share size is inherent.

1.1 Our Results

Our main result is a new lower bound on the share size in secret-sharing schemes for k-hypergraphs.

Theorem 1.2 (Informal). For every n, every 3 ≤ k ≤ log(n), there is an explicit n-party k-
hypergraph access structure such that for every secret length ℓ in every secret-sharing scheme real-

izing the access structure the total share size is at least Ω
(
n2−1/(k−1)

k · ℓ
)
.

Our lower bound applies to k-partite hypergraph access structures, i.e., access structures in
which the parties are partitioned to k parts and each minimal authorized set contains exactly one
party from each part. k-partite hypergraph access structures are very useful, i.e., they are used in

3



the proof of Lemma 1.1. The uniform access structure that are equivalent to CDS protocols are
also k-partite.

For k = 3, we get a 3-partite hypergraph access structure that requires total share size Ω(n3/2·ℓ).
This implies that the applying Lemma 1.1 with k = 3 cannot result in a secret-sharing scheme with
share size smaller than 2n/2. For k = log(n), we get a log(n)-partite hypergraph access structure
that requires total share size Ω((n2/ log(n)) · ℓ), i.e., the best known lower bound on the share size.

For the interesting case of graph secret-sharing schemes, i.e., k = 2, our lower bound is Ω(n · ℓ);
this is a trivial lower bound as Karnin et al. [46] proved that the size of the share of any non-
redundant party is Ω(ℓ). Improving the lower bound of Ω(n log(n) · ℓ) for graph secret sharing, or
constructing better schemes for graphs, is left as an open question.

We observe that the log(n)-partite access structure for which we prove a lower bound of
O(n2/ log(n)) on the total share size can be described by a monotone circuit of size O(n log(n)) and
depth 3 (where we count the number of wires in the circuit). That is, we prove a near quadratic
separation between the required share size and the monotone circuit size. In contrast, the size
of the monotone formula describing an access structure is an upper bound on the share size re-
quired to realize the access structure [14]. Monotone circuits describing an access structure imply
a computational secret-sharing scheme for the access structure [63];1 our result raises the question
if monotone circuits can be used to construct secret-sharing schemes with information-theoretic
security.

To prove Theorem 1.2, we take the access structure used by Csirmaz in [28, 29] and transform
it to a k-hypergraph access structure. The access structures that we construct to prove the lower
bounds are quite simple. For example, for k = 3, we take two parts D1, D2 of size

√
n and a third

part D3 of size n− 2
√
n; for every a1 ∈ D1, a2 ∈ D2 we take a distinct party c3 ∈ D3 and add the

minimal authorized set {a1, a2, c3}. See Figure 1 for an illustration of this construction.

𝑎1,1

𝑎1,2

𝑎2,1

𝑎2,2

𝑐1

𝑐2

𝑐3

𝑐4

Figure 1: Illustration of the 3-partite hypergraph access structure 3-CSI8. The parties are
{a1,1, a1,2, a2,1, a2,2, c1, c2, c3, c4} and the 4 minimal authorized sets are described by blue circles.

As explained above, the lower bound of Csirmaz [28, 29] of Ω((n2/ log(n)) · ℓ) on the total size
of shares for a some access structure is the best known lower bound on the share size in secret-
sharing schemes. This lower bound was used to derive a separation between the size of monotone
real formulas and the size of shares in secret-sharing schemes [6] and a separation between the size

1The size of the public information in this scheme is the number of wires in the monotone circuit and the size of
each share is the security parameter.
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of shares in information theoretic secret-sharing schemes and the size of shares in computational
secret-sharing schemes [4]. Recently, in a work that inspired this work, it was used to prove
exponential lower bounds on the size of the shares in evolving secret-sharing schemes [50]. The
result we use to derive our lower bound (Theorem 3.2) was generalized by Blundo et al. [18] with the
so-called independent sequence method. They constructed, using this method, an access structure
in which the size of the minimal authorized sets is at most log n and the maximum share size is
Ω((n/ log(n)) · ℓ).

2 Preliminaries

In this section, we define secret-sharing schemes realizing general access structures. We start by
defining a secret-sharing scheme, which is a randomized mapping whose input is a string, called
the secret, and output is the n strings, called shares.

Definition 2.1 (Secret-Sharing Schemes). Let {p1, . . . , pn} be a set of parties. A secret-sharing
scheme Π with domain of secrets S is a randomized mapping from S to a set of n-tuples S1 ×
S2 × · · · × Sn, where Sj is called the domain of shares of pj, that is, given a secret s ∈ S, the
secret-sharing scheme outputs the shares sh1, . . . , shn. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(s)
as the restriction of Π(s) to its A-entries, i.e. ⟨shi⟩pi∈A.

Informally, in a secret-sharing scheme, we consider a dealer that distributes a secret s ∈ S
according to Π by first sampling a vector of shares ⟨sh1, . . . , shn⟩ ← Π(s), and privately communi-
cating each share shj to party pj .

Definition 2.2 (Access Structures). Let {p1, . . . , pn} be a set of parties. A collection Γ ⊆ 2{p1,...,pn}

is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure is a monotone collection
Γ ⊆ 2{p1,...,pn} of non-empty subsets of {p1, . . . , pn}. Sets in Γ are called authorized, and sets not
in Γ are called unauthorized.

We next define the correctness and perfect security of a secret-sharing scheme realizing a general
access structure; we require that such scheme is secure against an unbounded adversary, i.e., its
security is information-theoretic. The definition is based on [25, 8] and does not assume any
probability distribution on the secrets.

Definition 2.3 (Secret-Sharing Schemes Realizing an Access Structure). Let S be a finite set of
secrets, where |S| ≥ 2. A secret-sharing scheme Π with domain of secrets S realizes an access
structure Γ if the following two requirements hold:

Perfect Correctness. The secret s can be reconstructed by any authorized set of parties. That
is, for any set B ∈ Γ (where B = {pi1 , . . . , pi|B|}), there exists a reconstruction function
ReconB : Si1 × · · · × Si|B| → S such that for every s ∈ S,

Pr[ ReconB(ΠB(s)) = s ] = 1. (1)

Perfect Security. Every unauthorized set cannot learn anything about the secret (in the informa-
tion theoretic sense) from their shares. Formally, for any set T /∈ Γ, for every two secrets
s1, s2 ∈ S, and for every possible vector of shares ⟨shj⟩pj∈T :

Pr[ ΠT (s1) = ⟨shj⟩pj∈T ] = Pr[ ΠT (s2) = ⟨shj⟩pj∈T ], (2)

where the probabilities are over the randomness of Π.
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The most important complexity measure that we study in secret-sharing schemes in the share
size.

Definition 2.4 (Share Size). The size of the secret in a secret-sharing scheme Π with domain of
secrets S and domains of shares S1, · · · , Sn is log(|S|), the share size of party pi is log(|Si|), the
max share size is max1≤j≤n log(|Sj |), and the total share size is

∑
1≤j≤n log(|Sj |).

Definition 2.5. An access structure Γ is a k-hypergraph access structure (also called k-homogeneous
access structure) if the size of every minimal authorized set in A ∈ Γ is exactly k. An access
structure Γ is a k-partite hypergraph access structure if there exists a partition of the set of parties
to k sets D1, . . . , Dk such that every minimal authorized set A ∈ Γ contains exactly one party from
each Di, that is |A ∩Di| = 1 for every 1 ≤ i ≤ k.

Note that that the size of unauthorized sets in a k-hypergraph access structure can be much
larger that k. For example, in a graph access structure (i.e., in a 2-hypergraph access strucure),
the minimal authorized sets are the edges of the graph and the unauthorized sets are independent
sets.

Remark 2.6. Erdös and Pyber [39] have proved that every graph can be partitioned into complete
bipartite graphs such that each vertex is contained in at most O(n/ log(n)) complete bipartite
graphs. Blundo et al. [19] observed that this implies that for every n-vertex graph there is a secret-
sharing realizing the graph with 1-bit secret, max share size O(n/ log(n)), and, in particular, total
share size O(n2/ log(n)).

This secret-sharing scheme can be used to construct a secret-sharing scheme for k-hypergraphs
as follows. Given a k-hypergraph Γ with a set of parties P , define for every set of parties A of
size exactly k − 2 an access structure ΓA = {B ⊆ P \A : A ∪B ∈ Γ}. Notice that ΓA is a graph
access structure. We independently share the secret s for each access structure ΓA, that is, we
independently choose k − 2 random bits r1, . . . , rk−2, give each bit to a party in A, and share
s⊕ r1 ⊕ · · · ⊕ rk−2 using a graph secret-sharing for the graph access structure ΓA. The total share

in this scheme is O
((

n
k−2

)
n2

log(n)

)
; this expression is equal to O

((
n
k

)
k2

log(n)

)
for k ≤ n/2. Observe

that each minimal authorized set (of size k) is an authorized set in
(
k
2

)
access structures ΓA. Thus,

we can use Stinson’s decomposition [59] to construct a secret-sharing scheme realizing Γ with ℓ-bit

secrets, where ℓ > k4 log(n), and total share size O
((

n
k

)
1

log(n) · ℓ
)
.

3 Lower Bounds on the Size of the Shares in k-Partite Hypergraph
Access Structures

Lower bounds for secret-sharing schemes have been proved in, e.g., [46, 23, 19, 38, 28, 29, 18]. The
best lower bound was proved by Csirmaz [28, 29], who proved that for every n there exists an
explicit n-party access structure such that every secret-sharing scheme realizing it with an ℓ-bit
secret requires total share size Ω(n2/ log(n) · ℓ). We use this lower bound to prove lower bounds
for k-partite hypergraphs. We do this in two stages, we first define in Definition 3.3 a k-partite
access structure in which the max share size is Ω

(
n1−1/(k−1)ℓ/k

)
and then define in Definition 3.7

a k-partite access structure in which the total share size is Ω
(
n2−1/(k−1)ℓ/k

)
.
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3.1 A Lower Bound on the Max Share Size

We first define a family of access structures CSI; access structures from this family were used
by Csirmaz [28] to prove his lower bound. Each access structure in the family is defined by a
given sequence of subsets satisfying the following condition: we say that a sequence of subsets
A1, A1, . . . , Am is valid if Ai ̸⊆ Aj for every i < j (e.g., |Ai| ≥ |Ai+1| for 1 ≤ i ≤ m).

Definition 3.1 ([28]). Let A be a set and A1, A2, . . . , Am be a valid sequence of subsets of A.
Furthermore, let B = {b1, . . . , bm} and define Bi = {b1, . . . , bi} for 1 ≤ i ≤ m. We assume that
A ∩ B = ∅. Define the access structure CSIA1,...,Am, whose parties are A ∪ B and the minimal
authorized sets of CSIA1,...,Am are A1 ∪B1, A2 ∪B2, . . . , Am ∪Bm.

Theorem 3.2 ([28]). For every valid sequence of subsets A1, A2, . . . , Am and every integer ℓ ∈ N,
in every secret-sharing scheme realizing CSIA1,A1,...,Am with domain of secrets {0, 1}ℓ, the total share
size of the parties A (i.e.,

∑
p∈A |shp|) is at least (m− 1) · ℓ.

Csirmaz considered the case in which A = {p1, . . . , pk}, m = 2k, and A1 . . . , Am is some
valid ordering of all subsets of A. In this case the number of parties in the access structure is
n = O(2k) and Theorem 3.2 implies that there is at least one party whose share size is Ω(2k/|A|) =
Ω(n/ log(n)). However, Csirmaz’s proof applies to any access structure defined for a valid sequence.
We will use larger sets A.

The main contribution of this paper is a construction of a k-hypergraph access structure k-CSIn

from CSI; this access structure requires long shares. An illustration of the 3-CSI8 access structure
appears in Figure 1.

Definition 3.3 (The Access Structure k-CSIn). Fix k, n and let t be the maximal number such
that (k − 1) · t + tk−1 ≤ n. Let Di = {ai,1, . . . , ai,t} for 1 ≤ i ≤ k − 1, A = ∪k−1

i=1Di, m = tk−1,
and A1, . . . , Am be any ordering of the subsets of A of size k − 1 that contain exactly one element
from each Di (that is, |Aj ∩ Di| = 1 for every 1 ≤ j ≤ m, 1 ≤ i ≤ k − 1). Finally, let C ={
c1, . . . , cn−(k−1)·t

}
. Define the access structure k-CSIn, whose parties are A ∪ C and the minimal

sets of k-CSIn are A1 ∪ {c1} , A2 ∪ {c2} , . . . , Am ∪ {cm}.

Every minimal authorized set in k-CSIn contains exactly one party from each partD1, . . . , Dk−1, C,
i.e., there is a minimal authorized set

{
a1,j1 , a2,j2 , . . . , ak−1,jk−1

, cj
}
for every sequence (j1, j2, . . . , jk−1) ∈

[t]k−1 and the appropriate j.

Remark 3.4. To define an access structure with exactly n parties, we added the redundant parties
cm+1, . . . , cn−(k−1)·t. These parties do not belong to any minimal authorized set and they can be
ignored.

Theorem 3.5. For every n, every k ≤ log(n), every ℓ ∈ N, in every secret-sharing scheme re-
alizing the n-party k-hypergraph access structure k-CSIn with domain of secrets {0, 1}ℓ, the total
share size of the parties in A is Ω(n · ℓ), in particular, there is at least one party with share size

Ω
(
n1−1/(k−1)

k · ℓ
)
.

Proof. Consider any secret-sharing scheme Π realizing k-CSIn with domain of secrets {0, 1}ℓ. We
construct from it a secret-sharing Π′ realizing CSIA1,...,Am (where A1, . . . , Am are all the subsets of
A that contain exactly one party from each Di) such that the share of each ai,j is the same in both
schemes.

The construction of Π′ is as follows:
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• Share the secret using the scheme Π. Let shai,j be the share of ai,j for 1 ≤ i ≤ k− 1, 1 ≤ j ≤ t
and shci be the share of ci for 1 ≤ i ≤ m.

• For 1 ≤ i ≤ m, share shci using an i-out-of-i secret-sharing scheme. Denote the shares by shci,j
for 1 ≤ j ≤ i.

• The share of ai,j is shai,j and the share of bj is shci,j for j ≤ i ≤ m.

Any authorized set Ai ∪ Bi ∈ CSIA1,...,Am holds in Π′ the shares of Ai and can reconstruct the
share shci , hence the parties in Ai∪Bi can reconstruct the secret. Next we argue that the scheme Π′

is secure. Consider an unauthorized set T ′ /∈ CSIA1,...,Am and let j ≤ m be the minimal index such
that bj /∈ T ′; if such index does not exist set j = m+1. Define T = (T ′ ∩A)∪{c1, . . . , cj−1}. Since
T ′ /∈ CSIA1,...,Am and {b1, . . . , bj−1} ⊆ T ′, it must be that Ai ̸⊆ T ′ for every i ≤ j − 1. This implies
that T /∈ k-CSIn. By the properties of the i-out-of-i secret-sharing scheme, the parties in T ′ have
no information on shci for i ≥ j. I.e., the parties in T ′ only have the shares of the unauthorized set
T in Π and get no information on the secret.

We next analyze the lower bound on the share size that we get. By the choice of the parameters
in k-CSIn, we get that tk−1 = m = Θ(n) and |A| = (k−1) · t = (k−1)Ω(n1/(k−1)). By Theorem 3.2,
the total share size of the parties in A in Π′, hence also in Π, is Ω(m · ℓ) = Ω(n · ℓ), in particular,
there exists a party p ∈ A whose share size in Π is

Ω

(
n

|A|
· ℓ
)

= Ω

(
n

(k − 1)n1/(k−1)
· ℓ
)
.

Remark 3.6. We proved the lower bound by using Theorem 3.2 as a black-box. An alternative
proof for Theorem 3.5 can directly apply the information inequalities as in the proof of [28].

3.2 A Lower Bound on the Total Share Size

We next construct a k-partite hypergraph access structure k-TotCSIn that requires large total share
size. The construction is similar to the construction of Csirmaz [29], who showed how to construct
an access structure requiring total share size Ω(n2/ log(n) · ℓ); to show a small monotone circuit for
this access structure, we use a variant of [4] of this construction. Recall that in the access structure
k-CSIn there is a small set A, whose total share size is large. To construct k-TotCSIn, we will take
many copies of the access structure k-CSIn using the same set C, i.e., we only use many copies of
the set A. Since the set A is small, the number of parties in k-TotCSIn will be small. On the other
hand, we have many copies of the set A, each copy requires large share size, hence the total share
size is large. Specifically, we take α = O(n/(k · t)) copies of each party in A and for each minimal
authorized set Aj ∪{cj} in k-CSIn we take αk−1 minimal authorized sets in k-TotCSIn by replacing
each party a1i,ji in Aj by each ahi,ji .

Definition 3.7 (The Access Structure k-TotCSIn). Fix k, n, take t as the maximal integer such
that tk−1 ≤ n/2, and let m = tk−1 and α = ⌊n/(2(k − 1) · t)⌋. For every 1 ≤ h ≤ α, let Dh

i ={
ahi,1, . . . , a

h
i,t

}
for 1 ≤ i ≤ k − 1, Ah = ∪k−1

i=1D
h
i , and A1, . . . , Am be any ordering of the subsets

of A1 of size k − 1 that contain exactly one element from each D1
i (that is, |Aj ∩ D1

i | = 1 for
every 1 ≤ j ≤ m, 1 ≤ i ≤ k − 1). Furthermore, let A = ∪1≤h≤αA

h and let C =
{
c1, . . . , cn−|A|

}
.
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Define the access structure k-TotCSIn, whose parties are A∪C and for every 1 ≤ j ≤ m we have the

following αk−1 minimal authorized sets in k-TotCSIn: Let Aj =
{
a11,j1 , . . . , a

1
k−1,jk−1

}
for a sequence

(j1, . . . , jk−1) ∈ [t]k−1; for every sequence h1, . . . , hk−1 ∈ [α]k−1 the set
{
ah1
1,j1

, . . . , a
hk−1

k−1,jk−1
, cj

}
is

a minimal authorized set in k-TotCSIn.

Note that k-TotCSIn is a k-partite hypergraph access structure, where the parts are ∪αh=1D
h
1 ,

. . . , ∪αh=1D
h
k−1, C. The access structure has (t · α)k−1 minimal authorized sets.

Theorem 3.8. For every n, every k ≤ log(n), every integer ℓ ∈ N, in every secret-sharing scheme
realizing the n-party k-hypergraph access structure k-TotCSIn with domain of secrets {0, 1}ℓ, the
total share size is at least Ω

(
n2−1/(k−1)

k · ℓ
)
.

Proof. For every 1 ≤ h ≤ α, the access structure k-TotCSIn restricted to the parties in Ah ∪
{c1, . . . , ctk−1} is isomorphic to k-CSIn

′
, where n′ = (k− 1)t+ tk−1 = Θ(n). Thus, by Theorem 3.5,

in any secret-sharing scheme realizing k-TotCSIn the total share size of the parties in Ah is Ω(n · ℓ),
hence the total share size of the parties in A is

Ω(αn · ℓ) = Ω

(
n2

k · t
· ℓ
)

= Ω

(
n2

k · n1/(k−1)
· ℓ
)
.

3.3 Secret Sharing vs. Monotone Circuits

We next observe that the access structure log(n)-TotCSIn can be described by a shallow monotone
circuit of size O(n log(n)); that is, we derive an almost quadratic separation between the total share
size required in any secret-sharing scheme realizing k-TotCSIn and the size of the monotone circuit
for it.

Theorem 3.9. The access structure log(n)-TotCSIn can be described by a monotone circuit of size
O(n log(n)) and depth 3.

Proof. The access structure log(n)-CSIn
′
, where t = 2 and n′ = (log(n) − 1)2 + 2log(n)−1 = Θ(n)

has 2log(n)−1 = n/2 minimal authorized sets of size log(n), thus it can be described by a monotone
CNF formula F of size O(n log(n));2 denote the variables of this formula by {ai,ji}i∈[log(n)−1],ji∈[t]∪{
c1, . . . , cn/2

}
. For every i ∈ [log(n) − 1], ji ∈ [t], we compute ∧h∈[α]ahi,ji and connect this AND

gate to each leaf in F labeled by ai,ji . The resulting monotone circuit describes the access structure
log(n)-TotCSIn. The size of the circuit is O(n log(n)+α(log(n)− 1)2) = O(n log(n)) and its depth
is 3.

Acknowledgment. I would like to thank Noam Mazor for telling me about his result [50]; this
result inspired this work. I would also like to thank Eran Omri and Oriol Farràs for helpful
discussions.

2It can also be described by a monotone formula of size O(n) and depth O(log(n)).
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A A Secret-Sharing Scheme for an Arbitrary Access Structure
from a Secret-Sharing Scheme for k-Hypergraph

We next describe a simple reduction from realizing an arbitrary access structure to realizing
k-hypergraphs. Given an access structure Γ with parties p1, . . . , pn we define the following k-
hypergraph access structure Γk with k · N vertices, where N = 2n/k (for simplicity assume that
n/k is an integer):

• Let Pi =
{
p(i−1)·n/k+1, . . . , pi·n/k

}
for 1 ≤ i ≤ k, Di = 2Pi , and D = ∪ki=1Di. The parties in

Γk are D, i.e., each party in Γk is a subset of the parties in Γ.3

• For every minimal authorized set A in Γ, the set

{A ∩ P1, . . . , A ∩ Pk}

is a minimal authorized set in Γk.

An illustration of a construction of such access structure for k = 2 appears in Figure 2.

{𝑝1, 𝑝2}

{𝑝2}

{𝑝1}

∅

{𝑝3, 𝑝4}

{𝑝4}

{𝑝3}

∅

Figure 2: The access structure Γ2 constructed from the access structure with two minimal autho-
rized sets {p1, p3} and {p1, p2, p4}. The minimal authorized sets of Γ2 are described by an edge.

The secret-sharing Π for Γ is as follows:

• Construct the above hypergraph access structure Γk from the access structure Γ.

• Share the secret s using any secret-sharing scheme Πk for Γk. Let shC be the share in this
scheme of the vertex C ∈ D.

• For every non-empty set C ∈ D, independently share shC using a |C|-out-of-|C| secret-sharing
scheme among the parties of C. In addition, give the shares of ∅ ∈ Di for each 1 ≤ i ≤ k to
all parties in Γ.

We next argue the correctness and security of the scheme. First, let A = A1 ∪ · · · ∪ Ak be a
minimal authorized set in Γ, where Ai ⊆ Pi for every 1 ≤ i ≤ k. By the construction of Γk, the
set {A1, . . . , Ak} is an authorized set in Γk, thus shA1 , . . . , shAk

determine the secret. Furthermore,
the parties in A can reconstruct shA1 , . . . , shAk

, hence, can reconstruct the secret.
For the security of the scheme, consider an unauthorized set T = T1 ∪ · · · ∪ Tk /∈ Γ, where

Ti ⊆ Pi for every 1 ≤ i ≤ k. Clearly, the parties in T can reconstruct shTi for every 1 ≤ i ≤ k;
however they can also reconstruct the shares of every subset of Ti. On the other hand, for any

3There is party for the empty set in each Di. These are k distinct parties.
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other set B ∈ D, the parties in T miss at least one party in B. Hence, the parties in T have no
information of the shares of these sets.

Since T is unauthorized, every subset of T is unauthorized and for every T ′
1 ⊆ T1, . . . , T

′
k ⊆ Tk,

the set {T ′
1, . . . , T

′
k} is unauthorized in Γk. Thus, the shares in Πk that the parties in T can

reconstruct are shares of an unauthorized set in Γk and these shares do not reveal any information
on the secret s.

The total share size of the scheme Π is at most n times the total share size of the scheme Π′,
i.e., n times the share size required to realize a (k · 2n/k)-party k-hypergraph.
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