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Abstract. A central problem in cryptanalysis is to find all the signifi-
cant deviations from randomness in a given n-bit cryptographic primi-
tive. When n is small (e.g., an 8-bit S-box), this is easy to do, but for
large n, the only practical way to find such statistical properties was to
exploit the internal structure of the primitive and to speed up the search
with a variety of heuristic rules of thumb. However, such bottom-up tech-
niques can miss many properties, especially in cryptosystems which are
designed to have hidden trapdoors.
In this paper we consider the top-down version of the problem in which
the cryptographic primitive is given as a structureless black box, and
reduce the complexity of the best known techniques for finding all its
significant differential and linear properties by a large factor of 2n/2.
Our main new tool is the idea of using surrogate differentiation. In the
context of finding differential properties, it enables us to simultaneously
find information about all the differentials of the form f(x) ⊕ f(x ⊕ α)
in all possible directions α by differentiating f in a single arbitrarily
chosen direction γ (which is unrelated to the α’s). In the context of
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finding linear properties, surrogate differentiation can be combined in a
highly effective way with the Fast Fourier Transform. For 64-bit crypto-
graphic primitives, this technique makes it possible to automatically find
in about 264 time all their differentials with probability p ≥ 2−32 and
all their linear approximations with bias |p| ≥ 2−16; previous algorithms
for these problems required at least 296 time. Similar techniques can be
used to significantly improve the best known time complexities of find-
ing related key differentials, second-order differentials, and boomerangs.
In addition, we show how to run variants of these algorithms which re-
quire no memory, and how to detect such statistical properties even in
trapdoored cryptosystems whose designers specifically try to evade our
techniques.

1 Introduction

Most cryptanalytic techniques against block ciphers exploit the existence of some
statistical property which happens with a higher than expected probability. It
is thus essential to find all such anomalies (or to demonstrate that none exists)
whenever we are designing a new cryptosystem or attacking an existing cryp-
tosystem developed by others. Note that such a search has to be carried out only
once for each cryptosystem, and if it is successful, its results can be used to find
an unlimited number of actual keys. Consequently, even a lengthy computational
effort to find such properties can be justified.

Due to the centrality of this topic, many papers had been published about
it over the last 30 years. Almost all of them had taken a bottom-up approach,
in which the attacker first finds the statistical properties of small local elements
(such as S-boxes), and then tries to ‘glue’ them together into a high probability
global property. The analysis of a small n-bit S-box (e.g., with n = 8) is easy:
For example, all its differential properties (which can be grouped together in
the form of a difference distribution table, denoted by DDT) and all its linear
properties (which can be grouped together in the form of a linear approxima-
tion table, denoted by LAT) can be found exhaustively in time 22n. However,
the process of constructing the global properties is usually guided by various
heuristics (such as testing only low Hamming weight differences, or using only
the highest probability local properties), and thus it can miss many properties.
In fact, knowledge of these heuristic restrictions can be exploited by the design-
ers of trapdoored ciphers to evade attacks. For example, it is easy to attach
a keyed decorrelation module [43] at the beginning and the end of a cipher in
order to force any high probability differential characteristic to have high Ham-
ming weight input and output differences. Other constructions of trapdoored
cryptosystems can be found in [40] (with a planted high probability differential
characteristic) and [41] (with a planted high probability linear approximation).

Even in standard (non-trapdoored) cryptosystems, such bottom-up tech-
niques can be error-prone: There are many known cases in which the global
probability differs significantly from the product of the local probabilities due to
subtle correlations (as demonstrated in [12,21,37]), and where a high probability
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property results from the accumulation of many low probability properties along
many differential characteristics or within the linear hull (which was a crucial
element in the attacks described in [29,31]). Finally, it is difficult to apply such
bottom-up techniques to designs in which the basic operations are block-wide
(see, for example, [9]), are defined in terms of large primitives (e.g., 32-bit S-
boxes), are available only in the form of a hardware token (with no description
of its internal structure), or are provided in an obfuscated form (as done in many
whitebox cryptosystems such as [15]).

Developing efficient top-down techniques for finding all the usable statisti-
cal properties of functions f : {0, 1}n → {0, 1}n with a large n seems to be a
hard problem, which had been solved so far only in some special cases. For ex-
ample, the differential properties of a moderately large cryptographic primitive
which uses only additions, rotations, and XOR’s (an ARX design) were studied
in [8,9,10], and were used to mount differential attacks on Simon, Speck, As-
con, LEA, and other ciphers. The related problem of finding linear biases in the
same special case of ARX ciphers was studied in [34,35,47], whose results were
used to mount linear attacks on Speck and SM4. Another special case discussed
in [1,11,13], is when the adversary uses heuristics to guess the most likely input
differences, and wants to simultaneously find all the corresponding output dif-
ferences in high probability differentials; notice that without such heuristics, any
algorithm of this type has a high complexity of Ω(2n). A different type of top-
down algorithm is described in [17], which deals with general black box functions
f , but can find only iterative differential characteristics (in which the input dif-
ference is equal to the output difference). Finally, in the quantum setting (which
is not the computation model we use in this paper) there are several papers
(e.g., [33,46]) which show how to find in polynomial time differential properties
in a general f , but only when their probabilities p are extremely close to 1.

When we try to apply a top-down analysis to a large black box function f
(e.g., a full cryptosystem with n = 64), finding all the 22n entries in its DDT and
LAT becomes both infeasible and unnecessary, since almost all the known attacks
use only their highest entries. If we are only interested in differentials α → β
which happen with probability that exceeds p, the best previously available
technique (described in Sect. 2) is to try all the possible input differences α,
and to compute for each α the output differences f(x) ⊕ f(x ⊕ α) for O(p−1)
randomly chosen values of x. This reduces the time complexity of finding all the
significant entries in the DDT from 22n to 2np−1. The corresponding algorithm
for finding all the significant entries in the LAT requires at least 2np−2 time.

In this paper we introduce a new type of top-down technique which can re-
duce these two complexities by a major factor of 2n/2. The main new technique
we use is surrogate differentiation, in which we obtain information on f by ex-
amining its derivative in an arbitrary direction which is not directly related to
the statistical properties we want to find. For example, when we search for a
differential property in which some input difference α is mapped to some output
difference β with high probability p, we want to differentiate the function f in a
particular direction α by considering pairs of inputs of the form (x, x⊕α) and fol-
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lowing the evolution of f(x)⊕ f(x⊕α). This differentiation of f simultaneously
achieves two very different purposes: It eliminates certain constants from the
expression (for example, an unknown key which was XOR’ed to the input), and
it makes it possible to exploit a sequence of high-probability differential events
in order to successfully predict the output difference. However, when we try to
find all the high probability properties in a new cryptosystem, we do not know
a-priori the actual directions α with respect to which we want to differentiate f .
Our novel idea is that if we replace the real but unknown α by an unrelated but
known surrogate value1 γ, we can still benefit from the elimination of unknown
constants, and we can save a lot of time by using the same arbitrarily chosen
surrogate value γ ̸= 0 to simultaneously analyze all the possible values of α via
a single unified computation.

The new idea of surrogate differentiation yields a plethora of algorithms with
significantly improved complexities for detecting a large variety of statistical
properties in general black box functions. In the case of differentials with prob-
ability p, our new algorithm (described in Section 2) requires O(2n/2p−1) time,
compared to the best previous time complexity of O(2np−1). This new com-
plexity is almost optimal, as an information-theoretic argument shows that any
algorithm for this problem requires Ω(2n/2p−1/2) evaluations of the black-box
function f .

A worst-case variant of this algorithm can deal with backdoored functions:
This variant requires O(2n/2p−3/2) time, and detects a hidden differential with
probability p even in trapdoored cryptosystems in which the locations of the right
pairs with respect to the characteristic were chosen adversarially. In addition,
we present a memoryless variant of this algorithm whose time complexity is
O(max(2n/2p−2, p−3)). At the end of the Section, we describe an experimental
verification of our worst-case algorithm which finds all the high-probability 5-
round and 6-round differentials of the NSA-designed cryptosystem Speck, and
compares our top-down results to the bottom-up analysis presented in [10].

Our next algorithm (described in Section 3) can detect all linear biases of
at least p in time O(2n/2p−2). Note that in terms of complexity, the results on
differential and linear properties are comparable, since to sense a bias of p we
need O(p−2) data, whereas to sense a differential with probability p we need
only O(p−1) data.

These improvements make it possible to apply a top-down analysis to full size
cryptosystems with n = 64, and to find in about 264 time all their differentials
with probabilities p ≥ 2−32 and all their linear biases |p| ≥ 2−16. Previously,
these tasks had required at least 296 time.

In Section 4 and we present improved algorithms for boomerangs, related-
key differentials, and second-order differentials. Here, one cannot hope to obtain
an algorithm as good as for differential and linear properties, as information-
theoretic arguments yield lower bounds of Ω(23n/4p−1/4) for second-order dif-

1 According to Wikipedia, a surrogate marker in clinical trials is a known measure
which may correlate with the unknown clinical markers we would like to follow, but
does not necessarily have a guaranteed relationship.
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Property Time Data Memory Section

Differentials (fundamental alg) O(2n/2p−1) O(2n/2p−1) O(2n/2p−1) Sect. 2.2

Differentials (memory-efficient) Õ(2n/2p−1) Õ(2n/2p−1) Õ(p−2) App. A

Differentials (memoryless) O(2n/2p−2) O(2n/2p−2) O(1) Sect. 2.3

Differentials (worst-case) O(2n/2p−3/2) O(2n/2p−3/2) O(2n/2p−1/2) Sect. 2.4

Linear approximations O(2n/2p−2) O(2n/2p−2) O(2n/2p−2) Sect. 3

Boomerangs O(2np−1) O(2n) O(2np−1) Sect. 4.1
Second-order differentials O(2np−2) O(2n) O(2np−2) App. B.1
Related-Key differentials O(2np−2) O(2np−1) O(2np−1) App. B.2

n — block size and key size.

Table 1: Our main results for probabilities p ≥ 2−n/2 and biases |p| ≥ 2−n/4

ferentials and boomerangs and Ω(2np−1/2) for related-key differentials. Our new
algorithms have complexities of at most O(2np−2) for all three types of proper-
ties, thus making it possible to detect such properties for 32-bit and sometimes
48-bit constructions in a practical amount of time.

A summary of our main results can be found in Table 1.
Our research leads to many interesting open problems, some of which are

listed in the concluding Section 5. In particular, in spite of the significant im-
provements over previous results, our upper bounds still do not match the best
known lower bounds, and there are additional statistical properties to which we
do not know how to apply our new techniques.

2 Efficient Algorithms for Detecting High-Probability
Differentials

Differential cryptanalysis [6] is a central cryptanalytic technique, based on trac-
ing the development of differences during the encryption process of a pair of
plaintexts. The central notion in differential cryptanalysis is a differential. We
say that the differential α → β for the function f : {0, 1}n → {0, 1}n holds
with probability p, if Pr[E(x)⊕ E(x⊕ α) = β] = p, where x ∈ {0, 1}n is chosen
uniformly at random. The pairs (x, x ⊕ α) that satisfy f(x) ⊕ f(x ⊕ α) = β
are called right pairs with respect to the differential. As differential attacks ex-
ploit high-probability differentials, a central goal in differential cryptanalysis is
to detect high-probability differentials efficiently.

In this section we present an algorithm that allows detecting all differentials
of f : {0, 1}n → {0, 1}n that hold with probability ≥ p, with complexity of
O(2n/2p−1). This algorithm is almost optimal, as by an information-theoretic
lower bound presented below, any generic algorithm for this task has complexity
of Ω(2n/2p−1/2). We also present three variants of the algorithm: a worst-case
algorithm that allows detecting with a high probability also high-probability
differentials that are adversarially hidden, a memoryless algorithm with only
a slightly higher time complexity, and a memory-efficient algorithm that allows
reducing the memory complexity to O(p−2) without increasing the data and time
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complexities. We then experimentally verify our algorithm, by using it to detect
all high-probability differentials of 5-round and 6-round variants of SPECK [2].

Throughout this paper (and especially when we estimate running times and
the probability of false alarms) we assume that the black-box function behaves in
a sufficiently random way. Any gross deviation (such as the discovery of a huge
multicollision in a supposedly random function, which can slow our algorithms)
is likely to cast serious doubts about the soundness of the cryptosystem’s design,
even if no high probability differential or linear properties are actually found. In
addition, for the sake of clarity we ignore poly-logarithmic factors (i.e., factors
that are polynomial in n) in all our probability and complexity estimates.

For the sake of simplicity, we first analyze the algorithms in the scenario
where f has only one differential α → β that holds with probability p, while all
other differentials have significantly lower probabilities. We then show that the
algorithms can be easily generalized to finding all ≥ p-probability differentials,
with no increase in the complexity. In addition, we first present the algorithms
under the natural assumption that p ≥ 2−n/2, and afterwards explain the ad-
justments required for smaller values of p.

2.1 Previous algorithms and a lower bound

Previous algorithms. Algorithms for detecting high-probability differentials are
abundant in the literature. However, almost all of them operate in a bottom-up
fashion, that is, construct a ‘long’ differential characteristic2 by concatenating
‘short’ differential characteristics, and use the probability of the differential char-
acteristic as a lower bound on the probability of the differential. In such algo-
rithms, the short differential characteristics can be found easily and the challenge
is to find characteristics that can be ‘glued together’.

Top-down algorithms for finding high-probability differentials were consid-
ered in several special cases: In [9], Biryukov and Velichkov initiated the study
of algorithms detecting all high-probability differentials of the addition opera-
tion in ARX ciphers – a problem they coined ‘constructing the partial DDT
(pDDT)’ of the operation. Several follow-up papers (e.g., [8,10]) further studied
the pDDT and used it in attacks on the ciphers SIMON, SPECK, Ascon, and
LEA. In [1], Albrecht and Leander initiated the study of the case where the
adversary had guessed the input difference of a differential using some heuristic,
and is interested in finding all output differences to which it leads with a high
probability. Essentially the same problem was studied in several other works
(e.g., [11,13]), under the name of multiple differential cryptanalysis, and its algo-
rithms for solving it were used in attacks on SPECK (see [23,3]). In [17], Dinur
et al. studied the problem of finding all high-probability iterative differentials of
general functions, and used their results in attacks on the cipher Simon and on
the iterated Even-Mansour construction. In [33], Li and Yang showed that in the

2 We remind the reader that a differential characteristic predicts all the intermediate
differences, whereas a differential is concerned only with the input difference and the
output difference.
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quantum setting, differentials with probability very close to 1 can be detected in
polynomial time (in n), using the Bernstein-Vazirani algorithm [4]. The follow-
up paper [46] further enhanced the technique and used it to attack several block
cipher constructions. While these works obtained significant advancements in
special cases, neither of them applies in general.

A natural top-down algorithm for detecting all differentials of a function
f : {0, 1}n → {0, 1}n that hold with probability≥ p is the following adaptation of
the classical algorithm for constructing the Difference Distribution Table (DDT):

1. For all α ∈ {0, 1}n, do:
(a) Choose 4/p random values x1, x2, . . . , x4/p ∈ {0, 1}n.
(b) For each 1 ≤ i ≤ 4/p, compute f(xi) ⊕ f(xi ⊕ α) and insert it into a

hash table.
(c) Output all values β that appear in the table at least 2 times.

The data and time complexity of the algorithm is O(2np−1) and its memory
complexity is O(p−1). The probability of a differential with probability ≥ p
to be detected is more than 90% (according to standard approximation by a
Poisson distribution), and the probability of a differential with probability ≪ p
to be detected by mistake is small.

Lower bound. A simple information-theoretic argument yields a lower bound of
Ω(2n/2p−1/2) for the task of generically detecting a differential α → β that holds
with probability p. Indeed, in order to detect such a differential, the adversary
must observe at least one pair with input difference α and output difference
β. Assuming that those pairs are distributed randomly, this means that the
adversary must observe Ω(1/p) pairs with input difference α for all α values, i.e.,
a total of O(2n · p−1) pairs is needed. This number of pairs cannot be generated
(even to cover most values of α) unless the plaintext set is of size Ω(2n/2p−1/2).
Thus, the complexity of any algorithm for our problem is Ω(2n/2p−1/2).

2.2 The fundamental algorithm

In this subsection we present a probabilistic algorithm which almost matches the
lower bound, and under some randomness assumptions finds any probability-p
differential (with overwhelming probability) α → β with data, memory, and time
complexity of Õ(max(2n/2p−1, p−2)). We also note that the memory complexity
of the algorithm can be improved to O(p−2) without affecting the data and time
complexities, as will be shown in the memory-efficient algorithm of Appendix A.

Main idea. The main observation behind the algorithm is that the output differ-
ence β can be cancelled by differentiating with a completely unrelated surrogate
difference γ, and searching for right pairs (x, x⊕α) for which (x⊕γ, x⊕γ⊕α) is
also a right pair. The search for two “companion” right pairs instead of a single
pair has some price, and is the reason of the complexity being higher than the
lower bound by a factor of p−1/2.
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Fig. 1: A Right Quartet for the Fundamental Algorithm

Detailed description. We choose an arbitrary nonzero value γ ∈ {0, 1}n, and
consider the function gγ : {0, 1}n → {0, 1}n defined by gγ(x) = f(x)⊕ f(x⊕ γ).
We examine the collisions in the function gγ(x). Observe that if both (x, x⊕α)
and (x⊕γ, x⊕γ⊕α) are right pairs with respect to the differential α → β, then

gγ(x)⊕ gγ(x⊕ α) =
(
f(x)⊕ f(x⊕ γ)

)
⊕

(
f(x⊕ α)⊕ f(x⊕ α⊕ γ)

)

=
(
f(x)⊕ f(x⊕ α)

)
⊕
(
f(x⊕ γ)⊕ f(x⊕ α⊕ γ)

)
= β ⊕ β = 0

and thus, the pair (x, x⊕α) yields a collision in gγ , as depicted in Figure 1. We
call quartets (x, x⊕ α, x⊕ γ, x⊕ α⊕ γ) for which this is satisfied right quartets
for gγ .

The fundamental algorithm is detailed in Algorithm 1. In the detection phase,
we find collisions in gγ for random inputs. From each collision, we calculate the
corresponding (input difference, output difference) pair, denoted by (α, β), and
increase its counter by one. Than, in the verification phase, we go over all such
(α, β) pairs that were suggested sufficiently many times (i.e., with high counters).
For each such (α, β) pair, we verify that indeed the probability of the differential
α → β is larger than p. We do that by taking O(p−1) random pairs with input
difference α, and test that sufficiently many of them have an output difference
β.

Randomness Assumptions. The correctness of the fundamental algorithm relies
on the following randomness assumptions. We assume that for any γ the event
that the pair (x ⊕ γ, x ⊕ γ ⊕ α) is a right pair is independent of the event that
the pair (x, x ⊕ α) is a right pair (which is similar to some of the randomness
assumptions of the boomerang attack). Under this assumption, the probability
of the quartet to be a right quartet for a random x ∈ {0, 1}n is p2, and thus, the
expected number of collisions (each corresponding to a quartet) of this form is
p22n−1 (the division by 2 is since each pair is counted twice).

In the presence of multiple differentials with probability p (or close to p)
we also need to assume (for the claim that the algorithm finds almost all dif-

8



Algorithm 1: The Fundamental Algorithm

Initialize an empty list L of counter tuples (α, β, cnt) and an empty hash table
H.

Choose M =
√
n · 2n/2p−1 distinct random values x1, x2, . . . , xM ∈ {0, 1}n.

Pick at random an n-bit non-zero value γ.
for all 1 ≤ i ≤ M do

Compute gγ(xi) and insert it into a hash table H.

//Detection phase
for all collisions gγ(xi) = gγ(xj) in the hash table do

Compute the suggested (input difference, output difference) pair
(α = xi ⊕ xj , β = f(xi)⊕ f(xj)).

if (α, β, ∗) /∈ L then
add (α, β, 1) to L.

else
Increment the counter of the tuple (α, β, cnt) to (α, β, cnt+ 1).

//Verification phase
for each (α, β, cnt) ∈ L s.t. cnt ≥ n/4 do

Pick n/p distinct random values χ1, χ2, . . . , χn/p ∈ {0, 1}n.
Count how many times f(χi)⊕ f(χi ⊕ α) = β.
If the counter is greater than n/2, output (α, β).

ferentials), that the distribution of right quartets for a given differential is not
affected by the existence of other quartets (for a different differential).

Both assumptions are reasonable with respect to cryptographic primitives,
and were used, in different contexts in previous works on cryptanalysis [7,27].
We show in Section 2.4 a worst-case algorithm which does not rely on these
assumptions. Furthermore, the algorithm of Section 2.4 can find such high prob-
ability differentials even when the designer constructed the scheme to withstand
the fundamental algorithm.

Success Analysis. Assume that the function f has a differential α → β with
probability p. Our following analysis suggests that (under the above randomness
assumptions) this differential is going to be detected with probability higher than
99%. Furthermore, we show that the probability of a differential with probability
much lower than p, e.g., p/10, to be proposed by our algorithm is negligible.

The data contains M =
√
n · 2n/2/p inputs, that can be combined into n/2 ·

2n/p2 pairs (of gγ() outputs). Each such pair (of gγ() outputs) determines an
α value, and thus, for each α value we expect about n/2 · 1/p2 pairs (x, x ⊕ α)
and (x ⊕ γ, x ⊕ γ ⊕ α). As per our randomness assumption, each of these two
pairs is right w.r.t. the differential α → β with probability p. Hence, out of the
n/(2 · p2) pairs (of pairs), we expect n/2 cases where both pairs (x, x ⊕ α) and
(x⊕ γ, x⊕ γ ⊕ α) are right ones. When these pairs are right pairs, they suggest
a collision in the output of gγ(). Hence, we expect n/2 collisions in H for the
(input difference, output difference) pair (α, β).

9



Detection Probability \ Block Size n = 32 n = 64 n = 128 n = 256 n = 512

High prob. differential (true positive) 0.99 0.999 0.999996 1− 2−32.7 1− 2−61.4

Low prob. differential (false positive) 2−36.6 2−71.0 2−139.1 2−275.0 2−546.2

Table 2: Probability that a high (low) probability differential is detected by the
fundamental algorithm leading to a true (false) positive result

Assuming that the number of actual collisions follows the Poisson distribution
with a mean value n/2 (which is the approximation of the binomial distribution
in this case) with a very high probability, the counter of (α, β) is advanced at
least n/4 times. We list this probability for common values of n in Table 2 and
will offer the full analysis in the full version of the paper. Thus, the differential
α → β is detected with probability of over 99%. This holds for all differentials
with probability at least p.

We note that the verification step at the end of the algorithm verifies that the
candidate (α, β) offers a differential. The probability of an (α, β) with probability
p (or higher) to fail the verification step is negligible (again under the assumption
that the number of right pairs follows the Poisson distribution with a mean value
of n/2).

We now turn our attention to the probability that a “wrong” differential
is detected (i.e., a differential with probability less than p/10). We start the
discussion with the detection phase (what is the chance that such a differential
is suggested). Table 2 contains the probability of a low probability differential
(i.e., with probability at most p/10) to be offered more than n/4 times in n/(2·p2)
quartets. While the full analysis will be given in the full version of the paper, it is
easy to see that the probability of such a differential to be detected is lower than
2−n. Hence, as there are at most 10 ·2n/p differentials with probability p/10, we
expect at most O(1/p) such differentials to be analyzed in the verification step.

We note that the probability of a differential to pass the verification step is
equal to the probability of the detection phase. This follows the fact that we
picked the number of pairs and the threshold to be the same as in the detec-
tion phase. As the number of right pairs following a differential is distributed
according to the Poisson distribution is the same, we conclude that these are the
same passing probabilities. We note that if one can reduce the complexity of the
verification step in exchange for possibly higher number of “wrong” differentials
which pass the verification step.

Of course, the probability of those differentials to pass the verification step
is negligible.

Complexity Analysis. We first note that if there are no differentials with prob-
ability even close to p (e.g., all other differentials happen with probability close
to 2−n), the probability of a collision in gγ() is 2

−n. Hence, the data is expected
to contain M2/2 · 2−n = (

√
n2n/2/p)2/2 · 2−n = n · p−2 “random” collisions, for

which the proposed (input difference, output difference) values are distributed
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randomly over the 22n possible values. Hence, the probability that some random
(input difference, output difference) phase is suggested n/4 times is negligible.

As discussed above, the probability that a differential α′ → β′ with probabil-
ity at most p/10 is suggested in the detection phase is less than 2−n (see Table 2).
Hence, at most 10/p such differentials are expected to pass the detection phase.

The time complexity of the data collection phase is 2 · M =
√
n2−n/2+1/p

calls to f(·) (in addition to M XORs and M memory accesses).

If there is a single high probability differential, and not too many “wrong” dif-
ferentials, we expect besides the collisions related to it to have another O(n/p2)
random collisions. Each such collision is expected to be suggesting a single value3

for (α′, β′). As stated above, we expect to have about O(n/p2) collisions, and
they are expected to be distributed uniformly (even for the high probability
differential). Hence, we expect only a few increments to take place.

If there are many “wrong” differentials (i.e., with probability lower than
p/10, but not negligible), we expect many collisions — we expect about n/200
collisions for each such differential. While the chances of any such differential
to pass into the verification step is negligible (and there are at most O(n/p)
of those), they can still incur a very high computational load — there are at
most 10 · 2n/p such differentials, and if each of them leads to n/200 collisions,
we expect about O(n · 2n/p) collisions. However, when there are many of those,
we can identify that the function which is studied is far from being a “random”
function, which would suggest it is not suitable for cryptographic uses.4

The verification step takes O(n/p) for each differential that passed the detec-
tion phase. When there is a single right differential and only very low probability
differentials, then this step costs 2n/p calls to f(·). When there are multiple
“wrong” differentials, as noted before, we expect to have 2n/p calls to f(·) for
each of them, i.e., about 20n/p2 calls for f(·) in total.

Hence, the time complexity of the verification step is expected to be O(n/p)
when there are not many “wrong” differentials. When there are many of those
(an event which is detected in the detection step), the complexity is O(n/p2).

The memory complexity of the algorithm is determined by the hash table size
and the size of the list L. The size of the hash table is O(M) = O(

√
n2n/2/p)

words of memory. The size of the list L depends on the number of collisions. As
mentioned above, when there are only differentials with negligible probability
(besides the right differential), this list is going to contain O(n/p2) values (each
corresponding to a random collision) and about n ones for the real differential.
When there are many “wrong” differentials, the size of this list is going to grow
(and this would be a good indication that the function f(·) is not a “good”
pseudo-random function).

3 If there are more than two values colliding, then each pair of collisions suggests a
value for α′ and β′.

4 In other words, one can easily define a statistical test based on the fundamental
algorithm, and reject that function as a random function (or a random permutation)
if the number of collisions exceeds O(n/p2).
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To conclude, the time complexity of the algorithm is O(n · 2n/2/p) calls to
f(·) and similar memory complexity. This holds as long as there are not too
many “wrong” differentials which exist in the scheme (i.e., there are not too
many differentials with probability below p/10 that are detected). The existence
of many of those may suggest that the function is not suitable for cryptographic
uses, and while the fundamental algorithm succeeds in finding the high proba-
bility differential (and discarding all “wrong” differentials), its complexity may
be higher.

The case p ≤ 2−n/2. The algorithm can be applied in this case as well, how-
ever the number of plaintexts pairs of gγ it examines – O(2np−2) – is larger than
22n−1, which is the total number of plaintext pairs of gγ . In order to obtain more
than 22n−1 plaintext pairs, we can consider functions gγi

for different values of
the ‘surrogate’ difference γi. (This trick is similar to the use of ‘flavors’ in Hell-
man’s classical time/memory tradeoff attack [25]). Note however that collisions
are meaningful only within the same function gγ and not between two functions
gγi

and gγj
. Thus, in order to obtain O(2np−2) pairs, we have to consider the

entire codebook of 2n inputs for O(2−np−2) functions gγi
.

Thus, the data complexity of the algorithm in this case is 2n (the entire code-
book), and the time and memory complexity is O(p−2), which is the expected
total number of collisions in the functions gγi

. Recall that the simple algorithm
described above allows detecting a probability-p differential in time O(2np−1).
Our algorithm outperforms this algorithm for all values of p.

Unifying the two ranges of p values, the data complexity of the algorithm is
O(min(2n/2p−1, 2n)) and its time and memory complexity isO(max(2n/2p−1, p−2)).

Detecting all high-probability differentials. If there are k differentials with prob-
ability p, the algorithm will simply detect all of them, with no additional cost.
(The only case in which some additional cost is incurred is when there are lots
of high-probability differentials: If k > max(2n/2p−1, p−2), then the complexity
is O(k), as the function gγ is expected to have O(k) collisions.)

We note that for the above complexity analysis we assume that there are not
too many differentials which are suggested in the detection phase. When this
happens, the time complexity of the algorithm may not be correct. Specifically,
if there are more than 2n/2 differentials with probability higher than p, we expect
the verification step to be more expensive than the detection phase. We note that
the existence of many high probability differentials (which can be detected by
observing there are many candidates for the verification step), may suggest that
the studied primitive is far from being a secure one.
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2.3 A memoryless variant of the algorithm

We now present a memoryless variant of the algorithm, with query complexity5 of
O(min(2n/2p−2) and time complexity of O(max(2n/2p−2, p−3)). In other words,
the cost for using only a constant-sized memory is increasing the data and time
complexity by a factor of 1/p, compared to the fundamental algorithm presented
above. This variant outperforms all previously known algorithms for this task
for all p ≥ 2−n/2. Moreover, it is trivially parallelizable.

The algorithm. A memoryless variant of the fundamental algorithm presented
above is given in Algorithm 2. Note that the collision finding steps for each value
of i are completely independent. This allows for a simple parallelization of the
algorithm.

Algorithm 2: The Memoryless Algorithm

while (α, β) were not identified do
Pick at random an n-bit non-zero value γ.
//Collision finding phase
Find a collision gγ(x) = gγ(y) in the function gγ using Pollard Rho’s
algorithm.

Denote α = x⊕ y, β = f(x)⊕ f(y).
Choose c/p random values y1, y2, . . . , yc/p ∈ {0, 1}n. (c depends on the
success rate)

//Verification phase
for j = 1, 2, . . . , c/p do

Check whether f(yi)⊕ f(yi ⊕ α) = β.
Output (α, β) if equality is obtained at least c/2 times and break.

Analysis. By the analysis presented above, assuming that there are not too many
“wrong” differentials, collisions suggested by right pairs form a fraction of about
p2 of the collisions of gγ . This follows the fact that out of the O(1/p2) collisions
found by the fundemental algorithm and thus, after 1/p2 collisions found by the
Pollard Rho algorithm, we expect such a special collision. In such a case, the
values of (α, β) it suggests will be verified in the last steps with a high probability.
On the other hand, input differences suggested by ‘random’ collisions will not
be approved in these steps. We note that the value of c depends on the success
rate. If we wish to make sure that there are no false positive left, we need to
pick c such that the probability that the O(1/p2) proposed differentials (each
collision suggests a differential) are filtered. Hence, c can be picked accordingly
(see for example Table 2).

5 We alert the reader that as we discuss a memoryless algorithm, the algorithm cannot
store previous values. Instead, we discuss “query” complexity to refer to the number
of evaluations of the function f(·), which may be higher than 2n.
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The data complexity of the algorithm is O(2n/2p−2) queries (as each appli-
cation of Pollard’s Rho requires O(2n/2) adaptively chosen inputs). Note that
in order to avoid obtaining the same collisions many times, we use different
functions gγi , which comes at no additional cost as each collision is searched
separately. As for the time complexity – if p ≥ 2−n/2, then the time complexity
of the verification phase (which is p−3) is smaller than the time complexity of
the Pollard Rho phase, and thus, the overall time complexity is O(2n/2p−2). If
p < 2−n/2 then the verification phase is dominant, and thus, the overall time
complexity is O(p−3). Therefore, the overall time complexity of the algorithm
(for any p, unifying the two regions) is O(max(2n/2p−2, p−3)).

Detecting all high-probability differentials. If there are k differential character-
istics with probability p, the algorithm will simply detect all of them, by being
called k · ln(k) more times (due to the Coupon collector’s nature of the problem
— each collision suggests a different (α, β) pair, but those may repeat). Again,
as before, if there is a huge number of such high probability differentials, the
complexity of the algorithm may “explode”.

Comparison with previous algorithms. The complexity of our algorithm should
not be compared against the adaptation of the DDT computation (with com-
plexity O(2np−1)) presented above, as this adaptation does not apply in the
memoryless setting. In fact, the natural adaptation of the DDT computation to
memoryless detection of probability-p differentials has complexity of O(22np−1),
as one has to check each candidate differential α → β separately, and each such
check requires O(1/p) time. Therefore, our algorithm is significantly faster.

However, for values of p < 2−n/2 our algorithm is outperformed by an adap-
tation of the NestedRho algorithm [18]. The NestedRho algorithm considers a
function h : {0, 1}n → {0, 1}n and detects – in a memoryless manner – all values
y ∈ {0, 1}n such that Pr[h(x) = y] ≥ p, when x ∈ {0, 1}n is chosen uniformly at
random. In our case (i.e., search for differentials), for each fixed input α, one can
consider the function hα(x) = f(x) ⊕ f(x ⊕ α), and apply to it the NestedRho
algorithm to detect all values β such Pr[h(x) = β] ≥ p, which are exactly all
values of β such that the differential α → β holds with probability ≥ p. This
yields an algorithm with time complexity 2n · T , where T is the the complexity
of the NestedRho algorithm for the corresponding value of p. Substituting the
results from [18], one obtains complexity of 2np−1 for p > 2−n/2, 2n/2p−2 for
2−3n/4 < p < 2−n/2, 2−np−4 for 2−7n/8 < p < 2−3n/4, etc.

Our algorithm is faster than this variant of NestedRho for p ≥ 2−n/2, as
2n/2p−2 < 2np−1 in this range. For p < 2−n/2, the adaptation of NestedRho is
faster.

2.4 A worst-case variant of the algorithm

While the fundamental algorithm presented above succeeds with a high probabil-
ity when the right pairs with respect to the differentials are distributed randomly,
it can be easily fooled by a trapdoor designer capable of planting the right pairs
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adversarially. For example, if the t = p2n−1 right pairs with respect to the differ-
ential characteristic α → β form a linear subspace, then only for 2t values of γ
(which reside in this subspace) there exists some x such that both (x, x⊕α) and
(x⊕ γ, x⊕ γ ⊕ α) are right pairs. As for all other values of γ, the fundamental
algorithm fails almost surely, its success probability is at most 2t/2n = p, which
might be very small.

In this section we present a worst-case algorithm which receives a function
f : {0, 1}n → {0, 1}n that may be designed adversarially, and allows detecting
a hidden differential characteristic that holds with probability p or distinguish-
ing f from a random function. The memory complexity of the algorithm is
Õ(2n/2p−1/2) and its data and time complexity are Õ(2n/2p−3/2). Note that the
time complexity is higher than that of the fundamental algorithm by only a
factor of Õ(p−1/2).

The algorithm. The worst-case algorithm is given in Algorithm 3. We note that
for p > 2−n/3 one can simplify the algorithm (as explained later).

Algorithm 3: Worst-Case Algorithm

Initialize an empty list L of counter tuples (α, β, cnt).
Choose S = 200n/p random non-zero values γ1, γ2, . . . , γS .
for all 1 ≤ i ≤ S do

Choose M = 4 · 2n/2p−1/2 random values x1, x2, . . . , xM ∈ {0, 1}n.
Initialize an empty list Ltmp of differential tuples (α, β) and an empty
hash table H.

for all 1 ≤ j ≤ M do
Compute gγi(xj) and insert it into a hash table H.

for all collisions gγi(xj) = gγi(xj′) in the hash table do
Compute the suggested (input difference, output difference) pair
(α = xi ⊕ xj , β = f(xi)⊕ f(xj)).

if (α, β) /∈ Ltmp then
add (α, β) to Ltmp.

for each tuple (α, β) ∈ Ltmp do
if (α, β, ∗) /∈ L then

add (α, β, 1) to L.

else
Increment the counter of the tuple (α, β, cnt) to (α, β, cnt+ 1)

For each (α, β, cnt) ∈ L such that cnt ≥ 0.28S · p = 56n output the (input
difference, output difference) pair (α, β).

Analysis. We first analyze the success probability of the algorithm in finding the
differentials with probability at least p.

Lemma 1. For 1 ≤ i ≤ S, consider iteration i of the algorithm. Then,
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1. For 0 < ϵ < 1, the counter for every differential whose probability is at most
p · ϵ is incremented with probability at most 16 · p · ϵ2.

2. Assume that n > 1 and p · 2n ≥ 4. Then, the counter for every differential
whose probability is at least p is incremented with probability at least 2p

5 .

Proof. Let 0 ≤ q ≤ 1 and fix a differential (α, β) whose probability is q.
Consider x1, x2, . . . , xM ∈ {0, 1}n picked at iteration i. For a value of γi, we

call a pair (xj , xj′) γi-surrogate-right if both (xj , xj′) and (xj ⊕ γi, xj′ ⊕ γi) are
right pairs.

Assume that (xj , xj′) is a right pair. Note that (xj ⊕ γi) ⊕ (xj′ ⊕ γi) =
xj ⊕ xj′ = α, and since γi is uniform, (xj ⊕ γi, xj′ ⊕ γi) is uniformly distributed
among all pairs with difference α. Consequently,

Pr
γi

[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] =
q · 2n − 2

2n − 2
. (1)

Let Ej,j′ be an indicator for the event that (xj , xj′) is a right pair. Note that
for any j ̸= j′,

Pr[Ej,j′ ] = 2−nq,

and denote q′ = 2−nq.
Let G count the number of unordered γi-surrogate-right pairs. Note that the

counter for (α, β) is incremented in iteration i if and only if G > 0. Therefore,
we analyze Pr[G > 0] under the assumptions of each part of the lemma.

Part 1. We prove part 1 of the lemma (assuming q ≤ pϵ)
For any γi and j ̸= j′, let Gj,j′ be an indicator for the event that (xj , xj′) is

a γi-surrogate-right pair. We have

E[Gj,j′ ] = Pr[Gj,j′ = 1] = Pr[(xj , xj′) is γi-surrogate-right] =

Pr[(xj , xj′) is right] · Prγi
[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] =

q′ · q·2n−2
2n−2 ≤ q′ · q.

Therefore,

E[G] =
∑

j<j′

Gj,j′ = 1/2 ·M(M − 1) · q′ · q ≤

M2 · 2−nq · q = 16 · 2np−12−nq2 ≤ 16 · p · ϵ2.
(2)

By Markov’s inequality, Pr[G > 0] = Pr[G ≥ 1] ≤ 16 · p · ϵ2, concluding the first
part of the lemma.

Part 2. We prove part 2 of the lemma (assuming q ≥ p).
Let E count the number of unordered right pairs in x1, x2, . . . , xM . We begin

by lower bounding Pr[E > 0]. We have

E[E ] =
∑

j<j′

Ej,j′ = 1/2 ·M(M − 1)q′,
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and

E[E2] = E[(
∑

j1<j2
Ej1,j2)2] ≤

1/2 ·M(M − 1)E[E2
j1,j2

] +

M2(M − 1) ·∑{j1,j2,j3} distinct E[Ej1,j2Ej1,j3 ] +
1/4 ·M2(M − 1)2

∑
{j1,j2,j3,j4} distinct E[Ej1,j2Ej3,j4 ] ≤

1/2 ·M(M − 1)q′ + 0 + 1/4 ·M2(M − 1)2(q′)2 =

1/4 ·M(M − 1)q′ · (2 +M(M − 1)q′),

where the last inequality uses the fact that Pr[Ej1,j2Ej1,j3 = 1] = 0, while the
random variables Ej1,j2 and Ej3,j4 are negatively correlated.

Hence, by the second moment method,

Pr[E > 0] ≥ (E[E])2
E[E2] ≥

1/4·M2(M−1)2(q′)2

1/4·M(M−1)q′·(2+M(M−1)q′) =
M(M−1)q′

2+M(M−1)q′ .

Recall that M = 4 · 2n/2p−1/2, and since n > 1, then M − 1 ≥ M/2. Therefore,
M(M − 1)q′ ≥ 1/2 ·M22−nq ≥ M22−np = 8, and

Pr[E > 0] ≥ 8

10
=

4

5
.

Combining this with (1) we obtain

Pr[G > 0] ≥
Pr[E > 0] · Prγi

[(xj ⊕ γi, xj′ ⊕ γi) is right | (xj , xj′) is right] ≥ 4
5 · q·2n−2

2n−2 ≥ 2p
5 ,

where the last inequality uses the assumption that q·2n ≥ p·2n ≥ 4 (and therefore
p·2n−2
2n−2 ≥ p

2 ). This concludes the proof of the second part of the lemma. ■

Lemma 2 (Correctness of Algorithm 3). Assume that n > 1 and p ·2n ≥ 4.
Then, with probability at least 1− 2−0.4n:

1. No differential with probability at most p/10 is output by the algorithm, and
2. All differentials with probability at least p are output by the algorithm.

Note that the lemma does not guarantee anything about differentials with prob-
ability in the range (p/10, p). This has to be taken into account when setting the
value of p.

Proof. Fix a differential (α, β) and assume that it is output in an iteration with
probability q. Let C be the value of the counter for this differential at the end of
the algorithm. We have

E[C] = S · q.
Since the iterations are independent we will use a standard Chernoff bound,
which states that for any 0 < c < 1,

Pr[|C − E[C]| ≥ c · E[C]] ≤ e−
c2·E[C]

3 .

Recall that the differential is output if its counter value is at least 0.28S · p.
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Case 1. If the probability of the differential is at most p/10, by the first part of
Lemma 1 (invoked with ϵ = 1/10), E[C] ≤ 1/6 · S · p. By the Chernoff bound,

Pr[C ≥ 0.28S · p] ≤ Pr[|C − E[C]| ≥ 0.1 · S · p] =
Pr[|C − E[C]| ≥ 0.1·S·p

E[C] · E[C]] ≤

e−
(0.1·S·p)2

3·E[C] ≤ e−
S·p
50 ≤ e−4n < 2−2.4n,

as S = 200n/p. Taking a union bound over 22n values of (α, β) values gives the
first part of the lemma.

Case 2. By the second part of Lemma 1, if the probability of the differential is
at least p, then E[C] ≥ 2/5 · S · p. By the Chernoff bound,

Pr[C ≤ 0.28S · p] ≤ Pr[|C − E[C]| ≥ E[C]− 0.28 · S · p] ≤
Pr[|C − E[C]| ≥ 0.3E[C]] ≤

e−
0.09·E[C]

3 ≤ e−
S·p
100 ≤ e−2n < 2−2.4n,

as S = 200n/p. Taking a union bound over 22n (α, β) values gives the second
part of the lemma. ■

Lemma 3 (Time Complexity of Algorithm 3). Let qα,β denote the proba-
bility of the differential (α, β) in f . Then, the expected time complexity of Algo-
rithm 3 is

Õ


2n/2p−3/2 + p−2 ·

∑

(α,β)|α̸=0

q2α,β


 .

We note that for a random function qα,β = Õ(2−n) for all (α, β) with very high

probability, implying that
∑

(α,β)|α̸=0 q
2
α,β = Õ(1). In this case, the second term

in the complexity formula is Õ(p−2) ≪ Õ(2n/2p−3/2) (assuming p ≫ 2−n), and
therefore can be neglected. For an arbitrary function, the term

∑
(α,β)|α ̸=0 q

2
α,β

may become dominant. This happens when the DDT of f has many unusually
large entries. The analysis below implies that we can still detect this property
in time complexity Õ(2n/2p−3/2), as it results in an unusually high number of
collisions in the hash table H (even though we may not be able to find the largest
entry whose probability is p).

Proof. Ignoring collisions in the hash table, the expected time complexity is
Õ(S · M) = Õ(2n/2p−3/2). We show that the expected number of collisions in
each one of the S iterations is Õ(p−1

∑
(α,β)|α ̸=0 q

2
α,β), which completes the proof.

Fix some iteration i and a differential (α, β) with probability qα,β . Recall
from the proof of Lemma 1 that the number of collisions in the hash table
resulting from (α, β) is equal to the number γi-surrogate-right pairs. By (2),
E[G] ≤ 16 ·p−1q2α,β . Summing this expression over all (α, β) concludes the proof.
■
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The case of p > 2−n/3 We note that the analysis suggests that for a given γi value
we expect O(1/p) collisions, and we can test each of those using the verification
procedure of the fundamental algorithm in time O(1/p). Hence, instead of storing
Ltmp and collecting those, we can just take any (α, β) difference suggested, and
test them. Hence, when 1/p2 < 2n/2p−1/2 (i.e., which implies p > 2−n/3), we do
not need the counters (as we essentially wait for the first time (α, β) is suggested).
The analysis above is of course still valid (up to the fact that the memory
complexity can be reduced).

2.5 Experimental verification

We implemented and experimentally verified the worst-case variant of the algo-
rithm described in Section 2.4 (which was designed to find even planted differ-
ential properties whose right pairs were adversarially chosen in order to evade
the fundamental algorithm). We used our algorithm to search for all the high-
probability 5-round and 6-round differentials of the NSA-designed SPECK [2].
Our top-down algorithm automatically found all the state-of-the-art differential
properties which were constructed by the bottom-up analysis presented in [10].
In particular, the best 5-round differential we found was

(0x0211, 0x0a04) → (0x8000, 0x840a) with p ≈ 2−9

and the best 6-round differential we found was

(0x0211, 0x0a04) → (0x850a, 0x9520) with p ≈ 2−13.

3 Efficient Algorithms for Detecting High-Probability
Linear Approximations

Linear cryptanalysis [36] is a central cryptanalytic technique, based on exploiting
probabilistic relations between the parities of a subset of the plaintext bits and
a subset of the ciphertext bits. The central notion in linear cryptanalysis is
a linear approximation. We say that the linear approximation α → β for the
function f : {0, 1}n → {0, 1}n holds with bias p, if Pr[β · f(x) = α · x] = 1

2 + p,
where x ∈ {0, 1}n is chosen uniformly at random and ‘·’ denotes a scalar product
modulo 2. The values x that satisfy β · f(x) = α · x are called right values with
respect to the approximation. As linear attacks exploit approximations with a
high bias (in absolute value), a central goal in linear cryptanalysis is to detect
high-bias approximations efficiently.

In this section we present an algorithm that allows detecting all linear ap-
proximations of f : {0, 1}n → {0, 1}n with bias ≥ p in absolute value with
complexity of O(2n/2p−2), provided p ≥ 2−n/4.

For the sake of simplicity, we omit the words ‘in absolute value’ in the se-
quel, but throughout this section, all ‘high-bias’ approximations detected by the
algorithms include those with a strong negative bias.
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3.1 Previous algorithms and a lower bound

Previous algorithms. Algorithms for detecting high-bias linear approximations
are abundant in the literature. However, as was described in the introduction,
almost all of them operate in a bottom-up fashion, that is, construct a ‘long’
linear approximation by concatenating ‘short’ linear approximations. In such
algorithms, the short approximations can be found easily and the challenge is
to find approximations that can be ‘glued together’. Top-down algorithms for
finding high-bias linear approximations were considered in several papers, under
the name partial linear approximation table (pLAT), and were applied to attack
the ciphers Speck and SM4 [34,35,47]. However, all these papers considered the
special case of the addition operation in ARX ciphers, and not the general case.

A linear approximation with bias of ±1/2 can be found in polynomial time
in n, by solving a system of 2n linear bit equations in the variables α, β. For
somewhat smaller biases, algorithms for the Learning Parity with Noise (LPN)
problem (see, e.g., [22] and the references therein) can be used to detect (α, β)
in time faster than 2n. However, the amount of noise increases rapidly as the
bias is reduced, so that these algorithms are not effective even for moderately
small biases like 1/4.

A natural top-down algorithm for detecting all linear approximations of a
function f : {0, 1}n → {0, 1}n that hold with bias ≥ p is the following adapta-
tion of the classical algorithm for constructing the Linear Approximation Table
(LAT), which also uses the classical Goldreich-Levin algorithm [24]:

1. For all β ∈ {0, 1}n, do:
(a) Define an auxiliary Boolean function fβ : {0, 1}n → {0, 1} by fβ(x) =

β · f(x).
(b) Use the Goldreich-Levin algorithm to find all Fourier coefficients f̂β(α)

that are larger than p in absolute value.
(c) For each such α, output the pair (α, β) as the (input,output) mask of a

high-bias linear approximation.

The time complexity of the algorithm is Õ(2np−6), as the Goldreich-Levin al-
gorithm (whose complexity is Õ(p−6)) is applied 2n times.6 By the analysis of
the Goldreich-Levin algorithm, with a high probability all linear approxima-
tions with bias ≥ p are detected, and no linear approximation with bias ≪ p is
detected by mistake.

Lower bound. Unlike the case of differentials, the information-theoretic lower
bound for finding high-bias linear approximations is rather low. Indeed, O(p−2)
samples are sufficient for detecting any linear approximation that holds with

6 As in most applications of the Goldreich-Levin algorithm, p is assumed to be a
constant independent of n (or at least larger than poly(n−1)), the exact dependence
of the algorithm’s complexity on p was not computed explicitly. We use the value
Õ(p−6), obtained by tracing the proof of the Goldreich-Levin theorem presented
in [38]. We note that other proofs may lead to a better dependence on p, especially
if one may assume that there are only a few ‘large’ coefficients.
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bias ≥ p with a high probability. Given this amount of samples, all linear ap-
proximations can be detected by an exhaustive search over all possible values of
(α, β), reusing the same data set.

3.2 A new efficient algorithm

In this subsection we present an algorithm which detects a ‘hidden’ linear ap-
proximation α → β that holds with a bias of p, with data, memory, and time
complexity of O(2n/2p−2). In fact, it detects all linear approximations that hold
with a bias of ≥ p with the same complexity (unless the number of such approx-
imations is extremely large, in which case the complexity is approximately equal
to the number of approximations). The algorithm uses surrogate differentiation,
as well as a shrinking step and application of the Fast Fourier Transform (or
more precisely, the Walsh-Hadamard transform).

Main idea. The basic observation behind the algorithm is that the input mask α
of the linear approximation can be ‘cancelled’ by using surrogate differentiation
– that is, by considering the function gγ(x) = f(x) ⊕ f(x ⊕ γ) for an arbitrary
value γ and examining its linear approximations of the form 0 → β. Indeed, note
that for any fixed γ, we have

β ·gγ(x) = β ·(f(x)⊕f(x⊕γ)) = (β ·f(x)⊕α ·x)⊕(β ·f(x⊕γ)⊕α ·(x⊕γ))⊕α ·γ.

As α · γ is a constant that does not depend on x, it affects only the sign of the
bias of the approximation 0 → β via gγ but not its absolute value. Hence, we
can assume that α · γ = 0 and neglect it, remembering that the sign of the bias
may be reversed. After neglecting this term, we see that β · gγ(x) = 0 if and
only if either both x, x⊕ γ are ‘right values’ with respect to the approximation
α → β for f , or neither of them is. Therefore, the linear approximation 0 → β
for gγ holds with bias of ±2p2 (as a concatenation of two linear approximations
with bias β). The relation between the approximation α → β for f and the
approximation 0 → β for gγ is demonstrated in Figure 2.

While the bias of approximations of this form (i.e., 2p2) is significantly lower
than the bias of the original approximation of f , they do not contain the param-
eter α, which will allow us to detect them more efficiently. We note that in this
technique we create a linear relation between two outputs of f , using two linear
approximations that connect these outputs of f to the corresponding inputs and
an unknown but fixed relation between the inputs. Similar ideas were used in
differential-linear cryptanalysis [30], e.g., in the differential-linear attack on the
cipher COCONUT98 [5], where a decorrelation module applied in the middle of
the cipher makes the output difference of the differential (which is the difference
between the inputs to the linear approximation) unknown, but leaves it fixed.

Detailed description. As written above, we choose an arbitrary value γ ∈ {0, 1}n,
and consider the function gγ : {0, 1}n → {0, 1}n defined by gγ(x) = f(x)⊕f(x⊕
γ). We want to find all linear approximations of gγ of the form 0 → β that hold

21



x
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y

x⊕ γ

f

y′
⊕

gγ(x) = y ⊕ y′

β · gγ(x) = β · (y ⊕ y′) = β · y ⊕ β · y′

α · x

β · y

α · (x⊕ γ)

α · x⊕ α · γα · x

β · y′

Difference
α · γ

(constant)

Fig. 2: The relation between the linear approximation α → β for f and the linear
approximation 0 → β for gγ .

with bias ≥ 2p2. In other words, we want to find all high values in the row of the
LAT of gγ that corresponds to input mask 0. Note that this task is different from
the usual way of computing the LAT, which works column-wise (i.e., by fixing
the output mask β, as was described above). Usually, these tasks are equivalent,
as the rows in the LAT of a permutation correspond to columns in the LAT
of the inverse permutation. However, in our case, we do not have access to the
inverse of gγ (which is not even well defined since gγ is not a permutation), and
so a somewhat more complex procedure is needed.

A standard way to achieve this goal is to define an auxiliary function hγ :
{0, 1}n → Z≥0 by hγ(y) = |{x ∈ {0, 1}n : gγ(x) = y}|. Note that for each mask
β, the bias of the linear approximation 0 → β for gγ is

1

2
(|{x : gγ(x) · β = 0}| − |{x : gγ(x) · β = 1}|) = 1

2
ĥγ(β).

Hence, the values of β we search for consist of the set {β ∈ {0, 1}n : |ĥγ(β)| ≥
4p2}. Using the Goldreich-Levin algorithm, all these values can be found in time
Õ(p−6), once all inputs of hγ are known. However, computing all these inputs
requires 2n time, and we aim at a significantly faster algorithm.

Instead, we first apply a shrinking transformation, in a way that resembles
the LF1 algorithm [32] for the LPN problem. Specifically, we shrink the output
size of gγ to n/2 + ⌊log(p−2)⌋ bits by looking only at values x such that the
last ⌈n/2− log(p−2)⌉ bits of gγ(x) are zeros.7 (The choice of the range’s size is
explained below). Note that for any β, the contribution of each of these values
of x to the linear approximation 0 → β of gγ is equal to its contribution to the
linear approximation 0 → β̄ of the restriction of gγ to the first n/2 + ⌊log(p−2)⌋
output bits, where β̄ is the restriction of β to the same bits. Hence, we can find β̄
by examining the restricted function ḡγ whose range is {0, 1}n/2+⌊log(p−2)⌋, and
find the rest of β by repeating the procedure with restriction to the last bits.

7 We note that one can choose any constant as the “target”, as long as it is consistent
with the constant used in the second part of algorithm mentioned later.
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Once the shrinking is applied, we find all linear approximations of the form
0 → β̄ of the function ḡγ by defining the corresponding auxiliary function

h̄γ : {0, 1}n/2+⌊log(p−2)⌋ → Z≥0 and computing its Walsh–Hadamard transform.

The values β̄ such that |ˆ̄hγ(β̄)| ≥ 4p2 are those which correspond to the high-
bias approximations we search for, as was explained above. The fundamental
algorithm is detailed in Algorithm 4. In the first part of the algorithm, for a
vector y ∈ {0, 1}m, we denote by yupper (resp., ylower) the truncation of y to the
n/2 + ⌊log(p−2)⌋ upper (resp., lower) bits. In the second part of the algorithm,
we denote by yupper′ (resp., ylower′) the truncation of y to the n/2 + ⌊log(p−1)⌋
upper (resp., lower) bits.

Randomness Assumptions. The correctness of the fundamental algorithm relies
on the following randomness assumptions. We assume that for any γ, the event
that x satisfies the linear approximation is independent of the event that x+ γ
satisfies the approximation (which is similar to some of the randomness assump-
tions of differential-linear attacks). Under this assumption, the probability that
either both x, x+ γ or neither of them satisfy the approximation is 1/2± 2p2.

In the presence of multiple linear approximations with bias p (or close to p)
we also need to assume that the distribution of values which satisfy one linear
approximation is not affected by the distribution of values that satisfy the other
high-bias approximations.

Success Analysis. Assume that the function f has a linear approximation α → β
with bias p. Our following analysis suggests that (under the above randomness
assumptions) this approximation is going to be detected with an overwhelming
probability. Furthermore, we show that the probability of a linear approximation
with bias much lower than p, e.g., p/10, to be proposed by our algorithm is
negligible.

The data contains M = n·2n/2/p2 inputs. After the first shrinking phase, the
sum of the counters in each of the lists L1, L2 is expected to be between n/2p4

and n/p4 (depending on p, due to the rounding), and with an overwhelming
probability is at least n/4p4. (The high probability comes from the multiplication
of the amount of data by a factor of n.) This size of the lists guarantees that
for any β s.t. there exists a linear approximation α → β with bias ≥ p, we have

|ˆ̄hγ,1(βupper)| ≥ 2p2 and |ˆ̄hγ,2(βlower)| ≥ 2p2 with an overwhelming probability,
and hence, β is going to be suggested at the first stage of the algorithm. On the
other hand, for any β s.t. for any α, the bias of the linear approximation α → β

is less than p/10, we have |ˆ̄hγ,1(βupper)| < 2p2 and |ˆ̄hγ,2(βlower)| < 2p2 with an
overwhelming probability, and hence, β is not going to be suggested at the first
stage of the algorithm.

At the second stage of the algorithm (which is performed for any value of
β that was suggested at the first stage), the expected size of the lists L3, L4 is
between n/2p2 and n/p2 (depending on p, due to the rounding), and with an
overwhelming probability is at least n/4p2. (The high probability comes from
the multiplication of the amount of data by a factor of n.) This size of the lists

23



Algorithm 4: Efficient Algorithm for Detecting Linear Approximations

Initialize the following empty lists: L1, L2 of counter tuples (y′, cnt), where y′

is n/2 + ⌊log(p−2)⌋ bits long; L̄1, L̄2 of n/2 + ⌊log(p−1)⌋-bit values;
L3, L4, L̄3, L̄4 of n/2 + ⌊log(p−1)⌋-bit values; and L5 of n-bit values.

Choose M = n · 2n/2p−2 random distinct values x1, x2, . . . , xM ∈ {0, 1}n.
Pick at random an n-bit non-zero value γ.
for all 1 ≤ i ≤ M do

Compute gγ(xi).
if the last n/2− ⌈log(p−2)⌉ bits of gγ(x) are zeros then

if (gγ(x)upper, ∗) /∈ L1 then
add (gγ(x)upper, 1) to L1.

else
Increment the counter of (gγ(x)upper, cnt) to (gγ(x)upper, cnt+ 1)

if the first n/2− ⌈log(p−2)⌉ bits of gγ(x) are zeros then
if (gγ(x)lower, ∗) /∈ L2 then

add (gγ(x)lower, 1) to L2.

else
Increment the counter of (gγ(x)lower, cnt) to (gγ(x)lower, cnt+ 1)

//First Walsh-Hadamard Transform (WHT) phase – Finding β
for i=1,2 do

Define h̄γ,i : {0, 1}n/2+⌊log(p−2)⌋ → Z≥0 = cnt (for (y′, cnt) ∈ Li).

Apply the fast WHT to h̄γ,i to find all values β̄ such that |ˆ̄hγ,i(β̄)| ≥ 2p2.
Store these values in the list L̄i.

Add to L5 all values β ∈ {0, 1}n such that βupper ∈ L̄1 and βlower ∈ L̄2.
for all β ∈ L5 do

Define the function fβ(x) : {0, 1}n → {0, 1} by fβ(x) = (−1)β·f(x).
for all 1 ≤ i ≤ n · 2n/2p−1 do

if the last n/2− ⌈log(p−1)⌉ bits of xi are zeros then
Insert (xi)upper′ to L3.

if the first n/2− ⌈log(p−1)⌉ bits of xi are zeros then
Insert (xi)lower′ to L4.

//Second Walsh-Hadamard Transform phase – Finding α

Define the function h̄β,3 : {0, 1}n/2+⌊log(p−1)⌋ → {−1, 0, 1} by
h̄β,3(x) = fβ(x) if xupper′ ∈ L3 and h̄β,3(x) = 0 otherwise.

Define the function h̄β,4 : {0, 1}n/2+⌊log(p−1)⌋ → {−1, 0, 1} by
h̄β,4(x) = fβ(x) if xlower′ ∈ L4 and h̄β,4(x) = 0 otherwise.

for i=3,4 do

Apply the fast WHT to h̄β,i to find all values ᾱ such that |ˆ̄hβ,i(ᾱ)| ≥ p.
Store these values in the list L̄i.

Output (α, β) for all α ∈ {0, 1}n such that αupper′ ∈ L̄3 and αlower′ ∈ L̄4.

guarantees that for any α s.t. α → β with bias ≥ p, we have |ˆ̄hβ,3(αupper′)| ≥ p

and |ˆ̄hβ,2(αlower′)| ≥ p with an overwhelming probability, and hence, α is going
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to be suggested at the second stage of the algorithm. On the other hand, for
any α s.t. the bias of the linear approximation α → β is less than p/10, we have

|ˆ̄hβ,3(αupper′)| < p and |ˆ̄hβ,4(αlower′)| < p with an overwhelming probability,
and hence, α is not going to be suggested at the second stage of the algorithm.

We note that unlike the case of differential characteristics, an additional
verification step is not needed, since the Walsh-Hadamard steps filter out all
linear approximations with bias of < p/10 with an overwhelming probability. A
full analysis will be presented in the full version of the paper.

Complexity analysis. The first shrinking step of the algorithm has complexity of
O(n2n/2p−2). As the filtering step checks the equality of n/2−⌈log(p−2)⌉ output
bits to zeros, the sum of the counters in each of the lists L1, L2 is expected to be
O(np−4). The functions h̄γ,i are on n/2 + ⌊log(p−2)⌋ bits, and hence, applying
the Walsh–Hadamard transform to each of them requires about O(n22n/2p−2).
As explained above, after this step for each value β s.t. there exists a linear ap-
proximation α → β with bias ≥ p, the values βupper and βlower will be suggested
with an overwhelming probability. The suggestions for β can be reconstructed
from the suggested values of βupper and βlower efficiently, by going over the possi-
ble values of the 2⌊log(p−2)⌋ common bits of βupper and βlower, finding collisions
and completing the value of β for the colliding values. Thus, the complexity of
this stage is negligible w.r.t. the complexity of the previous stages.

The second phase of the algorithm is performed for all values of β suggested
in the first part. For each such value of β, the complexity of the shrinking phase
is O(n2n/2p−1) and the sizes of the lists L3, L4 constructed in it is expected to
be O(np−2). The functions h̄β,i are on n/2+⌊log(p−1)⌋ bits, and hence, applying
the Walsh–Hadamard transform to each of them requires about O(n22n/2p−1)
steps. As was explained above, after this step for each value α s.t. the bias of
the linear approximation α → β is ≥ p, the values αupper′ and αlower′ will
be suggested with an overwhelming probability. The suggestions for α can be
reconstructed from the suggested values of αupper′ and αlower′ efficiently, like in
the first phase of the algorithm.

Hence, the time complexity of the algorithm is O(n22n/2p−2 + tn22n/2p−1),
where t is the number of values of β suggested in the first phase of the algorithm.
Therefore, if the number of values of β s.t. there exists α for which the linear
approximation α → β holds with a bias of≥ p isO(p−1) then the time complexity
of the algorithm is O(n22n/2p−2 = Õ(2n/2p−2) and the algorithm outputs all
linear approximations with a bias of ≥ p. If the number of such values of β is
≫ p−1, then the algorithm still outputs all of the high-bias approximations, but
its time complexity is increased, proportionally to the number of β values.

The data complexity of the algorithm is O(n2n/2p−2) and the memory com-
plexity is O(n2n/2p−2) (which is dominated by storing the data and applying
the fast Walsh-Hadamard transform in the first phase of the algorithm. We note
that the output size of the shrinking was chosen in order to balance the complex-
ities of the first shrinking and the first Walsh-Hadamard transform steps (while
the complexity of the following steps is significantly lower, unless the algorithm
suggests many values of β, as was explained above).
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4 Detecting Other High-Probability Statistical Properties

Finally, we use surrogate differentiation to devise algorithms for detecting three
other types of statistical properties commonly used in cryptanalysis: boomerangs,
second-order differentials, and related-key differentials. As mentioned in the in-
troduction, here we cannot hope for complexity as low as O(2n/2), as in all
three cases, the information-theoretic lower bound is at least Ω(23n/4p−1/4).
We present algorithms for all three cases with complexity of at most O(2np−2),
which improves over the previously known results by a factor of at least 2n/2. Our
algorithms allow, for the first time, to detect all high-probability boomerangs,
second-order differentials and related-key differentials in 48-bit ciphers. We will
now describe the algorithm for Boomerangs. The algorithms for second-order
differentials and related-key differentials can be found in Appendix B.

4.1 Boomerangs

The boomerang attack [44] is a widely used cryptanalytic technique, based
on viewing a cipher E as a cascade E = E1 ◦ E0 and combining unrelated
high-probability differentials α → ᾱ of E0 and β̄ → β of E1 into a distin-
guisher for the entire cipher. In a boomerang distinguisher, the adversary en-
crypts pairs of plaintexts (x, y = x ⊕ α), shifts the corresponding ciphertext
pairs (E(x), E(y)) by β, and decrypts the resulting values to obtain (z, w) =
(E−1(E(x) ⊕ β), E−1(E(y) ⊕ β)). Then she checks whether z ⊕ w = α. Analy-
sis based on standard independence assumptions shows that if the differentials
α → ᾱ of E0 and β̄ → β of E1 hold with probabilities p0, p1, respectively, then
in the boomerang process described above we have Pr[z ⊕ w = α] = p20p

2
1, and

this can be used to distinguish E from a random cipher, provided p0, p1 are
sufficiently large.

In [37], Murphy showed that the ‘naive’ analysis of the boomerang attack
is highly inaccurate in various practical cases, due to dependence issues in the
transition between the subciphers E0, E1. As a result, numerous works aimed at
formulating frameworks that will allow for estimating the complexity precisely
(e.g., [14,16,21,27,42]). A central framework that was studied extensively in re-
cent years is the Boomerang Connectivity Table (BCT), introduced by Cid et
al. [16]. Designed to resemble the DDT and the LAT, the BCT is defined as fol-
lows. Given a function f : {0, 1}n → {0, 1}n, we say that the boomerang α → β
holds for f with probability p, if Pr[f−1(f(x)⊕β)⊕f−1(f(x⊕α)⊕β) = α] = p,
where x ∈ {0, 1}n is chosen uniformly at random. The BCT is a table of size
22n, whose entries are the probabilities of all the boomerangs of f , multiplied by
2n. In [16], the BCT was constructed for the S-boxes in the transition between
the subciphers E0, E1, and thus, it could be constructed by simple exhaustive
search, due to the small size of the S-boxes. In [45], the BCT was extended to
cover several rounds at the middle of the cipher. This increases the value of
n that should be considered (as the adversary has to consider ‘Super S-boxes’
instead of S-boxes), thus making computation of the entire BCT infeasible and
forcing the adversary to concentrate on the high-probability boomerangs.
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In this subsection we use surrogate differentiation to present a new algorithm
for finding all boomerangs of a function f : {0, 1}n → {0, 1}n that hold with
probability ≥ p. The algorithm has complexity of O(2np−1), which makes it
possible to practically detect high-probability boomerangs of 32-bit and 48-bit
functions, that may represent either entire ciphers (for lightweight ciphers like
Simon and Speck), BCTs computed over several rounds in general ciphers, or
even single-round BCTs in ARX designs. It should be noted that the complexity
of the algorithm is higher than the complexities of the algorithms for finding
differentials and linear approximations presented in Sections 2 and 3, which lie
in the vicinity of 2n/2. However, an information-theoretic lower bound shows
that any algorithm for finding the high-probability boomerangs has complexity
of more than 23n/4, and hence, the complexity of our algorithm is not far from
the lower bound.

Lower bound. Assume that the function f : {0, 1}n → {0, 1}n has a boomerang
α → β that holds with probability p. This means that there exist p2n quartets
(x, y, z, w) such that x ⊕ y = z ⊕ w = α and f(x) ⊕ f(z) = f(y) ⊕ f(w) = β.
These quartets are called right quartets with respect to the boomerang.

In order to detect the boomerang, the adversary must observe at least one
right quartet. Assuming that the right quartets are distributed randomly, this im-
plies (by a birthday paradox argument) that in order to observe a right quartet,
the adversary must check at least Ω(24n/p2n) = Ω(23np−1) plaintext quartets.
This amount of quartets is contained in the data set only if the data set contains
Ω(23n/4p−1/4) plaintexts. Hence, any algorithm that detects all probability-p
boomerangs of f has complexity of Ω(23n/4p−1/4).

Previous results. As in the cases of differentials and linear approximations, a
natural top-down algorithm for finding the high-probability boomerangs is an
adaptation of the algorithms for computing the BCT. In [16], it was stated that
the entire BCT can be computed in time O(23n). In [20], Dunkelman showed that
the BCT can be computed in time O(22n) by guessing the ‘ciphertext shift’ β,
defining the auxiliary function f̄β(x) = f−1(f(x)⊕β) and finding all differentials
of f̄ of the form α → α, which correspond to the boomerang α → β of f . As all
iterative differentials of a function f̄ : {0, 1}n → {0, 1}n can be found in O(2n)
operations by an algorithm presented in [17], the overall complexity of finding
the BCT is O(22n).

The algorithm of [20] can be easily modified to find all probability-p boomerangs
of f . Indeed, this amounts to finding all probability-p iterative differential char-
acteristics of f̄β , which can be done in time O(2n/2p−1/2) by an adaptation of
the algorithm of [17]. This reduces the overall complexity of the algorithm to
O(23n/2p−1/2). The complexity cannot be reduced further by similar methods,
since detection of a single probability-p differential of f̄β requires Ω(2n/2p−1/2)
operations, by the information-theoretic lower bound presented in Section 2.

A new algorithm. As in the algorithms presented in the previous sections, we
begin with surrogate differentiation, that is, we choose an arbitrary γ ∈ {0, 1}n
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and define the function gγ(x) = f(x) ⊕ f(x ⊕ γ). We observe that collisions in
gγ may be used to detect boomerangs.

Indeed, consider a right quartet (x, y, z, w) with respect to the boomerang
α → β. If x⊕ z = γ, then we have

gγ(x) = f(x)⊕ f(x⊕ γ) = f(x)⊕ f(z) = β = f(y)⊕ f(w)

= f(x⊕ α)⊕ f(x⊕ α⊕ γ) = gγ(x⊕ α).

Consequently, among the O(2n) collisions of gγ , O(p2n · 2−n) = O(p) collisions
on expectation stem from right quartets with respect to the boomerang. These
collisions can be used to find the boomerang efficiently. (Note that such a collision
gγ(xi) = gγ(xj) suggests the boomerang xi⊕xj → f(xi)⊕f(xi⊕γ).) This gives
rise to Algorithm 5.

Analysis. For each value of γi, the function gγi
is expected to have about 2n−1

collisions. Hence, the algorithm examines a total of about 16·2np−1 collisions, and
at least 16 of them (on expectation) stem from each boomerang that holds with
probability≥ p. As the (input, output) value suggested by all those collisions that
stem from the same boomerang is the same pair (α, β) while the (input,output)
values suggested by the ‘random’ collisions are spread among 22n values, it is
expected that only the right (α, β) values will be detected.

The complexity of the algorithm is O(2np−1), dominated by finding the col-
lisions in the functions gγi .

We note that similarly to the algorithm described above, one can easily adapt
the variants of the fundamental algorithm presented in Section 2 to finding high-
probability boomerangs, with complexity increased by a factor of about 2n/2.

5 Summary and Open Problems

In this paper we presented major complexity improvements in the best known
techniques for detecting a wide variety of statistical properties of cryptographic
primitives which deviate from random behavior in a significant way. The new
algorithms can be applied to any black-box function, and in particular they are
fast enough to be directly used to analyze 64-bit cryptosystems.

Besides the obvious question of whether our techniques can be further im-
proved, here are some of the problems left open by our research:

1. Can we use similar techniques to speed up the search for significant truncated
differentials?

2. Can we use similar techniques to speed up the search for significant differential-
linear properties?

3. Can we close the small gap of
√
p−1 between the upper and lower bounds

on the time needed to find the significant differentials of a function f?
4. Can surrogate differentiation could be used to solve other problems in cryp-

tography and complexity theory?
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A A fixed amount of available memory variant of the
high-probability differentials detection algorithm

Recall that the fundamental algorithm has time and memory complexities of
O(max(2n/2p−1, p−2)), while the memoryless variant has time complexity of
O(max(2n/2p−2, p−3)) (but is suboptimal for p < 2−n/2).

We show how to exploit a fixed amount of available memory to obtain trade-
offs between these two algorithms. In fact (assuming p ≥ 2−n/2), we describe
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an algorithm with time complexity of Õ(2n/2p−1), similarly to the fundamen-
tal algorithm. Yet, this algorithm has reduced memory complexity of Õ(p−2),
and can therefore be considered as a strict improvement over the fundamental
algorithm.

In particular, we describe two different tradeoff algorithms, where the first
is an extension of the memoryless algorithm and is preferable for small values
S of memory (compared to 1/p). The second algorithm is an extension of the
fundamental algorithm and performs better for larger values of S.

Both of the tradeoff algorithms use the classical Parallel Collision Search
(PCS) algorithm [39], which finds C collision pairs in a random function f :
{0, 1}n → {0, 1}n with memory of S = Õ(C) bits in time complexity T such
that T = Õ(C · 2n/2S−1/2).

Tradeoff algorithm 1. Recall that we need to find C = O(p−2) collisions in the
function gγ (which we assume to behave as a random function for the sake of the

analysis). Given memory S = Õ(C) = Õ(p−2), this is done in time complexity
of T = Õ(p−22n/2S−1/2) using the PCS algorithm.

The first tradeoff algorithm tests all these Õ(p−2) collisions (as in the memo-
ryless algorithm), requiring additional time complexity of Õ(p−3). Consequently,
the overall time complexity becomes

Õ(max(2n/2p−2S−1/2, p−3))

(assuming S = Õ(p−2)). Thus, the complexity of the testing phase is negligible
in case p ≥ S1/2 · 2−n/2.

Tradeoff algorithm 2. For larger values of S (and assuming S = Õ(2n)), the
second tradeoff algorithm eliminates the testing phase by finding more collisions
(similarly to the fundamental algorithm). Specifically, an internal loop of the
PCS algorithm finds a batch of (about) S collisions in gγ in time 2n/2S1/2.
We repeat this loop (using different flavors) until we find two collisions that
suggest the same input-output difference. The probability of this event is about
(S · p2)2 = S2p4, and hence the total time complexity is

Õ(2n/2S1/2S−2p−4) = Õ(2n/2p−4S−3/2).

This complexity is better than that of the first tradeoff algorithm in the case
2n/2p−4S−3/2 < p−3, or p > 2n/2S−3/2 (i.e., S > 2n/3p−2/3).

In particular, for S = Õ(p−2) (assuming p ≥ 2−n/2), the time complexity
of the algorithm is Õ(2n/2p−1), which is an improvement over the fundamental
algorithm as claimed above.

We note that as for the memoryless algorithm, variants of the NestedRho
algorithm become faster than the algorithms described above for small values of
p and S.
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B Detecting Other High-Probability Statistical
Properties

B.1 Second-order differentials

Higher-order differential cryptanalysis [28] is a widely used cryptanalytic tech-
nique, based on tracing the development of higher-order derivatives during the
encryption process of a structured set of plaintexts. The central notion in higher-
order differential cryptanalysis is a higher-order differential. We say that the
d’th-order differential (α1, α2, . . . , αd) → c for the function f : {0, 1}n → {0, 1}n
holds with probability p, if Pr[

⊕
v∈V f(x ⊕ v) = c] = p, where V ⊆ {0, 1}n is

the linear subspace spanned by α1, . . . , αd and x ∈ {0, 1}n is chosen uniformly
at random. The values x ∈ {0, 1}n that satisfy

⊕
v∈V f(x ⊕ v) = c are called

right values with respect to the differential.
In this subsection we concentrate on second-order differentials, and aim at

detecting all second-order differentials of f : {0, 1}n → {0, 1}n that hold with
probability ≥ p. A virtue of the lower bound argument presented for boomerangs
shows that any algorithm for this task has complexity of Ω(23n/4p−1/4). We
present a new algorithm which achieves the goal with complexity of O(2np−2).
Like all algorithms presented above, our algorithm uses surrogate differentiation.
In addition, it makes use of the dissection technique presented in [19]. The
algorithm can be naturally generalized to d’th order differentials for any d ≥ 2,
however its complexity becomes impractically high already for d = 3.

Lower bound. The lower bound argument is similar to the lower bound in the
case of boomerangs. Assume that the function f : {0, 1}n → {0, 1}n has a
second-order differential (α1, α2) → c that holds with probability p. This means
that there exist p2n quartets (x, x ⊕ α1, x ⊕ α2, x ⊕ α1 ⊕ α2) such that f(x) ⊕
f(x⊕ α1)⊕ f(x⊕ α2)⊕ f(x⊕ α1 ⊕ α2) = c.

In order to detect the second-order differential, the adversary must observe
at least one of these p2n quartets. Assuming that the right values are distributed
randomly, this implies (by a birthday paradox argument) that in order to observe
such a quartet , the adversary must check at least O(24n/p2n) = O(23np−1)
plaintext quartets. This amount of quartets is contained in the data set only if the
data set contains Ω(23n/4p−1/4) plaintexts. Hence, any algorithm that detects
all probability-p second-order differentials of f has complexity of Ω(23n/4p−1/4).

Previous algorithms. The most basic top-down algorithm for detecting all second-
order differentials of a function f : {0, 1}n → {0, 1}n that hold with probability
≥ p is to guess the ‘input basis vectors’ α1, α2, encrypt O(1/p) plaintext quartets
of the form (x, x⊕α1, x⊕α2, x⊕α1⊕α2) for random choices of x, and check which
value c appears several times as f(x)⊕f(x⊕α1)⊕f(x⊕α2)⊕f(x⊕α1⊕α2) = c.
The complexity of this algorithm is O(22np−1).

A more efficient algorithm is to guess α1, define an auxiliary function fα1
:

{0, 1}n → {0, 1}n by fα1(x) = f(x)⊕f(x⊕α1), and observe that a second-order
differential (α1, α2) → c of f corresponds to a differential α2 → c of fα1 that
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holds with the same probability. All such differentials that hold with probability
≥ p can be found in time O(2n/2p−1) using the fundamental algorithm presented
above, and thus, all second-order differentials of f with probability ≥ p can be
detected with overall complexity of O(23n/2p−1).

A new algorithm. Like in all previous algorithms, our first step is using surrogate
differentiation to cancel the output parameter c. We choose an arbitrary value
γ ∈ {0, 1}n, and consider the function gγ : {0, 1}n → {0, 1}n defined by gγ(x) =
f(x) ⊕ f(x ⊕ γ). Note that if both x and x ⊕ γ are ‘right values’ with respect
to the second-order differential, then gγ(x) = 0. Thus, surrogate differentiation
allows to cancel the parameter c, at the price of reducing the probability of the
second-order differential we search for from p to p2.

Our second step is to find efficiently quartets of plaintexts that stem from
the second-order differential (α1, α2) → 0 of gγ with a non-negligible probability.
To this end, we consider quartets (x, y, z, w) such that

x⊕ y ⊕ z ⊕ w = gγ(x)⊕ gγ(y)⊕ gγ(z)⊕ gγ(w) = 0. (3)

The expected number of such quartets is O(24n · 2−2n) = O(22n), and among
these quartets, about p22n are of the form (x, x⊕α1, x⊕α2, x⊕α1⊕α2), where
x is a right value with respect to the differential (α1, α2) → 0 of gγ . Hence, if we
collect n · 2np−2 random quartets that satisfy (3), then with a high probability
they will contain n/2 quartets that stem from the differential (α1, α2) → 0. This
allows finding α1, α2, as from each quartet (x, y, z, w) that satisfies (3) we can
derive the suggestion (x ⊕ y, x ⊕ z) for the two ‘input basis vectors’, and the
right value (α1, α2) will be the most common suggestion with a high probability.
Then, the value c can be found in time O(1/p) by encrypting O(1/p) quartets
of the form (x, x⊕ α1, x⊕ α2, x⊕ α1 ⊕ α2), and checking which value c appears
several times as f(x)⊕ f(x⊕ α1)⊕ f(x⊕ α2)⊕ f(x⊕ α1 ⊕ α2) = c.

Therefore, it remains to explain how to find O(2np−2) quartets that sat-
isfy (3) efficiently. This amounts to finding efficiently many solutions to the
4-XOR problem within a list of 2n-bit vectors (xi, gγ(xi)) (as Equation (3) is
equivalent to stating that the XOR of four such vectors is zero). The dissec-
tion technique presented in [19] suggests the following algorithm, which allows
detecting O(2n) solutions in time O(2n):

1. Choose arbitrarily a subset S ⊂ {1, 2, . . . , 2n} of size n, and denote by x̄i ∈
{0, 1}n the restriction of (xi, g(xi)) to the indices in S.

2. Fix a value A ∈ {0, 1}n.
3. Go over the 2n possible values xi ∈ {0, 1}n and for each of them, insert x̄i

into a hash table.
4. Find all pairs (xi, xj) such that x̄i⊕ x̄j = A. (The expected number of these

pairs in O(2n).)
5. For all remaining pairs, insert (xi ⊕ xj , gγ(xi) ⊕ gγ(xj)) into a hash table,

and check for collisions.
6. Each of the O(2n) collisions yields a quartet (xi, xj , x

′
i, x

′
j) that satisfies (3).
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It is clear that the complexity of the algorithm is O(2n). Hence, by repeating
it with O(p−2) random values of γ, we can obtain O(2np−2) quartets that sat-
isfy (3) with complexity of O(2np−2).

At this point, some care should be taken. If we make the natural choice
S = {1, 2, . . . , n} – or equivalently, if we fix x̄i = xi, then our algorithm searches
only for quartets (x, y, z, w) that satisfy x⊕ y = A. Unless A = α1, it will miss
all quartets that stem from the second-order differential (α1, α2) → 0 for sure!
The same will happen for other choices of S, as long as the bits of A in the
coordinates of S ∩ {1, 2, . . . , n} do not agree with the corresponding bits of α1.
To overcome this problem, we choose S = {n+ 1, n+ 2, . . . , 2n}, i.e., we define
x̄i = g(xi). As casting a restriction only on the outputs is not expected to affect
input differences, the number of ‘good’ quartets we expect to find is O(2−np2)
of the total number of quartets yield by the algorithm. In the following, we call
this algorithm (with the choice S = {n + 1, . . . , 2n}) Alg Dissect, and use it as
a subroutine.

Our new method for detecting all high-probability second-order differentials
is described in Algorithm 6.

Algorithm 6: New Algorithm for Detecting High-Probability Second-
Order Differentials
Initialize an empty array of 2n-bit counters and an empty hash table H.
Choose M = n/p random values γ1, γ2, . . . , γM ∈ {0, 1}n.
for all 1 ≤ i ≤ M do

Use the algorithm Alg Dissect to find about 2n quartets (x, y, z, w) such
that x⊕ y ⊕ z ⊕ w = gγi(x)⊕ gγi(y)⊕ gγi(z)⊕ gγi(w) = 0.

For each suggested quartet, increment the counter that corresponds to
(α1, α2) = (x⊕ y, x⊕ z).

Output each pair (α1, α2) whose counter was advanced at least n/2 times.
for each remaining pair (α1, α2) do

Choose n/p values xj , and insert into the table H the values
f(xj)⊕ f(xj ⊕ α1)⊕ f(xj ⊕ α2)⊕ f(xj ⊕ α1 ⊕ α2).

Output all values c whose that appear in the table at least n/2 times.

Analysis. The first part of the algorithm finds (α1, α2). As was described above,
application of the subroutine Alg Dissect for O(p−2) values of γ allows detecting
O(2np−2) quartets that satisfy (3) in O(2np−2) time. Each of these quartets
suggests a value of (α1, α2) ∈ {0, 1}2n. Among these quartets, we expect sev-
eral quartets that stem from the differential (α1, α2) → 0 of the corresponding
function gγi and all of them suggest the ‘right’ value (α1, α2). Hence, assuming
p ≥ 2−n/2, only a few values of (α1, α2) will be suggested several times, and they
will include the right value.

The second part of the algorithm examines the remaining pairs (α1, α2) and
finds the corresponding output values c. Here, the ‘wrong’ suggestions for (α1, α2)
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will be discarded with high probability, as for them, no value of c will appear
at least n/2 times. The complexity of this step is O(p−1). Hence, the algorithm
finds all probability-p second order differentials of f with data complexity of 2n

and memory and time complexity of O(2np−2).

B.2 Related-key differentials

Related-key differential cryptanalysis [26] is a widely used cryptanalytic tech-
nique, based on tracing the development of differences during the encryption
process of two plaintexts, encrypted under unknown keys whose difference is
known to (or chosen by) the attacker. The central notion here is a related-key
differential. Given a keyed cipher E : {0, 1}n × {0, 1}k → {0, 1}n, we say that
the related-key differential α → β under key difference ∆ holds for E with prob-
ability p, if Pr[EK(x)⊕ EK⊕∆(x⊕ α) = β] = p, where x ∈ {0, 1}n,K ∈ {0, 1}k
are chosen uniformly at random.

Our goal in this subsection is to present an algorithm that allows detecting
all related-key differentials of E : {0, 1}n × {0, 1}k → {0, 1}n that hold with
probability ≥ p. An information-theoretic argument similar to the argument
presented in Section 2 yields a lower bound of Ω(2(n+k)/2p−1/2) for this task. In
the other direction, an algorithm with complexity O(2n+kp−1) can be obtained
by guessing the values of α,∆, encrypting O(1/p) plaintext pairs with plaintext
difference α and key difference ∆, and finding the ciphertext differences that are
encountered at least several times.

We will show that a simple adaptation of the fundamental algorithm allows
achieving the goal with time complexity of O(max(2(n+k)/2p−1, 2kp−2)), which
is not far from the lower bound when k is not much larger than n.

New algorithm. The fundamental algorithm presented in Section 2 extends nat-
urally to our setting, by considering the function f : {0, 1}n+k → {0, 1}n de-
fined by f(x,K) = EK(x). Specifically, we choose an arbitrary value (α′,K ′) ∈
{0, 1}n × {0, 1}k, define gα′,K′(x,K) = EK(x) ⊕ EK⊕K′(x ⊕ α′), and examine
collisions of gα′,K′ . Each such collision gα′,K′(xi,Ki) = gα′,K′(xj ,Kj) suggests
the related-key differential xi ⊕ xj → EKi

(xi) ⊕ EKj
(xj) under key difference

Ki ⊕Kj . We insert the suggested differentials into a (2n+ k)-bit hash table and
output the differentials that were suggested several times.

Analysis. By virtue of the analysis of the fundamental algorithm, we see that
the function gα′,K′ is expected to have 22(n+k)−n−1 = 2n+2k−1 collisions, and
that out of them, about 2n+k−1p2 stem from the ‘right’ related-key differential.
Thus, in order to observe several collisions that suggest the right differential, we
need O(2(n+k)/2p−1) plaintexts, which lead to O(2kp−2) collisions of gα′,K′ . As
these collisions are checked using a hash table and the differentials suggested by
‘random’ collisions are discarded with a high probability, the overall complexity
of the algorithm is O(max(2(n+k)/2p−1, 2kp−2)). In particular, for k = n, the
complexity of the algorithm is O(2np−2), while the information-theoretic lower
bound is O(2np−1/2).
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Other variants of the algorithm. The variants of the fundamental algorithm pre-
sented in Section 2 (i.e., memoryless variant, variant with a fixed amount of
memory, and worst-case variant), can be generalized to the related-key differen-
tial setting in a similar way. We omit the details.
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