DORCIS: Depth Optimized Quantum
Implementation of Substitution Boxes

Matthew Chun; Amherst College, Massachusetts, USA; Email: machun24@amherst.edu
Anubhab Baksi; Nanyang Technological University, Singapore; Email: anubhab001@e.ntu.edu.sg
Anupam Chattopadhyay; Nanyang Technological University, Singapore; Email: anupam@ntu.edu.sg

Abstract—In this paper, we present the “DORCIS” tool,
which finds depth-optimized quantum circuit implementa-
tions for arbitrary 3- and 4-bit S-boxes. It follows up from
the previous LIGHTER-R tool (which only works for 4-bit
S-boxes) by extending it in multiple ways. LIGHTER-R only
deals at the top level (i.e., Toffoli gates), whereas DORCIS
takes quantum decomposition (i.e., Clifford + T gates) into
account. Further, DORCIS optimizes for quantum depth
and T depth. We match, if not surpass, other optimized
quantum circuit implementations put forth in the other
papers. Similar to LIGHTER-R, our tool is also easy to
use, and we provide an extended interface to IBM’s Qiskit.

Index Terms—S-Box, Quantum Computing, Optimized
Implementation, LIGHTER-R

I. INTRODUCTION

In recent times, quantum computing is being considered
as a serious threat to the integrity of the security/privacy
algorithms used in our regular communication. In partic-
ular, it is causing accelerated research efforts to defend
cryptography for a post-quantum world. In the effort
of learning which of our current in-use cryptographic
protocols are weak to such attacks, we aim to use
or simulate quantum computers ourselves to diagnose
encryption weaknesses. Recent research works like [6],
[18], [19] reflect this.

To optimize a Grover’s search algorithm key recovery
attack against a given protocol, we require a minimally
burdensome quantum circuit implementation of the pro-
tocol. One such metric that scales with computational
burden is the circuit’s depth. In a quantum computer
simulation, a depth-optimized quantum circuit decreases
the time it takes to compute the outcome of the simulated
attack. In a physical realization of a quantum computer,
a depth-optimized circuit reduces the proximity between
components, decreasing the amount of noise in the circuit.

Our Contribution

Previous work used an efficient meet-in-the-middle
algorithm proposed in [21] to create a reversible circuit

optimization tool for gate cost optimization [15]. However,
unlike the classical computing paradigm, the state in a
single quantum wire cannot be measured at points both
before and after a quantum gate acts on the wire, which
complicates the design process for a depth-optimization
tool.

We therefore decided to port the meet-in-the-middle
algorithm from [21] and built in a depth-searching metric
into it. To see the difference in performance before and
after our modifications, we weighted gate-costs the same
as our depth gate weights for DORCIS and asked each
one to implement the GIFT S-Box.

DORCIS also comes with a tool that decomposes non-
Clifford gates to a T-depth minimizing decomposition.
We use DORCIS here to find depth-optimizations of other
circuits superior to all other depth-optimization attempts.

All the code built for this publication, as well as all
implementation examples created, are available as an
open-source project!.

The remainder of this paper is organized as follows.
First, we give some background for S-boxes, depth,
and T-depth in the context of circuit optimization in
Section II. Next, we give an overview for our presented
tool, “DORCIS” in Section III. Then, we show some
optimized implementations for several 3-bit and 4-bit
S-boxes, and compare our implementations to ones found
in other papers in Section IV. Conclusion is given in
Section V. Additionally, Section VI shows the Qiskit
implementation in terms decomposed quantum gates
obtained from DORCIS.

II. BACKGROUND & PREREQUISITES

In reversible circuit optimization, depth and T-depth
are two metrics that impact the cost and reliability of
a quantum computer attack against a given encryption
protocol. S-boxes describe how we want our circuits to
behave given a particular input, and LUT/bit-slice formats
are ways we concisely describe the total functionality of

"https://github.com/matthewchunged/dorcis-public.

mailto:machun24@amherst.edu
mailto:anubhab001@e.ntu.edu.sg
mailto:anupam@ntu.edu.sg
https://github.com/matthewchunqed/dorcis-public

a given S-box. Here, we give some background on each
of the relevant topics for this paper.

A. S-Box

An S-box is a function f : {0, 1} + {0,1}" which,
when converted to decimal representations, is a function
S :[0,2M — 1] ~— [0,2V — 1]. Typically, block ciphers
require the non-linearity from S to defend against well-
known cryptanalysis attacks. In quantum computing, we
must have f be bijective, since information loss is irre-
versible in the reversible computing paradigm. Thus, for
this paper, we refer to a bijective f : {0,1}" — {0, 1}V
as an NN-bit S-box.

S-boxes ensure the property of confusion for a block
cipher. In other words, S-boxes ensure that multiple parts
of the key are used to create the ciphertext, therefore
obscuring the relationship between the plaintext/key and
the ciphertext.

Since S-boxes are non-linear functions at a high-level
of inspection, there is a need to describe them concisely
rather than explicitly writing the function definitions
out. For an N-bit S-box, call its input X. Though X
is the input to the S-box in binary, so X € {0,1},
we can equivalently describe it in decimal form with
X €[0,2" —1]. Henceforth, we will let the binary form
of some number K be given as KgK;...Ky_1 with K;
indicating the (i + 1)™ most significant digit of X when
written in binary.

In the look-up table (LUT) format, an N-bit S-box is
described as a 2V digit long string LoL;...Lo~x_;, with
each digit in base 2. Then, the S-box is given by

fli) = Li e))

Concretely, the identity function would be given by
012...2Y — 1 since L; = .

In the bit-slice format, an N-bit S-box is described
as a N x % digit long number, with each digit in
a predetermined base [that is a power of 2, and with
(N —1) spaces typically separating each of the N “blocks”

of % digits. Denote each digit B; j, where 0 < < N

and 0 < j < IOQTNQ Then, B;j is the (j+1)-th digit of the
(i + 1) block and

(log, B)—1 B
Bi; = Z <2n+1> (Ln+jog, 8)); 2)

n=0
A visualization of Equation (2) with 8 = 16 is shown
in Table I. While both the S-box formats can be passed
into DORCIS, we will refer to S-boxes only in LUT form
for the remainder of this paper.
Additionally, for the rest of this paper, we will assume
B = 16 for bit-slice formats. So for g = 16, the 3-bit

TABLE I: 3-bit identity S-box bit-slice calculation with
B =16

LUT - |0 | 1|2 |3|4]5)|6]|7]|{bitslice
Lo O(ojojoj1j1r|1]1 OF
Ly oOjoj1rj1j0j0]1]1 33
Lo O(1joj1jo0j1|0]1 55

identity S-box in bit-slice format would be given by OF
33 55 and that of the 4-bit identity S-box would be
given by 00FF OFOF 3333 5555.

B. Depth

The depth of a quantum circuit (also known as the
“quantum depth”) is defined as the number of gates in
a circuit, counting any set of parallelizable gates as a
single gate.

rah)
N>

D

X}

rah)
WV

N
N
Fig. 1: A basic 4-bit circuit with quantum depth 3

In Figure 1, there are two pairs of parallelizable CNOT
gates near the entry point of the circuit, followed by one
additional gate thereafter. Hence, the quantum depth is 3.

Quantum depth is notably different from classical
depth, which is the maximum number of gates which
can be entirely contained in a left-to-right path through
the circuit. In other words, the classical depth is the
maximum number of gates a single source of electrical
charge can pass through, entering from one of the lines
at the left and exiting from any of the lines on the right.
In Figure 1, the classical depth is 2. Henceforth, when
we refer to “depth”, we refer to quantum depth.

C. T-Depth

The T-depth of a quantum circuit is defined as the
number of non-Clifford gates in a circuit, counting any
set of parallelizable non-Clifford gates as a single gate.
Both the NOT and the CNOT gates are Clifford gates,
but the Toffoli (CCNOT) and CCCNOT gates are not.

In order to optimize for T-depth, we needed to decide
on a T-gate decomposition for our non-Clifford gates
that minimizes T-depth. The most T-depth minimal
decomposition of a Toffoli gate has T-depth of 1, and
requires four extra ancilla lines [24]. The decomposition
has depth of 7, and it is shown in Figure 2.

a
>

Vah\
>
a
%

a
>
a
>

=2 2 2 2
Jany
@
Py
N>,
Jany
N

VAR VA
N> >

a
"y
a
V

VA JAAY
> U

SRR

Fig. 2: Toffoli decomposition with T-depth 1, depth 7, and 4 ancilla qubits

To the best of our knowledge, the best decomposition
for a CCCNOT gate has T-depth of 3, with the decom-
position having depth of 21, using the generalization for
the T-depth minimal representation given in [24]. We
therefore choose these representations for the Toffoli and
CCCNOT gates for DORCIS.

We acknowledge that, in choosing decompositions that
optimize T-depth, we incur the cost of adding ancilla
lines for each T-gate to use.

A notable alternative candidate has 3 T-depth Toffoli
decomposition without ancillas, as depicted in Figure 3.
Regardless of decomposition choice, various decompo-
sitions can be adapted into DORCIS by changing the
depth and T-depth costs given to each gate.

By choosing the decomposition in Figure 2, we are
saying that every Toffoli gate in every circuit henceforth
will contribute to the depth on its three acting lines by 7,
and to the T-depth by 1. We choose this decomposition
over the decompositions with no ancilla lines, because we
aim to find theoretical minimum T-depth implementations
for arbitrary S-boxes.

We say a circuit is a ‘top level’ (or sometimes simply
referred to as ‘reversible’) circuit if its non-Clifford gates
have not been decomposed to its elementary T gates, H
gates, and accompanying Clifford gates. We say a circuit
is decomposed if all the non-Clifford gates have been
decomposed.

D. Related Works

Proposed in the context of classical computing,
LIGHTER [21], only accepts bijective S-boxes. How-
ever, LIGHTER has no built-in functionality for depth
optimization. Also, LIGHTER search generates in-place
implementation (i.e., without using any extra variable),
which makes it compatible for reversible computing. This
was studied in LIGHTER-R [15].

Speaking about other tools, one may note that [27]
works by solving the shortest linear program (SLP) prob-
lem over a path between each input and its corresponding
output. However, this approach assumes that states in a
wire before and after a gate can both be accessed by later
points in the circuit, which is not directly compatible for
the quantum computing paradigm.

III. TooL OVERVIEW

A. LIGHTER Details

LIGHTER uses a graph-based meet-in-the-middle
algorithm. It creates a start point at the identity function,
and an end point at the output of a given S-box. It then
repeatedly expands two graphs, starting at each point,
by adding gates. As LIGHTER expands both graphs, it
continually searches for collisions between the graphs,
returning the connecting path as an implementation. Also,
LIGHTER makes extensive use of parallelism in its code,
meaning that the S-Box circuit layout is non-deterministic
(as whichever thread returns first will print its S-Box out).
That said, its algorithm and its search pattern is entirely
deterministic.

Curiously, the search strategy of the tool described by
Dansarie in [13], [14] (which considers the algorithm due
to Kwan [22]°, and an extension of it) was ignored by the
LIGHTER designers. It offers the following advantages
over LIGHTER:

1) Itis heuristic, so it can be run multiple times and the
best one can be taken as the final implementation
(LIGHTER is algorithmically deterministic and
does exhaustive search). The former can even work
with 8-bit S-boxes (albeit slowly), but LIGHTER
does not scale up beyond 4-bit S-boxes.

“The blog by Matthew Kwan contains relevant information: https:
//darkside.com.au/bitslice/index.html.

https://darkside.com.au/bitslice/index.html
https://darkside.com.au/bitslice/index.html

[Y N N

1
2
3

[20) T4
1) 1]

>

7
£ (4

P— |z0)

ran)

* |z1)

d
=l

HHT

|22)

S{HF |22)

Fig. 3: Toffoli decomposition with T-depth 3, depth 9; from [2]

2) It does not force reversibility, so it will likely
to find improved implementations in the classi-
cal computing paradigm, and can deal with non-
bijective S-boxes (the original work [22] presented
implementation of the DES S-boxes). LIGHTER
only looks for reversible implementation (and hence
does not work with a non-bijective S-box).

3) It does not assume a minimum three-step solution
unlike LIGHTER (which comes from LIGHTER’s
meet-in-the-middle search strategy). This is useful
when an S-box is implementable at two or less
steps. LIGHTER will either force some redundant
step (only to cancel it later) or will crash in a
similar situation. All the examples of the first case
(i.e., redundant computation) we found have to do
with some trivial S-box (such as, identity or any
other linear S-box); it is unclear whether this case
happens with any non-trivial S-box.

Indeed, the only algorithmic advantage that LIGHTER
has over the Kwan’s algorithm is the reversible imple-
mentation, but the authors [21] seemed to be unaware of

that.

Some of the problems/features of LIGHTER are shown
in Codes 1, 2 and 3. In Code 1, LIGHTER implements the
4-bit identity S-box (0123456789ARCDEF); where its
3-step strategy forces to do a redundant XOR operation
which is then canceled. Another example (with S-box
1032547698BADCFE) where the least significant co-
ordinate function is XORed with 1 is given in Code
2, where LIGHTER crashes. The same thing happens
if one tries to generate; e.g., the SKINNY S-box [8]
from the PICCOLO S-box [25]; despite one S-box
being apart from another just by an XOR operation
at one coordinate function. Finally, Code 3 shows the
feature of the reversible implementation (with the S-box
103254EF98BADC67). As LIGHTER does not use any
extra variable, it has to recompute the same thing if that
is needed more than once. In this example, the same
NAND operation is computed twice (lines 6 and 7). This
is useful in quantum computing (as no ancilla qubit is
used); but causes extra cost in the classical computing
paradigm.

Code 1: LIGHTER implementation of 012345678 9ABCDEF (C file content)

o)
Il

Code 2: LIGHTER result for 1032547698BADCFE (terminal content)

F[O] = X[0]; 7
FLL] = X[11; 8
F[2] = X[3]; 9
F[3] = X[2]; 10

11
F[3] = XOR2 (F[3], F[2]1); 12
From : OOFF OFOF 3333 5555 4
To : OOFF OFOF 3333 AAAA 5

terminate called after throwing an instance of
— 'std::out_of_range'

what () :
Aborted

map: :at
(core dumped)

= Y N N

Code 3: LIGHTER implementation of 103254EF98BADC67 (C file content)

F[0] = X[0]; 7

F[1] = X[1];

F[2] = X[2]; 8

F[3] = X[3]; 9
10

F[3] = MAOIL1(F[3], NAND2(F[1], F[2]), 1

< F[3], NAND2(F[1], F[2]) ; 12

B. Modifications from LIGHTER

Unlike LIGHTER, DORCIS optimizes with respect to
depth and T-depth, not gate costs. Therefore, instead of
associating a cost with each gate, we need to store the
depth and T-depth contribution of each gate to the circuit.

To calculate this, we create an N-bit array depths[N],
where depths|i] is the number of gates which use line
i as either an input or an output. Whenever a new
gate is added, we increment the input lines depthsli
by the appropriate depth contributions. We then modify
the MITM algorithm and LIGHTER’s base code and
data structures to accommodate a new, and qualitatively
different, metric to optimize against.

For example, depth has to be calculated by adding
gates starting near the circuit entry point before adding
gates sequentially in the direction of the circuit exit. In
the LIGHTER’s base code, addition of gate costs is done
from the collision point of the two graph expansion paths
towards each respective end of the circuit. Since depth’s
gate contributions may be different dependent on the
order the gates come in, we incorporated a stack and a
queue to store the collision path’s gates. Then, we could
correctly compute depth by calculating gate contributions
sequentially from circuit start to end.

C. Search Differences from LIGHTER-R

Unlike LIGHTER and LIGHTER-R, the parameter to
optimize against has changed. We still use the graph
expansion and BFS algorithm originally described in
LIGHTER, due to its generality and verified efficiency,
but the interpretation on what to search for has signifi-
cantly changed. This introduced an additional challenge
which required the aforementioned algorithmic modi-
fications. For this reason, DORCIS has no backwards
compatibility with either LIGHTER or LIGHTER-R.

To verify the differences in searching algorithms, we
searched for an optimized S-box implementation of
the GIFT block cipher with both programs (cost for
LIGHTER, depth for DORCIS), weighting the LIGHTER

F[0] = MOAILl(F[0], NAND2(F[1], F[2]),
< F[0], NAND2(F[1], F[2]));

X[0] = F[0];

X[1] = F[1];

X[2] = F[2];

X[3] = F[3];

costs the same as our depth search weights. We can
see that the they create very different implementations.
Notably, LIGHTER-R’s proposed implementation (Figure
5b) has a depth of 32, while ours (Figure 5c) has a depth
of 31. This comparison demonstrates the algorithmic
modifications we made to suit the qualitative differences
between cost and depth.

DORCIS, by default, outputs implementations in terms
of the top level gates, to maintain the convention of
LIGHTER. However, we included a tool to decompose
top level gates output by DORCIS.

D. Comment on PEIGEN

PEIGEN has two components: An extension of the
LIGHTER code, to 3-8 dimensions, and a circuit depth
optimization tool. The depth optimization tool is unfit for
adaptation to quantum circuits because it assumes that a
signal in a wire can be measured from both before and
after a gate acting upon it. Thus, it reduces the depth-
circuit problem to a shortest-linear-path problem. But this
assumption, which motivates the design of the solving
algorithm, cannot be translated into a quantum circuit
tool without undue and significant ancilla line additions.

The LIGHTER component from PEIGEN optimizes
with respect to gate costs, and uses the same searching
method. However, attempts to search for implementations
of non-trivial 5-bit or larger S-boxes never returned
an output. Since PEIGEN included code from other
applications as well, each gate programmed in had several
other necessary dependencies or inherited attributes from
other files in the PEIGEN tool. So modifications of the
code to add new quantum gates did not create operational
gates.

Though PEIGEN could compile with a 5-bit search
request, its exhaustive search time scales exponentially
with S-box dimension. Hence, we chose to build off of
LIGHTER rather than PEIGEN.

|zo) P |z0)
|z1) P—+—D |z1)
|z2) S—D— |z2)

Fig. 4: LOWMC S-box implementation by DORCIS

IV. IMPLEMENTATION/RESULT

Unlike LIGHTER-R, DORCIS also works with 3-bit S-
boxes. Figure 4 shows a depth optimized implementation
of LOWMC (which is given by 01367452).

o) S X X} |3)
1) D { X o {x—@{xX}Fo |21)
|z2) x| b |x2)
|z3) DX fo— |z0)
(a) Provided by [20], found empirically (depth 34)
|zo) ~P P |z3)
|z1) D O |r1)
j29) —— DD DX]+ |z0)
|z3) < |z2)
(b) LIGHTER-R (depth 32)
|z0) —P (X 0 [a2)
|z1) PP ¥ |z3)
|z2) (X |- {X} |a1)
|3) D[X]| S&{xF |z0)

(c) DORCIS (depth 31)

Fig. 5: GIFT S-box implementation

The implementation in Figure 5b shows a LIGHTER
implementation without any modifications. The imple-
mentation in Figure 5c shows a DORCIS provided
implementation.

The key difference in our tool is how the metric we
optimize against is calculated, given an arbitrary circuit.
The aforementioned prior work optimized off of gate costs
and total circuit costs, and it searched for circuits using
as few costly gates as possible. Our software searches for
circuits with a high number of gates running in parallel,
which reduces depth without necessarily reducing circuit
cost.

In [20], the authors provide an implementation of the

GIFT S-box (1A4C6F392DB7508E) that is shown in
Figure 5a. Using the same non-Clifford gate decomposi-
tions as our implementations assume, their implementa-
tion of the GIFT S-box has depth 34 and T-depth 4. In
the same paper, the authors also put forth an implementa-
tion for the PRESENT S-box (C56B90AD3EF84712),
which was generated using LIGHTER-R, and is shown
in Figure 6a.

|zo) D—9{ X} |z0)
lz1) P Y S |z2)
|z2) DD |3)
|3) —D (X | d— |z1)
(a) Used in [20] (by LIGHTER-R)
|z0) —D ¥ ¥ |0)
|z1) P (x| D [z1)
|z2) — SPRSY |z2)
|z3) @ < |z3)

(b) Depth-optimized by DORCIS
Fig. 6: PRESENT S-box implementation

From Figure 6a, we can see the LIGHTER-R generated
implementation of the PRESENT S-box has depth 33 and
T-Depth 4. In Figure 6b, we can see that the DORCIS
optimized circuit has depth 32 and T-depth 4. This is a
step-up compared to LIGHTER-R, and a step-up in depth
optimization from all previously known implementations
of PRESENT.

Recent work has involved the development of a block
cipher, DEFAULT, resistant to differential fault attacks.
The DEFAULT block cipher consists of layers, with
an outer layer (DEFAULT-LAYER) being applied, an
inner layer (DEFAULT-CORE), then a second round of
DEFAULT-LAYER [5, Chapters 7, 8] (and also in [4,
Chapters 7, 8]). Since DEFAULT is a relatively new
proposal, we will demonstrate the utility of DORCIS for
analysis of lesser known protocols by examining the stark
differences in implementations given by [5, Chapters 7,8]
and DORCIS.

The provided DEFAULT-CORE S-box implementation
has depth 45, T-Depth 6. It was generated by LIGHTER-
R. DORCIS provided an implementation with depth 31,
and T-depth 4, for a total reduction of 14 in the depth
metric, and 2 in the T-depth metric.

The provided DEFAULT-LAYER implementation has
depth 19, T-depth 2. The implementation found by a

|z0) P Y |z3)
1) (X} & |zo)
lz2) —D S |z2)
|z3) ¥ ¥ |z1)
(a) LIGHTER-R (from [17])
|z0) P D |zs)
lz1) —P & |Z0)
|72) —4—D-D (X} =)
|z3) S—b |z2)

(b) DORCIS
Fig. 7: DEFAULT-CORE S-box implementation

DORCIS search has depth 11, T-depth 1.

|z0) PP~ [73)
lz1) ~P S5, |z0)
|z2) s>, S |z1)
|z3) —D |z2)
(2) LIGHTER-R (from [17])
|z0) ~P Y |z3)
|z1) S |z1)
|z2) S D |zo)
|z3) DD |22)
(b) DORCIS

Fig. 8: DEFAULT-LAYER S-box implementation

In Table II, we display the results of several sample S-
boxes and their best depth-optimized decomposition. To
find the reversible/quantum circuit, we used LIGHTER-R
and weighted each of the gate costs the same as their
depth weights for DORCIS. Hence, the LIGHTER-R-
produced circuit aims only to minimize the number of
total gates used. Notably, in all of our tests, we never
found an S-box for which the most depth optimized circuit
is different from the most T-Depth optimized circuit, nor
did we find an S-box where the LIGHTER-R-produced
circuit has a greater T-depth. This could be because non-
Clifford gates are costly, so both algorithms minimize
their usage at all costs. Thus, it is possible that when
more non-Clifford gates are needed, an improvement on
T-depth will also be seen in our software compared to
the LIGHTER-R-produced circuit.

V. CONCLUSION & FUTURE WORK

From our demonstrated examples, we can see an
improvement on depth and T-depth optimization on the
currently known best results. Because depth and T-depth
can be major indicators of circuit complexity, we believe
DORCIS will be a compelling tool for finding 3-bit and
4-bit quantum S-box implementations.

DORCIS can be extended further from 3-bit and 4-
bit S-boxes to 5-bit S-boxes and beyond. In our tests
for determining 5-bit compatibility, we observed that the
search-space was far too large to find implementations
in. However, progress has already been made to extend
such software into use in higher bit contexts [23]. Such
methods may also be applied to DORCIS, which could see
extended functionality given a similar approach. Apart
from this, a follow-up work of the Kwan’s algorithm
[13], [14], [22] would be appreciated (as LIGHTER’s
search strategy is inferior) in the classical (irreversible)
computing paradigm.

TABLE II: DORCIS result summary
(a) 3-bit S-box

DORCIS
SBox LUT Depth | T-Depth
LOWMC [1] 01367452 | 23 3
PYJAMASK-3 [16] | 13652470 23 3
SEA [26] 05674312 23 3
(b) 4-bit S-box
LIGHTER-R DORCIS
SBox LUt Depth | T-Depth | Depth | T-Depth
ELEPHANT [9] EDB0214F7A859C36 35 4 33 4
PICCOLO [25] E4B238091A7F6C5D 32 4 30 4
PYJAMASK-4 [16] 2D397BA6GEOF4851C 32 4 31 4
RECTANGLE [30] 65CA1E79B03D8F42 33 4 31 4
GIFT [7] 1A4C6F392DB7508E 32 4 31 4
PRESENT [10] C56B90AD3EF84712 33 4 32 4
DEFAULT-CORE [5] 196F7C82AED043R5 | 45 6 31 4
PRINCE [11] BF32AC916780E5D4 44 5 42 5
SKINNY [8] C6901A2B385D4ETF 32 4 30 4
NOEKEON GAMMA [12] | 7A2C48F0591E3DB6 32 4 30 4
TWINE [28] COFA2B9583D71E6G4 | 56 7 54 7
QARMA [3] ADE6F735980CB124 | 42 5 41 5
JH Sp [29] 904BDC3F1A26758E 43 5 41 5
|z3) &P T s>
|z2) SV T P
|z1) P
|z0) —D H T H H— |73
0) P, P T P S 0)
‘()> N N 'I' N D ‘()>
AN \\¥ T \\¥ AN
0) S Tf © © 0)
0) S © Tt S b 0)

Fig. 9: Decomposition of DORCIS DEFAULT-LAYER S-box

VI. DECOMPOSED QUANTUM GATES (QISKIT CODES) LOWMC S-boxes (as generated by DORCIS).

In Code 4 and in Code 5, we respectively present the
Qiskit implementation of the DEFAULT-LAYER and the

Code 4: DEFAULT-LAYER S-box (decomposition level)

SOoxao LWL —

v

SCwua U s L —

R N N N N N N N el el el
—FOLCRXRIFTDMELON SO0 R W~

29 circuit.cx(1,7)

30 circuit.cx(3,5)

31 circuit.cx(4,7)

32 circuit.cx(1,6)

33 circuit.cx(0,5)

34 circuit.cx(3,4)

35 circuit.cx(0,6)

36 circuit.h(l)

37 circuit.cx((1), (3))

38 circuit.cx((2), (0))

39 print (circuit.depth())
40 circuit.draw (output="mpl")

41 plt.show ()

Code 5: LOWMC S-box (decomposition level)

from giskit import QuantumCircuit 15 circuit.cx(0,5)
import matplotlib.pyplot as plt 16 circuit.cx(1,6)
circuit = QuantumCircuit (8) 17 circuit.cx(4,7)

18 circuit.cx(3,5)
circuit.cx ((0), (1)) 19 circuit.cx(1,7)
circuit.cx((3), (0)) 20 circuit.cx(6,4)
circuit.cx((1), (2)) 21 circuit.t (3)
circuit.cx ((2), (3)) 22 circuit.t (0)
circuit.initialize (0,4) 23 circuit.t (1)
circuit.initialize (0,5) 24 circuit.t (4)
circuit.initialize (0,6) 25 circuit.tdg(5)
circuit.initialize(0,7) 26 circuit.tdg(6)
circuit.h(1) 27 circuit.tdg(7)
circuit.cx(3,4) 28 circuit.cx(6,4)

”
from giskit import QuantumCircuit 32 circuit.h(0)
import matplotlib.pyplot as plt 33 circuit.initialize (0, 3)
circuit = QuantumCircuit (7) 34 circuit.initialize (0, 4)

35 circuit.initialize(0,5)
circuit.initialize (0, 3) 36 circuit.initialize (0, 6)
circuit.initialize(0,4) 37 circuit.h (1)
circuit.initialize (0,5) 38 circuit.cx(2,3)
circuit.initialize (0, 6) 39 circuit.cx(0,4)
circuit.h(0) 40 circuit.cx(1,5)
circuit.cx (2, 2) 41 circuit.cx(3,6)
circuit.cx(1,4) 42 circuit.cx(2,4)
circuit.cx(0,5) 43 circuit.cx(1,6)
circuit.cx(3,6) 44 circuit.cx(5,3)
circuit.cx(2,4) 45 circuit.t (2)
circuit.cx(0,6) 46 circuit.t (0)
circuit.cx(5,3) 47 circuit.t (1)
circuit.t (2) 48 circuit.t (3)
circuit.t (1) 49 circuit.tdg(4)
circuit.t (0) 50 circuit.tdg(5)
circuit.t (3) 51 circuit.tdg(6)
circuit.tdg(4) 52 circuit.cx(5,3)
circuit.tdg(5) 53 circuit.cx(1,6)
circuit.tdg(6) 54 circuit.cx(2,4)
circuit.cx(5,3) 55 circuit.cx(3,6)
circuit.cx(0,6) 56 circuit.cx(1,5)
circuit.cx(2,4) 57 circuit.cx(0,4)
circuit.cx(3,6) 58 circuit.cx(2,3)
circuit.cx(0,5) 59 circuit.cx(0,5)
circuit.cx(1,4) 60 circuit.h (1)
circuit.cx (2, 3) 61 circuit.initialize (0, 3)
circuit.cx(1,5) 62 circuit.initialize (0,4)

REFERENCES

(1]

(2]

(3]

(4]

Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE.
In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part 1, volume 9056 of Lecture Notes in Computer Science,
pages 430-454. Springer, 2015.

M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-
middle algorithm for fast synthesis of depth-optimal quantum
circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(6):818-830, jun 2013.
Roberto Avanzi. The qarma block cipher family — almost mds
matrices over rings with zero divisors, nearly symmetric even-
mansour constructions with non-involutory central rounds, and
search heuristics for low-latency s-boxes. Cryptology ePrint
Archive, Paper 2016/444, 2016. https://eprint.iacr.org/2016/444.
Anubhab Baksi. Classical and Physical Security of Symmetric
Key Cryptographic Algorithms. PhD thesis, School of Computer
Science & Engineering, Nanyang Technological University,
Singapore, 2021. https://dr.ntu.edu.sg/handle/10356/152003.

(5]

(6]

(7]

(8]

(9]

63 circuit.initialize (0,5)
64 circuit.initialize (0,6)
65 circuit.h(2)

66 circuit.cx (1, 23)

67 circuit.cx(0,4)

68 circuit.cx(2,5)

69 circuit.cx(3,6)

70 circuit.cx(1,4)

71 circuit.cx(2,6)

72 circuit.cx(5,3)

73 circuit.t (1)

74 circuit.t (0)

75 circuit.t(2)

76 circuit.t (3)

77 circuit.tdg(4)

78 circuit.tdg(5)

79 circuit.tdg(6)

80 circuit.cx(5,3)

81 circuit.cx(2,6)

82 circuit.cx(1,4)

83 circuit.cx(3,6)

84 circuit.cx(2,5)

85 circuit.cx(0,4)

86 circuit.cx(1,3)

87 circuit.cx(0,5)

88 circuit.h(2)

89 circuit.cx ((0), (1))

90 circuit.cx((1), (2))

91 circuit.draw (output="mpl")

92 plt.show()

Anubhab Baksi. Classical and Physical Security of Symmetric
Key Cryptographic Algorithms. Springer, Singapore, 2022. https:
//doi.org/10.1007/978-981-16-6522-6.

Anubhab Baksi, Kyungbae Jang, Gyeongju Song, Hwajeong Seo,
and Zejun Xiang. Quantum implementation and resource esti-
mates for rectangle and knot. Quantum Information Processing,
20(12), dec 2021.

Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin,
Yu Sasaki, Siang Meng Sim, and Yosuke Todo. GIFT: A small
present - towards reaching the limit of lightweight encryption.
In Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September
25-28, 2017, Proceedings, pages 321-345, 2017.

Christof Beierle, Jérémy Jean, Stefan Kolbl, Gregor Leander,
Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and
Siang Meng Sim. The SKINNY family of block ciphers and
its low-latency variant MANTIS. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part 11, pages 123-153, 2016.

Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart
Mennink. Elephant v2, 2021.

https://eprint.iacr.org/2016/444
https://dr.ntu.edu.sg/handle/10356/152003
https://doi.org/10.1007/978-981-16-6522-6
https://doi.org/10.1007/978-981-16-6522-6

(10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew JB Robshaw, Yannick Seurin,
and Charlotte Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In CHES, volume 4727, pages 450-466. Springer, 2007.
Julia Borghoff, Anne Canteaut, Tim Giineysu, Elif Bilge Kavun,
Miroslav Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts,
Sgren S. Thomsen, and Tolga Yalcin. PRINCE - A low-latency
block cipher for pervasive computing applications - extended
abstract. In Advances in Cryptology - ASIACRYPT 2012 - 18th
International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December
2-6, 2012. Proceedings, pages 208-225, 2012.

Joan Daemen, Michaél Peeters, Gilles Van Assche, and Vincent
Rijmen. The noekeon block cipher, 2000. http://gro.noekeon.
org/Noekeon-spec.pdf.

Marcus Dansarie. Cryptanalysis of the SoDark family of cipher
algorithms. PhD thesis, Naval Postgraduate School, Dudley Knox
Library, 2017. https://calhoun.nps.edu/handle/10945/56118.
Marcus Dansarie. sboxgates: A program for finding low gate
count implementations of S-boxes. Journal of Open Source
Software, 6(62):2946, 2021.

Vishnu Asutosh Dasu, Anubhab Baksi, Sumanta Sarkar, and
Anupam Chattopadhyay. Lighter-r: Optimized reversible circuit
implementation for sboxes. 2019 32nd IEEE International
System-on-Chip Conference (SOCC), pages 260-265, 2019.
Dahmun Goudarzi, Jérémy Jean, Stefan Kolbl, Thomas Peyrin,
Matthieu Rivain, Yu Sasaki, and Siang Meng Sim. Pyjamask
v1.0. 2019.

Kyungbae Jang, Anubhab Baksi, Jakub Breier, Hwajeong Seo,
and Anupam Chattopadhyay. Quantum implementation and
analysis of default. Cryptology ePrint Archive, Paper 2022/647,
2022.

Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Hwajeong Seo,
and Anupam Chattopadhyay. Improved quantum analysis of
SPECK and lowmc. In Takanori Isobe and Santanu Sarkar,
editors, Progress in Cryptology - INDOCRYPT 2022 - 23rd
International Conference on Cryptology in India, Kolkata, India,
December 11-14, 2022, Proceedings, volume 13774 of Lecture
Notes in Computer Science, pages 517-540. Springer, 2022.
Kyungbae Jang, Anubhab Baksi, Gyeongju Song, Hyunji Kim,
Hwajeong Seo, and Anupam Chattopadhyay. Quantum analysis
of AES. IACR Cryptol. ePrint Arch., page 683, 2022.
Kyungbae Jang, Gyeongju Song, Hyunjun Kim, Hyeokdong
Kwon, Hyunji Kim, and Hwajeong Seo. Efficient implementation
of present and gift on quantum computers. Applied Sciences,
11(11), 2021.

Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade
Tourteaux. Optimizing implementations of lightweight build-
ing blocks. IACR Transactions on Symmetric Cryptology,
2017:130-168, Dec. 2017.

Matthew Kwan. Reducing the gate count of bitslice des.
Cryptology ePrint Archive, Paper 2000/051, 2000. https:
/leprint.iacr.org/2000/051.

Zhengiang Li, Fei Gao, Sujuan Qin, and Qiaoyan Wen. New
record in the number of qubits for a quantum implementation
of aes. Cryptology ePrint Archive, Paper 2023/018, 2023. https:
/leprint.iacr.org/2023/018.

Peter Selinger. Quantum circuits of t-depth one. Physical Review
A, 87(4), apr 2013.

Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi
Mitsuda, Toru Akishita, and Taizo Shirai. Piccolo: An ultra-
lightweight blockcipher. In Cryptographic Hardware and
Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings,
pages 342-357, 2011.

(26]

(27]

(28]

(29]

(30]

10

Francois-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and
Jean-Jacques Quisquater. Sea: A scalable encryption algorithm
for small embedded applications. In Josep Domingo-Ferrer,
Joachim Posegga, and Daniel Schreckling, editors, Smart Card
Research and Advanced Applications, pages 222-236, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

Ko Stoffelen. Optimizing s-box implementations for several
criteria using sat solvers. In Thomas Peyrin, editor, Fast Software
Encryption, pages 140-160, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

Tomoyasu Suzaki, Kazuhiko Minematsu, Sumio Morioka, and
Eita Kobayashi. Twine: A lightweight block cipher for multiple
platforms. In Lars R. Knudsen and Huapeng Wu, editors,
Selected Areas in Cryptography, pages 339-354, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg.

Hongjun Wu. The hash function jh, 2011. https://www3.ntu.
edu.sg/home/wuhj/research/jh/jh_round3.pdf.

Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen,
Bohan Yang, and Ingrid Verbauwhede. RECTANGLE: a bit-slice
lightweight block cipher suitable for multiple platforms. Sci.
China Inf. Sci., 58(12):1-15, 2015.

http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
https://calhoun.nps.edu/handle/10945/56118
https://eprint.iacr.org/2000/051
https://eprint.iacr.org/2000/051
https://eprint.iacr.org/2023/018
https://eprint.iacr.org/2023/018
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf
https://www3.ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

	Introduction
	Background & Prerequisites
	S-Box
	Depth
	T-Depth
	Related Works

	Tool Overview
	LIGHTER Details
	Modifications from LIGHTER
	Search Differences from LIGHTER-R
	Comment on PEIGEN

	Implementation/Result
	Conclusion & Future Work
	Decomposed Quantum Gates (Qiskit Codes)
	References

