Threshold and Multi-Signature Schemes
from Linear Hash Functions*

Stefano Tessaro ©® and Chenzhi Zhu

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, US
{tessaro,zhucz20}@cs.washington.edu

Abstract. This paper gives new constructions of two-round multi-signatures and threshold signatures
for which security relies solely on either the hardness of the (plain) discrete logarithm problem or the
hardness of RSA, in addition to assuming random oracles. Their signing protocol is partially non-
interactive, i.e., the first round of the signing protocol is independent of the message being signed.
We obtain our constructions by generalizing the most efficient discrete-logarithm based schemes, MuSig2
(Nick, Ruffing, and Seurin, CRYPTO ’21) and FROST (Komlo and Goldberg, SAC ’20), to work
with suitably defined linear hash functions. While the original schemes rely on the stronger and more
controversial one-more discrete logarithm assumption, we show that suitable instantiations of the hash
functions enable security to be based on either the plain discrete logarithm assumption or on RSA. The
signatures produced by our schemes are equivalent to those obtained from Okamoto’s identification
schemes (CRYPTO ’92).

More abstractly, our results suggest a general framework to transform schemes secure under OMDL
into ones secure under the plain DL assumption and, with some restrictions, under RSA.

1 Introduction

Many novel applications, such as digital wallets [GGN16], are re-energizing a multi-decade agenda
aimed at developing new efficient multi-signatures [Ita83b] and threshold signatures [Des88, DF90]
from a variety of assumptions. Threshold signatures are also at the center of standardization efforts
by NIST [Natnt] and IETF [CKGW22]. Both signature types are relatively straightforward to obtain
from pairings (using, e.g., BLS [BLS01, Bol03]); however, specific implementation constraints make
pairing-free schemes, which are based on either variants of the discrete logarithm or RSA problems,
appealing in several contexts.

This paper aims to build the best possible pairing-free multi-signatures and threshold signatures
under the weakest possible assumptions. As our main contribution, we develop new two-round pro-
tocols that are secure under the (1) discrete logarithm assumption and (2) the RSA assumption.
In both cases, we also assume the random oracle model (ROM) [BR93]. Our RSA multi-signatures
require a trusted setup to produce a public RSA modulus with unknown factorization. The signa-
tures produced by both schemes resemble those proposed by Okamoto [Oka93]. Furthermore, our
signing protocols are partially non-interactive, i.e., the first round messages do not depend on the
message being signed, which is a desirable property in practice.

SIGNIFICANCE. Our DL-based schemes are the first partially non-interactive 2-round schemes based
solely on the hardness of the discrete logarithm assumption. For threshold signatures, in particular,
no two-round scheme is known from only the discrete logarithm assumption. For RSA, the landscape
is more complex, and our main contribution is to provide a viable multi-signature scheme, as all
prior solutions impose restrictions.

* An extended abstract of this paper appears in the proceedings of EUROCRYPT 2023. This is the full version.

https://orcid.org/0000-0002-3751-8546
https://orcid.org/0000-0002-4276-2797

OUR APPROACH. Our schemes are the outcome of the same paradigm applied to the two most ef-
ficient DL-based schemes, FROST [KG20, BCK™22] and MuSig2 [NRS21]. It is not known how to
prove the security of either scheme under the plain discrete logarithm assumption, and they are in-
stead proved secure under the (stronger) one-more discrete logarithm assumption (OMDL) [BNPS03],
an assumption that has been the subject of criticism [KMO07, KMO08]. As we explain next, our
paradigm can be seen as a general recipe to remove the OMDL assumption from these schemes.

The main ingredient of our approach are linear hash functions, which have also been used in
recent works [BBSS18, HKL19, HKLN20] to abstract identification schemes from which signature
variants are derived. Here, we observe that both FROST ad MuSig2 can naturally be generalized by
replacing the exponentiation map « — ¢* with a linear hash function F : D — R, where D, R are
S-modules for a field S. We generically refer to these instantiations as FROST-H and MuSig2-H.
(In fact, we present two variants for FROST-H but make no distinction in the introduction.) In
particular, we require that:

- F is an epimorphism of S-modules from D to R, i.e., F is a surjection from D to R such that
forany re S and z,y € D, F(x +r-y) = F(z) + r - F(y) .

- F is not a monomorphism, which is equivalent to postulating that there exists z* € D such that
z* # 0 and F(z*) = 0.

We then define a natural analogue of the OMDL assumption, which we refer to as the Algebraic
One-More Preimage Resistance (AOMPR). Roughly speaking, the corresponding security game
allows the attacker to obtain multiple challenges X; = F(z;) for a random element x; «s D, and
the attacker also gets access to an inversion oracle which, on input X € R, returns a element in the
preimage set of X under F. The restriction here, and hence the term algebraic, is that X must be an
affine combination of previously obtained X;’s, and this affine combination is given to the inversion
oracle, along with X. (This makes the assumption falsifiable since the oracle can efficiently answer
such inversion queries.) To win the game, the attacker is then asked to invert g + 1 challenges after
querying the inversion oracle at most ¢ times.

Our results then follow from the combination of the following two theorems, which we state
here informally:

Theorem (informal). The security of FROST-H and MuSig2-H follows from the AOMPR
assumption on the underlying linear hash function.

Theorem (informal). If F is collision-resistant, then the AOMPR assumption holds with
respect to F.

The proof of the first theorem is, on its own, not particularly surprising and mostly generalizes the
prior proofs in the literature, in particular those of [NRS21] and [BCK™22]. Our main contribution
here is to notice that these proofs, and the resulting schemes, can be abstracted in terms of linear
hash functions. In particular, for threshold signatures, as in [BCK*22], we consider an abstract
setting with an ideal distributed key generation, and we target the security notions of TS-SUF-2
and TS-SUF-3, which were shown to be achieved by two variants of FROST, both of which we
model here abstractly. Since we are targeting feasibility, we are less concerned with the concrete
round complexity of distributed key generation and could use any secure multi-party computation
protocol for this task.

In contrast, the rough intuition behind a proof of the latter theorem is that for any execution
of a (wlog deterministic) adversary A playing the AOMPR game with challenges X = F(x), since

F is not a monomorphism, there exists another execution with challenges X = F(2’) such that
x # x', but the views of A are identical in the two executions. Then, if A wins the game given x
by outputting y such that F(y) = X, A also wins the game given &’ by outputting y. Therefore,
we have F(x) = F(y) = F(&') A (x #y v a' # y), which implies that we can find a collision
in at least one of the executions. Indeed, special cases of this technique already underlie several
works, including Okamoto’s [Oka93], but our main challenges are to prove the concrete mapping of
2’ from x and to package this in terms of the AOMPR abstraction.

1.1 DL-based Instantiations

To obtain an instantiation of FROST-H and MuSig2-H based on the hardness of the discrete loga-
rithm (DL) problem, we can use the Pedersen linear hash function [Ped92]

F(z1,22) = g"1 2%,

which is well known to be collision-resistant under the hardness of DL whenever g, Z are generators
of a group with prime size p. While MuSig2 and FROST produce valid Schnorr signatures [Sch90],
the signatures produced by our DL-based instantiations of FROST-H and MuSig2-H are slightly
less efficient, and effectively compatible with Okamoto’s signatures [Oka93]. Here, as in Schnorr
signatures, the secret signing key is x € Z,, and the public verification key pk = g%, and a signature
for a message m € {0, 1}* has format

0= (R=¢"2"a+H(pkmR) b)),

where H is a hash function that is modeled as a random oracle in our proofs. To verify a signature
(R, a,b), we check that g*Z® = R-pkHPKME) ‘e only difference from Okamoto’s scheme [Oka93] is
that the latter uses a secret key (z1,x2) € ZZ, and a signature has form (R = ¢°Z°, a+c-x1,b+c-13),
where ¢ = H(pk, m, R), i.e., here, we restrict the scheme to the case where (x1,x2) = (z,0). This
optimization is generic and could have been applied to Okamoto’s scheme directly; however, it
is particularly advantageous for threshold signatures since it lets us leverage any distributed key
generation protocol for Schnorr signatures. Here, we need a trusted setup to generate Z as a random
group element independent of g, but we note that this is a minimal setup since it can be made
transparent, e.g., g, Z can be generated as outputs of a hash function.

RELATED WORK (DL). Our DL-based threshold signatures are the first two-round scheme with
security proved based solely on the discrete logarithm assumption in the ROM. The most efficient
protocol is FROST [KG20, BCK*22], which is slightly more efficient than our scheme since it
generates plain Schnorr signatures; however, FROST relies on the stronger OMDL assumption.
Though schemes based solely on the discrete logarithm assumption exist [SS01, GJKRO07, Lin22],
they use more rounds. We stress that not all schemes achieve the same security goals, and here we
target the notions of [BCK™22], whereas Lindell [Lin22] targets UC security.

Our DL-based scheme gives the first partially non-interactive two-round multi-signatures based
on plain DL and the ROM. It is almost as efficient as MuSig2 [NRS21], which is based on OMDL.
Drijvers et al. [DEF*19] proposed a less efficient two-round scheme, called mBCJ, based on DL
and ROM only, and it repairs a prior scheme by Bagherzandi, Cheon, and Jarecki [BCJ08]. mBCJ
signatures, less efficient than ours, consist of two group elements and three scalars, and public keys
also consist of one group element and two scalars. Moreover, mBCJ is not partially non-interactive

(i.e., the first round does depend on the message being signed). Another option is the MuSig-DN
scheme [NRSW20], but it relies on heavy machinery from zero-knowledge proofs.

A more efficient DL-based alternative is the HBMS scheme by Bellare and Dai [BD21], but
HBMS is not partially non-interactive. Further, our security reduction is tighter than that of HBMS.
Most relevant to us, Lee and Kim [LK22] gave a multi-signature scheme based on Okamoto signa-
tures that, however, is proved secure only in the AGM [FKL18]; their signing is also not partially
non-interactive.

More recently, Pan and Wagner [PW23] proposed a two-round multi-signature scheme based
only on the Decisional Diffie-Hellman (DDH) assumption with a tight reduction, but their scheme
is also not partially non-interactive.

Finally, the work of Drijvers et al. [DEFT19], as well as recent ROS attacks [BLL*21], also
surfaced several security issues in earlier DL-based proposals that we do not discuss here.

1.2 RSA-based instantiation

The situation with RSA is slightly more complex since the above framework, as is, does not appear
to support an RSA instantiation directly: no natural RSA-based linear hash function realizes an
appropriate S-module where S is a field, which is of critical importance for our constructions and
proofs of theorems. However, we show that the framework can be adapted to support the RSA-based
linear hash function

F(x1,x2) = 2{w™ |

based on public parameters par = (N, e,w), where N is an RSA modulus, e € Z}; is a prime such
that ged(e,¢(N)) = 1 and w € Z3,. We refer to this linear hash function as RLHF. Here, it is
important to note that the supported scalar space is set to S := Z, which is only a ring. (We refer
to such hash functions as weak linear hash functions.)

RSA-SPECIFIC CHALLENGES. We now describe the problems caused by the lack of inversion in S,
and briefly explain how we fix them for the specific case of RLHF. We stress that these fixes are
very ad-hoc for RSA, and do not work in general for weak linear hash functions.

- FROST-H generates signing keys using Shamir secret sharing [Sha79], which requires the scalar
space to be a field in order to compute the Lagrange coefficients. This is a common problem
for RSA-based threshold schemes [Sho00, DKO01], and we address it via the standard trick of
multiplying the Lagrange coefficients with a large number to make them integers.

- One place in the proof of our first informal theorem above (reducing the security of MuSig2-H
and FROST-H to AOMPR) where the scalar space needs to be a field is to invert challenges
X € R"™, given a linear equation AX = F(b), where A in S"*", X in R", and b in D". Since S
is a field in our original proof, we show that A has full rank; thus, one can compute « such that
X = F(x) by multiplying the inverse of A on both sides of the equation. Clearly, this fails if S is
not a field. Fortunately, to instantiate RLHF, we find that this equation can be solved efficiently
whenever A has full rank modulo e (which, recall, is a prime), and we show this condition holds
whenever we need to solve the equation in the proof for the special case of RLHF. In addition,
for MuSig2-H, we require one of the prime factors of N to be a safe prime in order to make the
reduction go through. We also show how to remove this safe-prime requirement by minimally
modifying the key aggregation algorithm.

- For our second informal theorem (reducing AOMPR to the collision-resistance of the linear hash
function), we need the scalar space to be a field upon showing that, for any matrix B € S*¢
for £ < ¢, there exists u € §7 such that

1. Bu = 0;
2. u;z* # 0 for some i € [¢], where z* is an a prior fixed non-zero element in D such that
F(z*) = 0.

Again, if S is a ring, such an ¥ might not exist. However, for the RSA-based linear hash
function, since § = Z, we can always find a non-zero u € Z? such that Bu = 0. Showing the
second condition involves some technical details of RLHF, but roughly, we need to show that
there exists i € [g] such that u; #% 0 mod e.

RESULTING SCHEMES. Our RSA-based instantiations of FROST-H and MuSig2-H produce signatures
that also resemble the RSA-based signatures by Okamoto [Oka93]. Given public parameters par =
(N,e,w), where e € Z} is a prime such that ged(e, #(N)) = 1 and w € Z},, the secret signing key
is « € Z}, and the public verification key pk = 2¢, and a signature for a message m € {0, 1}* has
format

o= (R= a‘uw?, a - HPRmR) b).

To verify a signature (R, s,b), one checks whether s¢w” = R- pkH(pk’m’R). We give a simpler scheme
that assumes that N is the product of safe primes, but we then drop this restriction in a slightly
less efficient scheme.

We note that this scheme’s drawback is that the public parameters par must be generated
honestly. In the multi-signature case, this requires a trusted setup, whereas in the threshold signa-
ture case, par could be generated as part of the distributed key generation process. An important
open question is whether we can remove a trusted setup, but we note that no better construction
without a trusted setup is known, as we discuss next. Another unusual aspect of our use of the
RSA assumption is that we require e to be large and prime, but this does not appear to weaken
the assumption in any way.

RELATED WORK (RSA). Threshold signatures based on RSA go back to the work of Shoup [Sho00],
whose scheme is more efficient than ours since it is round optimal. Shoup’s basic scheme guaran-
tees only the inability to come up with a signature for messages for which no party has issued a
signature share. A stronger notion would require that the only way to issue a valid signature is for
sufficiently many honest parties to contribute, i.e., if k signature shares are needed for a valid sig-
nature to be created, and t parties can be corrupted, no valid signature should be generated unless
at least k — t parties create shares. (This notion is referred to as TS-UF-1 in [BCK*22, BTZ22].)
To achieve this stronger notion, Shoup [Sho00] modifies the scheme and relies on a variant of
the DDH assumption, which we do not need here. All previous works on RSA-based threshold
signatures [DDFY94, GJKR96, FMY98, Rab98, DK01, FS01, ADN06, GHKRO08] do not consider
this stronger security goal, although some of these works consider properties such as proactiv-
ity [Rab98, ADNO6], robustness [GJKR96, FMY98, Rab98], removing trusted dealers [DKO01, FS01],
and adaptive-security [ADNO6], which we do not consider.

Our RSA-based instantiation of MuSig2-H improves upon the state-of-the-art even further.
Indeed, only a few works on RSA multi-signatures, e.g., [DF92, AA05], support fully non-interactive
signing, but they all assume a trusted third party that distributes all signing keys and that the
number of signers is fixed. Others [[ta83a, Oka88, HK89, KH90, Oka93, PPKW97, MO*00, MMO0,
PLLO02] support only sequential signing, i.e., all signers engage in the signing process one by one.

Another relevant line of works addresses identity-based multi-signatures [BN07, BJ10] (IBMS).
IBMS can be viewed as multi-signature schemes where each ID plays the role of the public key for
each signer. However, if used as a multi-signature scheme, these schemes require a trusted dealer
to generate the keys for each signer. Also, they do not support key aggregation, which our scheme
supports.

2 Preliminaries

2.1 Notations

For any positive integers k < n, [n] denotes {1,...,n}, and [k..n] denotes {k,...,n}. We use & to
denote the security parameter. For a finite set S, |S| denotes the size of S, and x «<s S denotes
sampling an element uniformly from S and assigning it to x.

2.2 Basic Algebra

MobDULES. For any ring R with multiplicative identity 1 and any abelian group (M, +), we say M
is an R-module if there exists an operation - : R x M — M such that for any a,b € R and any
zyyeM, () a-(z+y)=a-z+a-y, i) (a+bd)-z=a-xz+b-x, (iii) (ab) -z =a-(b-x), (iv)
1.z = x. Also, we use 0 to denote the identity of M.

MoDULE HOMOMORPHISMS. For any R-modules M and N, amap f: M — N is a homomorphism
of R-modules if for any r € R and x,y € M, f(z+7r-y) = f(x)+7r- f(y) . We say a homomorphism
f is an epimorphism if f is a surjection. We say a homomorphism f is a monomorphism if f is an
injection.

CHARACTERISTIC OF A FIELD. For any field IF, the characteristic of IF, denoted by char(F), is the
smallest positive number k such that k-1 = Zf;l 1 = 0, where 1 denotes the multiplicative identity
of F and 0 denotes the additive identity of F. If k£ does not exist, we say the characteristic of F is
0.

3 Algebraic One-more Preimage Resistance

In this section, we first give the definition of linear hash functions, then define collision resistance
and algebraic one-more preimage resistance (AOMPR) of a linear hash function family, and finally
show AOMPR is implied by collision resistance.

3.1 Linear Hash Functions

The notion of linear hash functions is introduced in [HKL19, HKLN20], which is in turn adapted
from [BBSS18]. We adapt the definition from [HKL19] by additionally requiring the scalar set S
to be a field and D and R to be S-modules, which is necessary for the reduction from collision
resistance to AOMPR and for our constructions in Section 4 to work.

Definition 1. A linear hash function family LHF is a pair of algorithms (PGen,F) such that

a) PGen is a randomized algorithm that takes as input the security parameter 1% and returns the
system parameter par that defines three sets S = S(par), D = D(par) and R = R(par), where S
is a field, and D and R are S-modules. Moreover, we require |S| = 2%, |D| = 2%, and |R| = 2".

Game CR"’_AHF(K/) :

par < PGen(1%)

(z1,22) < A(par)

If 1 # x2 and F(z1) = F(z2) then
Return 1

Return 0

Fig. 1. The CR security game for a linear hash family LHF = (PGen, F).

Game AOMPR{}e (k) Oracle CHAL() :
par «s PGen(1%) cid «cid +1
cid«<—0;£4<0 Zeid <3 D 5 Xcia «— F(xcia)
{yi}ie[cid] «— ACHAL’PI(paT) Return Xciq
If ¢ > cid then return 0

= Oracle PI(Y, a, {Bi }iefeial) :
If Vi € [cid] F(y:) = X, then lo PIY, 2, 1B} efcin)

Return 1 Require: Y = F(a) + Zie[cid] Bi X
Return 0 L—t+1
Return a + Zie[dd] Bix;

Fig. 2. The AOMPR game for a linear hash function family LHF = (PGen, F). For the inputs of PI, X is in R, a is
in D, and each §; is in S.

b) F is a deterministic function that takes as input the system parameter par and an element
x € D and returns an element in R such that F(par,-) : D — R is a epimorphism of S-modules.
Moreover, F is not a monomorphism, which is equivalent to there exists z* € D such that z* # 0
and F(par, z*) = 0. For simplicity, we omit par from the input of F from now on.

CoLLISION RESISTANCE. Collision resistance of linear hash functions is analogous to collision resis-
tance of cryptographic hash functions, which ensures that it is hard to find two distinct inputs that
map to the same output. The CR“L4HF game is defined in Figure 1. The corresponding advantage of
A is defined as Adviye(A, k) := Pr [CR{_“HF =1].

3.2 Algebraic One-more Preimage Resistance

We introduce the notion of algebraic one-more preimage resistance (AOMPR) for linear hash func-
tions, which is formally defined via the game AOMPR’L“HF, as described in Figure 2. It guarantees
that any adversary given a description of a linear hash function (S, D, R,F) cannot invert ¢ + 1
challenges X1,..., Xq41, where X; = F(x;) for x; «<s D, by making at most ¢ queries to the PI
oracle that, on any input Y € R that is an affine combination of the challenges, outputs an element
in the preimage of Y. It is syntactically analogous to the algebraic one-more discrete logarithm
(AOMDL) problem [NRS21], where the adversary wants to compute the discrete logarithms of
q + 1 random challenges in G by making at most g queries to the DLOG oracle, which outputs the
discrete logarithm of the input Y only when Y is an affine combination of the challenges and the
combination is known to the adversary.

The following theorem, our main result on AOMPR, shows that AOMPR, of a linear hash
function family is implied by its collision resistance.

Theorem 1. For any linear hash function family LHF and any AOMPR adversary A making at
most q queries to CHAL, there exists an adversary B for the CRYMF game running in a similar
running time as A such that Advip ™ (A, k) < 2Adviye(B, k) .

Proof (of Theorem 1). Given an adversary A for the AOMPR'MF game, without loss of generality,
we assume that A is deterministic, queries CHAL exactly q times, and queries PI exactly q — 1
times. The construction of B is straightforward. After receiving par from the CR"HF game, B runs
A on input par by simulating the oracles CHAL and PI exactly the same as in the AOMPR'HF
game. After A outputs {y;}ic[q), if

3 i € [q] such that F(y;) = X; and y; # x5, (1)

where x; and X; are generated in the oracle CHAL, then B outputs (z;,y;). Otherwise, B aborts.

ANALYSIS OF B. Denote the event WINg as after A returns, the condition (1) holds. If WINg occurs,
B wins the CR'HF game since F(z;) = X; = F(y;), which implies Adv{}e(B, x) = Pr[WINg].

It is left to show that Pr[WINg] > $Adv{}|E"" (A, k). Since A is deterministic, the execution of
A is fixed given the pair (par,x), where & € D9 denotes the randomness generated in the oracle
CHAL. Denote the event WIN 4 as A wins the AOMPRF game simulated by B. Since B simulate
the game perfectly, we know Pr[WIN 4] = Adv| ;e (A, k). For each par, denote

Wy = {x | WIN4 occurs given (par,x)} ,
Wi := {x | WINg occurs given (par,xz)} .

Claim 1 For each par, there exists a bijection @ : W4 — W4 such that for any x € W4, we have
xeWp v &(x) e Wg.

From the above claim, we can conclude the proof since

Pr[WINg] = Pr[x € Wg]| = = (Pr[x € Wg] + Pr[®(x) € Wg])

N

> éPr[:c eWs v B(x) e Wal > %Pr[m e Wal

1 1
§Pr[WINA] = §Adviﬁ2pr(A, K) .
o

Proof (of Claim 1). We construct @ as follows. For each & € W4, consider the execution of A given
(par,x). Denote B € S©@1)*9 a5 the query matrix of the execution, which is defined as follows.

Definition 2. Given an execution of an adversary A for the AOMPR game, where A makes q
queries to CHAL and ¢ queries to P1, define the query matrix of the ezecution as B € S such
that

)

B, = {@U’, i€ [cid?]

0, 0.w.

where BZ.(j) and cidY) are the values of Bi and cid when A makes the j-th query to PI.

We now define

B) _*

B(x) = x + uP) ¥ |

where z* € D and u(P) € 89 are defined in the following claim.

Claim 2 There exists z* € D such that F(z*) = 0 and for any matriz A € 89 where 0 < { < ¢,
there exists a vector u') € ST and i € [q] such that

Au =0 A Fie[q] : w2 20. (2)

Proof (of Claim 2). Since F is not a monomorphism from D to R, there exists a non-zero element
z* € D such that F(2*) = 0. Since S is a field and A has rank at most ¢ < ¢, there exists a non-zero
vector ul4) € 87 such that Aul?) = 0. Also, since u(?) is non-zero, there exists i € [¢] such that

(4) ()5 .

u,’ # 0, and since S is a field and 2* # 0, we have u,

ANALYSIS OF &. For simplicity, we use u to denote u®) in the following analysis. We first show
that the executions of A given (par, x) and given (par, ®(x)) are identical. Since F(®(x)) = F(x) +
u-F(z*) = F(x) + u-0 = F(x), the challenges output by CHAL are the same in the two executions.
For the j-th query to PI, suppose the prior views of A are identical. Then, A must make the same

query (X(j)7 a(j)7 {Bz(j) }ie

o) 4+ (ﬁ(j))Tm =l + (,B(j))T (& + uz*) = al) + Zie[cid(j)] Bi(j) (@(x)),;, where B denotes the
j-th row of B. Therefore, A receives the same value from PI in both executions. By induction, the
views of A are identical in both executions and thus A outputs the same values in both executions,
which implies @(x) € W4 and thus @ is a map from Wy to Wy.

Then, it is not hard to see that x € Wi v &(x) € Wg. Since the executions of A given x and
&(x) are identical, the outputs y1,...,yq of A are also identical in the two executions. Since there
exists i € [q] such that u;z* # 0, we have either y; # x; or y; # x; + w; - 2, which means WINpg
occurs either in the execution given x or @(x).

It is left to show that @ is a bijection. Since both the domain and range of @ are W4, which is a
finite set, it is enough to show that @ is an injection. For any @1, €3 € W4 such that ¢(x1) = @(x2),
since the execution of A given x; is identical to that given @(x1) and the execution of A given xs
is identical to that given @(x2), we know the executions of A given x; and x, are identical, which
implies the query matrix B in the two executions are identical. Therefore, we have &(x1) = &1 +uz*
and @(x2) = xo+uz* for the same u € §9, which implies €1 = x5. This shows that @ is an injection.

O

[Cid(j)]) in both executions. Since Bu = 0, we have a/9) +Zie[cid(j)] 5§j)xi =

4 Schemes Based on Linear Hash Functions

For a cyclic group G with prime size p and generator g, we can view the description of a linear
hash function with description (S,D,R,F) as an analogue to (G, p,g), where R corresponds to
the group G, the preimage under the function F corresponds to the discrete logarithm to base g,
and S corresponds to the field of scalar Z,. Also, the AOMPR game is analogous to the AOMDL
game. This suggests a general way of transforming any scheme that is secure under the AOMDL
assumption into a scheme that is constructed from linear hash functions and is secure under the
AOMPR assumption. In this section, we discuss how this idea is applied to two specific examples:
MuSig2 [NRS21], a multi-signature scheme, and FROST [KG20], a threshold signature scheme.

4.1 Multi-Signatures

MuSig2 [NRS21] is a two-round multi-signature scheme with key aggregation. Moreover, the first
signing round is message-independent. We first give the syntax and security definition of two-round
multi-signatures following [NRS21], then present a new scheme MuSig2-H based on LHF that is
transformed from MuSig2, and finally show the security of the new scheme under the AOMPR
assumption.

SYNTAX. A two-round multi-signature scheme with key aggregation is a tuple of efficient (random-
ized) algorithms MS = (Setup, KeyGen, KeyAgg, PreSign, PreAgg, Sign, SignAgg, Ver) that behave
as follows. The setup algorithm Setup(1”) returns a system parameter par, and we assume par
is given to all other algorithms implicitly. The key generation algorithm KeyGen() returns a pair
of secret and public keys (sk, pk). The (deterministic) key aggregation algorithm KeyAgg takes as
input a multiset of public keys L with size at most 2% and returns an aggregate public key apk. For
n signers, where the i-th signer has key-pair (sk;, pk;), the signing protocol between them and an
aggregator node to sign a message m € {0, 1}* is defined by the following experiment:

(pp;,sti) < PreSign() , for each i € SS

app < PreAgg({ppy,---,PPn})

3
(out;,st;) < Sign(st;, app, ski, pk;, m, {pk;} je[n]\(s}) » for each i € SS, 3)

o < SignAgg({out1, ..., out,}),

where each signer runs the algorithms PreSign and Sign; the aggregator node runs the algorithms
PreAgg and SignAgg and outputs the signature o. The aggregator node can be one of the signers
and is untrusted in our security model. The (deterministic) verification algorithm Ver(apk,m, o)
outputs a bit that indicates whether or not ¢ is valid for apk and m or not. We say that MS is
(perfectly) correct if, for any m € {0,1}*, Pr[Ver(KeyAgg({pky,...,pk,}),m,0)] = 1, where o is
generated in the experiment in (3) and the probability is taken over the sampling of the system
parameter par, all key-pairs {(ski, pk;) }ic[n]-

SECURITY. The security notion of multi-signatures considered in the prior work [NRS21] is referred
to as MS-UF-CMA, which guarantees that it is not possible to forge a valid multi-signature that in-
volves at least one honest party. The MS-UF-CMA game for a multi-signature scheme MS is defined
in Figure 3, where MS.HF denotes the space of the hash functions used in MS from which the random
oracle is drawn. In the game, we assume the adversary corrupts the aggregator node and all signers
except one and can engage in any number of (concurrent) signing sessions with the honest party.
The corresponding advantage of A is defined as Adviigiema(4, k) := Pr [MS—UF—CMAGS(/&) =1].
OUR SCHEME. Figure 4 shows the scheme MuSig2-H, which is transformed from MuSig2 [NRS21]
with the parameter v = 4, where v denotes the number of nonces generated in the first round of the
signing protocol. In addition to the general transformation, we do two optimizations to MuSig2-H.
First, in KeyGen(), the secret key sk is not sampled from D but from a subset Dy © D such that
F is a bijection from Dy, to R. It can reduce the size of the secret key to the size of the public key.
Also, the range of each hash function is set to Spasn instead of S, where Syaqn is an arbitrary subset
of § with size at least 2. Further, we require the characteristic of the field S to be at least 2*.

The original paper shows the unforgeability of MuSig2 under the AOMDL assumption. Analo-
gous to that, the following theorem shows that the security of MuSig2-H[LHF] is implied by AOMPR
of the underlying linear hash function family LHF in the random oracle model.

10

Game MS-UF-CMA{js(x) :

par < Setup(17)

H «s MS.HF

(sk, pk) «<s KeyGen()

sid < 0

S—g;8 ;0

(L, m, O') - ASlGN,S[GN ,RO(par7 pk)

Ifpk¢ L A (L,m)¢Q
A Ver(KeyAgg(L), m,o) = 1 then
Return 1

Return 0

Oracle PRESIGN() :

sid = sid +1; S « S v {sid}
(pp, st®Y) — PreSign()
Return pp

Oracle SIGN(k, app,m, L) :

If £ ¢ S then return L

out «— Sign(st(k), app,sk,m, L)
L « L v {pk}

Q < Qu{(L,m)}

S «— S\{k}; 8" — S v {k}
Return out

Oracle RO(z) :

Return H(z)

Fig. 3. The MS-UF-CMA game for a mutil signature scheme MS.

Setup(1”) :
par < PGen(1")
Return par
KeyGen() :
sk «s Dyey ; pk — F(sk)
Return (sk, pk)
KeyAgg(L) :
{pky,...,pk,} < L
For i € [n] do

ai — Hagg(L, pk;)
Return apk < 7,1, aipk;
Ver(apk,m, o) :
¢ Hag(apk, Bym) ; (Rs) — o
If F(s) = R + capk then return 1
Return 0
PreSign() :
For j € [4] do

rj «<sD; R; «— F(r;)
pp < (Ri,..., Ra)
st (r1,...,74)
Return (pp, st)

PreAgg({ppy,- .-, PPn}) :
For ¢ € [n] do

(Ri71, e ,R7;74) <« pp;
For j € [4] do

Rj — Yiepn Riy
Return app < (R1,..., R4)

Sign(st, app, sk, pk,m, L) :

(r1,...,74) < st

L « L v {pk}

apk — KeyAgg(L)

a < Hagg (L, pk)
(Rl,...,R4) <« app

b «— Huon(apk, (R1,. ..
RV 'R,
c«— Hsiggapk,R7 m)
5« Zj€[4] b r; + ca - sk
Return out < (R, s)

7R4)’m)

SignAgg({out1,..., outn}) :
(R, s) < out:
For i € [2..n] do
(Ri, 8i) < out;
If R; # R then return L
S« S+ 8;
Return o « (R, s)

Fig. 4. The multi-signature scheme MuSig2-H[LHF], where LHF = (PGen,F) is a linear hash function family. We
assume n < 2" and |L| < 2”. Diey is a subset of D such that F is a bijection from Dyey to R. Further, Hage (+) := H(1,),
Huon () := H(2,-), Heig(+) := H(3,-), where H : {0,1}* — Shash, Shash S S, and [Shasn| = 2. Moreover, we require
char(S) = 2~.

Theorem 2. For any MS-UF-CMA adversary A making at most qs queries to PRESIGN and qy,
queries to RO, there exists an AOMPR adversary B making at most 4qs + 1 queries to CHAL

11

/ ’
Fork*(z, vy, v}, . .. , Vgl V)

Pick the random coin p of A at random
hl,hll,...,hq,h;ﬁH

(I,J,0ut) « A(z, h1,..., hg,v1,...,04;p)
If I =1 orJ=_1 then return L

(r',J', Out’) <—A(x,hh...,hj_l,hll,...,h;,vl...,UJ_l,vf],...,U;,; D)
If I # I’ or h; = h} then return L
Return (I, Out, Out’)

Fig. 5. The forking algorithm built from A for Lemma 1.

running in time roughly four times that of A such that

Advrﬁigﬁ;ﬁﬁﬁm (A k) < \4/ q® - Advi et (B, k) + (1692 + 15) /2%
where q = qp + g5 + 1.

We prove the above theorem using the same techniques as used in the proof of MuSig2 [NRS21]
to construct B given an adversary A. Here, we briefly highlight the differences:

- We need to show that B simulates the MS-UF-CMAMuSig2-HILHF] o5 me perfectly when no bad
event occurs and that the bad events occur with a negligible probability (Claim 3 and Lemma 2)
when the secret key is sampled from D\, instead of Z;,, and the randomness r; is sampled from
D instead of Z,.

- We need to show that B can compute a preimage for each challenge (Claim 4 and Claim 5)
instead of the discrete logarithm to the base element. More precisely, the problem can be
described as follows. Denote the challenges by Uy,...,U; € R. After the interaction with A, B
computes a matrix A € S™¢ and a vector b € D such that A-U = F(b), we need to show that
A has full rank and thus B can compute a vector u = A~!b such that F(u) = U.

Before turning to the proof, we first recall the following variant of the forking lemma from [NRS21]
that will be used in the proof.

Lemma 1. Let q,q > 1 be integers and H,V be two sets. Let A be a randomized algorithm that, on
input x, hi,. .., he,v1,..., vy, outputs a tuple (I,J,0ut), where I € {L}U|q], J € {L}U[¢ +1] and
Out is a side output. Let |G be a randomized algorithm that generates x. The accepting probability
of A is defined as acc(A) = Pr[(I,J,0ut) «s A(z,h1,..., hg,v1,...,vy) + I # L A J# 1],
where the probability is over x <—s |G, hy,... , hg <s H,v1,...,vy <sV and the random coins of A.
Consider algorithm Fork” described in Figure 5. The accepting probability of Fork™ is defined as

acc(Fork?) = Pr[a «s Fork (z, vy, v}, . . U V) o # L],

where the probability is over x —s|G,vi,v],...,vy,v, «<s V. Then,

q

acc(Fork) > acc(A) (aCCq(A) . 11() .

12

Proof (of Theorem 2). Let A be an adversary as described in the theorem. Denote the output
message-signature pair of A as (L*,m* o* = (R*, 2*)). Without loss of generality, we assume .4
always queries RO on Hgg (apk™, m*, R*) before A returns, where apk® = KeyAgg(L*), and always
queries RO on Hyen(apk, (R1, ..., R4),m) prior to each SIGN(k, (Ry, ..., R4),m, L) query, where
apk = KeyAgg(L). (This adds up to qs + 1 additional RO queries, and we let q = q; + qs + 1.)

We first construct an algorithm C compatible with the syntax in Lemma 1, then construct an

algorithm C’ from Fork®, and finally construct B from Fork®".
THE ADVERSARY C. The input of C consists of par, which defines a linear hash function (S, D, R, F),
and uniformly random elements hgagg), ey hgagg), h§Sig), ceey h((fig), hgnon), ey hénon) € Shash- Also,
C can access oracles CHAL and PI, defined the same way as those in the AOMPR'"MF game. (We
can think of this oracle as part of C in the context of the Forking Lemma.) For simplicity, when C
makes a query (X, «, {8;}) to PI, we omit the coefficients a, {3;} whenever they are clear from the
context.

To start with, C makes 4q,+1 queries to CHAL and denotes the challenges as X, Uy, ..., Usq, € D.
Then, C initializes H to an empty table. In addition, it initializes counters ctry,ctragg, Ctrsig, Ctruon
to 0 and a function dt to an empty table, which are used to record the PI query related to each Uj.

We also use a flag BadKey, initially set to false, to denote whether a bad event occurs. Then,
C sets pk <« X and runs A(par,pk) with access to the oracles PP/{E\SIE;N,SfIEJN,f{\CJ), which are
simulated as follows.

RO query Hage(z): If Hyge(x) # L, C returns Hagg (). Otherwise, parse z as (L, &) If the parsing
fails, or X ¢ L, C sets Hygo () <% Shash and returns Hage(x). Otherwise, C increases ctrage by

1, sets Hagg(L, X) < h$) and Hag(L,pk') < Shash for each pk' € L and pk' # X. Let
apk «— KeyAgg(L). If apk € K, B sets BadKey « true. Otherwise, C sets K «— K u {apk} and
returns Hogg (7).

RO query Hyon(z): If Hpon(z) # L, C returns Hyon (). Otherwise, parse x as (;BT(, (Ry,...,Ry),m).
If the parsing fails, C sets Hyon () <=5 Shasn and returns Hyop (2). Otherwise, C increases ctryon by

1 and sets Hyon () <« pnon) Also, C computes R «— Zie[4](h(non) VIR, If Hsig(g[\)i, R,m) =1,

ctrnon Ctrnon
(sig)

ctrgig
RO query Hgg(x): If Hgg(x) # L, C returns Hgig(z). Otherwise, parse x as (apk, m, R). If the
parsing fails, C sets Hgig () < Shash and returns Hgg (). Otherwise, C increases ctrgg by 1 and

sets Hgig(x) < pie) Finally, C sets K «— K u {;EE} and returns Hgig ().

Ctrgig
PreSign(i) query: Same as in the game MS-UF-CMAMuSie2-H “oxcept in the simulation of algo-

rithm Sign, C first increases ctrs by 1 and sets R1; < Ujy4(ctr,—1) for i € [4].

C increases ctrgz by 1 and sets Hsig(ﬁ, R,m)=nh . Finally, C returns Hyop ().

§i\g?1(k, app,m, L) query: Same as in the game MS-UF-CMAMUS€2H "oxcept in the simulation of
algorithm Sign’, C sets s « PI(Z]-E[4] YU 4k—1) + ca - pk), and sets dt(k) — (b, ¢, a, s).
After receiving the output (L*,m*,o* = (R*,s*)) from A, C returns L if BadKey = true or A

does not win the game. Otherwise, C computes apk — KeyAé§ (L*) and:
- Isig as the index such that HSlg(apk* m*, R*) is set to h

- Jsig as the value of ctryon when Hgig(apk™, m*, R*) is as&gned
- Iage as the index such that H,ge(L*, X) is set to hgjfgg);
- Jage as the value of ctryon when Hyge(apk™, m*, R*) is assigned.

Since A wins the game by our simulation, we know such I,z and I, must exist. Then, C returns
(Isig, Jsig, Out), where Out consists of all variables received or generated by C.

13

ANALYSIS OF C. To use Lemma 1, we define IG as the algorithm that sets par <s PGen(1*), uni-
formly samples hgagg), cee hgagg) € Shash, and returns (par, hgagg), e hgagg)). Also, (thig), e thig))
plays the role of (hi, ..., hgq), and (hgnon), ey hgnon)) plays the role of (vy, ..., vy).

We now show that C simulates the game MS-UF-CMA perfectly. In the real game, sk is uniformly
sampled from Dy, and, since F is a bijection from Dy, to S, pk is uniformly distributed over S,

which is identical to the simulation. Also, it is clear that the output distributions of each RO
query and each PRESIGN query are identical to those of the real game. For the simulation of §IE_1/\I,
from the MS-UF-CMA game, we know that C makes at most one query to PI for each session
k. Therefore, from the AOMPR game, we know s; is uniformly distributed over the preimage of
Zje[4] bj_lUiH(k,l) + cay - pk given the view of the adversary, which is identical to the real game.

Therefore, since C simulates the game MS-UF-CMA perfectly, acc(C) > Advr,\l}li'slfgz‘iﬂ?mﬂ (A) —
Pr[BadKey], where Pr[BadKey] is the probability that BadKey = true at the end of C’s execution.
By the following claim and Lemma 1,

1

acc(Fork®) > (AdVII\I/IIi_Sl&C—rl{Il?LHF] (A) - (20" +1)/2%)*/a ~ [Shasn|

- (Advm_s%gzciﬁ?LHF] (A))? _49+3
= q o .

. 2q2+1
Claim 3 Pr[BadKey] < 4.

Proof (of Claim 3). Consider a RO query Hago (L, ﬁ) from A such that X € L and H,ge (L, X) is not
(agg)

assigned prior to the query. The aggregated key from L can be represented as apk = (X)t'hctragg Z,
where t is the number of times X appears in L and Z := Zpkehpk#x pkHagg(LPk)’ which is indepen-

dent of 1(*%®) . Bad Key is set to true if and only if apk € K. We use the following lemma, which we

ctragg

show later, to bound the probability that apk € K.

Lemma 2. For any X € R and any integer t, denote C(t, X) := {(ts) - X | s € Shash}- We say X is
Good if and only if |C(t, X)| = |Shash| for any 1 < t < 2%. Then, we have Prx s [X is not Good] <
1/2%.

Suppose X is Good. Given Z, since t < 2%, we have that apk is uniformly distributed over the set
{YZ|Y e C(t,X)}, which has size |Shasn|- Also, from the execution, we have that |K| < q+qs < 2q,
and thus the probability that BadKey is set to true after the query is at most |K|/|Shash| <
2q/2". Since there are at most g RO queries, the probability that BadKey is set to true during
the simulation is at most 2q2/2%. Therefore, we have that Pr[BadKey] < Pr[X is not Good] +

Pr[BadKey A X is Good] < 24+1. o

Proof (of Lemma 2). For any 1 <t < 2% 51,50 € S, and X € R such that s; # s and X # 0,
since char(S) > 27, we know that ¢ - (s; — s2) # 0 and thus ¢ - (s; — s2) - X # 0, which implies
tsy - X # tsg - X. Therefore, |C(t, X)| = |Shasn|, which means that X is Good. Thus, we have that
Prxg[X is not Good] < Prx.g[X =0] = ﬁ < 1/2%. O
CONSTRUCT C' FROM Fork®. The input of C’ consists of par, which defines a linear hash function

(S,D,R,F) and uniformly random elements hgagg), .. .,héagg) hgnon), hgnon)/, cee hénon), hgnon)/ €

14

Shash- Also, C' can access oracles CHAL and PI defined the same way as those in the AOMPR game.
To begin, €’ runs Fork® (par, hgagg), ce héagg), hgnon), hgnon),, ey hénon), hgnon),). All queries to oracle
CHAL from the first execution of C’' are relayed by B to its own CHAL oracle, and for all CHAL
queries from the second execution of C’, B answers them with the same challenges as in the first
execution. All PI queries from Fork® are relayed by B to its own PI oracle.

After Fork® returns (Isig, Jsig, Out, Out’), by the following claim, C’ computes F such that F(Z) =

apk™ and returns (Ingg, Jagg, (¥, Out, Out’)), where Ingg, Jage, and apk™ are from Out.

Claim 4 If Fork’ returns (Lsig, Jsig, Out, Out’), C' can compute T such that F(¥) = apk™, where
apk™® is from Out.

Proof (of Claim 4). We directly use the notations in the description of C to denote the vari-
ables in Out and use ()’ to denote the variables in Out’. Since Fork® does not return L, we have

Hgig(apk™, m*, R*) = hy # b} = Hglg(apk*,m*,R*). Since the two executions of C are identical

before Hgg(apk®, m*, R*) is assigned hy, we know (apk*,m*, R*) = (apk*',m*', R*'). Therefore, we
have F(s*) = R* + hjapk* and F(s*') = R* + hapk®, and C’ computes T « ‘iiﬁl. O

ANALYSIS OF C'. To use Lemma 1, we define |G as the algorithm that sets par «s PGen(1%) and

returns par. Also, (hgagg), e ,hgagg)) plays the role of (hy,...,hy), and ((hgnon), hgnon),), e (hgnon),

hénon)/)) plays the role of (v1, ... ,vy). It is clear that acc(C’) = acc(Fork®). Therefore, by Lemma 1

and (4), acc(Fork®) = (acc(Forkc))Q/q — m > (Advﬁi’sﬁfﬁﬁw] (A)*/g® — 2.

CONSTRUCT B FROM Fork® . We now give a construct of the AOMPR adversary B using Fork®
and the available CHAL and PI oracles. To start with, B receives par from the AOMPR"MF game
(non) h(non)/ h(non)” m h(non) h(non)/ h(non)” h(non)”’

and uniformly samples h; 1 , , hgnon) oo ha Y hg , hg , hg € Shash-

"

Then, B runs Fork® on input par, (h(non) h(non)) (h(non) h(non)), - (hénon) h(non)) (hénon) ,
U

hgnonV), where (5", h®"") blays the role of v; and (h‘“On) ,hgn°n>) plays the role of v/. All

CHAL queries from the first execution of C’ are relayed by B to its own CHAL oracle, and, for
all CHAL queries from the second execution of C’, B answers them with the same challenges as
the first execution. All PI queries from Fork® are relayed by B to its own PI oracle. Without
loss of generality, we can assume all challenges are different since otherwise B can solve them
.. (non) ; (non)’ ; (non)” ; (non)”
trivially. Denote the event BadHash as any two of the scalars hy 7, h; , hy , hy

hgnon), hgnon)/, hénon)”, hénon)/” are same. Since they are sampled uniformly from Syash, we know
Pr[BadHash] < (49)?/ [Shash| < 16q . Then, we can conclude the proof with the following claim,

which implies Adv{Pe™ (B) = acc(ForkC) — Pr[BadHash] > (Adviprdittit i (A))*/a® — 1697515

g eeey

Claim 5 If Fork® returns (Tagg, Jage, Out, Out’) and BadHash does not occur, B can win the game
AOMPRHF.

O

Proof (proof of Claim 5). Denote (%, Out™, Out®) — Out and (%, Out®, Out™®) — Out’, and
we use ()@ to denote the variables in Out™. The total number of CHAL queries is 4qs + 1, and
the corresponding challenges are X, Uy, ..., Uyq,.

We first show how to compute x* such that F(x*) = X. Since Fork® returns I,ss, we have

Hglg)g(L*(l),X) = h(agg) # h(agg) = Hg?g(L*(S),X). Since the two executions of C are identical

15

before Hg;g is assigned hg:ig), we have L*1) = L*B) (we denote L*V) as L* from here forward) and

H%(L*, pk') = Hggg)g(L*, pk’) for any pk’ € L* and pk’ # X. Therefore, the aggregated keys from L*
/
in the two execution can be represented as apk*(l) =t- h&agg) X+ 7, apk*(?’) —¢.pleee) x + Z,

agg Iagg

where ¢ is the number of times X appears in L* and Z := X crs iy Hi(ilg)g(L"‘7 pk) - pk’ . By

Claim 4, F(Z) = apk*(l) and F(Z') = apk*(3). Therefore, B computes z* = —t(h52§§ _”;Ei?,).

We now show how to compute ui,...,usq, such that F(u;) = U;. For k € [qs], dt(i)(k) =
(b,c,a,s) # L if and only if C queries PI on Zje[4] bj_lUi+4(k_1) + ca - X. Define a set T :=
{(byc-a,s) : ie[4],dtD(k) = (b,c,a,s)}. The total number of PI queries for simulating those
PI queries from C is equal to |T|. From the execution of B, we know for any ij,i2 € [4] and
i1 # iy, where (b, ¢, a,s) = dt" (k) and (V/,¢,d,s') = dt7)(k), if b = ¥/, then we have (b, ¢, a,s) =
(b',c,d’,s"). Therefore, we know for any distinct (b,v,s), (V/,v',s’) € T, it holds that b # t'. Also,
we have |T| < 4. If |T| < 4, B picks an arbitrary ' € Shash\{0 : (b,v,s) € T} and sets s’ «

PI (Zje[4] b’jflUi+(4,1)k>. Then, B adds (V/,0,s") to T and repeats this until 7" has size 4. Denote

the elements in 7" as (b1, v1,81),- .., (b4, v4,84), and we have AU = F(s), where
1 bl b% b:f U1+4(k—1) S1 — 'Ul.iU*
A= U= y 8= :
1 b4 b421 bi U4k S4 — 1)41'*

Since A is a Vandermonde matrix over the field S, A has full rank. Therefore, B can compute
(W14 (hm1)ds - -+ ups)? = A™'s. Also, the number of PI queries for simulating the PI queries from C
and computing T is equal to 4. Therefore, the total number of PI queries made by B is 4qs, which
implies B wins the game AOMPR1F, m

4.2 Threshold Signatures

FROST1 [KG20] and a more efficient version FROST2 [BCK*22] of FROST1 are (partially) non-
interactive threshold signature schemes as formalized in [BCK™22]. We first give the syntax and
security definitions of non-interactive threshold signature schemes following [BCK ™ 22], then present
new schemes based on LHF that are transformed from FROST1/2, and finally show the security of
the new schemes under the AOMPR, assumption.

SYNTAX. A (partially) non-interactive threshold signature schemes for n signers and threshold ¢
is a tuple of efficient (randomized) algorithms TS = (Setup, KeyGen, SPP,LPP,LR, PS, Agg, Vf)
that behave as follows. Parties involved are a leader and n signers. The setup algorithm Setup(17)
initializes the state st; for each signer i € [n] and stg for the leader and returns a system parameter
par. We assume par is given to all other algorithms implicitly. The key generation algorithm
KeyGen() returns a public verification key pk, public auxiliary information aux, and a secret key
sk; for each signer i.

The signing protocol consists of two rounds: a message-independent pre-processing round and
a signing round. In the pre-processing round, any signer i can run SPP(st;) to generate a pre-
processing token pp, which is sent to the leader, and the leader runs LPP(i, pp,sty) to update
its state sty to incorporate token pp. In a signing round, for any signer set SS < [n] with size
t and message m € {0,1}*, the leader runs LR(m, SS,sty) to generate a leader request Ir with

16

Ir.msg = m and Ir.SS = SS and sends Ir to each signer i € SS. Then, each signer ¢ runs PS(Ir, i, st;)
to generate its partial signature psig,. Finally, the leader computes a signature ¢ for m by running
Agg({psig,}icss). In summary, the signing protocol between signers in SS and the leader to sign a
message m € {0, 1}* is represented by the following experiment:

(pp;,st;) < SPP() , stg < LPP(i, pp;,sto) , for each i € S5,

(l?", Sto) — LR(m, 5SS, St()) R

(psig,,sti) < PS(Ir,i,st;) , for each i € SS |

o« Agg({psig;}iess) -

()

The (deterministic) verification algorithm Vf(pk, m, o) outputs a bit that indicates whether or not
o is valid for pk and m or not. We say that TS is (perfectly) correct if for any SS < [n] and any
m € {0, 1}*, Pr[Vf(pk,m,o)] = 1, where o is output from the experiment in (5) and the probability
is taken over the sampling of the system parameter par and the randomness of KeyGen.
SECURITY. A hierarchy for security notions of threshold signatures is proposed in [BCK™22]. Here,
we focus on two of them, T'S-SUF-2 and T'S-SUF-3, which are achieved by FROST2 and FROST1,
respectively. TS-SUF-2 and T'S-SUF-3 require that there exists an efficient strong verification algo-
rithm SVf that takes as input a public key pk, a leader request Ir, and a signature o and outputs
a bit that indicates whether o is obtained legitimately for Ir. SVf satisfies that for each (pk, Ir),
there exists at most one signature o such that SVf(pk,lr,o0) = 1 and for any SS < [n] and any
m € {0,1}*, Pr[SVf(pk, lr,o)] = 1, where Ir and o are generated in the experiment in (5) and the
probability is taken over the sampling of the system parameter par and the randomness of KeyGen.
TS-SUF-2 guarantees that an adversary can generate a valid signature o for m only if it receives
partial signatures from at least ¢ — |C'S| honest parties for the same leader request Ir such that
Ir.msg = m and SVf(pk, Ir,c) = 1, where CS denotes the set of corrupted signers.

TS-SUF-3 is defined only for schemes where Ir additionally specifies a function Ir.PP that maps
each i € Ir.SS to a pre-processing token generated by signer i. TS-SUF-3 guarantees that an adver-
sary can generate a valid signature o for m only if, in addition to the condition of TS-SUF-2, it re-
ceives partial signatures from each honest signer ¢ such that ir.PP(7) is honestly generated by signer
i for Ir. Formally, the TS-SUF-2 game and the TS-SUF-3 game are defined in Figure 6, where TS.HF
denotes the space of the hash functions used in TS from which the random oracle is drawn. The
advantage of A for the TS-SUF-X game is defined as Advis™" ™ (A, k) := Pr [TS—SUF—X#S(IQ) =1]
for X € {2,3}.

OUR ScHEMES. Figure 7 shows the protocols FROST1-H and FROST2-H that are transformed from
FROST1 and FROST2, respectively. In addition to the general transformation, we need to pick
an injection x() : [n] — S. The choice of x(,) can be arbitrary, and the corresponding Lagrange

coefficient for a set of index S < [n] and i € S is defined as A := [Lies @iy XLX_—’X] We analyse the
correctness of the scheme in Appendix A. Also, similar to the multi-signature case, we optimize the
schemes by sampling key shares from Dy, < D and setting the hash range to be Spasn S S.

The following theorems show that, under the AOMPR assumption, FROST2-H is T'S-SUF-2-
secure and FROSTI1-H is TS-SUF-3-secure in the random oracle model. We prove the theorems
using the same techniques from [BCK™22]. The differences from the previous proofs are the same
as those highlighted in the case of multi-signatures in Section 4.1.

Theorem 3. For any TS-SUF-2 adversary A game making at most qs queries to PPO and qy,
queries to RO, there exists an AOMPR adversary B making at most 2qs + t queries to CHAL

17

r A
Game | TS-SUF-27 (k) |, ' TS-SUF-375 (k) ' : Oracle PPO(3) :
L o —_—

o~ Tene Require: i € HS
«— Setup(1®) ; H «s TS.HF
par up(1”) (pp, sti) <s SPP(st;)

Le@;8—();8 < ()

(m 0’) - AINIT,PPO,PSI(;NO,R()(pa,r) PP; « PP, u {pp}
If (Vf(pk,m, o) # 1) then return 0 Return pp
Return (not 3ir : Ir.msg =m A SVf(pk,ir,o) Oracle PSIGNO(i, Ir) :

A [SUr)| =t —|CS)) m «— lr.msg
777777777777777777777777777777 1 Require: Ir.SS < [n] and i € HS
:ForlreLdo Lo Lot

i S'(Ir) « {ie HS nIr.SS : Ir.PP(i) € PP;}

|
|
| . /7 .
t;) «—s PS(lr,,st;
' Return (not 3lr : Ir.msg = m A SVF(pk, ir,o) | (psig, st;) s PS(Ir, i, st.)
|
|

If (psig # L) then

L A 18Un)] > max{S'(in), t — |CS1) | S(ir) < S(ir) v {i}
Oracle INIT(CS) : Return psig

HS « [n]\CS Oracle RO(z) :

(pk, aux, sk, ..., sky) < KeyGen() Return H(z)

For i € HS do

st;.sk < sk; ; st;.pk < pk ; st;.aux = aux
Return pk, aux, {sk; }iccs

Fig. 6. The TS-SUF-2 game and the TS-SUF-3 game for a threshold signature scheme TS. The TS-SUF-2 game
contains all but the dashed box, and the TS-SUF-3 game contains all but the solid box.

running in time roughly equal two times that of A such that

AVERE e (A #) < y/a - (AdVITR™ (B,) + (502)/27)
where q = qp + qs + 1.

Theorem 4. For any TS-SUF-3 adversary A making at most qs queries to PPO and qp queries
to RO, there exists an AOMPR adversary B making at most 2qs + t queries to CHAL running in
time roughly equal two times that of A such that

AQVERSEE e (Ao) < dn-q) (AVERP (B, k) + 6a/27) |

where q = qp + 95 + 1.

4.3 Proof of Theorem 3

Let A be an adversary as described in the theorem. Denote the output message-signature pair of A4 as
(m*,0* = (R*, z*)). Without loss of generality, we assume A always queries RO on Ha(pk, m*, R*)
before A returns and always queries RO on Hj(pk, ir) prior to the query PSIGNO(i, Ir) for some
i and Ir. (This adds up to qs additional RO queries, and we let q = qp + qs + 1.) Denote Ir* as
the leader query such that Hy(pk, Ir*) is the first query prior to the query Ha(pk, m*, R*) satisfying
SVf(pk, ir*,o*) = true. If such Ir* does not exists, Ir* is set to L. Denote the event E; as

Vf(pk,m*,o*) A (Ir* =1L v So(lr*) <t —1|CS]) .

It is clear that if A wins the game TS-SUF-2FROST2-HILHF] " then E) must occur, which implies
PrlEi] = Advf;sé%lsf%_H[LHF] (A). Therefore, the theorem will follow from the following lemma. (We

18

Setup(1”) :
par «<s PGen(1%)
For i € [n] do
sto.curPP; « &
st;.mapPP « ()
Return par
KeyGen() :
For i € [0..t — 1] do
a; <% Dkey
For i € [n] do '
ski s 3" aj-x] ; pk; — F(ski)
pk — F(ao)
aux < (pkq,...,pk,)
Return pk, aux, {sk;}e[1..n]
SPP(st;) :
r«sD;s«sD
pp — (F(r),F(s))
st;. mapPP(pp) < (r,s)
Return (pp, st;)
LPP (7, pp, sto) :

sto.curPP; « stg.curPP; U {pp}
Return stg
LR(M, SS,sto) :
If 37€ 85 : stg.curPP; = ¢ then
Return L
Ir.msg — M ; ir.SS «— SS
For i € SS do
Pick pp, from sto.curPP;
Ir.PP(i) « pp,
sto.curPP; « sto.curPP;\{pp,}
Return (Ir,sto)

Vf(pk,m, o) :

(R,s) «— o

¢ < Ha(pk,m, R)

Return (F(s) = R + ¢ pk)

CompPar(pk, Ir) :

m <« lr.msg ; (R*,s*) — o
For 4 € Ir.SS do

d; — Hy (pk, Ir i)‘

(RL,S) — lr PP(i)
R Yicipss(Ri + diSi)
¢ < Ha(pk, M, R)
Return (R, ¢, {d;}icir.ss)
PS(lT, 7, Stz‘) :
pp; < Ir.PP(3)
If st;.mapPP(pp,;) = L then

Return (L, st;)

(73, 85) < st;.mapPP(pp,)
st;.mapPP(pp,) «— L
(R, c,{d;}jeir.ss)

«— CompPar(st;.pk, Ir)
zi<—7Ti+di-si+c-)\irASS - st;.sk
Return ((R, z;), st;)
Agg(PS,stg) :

R—1;z«0
For (R',2") € PS do
If R= 1 then R« R’
If R # R’ then return (L, stg)

ze—z+27
Return ((R, z), sto)

SVf(pk, Ir,o) :

(R*,2*) «— o
(R, c,{d;}jeirss)

«— CompPar(st;.pk, Ir)
Return (R = R*) A
(F(z*) =R+ c-pk

Fig. 7. The protocol FROST1-H[LHF] and FROST1-H[LHF], where LHF = (PGen, F) is a linear hash function family.
The protocol FROST1-H contains all but the dashed box, and the protocol FROST2-H contains all but the solid box.
Further, n is the number of parties, and ¢ is the threshold of the schemes. X() is an injection from [n] to S and A%
denotes the Lagrange coefficient which is computed as A

bijection between Dyey and S. The function H;(-) is computed as H(z,

= Hjes\{ ren . Diey is a subset of D such that F is a
-) for i = 1,2, where H: {0,1}* — S.

isolate this statement as its own lemma also because it will be helpful in the proof of Theorem 4

below.)

Lemma 3. There exists an adversary B for the AOMPR"MF game making at most 2q5 + t queries

to CHAL such that

Pr[Eq] < \/q (Adv

Moreover, B runs in time roughly twice that of A.

19

LhF (B) +592/27) .

Fork(z) :

Pick the random coin p of A at random
hi,RY, ... he,hy — H

(I,0ut) « A(z, h1,..., hq;p)

If I = 1 then return L

(I’, Out') — A(z,h1,...,hr—1, hy, ..., h;;p)
If I # I’ then return L

Return (I, Out, Out’)

Fig. 8. The forking algorithm build from .A.

To prove Lemma 3, we use the following variant of the forking lemma from [BTZ22].

Lemma 4. Let ¢ > 1 be an integer, S < [1..q] be a set, and H be a set. Let A be a randomized
algorithm that on input , hi, ..., hy outputs a pair (I,0ut), where I € {L} U S and Out is a side
output. Let |G be a randomized algorithm that generates x. The accepting probability of A is defined
as

acc(A) = Pry s IG,h1,....hg <$ w[(I,0ut) «s A(x, hy,..., hq) I 1].

Consider algorithm Fork described in Figure 8. The accepting probability of Fork™ is defined as
acc(Fork?) = Pry cs1g[a «s Fork(z) : o # 1] .

Then, acc(Fork) > acc(A)?/|S].

Proof (of Lemma 3). We first construct an algorithm C compatible with the syntax in Lemma 4
and then construct B from Fork®. The input of C consists of par that defines a linear hash function
(S,D,R,F) and uniformly random elements hy, ..., hoq € Shash- Also, C can access oracles CHAL
and PI defined the same as those in the AOMPR""F game. (We can think of the oracles as part
of the input of C in the context of the Forking Lemma.) For simplicity, when C makes a query
(X, o, {Bi}) to PI, we omit the coefficients «, {3;} which are clear from the context. To start with,
C makes 2qs + ¢ queries to CHAL and denotes the challenges as Ag,..., A1, U1, V1, ..., Ug,,
V4. € D. Then, C initializes all the states sto,...,st,. In addition, it initializes counters ctr,,ctry,
to 0 and a function dt to an empty table, which are used to record the PI query related to each
(U;j,V;). C also initializes curLR « ¢ to record all leader requests that appears during the game
and initializes ctrPP to an empty table, which are used to record the counter corresponding to each
token generated by honest parties. We also use a flag BadPPO to denote whether a bad event occurs,
which are initially set to false. Then, C runs A with access to the oracles INIT, PPO, PSIGNO, RO,
which are simulated as follows.

IE&(C’S): C initializes H to an empty table and sets pk < Ay, pk; = H;;%J A; xZ for i € [n], and
sk; < PI(pk;) for i € CS. C samples G; <—s Dy for i € [0..(t — 1)] and sets sk; < Z;;%) djxg for
i € CS. Then, C computes a polynomial f(x) = Zf;é piz® such that u; € D for i € [0..(t — 1)],
f(x;) = sk; —sk; for i € CS, and f(x;) = 0 for i € S’, where S’ < [n] denotes the set of the
first (¢t — |CS|) honest parties. ! C sets pk; < pk; + F(f(x;)) for i € [n]. Finally, C returns
(pk,aux = (pky,...,pky,), {ski}iccs).

! Since the degree of f is t and we fix ¢ points of f, f is fixed and we can compute the coefficients of f by solving a
linear equation.

20

RO query Hj(z): If Hi(x) # L, C returns Hy(x). Otherwise, parse x as (E)T(, Ir). If the parsing
fails or E)\IZ # pk, C sets Hy(z) «<—s Shasn and returns Hy(x). Otherwise, C increases ctry, by 1, sets
Hi(x) < hactr,—1, and adds Ir to curLR. Also, C computes R « > ., <s(Ri+hactr,—1-5:), where
(Ri, Si) < Ir.PP(i). If Ha(pk,Ilr.msg,R) = L, C sets Ha(pk, Ir.msg, R) = hocr,. In addition,
define mapLR(ctry) := Ir and set curLR « curLR U {lr}. Finally, C returns H;(x).

RO query Ho(x): If Ho(z) # L, C returns Ha(x). Otherwise, parse x as (I)T(, m, R). If the parsing
fails or ;)T< # pk, C sets Ha(z) <3 Spash and returns Ha(x). Otherwise, C increases ctry, by 1 and
sets Ho(x) < hactr,, - Finally, C returns Hy(z).

1’313\0/(7,) query: Same as in the game TS-SUF-2FROST2-H “oxcept in the simulation of algorithm
SPP, C first increases ctrs by 1 and sets pp <« (Uctr,, Vetr,), sti.mapPP(pp) < (0,0), and
ctrPP(i, pp) « ctrs. In addition, BadPPO is set to true if there exists Ir € curLR such that
lTPP(Z) = (Uctrsa‘/ctrs)‘

P/SEn/O(i, Ir) query: Same as in the game TS-SUF-2FROST2H "except in the simulation of algo-
rithm PS, if st;.mapPP(pp) # L, C sets

z; «— PI (U]’ + dZV} +c-)\?'SS . pki) ,

where j « ctrPP (i, lr.PP(i)). In addition, C sets dt(j) < (i, k, d;, cAI">S, 2;), where k denotes
the index such that Hj(pk, Ir) is set to hor_1 during the simulation.

After receiving the output (m*,o* = (R*, z*)) from A, C returns L if BadPPO = true or £}
does not occur. Otherwise, C finds the index I such that Hy(pk, m*, R*) is set to h; during the
simulation. By our assumption of A, we know such I must exist. Then, C returns (I, Out), where
Out consists of all variables received or generated by C.

ANALYSIS OF C. To use Lemma 4, we define S := {2k}ic1.q and IG as the algorithm that runs
PGen(1%) and outputs par. From the simulation, we know the output index I of C is always in S.

It is not hard to see C simulates the game TS-SUF-2FROST2H perfectly, which implies acc(C) =
Pr[F1]— Pr[BadPPO], where Pr[E;] refers to the probability in the original TS-SUF-2FROST2-H[LHF]
game with A (as in the lemma statement), whereas Pr [BadPPO] is the probability that BadPPO =
true at the end of C’s execution. Since (Uj, V;) is sampled uniformly from R. Therefore, for each
PPO(i) query, the probability BadPPO is set to true is less than |curLR|/|R| < q5,/2%. Therefore,
we have Pr[BadPPO] < q4q;/2". By Lemma 4,

acc(Fork®) > (Pr[E1] — asqn/27)%/q = Pr[E1]*/q — 2Pr[Ei]asan/ (27 - q)
> Pr(E1]?/q —q/2" .

CONSTRUCT B FROM Fork®. We now give a construct of the AOMPR adversary B using Fork®, and
the available CHAL and PI oracles. To start with, B receives par from the AOMPR""F game and
runs Fork(par). All the CHAL queries from the first execution of C are relayed by B to its own
CHAL oracle, and for all the CHAL queries from the second execution of C, B answers them with the
same challenges as the first execution. All the PI queries from Fork® are relayed by B to its own PI
oracle. Without loss of generality, we can assume all the challenges are different, since otherwise,
B can solve them trivially. Denote the event BadHash as {h1,...,haq} n {R],..., /2q} # &, where
hi, R, ... hag, h’zq generated in the execution of Fork® are same. Since the hash values are sampled
uniformly from Spash, we know Pr[BadHash] < 4%/ |Shash| < 492%/2%. Then, we can conclude the
proof with the following claim, which implies

21

AdvEP" (B) = acc(Fork®) — Pr[BadHash] > Pr[E;]?/q — 5q%/2" .

Claim 6 B can win the game AOMPRwr, if Fork® returns (I,0ut, Out’) and BadHash does not
occur.
O

Proof (of Claim 6). We directly use the notations in the description of C to denote the variables
in Out and use ()’ to denote the variables in Out’. The total number of the CHAL queries is ¢ + 2q;
and the corresponding challenges are Ag, ..., A;—1,U1,V1,...,Uq,, V.-

We first show how to compute ag, ..., a;—1 such that F(a;) = A;. By the execution of Fork®, we
know (pk,m*, R*) = (pk’,m*', R*) and pk = Ag. Since I € S, let k* = I/2. It is not hard to see
that mapLR(k*) = Ir*. (If mapLR(k*) = L, Ir* is also L.) Since BadHash does not occur, we have
Ho(pk, m*, R*) = hy # K, = H(pk,m*, R*). Since F(z*) = R* + hjAo, F(2*') = R* + W} Ao, we
have F(z* — 2*') = (h; — b)) Ao and therefore B computes ag < th_—i/

Define Ty :={j : (i,k,d,c,z) < dt(j), k = k*}. For each j € Ty n Tyy, let (i, k,d, ¢, z) «— dt(j)
and (¢, k',d’,c,2") < dt'(j), and we have F(z) = U; + dV; + ¢ - pk;, F(2') = U; + d/de/ + - pky,
c = h]Aér*'SS, and ¢ = h’])\llf*'ss. Since BadPPO = false during both execution of C, we know
(Uj;,Vj) is returned by a query PPO(%) prior to the query Ho(pk, M*, R*) during the first execution
of C. Since the two executions of C are exactly the same prior to the query Ha(pk, m*, R*), we
know i’ = 4. Also, we know d = hggp_1 = hogx_1 = how_1 = d', which implies F(z — 2/) =
Aﬁf*'ss(hj — hY) - pk;. Since hy # h;, B computes y; « ' which satisfies F(y;) = pk;.

Denote D := {i}jery AT, (i,kdc,2)—dt(j)- Since Ey occurs in the first execution of C, we know |Ty:| =
[S2(Ir*)| < t — |CS|. Therefore, we know |D| = |Tgt N Tyy| < t — |CS|. Therefore, B can pick an
arbitrary set D' € HS\D with size (t—|CS|—|TynTyy|—1) and for each i € D', B sets y; < PI(pk;).
Denote Doy = CS U D U D', and we have |Dyy| =t —1 and for each i € Dyo;, B knows y; such that
F(yi) = pk;. Since pk; = F(f(xi)) + Ao + 2jefi—1] 4j -xJ, denote Dyo; = {i1,...,%—1} and we have

. Y t_l
Al F(yu - f(xh) - CLO) Xiy Xil
M. = , where M = R : (6)
A F(yi,o — f(xi,1) — ao) Xip_q * " X;?_l
t—1
Since M is a Vandermonde matrix, we know M has full rank and thus B can compute a,...,a;—1

from (6) such that F(a;) = A; for i € [t — 1]. Further, for i € [n]\Dyys, B computes y; < f(x;) +
2iel0.(t—1)] % * Xi» Which satisfies F(y;) = pk;.

We now show how to compute uq,v1,...,uq,, vq, such that F(u;) = U; and F(v;) = V;. From the
execution of C, we know dt(j) = (4,k,d, c,z) # L if and only if C queries PI on U; + dV} + ¢ - pk;.
Therefore, denote U; + dV; + ¢ - pk; as the PI query associated with dt(j). For each j € g5, there
are the following cases.

Case 0: Both dt(j) and dt'(j) are L. In this case, B computes u; and v; by directly querying oracle
PI on U; and Vj.

Case 1: Exactly one of dt(j) and dt’(j) is not 1. Without loss of generality, assume dt(j) =
(i, k,d,c, z), which implies F(z) = Uj + dV; + c- pk;. B computes v; by directly querying oracle
PI and computes uj <— 2z —d-v; —c-y;.

22

For all the following cases, both dt(j) and dt'(j) are not L and we denote (i, k, d, ¢, z) < dt(j) and
(i, K, d', ¢, 2') < dt'(j).

Case 2: k # k' or k = k' > k*. In this case, we know d = hgy—1 # hiy, ; = d and F(z) =

z—cyi—z'+cyy

Uj +dV; + c- pk;, F(2') = Uj + d'Vj + ¢ - pk;. Therefore, B computes v; « ——~—", and
Uj < z—d-vj—c-y;.

Case 3: k =k’ = k*. In this case, B computes v;, u; the same as Case 1.

Case 4: k = k' < k*. B computes vj, u; the same as Case 1. Also, in this case, we have d = d’ and

¢ = . Therefore, B queries PI oracle only once in order to simulate the PI queries associated
with dt(j) and dt’(3j).

We now count the number of PI queries made by B.

- B queries PI oracle | CS| times queries for simulating query PI(pk;) made by C for each i € |CS]|.

- B queries PI oracle |D’| times queries for computing ag, . .., a;1.

- For each j € qs, B queries PI twice for simulating query associated with dt(j) and dt’(j) and
computing u; and v; in case 0, 1, 2, 4 and queries 3 times in case 3.

Since the condition of case 3 is equivalent to j € Ty N Ty, the total number of PI queries made by B
is equal to 2qs + | Ty N Tyy | +|CS|+|D'| = 2qs+t— 1. Therefore, B wins the game AOMPR pr. ©

4.4 Proof of Theorem 4

Let A be the adversary described in the theorem. Denote the output message-signature pair of A as
(m*,o* = (R*, 2*)). Without loss of generality, we assume A always queries RO on Ha(pk, m*, R*)
before A returns and always queries RO on H;j (pk, Ir, i) prior to the query PS1IGNO(¢, Ir) for some
i and Ir. (This adds up to qs additional RO queries, and we let q = qp, + qs + 1.) Denote Ir* as
the leader query such that Hy(pk, ir*,) is the first RO query prior to the Ha(pk, m*, R*) query for
some 17 satisfying SVf[H](pk, Ir*,c*) = true. If such Ir* does not exist, Ir* is set to L. Denote the
event Fq as
VI[H](pk, m*, %) A (Ir* =L v Sa(lr*) <t —1|CS]) .

Denote the event Fy as
VI[H](pk,m*,0%) A Ir* # L A So(lr*) # Ss(ir*) .

If A wins the game TS-SUF-3FROSTI-H and ir* # || we know either So(Ir*) < t —|CS| or So(Ir*) #
S3(Ir*). Therefore, if A wins the game TS-SUF-3FROSTI-H "then either E; or Ey occurs, which
implies

AthFséglg_Tgl—H[LHF] (A) < Pr[E1] + Pr[Es] < 2max{Pr[E\], Pr[E]} .

Thus, we conclude the theorem with the following two lemmas.

Lemma 5. There exists an adversary B for the AOMPRY"WF game making at most 2q5 + t queries
to CHAL such that

Pr{E1] < y/a- AV (B) + 3a2(n + 1)2/2%) |

Moreover, B runs in time roughly equal two times that of A.

23

Fork{‘(z:) :

Pick the random coin p of A at random
hiy...,hqg — H

(I,J,0ut) <« A(z,h1,...,hg;p)

If I = 1 then return L

hy — H

(I', J',0ut’) «

A(l’,]’L17 ey h1_1, h/Iv h1+1, ceey hq; p)

If I #1I or J # J then return L
Return (7, J, Out, Out’)

Fig. 9. The forking algorithm build from A.

Lemma 6. There exists an adversary B for the AOMPR""F making at most 2q5 queries to CHAL
such that

Pr[E2] < 1 ay/2(AdviseP (B) + 1/2%) .
Moreover, B runs in time roughly equal two times that of A.

This completes the proof of the theorem, subject to proofs of the lemmas that we discuss next.

The proof of Lemma 5 is almost the same as Lemma 3, so we omit the full proof. The only
difference is that C takes as input hi,...,h(,41)q in order to simulate all RO queries. For a RO
query Hy(pk, I, i), C first enumerates all i’ € [n] and assigns hctr, —1)(n41)+i to Hi(pk, Ir,4’). Then,
C computes the nonce R for Ir and assigns heg, (n+1) to Ha(pk, Ir.msg, R) if it is not assigned any
value yet. Similarly, for a new RO query Hy(pk, M, R), its value is set to Ay, (n+1)- The rest follows
by a similar analysis.

To prove Lemma 6, we need the following variant of the forking lemma.

Lemma 7. Let ¢ = 1 be an integer and H and Q be two sets. Let A be a randomized algorithm
that on input x, hy, ..., hq outputs a tuple (I,J,0ut), where I € {L} U [l..q], J € Q, and Out is a
side output. Let |G be a randomized algorithm that generates x. The accepting probability of A is
defined as

acc(.A) = Pr; s IG,h1,... hg <$ H[(I, J, Out) <«—$.A(:E, hi,..., hq) I # J_] .
Consider algorithm Fork§4 described in Figure 9. The accepting probability of Fork§4 is defined as
acc(Forks') := Pry s ig[ov s Fork(z) : a # 1].

Then, acc(Forks') = acc(A)?/(q-|Q)).

Proof (of Lemma 6). We first construct an algorithm C following the syntax of the algorithm
described in Lemma 7 and then construct B from Fork®. The input of C consists of par that defines
a linear hash function (S,D,R,F) and uniform random elements hy,. .., hy.q € Shash. Similarly to
the proof of Lemma 3, C can oracles CHAL and PI oracle and at the beginning, start with, C makes
2q, queries to CHAL and denotes the challenges as Uy, Vi, ..., Ug,, Vg, € D. Then, C initializes all

the states sto, ..., st, as in the game TS-SUF-3FROSTI-H "41(initializes the counters ctrg,ctry, to 0
and the function dt to an empty table. C also initializes ctrPP to an empty table, which are used

24

to record the counter corresponding to each token generated by honest parties. Then, C runs A
with access to the oracles fﬁi 15-13(/), P/SEI\?O, f{\é, which are simulated as follows. In the following
description, we use 7 to denote the index of parties, j to denote the index of Uy, Vi,...,U,, Vq,,
and k to denote the index of hy,..., hyq.

I/rTi/t(CS): C initializes H to an empty table and samples ao, . .., a;—1 uniformly from Dycy. Define
f(z) = Z;‘f;é a;z’. Then, C sets pk < F(ao), pk; < F(f(x;)) for i € [n], and sk; < f(i) for
i € CS. Finally, C returns pk,aux = (pky,...,pk,), {ski}iccs-

RO query Hi(z): If Hi(z) # L, C returns H;(x). Otherwise, C parses = as (E>T<, Ir,1) for some
i € [1..n]. If the parsing fails or pk # pk, C sets Hi(xz) «s Shasnh and returns Hj(z). Otherwise,
C increases ctry, by 1 and sets Hi(pk, Ir,i) < hy(ctr,—1)4i for each i € [n]. In addition, let
mapLR(ctry) := Ir. Then, C computes R «— Y., ss(Ri + S%), where (R;,S;) < Ir.PP(i) and
d; = Hq(pk,Ir,i). If Ha(pk, ir.msg, R) = L, C sets Ha(pk, ir.msg, R) «<—s Z,. Finally, C returns
H1 (.T)

RO query Ho(x): If Ho(x) = L, C sets Ha(x) «<—s Spagh. Then, C returns Ha(z).

ﬁf’()(z) query: Same as in the game TS-SUF-3FROSTI-H “oxcept in the simulation of algorithm
SPP, C first increases ctrs by 1 and sets pp «— (Uctr,, Vetr,), Sti-mapPP(pp) < (0,0), and
ctrPP (i, pp) « ctrs.

P/SEIIO(Z', Ir) query: Same as in the game TS-SUF-3FROSTI-H "oxcept in the simulation of algo-
rithm PS, if st;., mapPP(pp) # L, C computes

2z« PL(U; + d;V;) + c- A95 - £(i)

where j « ctrPP(i, pp). In addition, C sets dt(j) < (k,d;, zi — cAl*SS - £(i)), where k denotes
the index such that Hj(pk, Ir,7) is set to hj during the simulation.

After receiving the output (m*,o* = (R*, z*)) from A, C returns (L, L1, 1) if Ey does not
occur. Otherwise, we know Sy(lr*) > 0 and So(lr*) # Ss(ir*). Therefore, there exists k* and i*
such that ¢* € S3(Ir*)\S2(lr*) and mapLR(k*) = Ir*. (Since So(ir*) < S3(Ir*), we must have
S3(Ir*)\Sa2(Ir*) # &.) Since i* € Sz(Ir*), there exists j* € [1..q,] such that Ir*.PP(i*) = (Ujx, Vjx).
If dt(5*) = L, C sets J « L. Otherwise, let (k,d,z) « dt(5*) and C sets J = k. Then, C returns
(n(k* — 1) +4*, J,0ut), where Out consists of all variables received or generated by C, including
R I
ANALYSIS OF C. To use Lemma 7, we define IG as the algorithm that runs PGen(1*) and outputs
par. The output J is either L or in [1..(n - q)]. It is not hard to see that C simulates the game
TS-SUF-3FROSTI-H perfectly, which implies acc(C) = Pr[Es], where Pr [Es] refers to the probability
in the original TS-SUF-3FROSTI-H game with A (as in the lemma statement). By Lemma 7,

PF[E2]2 < PF[E2]2 ‘

ForkS) > <
ace(Forkz) n-qn-q+1) 2n2q?

CONSTRUCT B FROM Fork®. We now give a construct of the AOMPR adversary B using Fork®, and
the available CHAL and PI oracles. To start with, B receives par from the AOMPRM"MF game and
runs Fork®(par). All the CHAL queries from the first execution of C are relayed by B to its own
CHAL oracle, and for all the CHAL queries from the second execution of C, B answers them with the
same challenges as the first execution. All the PI queries from Fork® are relayed by B to its own PI
oracle. Without loss of generality, we can assume all the challenges are different, since otherwise, 3

25

can solve them trivially. Denote the event BadHash as h; # h/;, where I are outputted by the first
execution of C. Since hy, I are independent of A/, we know Pr[BadHash] < 1/|Shasn| < 1/2%. Then,
we can conclude the proof with the following claim, which implies

PF[E2]2

Adv1ie™ (B) > acc(Fork§) — Pr[BadHash] > 2%

1/2% .

Claim 7 B can win the game AOMPR wr, if Fork® returns (I,0ut, Out’) and BadHash does not
occur.
O

Proof (of Claim 7). We directly use the notations in the description of C to denote the variables
in Out and use (-)’ to denote the variables in Out’. The total number of the CHAL queries is 2qs
and the corresponding challenges are Uy, Vi, ..., Ug,, V..

We now show how to compute u;,v; for each j € [qs] such that F(u;) = U; and F(v;) = V;.
There are the following cases.

Case 0: Both dt(j) and dt'(j) are L. In this case, B computes uj,v; by directly querying oracle
PI(U;) and PI(V}).

Case 1: Exactly one of dt(j) and dt’(j) is not L. Without loss of generality, assume dt(j) = (k, d, 2),
which implies F(2) = U; + dVj. B computes v; by directly querying oracle PI(V}) and computes
Uj < 2 — d- Vj.

For all the following cases, both dt(j) and dt'(j) are not L and we denote (k,d,z) < dt(j) and
(K, d, 2"« dt'(j).

Case 2: d # d'. In this case, B computes v; = Z:—éj, uj =z —d-vj.
Case 3: d = d'. In this case, B computes v;,u; the same as Case 1. Also, since d = d’, B queries
PI oracle only once in order to answer queries PI(U; + dV;) and PI(U; + d'V;) from Fork®.

From the execution of C, we know dt(j) = (k,d, 2) # L if and only if C queries PI on (U; + dVj).
Therefore, denote (U; 4+ dVj) as the PI query associated with dt(j). For all the above cases, B
queries PT oracle twice for simulating PI queries associated with dt(j) and dt’(j) and computing
Uj,Vj.

We now show how to compute u;+ and v;«. From the execution of Forkg7 we know pk = pk’ and
mapLR (k) = mapLR/(k) for all & < I, which implies Ir* = mapLR(I) = mapLR/(I) = Ir*'. Since
E5 occurs in both executions of C, we know SVf(pk, ir*, (R*, 2*)) = true and SVf(pk, Ir*, (R* z*')) =
true are valid. Therefore, F(2*) = R* + F(apc), R* = > ,cj* ss(Ri + diSi), 7" = R* 4 F(aypd),
R* = Y ss(Ri + d}S;), where (R;, S;) = Ir.PP(i), ¢ = Hao(pk, M*, R*), ¢ = Hy(pk, M*, R*'),
and d; = Hy(pk, Ir*,i), d; = Hy(pk, Ir*,i). Since for each i # i* we have d; = hyx_1)4; = dj, we
have

F(z* —2*) = R* — R* + F(ag(c — ¢)) = (dix — dx)Six + Flag(c —) .
2¥— 2% —ag(c—c')

d; —d;*
directly. In this case, B queries PI only once to compute uj+ and v«. If J # L, let (k,d,z) <
dt(j*) = and (K',d’, 2') < dt(j*). Then, B computes ujx = z — d - v;«. Since i* ¢ Sy(Ir*), we know
k # I.(Otherwise, suppose k = I. Since I = n(k* — 1) + i* and mapLR(k*) = Ir*, we know a
PS1aNO(i*, Ir*) is made and does not return 1 during the simulation, which implies i* € Sy (Ir*).)

Therefore, C can compute v;x = .If J = 1, B computes u;+ by querying PI(Ujx)

26

Game DLogéGen(/{) : Game RSA#:., (k) :

(G, p, g) <3 GGen(1") (N, e) «s RGen(1%)

Z«sG w s Zx

z s A(G,p,g,2) u s A(N,e,w)

If g* = Z then If u® = w then
Return 1 Return 1

Return 0 Return 0

Fig.10. The DLog game and the RSA game.

Thus, we have ¥ = J =k # I and d = hy; = d’, which means B only needs to query PI once
to simulate the PI queries associated with dt(j*) and dt’(j*). Therefore, the total number of PI
queries made by B is equal to 2qs — 1, which implies B wins the game AOMDL"F.]

5 Instantiations

5.1 Instantiations From the Discrete Logarithm Problem

Di1SCRETE LOGARITHM PROBLEM The discrete logarithm problem is formalized by the DLog game
defined in the left side of Figure 10. The group generation algorithm GGen(1*) outputs (G, p, g),
where G is a cyclic group with prime size p > 2% and generator g. The corresponding advantage of
A is defined as Advélgfn (A, k) := Pr[DLogggen, = 1]-

INSTANTIATION Following the instantiation from [HKL19], a linear hash function family GLHF is
instantiated from a group generation algorithm GGen as follows.

- On input 1%, PGen runs GGen(1%) and receives a group description (G, p, g). Then, PGen uni-
formly samples Z € G and returns k < (G,p, g, Z).

- Given k = (G,p,g,Z), define S :=Z, , D := ZI% , R :=G . Also, for any (z1,22) € ZZ%, define
F(xy,x9) 1= g*"1 Z%2 .

- The operation over D is defined as follows. For any (z1,41), (x2,y2) € D and s € S, (x1,y1) +
(x2,y2) = (z1 + z2,91 + y2) and s - (z1,y1) = (521, SY1)-

- The operation over R is defined as follows. For any 1,22 € Rand s € S, x1+x2 = 2122, S-x1 =
x], where z1x2 and x] are the group operations of G.

The following theorem shows that GLHF is a linear hash function family and collision resistance
of GLHF is implied by the discrete logarithm assumption. [HKL19] shows similar statements, and
we defer the full proof to Appendix B.1.

Lemma 8. For any group generation algorithm GGen, GLHF[GGen] is a linear hash function family
(Definition 1). Moreover, for any adversary A for the CRCLHF[GGen] game, there exists an adversary
B for the DLog®®®" game such that AdVE) F[GGen] (A K) < Advélg‘gn(lf, K).

To instantiate MuSig2-H, FROST1-H, and FROST2-H, we set Dyey = {(2,0) : x € Z} and
Shash = S. It is clear that char(S) = p > 2", F is a bijection from Diey to R, and |Shasn| = [S| = 2.
Also, for instantiating FROST1-H and FROST2-H, we set x; := i.

By combining Theorem 1 and Lemma 8 with the theorems in Section 4, we show the security
of MuSig2-H, FROST1-H, and FROST2-H instantiated from GLHF under the discrete logarithm
assumption in the random oracle model.

27

5.2 Instantiations from the RSA Problem

RSA PROBLEM. The RSA problem we use here is formalized by the RSA game defined on the
right side of Figure 10. The RSA parameter generation algorithm RGen(1%) outputs (N, e), where
N = P - Q for two primes P and @ and e is a prime such that gcd(N,e) = ged(¢(N),e) = 1 such
that ¢(N) = 2" and e > 2%.2 The corresponding advantage of A is defined as Advig.,(A, k) :=
Pr[RSAZcen = 1]-

INSTANTIATION. To instantiate linear hash function families from the RSA problem, we have to
use a weaker notion, referred to as weak linear hash functions, which are the same as linear hash
functions except that S is only required to be a ring instead of a field. Formally, we construct a
weak linear hash function family, RLHF, from an RSA parameter generation algorithm RGen as
follows.

- On input 1%, PGen runs RGen(1%) and receives (N, e). Then, PGen uniformly samples w € Z}
and returns par < (N, e, w).

- Given par = (N,e,w), define S :=7Z, D := Zc X L3, , R := Z}. Also, for any (a,) € Ze x Z%;,
define F(a,z) := wa® € Z%,.

- The operations of D are defined as follows. For any (a1, 1), (a2,22) € D and s € S, (a1, 1) +
(ag,x2) = (a1 + ag,xlewl(‘ll*a?)/eJ) and s - (a1,21) = (sal,x{w[sal/ej), where a1 + as and sa;
are computed over Ze.

- The operations of R are defined as follows. For any x1,x0 € Rand s € S, x1+x2 = 2122, 51 =
x7, where z1x9 is the multiplicative operation over Z%, and zj is the exponential operation over
Z% - Note here and also in the following discussion, we use “+” to denote the group operation of
‘R instead of the additive operation over Z and “-” to denote the scalar multiplicative operation
of R instead of the multiplicative operation over Z.

The preceding instantiation is similar to the one from [HKL19]. The only difference is that we
set & to Z in order to make both D and R to be S-modules. The following theorem shows that
RLHF is a weak linear hash function family and collision resistance of RLHF is implied by the RSA
assumption. We defer the proof to Appendix B.2.

Lemma 9. For any RSA parameter generation algorithm RGen, RLHF[RGen] is a weak linear
hash function family. Moreover, for any adversary A for the CRRUHFIRGen] game, there exists an
adversary B for the RSAR®®" game such that Advf{LHF[RGen] (A, k) < Advige, (B, K).

REDUCTION FROM CR TO AOMPR, Unfortunately, Theorem 1 does not hold for weak linear hash
functions: in the proof of Claim 1, if § is not a field, it is possible that there does not exist u
satisfying the condition in (2). Nonetheless, we can show for RLHF that the reduction still works.
Formally, we have the following theorem.

Theorem 5. For any adversary A for the AOMPRRYMF game, there exists an adversary B for the

CRRF game running in a similar running time as A such that Advy e (A, k) < 2AdvE e (B, k).

Proof (of Theorem 5). We prove the above theorem following the proof of Theorem 1, where the
only difference is that in the proof of Claim 1, we need to show the following fact:

2 Comparing this to the plain RSA problem, here we additionally require that e is prime such that ged(Nye) =1
and e = 2".

28

There exists z* € D such that F(z*) = 0, and, for any matrix B € S*7 with ¢ < ¢, there
exists a vector u € §? and i € [g] such that Bu = 0 and u;z* # 0, where 0 denotes the
identity of D and R and the additive identity of S.

We prove the above fact for RLHF as follows. Given the parameter (N, e, w) that defines (S, D, R, F),
the identity of D is (0,1), and the identity of R is 1. We first set z* = (e — 1,w'~1/¢), where 1/e
denotes the multiplicative inverse of e over Zgyy. 1/e exists since ged(¢(N),e) = 1. We can verify
that F(z*) = we1+te(1-1/¢) — 1. Since ¢ < ¢, we can always find a non-zero vector v € Z such
that Bv = 0 using Gaussian eliminations. Denote k := ged({v;}ic[q)- Let w = v/k, and we have
ged({uiliefq) = 1. Therefore, there exists i € [g] such that u; # 0 mod e and thus u;z* # (0, 1).
Since Bu -k = Bv = 0 and k # 0, we know Bu = 0.]

SOLVING LINEAR EQUATIONS. Another issue with weak linear hash functions is that it is unclear
how to invert challenges X € R given AX = F(b), where A € §™*™ and b € D", which is a common
problem we encounter in the security proofs in Section 4. In these proofs, to solve this problem,
we show A has full rank and then, since S is a field, we can compute & € D" such that F(x) = X
by multiplying the inverse of A on both sides of the equation. However, in the case of weak linear
hash functions, A might not have an inverse.

Fortunately, for RLHF, we show that such linear equations can be solved efficiently if A has full
rank modulo e, which is formally stated in the following lemma.

Lemma 10. For any integer n = 1 and any parameter par = (N,e,w) for RLHF, which defines
(8, D,R,F), given A € S, X € R", and b € D" such that A has full rank modulo e and
AX = F(b), there exists an efficient algorithm with input (A, X, b) that outputs x € D" such that

Proof. We compute x as follows.

1. Since A has full rank modulo e and e is a prime, we can efficiently compute the inverse of A
modulo e as A’.
2. Set C «— A’A. Since A’ is the inverse of A modulo e, we know for any i,j € [n], C;; =

lmode, fori=j
0O mod e, o.w. '
3. Set b’ « A’'b and x; « b — 351, [Cij/e] - (0, X;) for each i € [n].

Since AX = F(b), we have CX = A’AX = A'F(b) = F(A'b) = F(b'), which implies F(}) =

Zje[n] Ci; X; = Hje[n] chi’j. Therefore, due to the above property of C, for i € [n], F(z;) =
e|Ci, /e C;,j—e|Ci /e
F(6)) — 2jemn le il [Ly X5 Gialel = x;. =

Dyey AND Spash- For instantiating MuSig2-H, FROST1-H, and FROST2-H from RLHF, we set Dy :=
{(0,2) | x € Z}} and Spash := Zox. It is clear that F is bijection from Dyey to R and |Sphash| = 27.

5.3 Multi-signatures from RSA

To instantiate MuSig2-H from RLHF, we additionally require that for N = P - Q, P is a safe prime
and P > 2°*! for the security proof to go through. We discuss how to remove this requirement
later in this section. To show the security, we prove Theorem 2 holds if LHF is replaced by RLHF.

29

Combining it with Theorem 5 and Lemma 9 shows the security of RLHF-based MuSig2-H under the
RSA assumption in the random oracle model.

We now show the proof of Theorem 2 for the case LHF = RLHF by discussing only those places
that differ from the original proof of Theorem 2.

Proof (of Theorem 2 for RLHF). We follow the original proof of Theorem 2 to construct the
adversary B. Then, we just need to show that Claim 3, Claim 4, and Claim 5 hold.

Proof (of Claim 3 for RLHF). We only need to show that Lemma 2 holds for RLHF, and the rest
is the same as the original proof of Claim 3. Denote r € Z}, as the primitive root of Z}. For any
X € Z3 = R, there exists k € Z}_, such that X = r* mod P. Suppose k # P'. For any 1 <t,s <
2% < P’ and any 1 < s < P', we have (X)** = r** % v mod P, which implies (X*)51 # (X*)ts2
for any distinct si, s9 € Zox = Spash. Therefore, we have |C(t, X)| = |Shash|- Therefore, X is Good
if X # " mod P. Therefore, we have Pry sz[X is not Good] < Pry cszx [X =P mod P] <
1/(P—-1)<1/2~. O

Proof (of Claim 4 for RLHF). Following the original proof of Claim 4, we have F(s*) = R*+h;-apk*
and F(s*') = R* + h}apk*, which implies (h; — hf) - apk* = F(s* — s*'). Assume h/; < h; without
loss of generality. Since hy, by € Shash = Zox < Z., we have 1 < h; —h/; < e. Therefore, C’ computes
Z using Lemma 10 for the case n = 1.]

Proof (of Claim 5 for RLHF). The total number of CHAL queries made by B is 4qs + 1 and the
corresponding challenges are X, Uy, ..., Usq,. We follow the original proof to show how B computes
¥, u1,. .., usq, such that F(z*) = X and F(u;) = U; for i € [4qs].

To compute z*, following the original proof, we have F(Z) = t - hgagg) X+ 7, F@) =

agg
/ !/
t- hgagg) - X + Z, where plaee) # hgjig) € Shash = Zox, 1 <t < 2%, and Z € R. Therefore, we

agg [agg

have t(hgjfgg) - hgjg_g)/) - X =F(@—17"). Assume hgjfgg), < hgjfgg) without loss of generality. We have

/ /
1<t<2<eandl< (b — ™)) <27 < ¢, which implies t(h{?®) — A7) 2 0 mod e.
Therefore, B computes x* using Lemma 10 for the case n = 1.

For each k € [qs], to compute Uq44(k—1) - - - » Uk, following the original proof, we have AU =
F(s), where
1 by b3 b3 Ut yak-1) 81
A=1::1:|,U= : sy s=1 |- (7)
10y b?L bi U S4

Also, b; € Shash = Zox S Z for i € [4], and by, ..., by differ from each other. Therefore, A is a
Vandermonde matrix modulo e, which implies A has full rank modulo e. Therefore, B can compute
Ul 44(k—1); - - - » U4k using Lemma 10 for the case n = 4. Then, the rest follows from the original
proof.]

REMOVING THE SAFE-PRIME REQUIREMENT. We briefly mention how to remove the safe-prime re-
quirement by slightly modifying MuSig2-H as follows. Denote the modified schemes as MuSig2-HR.
MuSig2-HR is identical to MuSig2-H except:

- In algorithm KeyAgg(L), it additionally computes ag < H'(L), where H'(L) : {0,1}* — Dyey,
and sets apk « F(ao) + 2;e[] aiPk;-

30

- In algorithm Sign, after s is assigned, it additionally computes ag < ¢ - H'(L) and returns
(R, ap,).

- In algorithm SignAgg({(R™, a(()l), sy, .. (RM, a(()n), s(M)1), it checks if (R(V), a(()l)), o (R™),
a(()n)) are all the same. If not, it aborts. Otherwise, it returns o « (R, a(()l) + Zie[n] s(®).

We can show the security of MuSig2-HR following the proof of Theorem 2 for RLHF. The only
difference is the proof of Claim 3, which is also the only place where we need the safe-prime
condition. Claim 3 essentially shows that for any new RO query Huge(L, EIZ), the probability that
apk < KeyAgg(L) collides with the set K of existing aggregated keys is small. We can easily show
it for MuSig2-HR since, for any new L in the random oracle model, H'(L) is uniformly random
over Diey; thus, apk < KeyAgg(L) is uniformly random over R even given previous queries, which
implies the collision probability is small.

5.4 Threshold Signatures from RSA

To instantiate FROST1-H and FROST2-H from RLHF, the only difficulty is that the Lagrange
coefficient A¥ might not be defined in S = Z for S < [n]. To fix this, we set x; = i for i € [n] and
modify the schemes as follows.

Denote the modified schemes as FROST1-HR and FROST2-HR. Define Xf =rA-)\ér'ss, where
A = nland r € Z? is the multiplicative inverse of A modulo e. FROST1-HR/FROST2-HR is identical
to FROST1-H/ FROST2-H except:
S

2, and (R,c,z;) is returned as a

- In algorithm PS, the Lagrange coefficient)\f is replaced by X
partial signature.
- In algorithm Agg, we additionally set Z < z — (ck) - (0, pk), where k = |rA/e], and return (R, 2)

as the signature.

It is not hard to show the correctness of the schemes. Since the denominator of)\ZS , which is
equal to [[,cg(i — j), divides il(n — i)! and thus divides A, we know Xf € Z. Also, for a leader
request Ir, if each signer ¢ in [r.SS follows the protocol to compute the partial signature (R, ¢, z;),
we have F(z) = R + (crQ) - pk, where z = >, sg 2. Since r is the multiplicative inverse of A
modulo e, we have rA = ke + 1. Since F(0, pk) = pk®, we have F(2) = R + ¢ - pk, which implies
(R,Z) is a valid signature.

We show the security of FROST2-HR and FROST1-HR under the RSA assumption in the random
oracle model by showing Theorem 3 and Theorem 4 hold for RLHF and combining them with
Theorem 5 and Lemma 9. We now show the proof of Theorem 3 and Theorem 4 for the case
LHF = RLHF by discussing only those places that differ from the original proofs.

Proof (of Theorem 3 for RLHF). We construct B following the proof of Theorem 4, except the
Lagrange coefficient)\gr.ss is replaced by)\ér.SS‘ We only need to show Claim 6 holds. The rest
follows from the original proof of Theorem 3.

Proof (of Claim 6 for RLHF). The total number of the CHAL queries made by B is ¢t + 2qs and
the corresponding challenges are Ao, ..., A;—1,U1,V1,...,Uq,, Vq,. We follow the original proof to
show how B computes ag, ..., a;—1,u1, ..., Uyq, such that F(a;) = A; for i € [t] and F(2*) = X and
F(u;) = U; for i € [vqs] and only mention the parts that are different.

31

To compute ag, following the original proof, we have F(z* — 2*') = (h; — h/}) Ap. Since hy # h/
and hr, b} € Shash = Zos S Ze, we have hy — h’; # 0 mod e. Therefore, B computes ag using
Lemma 10 for the case n = 1.

Also, for each i € D, we have F(z — 2/) = Xllf*'ss(hj — h)) - pk;. Since X?;*.SS % 0 mod e, B
computes y; such that F(y;) = pk; using Lemma 10 for the case n = 1.

Then, following the original proof, we have (6). Since x; = i < e, M is Vandermonde matrix
modulo e and thus M has full rank modulo e. Therefore, 5 can compute ay,...,a;—1 by Lemma 10
for the case n =t — 1.

For computing u1,v1, ..., uq,,Vq,, the only difference is in case 2. For computing v;, we have
F(z) = Uj+dV; +c-pk; and F(2') = Uj+d'V; + ¢ -pky. Therefore, F(z—2'—c-yi+ ¢ -y;) = (d—d') V.
Since d # d’ and d,d’ € Z., B computes v; using Lemma 10 for the case n = 1. The rest follows
from the original proof.]

Proof (of Theorem / for RLHF). We construct B following the original proof of Theorem 4, except
the Lagrange coefficient)\ér'ss is replaced by XZZ-’“'SS. It is not hard to see Claim 7 holds using
Lemma 10 and similarly as the proof of Claim 6 in the case of RLHF. The rest follows from the
original proof of Theorem 4.

Acknowledgments

We thank the EUROCRYPT 2023 reviewers for their useful comments and feedback. This research
was partially supported by NSF grants CNS-2026774, CNS-2154174, a JP Morgan Faculty Award,
a CISCO Faculty Award, and a gift from Microsoft.

References

AAO05. Sattar J. Aboud and Mohammad Ahmed Al-Fayoumi. Two efficient RSA digital multisignature and blind
multisignature schemes. In M. H. Hamza, editor, JASTED International Conference on Computational
Intelligence, Calgary, Alberta, Canada, July 4-6, 2005, pages 359-362. IASTED/ACTA Press, 2005.

ADNO06. Jesis F. Almansa, Ivan Damgard, and Jesper Buus Nielsen. Simplified threshold RSA with adaptive and
proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 593—611.
Springer, Heidelberg, May / June 2006.

BBSS18. Matilda Backendal, Mihir Bellare, Jessica Sorrell, and Jiahao Sun. The fiat-shamir zoo: relating the
security of different signature variants. In Nordic Conference on Secure IT Systems, pages 154-170.
Springer, 2018.

BCJOS. Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma. In Peng Ning, Paul F. Syverson, and Somesh
Jha, editors, ACM CCS 2008, pages 449-458. ACM Press, October 2008.

BCK'122. Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
Better than advertised security for non-interactive threshold signatures. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part 1V, volume 13510 of LNCS, pages 517-550. Springer, Heidelberg,
August 2022.

BD21. Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In Mehdi
Tibouchi and Huaxiong Wang, editors, ASTACRYPT 2021, Part IV, volume 13093 of LNCS, pages 650—
678. Springer, Heidelberg, December 2021.

BJ10. Ali Bagherzandi and Stanislaw Jarecki. Identity-based aggregate and multi-signature schemes based on
RSA. In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
480-498. Springer, Heidelberg, May 2010.

32

BLL*21.

BLSO01.
BNO7.

BNPS03.

Bol03.

BR93.

BTZ22.

CKGW22.

DDFY94.

DEF*19.

Des88.
DF90.

DF92.

DKO1.

FKL18.

FMY98.

FSO1.

GGNI16.

GHKROS.

GJKRY6.

GJKROT7.

HKS9.

Fabrice Benhamouda, Tancréde Lepoint, Julian Loss, Michele Orru, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and Frangois-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33—-53. Springer, Heidelberg, October 2021.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin Boyd,
editor, ASTACRYPT 2001, volume 2248 of LNCS, pages 514-532. Springer, Heidelberg, December 2001.
Mihir Bellare and Gregory Neven. Identity-based multi-signatures from RSA. In Masayuki Abe, editor,
CT-RSA 2007, volume 4377 of LNCS, pages 145-162. Springer, Heidelberg, February 2007.

Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185—
215, June 2003.

Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31-46.
Springer, Heidelberg, January 2003.

Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby,
editors, ACM CCS 93, pages 62-73. ACM Press, November 1993.

Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive threshold signa-
tures: Bls and frost. Cryptology ePrint Archive, 2022.

Deirdre Connolly, Chelsea Komlo, Ian Goldberg, and Christopher A. Wood. Two-Round Threshold
Schnorr Signatures with FROST. Internet-Draft draft-irtf-cfrg-frost-10, Internet Engineering Task Force,
September 2022. Work in Progress.

Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely. In 26th
ACM STOC, pages 522-533. ACM Press, May 1994.

Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and Igors
Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE Symposium on Security and
Privacy, pages 1084-1101. IEEE Computer Society Press, May 2019.

Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance, editor,
CRYPTO’87, volume 293 of LNCS, pages 120-127. Springer, Heidelberg, August 1988.

Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 307-315. Springer, Heidelberg, August 1990.

Yvo Desmedt and Yair Frankel. Shared generation of authenticators and signatures (extended abstract).
In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 457—469. Springer, Heidelberg,
August 1992.

Ivan Damgard and Maciej Koprowski. Practical threshold RSA signatures without a trusted dealer. In
Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 152—-165. Springer, Heidelberg,
May 2001.

Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33-62.
Springer, Heidelberg, August 2018.

Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key generation. In
Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, page 320. ACM, June / July 1998.
Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold RSA under standard assumptions.
In Colin Boyd, editor, ASTACRYPT 2001, volume 2248 of LNCS, pages 310-330. Springer, Heidelberg,
December 2001.

Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA signatures
and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider,
editors, ACNS 16, volume 9696 of LNCS, pages 156-174. Springer, Heidelberg, June 2016.

Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA for dynamic and ad-hoc
groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 88—107. Springer,
Heidelberg, April 2008.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust and efficient sharing of
RSA functions. In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 157-172. Springer,
Heidelberg, August 1996.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51-83, January 2007.

L Harn and T Kiesler. New scheme for digital multisignatures. FElectronics letters, 25(15):1002-1003,
1989.

33

HKL19.
HKLN20.
Ita83a.
Ita83b.
KG20.
KH90.
KMO7.
KMO8.
Lin22.
LK22.

MMO0.

MO*00.

Natnt.

NRS21.

NRSW20.

Oka88.

Oka93.

Ped92.

PLLO02.
PPKWO7.
PW23.
Rab98.
Sch90.
ShaT79.

Sho00.

Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from identification
schemes. In Yuval Ishai and Vincent Rijmen, editors, FUROCRYPT 2019, Part III, volume 11478 of
LNCS, pages 345-375. Springer, Heidelberg, May 2019.

Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signatures, revisited.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part 1I, volume 12171 of LNCS,
pages 500-529. Springer, Heidelberg, August 2020.

K. Itakura. A public-key cryptosystem suitable for digital multisignatures. 1983.

K Itakura, K; Nakamura. A public-key cryptosystem suitable for digital multisignatures. NEC research
& development, 1983.

Chelsea Komlo and Tan Goldberg. Frost: flexible round-optimized schnorr threshold signatures. In Inter-
national Conference on Selected Areas in Cryptography, pages 34-65. Springer, 2020.

T Kiesler and L Harn. Rsa blocking and multisignature schemes with no bit expansion. FElectronics letters,
18(26):1490-1491, 1990.

Neal Koblitz and Alfred J. Menezes. Another look at “provable security”. Journal of Cryptology, 20(1):3—
37, January 2007.

Neal Koblitz and Alfred Menezes. Another look at non-standard discrete log and diffie-hellman problems.
J. Math. Cryptol., 2(4):311-326, 2008.

Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryptology ePrint
Archive, Paper 2022/374, 2022. https://eprint.iacr.org/2022/374.

Kwangsu Lee and Hyoseung Kim. Two-round multi-signatures from okamoto signatures. Cryptology
ePrint Archive, Report 2022/1117, 2022. https://eprint.iacr.org/2022/1117.

Shirow Mitomi and Atsuko Miyaji. A multisignature scheme with message flexibility, order flexibility
and order verifiability. In Australasian Conference on Information Security and Privacy, pages 298-312.
Springer, 2000.

Masahiro Mambo, Eiji Okamoto, et al. On the security of the rsa-based multisignature scheme for
various group structures. In Australasian Conference on Information Security and Privacy, pages 352—
367. Springer, 2000.

National Institute of Standards and Technology. Multi-Party Threshold Cryptography, 2018-Present.
https://csrc.nist.gov/Projects/threshold-cryptography.

Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round Schnorr multi-signatures. In
Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 189221,
Virtual Event, August 2021. Springer, Heidelberg.

Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. MuSig-DN: Schnorr multi-signatures with
verifiably deterministic nonces. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors,
ACM CCS 2020, pages 1717-1731. ACM Press, November 2020.

Tatsuaki Okamoto. A digital multisignature scheme using bijective public-key cryptosystems. ACM
Transactions on Computer Systems (TOCS), 6(4):432-441, 1988.

Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31-53. Springer, Heidel-
berg, August 1993.

Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Joan
Feigenbaum, editor, CRYPTO0’91, volume 576 of LNCS, pages 129-140. Springer, Heidelberg, August
1992.

Shun-Fu Pon, Erl-Huei Lu, and Jau-Yien Lee. Dynamic reblocking rsa-based multisignatures scheme for
computer and communication networks. IEEE Communications Letters, 6(1):43-44, 2002.

Sangjoon Park, Sangwoo Park, Kwangjo Kim, and Dongho Won. Two efficient rsa multisignature schemes.
In International Conference on Information and Communications Security, pages 217-222. Springer, 1997.
Jiaxin Pan and Benedikt Wagner. Chopsticks: Fork-free two-round multi-signatures from non-interactive
assumptions. EUROCRYPT 2023, 2023.

Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 89-104. Springer, Heidelberg, August 1998.

Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239-252. Springer, Heidelberg, August 1990.

Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612-613, November 1979.

Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, FEUROCRYPT 2000, volume 1807
of LNCS, pages 207-220. Springer, Heidelberg, May 2000.

34

https://eprint.iacr.org/2022/374
https://eprint.iacr.org/2022/1117
https://csrc.nist.gov/Projects/threshold-cryp tography

SSo1. Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a (¢, n) threshold
scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors, ACISP 01, volume 2119 of
LNCS, pages 417-434. Springer, Heidelberg, July 2001.

35

Supplementary Materials

A Correctness of FROST1-H and FROST2-H

For the correctness of the schemes, we just need to show Shamir’s secret sharing scheme works over
D. More precisely, we want to show for any S < [n] with size ¢, we have

Z)\;gskl = ag, (8)

€S
where
=Y o= T] 2
i=0 jes\iy
for each i € S and some ag,...,a;—1 € D.

Claim 8 For any S € [n] with size t and any integer 0 < k < t, we have

Sask= b F=0 ()
€S 0, k=0

With the above claim, we can show (8) since

-1
Aski = Y A7 t a;x!
Z ? Z ? Z)

€S €S 7=0
t—1
S
7=0 €S
t—1
=Na,;-1{j = 0} = ag
7=0

Proof (of Claim 8). Define f(x) = 2*. By the polynomial interpolation over the field S, we have

DN f (i) = £(0)
which proves claim.]

B Proofs for the Instantiations of Linear Hash Functions

B.1 Proof of Lemma 8
Given par = (G,p, g, Z) output from PGen(1*) that defines (S, D, R,F), we need to show

1. D and R are S-modules.
2. F is an epimorphism from D to R but not a monomorphism.
3. The collision resistance of RLHF is implied by the RSA assumption.

36

PART 1.1t is clear that D = G x G and R = G are Zjp-modules.

PART 2.1t is easy to verify F is a homomorphism of S-modules, since for any b € S and (z1, 1), (z2,y2) €
D,

F((z1,y1) + b (72,y2)) = F(x1 + bw1,y1 + byo)
— gx1+bcz:zzy1+by2

= g™z (9332 Zy2)b
= F(z1,y1) + bF (22, v2) .

F is epimorphism since for any X € R, we have F(z,0) = X, where x denotes the discrete log of
X to the base g. Denote z as the discrete log of Z to base g, and F is not a monomorphism, since
Flz,-1) =g°Z7' = ¢".

PART 3. For any adversary A for the CRC'HF game, we construct B for the DLog game as follows.
After receiving (G,p, g, Z), B runs A with input (G, p, g, Z). If A wins the CR®HF by outputting
(x1,91), (z2,y2) € D, such that (x1,y1) # (x2,y2) and F(z1,y1) = F(z2,y2), we have g"1 Z% =
g"*Z%2. Therefore, B can compute z = 22=2 and we have g* = Z.

B.2 Proof of Lemma 9

Given par = (N, e, w) output from PGen(1%) that defines (S, D, R,F), we need to show

1. D and R are S-modules.
2. F is an epimorphism from D to R but not a monomorphism.
3. The collision resistance of RLHF is implied by the RSA assumption.

PART 1.1t is clear that R = Z}; is a Z-module. For D, it is not hard to see D are abelian groups.
The unit of D is (0,1) and for any (a,) € D, its inverse is (—a,x~1). R is an abelian group since
ZY is an abelian group.

We show D is S-module, since for any b1,bs € S and (a1, x1), (az,z2) € D,

bi - (a1, 1) + (ag,x9)) = by - (a1 + ag, zyxpwl@1Fa2)/el)

e

b1l(a14a2)/e 7b1[a1+a2]e
— (by(ay + a2), (.’Ell’g)blw 1l(a1+az)/ J+{ J)

e

{b1(e[(a1+a2)/eJ+[a1+a2]eJ
= (b1(a1 + a2), (2122)" w)

= (bl(al + 02), ($11‘2)b1wlb1(a1+a2)/ej)

[b1a1/eJ+[b1a2/eJ+lLlal]e*[bl%]e J)

e

= (bia1 + bras, (v122)" w
= (blal,flj'lilw[blal/ej) + (b1a2, xglwllnag/ej)

=b1-(a1,21) + b1 - (ag, x2) ,

37

(bl + bg) . (al,xl) _ ((bl + b2)a1,xl{1+62w[(b1+b2)a1/ej)

{e[b1a1/8J+[b1al]e+e[b2a1/ej+[b2a1]eJ
= (bia1 + bgal,xl{Hwa ©)

[blal] +[b2a1]
biai/e|+|b2aq/e ——-e > —-¢
_ (blal I bgal,xl{1+b2wl 1a1/e|+|b2a1/ J+[P J)

= (blahx?lw[blal/d) + (bgal, x?2wlb2a1/eJ)

=by-(a1,z1) + b2 - (a1, 1) ,

(ble) : (Ch,l’l) = (blbgal,:L'lilbzwlblb2a1/ej)

by (elbgay/e]+[bga1],) J

e

= (blbgal, xl{ﬂ”w{

e

bi|b2ai/e 7,]1[172’11]@
= (blb2a1’$l{1b2w 1[2 1/ J+[J)

= bl . (b2a17$?2w[b2a1/ej>

=b; - (b2 . (ahxl)))

1-(a1,21) = (al,mlwlal/ej) = (a1,x1) .

PART 2.1t is easy to verify F is a homomorphism of S-modules, since for any b € S and (a1, z1), (a2,
562) € D,

F((ar, 1) + b- (a2, 22)) = Fay + bag, z1zbwl(@1ba2)/el
_ ximgewe[(erbag)/eJwa1+ba276[(a1+ba2)/ej

:lﬁﬂfge a1 +bas
= (@fw™)(zhw™)°

= F(a1,z1) + b F(ag,z2) .

w

We use 1/e to denotes the inverse of e modulo ¢(N). The inverse exists since we assume ged(e, p(N))
= 0. Moreover, F is epimorphism since for any = € R, we have F(0,z'¢) = z. Also, F is not a
monomorphism, since F(e — 1,w' =€) = 1, where 1 is the identity of R.

PART 3. For any adversary A for the CRRMMF game, we construct B for the RSA game as fol-
lows. After receiving (N, e, w), B runs A with input (N, e, w). If A wins the CRRHF by output-
ing (a1,21), (az,x2) € D, such that (aj,x1) # (az,x2) and F(aj,x1) = F(ag,x2). B can compute
u € Z% such that u® = w as follows. Since F(a1,z1) = F(az,z2), we have w* 2§ = w*z§, which
implies w™ ™% = (z9/x1)¢. If a1 = a2, we have x9 = x1, which contradicts with the fact that
(a1,21) # (ag,x2). Therefore, we have a; # ag. Since a1, as € Ze, (a1 — az) # 0 mod e and thus
there exists ¢ € Z, which is the inverse of (a1 —as) modulo e. Then, B sets u = w~[H@1=a2)/el (35 /1)t
Since t(a; — az) = 1 mod e, we have 1 + e |t(a1 — az)/e] = t(a1 — az) and thus

ué = wfe[t(alfaz)/ej (.Tg/xl)te _ wfe[t(alfag)/ej(w(alfag))t - w.

38

	Threshold and Multi-Signature Schemesfrom Linear Hash Functions

