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Abstract. LLL-style lattice reduction algorithms iteratively employ size
reduction and reordering on ordered basis vectors to find progressively
shorter, more orthogonal vectors. DeepLLL reorders the basis through
deep insertions, yielding much shorter vectors than LLL. DeepLLL was
introduced alongside BKZ, however, the latter has received greater at-
tention and has emerged as the state-of-the-art. We first show that LLL-
style algorithms work with a designated measure of basis quality and
iteratively improves it; specifically, DeepLLL improves a sublattice mea-
sure based on the generalised Lovász condition. We then introduce a new
generic framework X-GG for lattice reduction algorithms that work with
a measure X of basis quality. X-GG globally searches for deep insertions
that minimise X in each iteration. We instantiate the framework with two
quality measures – basis potential (Pot) and squared sum (SS) – both
of which have corresponding DeepLLL algorithms. We prove polynomial
runtimes for our X-GG algorithms and also prove their output to be
X-DeepLLL reduced. Our experiments on non-preprocessed bases show
that X-GG produces better quality outputs whilst being much faster
than the corresponding DeepLLL algorithms. We also compare SS-GG
and the FPLLL implementation of BKZ with LLL-preprocessed bases.
In small dimensions (40 to 210), SS-GG is significantly faster than BKZ
with block sizes 8 to 12, while simultaneously also providing better out-
put quality in most cases. In higher dimensions (250 and beyond), by
varying the threshold δ for deep insertion, SS-GG offers new trade-offs
between the output quality and runtime. On the one hand, it provides
significantly better runtime than BKZ-5 with worse output quality; on
the other hand, it is significantly faster than BKZ-21 while providing
increasingly better output quality after around dimension 350.

Keywords: Lattice reduction, LLL, deep insertion, greedy global framework,
potential, squared sum.
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1 Introduction

A Euclidean lattice (or just a lattice) L is a discrete additive subgroup of Rm. It
can be represented by a basis matrix B = (b1, . . . ,bn) ∈ Rm×n made of linearly
independent column vectors bi ∈ Rm such that L = {Bx : x ∈ Zn}. There are
infinitely many bases for any lattice with n ≥ 2 and there are ways to transform
a basis into another for the same lattice. The quality of a given lattice basis is
determined by the length of the vectors and how close to orthogonal they are to
each other. Bases with shorter and more orthogonal vectors are considered to be
of better quality. Given a lattice specified by a basis, finding a good quality basis
and short vectors therein is of major importance. The process of transforming a
given basis into one of better quality is generally called lattice reduction. Lattice
reduction algorithms have a wide variety of uses, including in the cryptanalysis
of lattice-based cryptosystems [3,4], attacks on knapsack cryptosystems [38], and
finding small roots of systems of modular equations [13,14,23].

In 1982, Lenstra, Lenstra, and Lovász [29] presented the first lattice reduction
algorithm that came to be called LLL after its inventors. LLL uses the Gram-
Schmidt orthogonalisation (GSO) B∗ = (b∗

1, . . . ,b
∗
n) of the basis B. The GSO

process assumes an inherent ordering of the vectors, and LLL works with the
same order. Starting from the index k = 2 of the ordered basis, LLL traverses
up and down the order in a loop by incrementing or decrementing the index
k by 1 in each iteration. There are two kinds of operations – size reductions
and swaps – that are executed within the loop until the entire basis is of suffi-
ciently good quality. The quality of the basis is determined by the optimisation
criterion called the Lovász condition (LC) on all pairs of consecutive vectors
bk−1,bk ∈ B. This condition is given by

∥∥b∗
k + µk,k−1b

∗
k−1

∥∥2 ≥ δ
∥∥b∗

k−1

∥∥2,
where the µi,j ’s are the GSO coefficients and 1/4 < δ ≤ 1 is a parameter called
the threshold which determines the quality of reduction. The quality improves
as the threshold δ increases. After LLL terminates, the vector bi in the output
basis is an exponential approximation of the ith shortest linearly independent
vector in the lattice. In [29], LLL was shown to run in polynomial time using an
argument surrounding a quantity known as the potential of the basis – a measure
of basis quality that we will describe soon. LLL has many applications including
in cryptology [36], algorithmic number theory [12], factoring polynomials [26],
Diophantine approximation [21], etc.

Schnorr and Euchner [43] introduced a variant of the LLL algorithm called
LLL with deep insertions, or DeepLLL. The key algorithmic novelty was in the
reordering of the vectors. They introduced the notion of deep insertion, whereby
instead of just swapping a vector bk with the immediate previous vector bk−1,
it could be inserted before any one of the previous vectors b1, . . . ,bk−1. This
essentially meant that the index k could be decremented to any value between
{2, . . . , k − 1}. They also extended the LC-constraint from consecutive pairs
(bk−1,bk) to all pairs (bi,bk) for i < k in the ordering3. This introduced more
constraints on the output basis and as a result, the quality of the output basis is
3 A pair (bi,bk) in a basis can simply be identified by the pair of indices (i, k).
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provably better than in LLL. In particular, the ith vector of the output basis is a
better approximation of the ith shortest linearly independent vector of the lattice,
as compared to the LLL output [48, Theorem 1]. However, DeepLLL requires
additional size reduction steps and bookkeeping, which makes it significantly
more time-consuming than LLL.

In the same paper [43], the authors introduced an algorithm which performs
the block Korkin-Zolotarev (BKZ) reduction. Since then, BKZ has been more
researched than DeepLLL-style algorithms and has become state-of-the-art in
lattice reduction. BKZ takes as input a parameter β denoting the block size. It
iteratively reduces consecutive projected blocks of size β by calling a shortest
vector problem (SVP) oracle on these blocks and inserting the resultant vector
into the basis. As β increases, the algorithm outputs bases of better quality,
however the runtime also increases. Improvements were made to BKZ in [11] by
incorporating a pruning technique on the enumeration SVP subroutine, which
decreases the runtime without any decrease in basis quality on output. Further-
more, the authors introduced preprocessing of the local bases and reducing the
enumeration radius; both to reduce the runtime of the enumeration subroutine.
The FPLLL library [46] provides the state-of-the-art implementation of BKZ.

Since Schnorr and Euchner introduced DeepLLL, there have been two new
deep-insertion-based algorithms – Pot-LLL [16] and SS-LLL [48]. These algo-
rithms replace the extended Lovász condition of DeepLLL with a check on
the improvement of a basis quality. They use the quality measures potential
Pot(B) =

∏n
i=1 ∥b∗

i ∥
2(n−i+1) and squared sum SS(B) =

∑n
i=1 ∥b∗

i ∥
2 respec-

tively, computed directly from the Gram-Schmidt orthogonalised basis B∗. To
stress that they are essentially variants of DeepLLL, we call them Pot-DeepLLL
and SS-DeepLLL respectively. They are both polynomial-time algorithms that
provide efficiency versus basis quality trade-offs in between LLL and DeepLLL.
They typically find shorter vectors than LLL, but not as short as DeepLLL.
They are slower than LLL, but faster than DeepLLL.

In each iteration of DeepLLL and its variants Pot-DeepLLL and SS-DeepLLL,
the algorithms only work with the sublattice Lk generated by the subset of vec-
tors (b1, . . . ,bk) of B. Each of these algorithms attempts to iteratively improve
some basis quality measure. The use of Pot and SS as measures of quality has
been quite clear in the proofs of basis quality and runtime complexity of these
algorithms. However, DeepLLL has not been interpreted as or represented in
a form where it is improving an explicit quality measure in every iteration, to
the best of our knowledge. We do this exercise of interpreting the (generalised)
Lovász condition as a reordering constraint used to improve the length ∥b∗

i ∥ of
the ith GSO vector of the basis, which is a localised measure of the quality of the
basis. In contrast, Pot and SS are global measures on the entire basis. We thus
have a generalised understanding of all three algorithms based on deep insertions
looking to improve quality measures of a basis.

The above generalisation leads us to our new generic framework of algorithms.
We ask the following question – if the general principle of LLL-style algorithms
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is to iteratively improve the basis quality, is there a greedy approach to improve
it as much as possible through deep insertions in every iteration?

Previous LLL-style algorithms [29,43,34,16,48] maintain an index k of the
vector to be inserted at a previous position i ∈ {1, . . . , k−1} in the basis ordering,
to improve the basis quality. In LLL [29] and L2 [34], i = k−1 is a fixed previous
position for a certain k, while in algorithms using deep insertions [43,16,48], the
choices for the deep insertion position i are restricted within the sublattice Lk

in an iteration. We observe that a deep insertion of a pre-determined vector
bk at a position i can be substituted by a deep insertion of bk′ at position
i′ (for some 2 ≤ k′ ≤ n and i′ ∈ {1, . . . , k′ − 1}) such that the basis quality
improvement is better. In fact, there is a pair of indices (i′, k′) for which the
quality improvement is the maximum possible at that point. This observation is
the basis of our greedy choice of vectors for reordering the basis.

In this work, we move away from the technique of maintaining an index k and
working with a sublattice Lk. We propose a new generic framework for lattice
reduction through an algorithm X-GG. Our algorithm works with a general
quality measure X(B) of the basis B. To iteratively improve the quality of the
basis, we make a dynamic greedy choice of a pair of indices (i, k), 1 ≤ i < k ≤ n
globally over the entire basis such that the deep insertion of bk at position i
minimises the basis quality measure X. Such deep insertions are carried out in
each iteration as long as the measure of the reordered basis decreases by at least
a fraction (1−δ) of its previous value, where δ is the threshold for deep insertion.
When the algorithm terminates, the output basis is guaranteed to have a measure
that cannot be reduced appreciably (by a fraction 1 − δ or more) any further
through deep insertions. For a measure X, we call such a basis δ-X-DeepLLL
reduced. By choosing the maximum change in X possible at each iteration, our
greedy algorithm reaches such a state in a small (if not the smallest) number
of iterations. When the measure has a positive lower bound, the algorithm is
guaranteed to terminate.

The choice of the measure X is a key determining factor in the framework of
algorithms we propose. We instantiate our generalised algorithm X-GG with the
measures Pot and SS in place of X to get the Pot-GG and SS-GG algorithms
respectively. We prove that X-GG outputs a δ-X-DeepLLL reduced basis and
provide theoretical bounds on the runtime of X-GG. We prove the concrete
polynomial runtime bit-complexities for both Pot-GG and SS-GG using exact Q
arithmetic and show that they are the same as their X-DeepLLL counterparts.

We conduct extensive experiments to compare the performances of LLL,
Pot-DeepLLL, SS-DeepLLL and BKZ with our Pot-GG and SS-GG algorithms,
on SVP Challenge style bases [20,15], using floating-point implementations of
all algorithms. Our implementations, the input bases we have used in our ex-
periments and the outputs of said experiments are available at [7]. Other than
our own algorithms, this repository has the only publicly available implementa-
tion of Pot-DeepLLL and SS-DeepLLL with the incorporation of the techniques
from [47] for efficiently computing the GSO coefficients µi,j and the squared
lengths of the GSO basis vectors ∥b∗

i ∥
2, to the best of our knowledge.
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We assess the algorithms in two ways – (1) as standalone algorithms run-
ning on bases of dimensions 40 to 150 that have not been preprocessed in any
way, and (2) by running them on bases of dimensions 40 to 600 that have been
preprocessed with 0.99-LLL (i.e. LLL with δ = 0.99), for fair comparison with
the FPLLL [46] implementation of BKZ. For standalone comparisons in dimen-
sions 40 to 150, we use the NTL library for the multi-precision arithmetic com-
putations. For comparisons with LLL-preprocessed bases in dimensions 40 to
210, we use standard data type implementations. We additionally compare SS-
GG and BKZ at dimensions 250 to 600 in detail. Multi-precision floating-point
arithmetic is required at these dimensions both in our implementations and the
FPLLL implementation of BKZ to ensure correctness of the computations. Since
the FPLLL library [46] in turn uses the GNU MPFR library [22] for the multi-
precision arithmetic computations, we use an MPFR implementation of SS-GG
for fairness in this comparison.

For all experiments requiring multi-precision implementations, we use ex-
perimentally estimated values of precision. We observe that at certain smaller
precisions, the output bases of X-GG get very close to being X-DeepLLL re-
duced, but are not quite there yet. A simple trick of recomputing the values of
µi,j and ∥b∗

i ∥
2 from the integer vectors just once on the output basis and then

running the SS-GG algorithm again quickly makes it X-DeepLLL reduced. Re-
computing these values help to get rid of the floating-point errors accumulated
thus far by the algorithm. We use this trick for the higher dimension (250 to
600) experiments to be able to run X-GG with a smaller precision, providing
better runtime.

In the detailed comparison of the behaviour of δ-SS-GG and BKZ-β in terms
of efficiency and output quality, we vary the values δ and β. To provide deeper
understanding of the algorithms, we also compare the average number of deep
insertions in SS-GG with the average number of SVP calls in BKZ, as well as the
depth of deep insertions of SS-GG with the BKZ block size. Taking δ closer to 1
outputs a basis with a greatly improved output quality but with slower runtime,
whilst reducing the value of δ yields a weaker reduction with a vast improvement
in runtime. This allows for one to choose a value for the parameter δ which suits
a particular application.

Here, we present the key findings from our experiments. The output quality
is measured uniformly4 for all algorithms with the Root Hermite Factor (RHF)
and the length of the shortest vector in the output basis. We observe that the
output quality of an algorithm does not vary between the standalone and the
preprocessed experiments. X-GG has better output quality than the corresponding
X-DeepLLL algorithm (Figures 1 and 3). At dimension 210, SS-GG outputs
shortest vectors that are on average 11.6% shorter than those obtained by SS-
DeepLLL (Table 2).

4 Note that Pot, SS, etc. are various measure of output quality. However, the RHF
and the length of the shortest vector are the common scales to uniformly measure
the quality of all algorithms.



6 S. Bhattacherjee et al.

The standalone comparison of LLL, X-DeepLLL and X-GG algorithms shows
that the runtime of SS-GG is only second to LLL (Figure 4) while providing
significantly better output quality than LLL (Table 2). X-GG algorithms are
much faster than the corresponding X-DeepLLL algorithms, especially as the
dimension grows (Figure 4). At dimension 150, SS-GG is around 2.3 times faster
than SS-DeepLLL and Pot-GG is about 1.4 times faster than Pot-DeepLLL
(Table 4).

The preprocessed comparisons are split into two parts. First, we compare
X-DeepLLL, X-GG and BKZ using standard data types at dimensions 40 to
210. Our experiments show the surprising result that X-DeepLLL and X-GG
algorithms are faster than BKZ with β ≥ 8 for all dimensions 40-210 (Figure 5).
We conjecture that incorporating the techniques from [47] in our implemen-
tations is perhaps the main reason behind this excellent runtime performance
of X-DeepLLL and subsequently X-GG. (Whilst it was reported in [16] that
Pot-DeepLLL has a runtime comparable to BKZ-5, there was no claim in [48]
regarding the runtime performance of SS-DeepLLL compared with BKZ.) We
also note that in preprocessed comparison, X-GG algorithms are slower than
the corresponding X-DeepLLL algorithms (Figure 5), while still providing bet-
ter output quality (Figure 1). In Section 6.3, we provide intuitive experimental
justification for this change in the runtime compared to standalone results by
showing that even though X-GG requires significantly fewer deep insertions than
X-DeepLLL, it cannot compensate for the increased number of size reductions.

In preprocessed comparison, SS-GG with δ = 1− 10−6 is significantly faster
than BKZ with block sizes 8, 10, 12 in dimensions 40 to 210 (Figures 1 and 5).
In these dimensions, the RHF of SS-GG with δ = 1− 10−6 is better than BKZ-
8 throughout, BKZ-10 from around n = 60 and BKZ-12 from around n = 100.
Moreover, SS-GG is around 20 times faster than BKZ-12 at dimension 40, around
16 times faster at dimension 100, and around 6 times faster at dimension 210
(Table 5).

In Section 6.4, we further compare the behaviour of SS-GG and BKZ in much
more detail at dimensions 250 to 600 (Table 6; Figures 6 and 7). We vary the
values of the threshold δ for deep insertion in SS-GG from 1− 10−4 to 1, while
we run BKZ with block sizes β = 5, 8, 10, 12, 14, 18, 20 and 21. These extensive
higher dimension results on SVP challenge bases confirm previous results on the
performance of BKZ [19,41,2] at higher dimensions. These higher dimension re-
sults also contrast the observation of [48] that increasing the threshold beyond
δ = 1 − 10−6 in an SS-based algorithm does not cause any significant improve-
ments to the RHF at lower dimensions. Figures 6 and 7 show the runtime and
output quality of δ-SS-GG and BKZ-β for these various values of δ and β. The
most striking aspect of the comparison is in Figure 7. While the RHF of BKZ
remains almost constant as the dimension increases5, the RHF of SS-GG is not
constant. It varies with the dimension n and the threshold δ for deep insertion.
With smaller values of δ, SS-GG is much faster and the RHF can compete with

5 This behaviour was previously noted in [19] for n ≤ 200 in all lattice reduction
algorithms they tested, including DeepLLL.



A Greedy Global Framework for Lattice Reduction Using Deep Insertions 7

small block size BKZ. In fact, SS-GG with δ = 1 − 10−5 beats BKZ-5 both in
runtime and output quality in dimensions 250− 300. SS-GG with δ = 1− 10−4

is much faster than BKZ-5 for all dimensions. At dimension 600, SS-GG with
δ = 1 − 10−4 is around 5.39 times faster than BKZ-5, while their RHFs are
1.01804 and 1.01632, respectively. Therefore, SS-GG with δ = 1− 10−4 achieves
a middle ground between LLL and BKZ-5. Using values of δ closer to the ex-
treme value of 1 yields much stronger reduction, with output quality getting
closer to BKZ-18, 20, 21. In particular, running SS-GG with δ = 1 can output
bases with a smaller RHF than BKZ-18, 20, 21 as the dimension grows (Fig-
ure 7). However, the SS-GG runtime also increases (Figure 6). Nevertheless, due
to the drastic runtime increase of BKZ-β for β > 20, SS-GG with δ = 1 runs
significantly faster than BKZ-21 in dimensions 250 to 400 that we could test up
to. Furthermore, from around dimension 350, the RHF of SS-GG keeps getting
significantly better than BKZ-21 (Figure 7). So choosing different values of δ in
SS-GG provides different trade-offs between runtime and output quality. Finally,
we conclude that SS-GG and BKZ are two very different algorithms. In SS-GG,
the shallower insertions lead to better RHF, while in BKZ, the larger block size
leads to better RHF.

The outline of the paper is as follows. Section 2 details the relevant nota-
tion and gives an overview of lattices. Section 3 describes LLL and generalises
DeepLLL for any measure. Section 4 proposes the greedy global framework as a
novel way of reducing lattice bases. Sections 5 and 6 provide theoretical analysis
and experimental results, respectively. Appendix A has additional data and plots
for deeper insights on the behaviour of the algorithms.

Related Works. Yamaguchi and Yasuda in [47] described an efficient algorithm
for updating the GSO information in DeepLLL. Since the update of the GSO
coefficients µi,j and the values of ∥b∗

i ∥
2 is dominant in algorithms using deep

insertions, this work [47] is of great importance to our framework.
The original LLL algorithm [29] was known to run in polynomial time for

the threshold δ < 1. For δ = 1, it is polynomial time for fixed dimensions [1].
Although DeepLLL [43] is not known to run in polynomial time, its variants
Pot-DeepLLL [16] and SS-DeepLLL [48] are both polynomial time algorithms.
The runtime of LLL [29] and Pot-DeepLLL [16, Proposition 1] for an input
basis B is bounded by Pot(B) that decreases every time the basis is reordered
(respectively through swaps and deep insertions) by these algorithms. In [49], it
was proved that the squared sum SS(B) also decreases with every swap of LLL.
The runtime of SS-DeepLLL is similarly bounded by SS(B) [48]. The proofs for
runtime complexity of our algorithms follow similar techniques, using bounds on
the quality measure X and that it decreases in every iteration.

The basis potential Pot(B) has been used for constructing new algorithms
and their analyses. In [24], LLL was examined based on maximally reducing the
basis potential for a given lattice. Whilst LLL continues until the potential can
not be further reduced by a factor of δ, this does not mean that LLL reduces
the potential maximally. Instead, a new notion of basis reduction was introduced
in [24] with the aim to find a basis B with potential smaller than the potential of
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all other bases B′ for the same lattice. This technique is different from our greedy
deep insertion minimising a measure at each iteration. In [10], it was pointed
out that the potential does not capture the typical unbalancedness demonstrated
by the GSO norms. The authors generalised Pot(B) for the whole lattice L to
Potk(B) for a sublattice Lk with only the first k basis vectors, and demonstrated
the usefulness of this more granular measure.

The squared-sum SS(B) has also been demonstratively useful. Fukase and
Kashiwabara [17] showed that a basis with a smaller squared-sum (SS) allows
more short lattice vectors to be sampled using Schnorr’s random sampling. This
method was used in [49] to sample short vectors.

Some greedy approaches have been used in lattice reduction prior to this
work. Lenstra [30] introduced the idea of a flag to choose the next basis in the
reduction algorithm. Two bases have the same flag if their GSO vectors are
the same, or only differ by their sign. The choice for the next flag to move to
is greedy in some sense. In [35], the authors used a greedy technique to size
reduce basis vectors. A basis vector bk is size reduced using a vector from the
sublattice b1, . . . ,bk−1 that is closest (hence greedy) to bk. Our greedy approach
is different from the above as it minimises a basis quality measure X through
deep insertions in each iteration.

An important direction in improving lattice reduction algorithms is their
floating-point arithmetic (fpa) considerations and their consequent optimisa-
tions. Schnorr and Euchner [43] described the LLL algorithm using fpa that
was used as a subroutine in their description of BKZ. Nguyen and Stehlé [34]
significantly improved the precision handling of LLL using the Cholesky Factori-
sation Algorithm (CFA) and the Iterative Babai Nearest Plane Algorithm [5,6].
Their L2 algorithm is much faster than LLL and is implemented in the FPLLL
library [46].

It is well understood that lattice reduction algorithms generally provide much
better output quality in practice than their theoretical bounds. Experimental
analyses [33,19,42] have been performed on the average-case behaviour of LLL,
and comparisons are drawn with the worst-case theoretical results. In particu-
lar, Gama and Nguyen [19] show that in practice, the estimate of the shortest
vector output by LLL, DeepLLL and BKZ algorithms are indeed exponential
in the dimension, but with smaller constants than their respective theoretical
estimates. In other words, the quality of the reduced bases is better than the
best theoretical bounds. The same paper also mentions that DeepLLL with deep
insertions restricted to blocks of vectors, may be run using much larger block
sizes than BKZ. At around block size 20–25, BKZ suffers from a rapid increase in
runtime, which is not experienced by DeepLLL experimentally. They conjecture
that DeepLLL may outperform BKZ for high dimensional lattices. We restrict
our experiments with BKZ to block size β = 21.

There have been several other variants of LLL. The Segment LLL algorithm
introduced in [27], yields a slightly weaker reduction than LLL but is more effi-
cient by a factor n. This is achieved by partitioning a basis of dimension n = km
into m segments comprising k consecutive vectors, and LLL reducing these seg-
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ments. Their algorithm was further improved in [32], where BKZ-like overlapping
blocks were reduced, resulting in an asymptotically fast algorithm. Furthermore,
the upper bound on the length of the first vector of the basis output from this
algorithm is slightly stronger than LLL. In [31], the costly GSO computations
were approximated by Householder transformations performed using fpa. In [9] a
perturbation analysis was performed, analysing how a small change in the basis
affects the R factor of the QR factorisation. These results may be applied to the
floating-point implementations of LLL-type algorithms. In [25], the authors used
parallelisation and recursion to improve the efficiency of LLL by decreasing the
precision required for reduction. A further improvement on LLL was described
in [40], where a notion of recursive reduction based on the drop of the profile (the
vector comprising values of log ∥b∗

i ∥) of a lattice is introduced. A novel method
for precision management was also introduced to experimentally show that their
algorithm outperforms the state-of-the-art FPLLL [46] implementation of L2 as
well as the algorithm of [25]. Beyond algorithms improving LLL for general lat-
tices, another important direction is the application of LLL to lattices with an
underlying structure or form, for example, ideal lattices [39], module lattices [28]
and parametric lattices [8].

We believe that many techniques from the above works may be used to
improve output quality, precision handling and runtime of the X-GG algorithms.
Our algorithms could also be used to substitute algorithms like LLL for better
output quality at the cost of slower runtime.

2 Preliminaries

Notation. The sets of integers, rational and real numbers are denoted by Z, Q,
and R respectively. Let [n] = {1, . . . , n}. For x ∈ R, |x| denotes its absolute
value. The integer closest to x ∈ R is denoted by ⌊x⌉. All vectors are column
vectors. The Euclidean norm of a vector x ∈ Rm is denoted by ∥x∥. The inner
product of vectors x,y ∈ Rm is denoted by ⟨x,y⟩. All logarithms are base 2
unless denoted otherwise.

Lattice, Bases, Sublattice and Linear Span. A lattice L = {Bx : x ∈ Zn}
specified by an ordered set of linearly independent vectors called a basis B =
(b1, . . . ,bn) ∈ Rm×n is denoted as L(B). We call m the dimension and n the rank
of the lattice L, where m ≥ n. The linear span of B is given by span(B) = {Br :
r ∈ Rn}. A subset of vectors in B gives rise to a sublattice of L(B). For example,
given a basis B = (b1, . . . ,bn) for a lattice L, the vectors (b1, . . . ,bi) , 1 ≤ i ≤ n
form a basis of a sublattice of L that we denote as Li.

For a lattice of dimension n ≥ 2, there are infinitely many bases. If B1 is
a basis for a lattice L, we may transform this into another basis B2 for the
same lattice by B2 = B1U, where U ∈ GLn(Z) is a unimodular matrix. An
invariant across the infinitely many bases of a lattice is its volume. For a basis
B of the lattice, its volume is given by Vol(L) =

√
det(BTB) and geometrically

it represents the volume of the fundamental parallelepiped of the lattice. For
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computational purposes, we generally only consider lattices with vectors in Qm

and by scaling we need only consider lattices in Zm.

Gram-Schmidt Orthogonalisation. For an ordered set of linearly independent
vectors B = (b1, . . . ,bn) ,bi ∈ Rm, its Gram-Schmidt orthogonalisation (GSO)
gives the corresponding set B∗ = (b∗

1, . . . ,b
∗
n) of orthogonal vectors, defined

recursively as follows.

– b∗
1 = b1, and

– for i > 1, b∗
i = bi −

∑i−1
j=1 µi,jb

∗
j ,

where a GSO coefficient µi,j is defined for 1 ≤ j ≤ i ≤ n as

µi,j =

〈
bi,b

∗
j

〉∥∥b∗
j

∥∥2 .

It is easy to see that µi,i = 1 for all 1 ≤ i ≤ n.

Orthogonal Projections. Given a vector v ∈ L(B), its projections πi(v) are
defined for 1 ≤ i ≤ n as

– π1(v) = v, and
– for 2 ≤ i ≤ n, πi(v) is the projection of v orthogonal to span((b1, . . . ,bi−1))

of the sublattice Li−1.

The projection πi(bk) is written in terms of the GSO vectors (b∗
i , . . . ,b

∗
k) and

the GSO coefficients µk,i, . . . , µk,k−1 as follows

πi(bk) = b∗
k +

k−1∑
l=i

µk,lb
∗
l .

In the simplest case, πi(bi) = b∗
i .

Lovász condition. For the parameter 1/4 < δ ≤ 1, the Lovász condition between
consecutive vectors bk−1,bk ∈ B is defined, as

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

This can be written as
(
δ − µ2

k,k−1

)
·
∥∥b∗

k−1

∥∥2 ≤ ∥b∗
k∥

2 in terms of the GSO
vectors and coefficients. For all 1 ≤ i < k ≤ n, the Lovász condition can be
generalised (for deep insertions) as

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .
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Algorithm 1: The size reduction algorithm for a vector bk

Input: A basis B = (b1, . . . ,bn), its GSO coefficients µi,j , and an index k.
Output: A basis B′ = (b1

′, . . . ,b′
n) where b′

k is size reduced, and the
updated coefficients µ′

i,j .
1 for j = k − 1, . . . , 1 /* The ‘reverse order’ as in Remark 2 */ do
2 if |µk,j | > 1

2
then

3 bk ← bk − ⌊µk,j⌉bj

4 µk,j ← µk,j − ⌊µk,j⌉
5 for i = 1, . . . , j − 1 do
6 µk,i ← µk,i − ⌊µk,j⌉µj,i /* As in Remark 1 part (3) */

7 return B′ with size reduced b′
k and updated coefficients µ′

i,j .

Size reduction. Given a basis B for a lattice L, size reduction of bi with bj

replaces bi with the vector bi−⌊µi,j⌉bj while bj remains unchanged. If |µi,j | <
1/2, the vector bi remains unchanged. Algorithm 1 describes the size reduction of
a vector bk with all its previous vectors bk−1, . . . ,b1 in the basis. The changes in
the GSO coefficients µi,j due to size reduction have been described in Remark 1.
Size reducing an entire basis B pertains to reducing each bk for 2 ≤ k ≤ n with
all previous vectors bi for 1 ≤ i < k in the ordering. The details are in Remark 2.

Definition 1 (Size reduced basis). A basis B = (b1, . . . ,bn) is said to be
size reduced if for all 1 ≤ j < i ≤ n, |µi,j | ≤ 1/2.

We also define the notion of size-reduction where the vector bi is unchanged
if |µi,j | < η for some η ≥ 1/2. This is important for implementations of size
reduction where floating-point approximations to real numbers are used.

Definition 2 (η-size reduced basis). A basis B = (b1, . . . ,bn) is said to be
η-size reduced for some η > 1/2 if for all 1 ≤ j < i ≤ n, |µi,j | ≤ η.

Remark 1 (Changes in GSO Coefficients Upon Size Reduction). Based on the
descriptions in [12, Chapter 2] and [18], we know that, upon a size reduction
of bi with bj (1 ≤ i < j), the values of µi,j must be updated as follows for
consistency.

1. We set µi,j ← µi,j − ⌊µi,j⌉; as a result, upon reducing bi with bj , we get
|µi,j | ≤ 1/2.

2. For j < l < i, the values of µi,l remain unchanged. This is based on [12]
and [18, Exercise 17.4.8 (3)]. The proof is as follows6. Let bi be already size
reduced with respect to the vectors bi−1,bi−2, . . . ,bj+1. Now, we size reduce
bi with bj to get b′

i = bi − ⌊µi,j⌉bj . Let µ′
i,l be the value of µi,l after the

size reduction of bi with respect to bj . Then we have

µ
′

i,l =
⟨b′

i,b
∗
l ⟩

∥b∗
l ∥

2 =
⟨bi − ⌊µi,j⌉bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥
− ⌊µi,j⌉

⟨bj ,b
∗
l ⟩

∥b∗
l ∥

.

6 Although quite straightforward, the proof is not detailed in the literature to the best
of our knowledge.
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Note that since l > j, we have bj ⊥ b∗
l as b∗

l is (by definition) orthogonal
to b1, . . . ,bl−1. Therefore, we have ⟨bj ,b

∗
l ⟩ = 0, and hence

µ′
i,l =

⟨bi,b
∗
l ⟩

∥b∗
l ∥

2 − ⌊µi,j⌉
⟨bj ,b

∗
l ⟩

∥b∗
l ∥

2 =
⟨bi,b

∗
l ⟩

∥b∗
l ∥

2 = µi,l.

3. For all 1 ≤ l ≤ j − 1, we set µi,l ← µi,l − ⌊µi,j⌉µj,l.

In summary, if we size reduce bi with bj , then the values µi,l for j < l ≤ i − 1
do not change. However, the values µi,l for 1 ≤ l ≤ j may change.

Remark 2 (Reducing in Reverse). Note that in Algorithm 1, while size reducing
the vector bk with b1, . . . ,bk−1, we must reduce ‘in reverse’. In other words, we
first reduce bk with bk−1, then bk−2, and so on, down to b1. This is for two
reasons. First, as per point (2) of Remark 1, upon size reduction of bk with bi,
the vector bk is still size reduced with respect to all bl for i < l < k. Second,
the size reduction of bk with bi for 1 ≤ i < k affects the size reducedness of bk

with respect to bl for l < i as per point (3) in Remark 1. So by size reducing bk

with bi, only the vectors before bi are candidates for further size reduction of
bk and not the ones between bi and bk.

Lattice Reduction. Given a basis for a lattice, the goal of lattice reduction is
to transform it into a better quality basis consisting of shorter, more orthogo-
nal vectors. Lattice reduction algorithms like LLL and its variants conduct size
reduction as well as reordering of the input basis to improve their quality.

Basis Quality Measures. Several measures can be used to describe the quality
of a basis. The most widely used is the Hermite factor (HF)

γ =
∥b1∥

Vol(L)1/n

of a lattice. The vector b1 is assumed to be the shortest vector in the output
basis. It has been shown that the smaller the Hermite factor of a basis, the
better the basis quality [19]. Furthermore, the root Hermite factor (RHF) given

by γ1/n =
(

∥b1∥
Vol(L)1/n

)1/n
can be shown experimentally [19] to converge to a

constant for certain basis reduction algorithms and large n.
The potential (Pot) of a basis B is defined in terms of its GSO vectors B∗ as

Pot(B) =

n∏
i=1

Vol(Li)
2 =

n∏
i=1

∥b∗
i ∥

2(n−i+1)
.

It was introduced in [29] to prove that LLL runs in polynomial time. The po-
tential takes into account not only the vectors in a lattice basis but also their
ordering. Earlier basis vectors have significantly more contribution to the value
of Pot(B) than the later ones. We use the natural logarithm of the potential for
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easy handling of the large exponents in its computation, especially with large
values of n.

loge(Pot(B)) = loge

(
n∏

i=1

Vol(Li)
2

)
= 2

n∑
i=1

(n− i+ 1) loge(∥b∗
i ∥).

Another measure of basis quality is the squared sum (SS) of its GSO vectors
B∗:

SS(B) =

n∑
i=1

∥b∗
i ∥

2
.

This quantity was introduced in [17] in the context of sampling short lattice
vectors, and has then been used in [48] for lattice reduction. Similarly to Pot,
the squared sum varies with changes in the lengths of the GSO vectors. However,
unlike Pot, all GSO vectors contribute equally to its value.

Ordering of Basis Vectors. Let Sn be the group of permutations of the elements
in [n]. For σ ∈ Sn and a basis B, we define σ(B) =

(
bσ(1), . . . ,bσ(n)

)
to be a

permutation of the basis vectors. Here, σ(j) is the index of the vector in B that
takes position j in the permuted basis σ(B). In particular, we are interested in
the permutations σi,k ∈ Sn for 1 ≤ i < k ≤ n defined as follows.

σi,k(j) =


j if j < i or k < j

k if j = i

j − 1 if i+ 1 ≤ j ≤ k.

Such a permutation of B = (b1, . . . ,bn) essentially gives us the permuted basis

σi,k(B) = (b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bn)

where bk is inserted between bi−1 and bi, and all vectors bi, . . . ,bk−1 are shifted
up by one position. The other vectors retain their positions in the ordering.

Change in Basis Quality through Permutations. Let X(B) be a measure of basis
quality (like the HF, RHF, Pot, SS, etc.) of B. On permuting the basis B to
σi,k(B), the difference in the measure is denoted as

∆Xi,k = X(B)−X(σi,k(B)).

In particular, we get ∆Poti,k = Pot(B) − Pot(σi,k(B)) and ∆SSi,k = SS(B) −
SS(σi,k(B))7. We note that argmax1≤i<k≤n(∆Xi,k) returns the pair of indices
(i, k) for which the value of ∆Xi,k is maximised.
7 Note that even though the expression for computing the measure SS(B) itself gives

equal weight to all GSO vectors (unlike Pot(B)) independent of where they occur
in the ordering of B∗, the GSO vectors themselves (and hence their lengths) change
upon reordering. As a result, the value of the measure SS(B) generally changes after
reordering the basis.
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3 The LLL Algorithm, Its Variants and Generalisations

Given a basis B = (b1, . . . ,bn), we have its GSO B∗ = (b∗
1, . . . ,b

∗
n) and the

coefficients µi,j therein.

Definition 3 (δ-LLL reduced basis). Given 1/4 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-LLL reduced if the following two conditions are sat-
isfied.

1. B is size reduced as in Definition 1.
2. For all 2 ≤ k ≤ n, the Lovász condition holds between the consecutive vectors

bk−1,bk ∈ B. In other words,

δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2 .

Algorithm 2: The LLL Algorithm [29]
Input: A basis B = (b1, . . . ,bn), a threshold 1/4 < δ ≤ 1
Output: A basis B′ = (b1

′, . . . ,b′
n) which is δ-LLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 k ← 2
3 while k ≤ n do
4 Size reduce bk /* As in Algorithm 1 */
5 if ∥b∗

k∥2 <
(
δ − µ2

k,k−1

)
∥b∗

k−1∥2 /* Equivalent to the failure of the
condition in (1) */ then

6 B← σk−1,k(B) /* Swap vectors bk−1,bk ∈ B */
7 Update b∗

k−1,b
∗
k /* As in [18, Lemma 17.4.3] */

8 Update µi,j ’s /* As in [12, Algorithm 2.6.3] */
9 k ← max(k − 1, 2)

10 else
11 k ← k + 1

12 return B′, a δ-LLL reduced basis

Definition 4 (δ-DeepLLL reduced basis). Given 1/4 < δ ≤ 1, a basis B =
(b1, . . . ,bn) is said to be δ-DeepLLL reduced if the following two conditions are
satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 .

Remark 3. If the Lovász condition holds for all pairs (i, k), then it must certainly
hold for all consecutive pairs (k − 1, k). A δ-DeepLLL reduced basis is hence δ-
LLL reduced.
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The LLL and DeepLLL Algorithms. The LLL algorithm [29] is described in
Algorithm 2. The output basis B′ is δ-LLL reduced as in Definition 3. A swap
between vectors bk−1 and bk in the algorithm is denoted by B ← σk−1,k(B).
This is generalised in DeepLLL [43] and its variants [16,48] to a deep insertion
step B← σi,k(B) where 1 ≤ i < k ≤ n. All our descriptions are in terms of deep
insertions. The corresponding results for swaps can be derived by substituting
i = k − 1, where applicable.

Remark 4 (Measure for Lovász Condition). The Lovász condition is given by
δ · ∥πk−1(bk−1)∥2 ≤ ∥πk−1(bk)∥2. This can be written as

(1− δ) · ∥πk−1(bk−1)∥2 ≥ ∥πk−1(bk−1)∥2 − ∥πk−1(bk)∥2 .

Here, ∥πk−1(bk−1)∥2 − ∥πk−1(bk)∥2 denotes the change in ∥πk−1(bk−1)∥2 =∥∥b∗
k−1

∥∥2 (the square of the length of the (k−1)th GSO vector) that will occur if
a swap step B← σk−1,k(B) were to happen. In Algorithm 2, if the condition is
not satisfied, then the change in

∥∥b∗
k−1

∥∥2 is large enough to go ahead with the
swap and bring the vector bk to the earlier position k−1 in the basis ordering. In
general, for 1 ≤ i < k ≤ n, the Lovász condition for a deep insertion B← σi,k(B)

is given by δ · ∥πi(bi)∥2 ≤ ∥πi(bk)∥2 which can also be written similarly as

(1− δ) · ∥πi(bi)∥2 ≥ ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Based on the above, we observe that the (generalised) Lovász condition essen-
tially uses a localised measure of the quality of the basis. For an index 1 ≤ i < n,
the measure of quality of the basis B is given by LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥
2.

The change ∆LCi in the quality of the basis due to a deep insertion B← σi,k(B)
is given by

∆LCi = LCi(B)− LCi(σi,k(B)) = ∥πi(bi)∥2 − ∥πi(bk)∥2 .

Then, the generalised Lovász condition can be written as

(1− δ) · LCi(B) ≥ ∆LCi (1)

which fails if ∆LCi > (1 − δ) · LCi(B) and calls for deep insertion. This inter-
pretation of the Lovász condition as a change in the measure of basis quality is
not present in the literature to the best of our knowledge.

Thus, the condition of the if statement in step 8 of Algorithm 3 is a further
generalisation of the generalised Lovász condition for any measure of quality
X(B) of the basis B. In Algorithm 3, if the condition is not satisfied, bringing
a later vector bk to an earlier position i in the basis ordering will result in
appreciable improvement in the basis quality X(B).

Variants of DeepLLL: transition from a local measure to a global measure of
quality. As noted above, the Lovász condition in LLL [29] and its generalisation
in DeepLLL [43] are both used to check the decrease in ∥πi(bi)∥ = ∥b∗

i ∥ by
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inserting a later vector bk at an earlier position i < k. The length of a GSO
vector is a localised measure of quality that does not capture the quality of
the whole basis. This changed in Pot-DeepLLL [16] where instead of a localised
measure of quality, the potential Pot was used in DeepLLL so that the effect of
permuting vectors on the entire basis is considered. In SS-DeepLLL [48], Pot was
replaced by another global measure SS. The basic operation of deep insertion
for reordering the basis vectors is the same in all three algorithms.

Definition 5 (δ-X-DeepLLL reduced basis). Given 0 < δ ≤ 1, a basis
B = (b1, . . . ,bn) is said to be δ-X-DeepLLL reduced for a basis quality measure
X if the following two conditions are satisfied.

1. B is size reduced as in Definition 1.
2. For all 1 ≤ i < k ≤ n,

δ ·X(B) ≤ X(σi,k(B)).

We omit the δ in naming our algorithms. Unless an algorithm is run for two
different values of δ, this parameter is an implicit input to the algorithm. The
choice of δ is however crucial in determining the quality of the basis. The larger
the value of δ, the better the output quality in general. Hence, we include it in
the notation used in the definition of reducedness of a basis.

Using basis quality measures Pot and SS in place of the generic X, Defini-
tion 5 is instantiated to that of a Pot-DeepLLL [16] reduced basis and a SS-
DeepLLL [48] reduced basis. We know from [16, Lemma 2] that a Pot-DeepLLL
reduced basis is LLL reduced. Also, from [16, Lemma 3], for 1/4n−1 < δ ≤ 1, a
δ-DeepLLL reduced basis is δn−1-Pot-DeepLLL reduced. From [48, Proposition
1] we know that any 1-SS-DeepLLL reduced basis is also δ-LLL reduced for any
1/4 < δ < 1. However, there are no known relationships between δ-SS-DeepLLL
reduced bases and δ-DeepLLL reduced bases to the best of our knowledge. We re-
mark that both Pot-DeepLLL and SS-DeepLLL have polynomial-time complex-
ity by construction, but their output quality cannot be covered by [48, Theorem
1] since their output bases are not DeepLLL-reduced.

Remark 5. In general, for two different basis quality measures X1 and X2, a
δ-X1-DeepLLL reduced basis may or may not be δ-X2-DeepLLL reduced. In
particular, a δ-Pot-DeepLLL reduced basis is also δ-LLL reduced whilst a δ-
SS-LLL reduced basis is not necessarily so for δ < 1. Therefore, there exist
bases which are δ-SS-LLL reduced but not necessarily δ-LLL reduced or δ-Pot-
DeepLLL reduced.

A Generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL. We provide
a generalised description of DeepLLL and its variants Pot-DeepLLL and SS-
DeepLLL in the X-DeepLLL algorithm 3. The X in the name X-DeepLLL cor-
responds to the general measure X(B) of the quality of B. The generalisation
is instantiated for different local and global quality measures of a basis B that
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Algorithm 3: The X-DeepLLL Algorithm
Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is δ-X-DeepLLL reduced

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Initialise other bookkeeping data structures, if required for X(B)
3 k ← 2
4 while k ≤ n do
5 Size reduce bk /* As in Algorithm 1 */
6 for i = 1 to k − 1 do
7 if ∆Xi,k > (1− δ) ·X(B) then
8 B← σi,k(B) /* Deep insert bk before bi */
9 Update B∗ and µl,j /* As in [47, Theorem 1 and Proposition 1] */

10 k ← max(i, 1)
11 break

12 k ← k + 1

13 return B′, a δ-X-DeepLLL reduced basis

are all based on the GSO vectors B∗. The localised measure LCi(B) = ∥b∗
i ∥

2

(used in DeepLLL [43]) is only for a single GSO basis vector, while the measures
Pot [16] and SS [48] are on the entire GSO basis B∗. In Remark 4 we have ar-
gued that the (generalised) Lovász condition can be interpreted as a condition
on the change in the quality of the basis assessed based on the localised measure
LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥
2. Hence, the X-DeepLLL algorithm 3 is a gener-

alisation of the DeepLLL algorithm of [43]. Pot-DeepLLL and SS-DeepLLL are
both variants of DeepLLL for X = Pot and X = SS respectively. A key feature of
these algorithms is the deep insertion of a basis vector bk at the earliest position
i satisfying the condition in Line 7 of Algorithm 3. If such a position is found, the
deep insertion is executed, the GSO is updated and k is set to i+ 1 because all
vectors up to position i are already size reduced. Line 12 of Algorithm 3 ensures
that the algorithm proceeds to consider the next vector for size reduction and
possible deep insertion.

In the generalised X-DeepLLL algorithm 3, we note that the threshold value
δ represents a fraction of the measure X(B). If a reordering of the basis B can
change its quality by more than (1− δ) ·X(B), the algorithm has scope for such
a reordering. In fact, when there is no way to decrease the measure (thus im-
proving the quality) to less than δ · X(B), that is when the basis is considered
to be δ-X-DeepLLL reduced as in Definition 4. As may be expected, the thresh-
old δ depends on the measure X in the context. The notation δ is commonly
used [29,43,16] to denote the fraction in the context of algorithms based on the
localised measure LC (when using the Lovász condition) and the measure Pot
for the whole basis. The notation η has been used in [48] to denote the threshold
in the context of the measure SS. In our generalisations of the algorithms and
their analysis, we continue using the more common notation δ with the aware-
ness that for two different measures X1 and X2, two different thresholds δ1 and
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δ2 may have to be considered, respectively. The relationship between threshold
values δ1, δ2 of the algorithms may be derived from the relationship between
their measures X1,X2 as in [16,48].

Since X-DeepLLL (Algorithm 3) attempts to reduce the measure X(B) to at
most δ · X(B) in each iteration, we have δ ≤ 1 and, consequently, 1− δ ≥ 0. In
particular, for δ = 1, a deep insertion is allowed for any decrease ∆X > 0 in the
measure. Assuming the measure X(B) > 0 for any basis B, since the decrease in
the measure ∆X can not be more than or equal to the measure X(B) itself, hence
we necessarily have δ > 0. For the algorithms using the measure LC (based on
the Lovász condition), the threshold must further satisfy δ > 0.25 [29].

The LLL-style algorithms mentioned above (LLL, DeepLLL, SS-DeepLLL
and Pot-DeepLLL) work in a manner where a single iteration of the loop works
only with a sublattice Lk generated by (b1, . . . ,bk) of B. The rest of the vectors
(bk+1, . . . ,bn) remain “untouched” in that iteration. Hence, after a deep insertion
step, B← σi,k(B) the sublattice under consideration in the next iteration would
just be (b1, . . . ,bi). Note from Algorithm 3 Step 5, at the start of an iteration of
X-DeepLLL, the vector bk is size reduced with all previous vectors b1, . . . ,bk−1.
Therefore, the newly inserted vector bi will have already been size reduced with
respect to the vectors b1, . . . ,bi−1 in the previous iteration of the loop when
considering the index k. The vectors bi+1, . . . ,bk have all been “shifted” up by
one position. They will now require further size reduction, since they will not
have been reduced with respect to the newly inserted vector bi. However, this
does not need to be done immediately; these vectors will be size reduced again
when they enter the sublattice under consideration in a subsequent iteration of
the loop. So these algorithms only size reduce one vector bk in Line 5 of an
iteration and not the whole basis.

Deep Insertions. A deep insertion step B ← σi,k(B) only changes the vec-
tors bi, . . . ,bk in the basis. The vectors b1, . . . ,bi−1,bk+1, . . . ,bn remain un-
changed. The corresponding changes in the GSO basis B∗ and the lengths of the
vectors therein are given by [47, Theorem 1]. The corresponding changes in the
GSO coefficients are given by [47, Proposition 1].

Remark 6. From [47, Theorem 1], we note that due to a deep insertion step
B← σi,k(B) the only GSO vectors that change are b∗

i , . . . ,b
∗
k. Hence, the only

GSO coefficients that change are µl,j for i ≤ j ≤ k, and i+ 1 ≤ l ≤ n.

4 The X-GG Algorithm

The generalisation of DeepLLL, Pot-DeepLLL and SS-DeepLLL in the form of
the X-DeepLLL algorithm 3 sets the stage for our new framework of algorithms.

The Greedy Global Framework. The greedy global framework described as the
X-GG algorithm 4 provides a general description of algorithms realised by spec-
ifying a basis quality measure X. The algorithm starts by finding the GSO basis
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Algorithm 4: The X-GG Algorithm
Input: A basis B = (b1, . . . ,bn), a threshold 0 < δ ≤ 1
Output: B′ = (b1

′, . . . ,b′
n) which is a δ-X-GG reduced basis

1 Find the GSO basis B∗ and initialise the values of µi,j

2 Size reduce b2, . . . ,bn in this order /* As in Algorithm 1 for each bk */
3 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and set ∆X = ∆Xi′,k′

4 while ∆X > (1− δ) ·X(B) do
5 B← σi′,k′(B) /* Deep insert bk′ before bi′ */
6 Update B∗ and µl,j /* As in [47, Theorem 1 and Proposition 1] */
7 Size reduce bi′+1, . . . ,bn /* As in Algorithm 1 and proof of Lemma 1*/
8 Find (i′, k′) such that (i′, k′) = argmax1≤i<k≤n(∆Xi,k) and ∆X = ∆Xi′,k′

9 end
10 return B′, a δ-X-DeepLLL reduced basis.

in step 1 followed by size reducing the input basis B in step 2. In step 3, it finds
a pair of indices (i′, k′) that may be suitable for a deep insertion B ← σi,k(B).
It then runs a loop performing a deep insertion and associated bookkeeping in
steps 5-6, the consequent size reductions using Algorithm 1 in step 7 and find-
ing an appropriate pair (i′, k′) for the next iteration in step 8. By the end of
each iteration of the loop, the algorithm produces a size reduced basis, and the
associated bookkeeping information like the values of µi,j , etc. are all updated
to be consistent with the new basis. The loop runs as long as there is a pair
of indices (i′, k′) such that if bk′ is deep inserted before bi′ , the change in the
measure ∆X = X(B) − X(σi′,k′(B)) is greater than a fraction (1 − δ) of the
current measure X(B). Note that every time the loop runs, a deep insertion is
certainly conducted. For δ close to 1, (1− δ) is a small value. So the algorithm
essentially terminates when there is no possible deep insertion step in the entire
basis B that can reduce the measure X(B) by a fraction (1−δ) that may be con-
sidered as a substantial change to the quality of the basis. Thus, X-GG returns
a δ-X-DeepLLL reduced basis as in Definition 5. We prove this in Lemma 2.

In a single iteration, LLL, DeepLLL, Pot-DeepLLL and SS-DeepLLL either
increase the index 2 ≤ k ≤ n by 1, or decrease the index by some value i
(< k − 1). In the process, they only work with the sublattice Lk generated by a
subset (b1, . . . ,bk) of B. The key novelty of our framework and the algorithms
therefrom lies in not restricting the choice of the vector bk that is investigated
for a possible insertion at an earlier position to only a sublattice. Our algorithm
works with the whole basis B = (b1, . . . ,bn) and hence the entire lattice in
every iteration throughout the algorithm. As a result, a deep insertion step
B ← σi,k(B) in our algorithm has to be immediately followed by reductions of
bi+1, . . . ,bn to ensure that the entire basis is size reduced and ready for the next
iteration. Even though this is O(n) more operations than that of X-DeepLLL, it
creates avenues for smarter choices of the indices for size reduction. In asymptotic
terms, this loss is compensated by the O(n) gain for not having to increment
the index k for each deep insertion O(n) times in the worst case.
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Apart from working with the whole basis in every iteration, we introduce a
greedy technique to select the indices (i, k). In particular, the algorithm finds a
pair (i′, k′) such that the consequent change in the measure ∆X(B) is maximised.
Step 3 of Algorithm 4 does this for the first time before entering the loop, and step
8 does it subsequently for each iteration of the loop. The algorithm starts with a
certain value of X(B) that can be at most IX and attempts to reach a minimum
value ZX. By choosing the maximum decrease in each step, it gets closer to ZX by
reaching a δ-X-DeepLLL state very quickly (if not the quickest8) by taking the
largest possible leaps at each point. The asymptotic analysis assumes the least
possible change in the measure in every iteration, and hence does not capture
the effect of the greedy choice. However, the gains due to the greedy choice get
reflected in the experimental results provided in Section 6 where our algorithms
perform exceedingly well with respect to previous LLL-style algorithms in terms
of their runtimes, the total number of deep insertions, and total number of size
reductions.

The greedy choice is not necessarily the best long-term choice, though. There
could be other pairs (i, k) in an iteration that do not decrease the measure as
much as the greedy choice (i′, k′) (but more than a δ fraction) in that iteration,
but creates the scope for a larger decrease in the measure in subsequent itera-
tions. We do not consider such strategies in this work and leave them for future
consideration. Our focus is on the greedy choice only.

Every new measure gives us a unique new lattice reduction algorithm. For
the potential, we get Pot-GG and for the squared sum, we get SS-GG. Like
X-DeepLLL, the values of δ to be used to get output bases of sufficiently good
quality will depend on the measure X in the context. We assume that any other
measure X will be calculable from the basis vectors and the GSO information. If
necessary, the steps in Algorithm 4 can be modified to take into account possible
additional bookkeeping steps that a measure may require if it is not calculable
from the stored information. We note that the change in the measure X may
require additional computation; for instance, the change in potential requires
the calculation of projections9. However, these computations can be done on the
fly, and are covered by step 8 of Algorithm 4.

Note that Pot(B) and SS(B) are global measures of quality of the basis.
Given that the local measure LCi(B) = ∥πi(bi)∥2 = ∥b∗

i ∥
2 is on a single GSO

vector, and not on the entire basis, more careful consideration must be taken
to establish a greedy approach on independent LCi(B) measures for different
indices i. So we only instantiate Algorithm 4 using global measures in this work.

8 It is well known that an immediate greedy choice is not necessarily always the best
in terms of the overall result of an algorithm.

9 In Pot-DeepLLL, when computing the position i for deep inserting a vector bk, it
is necessary to compute the projections πi(bk) to check if the insertion is viable.
However, this is not essential in the computation of the measure SS since the change
in SS due to insertion can be computed directly using the GSO information that was
updated in a previous step without computing a projection [48, Equation 5].
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Remark 7 (Preprocessing Reduction). The description of Pot-DeepLLL in [16,
Algorithm 1] includes a preprocessing of the basis B by LLL. In the case of
the SS-DeepLLL algorithm in [48, Algorithm 2], the description itself does not
include the preprocessing step. However, they have included the preprocessing
step with 0.99-LLL (that is LLL with δ = 0.99) while reporting the performance
results [48, Section 4.3.3]. We note here from [48] that the quality of the output
basis from a reduction algorithm is often key to their subsequent use in other
algorithms for finding short vectors in the lattice. Furthermore, any lattice re-
duction algorithm can be used for preprocessing the basis before being fed into
a second algorithm for further reduction. We have excluded the preprocessing
step from our theoretical descriptions and asymptotic analysis and have focused
on their independent performances. In our experiments, however, we have ex-
amined the standalone algorithms as well as the algorithms after the basis has
been 0.99-LLL preprocessed.

The BKZ algorithm [43] runs LLL as a preprocess before applying the block-
wise reduction. We use the FPLLL [46] library implementation of BKZ that
inherits this feature in our experiments.

5 Theoretical Results

Lemma 1. Let X(B) be lower bounded by ZX > 0. Algorithm 4, outputs a size
reduced basis as in Definition 1.

Proof. In every iteration of Algorithm 4, the measure decreases by ∆X(B) =
X(B)−X(σi,k(B)). Since it can keep decreasing only until ZX > 0, the algorithm
terminates and outputs a basis.

To prove that the output basis is size reduced, it is sufficient to show that the
basis vectors are all size reduced by the end of each iteration of the while loop
in Algorithm 4. We prove this by induction on the number of loop iterations.
We note that step 2 of Algorithm 4 size reduces the whole basis before the first
iteration. In general, we assume that the basis is size reduced at the start of
iteration r. By Remark 6, a deep insertion step B ← σi,k(B) only changes the
GSO vectors b∗

i , . . . ,b
∗
k. From [47, Theorem 1, Proposition 1] and point (2) of

Remark 1, we know the following.

– The vectors b1, . . . ,bi−1 do not need further size reduction. In fact, the vec-
tors b1, . . . ,bi−1 have not changed. Since their orders have not changed
either, their GSO vectors also remain the same.

– The vector bk upon being inserted in position i does not need further size
reduction. In the deep insertion step B← σi,k(B), the vector bk is inserted
in position i. This vector has already been size reduced with respect to
b1, . . . ,bi−1 in a previous iteration < r (or before the loop starts). However,
its GSO changes from πk(bk) to πi(bk) due to the reordering.

– Vectors bi+1, . . . ,bk need to be size reduced by all earlier vectors, however
bk+1, . . . ,bn need only to be reduced by bk, . . .b1. By Remark 6, the only
GSO coefficients that change upon a deep insertion B← σi,k(B) are µl,j for
j < l, i ≤ j ≤ k, and i+ 1 ≤ l ≤ n.
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• In particular, for vectors bl for i+1 ≤ l ≤ k, the following things change.
∗ The GSO of bl changes from being a projection of bl orthogonal to
span((b1, . . . ,bl−1)) to being orthogonal to
span((b1, . . . ,bi−1,bk,bi, . . . ,bl−1)).

∗ Also, bl may not be size reduced with respect to this newly inserted
vector bk.

Hence, we start with bi (now in position i+ 1), and size reduce it with
the newly inserted vector bk. Upon this size reduction, for 1 ≤ t < k, the
values of µi+1,t will be updated by part (3) of Remark 1. Hence, we must
size reduce bi with all vectors bk,bi−1, . . . ,b1 in reverse as explained in
Remark 2. We similarly reduce all vectors bi+1, . . . ,bk.

• Reordering the vectors (b1, . . . ,bk) does not change span((b1, . . . ,bk)).
The vectors bk+1, . . . ,bn have not been changed due to the deep in-
sertion step. Hence, their projections orthogonal to span((b1, . . . ,bk))
remain the same. Thus, their GSO remains the same. However, the vec-
tors bk+1, . . . ,bn may not be size reduced with respect to bi+1, . . . ,bk.
Therefore, vectors bk+1, . . . ,bn must be size reduced only with the vec-
tors bk, . . . ,b1 as in Remark 2.

We therefore must reduce the vectors in positions i′ + 1, . . . , n, due to the
change in GSO of the vector in position i′. This is done in step 7 of Algo-
rithm 4.

Lemma 2. Algorithm 4 returns a δ-X-DeepLLL reduced basis, as in Defini-
tion 5.

Proof. Algorithm 4 outputs a basis B′. The condition in the while statement
in step 4 of the algorithm ensures that upon the termination of the algorithm,
no possible reordering σi,k(B

′) for all 1 ≤ i < k ≤ n results in a ∆X = X(B′)−
X(σi,k(B

′)) which is greater than (1− δ) ·X(B′). In other words,

∆X = X(B′)−X(σi,k(B
′)) ≤ (1− δ) ·X(B′)

for all 1 ≤ i < k ≤ n. Equivalently, δ ·X(B′) ≤ X(σi,k(B
′)) for all 1 ≤ i < k ≤ n.

Also by Lemma 1, the basis B′ on output is size reduced. Hence, the output of
X-GG is a δ-X-DeepLLL reduced basis as per Definition 5.

In Algorithm 4, the basis quality measure X(B) being a function of the basis
B, may be computed using the values of the associated parameters like ∥bi∥2,
∥b∗

i ∥
2 and µi,k, for all 1 ≤ i ≤ k ≤ n. Let C be an upper bound on the square

of the norm of the vectors in B. The following result is on the computational
complexity of the general X-GG algorithm.

Lemma 3. Let ∥bi∥2 ≤ C for all 1 ≤ i ≤ n in a basis B. In Algorithm 4[Step 8],
let the number of bit operations required for finding the pair of indices (i′, k′) for
the maximum ∆Xi,k be O(fX(C,m, n)) using exact Q arithmetic but without fast
integer arithmetic. Let IX and ZX respectively denote upper and lower bounds
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on X(B) and let 0 < δ < 110. Then the total number of bit operations performed
by the X-GG algorithm 4 is given by

O
((

n4 log2 C +mn4 log2 C + fX(C,m, n)
)
log1/δ

(
IX
ZX

))
(2)

using exact Q arithmetic but without fast integer arithmetic.

Proof. We assume all arithmetic operations in Algorithm 4 are using exact Q
arithmetic but without fast integer arithmetic. We first note that the size reduc-
tion step within the while loop ensures that the length of the vectors in the basis
B do not increase throughout the algorithm [29]. All arithmetic operations are
on integers of size O(n logC) bits by the same argument as in [29][Proposition
1.26].

At each iteration of the while loop, we reduce the measure X by a factor of
at least δ. So after i iterations, the measure X(i) = 1

δiX satisfies

ZX ≤
1

δi
X ≤ IX.

For a given δ, the iteration number i is maximised for ZX = 1
δiX. Thus, the

number of deep insertions (iterations of the while loop) is bounded above by

log1/δ

(
IX
ZX

)
.

Within each iteration of the while loop, we do the following operations.

– Deep insertions: A deep insertion and its associated bookkeeping are done
in steps 5-6 of the algorithm. This results in updates of the basis parameters
like the GSO vectors and the GSO coefficients. We know from the analysis
of [47, Algorithm 4] that the total bit-complexity of the GSO updates is
O
(
n4 log2 C

)
.

– Size reductions: Step 7 of the algorithm size reduces the basis and performs
the associated bookkeeping updates. A vector in the basis contains m in-
tegers, each of size O(n logC). So the size reduction of a vector bk with
bi, 1 ≤ i < k requires O

(
mn2 log2 C

)
bit operations. So the size reduction

of bk with all such bi as in Algorithm 1 requires O
(
mn3 log2 C

)
bit opera-

tions. Hence, size reducing all basis vectors will require O
(
mn4 log2 C

)
bit

operations.
– Index search: In step 8, we search for the pair of indices (i′, k′) for which the

measure ∆Xi′,k′ is the minimum among all possible pairs. We assume this
step requires O(fX(C,m, n)) bit operations in every iteration.

10 We note that Algorithm 4 can work with δ = 1 because it can (theoretically) allow
very small changes in the measure X. However, an arbitrarily small change in the
measure cannot be captured by a fixed value of δ in the expression for the number
of iterations. Hence, δ < 1 in the analysis.
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So Algorithm 4 needs a total of O
(
n4 log2 C +mn4 log2 C + fX(C,m, n)

)
bit

operations in each iteration of the while loop. Considering all iterations, the
total number of bit operations performed by the algorithm is given by

O


 n4 log2 C︸ ︷︷ ︸

deep insertion

+mn4 log2 C︸ ︷︷ ︸
size reduction

+ fX(C,m, n)︸ ︷︷ ︸
index search

 log1/δ

(
IX
ZX

)
︸ ︷︷ ︸

#iterations

 .

The proof of Lemma 3 shows that the asymptotic complexity of Algorithm 4
does not capture the value by which the measure X decreases in each iteration.
Any deep insertion strategy which decreases X by a fraction at least (1− δ) will
result in an algorithm with asymptotic complexity at most as in 2 of Lemma 3. In
practice, the greedy choice of an insertion that results in the maximum possible
decrease in the measure makes the algorithm much more efficient than what is
denoted by its worst case asymptotic complexity.

We use Lemma 3 corresponding to the general framework to find the com-
putational complexities of the concrete algorithms Pot-GG and SS-GG.

5.1 Computational Complexity of Pot-GG

With Vol(Li)
2 =

∏i
j=1

∥∥b∗
j

∥∥2, the potential is given by

Pot(B) =

n∏
i=1

Vol(Li)
2 =

n−1∏
i=1

Vol(Li)
2 ·Vol(L)2.

From [16, Proof of Proposition 1] we know that an upper bound on the value of
Pot(B) is

IPot =

n−1∏
i=1

Vol(Li)
2Vol(L)2 ≤

n−1∏
i=1

CiVol(L)2 = C
n(n−1)

2 Vol(L)2

and a lower bound is ZPot ≥ Vol(L)2. In 2, we substitute the expressions for
the number of iterations and the complexity of index search to find the overall
complexity of Pot-GG. From Lemma 3, the maximum number of iterations in
Pot-GG is

log1/δ

(
IPot
ZPot

)
= log1/δ

(
Cn(n−1)/2

)
= O(n2 log1/δ C).

For a pair (i, k) of indices, computing the value of ∆Poti,k as described in [16,
Equation 3.1] requires O(n2) arithmetic operations or equivalently O(n4 log2 C)
bit operations. A straight-forward extension of this to find indices (i, k) satisfy-
ing argmax1≤i<k≤n(∆Poti,k) would require the computation of ∆Poti,k for each
pair (i, k) with a total of O(n6 log2 C) bit operations. This computation can be
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improved by O(n) time. For a fixed index k, the values of ∆Poti,k can be com-
puted incrementally for all i ∈ {k−1, . . . , 1} where ∆Poti−1,k is computed using
the value of ∆Poti,k. Note that this optimisation applies to Pot-DeepLLL [16]
as well as Pot-GG. Hence, Pot-GG computes argmax1≤i<k≤n(∆Poti,k) using
O(n5 log2 C) bit operations in each iteration. In total, Pot-GG requires

O
((

n4 log2 C +mn4 log2 C + n5 log2 C
)
n2 log1/δ C

)
= O

(
(m+ n)

n6 log3 C

log 1/δ

)
bit operations. From [16, Proof of Proposition 1] we know that Pot-DeepLLL
requires O

(
(m+ n)n4 log1/δ C

)
arithmetic operations or equivalently

O
(
(m+ n)n

6 log3 C
log 1/δ

)
bit operations, which is the same as Pot-GG. The number

of bit operations for each part of the Pot-DeepLLL and Pot-GG algorithms have
been listed in Table 1.

5.2 Computational Complexity of SS-GG

An upper bound on the value of SS(B) is given by

ISS =

n∑
i=1

∥b∗
i ∥

2 ≤ n · C

and a lower bound is ZSS ≥ n which occurs when C = 1. From Lemma 3, the
maximum number of iterations in SS-GG is

log1/δ

(
ISS
ZSS

)
= log1/δ (C) .

as was noted in [48, Proposition 2]. From [48, Equation 5], we know that ∆SSi,k
can be computed in O(n3 log2 C) bit operations. By similar arguments as in
Section 5.1 for Pot-GG, the computation of argmax1≤i<k≤n(∆SSi,k) requires
O(n4 log2 C) bit operations. Hence, SS-GG requires a total of

O
((

n4 log2 C +mn4 log2 C + n4 log2 C
)
log1/δ (C)

)
= O

(
mn4 log3 C

log 1/δ

)
bit operations. In comparison, the number of bit operations of SS-DeepLLL is

O
(
mn4 log3 C

log 1/δ

)
which is again the same as SS-GG. The number of bit operations for each part
of the SS-DeepLLL and SS-GG algorithms have been listed in Table 1.

Remark 8 (Comparison between X-DeepLLL and X-GG). A comparison between
the number of bit operations required in different parts of the X-DeepLLL and
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Algorithm Name Deep Insertion Size Reduction Index Search Number of Iterations
Pot-DeepLLL mn3 log2 C mn3 log2 C n4 log2 C n3 log1/δ C

Pot-GG n4 log2 C mn4 log2 C n5 log2 C n2 log1/δ C

SS-DeepLLL mn3 log2 C mn3 log2 C n3 log2 C n log1/δ C

SS-GG n4 log2 C mn4 log2 C n4 log2 C log1/δ C

Table 1. Complexity comparison of X-DeepLLL and X-GG.

X-GG algorithms is shown in Table 1. It provides a better understanding of
where a greedy global algorithm makes gains and losses when compared with
the corresponding DeepLLL algorithm. For deep insertion, X-DeepLLL requires
O(mn3 log2 C) bit operations. This involves a reordering of the basis followed
by an update of the relevant GSO information. In comparison, X-GG requires
O(n4 log2 C) bit operations using [47, Algorithm 4]. For size reductions, X-
DeepLLL requires O(n) fewer bit operations than X-GG because the greedy
global algorithms need the basis to be completely size reduced before perform-
ing the index search. In contrast, X-DeepLLL needs the basis to be size reduced
only up to the index k being considered in an iteration. X-DeepLLL also re-
quires O(n) fewer bit operations for index search than X-GG. In X-DeepLLL,
the index k is fixed, and so only a search for the best index i for insertion is
required. However, for X-GG, the search covers all pairs (i, k) for 1 ≤ i < k ≤ n,
and so O(n) more operations are required. The increase in complexity due to
index search is compensated in the number of iterations of the while loop that
requires O(n) fewer operations in X-GG than in X-DeepLLL. This is because
X-DeepLLL maintains the index k which must reach k = n + 1 for the algo-
rithm to terminate. If N is the number of deep insertions in X-DeepLLL, the
number of times k is incremented in step 13 of Algorithm 3 is upper bounded
by N(n− 1) + n as argued in [29]. In other words, there are at most O(n) more
iterations of the while loop than the number of deep insertions. Since there is
no such incremental change in the indices in X-GG, hence it requires O(n) fewer
iterations.

6 Experimental Results

We conduct concrete comparative analysis of LLL [29], Pot-DeepLLL [16], SS-
DeepLLL [48], BKZ [43,11] with various block sizes, and our two new algorithms
Pot-GG and SS-GG.

The elements of the input bases to these algorithms are often very large inte-
gers. The floating-point arithmetic (or fpa) may involve a mantissa/significand
requiring many bits. To ensure that the algorithms run correctly, implementa-
tions use multi-precision data types that can represent numbers using a larger
number of bits than the standard data types. With increasing number of bits of
precision, the time to execute an arithmetic operation on multi-precision data
types increases. The number of bits of mantissa available for computations is
called the floating-point precision (or fpp).
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We use the NTL library [44], the GNU MPFR library [22] and the FPLLL
library [46] for our multi-precision implementations. The MPFR and FPLLL
libraries automatically adjust the number of bits used for integer computations,
whereas the NTL library requires this to be set manually. However, the fpp has to
be specified manually in all three libraries. Values that do not fit the specified fpp
get rounded. We run our multi-precision implementations with (over)estimated
fpp to avoid anomalies due to fpa. We note from [16, Section 3], [48, Section 4]
and Lemma 2 that the X-DeepLLL and the X-GG algorithms terminate if and
only if the basis is X-DeepLLL reduced. We utilise this fact to (over)estimate the
precision through trial-and-error. A precision is chosen for a dimension when all
algorithms successfully terminate for every input basis, producing X-DeepLLL
reduced bases.

We first compare the standalone performances of LLL, X-DeepLLL and X-
GG, with input bases of dimensions 40 to 150 that have not been preprocessed.
Since the BKZ algorithm starts with LLL reduction as preprocessing before run-
ning blockwise reduction, it is not part of our standalone comparison. We next
compare X-DeepLLL, X-GG and BKZ with various block sizes, on 0.99-LLL
preprocessed bases. The state-of-the-art multi-precision implementation of BKZ
is available in the FPLLL library [46]. At dimensions 40 to 210, all implemen-
tations use standard data types. At dimensions greater than 210, the FPLLL
implementation of BKZ using the long double data type enters an infinite loop
in Babai’s algorithm (i.e. the size reduction step) for some input bases. There-
fore, the mpfr_t data type from the GNU MPFR library [22] is used for fpa in
the BKZ implementation of FPLLL [46] at higher dimensions. For a fair com-
parison with BKZ at these higher dimensions, we have implemented (Pot-GG
and) SS-GG using the GNU MPFR library [22] and some wrapper functions
from the FPLLL library [46] taking advantage of some FPLLL data structures.
We extensively compare SS-GG (the best performing GG algorithm in terms of
basis quality and runtime) with BKZ at these higher dimensions.

The reporting of our results is as follows. For every dimension, we run the
algorithms on a certain number of bases and report the averages of a selection
of parameters, in particular, runtime and root Hermite factor (RHF). Our first
observation is that even though the output bases are almost always different be-
tween preprocessed (with 0.99-LLL) and standalone executions of an algorithm,
they have very similar RHF. So we do not report them separately. In Section 6.1,
we compare the output quality of LLL, X-DeepLLL, X-GG, and BKZ in terms
of the RHF and the length of the first vector in the reduced basis. However, the
runtime behaviour of the algorithms is significantly different between standalone
and preprocessed executions. Hence,we report them separately in Sections 6.2
and 6.3 respectively. The comparison between SS-GG and BKZ at higher dimen-
sions is presented in Section 6.4. The tables and figures for additional insights
on the behaviour of the algorithms are in Appendix A.

For LLL, Pot-DeepLLL and Pot-GG we use the threshold value δ = 0.99 for
dimensions 40 to 210 as has been common in previous works as well as the default
value of δ in FPLLL [46]. For SS-DeepLLL and SS-GG we first use the threshold
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δ = 1 − 10−6 in Sections 6.1, 6.2 and 6.3, following the rationale provided in
the discussion in [48, Section 4.3.1]. In Section 6.4, we further provide a detailed
comparison between δ-SS-GG and BKZ-β by varying δ and β. All algorithms
use the size reduction relaxation parameter η = 0.51 (in place of 1/2) as is the
default in the FPLLL library implementations.

Our Implementations. To the best of our knowledge, there is no publicly avail-
able implementation of SS-DeepLLL [48, Algorithm 2]. Hence, for the sake of
uniformity and fairness, we use our own implementations of all LLL-style algo-
rithms in C++ using fpa. We use the gcc 11.3.0 compiler to run each algorithm
on a single Intel® Xeon® Platinum 8358 CPU at 2.60 GHz on a shared memory
machine.

We implement LLL, Pot-DeepLLL, SS-DeepLLL, Pot-GG and SS-GG with
the NTL data types [44] for fairness in the standalone comparison. Additionally,
for preprocessed comparison with the state-of-the-art FPLLL [46] implemen-
tation of BKZ, we implement our Pot-GG and SS-GG algorithms using both
standard data types and MPFR data types. Overall, we conduct experiments
using four versions of Pot-GG and SS-GG:

– Using the NTL [44] data types ZZ for integers and RR for rational numbers
for standalone comparison with classic LLL (not L2 [34,46]), DeepLLL, Pot-
DeepLLL and SS-DeepLLL.

– Using standard data types for both integer and floating-point numbers, we
compare the performance of these algorithms with LLL-preprocessed bases
for dimensions between 40 and 210.

– Using standard data type for integers, but mpfr_t data type for floating-
point computations, we compare SS-GG and BKZ with LLL-preprocessed
bases for dimensions between 250 and 450.

– Using mpz_t data type for integers and mpfr_t data type for floating-point
numbers, we compare SS-GG with BKZ using LLL-preprocessed bases for
dimensions between 500 and 600.

Our implementations, the input lattice bases we use in our experiments and the
outputs of our experiments are available at [7].

Input Bases. We generate 300 bases each for dimensions 40 to 210 (in steps of
10), and 10 bases for dimensions 250 to 600 (in steps of 50), unless otherwise
stated. The bases are random in the sense of Goldstein and Mayer [20] and are
akin to those provided by the SVP Challenge [15]. A basis B has the form

BT =

[
q 0
x I

]
=


q 0 0 . . . 0
x1 1 0 . . . 0
x2 0 1 . . . 0
...

. . .
xn−1 0 . . . 0 1


where q is a 10n-bit prime, x = (x1, . . . , xn−1)

T is a column vector of integers
modulo q chosen at random and I is the (n− 1)× (n− 1) identity matrix.
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In the standalone comparison of Section 6.2, we test all 300 bases in di-
mensions 40 to 90. In dimensions 100 to 150, due to the slow runtime caused
by the overestimated floating-point precision, we only test the first 50 bases.
Similarly, for the tests at dimension 250 and above, we use only 10 bases for
each dimension for the majority of our tests. In the preprocessed comparison
provided in Sections 6.1, 6.3 and 6.4, these bases are 0.99-LLL reduced using
the FPLLL implementation [46] before being passed as input to the algorithms
being compared.

GSO recomputations. We note here that errors due to the rounding of values
in fpa can accumulate during the execution of a lattice reduction algorithm.
This issue is particularly noticeable at higher dimensions. When the fpp used is
insufficient, the output basis may not be appropriately reduced. For example,
the output B′ of our X-GG implementation may not be X-DeepLLL-reduced.
However, we have observed that often towards the end of the algorithm execu-
tion, the GSO coefficients µi,j of B′ are reasonably close to η (= 0.51, the size
reduction relaxation parameter). A similar issue may arise when computing the
possible change in measure ∆X.

If the values of µi,j and ∥b∗
i ∥

2 are recomputed from the integer basis dur-
ing the execution of the algorithm, then the accumulated floating-point error
is essentially “reset”. For simplicity, we call this a “GSO recomputation” step.
We utilise this observation to enable our MPFR implementations of X-GG to
further reduce an output basis B′ that is perhaps close to completion in be-
ing X-DeepLLL reduced. Along with the usual inputs to our implementation,
we also pass the maximum number of GSO recomputations allowed. When the
algorithm has terminated as it would normally, a check is performed which de-
termines, using a fresh recomputation of the GSO, whether the output is indeed
X-GG reduced. If so, then the execution terminates as normal. If not, then, using
the recomputed GSO, another execution of the algorithm is performed. This will
result in additional size reductions and deep insertions. This procedure contin-
ues until either the basis is successfully X-DeepLLL reduced, or the number of
GSO recomputations exceeds the value passed as input, and an error is reported
stating that the basis has not been sufficiently reduced.

The default number of GSO recomputations in our tests is 1 which is equiva-
lent to at most two runs of X-GG with a recomputation of the GSO coefficients
in between.

B→ GG→ B′ → GG→ B′′

We tested our implementations to experimentally find a precision for each di-
mension which successfully reduced all bases with a single GSO recomputation.
This allows our implementations to run with significantly smaller precision than
would be required for a single run to achieve X-DeepLLL-reducedness, leading
to a better runtime.

Experimental Data. Our comparisons of the algorithms are based on the av-
erage values of three efficiency parameters, namely, (1) running time (Table 5
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and Figure 5 for preprocessed execution; Table 4 and Figure 4 for standalone
execution), (2) number of reorderings/deep insertions (Table 10 and Figure 8 for
preprocessed execution; Table 8 for standalone execution), and (3) number of
size reductions of the basis vectors as in step 3 of Algorithm 1 (Table 10 and Fig-
ure 9 for preprocessed execution; Table 9 for standalone execution). We measure
the output quality using averages of (1) the root Hermite factor (RHF) (Table 2
and Figure 1), as well as (2) the lengths of the first vector in the reduced bases
(Table 3 and Figure 3). For a detailed comparison of the behaviour of δ-SS-GG
with BKZ-β at dimensions 250 to 600, we vary δ from 1 − 10−4 to 1 while we
also vary β, to compare their runtimes and RHFs (Table 6 and Figures 7 and 6).
For more insights on their behaviour, we compare the average number of deep
insertions of SS-GG with the average number of tours in BKZ (Table 11 and Fig-
ure 10), and the average depth of deep insertions of SS-GG with the block size of
BKZ (Table 11 and Figures 10 and 11). Finally, we compare the average lengths
of the nth GSO vectors for comparison of their output qualities (Table 12).

Improving Runtime. In [47, Algorithm 4], the authors described an efficient way
to update the GSO coefficients µi,j and the values of ∥b∗

i ∥
2 in an algorithm

using deep insertion, to provide better runtime than its naive implementation.
We provide the first public implementations of Pot-DeepLLL, SS-DeepLLL along
with our own Pot-GG and SS-GG algorithms using the techniques from [47,
Algorithm 4].

6.1 Output Quality in Small Dimensions

We first compare the output quality of X-DeepLLL, X-GG and BKZ with β =
8, 10, 12, 20 in dimensions 40 to 210. The average RHF achieved by each of these
algorithms for these dimensions are shown in Table 2 and Figure 1. In Table 2,
we also provide the RHF of the LLL-reduced bases for comparison. Furthermore,
the average length of the first vector in the reduced bases that give the average
RHFs are shown in Table 3 and Figure 3.

Throughout these tests, the average RHF achieved by X-GG is smaller than
the average RHF achieved by X-DeepLLL. Therefore, X-GG returns a better
quality basis on average than the corresponding X-DeepLLL algorithm, whilst
achieving the same theoretical notion of reduction (Lemma 2) and the same
asymptotic complexity (Sections 5.1, 5.2). For example, at dimension 210, SS-GG
outputs shortest vectors that are 11.6% shorter than SS-DeepLLL on average.

When comparing with BKZ, SS-GG (with δ = 1− 10−6) has a smaller RHF
than BKZ-8 in dimensions 40 to 210. Although the SS-GG RHF is larger than
BKZ-10 and 12 at dimension 40, it eventually outperforms at higher dimensions
in the current range. In Figure 2, the ratios of the average RHFs of SS-GG and
BKZ-8, 10, 12 and 20 are provided. A value above y = 1 implies that the RHF
of SS-GG is smaller, whereas a value below it implies that the RHF of BKZ is
smaller. Figures 1, 2 show that SS-GG starts outperforming BKZ-10 at around
dimension 60 and BKZ-12 around dimension 100. Furthermore, Figure 2 shows
that the ratios of RHFs keeps getting better as the dimension increases up to
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Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20 LLL
40 1.01372 1.01341 1.01366 1.01333 1.01352 1.01323 1.01300 1.01243 1.01687
50 1.01427 1.01390 1.01413 1.01355 1.01388 1.01344 1.01316 1.01250 1.01817
60 1.01425 1.01404 1.01410 1.01373 1.01411 1.01375 1.01334 1.01241 1.01860
70 1.01443 1.01418 1.01418 1.01378 1.01427 1.01382 1.01351 1.01248 1.01923
80 1.01457 1.01432 1.01410 1.01378 1.01438 1.01402 1.01359 1.01250 1.01966
90 1.01466 1.01453 1.01407 1.01378 1.01453 1.01404 1.01368 1.01252 1.01985
100 1.01479 1.01460 1.01412 1.01379 1.01462 1.01413 1.01380 1.01260 1.02025
110 1.01484 1.01471 1.01410 1.01372 1.01470 1.01416 1.01383 1.01259 1.02032
120 1.01496 1.01481 1.01414 1.01375 1.01472 1.01428 1.01381 1.01267 1.02056
130 1.01496 1.01484 1.01416 1.01380 1.01481 1.01425 1.01389 1.01268 1.02063
140 1.01504 1.01493 1.01413 1.01377 1.01488 1.01430 1.01395 1.01267 1.02097
150 1.01507 1.01501 1.01414 1.01375 1.01491 1.01434 1.01398 1.01269 1.02092
160 1.01512 1.01501 1.01414 1.01375 1.01495 1.01439 1.01400 1.01269 1.02098
170 1.01521 1.01508 1.01416 1.01373 1.01494 1.01442 1.01400 1.01274 1.02116
180 1.01524 1.01509 1.01414 1.01375 1.01500 1.01448 1.01403 1.01273 1.02127
190 1.01522 1.01511 1.01425 1.01377 1.01504 1.01447 1.01407 1.01276 1.02124
200 1.01526 1.01516 1.01430 1.01383 1.01505 1.01451 1.01408 1.01276 1.02139
210 1.01530 1.01519 1.01449 1.01389 1.01507 1.01451 1.01411 1.01280 1.02149
Table 2. The average RHF using the preprocessed input bases. Plotted in Figure 1.
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Fig. 1. The average RHF using the preprocessed input bases. Values taken from Ta-
ble 2.

around dimension 180. The higher dimension tests of Section 6.4 provide deeper
insights on the comparison of SS-GG varying δ with BKZ varying β.

Whilst Pot-GG is an improvement on Pot-DeepLLL in terms of quality, it
does not compete as well with BKZ. Pot-GG has an RHF less than BKZ-8 at
dimension 40 and comparable up to approximately dimension 100.
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Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20 LLL
40 1755.2 1734.2 1751.4 1728.6 1740.6 1720.5 1705.1 1666.8 1992.7
50 2070.2 2033.0 2056.3 1998.0 2030.3 1986.4 1959.0 1895.5 2513.6
60 2385.1 2355.4 2363.6 2311.8 2363.7 2314.0 2257.9 2137.1 3090.8
70 2783.0 2736.5 2734.7 2661.5 2751.6 2667.7 2610.1 2430.8 3883.8
80 3250.9 3188.1 3131.8 3053.7 3201.7 3109.6 3007.5 2758.0 4870.0
90 3790.1 3746.5 3595.2 3502.3 3740.9 3583.5 3469.7 3129.7 6017.0
100 4439.5 4355.0 4154.2 4023.4 4363.5 4159.5 4023.4 3574.4 7617.1
110 5168.4 5100.7 4771.7 4576.4 5089.3 4802.3 4629.6 4048.9 9395.8
120 6081.1 5971.7 5516.6 5265.0 5903.2 5603.3 5302.8 4630.1 11804.2
130 7058.0 6939.7 6358.7 6076.8 6915.3 6432.8 6147.6 5261.1 14601.8
140 8276.4 8153.9 7299.2 6939.5 8087.2 7466.2 7114.3 5962.4 18796.6
150 9650.2 9560.1 8408.9 7932.5 9415.7 8663.6 8208.7 6781.1 22956.8
160 11300.2 11104.3 9671.0 9094.8 11000.7 10059.4 9457.3 7694.8 28527.8
170 13330.0 13036.3 11167.5 10400.5 12739.8 11680.6 10878.8 8794.8 36243.5
180 15576.5 15185.6 12813.4 11958.1 14918.2 13608.4 12559.8 9968.0 45461.1
190 18076.2 17683.8 15055.7 13773.0 17458.3 15678.3 14552.4 11381.2 55843.7
200 21194.1 20751.2 17538.2 15970.7 20298.2 18271.4 16756.4 12907.8 71041.1
210 24861.7 24296.8 20999.1 18564.3 23707.4 21091.0 19390.3 14793.8 89502.9
Table 3. The average lengths of the first vector in reduced bases using the preprocessed
input bases. Plotted in Figure 3.

6.2 Standalone Runtime

We now compare the standalone runtimes of the LLL-style algorithms in dimen-
sions 40 to 210, without 0.99-LLL preprocessing.

Whilst the asymptotic runtime complexities (comparisons in Table 1) of our
greedy global algorithms Pot-GG and SS-GG are the same as the corresponding
X-DeepLLL algorithms, we observe in Table 4 that our algorithms run in much
less time than the corresponding DeepLLL algorithm on average in every dimen-
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Fig. 3. The average length of the first basis vector after being reduced in dimensions
180 to 210 using the preprocessed input bases. Values taken from Table 3.

sion. Furthermore, as the dimension grows, the greedy global algorithms become
even better in comparison. At dimension 150, SS-GG is around 2.3 times faster
than SS-DeepLLL and Pot-GG is about 1.4 times faster than Pot-DeepLLL. In
fact, SS-GG is only second to LLL in standalone runtime, as is quite clear in
Figure 4, being around 3.41 times slower at dimension 150.

A more granular investigation of the standalone runtime is conducted using
the numbers of reorderings (deep insertions) B ← σi,k(B) and size reductions
bk − ⌊µk,j⌉bj performed by each algorithm. At dimension 150, the number of
deep insertions of Pot-GG is only 0.87% of Pot-DeepLLL, and the number of
deep insertions of SS-GG is only 1.87% of SS-DeepLLL, as reported in Table 8.

Remark 9. The comparisons of the number of reorderings in LLL-style algo-
rithms provide strong intuitive justification for our greedy global approach in
terms of improving efficiency. One would expect that fewer reorderings of the
basis (and hence fewer GSO updates and size reductions) would result in a more
efficient algorithm. However, we must note that upon a reordering in the X-GG
algorithm, there is more that needs to be done compared to X-DeepLLL to en-
sure that the basis is fully size reduced for the next iteration. Hence, recording
the number of size reductions of bk with bj (Algorithm 1[Step 3]) provides a
more granular analysis of efficiency for fairer comparison between the LLL-style
algorithms.
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In Table 9, we see that at dimension 150 the average number of size reductions
(Algorithm 1 [Step 3]) of Pot-GG is 61.68% of Pot-DeepLLL, and that of SS-GG
is 68.13% of SS-DeepLLL. These percentages are higher than the percentages of
deep insertions mentioned above, because of the reasons explained in Remarks 8
and 9. However, the decrease in the number of deep insertions and iterations is
so prominent, that the additional operations after every deep insertion is well
compensated. In summary, X-GG requires significantly fewer deep insertions
and overall fewer size reductions in standalone comparison than X-DeepLLL.
Hence,the overall standalone runtime of the X-GG algorithms is much better
than the X-DeepLLL algorithms.

Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
40 2.02 14.2 6.37 8.54 2.19
50 5.74 48.1 20.7 25.3 6.06
60 12.6 136 59.1 63.2 15.1
70 22.7 295 134 124 31.1
80 41.9 645 301 244 63.2
90 85.0 1323 649 490 120
100 148 3022 1555 954 275
110 248 5644 3043 1777 497
120 348 8918 5130 2479 816
130 580 15929 9865 4103 1695
140 831 25617 16886 6268 2554
150 1134 37328 26738 8752 3867

Table 4. Average runtime in seconds (rounded to most significant 3 digits for smaller
values) for the standalone algorithms. Plotted in Figure 4.

6.3 Runtime with LLL Preprocessing

Here we compare the runtime of the algorithms in dimensions 40 to 210 using
bases that have been 0.99-LLL reduced using FPLLL [46].

Our preprocessed runtime results are in contrast with the standalone run-
time comparison from Section 6.2. We see from Table 5 (Figure 5) that our
algorithms have a slower runtime than the corresponding DeepLLL algorithm on
the 0.99-LLL reduced bases used as input. Furthermore, as the dimension grows,
the gap between X-DeepLLL and X-GG slowly increases. However, the greedy
global algorithms are still quite efficient in practice; reducing the input bases at
dimension 210 in less than 17 seconds on average.

As before, we consider the subroutines within each iteration to conduct a
granular analysis of the runtime differences between X-DeepLLL and X-GG. We
consider the numbers of basis reorderings (deep insertions) and size reductions
performed by each of the algorithms. The average number of reorderings in the
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Fig. 4. The average runtime of the standalone algorithms in dimensions 40 to 150.
Values taken from Table 4.

LLL-style algorithms is provided in Table 10 (Figure 8). As in the standalone
comparison, across all tested dimensions, the greedy global algorithms perform
fewer deep insertions than their DeepLLL counterparts. It is also interesting to
note here that Pot-GG performed fewer reorderings than SS-GG on average
across all tested dimensions.

As pointed out in Remark 9, the average number of size reductions (Algo-
rithm 1 [Step 3]) is a more granular indicator of the runtime. Table 10 also
provides the average number of size reductions. Across all tested dimensions the
greedy global variants always perform more size reductions than their DeepLLL
counterparts. Figure 9 shows the diverging curves of X-GG and the respective X-
DeepLLL counterparts showing that the difference in the number keeps growing
as the dimension increases. Unlike the standalone performance of the algorithms,
the reduction in the number of reorderings in the preprocessed performance of
the greedy global framework has not been able to compensate for the increase
in its number of size reductions. This, along with the global index search step,
appears to be the reason X-GG is slower than X-DeepLLL for preprocessed bases
using standard data type implementations.

When comparing with BKZ, we see that both SS-GG and Pot-GG are faster
than BKZ using the long double data type for GSO information for all 4 block
sizes in these dimensions. Since X-DeepLLL is faster than X-GG on the prepro-
cessed bases, we also have that Pot-DeepLLL and SS-DeepLLL are also faster
than BKZ. At dimension 150, BKZ-8, 10, 12 and 20 took around 6.9, 7.9, 8.7
and 28.1 times longer than SS-GG respectively. At dimension 210, BKZ-8, 10, 12
and 20 took around 4.5, 5.2, 5.9 and 22.1 times longer than SS-GG respectively.
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Algorithm
Dim Pot-Deep Pot-GG SS-Deep SS-GG BKZ-8 BKZ-10 BKZ-12 BKZ-20
40 0.00146 0.00287 0.00134 0.00165 0.0276 0.0301 0.0336 0.0582
50 0.00753 0.00377 0.00316 0.00386 0.0743 0.0835 0.0931 0.166
60 0.00953 0.0185 0.00783 0.00915 0.165 0.184 0.214 0.426
70 0.0220 0.0409 0.0172 0.0209 0.347 0.381 0.427 0.927
80 0.0439 0.0861 0.0352 0.0438 0.684 0.733 0.828 1.96
90 0.0800 0.155 0.0632 0.0824 1.23 1.33 1.48 3.62
100 0.141 0.286 0.111 0.155 2.01 2.21 2.48 6.80
110 0.232 0.463 0.184 0.276 3.02 3.42 3.90 11.6
120 0.364 0.742 0.287 0.468 4.48 5.33 5.83 17.7
130 0.545 1.18 0.435 0.775 6.72 7.36 8.32 26.5
140 0.814 1.75 0.651 1.23 9.82 10.6 11.5 39.2
150 1.17 2.55 0.94 1.94 13.4 15.3 16.9 54.6
160 1.65 3.68 1.34 3.01 20.7 24.3 27.1 88.2
170 2.26 5.23 1.85 4.44 27.3 30.0 34.3 125
180 3.04 7.10 2.46 6.37 34.8 38.5 42.6 172
190 4.00 9.79 3.18 8.99 46.1 49.7 55.6 226
200 5.36 13.2 4.16 12.6 58.8 64.1 72.3 285
210 6.73 16.8 4.84 16.5 74.7 85.2 97.8 364
Table 5. Average runtime in seconds (rounded to most significant 3 digits) on the
preprocessed bases. Plotted in Figure 5.

Summary. We summarise the comparison between SS-GG with δ = 1−10−6 and
BKZ with β = 8, 10, 12, using preprocessed bases in dimensions 40 to 210. Fig-
ure 5 shows that the SS-GG is significantly faster than BKZ with β = 8, 10, 12,
and keeps getting better with increasing dimensions. Figures 1, 2 show that
SS-GG provides better RHF than BKZ-8 throughout, BKZ-10 from around di-
mension 60 and BKZ-12 from around dimension 100. So SS-GG is significantly
faster than BKZ with β = 8, 10, 12 while simultaneously also providing better
RHF in most cases.

6.4 Higher Dimension Comparisons with BKZ

Finally, we present the comparison of SS-GG and BKZ with block sizes 5, 8, 10,
12, 14, 18, 20 and 21 at dimensions 250, 300, 350, 400, 450, 500, 550 and 600 using
their respective MPFR implementations. The runtimes and RHFs for SS-GG
and BKZ are provided in Table 6. If a table reads ‘-’, the runtime was too long
to feasibly complete the reduction, and so no data has been generated. If an
entry is italicised, only 5 bases were used to generate the average instead of the
usual 10 due to the increased runtime.

The runtime of BKZ-β is known to increase dramatically at around β = 20
to 25 and beyond [19], which is confirmed by our experimental results.
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Fig. 5. The average runtime of lattice basis reduction algorithms in dimensions 40 to
210 using the preprocessed input bases. Values taken from Table 5.

Varying δ. The threshold δ determines the minimal change in the squared sum
(SS) in each iteration of SS-DeepLLL [48] and our SS-GG algorithm. For the
smaller dimension tests, our choice of δ = 1−10−6 for SS is based on the following
arguments from [48] surrounding SS-DeepLLL. They ran experiments on SS-
DeepLLL for n ≤ 150 with δ = 1− 10−ε for ε ∈ {4, 6, 8} as well as δ = 1. In [48,
Section 4.3.1], it was noted that the output quality of SS-DeepLLL with δ = 1−
10−6 is almost equal to that with δ = 1. Using δ = 1 would substantially increase
the runtime of SS-DeepLLL (and SS-GG) with no appreciable improvement of
the RHF. So we ran our experiments with δ = 1 − 10−6 for SS at smaller
dimensions. However, this observation does not hold for larger dimensions.

At higher dimensions, our observation with δ = 1 − 10−6 is as follows. A
deep insertion σi,k(B) would not happen if it does not satisfy SS(σi,k(B)) <
δ · SS(B), even though the absolute value of the potential decrease ∆SS(B) =
SS(B)− SS(σi,k(B)) is large and increases with the dimension. In other words,
large improvements of SS are restricted by small values of δ at higher dimensions.
For example, a 0.99-LLL preprocessed basis in our experiments has SS in the
order of 1011 for n = 250, and in the order of 1017 for n = 600. At n = 250
and 600, an insertion must reduce SS by at least 105 and 1011 respectively, if
δ = 1− 10−6 is used. This warrants the use of larger values of δ.

We run our higher dimension tests with δ = 1− 10−ε for ε ∈ {6, 7, 8, 9} and
δ = 1 to progressively improve the RHF. Table 6 shows that using δ = 1−10−6 in
SS-GG yields significantly weaker reduction than higher values of δ ≤ 1. On the
other hand, in order to see if the time advantage seen in the smaller dimensions
can be achieved, albeit with a weaker reduction, we have included experiments
for smaller values of δ = 1− 10−ε for ε ∈ {4, 5}.



38 S. Bhattacherjee et al.

DIMENSION
δ for SS-GG 250 300 350 400 450 500 550 600

1− 10−4 Runtime 107 225 400 629 984 2583 3256 4319
RHF 1.01711 1.01774 1.01810 1.01837 1.01839 1.01831 1.01822 1.01804

1− 10−5 Runtime 368 850 1489 2243 3358 8764 10666 13230
RHF 1.01534 1.01594 1.01656 1.01701 1.01728 1.01730 1.01735 1.01731

1− 10−6 Runtime 1075 2786 5639 10117 14541 35411 37188 39706
RHF 1.01409 1.01468 1.01526 1.01570 1.01615 1.01650 1.01675 1.01687

1− 10−7 Runtime 1685 4955 11402 22667 38816 114861 144164 177719
RHF 1.01345 1.01384 1.01424 1.01461 1.01509 1.01539 1.01582 1.01615

1− 10−8 Runtime 2432 9475 27056 59988 121723 380481 544791 780430
RHF 1.01323 1.01334 1.01351 1.01376 1.01414 1.01453 1.01490 1.01521

1− 10−9 Runtime 2615 13551 55517 151765 351711 1220147 1787847 -
RHF 1.01318 1.01312 1.01300 1.01310 1.01340 1.01375 1.01409 -

1.0
Runtime 2935 17718 108887 625399 - - - -
RHF 1.01306 1.01293 1.01260 1.01237 - - - -

BKZ DIMENSION
block size, β 250 300 350 400 450 500 550 600

β = 5
Runtime 629 1472 3141 5448 7902 11582 16346 23274
RHF 1.01643 1.01655 1.01653 1.01668 1.01663 1.01658 1.01644 1.01632

β = 8
Runtime 998 2406 4997 10118 16442 23648 31771 46201
RHF 1.01527 1.01515 1.01533 1.01530 1.01525 1.01533 1.01527 1.01512

β = 10
Runtime 1232 2756 6196 10571 17475 24409 33173 48057
RHF 1.01465 1.01465 1.01468 1.01482 1.01475 1.01474 1.01474 1.01461

β = 12
Runtime 1264 3008 6528 13657 23422 33204 43655 63323
RHF 1.01426 1.01425 1.01422 1.01428 1.01427 1.01429 1.01430 1.01416

β = 14
Runtime 1572 3943 8551 16076 28066 41677 55669 76927
RHF 1.01382 1.01386 1.01375 1.01386 1.01392 1.01395 1.01388 1.01380

β = 18
Runtime 3470 8378 17652 33558 55691 100085 133628 175322
RHF 1.01307 1.01319 1.01317 1.01323 1.01333 1.01324 1.01328 1.01326

β = 20
Runtime 7944 19257 41966 102322 205247 316521 627868 804470
RHF 1.01283 1.01285 1.01297 1.01290 1.01295 1.01296 1.01299 1.01294

β = 21
Runtime 33057 169574 546368 1988942 - - - -
RHF 1.01260 1.01260 1.01266 1.01265 - - - -

Table 6. The average runtime (to the nearest second) and the RHF of SS-GG with
various values of δ and BKZ with various block sizes β in dimensions 250-600. Plotted
in Figures 6 and 7.

RHF and Runtime. The RHF and runtime are presented in Table 6, and Fig-
ures 6 and 7. Our first observation is that while the RHF of BKZ remains almost
constant as the dimension increases (previously noted by Gama and Nguyen [19]
for n ≤ 200 in all lattice reduction algorithms they tested including DeepLLL),
the RHF of SS-GG is not constant. It varies with the dimension n and the re-
duction parameter δ. For δ = 1 − 10−ε, ε = 4, 5, 6, 7, 8, Figure 7 and Table 6
show that the RHF keeps increasing with the dimension. For δ = 1− 10−9, the
RHF first decreases (output quality improves), and then increases. For δ = 1,
the RHF is always decreasing (tested until n = 400 due to the huge runtime).
This is in sharp contrast to BKZ, where no matter the block size β, the output
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Fig. 6. The average runtime (in logarithmic scale) of SS-GG with various values of δ
and BKZ with various block sizes β in dimensions 250-600. Values taken from Table 6.

quality remains reasonably consistent as the dimension increases. The runtimes
of SS-GG and BKZ are both increasing with the dimension.

For the smaller values of δ (namely 1 − 10−4 and 1 − 10−5), the runtime
of SS-GG is consistently faster than small block size BKZ. In particular, SS-
GG with these values of δ is faster than BKZ-5 in all dimensions 250-600. The
corresponding RHF increases initially until around dimension 400–450, before
stabilising, and in the case of δ = 1 − 10−4, starts decreasing again. The RHF
for δ = 1 − 10−4 is always worse than BKZ-5, but due to its superior runtime,
indicates that SS-GG with δ = 1 − 10−4 achieves a middle ground (in runtime
and RHF) between LLL and BKZ-5. However, for δ = 1 − 10−5, SS-GG has
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Fig. 7. The average RHF of SS-GG with various values of δ and BKZ with various
block sizes β in dimensions 250-600. Values taken from Table 6.

smaller RHF than BKZ-5 in dimensions 250 and 300, and is roughly the same in
dimension 350. So SS-GG outperforms BKZ-5 in dimensions 250 – 300 in both
RHF and runtime. Also, in dimension 350, SS-GG can achieve the same RHF
as BKZ-5, whilst taking less than half the time on average.

When δ = 1−10−6, 1−10−7, 1−10−8, the runtime of δ-SS-GG ranges between
BKZ-β1, . . . , β2 as follows:

– β = 8, . . . , 12 for δ = 1− 10−6,
– β = 14, . . . , 18 (except for dimensions 500-550) for δ = 1− 10−7, and
– β = 18, . . . , 20 for δ = 1− 10−8.

SS-GG with δ = 1 − 10−6 provides significantly better RHF than BKZ-8 up
to n = 350 (with similar runtime), and BKZ-5 up to n = 500 (while being
slightly slower). In general, since it is faster (except for dimension 500) but
has worse RHF than BKZ-12 in dimensions 250-600, we posit that SS-GG with
δ = 1 − 10−6 achieves a middle ground between LLL and BKZ-12 in terms of
runtime and RHF on output.

Finally, for δ = 1, we see that the RHF of SS-GG is consistently decreasing
while the runtime is sharply increasing, crossing BKZ-20 between n = 300, 350
for both. So SS-GG outperforms BKZ-20 in RHF soon after n = 300, at the cost
of an increased runtime. In comparison to BKZ-21, we see that the runtime of
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SS-GG with δ = 1 is significantly faster than that of BKZ-21 in all dimensions
250 – 400 we have tested. As well as being an improvement in runtime, SS-GG
with δ = 1 also achieves a similar RHF to BKZ-21 at dimension 350, and a
significantly better RHF at dimension 400. However, this simultaneous improve-
ment of runtime and RHF over BKZ-β may not continue for larger dimensions
or block sizes β > 21. From Figure 6 it seems that at some higher dimension be-
yond 400, SS-GG (with δ = 1) may become slower than BKZ-21. From Figure 7,
it also seems that the RHF of SS-GG (with δ = 1) may continue to improve over
BKZ-21, perhaps at the cost of a slower runtime at very large dimensions. It is
likely that there is some large block size β for which SS-GG (with δ = 1) will
not be able to achieve a better RHF at any dimension, but may still be faster.
We leave such detailed investigations as future work.

DIMENSION
250 300 350 400 450 500 550 600

SS-GG 84 93 104 112 123 132 141 151
BKZ 74 87 99 106 113 123 128 133

Table 7. Precisions used for the FP_NR multi-precision floating-point datatype for SS-
GG and BKZ for dimensions 250-600.

The values of precision used at the respective dimensions are provided in
Table 7, and one may note that the precision required by SS-GG is more than
BKZ in these tests. We note here that there is a large jump in the runtime of
SS-GG between dimension 450 and 500. One reason for this is the need to use
non-standard large integer datatypes to correctly reduce the bases. This provides
context not only for this sharp runtime increase, but also for the smaller runtime
differences between dimensions 500 and 600 for the smaller values of δ.

Inner Workings of δ-SS-GG and BKZ-β. It is clear from Figure 7 that SS-GG
and BKZ are very different algorithms in the way they reduce a basis. Neverthe-
less, if one has to compare them, a deep insertion of SS-GG would be analogous
to an SVP call in BKZ. Similarly, the average depth of deep insertions in SS-GG
would be analogous to the block size in BKZ. In Table 11 and Figures 10 and 11,
we provide data on the average number of insertions and depth of insertion per-
formed by SS-GG in dimensions 250-600.

In order to compute the number of SVP calls in dimension β, we ran the
FPLLL [46] implementation of BKZ with the BKZ_VERBOSE flag which, along
with other information, provides the number of tours performed. The number of
SVP calls (with dimension β) performed during the algorithm is given by

# SVP Calls at Dim β for BKZ-β = (n− β + 1) · (# of Tours)

as there are (n − β + 1) different blocks of β consecutive basis vectors. These
vectors are then projected, and an SVP algorithm is called on them, which finds
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a short vector to be inserted into the basis. We note that at the end of a tour,
BKZ then reduces the size of the window so that it comprises one fewer vector
with each call to the SVP oracle. The final SVP call is performed only on the
projected block generated by the pair of vectors (bn−1,bn). We do not include
the SVP calls in dimension < β in our analysis. Our observations from the above
comparison are as follows.

– While the number of insertions vary significantly with δ, the number of SVP
calls hardly change between β = 10 and β = 12.

– With increasing dimension, the number of insertions does not increase as
much as one would expect, and even decreases for smaller δ.

– As δ increases, SS-GG allows for much smaller insertion depths. This results
in significant improvement in quality compared with the smaller values of
δ. On the other hand, the block size β is fixed for an SVP call in BKZ. In
SS-GG, the shallower insertions lead to better RHF. In BKZ, the larger block
size leads to better RHF.

These observations are further evidence that SS-GG and BKZ are very different
algorithms.

We also note that since the volume of a lattice is an invariant, for an output
basis, the lengths of its first vector ∥b1∥ and the final GSO vector ∥b∗

n∥ is
indicative of the balance in the lengths of its GSO vectors. This notion of balance
is similar to the spread of the profile of the basis, which is the difference between
the maximum and minimum values of ∥b∗

i ∥ [32,25,40]. Table 12 shows how the
(squared) length of the final GSO vector evolves with the dimension for SS-GG
with δ = 1− 10−6 and 1− 10−8, as well as for BKZ-12 and BKZ-20. In all cases,
we observe that ∥b∗

n∥ for an SS-GG-reduced basis is shorter than that of a BKZ-
reduced basis. Furthermore, note that the RHF of SS-GG with δ = 1 − 10−8

is smaller than that of BKZ-12 until dimension 500, and is larger than that
of BKZ-20 in every dimension. Therefore, this observation holds regardless of
whether the first vector in the SS-GG reduced basis is shorter. This implies that
in general, as we proceed through the basis, the GSO vectors decrease in length
more in SS-GG than in BKZ. This further highlights the differences between
SS-GG and BKZ in the way that basis reduction is performed.

7 Conclusion

In this work, we first interpreted the (generalised) Lovász condition [43] as a
reordering constraint used to improve the length ∥b∗

i ∥ of the ith GSO vector,
which is a localised measure of the quality of the basis. We thus arrived at a
coherent generalised representation of DeepLLL [43], Pot-DeepLLL [16] and SS-
DeepLLL [48] algorithms where they iteratively improve a local or global measure
of basis quality. This generalisation leads us to the new greedy global framework
in the form of a generic algorithm X-GG for lattice basis reduction. The algo-
rithm works by iteratively decreasing a general measure X of basis quality. The
key novelty in the framework is the dynamic greedy choice of a pair of indices
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for deep insertion globally from the whole basis such that the basis quality mea-
sure X is minimised. Our framework is instantiated by substituting the general
measure X with the concrete quality measures potential (Pot) and squared sum
(SS). We reckon that the framework would be able to easily utilise other global
measures (like the Eval function of [45]). A local measure like LCi(B) or the
one from G6K [4] provides independent values for different indices i. A vector
measure like the profile [32,25,40] is constituted of such local measures of the
(whole) basis. More careful consideration must be taken to construct a GG al-
gorithm using such local or vector measures. As long as a measure X can be
computed from the values of µi,j and ∥b∗

i ∥
2, the index search of X-GG is the

only step that may need to be customised based on the choice of X. We have
proved results on the efficiency of the generic algorithm X-GG and on the two
new concrete algorithms Pot-GG and SS-GG. Furthermore, we have shown that
the bases produced by our algorithms are of provable quality i.e. X-DeepLLL
reduced. Our implementations are public.

Using multi-precision arithmetic implementations for standalone compari-
son between the algorithms (without preprocessing the bases), our GG variants
have a faster runtime than their DeepLLL counterparts, whilst also outperform-
ing them in terms of basis quality. In fact, SS-GG is only second to LLL in
standalone runtime, while of course providing much shorter vectors. We pro-
vide justifications for the runtime comparisons based on more granular runtime
parameters like the number of reorderings and the number of size reductions.

All deep insertion based algorithms (DeepLLL, X-DeepLLL and X-GG) can
be improved using the Cholesky Factorisation Algorithm (CFA) [34] and the
lazy size reduction algorithms [5,6,34]. These two techniques have been used in
L2 [34] to improve LLL and are key to its correctness. These techniques have
not yet been incorporated into deep insertion based algorithms. Instead, we have
introduced the GSO recomputation step to ensure correctness of the outputs of
our X-GG implementations. Using the techniques from [34] would be a significant
contribution to the theory and practice of lattice reduction algorithms using deep
insertions.

The design principle of X-GG has been to achieve the best possible efficiency
in reaching an assured quality by reducing the measure X as much as possible
in each iteration. The result is quick improvements in the basis quality. Our
framework could be altered to not make the most greedy choice resulting in a
slower algorithm which performs more iterations to improve the output quality.

The theoretical runtime analysis of the greedy global framework significantly
overestimates the number of iterations of the algorithm. A different proof mech-
anism can take into account the greedy choice of indices, to improve the theo-
retical bound on runtime which is closer to its practical performance. Utilising
reduction on sublattices like [40], restricting insertions to fixed blocks akin to the
technique in [43], or using a sliding window of sublattices like BKZ [43] may lead
to more efficient algorithms. Since SS-GG with δ = 1−10−6 is superior (in both
RHF and runtime) to BKZ-12 in dimensions 100 to 250, it may be particularly
useful on sublattices of these dimensions; perhaps as a subroutine within larger
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dimension BKZ much like the use of DeepLLL in [19]. Running SS-GG with a
smaller value of δ in high dimension reduces the basis to a better quality than
LLL very quickly. This may allow the subsequent series of BKZ with increasing
block size to run quicker, resulting in a technique which performs stronger re-
duction faster overall. We leave such explorations for future work with the belief
that our framework has opened up avenues for designing interesting new lattice
reduction algorithms and their analyses.
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Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
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50 47667 22251 429 23996 517
60 73652 36332 571 39682 705
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Table 8. Average number of basis reorderings (rounded to nearest whole number) for
the standalone algorithms.
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Algorithm
Dim LLL Pot-Deep Pot-GG SS-Deep SS-GG
40 80917 127230 67410 143755 70706
50 185909 320840 155502 371094 164548
60 359996 669874 312213 790779 337483
70 623946 1228812 570384 1480132 630993
80 992473 2052506 963137 2522662 1106309
90 1485987 3199109 1541376 4010701 1827259
100 2123061 4732812 2353368 6044032 2903142
110 2901939 6677443 3417334 8694534 4428745
120 3859389 9122406 4894355 12063243 6553179
130 4982003 12083865 6759215 16242772 9523874
140 6281915 15604490 9173358 21403549 13473035
150 7815673 19710300 12158151 27623812 18822813

Table 9. Average number of size reductions bk − ⌊µk,j⌉bj (rounded to the nearest
whole number) for the standalone algorithms.

Algorithm
Reorderings Size Reductions

Dim Pot-Deep Pot-GG SS-Deep SS-GG Pot-Deep Pot-GG SS-Deep SS-GG
40 211 71 247 83 2620 4927 3224 5987
50 502 122 584 143 8470 15524 10357 18917
60 983 180 1170 216 21509 37996 27524 47166
70 1716 253 2045 315 46684 81529 60196 104540
80 2740 358 3359 450 90205 161833 122865 213469
90 4058 457 4966 604 158490 284433 220329 392239
100 5881 604 7151 826 264844 490594 377831 705232
110 8042 733 9739 1110 413640 770525 610176 1200356
120 10748 907 12811 1464 624169 1190832 938518 1960126
130 13820 1138 16178 1918 893756 1792218 1384967 3104523
140 17938 1338 20411 2440 1282404 2584909 2026213 4742813
150 22354 1594 24644 3162 1754879 3619918 2845232 7133488
160 27284 1840 29193 3986 2331875 4931985 3882114 10412952
170 33425 2195 34349 4925 3086531 6751534 5235544 14816911
180 40278 2516 39459 5988 4005652 8927973 6840290 20568885
190 47565 2935 44186 7163 5058505 11673474 8599039 27791502
200 56683 3363 49229 8413 6438373 15158279 10614901 36908973
210 66134 3766 53005 9715 7998874 19132055 12410508 47824142

Table 10. Average number of reorderings and size reductions bk − ⌊µk,j⌉bj for the
preprocessed bases. Plotted in Figures 8 and 9.
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Fig. 8. The average number of basis reorderings required to reduce bases in dimensions
40-210. Values taken from Table 10.
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Fig. 9. The average number of individual size reductions bk−⌊µk,j⌉bj to reduce bases
in dimensions 40-210 using the preprocessed input bases. Values taken from Table 10.



50 S. Bhattacherjee et al.

DIMENSION
δ for SS-GG 250 300 350 400 450 500 550 600

1− 10−4 Avg. Insertions 1195 1438 1591 1682 1765 1730 1741 1783
Avg. Depth 94.9 113.3 133.2 152.6 172.8 193.8 214.5 233.4

1− 10−5 Avg. Insertions 5403 6879 7493 7514 7431 7068 6940 6454
Avg. Depth 62.3 76.8 92.3 107.9 124.3 141.3 158.2 177.0

1− 10−6 Avg. Insertions 14806 21377 26112 31413 30202 28546 23713 18741
Avg. Depth 43.9 54.1 65.3 75.3 88.0 100.4 115.8 133.6

1− 10−7 Avg. Insertions 30977 52005 75229 96636 111820 122629 124411 114532
Avg. Depth 32.6 39.8 48.0 56.9 66.1 75.2 84.7 94.8

1− 10−8 Avg. Insertions 44789 105857 188303 272046 367018 427016 494208 527263
Avg. Depth 27.4 30.4 36.2 43.9 51.6 60.5 69.1 78.5

1− 10−9 Avg. Insertions 53625 165242 413594 725029 1103952 1445371 1671977 -
Avg. Depth 24.9 25.2 28.1 34.1 41.1 49.2 58.3 -

1.0
Avg. Insertions 62156 226633 901847 3333802 - - - -
Avg. Depth 22.8 21.7 20.6 21.1 - - - -

BKZ-10 # Tours 280.3 400.7 563.5 643.5 846.1 951.0 - -
# SVP Calls 67552.3 116603.7 192153.5 251608.5 373130.1 466941.0 - -

BKZ-12 # Tours 317.2 425.6 578.8 747.8 963.8 1071.9 - -
# SVP Calls 75810.8 122998.4 196213.2 290894.2 423108.2 524159.1 - -

Table 11. Average number of insertions (nearest whole number) and average depth of
insertions for SS-GG in dimensions 250-600 and varying δ. Number of BKZ-β tours and
calls to the SVP subroutine performed in dimensions 250-500 for β = 10, 12. Plotted
in Figures 10 and 11.
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δ-SS-GG BKZ-β
DIM δ = 1− 10−6 δ = 1− 10−8 β = 12 β = 20

250 121.9 501.4 884.2 1453.7
300 11.39 68.91 204.8 384.1
350 0.9458 6.188 50.04 112.6
400 0.1014 0.6671 11.40 28.63
450 0.0091 0.0555 2.918 7.377
500 0.0011 0.0052 1.000 2.163

Table 12. Evolution of the squared length of the final GSO vector ∥b∗
n∥2 for n =

250, . . . , 500 for δ-SS-GG (δ = 1− 10−6, 1− 10−8) and BKZ-β (β = 12, 20).
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