
Privacy-Preserving Tree-Based Inference with
Fully Homomorphic Encryption

Jordan Frery, Andrei Stoian, Roman Bredehoft, Luis Montero, Celia Kherfallah,
Benoit Chevallier-Mames, and Arthur Meyre

Zama ⋆⋆

Abstract. Privacy enhancing technologies (PETs) have been proposed as
a way to protect the privacy of data while still allowing for data analysis.
In this work, we focus on Fully Homomorphic Encryption (FHE), a
powerful tool that allows for arbitrary computations to be performed on
encrypted data. FHE has received lots of attention in the past few years
and has reached realistic execution times and correctness.

More precisely, we explain in this paper how we apply FHE to tree-based
models and get state-of-the-art solutions over encrypted tabular data. We
show that our method is applicable to a wide range of tree-based models,
including decision trees, random forests, and gradient boosted trees, and
has been implemented within the Concrete-ML library, which is open-
source at https://github.com/zama-ai/concrete-ml. With a selected set
of use-cases, we demonstrate that our FHE version is very close to the
unprotected version in terms of accuracy.

1 Introduction

Over the past decade, machine learning (ML) has become a powerful tool to
solve various types of problems, such as facial recognition, image classification,
and text prediction, among many others. This is due to the advancements in
hardware and data availability, which have allowed for training of increasingly
complex models. Additionally, the development of deep learning techniques such
as convolutional neural networks has played a significant role in the success of
ML in various domains.

On the importance of tree-based models in Machine Learning. In ML, tree-
based models have a place of choice, since they are particularly fit for tabular-
data [GOV22]. They are particularly easy to train as they do not need specific
feature engineering or pre-processing. Additionaly, they are scale-invariant unlike
neural networks where input features scale is very important. Furthermore, open-
source libraries such as scikit-learn or xgboost make it even easier for machine
learning practitioners to use them.

⋆⋆ hello@zama.ai http://zama.ai

2 J. Frery et al.

The need for privacy. In their wide range of applications, machine learning models
sometimes need to deal with sensitive data. For instance, facial recognition systems
use people’s pictures, which are usually considered confidential information.
Another critical example is healthcare applications, which are still years behind
the state-of-the-art due to confidentiality issues. Most hospitals have restrictions
on sharing patient data with third parties, which often prevent them from using
the state-of-the-art in data processing. Performing inference on encrypted data
would be a powerful ability to protect the privacy of data while still allowing for
accurate predictions.

Existing art. The goal of privacy-enhancing technologies (PET) — also named
privacy-preserving ML (PPML) —[ARC19], is to allow for computations to be
performed on encrypted data. There are several directions to handle privacy-
preserving ML, including multi-party computation (MPC) [Gol98] and fully
homomorphic encryption (FHE) [Gen09b].1 In our paper, we focus on FHE,
where encryption functions are designed to enable complex computations to be
carried out on ciphertexts, without the need for any secret information. This
allows for the execution of virtually complex computations on untrusted servers.

The first realization of fully homomorphic encryption (FHE) was introduced
by Gentry [Gen09b,Gen09a] in 2009, and notably mentions for the first time a
very important feature for FHE, namely the bootstrapping. Bootstrapping allows
to reduce the noise of a ciphertext, once a certain number of homomorphic
operations have been done, to be able to do more operations. Thanks to this
operation, homomorphic schemes were no more limited to a given number of
operations, and it was virtually possible to apply an infinite number of operations
without losing correctness.

A number of methods have been proposed for performing tree-based infer-
ence with FHE. (see, e.g., [ALR+22,TBK20]). Most of these methods rely on
CKKS [CKKS17] for approximate arithmetic and BGV [BGV12] or BFV for
modular arithmetic. One drawback of these approaches is that the machine
learning model has to be approximated using polynomial approximations. This
is a strong constraint whereas in TFHE — the cryptographic scheme that we
use [CGGI16,CGGI17,CGGI20] —, we can replace any non-linear function (e.g.
comparisons) by so-called programmable bootstrapping [CJP21]. Other attempts
such as [MF20] rely on additive homomorphic encryption [Pai99] and rely on
order-preserving encryption which allows them to compare encrypted data in the
clear. This raises many privacy flaws [BCO11] in the context of machine learning
where encrypted data could be analysed by the server directly.

Our contribution. In this paper, we present a new method to run tree-based
inference with FHE. Our technique can easily be used — amongst other models
— with any tree-based model. We implemented our method in Concrete-ML

1 In this paper, we restrict ourselves to secure inferences. Secure training is also a
field of research, using additional techniques such as Differential Privacy [Dwo06] or
Federated Learning [BEG+19].

Privacy-Preserving Tree-Based Inference with FHE 3

library [MCMF+2], which provides an easy-to-use interface for working with
FHE-friendly machine-learning models. Important to say, Concrete-ML is open
source and free-to-use for research and non-commercial uses.

We demonstrate our method on a variety of tree-based models, including
decision trees, random forests, and gradient boosted trees. We believe that it can
be of interest to practitioners who wish to perform privacy-preserving inference
on tabular data, a setting where ensemble methods based on trees still yield
state-of-the-art results.

The plan of our paper is as follows: We first give an overview of FHE, TFHE
and tree-based models. We then describe our method for tree-based inference
with FHE. After that, we show our experimental results on a wide variety of
datasets. We conclude with a discussion.

2 Background

2.1 Fully Homomorphic Encryption

What is FHE. An encryption scheme f is said to have homomorphic properties
when there exist two operations · and � such that

f(a · b) = f(a) � f(b),

for all valid messages a and b. Often · and � are the same operations. Homomor-
phic schemes are known since the beginning of public-key cryptography, since
for example RSA has multiplicative homomorphic property [RSA78]. Additive
homomorphic schemes as Paillier are also known [Pai99] and have been widely
used, for example in voting schemes.

Fully homomorphic encryption schemes are homomorphic for more than
one operation, and ideally, for a wide set of operators. It has been much more
complicated for the cryptographic community to build such a scheme, and one had
to wait for Gentry’s breakthrough [Gen09b,Gen09a] to have first implementations
of FHE. One key ingredient of his construction (and of those which followed) is
the so-called bootstrapping, which allows to reduce the noise in a ciphertext. Then
several generations of FHE schemes which are both secure and practical have been
proposed, notably BFV [Bra12,FV12], GSW [GSW13], BGV [BGV12,BGV14],
FHEW [DM15], CKKS [CKKS17], and TFHE [CGGI16,CGGI17,CGGI20].

FHE and ML. FHE has been identified as a great tool for privacy-enhancing
technology, notably thanks to its security and the fact that it doesn’t really
change the protocol (as opposed to, for example, other techniques such as multi
party computations). In the TFHE scheme, programmable bootstrapping (PBS)
allows for the utilization of table lookup (TLU) during the bootstrapping process
without incurring additional cost, as noted in [CJP21]. Thus, with PBS, it is
possible to replace non-linear functions — typically activations — by TLUs.

4 J. Frery et al.

2.2 Our Use of TFHE and Corresponding Constraints.

TFHE is a very convenient cryptographic scheme, but, as the other FHE schemes, it
comes under some constraints. We refer the reader to [Joy21] for more information
about the reasons, and just list the most important points for us here.

1. Every input value and intermediate value within the model must be an integer
type. This is not a hard constraint of TFHE (which works over the reals
modulo 1) but a choice was have made, to use an exact approach,2 i.e., to
have computations in FHE which are always exact.3

2. The maximum precision we can handle is 16 bits.4 This is also true for all
intermediate values (e.g., accumulators where the dot products are computed).

3. Conditional operations are not possible with FHE scheme in general, and so,
with TFHE in particular. We explain in Section 3.2 how we are able to handle
this difficulty with the PBS, which is a tool only available in TFHE (so far).

4. Due to the linear homomorphism in TFHE, additions, subtraction and multi-
plications by constants are easy to do directly on ciphertexts. All univariate
functions are also easy to do with PBS.5. Multivariate functions (typically,
MaxPool in ML) are more complicated to handle, and are out-of-scope of this
paper.

2.3 Decision Tree, Random Forest and XGBoost

Tree-based models are a popular class of machine learning models that are used
for a variety of tasks, including classification and regression. They are attractive
as they are relatively interpretable [GBY+18], easy to use (thanks to popular
libraries such as scikit-learn), and still state-of-the-art models when it comes
to accuracy over tabular datasets [SZA22]. Decision trees are a specific type of
tree-based model that are commonly used for classification or regression tasks
in which each internal node represents a test on an input feature, each branch
represents the outcome of the test, and each leaf node represents a class label.

Decision trees can be easily trained using a variety of algorithms, including
the popular CART algorithm [BFOS17]. There are a lot of different popular
algorithms that train decision trees or an ensemble of decision trees such as
random forest or gradient boosting [CG16]. Once trained, tree-based models can
be used for inference by traversing the trees from the root node to a leaf node,
making a prediction based on the class and then applying a weighted sum of the
trees outputs.

2 By opposition to the so-called approximate approach. We refer the interested reader
to ”Approximate vs Exact approaches” Section in [Zam22a] for more information
about this choice.

3 Always because ”always except a very small probability”.
4 This limitation comes from the foundations of our dependency, namely the Concrete-
Library [Zam21]

5 As long as the input range is small enough to be on 16 bits.

Privacy-Preserving Tree-Based Inference with FHE 5

2.4 Quantization

Principle. Quantization is a process of converting a continuous signal into
a discrete signal. A common example of quantization is converting a signal
from an analog format to a digital format. In the context of neural networks,
quantization refers to the process of converting weights and activations from
floating point values to integer values. This can be done using a variety of
methods, in particular uniform quantization [JKC+18]. Quantization can be used
to improve the efficiency of neural networks, both in terms of memory usage
and computational speed. It can also be used to reduce the amount of data that
needs to be stored and transmitted, which is important for applications such as
mobile devices or embedded systems. In our context, the interest is to obtain a
final model that contains and operates only over integers.

Symmetric quantization. The straightforward approach is to use uniform quanti-
zation as follows:

q(x) = round
(x

∆

)
(1)

where x is a real number, q(x) is the quantized value and ∆ is the step size also
called the scale.

An appropriate step size taking the max and min in consideration can be
computed as follows:

∆ =
max(x)−min(x)

2p − 1
(2)

where p is the number of bits that will be used to represent the quantized values.
In this case, the quantized values will be integers between −2p−1 and 2p−1 − 1.

These equations satisfy the following property:

q(0) = 0 (3)

or in other words, the quantization of the values zero in floating point is equal to
zero once quantized. This is an important property when working with binary
matrices or with sparse models (e.g. neural network subject to pruning).

Asymmetric quantization. Symmetric quantization is great as long as the distri-
bution of the floating point values are symmetric around zero. In some cases,
the distribution does not satisfy this property and we rather use asymmetric
quantization with a zero point value, defined as follows:

qa(x) = round
(x

∆
+ zp

)
(4)

The zero point is typically chosen such that the minimum of x becomes the
integer 0 after quantization, i.e., qa(min(x)) = 0.

This asymmetric quantization allows better use of the available precision as
it take into account the whole range.

6 J. Frery et al.

3 Transforming Tree-Based Models into FHE

In this section, we present our technique for converting tree-based models into a
privacy-preserving setting using Fully Homomorphic Encryption (FHE). As out-
lined in Section 2.1, FHE imposes certain limitations and constraints, particularly
in regard to condition and flow-operations.

Our method consists of three steps:

– quantizing float variables to integers, as detailed in Section 3.1.
– replacing conditions with table lookups, as discussed in Section 3.2.
– performing all computations in a vectorized manner, as outlined in Section 3.3.

In Section 3.3, we demonstrate how our technique can be applied to a tree-
based models to make it FHE-compatible. Our implementation and experimental
results can be found in Section 4 and are reproducible using the open-source
repository Concrete-ML.

3.1 Our Use of Quantization

In this section, we describe how we utilize quantization in our algorithm.

Choosing asymmetric quantization. Asymmetric quantization is preferred for its
greater precision, as it does not assume a symmetrical distribution of values
around zero. This approach is used for converting input features.

Since a tree-based model does not perform linear combinations of the inputs,
like linear models or a neural networks, we can safely quantize every single feature
independently of each other. This allows us to have a scale and zero point for each
feature which is a great advantage when the input dimensions follow different
distributions.

Tree-based model quantization. Our input space is fully quantized, leaving us with
integers only. This means that our tree-based model can be trained on this new
input space, resulting in quantized split decision thresholds. In practice, when
a split is chosen, the training algorithm (e.g. ginigain, entropy or xgboost)
selects the floating point numbers between two observed input feature values and
then applies a ”strictly greater” or ”strictly lower” comparison. To convert this
into an integer-only problem, we use the ceil or floor function and convert the
comparison into a greater or equal and lower or equal comparison depending on
the algorithm at use. Finally, we apply another asymmetric quantization to each
terminal leaf value.

The quantization of operations in neural networks requires adherence to
specific rules [JKC+18], making the process complex. However, in tree-based
models, this complexity is avoided as the tree is learned over quantized input
directly. As a result, the issue of propagating the scale and zero point through
quantized operations to facilitate dequantization is not present in tree-based
models.

Privacy-Preserving Tree-Based Inference with FHE 7

At this point, our FHE tree-based model is fully quantized. However, as we
mentioned previously, control-flow operations are not directly possible in FHE,
and require a different approach, which is explained in next section.

3.2 Conditional Operations

Conditional operations are not directly possible in FHE. To circumvent this limit,
we use the table lookup (TLU) operation [CJP21], which is currently an exclusive
feature of TFHE.

Consider a two-dimensional integer input space where each data point x ∈ X
belongs to the set [0, 2p)2. Here, p represents the number of bits used to encode
the features of x. Let the first feature of x be denoted as x(1) and the second
feature as x(2), with p = 3 in this example. Our goal is to classify each data
point x ∈ X into two classes, C0 and C1, by finding a function f such that x is
assigned to Cf(x) by our algorithm.

A simple boundary such as x(2) > 3 can be represented by the decision stump
(tree depth of 1) and expressed as follows:

f(x) =

{
0, if x(2) > 3

1, otherwise

Such an algorithm uses an if, which is not FHE compatible, but it turns out
that a lookup table can achieve similar results:

f(x) = T [x], with T = [1, 1, 1, 1, 0, 0, 0, 0]

In TFHE, such TLU is directly converted into a programmable bootstrapping

3.3 Tree Traversal conversion to Tensor Operations

The tree traversal approach is common to run a tree inference. However, in FHE,
it is not possible as control-flow operations are not supported. Selecting which
branch to run from the encrypted data is thus not possible. To overcome this, we
compute every branch simultaneously by converting the tree traversal into tensor
operations. Replacing a circuit with control-flow operations by a circuit without
any branch is something which is already done to accelerate computation over
specific hardware (e.g. GPU). Thus, we use such implementation [Mic22] for the
conversion in our work.

Algorithm 1 lists the tensors used in the conversion process as well as the
process itself.

8 J. Frery et al.

Algorithm 1 GEMM Strategy for Tree Scoring

Require

– X: input features to internal nodes
– A: threshold value of each internal node
– B: threshold value
– C: relationship between leaf nodes and internal nodes
– D: count of internal nodes in the path from a leaf node to the tree root
– E: mapping between leaf nodes and class labels

Step 1: P ← X ·A
Step 2: Q← P < B
Step 3: R← Q · C
Step 4: S ← R == D
Step 5: T ← S · E
Return: T

Q and S are matrices of booleans, while P , R and T are matrices of inte-
gers. A,B,C,D,E are obtained from the training and are also matrices of integers.

The algorithm involves five main steps:

Step 1: Creation of the input path tensor P . This involves multiplying the
input tensor X with a tensor A that captures the relationship between input
features and internal nodes.

Step 2: The result is then compared with a tensor B representing the values
of the internal nodes. The comparison operation essentially assigns a binary value
to each element in the input path tensor, indicating whether the corresponding
internal node is satisfied. This creates tensor Q.

Step 3: Creation of the output path tensor R. This involves multiplying
the tensor result of the previous operation Q with a tensor C that captures the
relationship between the internal node and the left/right sub-tree.

Step 4: Tensor R, representing the output path, is compared to tensor D
that keeps track of the count of left child nodes along the path from a leaf node
to the root of the decision tree. The comparison yields tensor S, which indicates
matching paths.

Step 5: Prediction generation. This involves multiplying the matching paths
tensor S with a tensor E that maps the leaf nodes to produce the final prediction.

4 Experimental Results

In this section we describe the experiments we performed to evaluate our method
using Concrete-ML .6

6 At the time of writing we used the available public version 0.6.1.

Privacy-Preserving Tree-Based Inference with FHE 9

Accuracy of quantized models. The first important point is to show the accuracy
of quantized models as defined in Section 3.1 vs the floating point (FP32) models
built with the original library.

FHE inference. Fully homomorphic inference has a main drawback of having
a significantly longer inference time than the clear model inference (see also
Section 4.4). This execution time depends mainly on two factors: the parameters
associated to the cryptography security and the complexity of the FHE circuit.
As the security level is constant,7 cryptographic parameters depends mainly on
the precision we use (i.e., the upper value of the bit width of intermediate values)
while the complexity of the FHE circuit is directly correlated to the complexity
of the model, or in other words, the hyper-parameters.

We provide experiments for three different types of tree-based models for
classification as they are the most popular within the machine learning commu-
nity [BRAN19]:

– DecisionTreeClassifier from scikit-learn library.

– RandomForestClassifier from scikit-learn library.

– XGBoostClassifier from the xgboost library [CG16].

4.1 Implementation in Concrete-ML

In Concrete-ML, the flow has been made easy for any data-scientist to have
their usual tasks remain unchanged. User can use the API to train models and
predict similarly as in the scikit-learn. In summary, the process of converting
the model to its FHE equivalent involves the following steps.

A tree-based model is trained over quantized data using one of the parent
library (namely, scikit-learn or xgboost). The model is then exported to
ONNX using hummingbird, decision thresholds are converted to integer and
prediction values (in terminal leaves) are quantized. Both input and output
quantizer remain at the user’s disposal as they are needed to pre/post process
the data before and after FHE execution. The ONNX model is then converted to
Numpy functions and given to Concrete-Numpy for compilation and bounds
measurements. An optimizer is run to compute the optimal cryptographic security
parameters (a necessary information for public/private key generation). The
FHE binary is produced by Concrete-Compiler that implements every FHE
operations.

Once the model is trained and compiled, the user can use Concrete-ML
Python API to encrypt, quantize/dequantize and run the FHE execution easily.
One can refer to our [Zam22b] available in our repository, where we handle Spam
detection in FHE on a real dataset.

7 Currently in Concrete-ML, security level is forced at 128-bit in Concrete-ML.

10 J. Frery et al.

4.2 Quantization Precision And FHE Inference Time.

First we study the impact of quantization on models accuracy. In Figure 1, we
compute the f1 score and average precision (AP) for different bit width (quantized
precision) and plot it along with the metrics from the floating point value model.
For the three different tree-based model, we can observe a convergence of the
quantized model toward the full precision model.

Fig. 1. Experiment reporting the f1-score and average precision with varying precision
on the spambase dataset.

Such a behavior is expected and the natural choice would be obviously to
select the highest bit width. However, FHE has its execution time impacted by
a change in the precision. To have a better understanding of this quantization
parameter impact, we run an experiment in Figure 2 where we compute the FHE
inference time for the three models at different quantization precision.

Fig. 2. FHE inference time for different bit widths.

Figures 1 and 2 provide a good overview for the trade-off between model
accuracy vs. FHE inference time. We can see that a great increase in FHE
inference time is found to be between starting at 7 bits. On the other hand,
5 and 6 bits gives us metric very close to the FP32 model: < 2% drop in the
metrics reported for 6 bits precision. In the following section, we use 6 bits as
our quantization precision for both the input features and output tree values.

Privacy-Preserving Tree-Based Inference with FHE 11

4.3 Experiments on Various Datasets

Table 1 presents the average and standard deviations (with the format AVERAGE,
STD in the table) results of 5-fold cross validation repeated 3 times (or 15 runs
in total per model per dataset).

Hyper-parameters used for both the FHE and sklearn models are:

– n estimators is set to 50 and defines the number of trees in the ensemble for
both Random Forest (RF) and Gradient Boosting (XGB).

– max depth is set to 5 for both the decision tree (DT) and XGB. Random
forest is left to None such that the tree can fully expand. This parameter
defines the maximum depth a tree can have once fully trained.

accuracy f1 AP Time (s) FHE/FP32 ratio

spambase FHE-DT 0.91, 0.01 0.88, 0.01 0.84, 0.02 0.687 344x
(#features: 57) FP32-DT 0.9, 0.01 0.87, 0.01 0.82, 0.02 0.002

FHE-XGB 0.93, 0.01 0.91, 0.01 0.88, 0.02 7.950 3975x
FP32-XGB 0.94, 0.01 0.92, 0.01 0.88, 0.01 0.002
FHE-RF 0.91, 0.01 0.88, 0.02 0.85, 0.02 16.589 8294x
FP32-RF 0.92, 0.01 0.89, 0.01 0.86, 0.02 0.002

adults FHE-DT 0.85, 0.0 0.62, 0.01 0.52, 0.01 0.794 794x
(#features: 14) FP32-DT 0.85, 0.0 0.63, 0.01 0.52, 0.01 0.001

FHE-XGB 0.85, 0.0 0.63, 0.01 0.53, 0.01 8.772 8772x
FP32-XGB 0.85, 0.0 0.64, 0.01 0.54, 0.01 0.001
FHE-RF 0.83, 0.01 0.52, 0.02 0.47, 0.01 17.540 17540x
FP32-RF 0.84, 0.01 0.53, 0.02 0.48, 0.01 0.001

wine FHE-DT 0.92, 0.04 0.89, 0.05 0.82, 0.08 0.346 346x
(#features: 13) FP32-DT 0.95, 0.03 0.93, 0.05 0.88, 0.09 0.001

FHE-XGB 0.97, 0.02 0.96, 0.02 0.94, 0.04 5.121 5121x
FP32-XGB 0.97, 0.02 0.96, 0.03 0.94, 0.05 0.001
FHE-RF 0.99, 0.01 0.98, 0.02 0.97, 0.04 8.531 8531x
FP32-RF 0.99, 0.01 0.98, 0.02 0.97, 0.04 0.001

Table 1. FHE vs FP32 tree-based experiments. The accuracy, f1-score and average
precision (AP) are averaged over 15 runs and reported along with the standard deviation.
The inference time per model is reported in the Time columns and finally the execution
time ratio between FHE and FP32 model are reported in FHE/FP32 ratio column.

Accuracy between FP32 and FHE is closely matched for every dataset. The
wine dataset shows the largest variance in all metrics. This can be caused by its
limited sample size of only 178 examples which makes it challenging properly
represent with quantization as only a fraction of these examples are presented to
the model for each run. This is reflected by the higher standard deviation seen
in all models and metrics for this particular dataset. For optimal quantization
outcomes, input features should exhibit a balanced distribution and have a proper
representation of the data in the training set.

12 J. Frery et al.

Execution time is a crucial factor for machine learning practitioner when
considering the use of FHE. The experiment shows interesting properties of the
tree-based models. Decision tree, with its limited depth of 5 and single tree
structure, has the fastest average FHE execution time with 0.7s. Wine again
shows a faster execution time (0.3s), likely due to its few data points available
as the maximum depth of 5 is not necessary for complete dataset classification.
The ratio FHE/FP32 time execution is roughly 1000x. On the other hand, the
random forest model exhibits the slowest FHE execution time, being roughly
10000 times slower than its FP32 counterpart. This outcome is predictable, as the
unrestricted depth in the construction of random forests results in a substantial
number of internal nodes. In contrast, gradient boosting offers the best of both
worlds, combining small trees that makes the inference faster and yet as accurate
as random forest if not more.

4.4 Take Aways

Our solution is a big step to achieve privacy-preserving ML for tree-based
algorithm, with goodness of fit which is very close to the scikit-learn original
one. We provide a thorough analysis of its strengths and limitations.

Cons. First, we have to use large elements. One drawback of the GEMM approach
to tree-based inference is that the size of the matrices grows linearly with the
number of internal nodes. This can make the matrices very large, and can be a
problem when there are many trees in the ensemble or if the depth is too high.
For example, a single fully developed tree of depth 12 has 212 − 1 internal nodes
and 212 terminal nodes. This creates matrices of size 4096× 4095. In an ensemble
tree-based model, if trees all have the same depth and are fully developed, the
matrix dimensions grows linearly with the number of trees. That being said,
trees are very rarely, if not never, fully developed. Gradient boosting models
such as xgboost should be preferred as they tend to group trees of small depth
compared to e.g. random forest models.

Second, FHE in general and PBS in particular can be slow depending on the
precision asked and hardware used. In the future, we plan to use GPU, FPGA
and other hardware accelerations8 to have execution times which are much more
comfortable.

Pros. Our solution offers numerous advantages. To the best of our knowledge, it
is the first tree-based solution to offer (i) deep customization, (ii) compatibility
with ensemble methods, and (iii) outstanding accuracy.

Easy to use: it shouldn’t take more than a couple of minutes for a data
scientist to master the Concrete-ML package [MCMF+2], since its APIs were
designed to be very close to well-known scikit-learn. We hope that having a
very user-friendly framework (where one does not need to known anything about
cryptography, notably) is really a plus.

8 Such that optics [Opt21]

Privacy-Preserving Tree-Based Inference with FHE 13

Security is directly handled under the hood: cryptographic parameters don’t
have to be set by hand, which is very fastidious and can lead to big problems,
since badly chosen parameters are insecure. In our tools, as opposed to others,
the user doesn’t have to take care of this.

Finally, our solution demonstrate remarkable accuracy, closely approximating
the goodness of fit found in scikit-learn. Any decrease in accuracy is primarily
due to quantization, rather than FHE. This makes it feasible to implement
privacy-preserving tree-based models in production, albeit not always adapted
for real-time applications for complex models given the slow speed. However,
it is perfectly suitable for occasional use cases such as cancer detection, image
modification, or financial services.

4.5 Future Work

In this study, we adopt a rudimentary approach to quantization of tree-based
models by uniformly quantizing the input features. While this affords the user
some control over quantization, further investigation into more sophisticated
quantization methods is warranted to maximize the benefits of the tree-based
model. One promising avenue for exploration is training the model with floating-
point value features to learn the decision splits in the tree, and then using these
splits to quantize the input space. This would eliminate the impact of quantization
on the model’s accuracy. However, various considerations must be taken into
account, so we have reserved this topic for further study in a future version of
Concrete-ML.

5 Conclusion

The present study offers a method for the conversion of tree-based models
into their fully homomorphic encryption (FHE) equivalent, thus providing a
secure mechanism for the deployment of machine learning models by service
providers. By encrypting user data beforehand, this method ensures a high level of
privacy for the users. Although the conversion process may pose certain technical
challenges (quantization and conversion to the FHE dialects) these have been
mitigated through the implementation of the method in the open-source library
Concrete-ML, making it as accessible as other commonly used libraries such
as scikit-learn. In summary, this method represents a significant advancement
in the field of machine learning and privacy protection.

References

[ALR+22] Adi Akavia, Max Leibovich, Yehezkel S Resheff, Roey Ron, Moni Sha-
har, and Margarita Vald. Privacy-preserving decision trees training and
prediction. ACM Transactions on Privacy and Security, 25(3):1–30, 2022.

[ARC19] Mohammad Al-Rubaie and J Morris Chang. Privacy-preserving machine
learning: Threats and solutions. IEEE Security & Privacy, 17(2):49–58,
2019.

14 J. Frery et al.

[BCO11] Alexandra Boldyreva, Nathan Chenette, and Adam O’Neill. Order-
preserving encryption revisited: Improved security analysis and alternative
solutions. In Advances in Cryptology–CRYPTO 2011: 31st Annual Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings
31, pages 578–595. Springer, 2011.

[BEG+19] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,
Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano
Mazzocchi, Brendan McMahan, et al. Towards federated learning at scale:
System design. Proceedings of machine learning and systems, 1:374–388,
2019.

[BFOS17] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone.
Classification and regression trees. Routledge, 2017.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In ITCS 2012, pages
309–325, 2012.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory, 6(3):13:1–13:36, 2014.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In Advances in Cryptology – CRYPTO 2012,
volume 7417, 2012.

[BRAN19] Mousumi Banerjee, Evan Reynolds, Hedvig B Andersson, and Brahmajee K
Nallamothu. Tree-based analysis: a practical approach to create clinical
decision-making tools. Circulation: Cardiovascular Quality and Outcomes,
12(5):e004879, 2019.

[CG16] Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting
system. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 785–794, 2016.

[CGGI16] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In Advances in Cryptology – ASIACRYPT 2016, Part I, pages 3–33,
2016.

[CGGI17] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
Faster packed homomorphic operations and efficient circuit bootstrapping
for tfhe. In Advances in Cryptology–ASIACRYPT 2017: 23rd International
Conference on the Theory and Applications of Cryptology and Information
Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I,
pages 377–408. Springer, 2017.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of
Cryptology, 33(1):34–91, 2020.

[CJP21] Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks. In
Cyber Security Cryptography and Machine Learning (CSCML 2021), pages
1–19, 2021.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances
in Cryptology - ASIACRYPT 2017, Part I, pages 409–437, 2017.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Advances in Cryptology – EURO-
CRYPT 2015, Part I, pages 617–640, 2015.

Privacy-Preserving Tree-Based Inference with FHE 15

[Dwo06] Cynthia Dwork. Differential privacy. In Automata, Languages and Pro-
gramming: 33rd International Colloquium, ICALP 2006, Venice, Italy, July
10-14, 2006, Proceedings, Part II 33, pages 1–12. Springer, 2006.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012.
https://ia.cr/2012/144.

[GBY+18] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter,
and Lalana Kagal. Explaining explanations: An overview of interpretability
of machine learning. In 2018 IEEE 5th International Conference on data
science and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178,
2009.

[Gol98] Oded Goldreich. Secure multi-party computation. Manuscript. Preliminary
version, 78(110), 1998.

[GOV22] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. Why do tree-based
models still outperform deep learning on typical tabular data? In Thirty-
sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2022.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-faster,
attribute-based. In Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042, pages 75–92, 2013.

[JKC+18] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantiza-
tion and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2704–2713, 2018.

[Joy21] Marc Joye. Guide to fully homomorphic encryption over the [dis-
cretized] torus. Cryptology ePrint Archive, Paper 2021/1402, 2021.
https://eprint.iacr.org/2021/1402.

[MCMF+2] Arthur Meyre, Benoit Chevallier-Mames, Jordan Frery, Andrei Stoian,
Roman Bredehoft, Luis Montero, and Celia Kherfallah. Concrete-ML: a
privacy-preserving machine learning library using fully homomorphic en-
cryption for data scientists, 2022-*. https://github.com/zama-ai/concrete-
ml.

[MF20] Xianrui Meng and Joan Feigenbaum. Privacy-preserving xgboost inference.
arXiv preprint arXiv:2011.04789, 2020.

[Mic22] Microsoft. Hummingbird library, 2022.
https://github.com/microsoft/hummingbird.

[Opt21] Optalysys. What we do (and why we do it), 2021.
https://medium.com/optalysys/optalysys-what-we-do-and-why-we-
do-it-20ab416c5ad0.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree
residuosity classes. In Advances in Cryptology – EUROCRYPT ’99, pages
223–238, 1999.

16 J. Frery et al.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communications
of the ACM, 21(2):120–126, 1978.

[SZA22] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not
all you need. Information Fusion, 81:84–90, 2022.

[TBK20] Anselme Tueno, Yordan Boev, and Florian Kerschbaum. Non-interactive
private decision tree evaluation. In Data and Applications Security and
Privacy XXXIV: 34th Annual IFIP WG 11.3 Conference, DBSec 2020,
Regensburg, Germany, June 25–26, 2020, Proceedings 34, pages 174–194.
Springer, 2020.

[Zam21] Zama. Concrete library, 2021. https://github.com/zama-ai/concrete.
[Zam22a] Zama. Announcing concrete numpy. Zama Blog, 2022.

https://www.zama.ai/post/announcing-concrete-numpy.
[Zam22b] Zama. Decision tree classifier on spam classifica-

tion task, 2022. https://github.com/zama-ai/concrete-
ml/blob/main/docs/user/advanced examples/DecisionTreeClassifier.ipynb.

